GE / IP FANUC Series 90/30 In Stock

World's Largest Warehouse

of GE 90-30, Genius, and RX7i

Mon-Fri 8AM-5PM EST

5 Ways Robotics is Changing Manufacturing

5-ways-robotics-is-changing-manufacturing

5-ways-robotics-is-changing-manufacturing

The need for top quality automated tools in combination with the request for improved margins and faster completion of the various manufacturing projects are some of the main reasons why robotics could be decisive for the future of manufacturing.

Nevertheless, there are still many things that have to be done before we can claim that robotics is taking over manufacturing. The good news is that automation plays already an integral role in the industry.

We did some research and we present to you below five ways in which the use of robotics can transform manufacturing:

1. Multi-functional robots

One of the biggest misconceptions in the manufacturing industry is that robots can serve multiple purposes and missions. Truth is, though, that in the majority of cases the process adjusts to the robot and not the opposite. That’s because most of the robots are built in order to complete one particular task.

As you can imagine, this hinders flexibility and limits the potential for a more agile and efficient manufacturing process. Under such circumstances, customization is out of the question.

The advent of better software could contribute dramatically toward the creation of interchangeable robotic units of improved quality. As a result, professionals working in manufacturing would have the option to constantly repurpose their robots on site according to their daily needs.

2. Portable robots

Another big challenge that robotics is expected to solve in the near future has to do with the portability of the manufacturing equipment. Due to the lack of flexibility and the limitations in terms of design and functionality, the deployment of manufacturing robots costs a lot both in terms of time and money.

It is no exaggeration to mention that in certain cases the total cost of deployment can be considerably higher than the purchasing cost of the robot. To this problem, add also the cost of redeployment as well as the effort and resources required in order to train those who handle the robot.

It comes as no surprise, then, that one of the most beneficial changes that the advent of advanced robotics will eventually bring has to do with the simplification of the deployment process, the increase of portability and by extension the acceleration of the whole process.

3. Improved collaboration

Collaboration is another significant parameter both in manufacturing and other industries, such as construction. The ongoing technological progress is anticipated to revolutionize the way robots work and collaborate on site with other systems and people.

At the moment, there are still many steps that need to be taken before we can say that robotics has fully unlocked collaboration on site. For instance, most of the robots in warehouses and factories work well secluded from people.

However, the first tracking sensors with the help of which robots can detect people and potentially collaborate with them in harmony have already been created. This is a remarkable first step which will eventually lead to a more productive and data-driven manufacturing process.

4. Smart factories

As a continuation of the previous point, it is apparent that the emergence of smart factories is a matter of time. By the term ‘smart factory’, we mean production units which go beyond the basic automation functions and allow the unhindered real-time flow of information between the different project sides.

Every component of the manufacturing process will be connected and the use of technologies such as artificial intelligence, augmented, and virtual reality will contribute to the faster and easier completion of a project.

Furthermore, the collected data will be used as the basis for future projects in an effort to save both time and financial resources. What is more, a fully-automated manufacturing procedure is expected to help significantly with lowering the production cost and increase customization.

A great example is Speedfactory the new Adidas factory in Ansbach, Germany which allows the creation of highly customizable trainers through the use of 3D printers and robots.   

5. A new type of workforce

Last but certainly not least, the type of workforce in the manufacturing industry is anticipated to change significantly during the upcoming years. The industry is becoming more automated day by day and it goes without saying that the need for tech-savvy individuals will increase considerably.

This is a great opportunity for the sector to redefine its profile and manage to attract young, ambitious workforce with a strong interest in automated tools and robotics. After many years, manufacturing can be seen again as an extremely appealing option for an ambitious long-term career.

Of course, some traditional manufacturing jobs are expected to be lost but this shouldn’t be seen as a reason to avoid automation. To the contrary, this ground shaking shift should be perceived as the perfect opportunity for the sector to invest in workforce training and embrace the presence of both people and robots in manufacturing’s next chapter.

Wrapping it up!  

To sum up, it is understandable that robotics holds great potential for the sector’s future. It goes without saying that we are still only in the very beginning of this journey. Nonetheless, the first signs are extremely promising and it is no exaggeration to claim that robotic technologies will sooner or later transform the manufacturing industry as we know it. This vital transition to a smarter and more automated manufacturing process will generate some remarkable opportunities for the sector and the people who work in it.

About the author: Anastasios Koutsogiannis is Content Marketing Manager at GenieBelt.

Tags: , ,

This entry was posted on June 4th, 2018 and is filed under General, Robotics, Technology. Both comments and pings are currently closed.

Comments are closed.

PDF Supply sells used surplus products. PDF Supply is not an authorized distributor, affiliate, or representative for the brands we carry. Products sold by PDF Supply come with PDF Supply’s 1-year, 2-year, or 3-year warranty and do not come with the original manufacturer’s warranty. Designated trademarks, brand names and brands appearing herein are the property of their respective owners. This website is not sanctioned or approved by any manufacturer or tradename listed.

Rockwell Disclaimer: The product is used surplus. PDF Supply is not an authorized surplus dealer or affiliate for the Manufacturer of this product. The product may have older date codes or be an older series than that available direct from the factory or authorized dealers. Because PDF Supply is not an authorized distributor of this product, the Original Manufacturer’s warranty does not apply. While many Allen-Bradley PLC products will have firmware already installed, PDF Supply makes no representation as to whether a PLC product will or will not have firmware and, if it does have firmware, whether the firmware is the revision level that you need for your application. PDF Supply also makes no representations as to your ability or right to download or otherwise obtain firmware for the product from Rockwell, its distributors, or any other source. PDF Supply also makes no representations as to your right to install any such firmware on the product. PDF Supply will not obtain or supply firmware on your behalf. It is your obligation to comply with the terms of any End-User License Agreement or similar document related to obtaining or installing firmware.