
GE Fanuc Manual Series 90-30

1-800-360-6802
sales@pdfsupply.com

GFK-0772

Buy GE Fanuc Series 90-30 NOW!

PCM C Function Library Reference Manual

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

ÎÎ

GE Fanuc Automation

Programmable Control Products

PCM C Function
Library Reference

Reference Manual

GFK-0772A August 1996

GFL–002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions that
could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master
CIMPLICITY
CIMPLICITY PowerTRAC
CIMPLICITY 90–ADS
CIMSTAR
Field Control

GEnet
Genius
Genius PowerTRAC
Helpmate
Logicmaster
Modelmaster

PowerMotion
ProLoop
PROMACRO
Series Five
Series 90

Series One
Series Six
Series Three
VuMaster
Workmaster

Copyright 1993-1996 GE Fanuc Automation North America, Inc.
All Rights Reserved

iii GFK-0772A

Preface

This manual provides a complete reference to all the library functions provided in the
PCM runtime libraries for the PCM C toolkit. It is written for experienced C
programmers who are also familiar with the operation of Series 90 PLCs. Readers new
to the C programming language or to Series 90 PLCs should familiarize themselves
thoroughly with these topics before attempting to use the material in this manual. The
list of publications at the end of this section contains helpful references.

Related Publications

For more information, refer to these publications:

Series 90�-70 Programmable Controller Installation Manual (GFK-0262): This manual
describes the hardware used in a Series 90-70 PLC system, and explains system setup
and operation.

Logicmaster� 90-70 Programming Software User’s Manual (GFK-0263): This manual
describes operation of Logicmaster 90-70 software for configuring, programming,
monitoring, and controlling a Series 90-70 PLC and/or remote I/O drop.

Series 90�-70 Programmable Controller Reference Manual (GFK-0265): This manual
describes program structure and instructions for the Series 90-70 PLC.

Series 90�-30 Programmable Controller Installation Manual (GFK-0356): This manual
describes the hardware used in a Series 90-30 PLC system, and explains system setup
and operation.

Logicmaster� 90 Series 90-30/20/Micro Programming Software User’s Manual
(GFK-0466): This manual describes operation of Logicmaster 90-30 software for
configuring, programming, monitoring, and controlling a Series 90-30 PLC.

Series 90�-30/20/Micro Programmable Controllers Reference Manual (GFK-0467): This
manual describes program structure and instructions for the Series 90-30 PLC.

C Programmer’s Toolkit for Series 90t PCMs User’s Manual (GFK-0771): This manual
contains information about the design and construction of C language application
programs for the GE Fanuc Series 90 PCM.

The C Primer. Hancock, Les, and Morris Krieger. New York: McGraw-Hill Book Co.,
Inc., 1982.

C: A Reference Manual. Harbison, Samuel P., and Greg L. Steele. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., Third Edition, 1988.

The C Programming Language. Kernighan, Brian W., and Dennis M. Ritchie. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., Third Edition, 1988.

Programming in C. Kochan, Stephen. Hasbrouck Heights, New Jersey: Hayden Book
Co., Inc., 1983.

Learning to Program in C. Plum, Thomas. Cardiff, New Jersey: Plum Hall, Inc., 1983.

Preface

iv PCM C Function Library Reference Manual – August 1996 GFK-0772A

We Welcome Your Comments and Suggestions

At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader ’s Comment Card located on the next page.

Henry Konat
Senior Technical Writer

Contents

vGFK-0772A PCM C Function Library Reference Manual – August 1996

Content of this Manual 1.

VTOS Service Functions By Category 2.

Task Management Functions: 2.

Event Flag Functions: 2.

Asynchronous Trap Functions: 2.

Semaphore Functions: 3.

Time of Day Clock Functions: 3.

Timer Functions: 3.

Communication Timer Functions: 3.

Memory Management Functions: 3.

Memory Module Functions: 3.

Device I/O Functions: 4.

Device Driver Support Functions: 4.

Miscellaneous Functions: 4.

VME Functions: 4.

PLC Service Request Interface API Service Functions By Category 5.

PLC Hardware Type, Configuration, and Status Information: 5.

PLC Program and Configuration Checksum Data: 5.

Reading PLC Data References: 5.

Writing PLC Data References: 5.

Controlling PLC Operation: 6.

Reading Mixed PLC Data References: 6.

Reading and Clearing PLC and I/O Faults: 6.

Reading and Setting the PLC Time of Day Clock: 7.

Abort_dev 8.

Alloc_com_timer 10.

api_initialize 11.

Block_sem 12.

Cancel_com_timer 14.

cancel_mixed_memory 15.

cancel_mixed_memory_nowait 16.

Cancel_timer 17.

chg_priv_level 18.

chg_priv_level_nowait 20.

chk_genius_bus 22.

chk_genius_bus_nowait 24.

chk_genius_device 26.

chk_genius_device_nowait 28.

Close_dev 30.

Contents

vi PCM C Function Library Reference Manual – August 1996 GFK-0772A

clr_io_fault_tbl 33.

clr_io_fault_tbl_nowait 35.

clr_plc_fault_tbl 37.

clr_plc_fault_tbl_nowait 39.

configure_comm_link 41.

Dealloc_com_timer 42.

Define_led 43.

Devctl_dev 45.

Disable_asts 49.

Elapse 50.

Enable_asts 51.

establish_comm_session 52.

establish_mixed_memory 53.

establish_mixed_memory_nowait 59.

Get_best_buff 62.

Get_board_id 63.

Get_buff 65.

get_config_info 66.

get_config_info_nowait 68.

get_cpu_type_rev 70.

get_cpu_type_rev_nowait 72.

Get_date 74.

Get_dp_buff 75.

Get_mem_lim 76.

get_memtype_sizes 77.

get_memtype_sizes_nowait 79.

Get_mod 81.

Get_next_block 82.

get_one_rackfaults 83.

get_one_rackfaults_nowait 85.

Get_pcm_rev 87.

get_prgm_info 88.

get_prgm_info_nowait 90.

get_rack_slot_faults 92.

get_rack_slot_faults_nowait 94.

Get_task_id 96.

Get_time 97.

Contents

viiGFK-0772A PCM C Function Library Reference Manual – August 1996

Init_task 99.

Install_dev 100.

Install_isr 101.

Ioctl_dev 103.

Iset_ef 107.

Iset_gef 108.

Link_sem 109.

Max_avail_buff 110.

Max_avail_mem 111.

Notify_task 112.

Open_dev 113.

Post_ast 121.

Process_env 123.

read_date 125.

read_date_nowait 127.

Read_dev 129.

read_io_fault_tbl 132.

read_io_fault_tbl_nowait 134.

read_localdata 136.

read_localdata_nowait 138.

read_mixed_memory 140.

read_mixed_memory_nowait 142.

read_plc_fault_tbl 144.

read_plc_fault_tbl_nowait 146.

read_prgmdata 148.

read_prgmdata_nowait 150.

read_sysmem 152.

read_sysmem_nowait 158.

read_time 160.

read_time_nowait 162.

read_timedate 164.

read_timedate_nowait 166.

release_request_id 168.

reqstatus 169.

Reserve_dp_buff 171.

Reset_ef 172.

Reset_gef 173.

Contents

viii PCM C Function Library Reference Manual – August 1996 GFK-0772A

Resume_task 174.

Return_buff 175.

Return_dp_buff 176.

Seek_dev 177.

Send_vme_interrupt 180.

set_date 182.

set_date_nowait 184.

Set_dbd_ctl 186.

Set_ef 187.

Set_gef 188.

Set_led 189.

Set_local_date 191.

Set_local_time 193.

Set_std_device 196.

set_time 197.

set_time_nowait 199.

set_timedate 201.

set_timedate_nowait 203.

Set_vme_ctl 205.

Special_dev 209.

Serial Port Setup Strings (special_code = 5) 211.

CPU Setup Strings (special_code = 5) 212.

Start_com_timer 215.

start_plc 217.

start_plc_noio 218.

start_plc_noio_nowait 219.

start_plc_nowait 221.

Start_timer 223.

stop_plc 226.

stop_plc_nowait 227.

Suspend_task 229.

terminate_comm_session 230.

Terminate_task 231.

Test_ef 232.

Test_gef 233.

Test_task 234.

Unblock_sem 235.

Contents

ixGFK-0772A PCM C Function Library Reference Manual – August 1996

Unlink_sem 236.

update_plc_status 237.

update_plc_status_nowait 238.

Vme_clear_lcl_sem 240.

Vme_read 241.

Vme_test_and_set 243.

Vme_test_lcl_sem 245.

Vme_write 247.

Wait_ast 249.

Wait_ef 251.

Wait_gef 253.

Wait_task 254.

Wait_time 255.

Where_am_i 257.

Write_dev 258.

write_localdata 261.

write_localdata_nowait 264.

write_prgmdata 266.

write_prgmdata_nowait 268.

write_sysmem 270.

write_sysmem_nowait 273.

Contents

ix
GFK–0772 PCM C Function Library Reference Manual – February 1993

Table 1. GE Fanuc Series 90-70 Module Address Allocation
 for Standard Access AM Code – 39H 192 .

Table 2. GE Fanuc Series 90-70 Module Address Allocation
 for Short Access AM Codes 193 .

Contents

x PCM C Function Library Reference Manual – August 1996 GFK-0772A

Table 1. GE Fanuc Series 90-70 Module Address Allocation
 for Standard Access AM Code – 39H 206.

Table 2. GE Fanuc Series 90-70 Module Address Allocation
 for Short Access AM Codes 207.

1 section level 1 1
figure bi level 1
table_big level 1

Restarts for autonumbers that do not restart in each
chapter.
figure bi level 1, reset
table_big level 1, reset
chap_big level 1, reset1
app_big level 1, resetA
figure_ap level 1, reset
table_ap level 1, reset
figure level 1, reset Figure 1.
table level 1, reset Table 1.

these restarts must be in the header frame of chapter 1.
a:ebx, l 1 resetA
a:obx:l 1, resetA
a:bigbx level 1 resetA
a:ftr level 1 resetA
c:ebx, l 1 reset1
c:obx:l 1, reset1
c:bigbx level 1 reset1
c:ftr level 1 reset1

Reminders for autonumbers that need to be restarted
manually (first instance will always be 4)
let_in level 1: A. B. C.
letter level 1:A.B.C.
num level 1: 1. 2. 3.
num_in level 1: 1. 2. 3.
rom_in level 1: I. II. III.
roman level 1: I. II. III.
steps level 1: 1. 2. 3.

1GFK-0772A

Chapter 1 PCM C Functions

This chapter provides a complete reference to all the library functions provided with the
PCM C toolkit. Two categories of functions are included: VTOS operating system
services and Series 90 PLC service request application program interface (PLC API)
services. All the functions are listed in alphabetical order.

Content of this Manual

The reference for each library function contains these items:

� Usage
This section provides the calling format or formats for the function. It includes the
header file where the function prototype is defined plus the type specifications of
the function return value and all calling parameters. Function names and type
names appear in this typeface , while formal parameter names appear in
this typeface .

Some functions have a variable number of parameters (for example, Open_dev
and its relatives). For these functions, all valid calling formats are defined.

� Description
The purpose of the function and all its parameters are defined in this section. Valid
ranges of parameter values are also defined.

� Return Value
The value or values returned by the function, including error codes, are defined in
this section.

� See Also
This section contains a list of related functions. Functions which are used together
(for example, Link_sem , Unblock_sem , Block_sem , and Unlink_sem) and
functions with complementary purposes (for example, Suspend_task and
Resume_task) reference each other here.

� Example
An example of C language code which uses the function is provided here. Examples
range from small code fragments to complete programs.

2 PCM C Function Library Reference Manual – August 1996 GFK-0772A

VTOS Service Functions By Category

This section summarizes VTOS services by grouping them in categories of related
services. For full details on all VTOS services, see the following pages of this manual.

Task Management Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_task_id ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the task ID value of the calling task.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Init_task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Executes a VTOS application program or driver as a task.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁProcess_env

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁStarts a PCM task using a saved environment block.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Resume_task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Allows a suspended task to execute.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_std_device ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets a standard I/O channel for a task.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Suspend_task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prevents a task from executing.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁTerminate_task

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁKills a task permanently and frees its resources.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Test_task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Returns the set of active tasks.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Wait_task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Waits for a specified task to terminate.

Event Flag Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PurposeÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Iset_ef
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets one or more local event flags from an interrupt or
communication timer service routine.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Iset_gef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets one or more global event flags from an interrupt or com-
munication timer service routine.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Reset_ef

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Resets one or more local event flags.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Reset_gef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Resets one or more global event flags.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_ef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets one or more local event flags.

ÁÁÁÁÁÁÁÁÁÁSet_gef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSets one or more global event flags.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Test_ef
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tests one or more local event flags.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Test_gef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tests one or more global event flags.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Wait_ef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Waits for one or more local event flags to be set.

ÁÁÁÁÁÁÁÁÁÁWait_gef ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWaits for one or more global event flags to be set.

Asynchronous Trap Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Disable_asts ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prevents the calling task from processing ASTs.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Enable_asts ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Permits the calling task to process ASTs.

ÁÁÁÁÁÁÁÁÁÁPost_ast ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSends an asynchronous trap to a specified task.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Wait_ast
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Suspends execution of the calling task until an AST is received.

3GFK-0772A PCM C Functions

Semaphore Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁBlock_sem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCheck whether a semaphore is open; wait if not.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Link_sem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Link the calling task to a named semaphore; create one if it is
not found.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Unblock_sem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Release a semaphore and activate the first waiting task.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁUnlink_sem

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁUnlink the calling task from a semaphore.

Time of Day Clock Functions:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁFunction Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPurposeÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Elapse ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns a count of milliseconds since the last time its count
was reset.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_date ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the current date.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁGet_time

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReturns the current time of day.

Timer Functions:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁFunction Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPurposeÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Cancel_timer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Stops a timer and undefines it.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Start_timer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Defines a timer and starts it counting from zero.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Wait_time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Suspends execution of the calling task for the specified time.

Communication Timer Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁAlloc_com_timer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAllocates a communication timer to the calling task.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Cancel_com_timer
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Stops a communication timer.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Dealloc_com_timer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

De-allocates a communication timer.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Start_com_timer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Starts a previously allocated communication timer.

Memor y Management Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_best_buff ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Allocates memory from the mallest free memory block that is
at least as large as the requested size.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_buff ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Allocates memory from the first free memory block which is at
least as large as the requested size.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_dp_buff
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Allocates memory from free VMEbus dual ported RAM in a
Series 90-70 PCM.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_mem_lim ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the starting address of a memory block reserved for
application programs.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Max_avail_buff

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the size in bytes of the largest free memory block.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Max_avail_mem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the total number of bytes in free memory.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Reserve_dp_buff ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserves a specified block of VMEbus dual ported RAM in a
Series 90-70 PCM.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Return_buff

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the specified memory buffer to the free memory pool.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Return_dp_buff ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the specified block of VMEbus dual ported RAM to
the free memory in a Series 90-70 PCM.

Memor y Module Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁGet_mod ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReturns the address of a named memory module.

4 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Device I/O Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Abort_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Aborts one or more I/O operations on a previously opened I/O
channel.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Close_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Closes a previously opened I/O channel.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Devctl_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Performs a specified control operation on a named device.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Ioctl_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Performs a specified control operation on a previously opened
I/O channel.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Open_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Opens a channel on a named I/O device.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Read_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns input data from a previously opened I/O channel.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Seek_dev
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Positions the data pointer of a previously opened I/O channel
to a specified location.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Special_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Performs a special operation on a previously opened I/O
channel.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Write_dev

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sends output to a previously opened I/O channel.

Device Driver Support Functions:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_next_block ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns device argument blocks to a VTOS device driver.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Install_dev ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Installs a VTOS device driver.

ÁÁÁÁÁÁÁÁÁÁInstall_isr ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInstalls a VTOS interrupt service routine.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Notify_task
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Notifies a VTOS task when a device operation completes.

Miscellaneous Functions:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁFunction Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPurposeÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Define_led ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Defines the function of one of the programmable light–emit-
ting diodes (LEDs).

ÁÁÁÁÁÁÁÁÁÁGet_board_id ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReturns the PCM hardware type.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Get_pcm_rev
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Returns the revision number of VTOS.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_dbd_ctl ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets the Series 90–70 PCM daughterboard control register.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_led ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets the state of one of the LEDs.

ÁÁÁÁÁÁÁÁÁÁWhere_am_i ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReturns the PLC rack/slot location of the PCM.

VME Functions:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PurposeÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁSet_vme_ctl

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSets the VMEbus access parameters in a Series 90–70 PCM.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Vme_clear_lcl_sem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clear a semaphore in VMEbus dual ported RAM of the local
Series 90–70 PCM.

ÁÁÁÁÁÁÁÁÁÁVme_read ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRead VMEbus dual ported RAM in a different module.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Vme_test_and_set
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Acquire a semaphore in VMEbus dual ported RAM of a differ-
ent module.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Vme_test_lcl_sem ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Acquire a semaphore in VMEbus dual ported RAM of the local
Series 90–70 PCM.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Vme_write ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Write VMEbus dual ported RAM in a different module.

PCM 712 Functions:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Send_vme_interrupt ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Asserts VME IRQ7 interrupt request from a PCM712.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_local_date ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sets the current date maintained by a PCM712.

ÁÁÁÁÁÁÁÁÁÁSet_local_time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSets the time of day maintained by a PCM712.

5GFK-0772A PCM C Functions

PLC Service Request Interface API Service Functions By Category
This section summarizes PLC API services by grouping them in categories of related
services. For full details on all PLC API services, see the following pages of this manual.

Managing API Services:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

api_initialize ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Initialize data used by PLC API services.

ÁÁÁÁÁÁÁÁÁÁconfigure_comm_link ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSpecifies the communication path to the PLC CPU.ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

establish_comm_session
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Establishes communication with the PLC CPU.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

release_request_id ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Frees a request identifier returned by a previous nowait API
request.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁreqstatus
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReturns the current status of a pending nowait API request.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
terminate_comm_session ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Terminates communication with the PLC CPU.

PLC Hardware Type, Configuration, and Status Information:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_cpu_type_rev
get_cpu_type_rev_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the PLC CPU hardware type and firmware revision.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_memtype_sizes
get_memtype_sizes_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the sizes of user–configurable PLC memory types.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

chg_priv_level
chg_priv_level_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change the PLC access privilege level of the calling task.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

update_plc_status
update_plc_status_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Update PLC status data in the global structure
plc_status_info .

PLC Program and Configuration Checksum Data:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_prgm_info
get_prgm_info_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the PLC program checksums.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_config_info
get_config_info_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the PLC configuration data checksums.

Reading PLC Data References:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_sysmem
read_sysmem_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read up to 2048 bytes of a single PLC reference type.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_prgmdata
read_prgmdata_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read up to 2048 bytes of Series 90–70 %P data.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_localdata
read_localdata_nowait ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read up to 2048 bytes of Series 90–70 %L data.

Writing PLC Data References:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

write_sysmem
write_sysmem_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write up to 2048 bytes of a single PLC reference type.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

write_prgmdata
write_prgmdata_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write up to 2048 bytes of Series 90–70 %P data.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

write_localdata
write_localdata_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write up to 2048 bytes of Series 90–70 %L data.

6 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Controlling PLC Operation:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

start_plc
start_plc_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the PLC state to RUN mode.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

start_plc_noio
start_plc_noio_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the PLC state to RUN mode with outputs disabled.
(Series 90–70 PLC CPU request only)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

stop_plc
stop_plc_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the PLC state to STOP mode.

Reading Mixed PLC Data References:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

establish_mixed_memory
establish_mixed_memory_no-
wait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Establish a mixed memory shopping list for subsequent
read_mixed_memory or read_mixed_memory_nowait calls.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_mixed_memory
read_mixed_memory_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Get the mixed memory data previously specified by an estab-
lish_mixed_memory or establish_mixed_memory_nowait call.ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

cancel_mixed_memory
cancel_mixed_memory_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Cancel the mixed memory shopping list previously specified
by an establish_mixed_memory or
 establish_mixed_memory_nowait call.

Reading and Clearing PLC and I/O Faults:
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁFunction Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPurposeÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

clr_plc_fault_tbl
clr_plc_fault_tbl_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clear the entire PLC fault table.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

clr_io_fault_tbl
clr_io_fault_tbl_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clear the entire I/O fault table.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

chk_genius_bus
chk_genius_bus_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used to determine whether the specified Genius bus on the
module in the specified rack and slot has a faulted device.
(Series 90–70 PLC CPU request only)ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

chk_genius_device
chk_genius_device_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used to determine whether the specified Genius device at the
specified bus, rack, and slot address is faulted.
(Series 90–70 PLC CPU request only)ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_one_rackfaults
get_one_rackfaults_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return all the system fault bits for the specified PLC rack.
(Series 90–70 PLC CPU request only)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

get_rack_slot_faults
get_rack_slot_faults_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used to determine which slot or slots, if any, in a specified rack
have faulted modules.
(Series 90–70 PLC CPU request only)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_plc_fault_tbl
read_plc_fault_tbl_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read the entire PLC fault table.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_io_fault_tbl
read_io_fault_tbl_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read the entire I/O fault table.

7GFK-0772A PCM C Functions

Reading and Setting the PLC Time of Day Clock:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Purpose
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_date
read_date_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the current date from the PLC time of day clock.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_time
read_time_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the current time from the PLC time of day clock.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

read_timedate
read_timedate_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Return the current time and date from the PLC time of day
clock in a single operation.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

set_date
set_date_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the date in the PLC time of day clock.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

set_time
set_time_nowait ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the time in the PLC time of day clock.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

set_timedate
set_timedate_nowait

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set the time and date in both the PLC and PCM time of day
clocks in a single operation.

8 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Abort_dev

� Usage

#include <vtos.h>

word Abort_dev (channel_handle, operation, notify_flag);

word channel_handle ;

word operation ;

word notify_flag ;

� Description

This function is used to abort I/O operations which are currently in progress on a
specified channel. Abort_dev can be used to selectively terminate all operations
of a given type, such as reads or writes, or it can be used to terminate all outstanding
operations for the specified channel. The channel_handle parameter must
contain a value which was returned by Open_dev . It specifies the channel for the
operation being aborted. The operation parameter specifies the type of
operation to be aborted. It must contain a value from this table.

operation
Value

Type of Operation
Aborted

ABORT_ALL All device operations.

ABORT_OPEN Open_dev

ABORT_CLOSE Close_dev

ABORT_READ Read_dev

ABORT_WRITE Write_dev

ABORT_SEEK Seek_dev

ABORT_IOCTL Ioctl_dev

ABORT_SPECIAL Special_dev

ABORT_DEVCTL Devctl_dev

Abort_dev is most commonly used to abort Read_dev and Write_dev
operations.

The notify_flag parameter determines whether the task which initiated the
I/O operation will be notified when the abort operation has completed. If its value is
non-zero, the task will be notified in the manner originally specified: by unblocking
the task (WAIT); setting an event flag (EVENT_NOTIFY); or posting an AST
(AST_NOTIFY). An ABORTED error status will be reported for each aborted I/O
operation.

When a Read_dev or Write_dev operation is aborted, the number of
characters transferred before the abort is reported as shown in this table.

9GFK-0772A PCM C Functions

notify_code of Aborted Operation

WAIT EVENT_NOTIFY AST_NOTIFY

Result structure type None device_result ast_blk

Number of characters
transferred is in:

Function return value ioreturn member arg2 member

ABORT status is in: _VTOS_error iostatus member arg1 member

If notify_flag is set to WAIT, the initiating task will not be notified.

Caution

If one task has initiated a WAIT mode I/O operation, and a different
task aborts the operation with notify_flag set to WAIT, the task
which is waiting for the I/O operation to complete will never resume
execution.

� Return Value

SUCCESS is returned when there are no errors. If channel_handle is invalid or
is not currently performing the specified type of I/O operation, IO_FAILED is
returned, and _VTOS_error contains BAD_HANDLE.

� See Also
Read_dev, Seek_dev, Write_dev

� Example

#include <vtos.h>

word handle, task;
device_result evt_result;
byte buffer [130];

task = Get_task_id ();
handle = Open_dev (”COM1:”, READ_MODE, WAIT, task);

Read_dev (handle, buffer, 128, EVENT_NOTIFY, task, EF_00,
 (device_result far*)&evt_result);

Abort_dev (handle, ABORT_READ, TRUE);

if (evt_result.ioreturn != 0) {
/* Some characters were received before the abort. */

}

This example opens PCM serial port one for reading and then starts a read operation
in EVENT_NOTIFY mode. Abort_dev is called to abort the read operation, and
the number of characters received before the abort is checked.

10 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Alloc_com_timer

� Usage
#include <vtos.h>

word Alloc_com_timer (void);

� Description
This function allocates one of four PCM communication timers. Communication
timers use PCM hardware interrupts and timers; they involve less processing
overhead than general purpose timers. There are no function parameters.

VTOS itself uses communication timers for CCM and serial communication. Timers
may or may not be available for C applications.

� Return Value
When the call succeeds, a non-zero timer handle is returned. If no timers are
available, zero is returned, and _VTOS_error contains NO_TIMERS.

Note

Communication timer handles and general purpose timer handles are
not interchangeable.

� See Also
Cancel_com_timer, Dealloc_com_timer, Start_com_timer

� Example

#include <vtos.h>

word com_timer_handle;
com_timer_handle = Alloc_com_timer ();

11GFK-0772A PCM C Functions

api_initialize

� Usage
#include <session.h>

void api_initialize (void);

� Description
This function must be called before any other PLC API interface call. It performs all
the initialization required for communication with the PLC CPU.

� Return Value
None.

� See Also
configure_comm_link, establish_comm_session,
terminate_comm_session

� Example

#include <session.h>

BYTE sesn_id;
REQSTAT status;

main ()
{

api_initialize ();
if (configure_comm_link (”S90BP”, NULL)) {

status = establish_comm_session (”#7”, &sesn_id);
 if (status) {

 /* An error occurred –– the least significant byte of */
 /* status contains the major error code, and the most */

 /* significant byte contains the minor error code. */
} else {

 /* Make PLC API service request calls. */
status = terminate_comm_session (sesn_id);
}

}
}

This example initializes the PLC service request application program interface and
opens a communication session with the PLC CPU.

Caution

The device_id string parameter for establish_comm_session
specifies a service point on the CPU: device. The same service point
number must not be used in an Open_dev call.

12 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Block_sem

� Usage
#include <vtos.h>

void Block_sem (semaphore_handle);

word semaphore_handle ;

� Description
This function provides controlled access to PCM resources, such as memory modules
or other data objects in PCM memory, which are shared by two or more tasks.
When the shared resource is free, the Block_sem call returns immediately. But if
the resource is in use by another task, the call does not return until the resource is
free. The semaphore_handle must be a value returned by a previous, successful
call to Link_sem .

Unblock_sem must be called after each Block_sem call. A call to
Unblock_sem must also be made after the task calls Link_sem to link to the
semaphore.

When a task is forced to wait at a semaphore, its priority is compared to the priority
of the task which currently controls the same semaphore. If the waiting task has
higher priority, the controlling task is temporarily promoted to the priority of the
waiting task. This allows the waiting task to gain control of the semaphore as
quickly as possible. If more than one task is waiting at the semaphore, the priority of
the controlling task is promoted to that of the highest priority waiting task.

Caution

Attempting to block on more than one semaphore at the same time is
likely to cause the calling task to deadlock. Since VTOS device
operations make extensive use of semaphores, applications should
never make a VTOS or PLC API function call while blocked on a
semaphore.

For more information on semaphores, see chapter 7, Multitasking, in the
C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
None.

13GFK-0772A PCM C Functions

� See Also
Link_sem, Unblock_sem, Unlink_sem

� Example

#include <vtos.h>

word sem_handle;

sem_handle = Link_sem (”MY_SEM”);
/* Access or modify the protected data. */
Unblock_sem (sem_handle);

Block_sem (sem_handle);
/* Access or modify the protected data. */
Unblock_sem (sem_handle);

14 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Cancel_com_timer

� Usage
#include <vtos.h>

word Cancel_com_timer (com_timer_handle);
word com_timer_handle ;

� Description
This function is used to stop (cancel) a communication timer which was previously
started by Start_com_timer . The com_timer_handle is a handle returned by
a previous, successful call to Alloc_com_timer . The function has no effect if
com_timer_handle is invalid or the specified timer is not running.

� Return Value
None.

� See Also
Alloc_com_timer, Dealloc_com_timer, Start_com_timer

� Example
See Start_com_timer .

15GFK-0772A PCM C Functions

cancel_mixed_memor y

� Usage

#include <mxread.h>

REQSTAT cancel_mixed_memory (session_id , list_id);

BYTE session_id ;

BYTE list_id ;

� Description

This function cancels list_id , a mixed memory ”shopping list” which was
previously defined by a successful call to establish_mixed_memory or
establish_mixed_memory_nowait . Since at most two lists may be active at any
time, this function or cancel_mixed_memory_nowait should be used to cancel
an obsolete list before defining a new one. The session_id must be a value
returned by a previous, successful call to establish_comm_session .

� Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR The data list specified by list_id
has not been established.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_ comm_link , and
establish_comm_ session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

� See Also

cancel_mixed_memory_nowait, establish_mixed_memory,
establish_mixed_memory_nowait, read_mixed_memory,
read_mixed_memory_nowait

� Example

See establish_mixed_memory .

16 PCM C Function Library Reference Manual – August 1996 GFK-0772A

cancel_mixed_memor y_nowait

� Usage
#include <mxreadnw.h>

REQID cancel_mixed_memory_nowait (session_id, list_id) ;
BYTE session_id ;

BYTE list_id ;

� Description
See cancel_mixed_memory .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR The data list specified by list_id
has not been established.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_ comm_link , and
establish_comm_ session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

� See Also
cancel_mixed_memory, establish_mixed_memory,
establish_mixed_memory_nowait, read_mixed_memory,
read_mixed_memory_nowait, reqstatus

� Example
See establish_mixed_memory_nowait.

17GFK-0772A PCM C Functions

Cancel_timer

� Usage
#include <vtos.h>

word Cancel_timer (timer_handle);

word timer_handle ;

� Description
This function is used to stop (cancel) a general purpose timer which was previously
started by Start_timer . The timer_handle is the handle returned by
Start_timer . The function has no effect if timer_handle is invalid.

� Return Value
SUCCESS is returned when there are no errors. FAILURE is returned when
timer_handle is invalid, and _VTOS_error contains BAD_TIMER.

� See Also
Start_timer

� Example
See Start_timer .

18 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chg_priv_level

� Usage
#include <utils.h>

REQSTAT chg_priv_level (session_id , user_password);

BYTE session_id ;

char far* user_password ;

� Description
This function enables the requesting process to change its PLC access privilege level.
The address in user_password must point to a NUL terminated ASCII string
which contains a valid PLC password. The string length, not including the NUL
character, is limited to 7 characters. PLC passwords are case sensitive; uppercase
letters only should be used. If the password is valid, the requester’s privilege is
changed to the highest level assigned to the password. If PLC passwords have been
inactivated or disabled by the Logicmaster 90 configuration software package, or if
no passwords have been assigned, user_password must point to an ASCII NUL
character. The session_id must be a value returned by a previous, successful
call to establish_comm_session . If an invalid password is specified or
passwords are disabled in the PLC CPU, the return value indicates failure.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PASSWORD REQUEST_ERROR The user_password is
not a correct password for
any PLC access privilege
level, or passwords have
been inactivated or disabled.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

19GFK-0772A PCM C Functions

� See Also
update_plc_status

� Example

#include <utils.h>

REQSTAT status;
char password [] = ”MYPWORD”;

status = chg_priv_level (session_id, password);

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* at a new PLC access privilege level */

}

This example assumes that MYPWORD has been assigned by Logicmaster 90 as a
password. It uses a WAIT mode request to change the PLC access privilege level.

20 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chg_priv_level_nowait

� Usage
#include <utilsnw.h>

REQID chg_priv_level_nowait (session_id , user_password);

BYTE session_id ;

char far* user_password ;

� Description
See chg_priv_level .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PASSWORD REQUEST_ERROR The user_password is
not a correct password for
any PLC access privilege
level, or passwords have
been inactivated or disabled.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

21GFK-0772A PCM C Functions

� See Also
reqstatus, update_plc_status

� Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
char password [] = ”MYPWORD”;

request_id = chg_priv_level_nowait (session_id, password);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* at a new PLC access privilege level */

}

This example assumes that MYPWORD has been assigned by Logicmaster 90 as a
password. It uses a NOWAIT mode request to change the PLC access privilege level.

22 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chk_genius_bus

� Usage
#include <faults.h>

REQSTAT chk_genius_bus (session_id , rack_num , slot_num ,

 bus_num , bus_faulted);

BYTE session_id ;

BYTE rack_num ;

BYTE slot_num ;

BYTE bus_num ;

BOOLEAN far* bus_faulted ;

� Description
This function allows the user to determine if a particular GENIUS bus, specified by
the rack/slot address of a Series 90-70 GENIUS Bus Controller module (in rack_num
and slot_num , respectively), and by the controller bus number (in bus_num), is
faulted. This request is valid only for Series 90-70 PLCs. Valid rack numbers are 0
through 7, valid slot numbers are 0 through 9, and valid bus numbers are 0 and 1.
The session_id must be a value returned by a previous, successful call to
establish_comm_session . When the request has completed successfully, the
BOOLEAN variable whose address is specified in bus_faulted will contain
TRUE if the specified bus is faulted, and FALSE otherwise.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num,
slot_num, or bus_num
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

23GFK-0772A PCM C Functions

� See Also
chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults,
get_rack_slot_faults_nowait

� Example

#include <faults.h>

REQSTAT status;
BOOLEAN gbus_fltd;

status = chk_genius_bus (session_id, 0, 3, 1, &gbus_fltd);

if (status != REQUEST_OK) {
/* investigate the error */

} else if (gbus_flted) {
/* the specified Genius bus is faulted */

} else {
/* the bus is not faulted */

}

This example uses a WAIT mode request to check bus one of the Genius Bus
Controller in slot three of PLC rack zero to determine whether it is faulted.

24 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chk_genius_bus_nowait

� Usage
#include <faultsnw.h>

REQID chk_genius_bus_nowait (session_id , rack_num , slot_num ,

 bus_num, bus_faulted);

BYTE session_id ;

BYTE rack_num ;

BYTE slot_num ;

BYTE bus_num;

BOOLEAN far* bus_faulted ;

� Description
See chk_genius_bus .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num,
slot_num, or bus_num
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

25GFK-0772A PCM C Functions

� See Also
chk_genius_bus, chk_genius_device, chk_genius_device_nowait,
get_one_rackfaults, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults_nowait, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
BOOLEAN gb_fltd;

request_id = chk_genius_bus_nowait (session_id, 0, 3, 1, &gb_fltd);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else if (gb_flted) {
/* the specified Genius bus is faulted */

} else {
/* the bus is not faulted */

}

This example uses a NOWAIT mode request to check bus one of the Genius Bus
Controller in slot three of PLC rack zero to determine whether it is faulted.

26 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chk_genius_device

� Usage
#include <faults.h>

REQSTAT chk_genius_device (session_id , rack_num , slot_num ,

 bus_num, device_num , device_faulted);

BYTE session_id ;

BYTE rack_num ;

BYTE slot_num ;

BYTE bus_num;

BYTE device_num ;

BOOLEAN far* device_faulted ;

� Description
This function allows the user to determine if a particular Series 90-70 GENIUS device
(for example, a genius block or Hand Held Monitor) is faulted. This request is valid
only for Series 90-70 PLCs. The device is specified by the rack/slot address of a Series
90-70 GENIUS Bus Controller module (in rack_num and slot_num ,
respectively), the controller bus number (in bus_num), and the device number (in
device_num) on the bus. Valid rack numbers are 0 through 7, valid slot numbers
are 0 through 9, valid bus numbers are 0 and 1, and valid device numbers are 0
through 31. The session_id must be a value returned by a previous, successful
call to establish_comm_session . When the request has completed successfully,
the BOOLEAN variable whose address is specified in device_faulted will
contain TRUE if the specified bus is faulted, and FALSE otherwise.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num ,
slot_num , bus_num ,
or device_num is out of
range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

27GFK-0772A PCM C Functions

� See Also
chk_genius_bus, chk_genius_bus_nowait,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults,
get_rack_slot_faults_nowait

� Example

#include <faults.h>

REQSTAT status;
BOOLEAN gdev_fltd;

status = chk_genius_device (session_id, 0, 3, 1, 30, &gdev_fltd);

if (status != REQUEST_OK) {
/* investigate the error */

} else if (gbus_flted) {
/* the specified Genius device is faulted */

} else {
/* the device is not faulted */

}

This example uses a WAIT mode request to check device 30 on bus one of the Genius
Bus Controller in slot three of PLC rack zero to determine whether it is faulted.

28 PCM C Function Library Reference Manual – August 1996 GFK-0772A

chk_genius_device_nowait

� Usage
#include <faultsnw.h>

REQID chk_genius_device_nowait (session_id , rack_num ,

 slot_num , bus_num ,

 device_num , device_faulted);

BYTE session_id ;

BYTE rack_num ;

BYTE slot_num ;

BYTE bus_num;

BYTE device_num ;

BOOLEAN far* device_faulted ;

� Description
See chk_genius_device .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num ,
slot_num , bus_num ,
or device_num is out of
range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

29GFK-0772A PCM C Functions

� See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
get_one_rackfaults, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults_nowait, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
BOOLEAN gdev_fltd;

request_id = chk_genius_device_nowait(session_id, 0, 3, 1, 30, &gdev_fltd);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else if (gbus_flted) {
/* the specified Genius device is faulted */

} else {
/* the device is not faulted */

}

This example uses a NOWAIT mode request to check device 30 on bus one of the
Genius Bus Controller in slot three of PLC rack zero to determine whether it is
faulted.

30 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Close_dev

� Usage

#include <vtos.h>

word Close_dev (device_handle , notify_code ,

 task_id [, < nowait options >]);

word device_handle ;

word notify_code ;

word task_id ;

where < nowait options > depend on the value of notify_code:

word Close_dev (device_handle , WAIT, task_id) ;

word Close_dev (device_handle , EVENT_NOTIFY, task_id ,

 local_ef_mask , (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Close_dev (device_handle , AST_NOTIFY, task_id ,

 ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description

This function is used to close a device or file which was previously opened by a
successful call to Open_dev ; device_handle is the handle returned by
Open_dev . The task_id is the task number returned by Get_task_id .

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Close_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Close_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in vtos.h .
If the call succeeds, the ioreturn member of the structure at result_ptr
contains SUCCESS and the iostatus member is undefined; when a failure
occurs, ioreturn contains IO_FAILED, and iostatus contains an error status
code. For a discussion of asynchronous I/O using event flags, see chapter 6, PCM
Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

31GFK-0772A PCM C Functions

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine, it passes the address of an ast_blk structure. The
ast_handle value is in the handle member of the ast_blk ; it is undefined if
no ast_handle was specified. If the call succeeds, the arg2 member of the
ast_blk contains SUCCESS and the arg1 member is undefined; when a failure
occurs, arg2 contains IO_FAILED, and arg1 contains an error status code. For a
discussion of asynchronous I/O using AST functions, see chapter 6, PCM Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

� Return Value
In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, IO_FAILED is returned; a status code value is available in the global variable
_VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available
in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status

SUCCESS Undefined The device was successfully closed.

IO_FAILED BAD_HANDLE An invalid device_handle was specified.

ABORTED The operation was aborted before completion.

� See Also
Get_task_id, Open_dev, Reset_ef, Test_ef, Wait_ef

� Example

#include <vtos.h>
#include <dos.h>
#define AST_CLOSE 27

word close_wait_error, close_ef_error, close_ast_error, close_ast_done;

void far close_ast_func (ast_blk far* p)
{

if (p–>handle == AST_CLOSE) {
close_ast_done = 1;
if (p–>arg2 != SUCCESS) {

 /* There was a problem. */
 close_ast_error = p–>arg1;

}
}

}

32 PCM C Function Library Reference Manual – August 1996 GFK-0772A

void main ()
{

word h1, h2, h3, task_id, status;
device_result evt_result;

 task_id = Get_task_id ();

h1 = Open_dev (”Com1:”, WRITE_MODE, WAIT, task_id);
h2 = Open_dev (”Com2:”, WRITE_MODE, WAIT, task_id);
h3 = Open_dev (”CPU:%R1”, WRITE_MODE, WAIT, task_id);

/*
 * Do some I/O operations.
 */

Reset_ef (EF_01);
close_wait_error = close_ef_error =

close_ast_done = close_ast_error = 0;

Abort_dev(h1, ABORT_ALL, WAIT);
Abort_dev(h2, ABORT_ALL, WAIT);

Close_dev (h1, EVENT_NOTIFY, task_id,
 EF_01, (device_result far*)&evt_result);

Close_dev (h2, AST_NOTIFY, task_id,
 close_ast_func, AST_CLOSE);

status = Close_dev (h3, WAIT, task_id);
if (status != SUCCESS) {

/* There was a problem. */
close_wait_error = _VTOS_error;

}

Wait_ef (EF_01);

if (evt_result.ioreturn != SUCCESS) {
 /* There was a problem */

close_ef_error = evt_result.iostatus;
 }

_disable ();
 if (!close_ast_done) {

Wait_ast ();
 }
_enable ();

}

In this example, main opens three I/O channels on the PCM devices COM1: ,
COM2:, and CPU:. After some I/O transfer operations, which are not shown here,
I/O operations on the serial ports are aborted to assure that any pending nowait
read or write operations are stopped. Then, the channels are closed using
EVENT_NOTIFY, AST_NOTIFY, and WAIT modes, respectively. The program
makes the EVENT_NOTIFY and AST_NOTIFY requests first, followed by the WAIT
request. After the WAIT request has completed, the program waits for completion of
the EVENT_NOTIFY and AST_NOTIFY requests. When a problem occurs,
close_wait_error , close_ef_error , and/or close_ast_error will
contain an error code.

Note that a call to _disable is used to disable maskable PCM interrupts before
close_ast_done is tested. This prevents the AST from being processed between
the test and the Wait_ast call. If the AST is processed before Wait_ast is
called, the call never returns. The _enable function must be called whenever
_disable is used.

33GFK-0772A PCM C Functions

clr_io_fault_tbl

� Usage
#include <clrflt.h>

REQSTAT clr_io_fault_tbl (session_id);

BYTE session_id ;

� Description
This function permits the user to clear all existing faults in the I/O Fault Table of the
PLC CPU. The session_id must be a value returned by a previous, successful
call to establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

34 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl,
read_plc_fault_tbl_nowait

� Example

#include <clrflt.h>

REQSTAT status;

status = clr_io_fault_tbl (session_id);

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the I/O fault table was cleared */

}

This example uses a WAIT mode request to clear the I/O fault table in the PLC CPU.

35GFK-0772A PCM C Functions

clr_io_fault_tbl_nowait

� Usage
#include <clrfltnw.h>

REQID clr_io_fault_tbl_nowait (session_id);

BYTE session_id ;

� Description
See clr_io_fault_tbl .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

36 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
clr_io_fault_tbl, clr_plc_fault_tbl, clr_plc_fault_tbl_nowait,
read_io_fault_tbl, read_io_fault_tbl_nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstat

reqstatus

� Example

#include <clrfltnw.h>

REQID request_id;
REQSTAT status;

request_id = clr_io_fault_tbl_nowait (session_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the I/O fault table was cleared */

}

This example uses a NOWAIT mode request to clear the I/O fault table in the PLC
CPU.

37GFK-0772A PCM C Functions

clr_plc_fault_tbl

� Usage
#include <clrflt.h>

REQSTAT clr_plc_fault_tbl (session_id);

BYTE session_id ;

� Description
This function permits the user to clear all existing faults in the PLC Fault Table of the
PLC CPU. The session_id must be a value returned by a previous, successful
call to establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

38 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl,
read_plc_fault_tbl_nowait

� Example

#include <clrflt.h>

REQSTAT status;

status = clr_plc_fault_tbl (session_id);

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC fault table was cleared */

}

This example uses a WAIT mode request to clear the PLC fault table in the PLC CPU.

39GFK-0772A PCM C Functions

clr_plc_fault_tbl_nowait

� Usage
#include <clrfltnw.h>

REQID clr_plc_fault_tbl_nowait (session_id);

BYTE session_id ;

� Description
See clr_plc_fault_tbl .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

40 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
read_io_fault_tbl, read_io_fault_tbl_nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstatus

� Example

#include <clrfltnw.h>

REQID request_id;
REQSTAT status;

request_id = clr_plc_fault_tbl_nowait (session_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC fault table was cleared */

}

This example uses a NOWAIT mode request to clear the PLC fault table in the PLC
CPU.

41GFK-0772A PCM C Functions

configure_comm_link

� Usage
#include <session.h>

BOOLEAN configure_comm_link (comm_id_string , config_data);

char far* comm_id_string ;

void far* config_data ;

� Description
This function must be called after api_initialize . It is called to identify the link
which will be used to communicate with the PLC CPU. The comm_id_string
parameter must contain the address of the character string ”S90BP” . The address
in the config_data parameter is ignored by the PCM implementation of the PLC
API.

The call to establish_comm_session must occur after
configure_comm_link .

� Return Value
TRUE is returned if api_initialize has already been called,
establish_comm_session has not been called, and comm_id_string points
to the value ”S90BP”. If any of these conditions is not met, FALSE is returned.

� See Also
api_initialize, establish_comm_session

� Example
See api_initialize .

42 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Dealloc_com_timer

� Usage
include <vtos.h>

void Dealloc_com_timer (com_timer_handle);
word com_timer_handle ;

� Description
This function deallocates a communication timer which was previously allocated by
Alloc_com_timer. The com_timer_handle is the communication timer
handle returned by Alloc_com_timer . The function has no effect if
com_timer_handle is invalid.

Dealloc_com_timer is rarely used. A task’s communication timers are
automatically deallocated if the task terminates.

� Return Value
None.

� See Also
Alloc_com_timer, Cancel_com_timer, Start_com_timer

� Example

#include <vtos.h>

word com_timer_handle;
com_timer_handle = Alloc_com_timer ();
/*
 * use the timer
 */
Dealloc_com_timer (com_timer_handle);

43GFK-0772A PCM C Functions

Define_led

� Usage
#include <vtos.h>

word Define_led (led_number, led_definition);

word led_number ;

word led_definition ;

� Description

This function has two purposes. It defines the communication events which will
cause one of two light emitting diodes (LEDs) on the PCM to flash. It is also used to
specify which PCM task will be permitted to control one of the LEDs with the
Set_led function.

The top LED reports the operational status of the PCM and is not programmable.
LED 1, the center LED, and LED 2, the bottom LED, may be programmed by
Define_led . The led_number must contain 1 or 2, to specify LED 1 or LED 2,
respectively.

When Define_led is used to define PCM communication events which will
flash an LED, the least significant byte of led_definition contains one or more
event definitions from this table, OR-ed together.

Event Definition Description

COM1_XMIT The specified LED blinks once each time a message is sent from
serial port 1.

COM1_RCV The specified LED blinks once each time a message is received at
serial port 1.

COM2_XMIT The specified LED blinks once each time a message is sent from
serial port 2.

COM2_RCV The specified LED blinks once each time a message is received at
serial port 2.

BKP_XMIT The specified LED blinks once each time a backplane message is sent.

BKP_RCV The specified LED blinks once each time a backplane message is
received.

To permit a PCM task to use the Set_led function to control the specified LED,
the number of the target task must be placed in the most significant byte of
led_definition . The number must be in the range of valid PCM task IDs, but
the specified task does not need to be active. The calling task’s number, returned by
Get_task_id , or a different task number may be specified.

A single call to Define_led can perform both functions. The
led_definition may contain a task number as well as event definitions for the
specified task. See the examples, below.

44 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
Define_led returns a value from this table.

Return Value _VTOS_error
Value

Description

SUCCESS Undefined The function completed successfully.

FAILURE BAD_ARG The led_number or event definitions in
led_definition is out of range.

NO_TASK The task number in led _definition is out of
range.

� See Also
Set_led

� Example

#
include <vtos.h>

word mytask, result;

mytask = Get_task_id ();
result = Define_led (1, COM1_XMIT | COM1_RCV | COM2_XMIT | COM2_RCV);
result = Define_led (2, BKP_XMIT | BKP_RCV | (mytask << 8));

This example defines LED 1 to flash whenever a message is transmitted or received
on either PCM serial port. LED 2 is defined to flash whenever a message is
transmitted or received on the PLC backplane, and is also configured to permit the
calling task to program it with Set_led . Note that LED 2 will flash once per
second when the PCM time-of-day clock resynchronizes itself with the PLC CPU.

45GFK-0772A PCM C Functions

Devctl_dev

� Usage

#include <vtos.h>

word Devctl_dev (device_name , devctl_code , data_addr , count ,

 notify_code , task_id [, < nowait options >]) ;

char far* device_name ;

word devctl_code ;

void far* data_addr ;

word count ;

word notify_code ;

word task_id ;

where <nowait options > depend on the value of notify_code :

word Devctl_dev (device_name , devctl_code , data_addr , count ,

 WAIT, task_id);

word Devctl_dev (device_name , devctl_code , data_addr , count ,

 EVENT_NOTIFY, task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Devctl_dev (device_name , devctl_code , data_addr , count ,

 AST_NOTIFY, task_id , ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description

This function performs device control operations which are concerned with the
device itself rather than a particular channel. The device_name must contain a
valid PCM device name, ending with a colon, such as ”RAM:” or ”COM1:”. The
task_id is a task number returned by Get_task_id . The devctl_code
specifies the device operation to be performed, and the usage of data_addr and
count depend on devctl_code . Valid devctl_code values are shown in this
table.

devctl_code
Value

Supported
 Devices

Operation Description

1 ROM: Format device Format the device specified by
device_name . All data objects (files, etc.)
maintained by the device will be destroyed.
Currently, only the ROM: device, optionally
available on the PCM 301 (GE Fanuc catalog
No. IC693PCM301) supports this operation.
The data_addr and count parameters
are ignored.

46 PCM C Function Library Reference Manual – August 1996 GFK-0772A

devctl_code
Value

Supported
Devices

Operation Description

2 COM1:
COM2:
RAM:
ROM:
PC:

Destroy object. Destroy (delete) a data object maintained by
the device. The data_addr must point
to a NUL-terminated ASCII string
containing the name of the object to be
destroyed; count is ignored.

5 RAM:
ROM:
PC:

Get object name. Return the name at the position specified
by count in the list of data objects on
the device specified by device_name .
The name is copied to a NUL-terminated
string at the address specified by
data_addr ; the C programmer must
ensure that the memory buffer at
data_addr is large enough for the
string. If count exceeds the number of
objects in the device’s list, a NUL string is
returned.

6 ROM: Get space remaining. Return the number of free bytes on the
device. The function return contains the
value, expressed as an unsigned integer.
The data_addr and count values
are ignored.

COM1:
COM2:

Set BREAK AST. Specify an asynchronous trap (AST) handler
function which will be called when a
BREAK condition is detected on the
specified device. The function address is
specified in data_addr , and count
is ignored.

Only one task at a time may receive BREAK
ASTs for each port. The task specified in
task_id supercedes any task which may
previously have set a BREAK AST for the
same port.

7 COM1:
COM2:

Reset BREAK AST. Disable AST notification of BREAKs. The
task specified in task_id must
previously have called Devctl_dev
to set BREAK AST notification for the
specified device.

8 COM1:
COM2:

Set ALL SENT
event flag.

Specify a local event flag which will be set
when all the data sent by a Write_dev
operation to the specified device has been
transmitted. The count parameter
contains a local event flag mask specifying
the event flag or flags to be set;
data_addr is ignored.

Only one task at a time may be notified of
the ALL SENT condition for each port. The
task specified in task_id supercedes
any task which may previously have set an
ALL SENT event flag for the same port.

9 COM1:
COM2:

Reset ALL SENT
event flag.

Disable ALL SENT event flag notification.
The task specified in task_id must
previously have called Devctl_dev
to set ALL SENT notification for the
specified device.

47GFK-0772A PCM C Functions

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Devctl_code
Value

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Supported
Devices

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Operation ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

COM1:
COM2:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Mask received data
errors.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mask any combination of parity, overrun and
framing errors on the specified serial port.
Masking these errors prevents Read_dev
from terminating with an error status when
they occur. The data_addr parameter is
ignored, and the count parameter contains a
set of bits to specify the errors that will be
masked:

0x0010 – Parity error mask
0x0020 – Overrun error mask
0x0040 – Framing error mask

For example, 0x0010 masks parity errors only,
0x0050 masks both parity and framing errors,
and 0x0070 masks all three.

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Devctl_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast
as a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined;
when a failure occurs, ioreturn contains IO_FAILED, and iostatus contains
an error status code. For a discussion of asynchronous I/O using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to handle
the AST. The optional ast_handle contains a user-selected tag value for this
particular operation, to permit the AST function to identify it, if necessary. When
VTOS calls ast_routine , it passes the address of an ast_blk structure. The
ast_handle value is in the handle member of the ast_blk . If the call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the arg1
member is undefined; when a failure occurs, arg2 contains IO_FAILED, and arg1
contains an error status code. For a discussion of asynchronous I/O using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
In WAIT mode, the value returned by a successful Devctl_dev call depends on
the devctl_code . When an error occurs, IO_FAILED is returned; a status code
value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available
in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from the following table.

48 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Return Value Status Value Completion Status

Depends on
devctl_code

SUCCESS The operation was successful.

IO_FAILED ABORTED The operation was aborted before completion.

UNSUPT
BAD_ARG

The specified devctl_code is not supported by the
specified device.

NO_ACCESS The operation attempted to delete a file which is in use
or protected.

NO_FILE The operation attempted to delete a non-existent file.

NO_MEMORY The operation requires a temporary buffer which could
not be allocated.

NO_DEVICE The device_name is not a valid device.

� See Also
Ioctl_dev, Special_dev

� Example

#include <vtos.h>

word status, task_id;
device_result evt_result;

char name [16];

task_id = Get_task_id ();
status = Devctl_dev (”ROM:”, 1, NULL, 0, WAIT, task_id);

status = Devctl_dev (”RAM:”, 2, ”MYFILE.DAT”, 0, EVENT_NOTIFY,
 task_id, EF_03,
 (device_result far*)&evt_result);

devctl_value = Devctl_dev (”PC:”, 5, name, 2, AST_NOTIFY,
 task_id, devctl_ast_func, AST_DEVCTL);

This example uses WAIT, EVENT_NOTIFY, and AST_NOTIFY Devctl_dev
requests to:

1. format its ROM: device;

2. delete the file RAM:MYFILE.DAT; and

3. find the file name of the second directory entry in the current directory on the
current drive of a PC: device attached to the PCM file server port.

The PCM is assumed to be a PCM 301. The definitions of devctl_ast_func and
AST_DEVCTL are not shown. See Close_dev.

49GFK-0772A PCM C Functions

Disable_asts

� Usage
#include <vtos.h>

void Disable_asts (void);

� Description
This function prevents the calling task from executing asynchronous traps (ASTs)
until they are re-enabled by a subsequent Enable_asts call. ASTs are often
disabled while accessing data which is shared by mainline and AST functions in the
same task.

If ASTs are already pending, they will not be serviced until ASTs are re-enabled by
calling Enable_asts . Disable_asts may be called more than once (calls may
be nested), as long as one call to Enable_asts is eventually made for each
Disable_asts call.

Caution

After calling Disable_asts , never call Wait_ast before calling
Enable_asts. A PCM lockup or other unexpected operation may
result.

� Return Value
None.

� See Also
Enable_asts

� Example

#include <vtos.h>

Disable_asts ();
/*
 * Access shared data.
 */
Enable_asts ();

50 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Elapse

� Usage
#include <vtos.h>

long unsigned Elapse (continue_flag);

word continue_flag ;

� Description
This function returns the number of milliseconds since the last reset of its count. The
count is reset when continue_flag is zero,

� Return Value
The number of milliseconds is returned as a long unsigned integer.

� See Also

� Example

#include <vtos.h>

long unsigned ms_since_reset;
ms_since_reset = Elapse (0);

This example reads the Elapse count and resets it as well.

51GFK-0772A PCM C Functions

Enable_asts

� Usage
#include <vtos.h>

void Enable_asts (void);

� Description
This function enables the calling task to resume processing of asynchronous traps
(ASTs). If ASTs have not been disabled, the call has no effect.

� Return Value
None.

� See Also
Disable_asts

� Example
See Disable_asts .

52 PCM C Function Library Reference Manual – August 1996 GFK-0772A

establish_comm_session

� Usage
#include <session.h>

REQSTAT establish_comm_session (device_id , session_id);

char far* device_id ;

BYTE far* session_id ;

� Description
This function performs the steps needed to establish a communication session with
the PLC CPU. The device_id parameter must contain the address of a string
which specifies a channel number for the session. The string must start with the ’#’
character, followed by one or two decimal digit characters containing an integer in
the range 5 through 31, inclusive. The session_id parameter must contain the
address of a variable declared as type BYTE. When the function returns successfully,
the BYTE at session_id will contain a value which must be used to identify the
current session in subsequent PLC API function calls.

Caution

The channel number specified in the device_id parameter must not
be used in a call to Open_dev for the CPU:# device.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

API_NOT_INITIALIZED REQUEST_ERROR No previous call to
api_initialize
was made.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION The channel specified by
device_id could not be
opened..

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

� See Also
api_initialize, configure_comm_link

� Example
See api_initialize .

53GFK-0772A PCM C Functions

establish_mixed_memor y

� Usage
#include <mxread.h>

REQSTAT establish_mixed_memory (session_id , list_size ,

 mixed_list_ptr , list_id_ptr);

BYTE session_id ;

WORD list_size ;

MIXED_MEMORY_READ_STRUC far* mixed_list_ptr ;

BYTE far* list_id_ptr ;

� Description
The functions establish_mixed_memory , read_mixed_memory , and
cancel_mixed_memory are used together to read a collection of PLC memory
data from the PLC CPU. The collection can contain up to 2 Kbytes of data, and can
include up to 59 different memory references in Series 90-30 PLCs and 256 different
references in Series 90-70 PLCs. This method is very efficient when the same
collection of data is requested from the PLC many times.

A collection (or ”shopping list”) of PLC data memory formats is specified by calling
establish_mixed_memory . Up to two different lists may be established at a
time. The mixed_list_ptr parameter must contain the address of a
MIXED_MEMORY_READ_STRUC structure, as defined in mixtypes.h . The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The list_size must contain the size in BYTEs of
the MIXED_MEMORY_READ_STRUC, including all its memory formats. When the
function completes successfully, the address specified in the list_id_ptr
parameter will contain a unique identifier value for the list.

The MIXED_MEMORY_READ_STRUC structure may be thought of as:

typedef struct mem_format_rec {
BYTE memory_type;
WORD mem_offset;
BYTE mem_length;

} MEM_FORMAT_STRUC;

typedef struct mixed_memory_read_rec {
char local_pblock_name[8];
WORD local_segment;
WORD num_mem_formats;
MEM_FORMAT_STRUC mem_formats [num_mem_formats];

} MIXED_MEMORY_READ_STRUC;

54 PCM C Function Library Reference Manual – August 1996 GFK-0772A

However, standard C compilers complain about the variable length array
declaration, mem_formats [num_mem_formats] . The array size could be
declared large enough to contain the maximum number of memory formats. But
there is no need to keep the shopping list around after it is passed to
establish_mixed_memory . The best solution is to simulate a variable length
array by allocating just enough free memory to hold one
MIXED_MEMORY_READ_STRUC plus zero or more copies of MEM_FORMAT_STRUC.
The total number of MEM_FORMAT_STRUCs, including the one in the
MIXED_MEMORY_READ_STRUC, must equal the actual number of formats in the
list. After the list has been established, the memory is freed. The example program
below shows how to do this.

Caution

Any C source code which accesses members of a MEM_FORMAT_STRUC
must be compiled with the /Zp command line option of the
Microsoft C compiler. This option enables structure packing. To be
recognized by the PLC CPU, the MEM_FORMAT_STRUC structure must
be packed.

The local_pblock_name member must contain the name of a PLC program
subblock when any of the memory formats specifies Series 90-70 %L data. It must
contain the PLC program name when any of the memory formats specifies Series
90-70 %P data and none of the formats specify %L data. Each list may specify %L
data from at most one subblock.

The local_segment member must contain zero. The num_mem_formats
member must contain the number of memory formats in the list (that is, the number
of array elements in mem_formats).

The actual ”shopping list” of memory reference formats is contained in the
mem_formats array member of the MIXED_MEMORY_READ_STRUC structure.
Each element of mem_formats specifies a PLC memory reference by type, starting
offset, and length.

The memory_type member of each mem_formats element must contain a valid
memory type. This table shows the memory type values from mixtypes.h and
memtypes.h which may be used.

55GFK-0772A PCM C Functions

Reference
Type

Access
Type

Data
Type

memory_type
Value

%AI Analog Input Register
Analog Input High Alarm
Analog Input Low Alarm
Analog Input Fault/No Fault
Analog Input Diagnostic

WORD
BYTE
BYTE
BYTE
BYTE

AI_DATA
AI_HIALR
AI_LOALR
AI_FAULT
AI_DIAG

%AQ Analog Output Register
Analog Output High Alarm
Analog Output Low Alarm
Analog Output Fault/No Fault
Analog Output Diagnostic

WORD
BYTE
BYTE
BYTE
BYTE

AQ_DATA
AQ_HIALR
AQ_LOALR
AQ_FAULT
AQ_DIAG

%R
%P
%L

Register Memory
Program Register Memory (Series 90-70 PLC only)
Local Register Memory (Series 90-70 PLC only)

WORD
WORD
WORD

R_DATA
P_DATA
L_DATA

%I Input Status Table
Input Transition Table
Input Override Table
Input Diagnostic Table

Discrete memory
in BYTE mode.

I_STATUS_BYTE
I_TRANS_BYTE
I_OVRD_BYTE
I_DIAG_BYTE

%Q Output Status Table
Output Transition Table
Output Override Table
Output Diagnostic Table

Discrete memory
in BYTE mode.

Q_STATUS_BYTE
Q_TRANS_BYTE
Q_OVRD_BYTE
Q_DIAG_BYTE

%T Temporary Status Table
Temporary Transition Table
Temporary Override Table

Discrete memory
in BYTE mode.

T_STATUS_BYTE
T_TRANS_BYTE
T_OVRD_BYTE

%M Internal Status Table
Internal Transition Table
Internal Override Table

Discrete memory
in BYTE mode.

M_STATUS_BYTE
M_TRANS_BYTE
M_OVRD_BYTE

%SA System A Status Table
System A Transition Table
System A Override Table

Discrete memory
in BYTE mode.

SA_STATUS_BYTE
SA_TRANS_BYTE
SA_OVRD_BYTE

%SB System B Status Table
System B Transition Table
System B Override Table

Discrete memory
in BYTE mode.

SB_STATUS_BYTE
SA_TRANS_BYTE
SB_OVRD_BYTE

%SC System C Status Table
System C Transition Table
System C Override Table

Discrete memory
in BYTE mode.

SC_STATUS_BYTE
SC_TRANS_BYTE
SC_OVRD_BYTE

%S System Status Table
System Transition Table
System Override Table

Discrete memory
in BYTE mode.

S_STATUS_BYTE
S_TRANS_BYTE
S_OVRD_BYTE

%G Global Genius Status Table
Global Genius Transition Table
Global Genius Override Table

Discrete memory
in BYTE mode.

G_STATUS_BYTE
G_TRANS_BYTE
G_OVRD_BYTE

56 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Discrete Data Formats

Note that discrete memory types are specified as BYTE mode. To reduce PLC
processing, discrete data is requested and returned in the format used internally by
the PLC CPU. Consequently, the starting and ending references for discrete data
must be specified differently than for read_sysmem . This figure shows the
relationship of BYTE mode addressing to our usual way of thinking about discrete
references.

%I00024 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 %I00001

%I00003
%I00021

BYTE 2 BYTE 1 BYTE 0

Suppose that an application requires discrete input table values from %I00003
through %I00021, inclusive. %I00003 is in the first BYTE of the discrete input table;
this BYTE is addressed as BYTE zero. When the range of interest begins with any of
the inputs %I00001 through %I00008, the value in the mem_offset member of
the corresponding mem_formats element must be zero. Similarly, when the
range of interest starts within %I00009 through %I00016, the mem_offset value
must be one. A simple algorithm for calculating the byte offset value for any
conventional discrete reference is:

 byte_offset = (discrete_ref – 1) / 8

where “/” is the C language integer division operator, which produces an integer
result by simply throwing away any remainder. If you try this algorithm with any of
the discrete input references from the figure above, your result should agree with
the BYTE numbers above the groups of inputs. For example, %I00008 is in BYTE 0,
%I00009 is in BYTE 1, and %I00024 is in BYTE 2.

The mem_offset of each mem_formats element with a discrete
memory_type must contain a zero-based byte address calculated with this
algorithm.

The BYTE mode length for discrete references is simply the BYTE offset of the
ending reference minus the BYTE offset of the starting reference plus one:

 byte_length = ending_byte_offset – starting_byte_offset + 1

where ending_byte_offset and starting_byte_offset are BYTE
offsets calculated using the previous algorithm. For example, the BYTE length
required to get two discrete references which are in the same BYTE is obviously one,
which agrees with the result produced by the algorithm. Furthermore, the result
using the range of references from %I00008 through %I00017, inclusive, is three; a
glance at the figure shows that this is correct. The mem_length of each
mem_formats element with a discrete memory_type must contain a BYTE
length calculated with this algorithm.

Returning to the example using %I00003 through %I00021, we see that the correct
mem_offset and mem_length values are zero and three, respectively. The
example program below includes C source code to use these inputs in a memory list.

57GFK-0772A PCM C Functions

WORD Data Formats

The mem_offset values for WORD data, such as %R, are also zero-based. They
are simply one less than the conventional. one-based references. For example, the
offset for %R00001 is zero; the offset for %P1000 is 999.

WORD data values for mem_length are simply the number of words desired.

The #define section of the example program below contains simple methods for
converting starting and ending references to mem_offset and mem_length
values, for both discrete and word references.

� Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR Two mixed memory ”shopping
lists” already exist..

INVALID_CONN_SIZE REQUEST_ERROR The list_size specifies
too many point formats. The
maximum values are: 256 for
Series 90-70 PLC CPUs and 59
for Series 90-30 PLC CPUs.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also

cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory_nowait, read_localdata_nowait,
read_localdata_nowait, read_mixed_memory,
read_mixed_memory_nowait, read_prgmdata, read_prgmdata_nowait,
read_sysmem, read_sysmem_nowait

� Example

58 PCM C Function Library Reference Manual – August 1996 GFK-0772A

#include <mxread.h>
#include <malloc.h>
#include <string.h>
#define NUM_FMTS 2
#define FIRST_L_REF 11
#define LAST_L_REF 16 /* %L00011 through %L00016, inclusive */
#define L_SIZE (LAST_L_REF – FIRST_L_REF + 1)
#define FIRST_I_REF 3
#define LAST_I_REF 21 /* %I00003 through %I00021, inclusive */
#define I_SIZE ((LAST_I_REF – 1)/8 – (FIRST_I_REF – 1)/8 + 1)

main ()
{

BYTE mixed_data [L_SIZE * sizeof (WORD) + I_SIZE * sizeof (BYTE)];
WORD list_size, i_start;
REQSTAT status;
MIXED_MEMORY_READ_STRUC far* mmp;
void far* dp;
BYTE session_id;
BYTE list_id;

/*
 * Use api_initialize, configure_comm_link, and establish_comm_session
 * to start PLC communication and initialize session_id.
 */

list_size = MIXED_MEM_STRUC_SIZE + (NUM_FMTS – 1) * MEM_FMT_STRUC_SIZE;
mmp = malloc(list_size);

_fstrcpy (mmp–>local_pblock_name, ”LOCALB”);
mmp–>local_segment = 0;
mmp–>num_mem_formats = NUM_FMTS;

mmp–>mem_formats [0].memory_type = L_DATA;
mmp–>mem_formats [0].mem_offset = FIRST_L_REF – 1;
mmp–>mem_formats [0].mem_length = L_SIZE;

mmp–>mem_formats [1].memory_type = I_STATUS_BYTE;
mmp–>mem_formats [1].mem_offset = (FIRST_I_REF – 1) / 8;
mmp–>mem_formats [1].mem_length = I_SIZE;

status = establish_mixed_memory (session_id, list_size, mmp, &list_id);

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* The new mixed memory list was established, so the */
/* buffer with the shopping list is no longer needed. */
free(mmp);
status = read_mixed_memory (session_id, list_id, mixed_data);
if (status != REQUEST_OK) {

/* investigate the error */
} else {

/* The mixed memory data is available: L_SIZE WORDS of %L */
/* data start at mixed_data, and I_SIZE BYTES of %I data */
/* start at mixed_data + L_SIZE * sizeof (WORD). */
/* Cancel the PLC list_id when it is no longer needed. */
status = cancel_mixed_memory (session_id, list_id);

if (status != REQUEST_OK) {
 /* investigate the error */
} else {
 /* the list was cancelled */
}

}
}

}

This program uses WAIT mode requests to establish a list for reading mixed memory,
reading the data in the list, and cancelling the list.

59GFK-0772A PCM C Functions

establish_mixed_memor y_nowait

� Usage
#include <mxreadnw.h>

REQID establish_mixed_memory_nowait (session_id , list_size ,

 mixed_list_ptr ,

 list_id_ptr);

BYTE session_id ;

WORD list_size ;

MIXED_MEMORY_READ_STRUC far* mixed_list_ptr ;

BYTE far* list_id_ptr ;

� Description
See establish_mixed_memory .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR Two mixed memory ”shopping
lists” already exist..

INVALID_CONN_SIZE REQUEST_ERROR The list_size specifies
too many point formats. The
maximum values are: 256 for
Series 90-70 PLC CPUs and 59
for Series 90-30 PLC CPUs.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

60 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, read_localdata_nowait,
read_localdata_nowait, read_mixed_memory,
read_mixed_memory_nowait, read_prgmdata, read_prgmdata_nowait,
read_sysmem, read_sysmem_nowait

� Example

#include <mxread.h>
#include <malloc.h>
#include <string.h>
#define NUM_FMTS 2
#define FIRST_L_REF 11
#define LAST_L_REF 16 /* %L00011 through %L00016, inclusive */
#define L_SIZE (LAST_L_REF – FIRST_L_REF + 1)
#define FIRST_I_REF 3
#define LAST_I_REF 21 /* %I00003 through %I00021, inclusive */
#define I_SIZE ((LAST_I_REF – 1)/8 – (FIRST_I_REF – 1)/8 + 1)

main ()
{

BYTE mixed_data [L_SIZE * sizeof (WORD) + I_SIZE * sizeof (BYTE)];
WORD list_size, i_start;
REQSTAT status;
REQID request_id;
MIXED_MEMORY_READ_STRUC far* mmp;
void far* dp;
BYTE session_id;
BYTE list_id;

/*
 * Use api_initialize, configure_comm_link, and establish_comm_session
 * to start PLC communication and initialize session_id.
 */

list_size = MIXED_MEM_STRUC_SIZE + (NUM_FMTS – 1) * MEM_FMT_STRUC_SIZE;
mmp = malloc(list_size);

_fstrcpy (mmp–>local_pblock_name, ”LOCALB”);
mmp–>local_segment = 0;
mmp–>num_mem_formats = NUM_FMTS;

mmp–>mem_formats [0].memory_type = L_DATA;
mmp–>mem_formats [0].mem_offset = FIRST_L_REF – 1;
mmp–>mem_formats [0].mem_length = L_SIZE;

mmp–>mem_formats [1].memory_type = I_STATUS_BYTE;
mmp–>mem_formats [1].mem_offset = (FIRST_I_REF – 1) / 8;
mmp–>mem_formats [1].mem_length = I_SIZE;

61GFK-0772A PCM C Functions

request_id = establish_mixed_memory_nowait (session_id,

 list_size, mmp, &list_id);
if (request_id < REQUEST_OK) {

status = request_id;
} else {

do {
status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* The new mixed memory list was established, so the */
/* buffer with the shopping list is no longer needed. */
free(mmp);
request_id = read_mixed_memory_nowait (session_id,

 list_id, mixed_data);
if (request_id < REQUEST_OK) {

status = request_id;
} else {

do {
 status = reqstatus (request_id, TRUE);
 /* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* The mixed memory data is available: L_SIZE WORDS of %L */
/* data start at mixed_data, and I_SIZE BYTES of %I data */
/* start at mixed_data + L_SIZE * sizeof (WORD). */
/* Cancel the PLC list_id when it is no longer needed. */
request_id = cancel_mixed_memory_nowait (session_id, list_id);
if (request_id < REQUEST_OK) {
 status = request_id;
} else {
 do {
 status = reqstatus (request_id, TRUE);
 /* do something else useful */
 } while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
 /* investigate the error */
} else {
 /* the list was cancelled */
}

}
}

}

This example uses NOWAIT mode requests to establish a list for reading mixed
memory, reading the data in the list, and cancelling the list.

62 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Get_best_buff

� Usage
#include <vtos.h>

void far* Get_best_buff (size_in_bytes);

long unsigned size_in_bytes ;

� Description
This function allocates PCM free memory using the ”best fit” algorithm. The
size_in_bytes is the size of the desired memory block, which may be as large as
the largest block of free memory in the PCM. When PCM free memory is
fragmented, the smallest free memory block which is as large or larger than
size_in_bytes is returned.

� Return Value
When the call succeeds, Get_best_buff returns a far pointer to the newly
allocated memory block. If the allocation fails, a NULL pointer is returned.

� See Also
Get_buff, Max_avail_buff, Return_buff

� Example

#include <vtos.h>

byte far* buff_ptr;
long unsigned buff_size = 66000;

if (Max_avail_buff () < buff_size) {
/* sorry, can’t allocate buff_size bytes */

} else {
buff_ptr = Get_best_buff (buff_size);
/* use the memory buffer */
Return_buff (buff_ptr);

}

This example allocates a 66,000 byte memory block, if one is available. The block is
used and then returned to free memory.

63GFK-0772A PCM C Functions

Get_board_id

� Usage

#include <vtos.h>

board_id Get_board_id (void);

� Description

This function returns hardware identification codes for the PCM where it executes.

� Return Value

Get_board_id returns a structure type, board_id , defined in VTOS.H. For standard
Series 90-70 PCMs and Series 90-70 standalone PCMs with various daughter boards
installed, the id member of this structure contains one of these values:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Standard
 Series 90-70

PCM,
IC697PCM711

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Series 90-70
Standalone

PCM,
IC697PCM712

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁDaughter Board TypeÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ0x0000
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0x0040

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁNo daughter boardÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
0x001C

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0x005C
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

64K memory board (192K bytes total)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x001F ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0x005F ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

128K memory board (256K bytes total)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x001E ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0x005E ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

256K memory board (384K bytes total)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x001D ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0x005D ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

512K memory board (640K bytes total)

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x001B ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0x005B ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

DLAN communication board

For Series 90-70 display coprocessor modules, the id member of this structure contains
one of these values:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Return Value
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Module Type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x0080 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Series 90-70 Graphics Display Coprocessor Module with
 video daughter board.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x0081 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Series 90-70 Alphanumeric Display Coprocessor Module.

For Series 90-30 PCMs and derivative module types, the id member of this structure
contains one of these values:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Return Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Module Type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x00FF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Series 90-30 PCM model IC693PCM300 (160K bytes).

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x00FE ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Series 90-30 PCM model IC693PCM301 (192K bytes).

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0x00FC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Series 90-30 PCM model IC693PCM311 (640K bytes).ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ0x0082

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSeries 90-30 Alphanumeric Display Coprocessor Module.

64 PCM C Function Library Reference Manual – August 1996 GFK-0772A

The hardware_type member of the returned structure specifies the Series 90-70
hardware type when the PCM firmware version is 4.03 or newer:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Value of hardware_type ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Hardware Type

ÁÁÁÁÁÁÁÁÁÁ0 ÁÁÁÁÁÁÁÁÁÁÁPCMA1ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁPCMA2ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
2

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PCMA3

The hardware_type value is undefined in a Series 90-30 PCM and when the PCM
firmware is older than version 4.03.

� See Also

� Example

#include <vtos.h>

#define 9030_PCM 0x0020
#define STANDALONE_PCM 0x0040

#define DISPLAY_COPROC 0x0080

board_id bid;

bid = Get_board_id ();

if (bid.id & 9030_PCM) {
 /* a Series 90–30 PCM */
} else if (bid.id & DISPLAY_COPROC) {

 /* an Alphanumeric or Graphic Display Coprocessor */
} else {
 /* a Series 90–70 PCM */

 if (Get_pcm_rev() >= 0x0403) {
 /* bid.hardware_type contains 0 (PCMA1), 1 (PCMA2) or 2 (PCMA3) */

 }

 if (bid.id & STANDALONE_PCM) {
 /* a Series 90–70 standalone PCM */
 } else {

 /* a Series 90–70 standard PCM */
 }
}

This example shows how to determine the PCM hardware configuration from the
word value returned by Get_board_id .

65GFK-0772A PCM C Functions

Get_buff

� Usage
#include <vtos.h>

void far* Get_buff (size_in_bytes);

long unsigned size_in_bytes ;

� Description
This function allocates PCM free memory using the ”first fit” algorithm. The
size_in_bytes is the size of the desired memory block, which may be as large as
the largest block of free memory in the PCM. When PCM free memory is
fragmented, the list of free blocks is searched, and the first free memory block which
is as large or larger than size_in_byte s is returned.

� Return Value
When the call succeeds, Get_buff returns a far pointer to the newly allocated
memory block. If the allocation fails, a NULL pointer is returned.

� See Also
Get_best_buff, Max_avail_buff, Return_buff

� Example
See Get_best_buf .

66 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_config_info

� Usage
#include <chksum.h>

#include <apitypes.h>

REQSTAT get_config_info (session_id , config_info_ptr);

BYTE session_id ;

CONFIG_INFO_STRUC far* config_info_ptr ;

� Description
This function retrieves length and checksum information about the Logicmaster 90
configuration data currently stored in the PLC PCU. It can be used to determine if
the configuration has changed. The session_id must be a value returned by a
previous, successful call to establish_comm_session . The config_info_ptr
must contain the address of a structure of type CONFIG_INFO_STRUC, as defined
in apitypes.h . This structure must be allocated by the caller; the caller is
responsible for ensuring that the allocated memory is large enough to hold the
requested data. After a successful return, the structure will contain data from the
current PLC configuration.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

67GFK-0772A PCM C Functions

� See Also
get_config_info_nowait, get_prgm_info, get_prgm_info_nowait

� Example

#include <chksum.h>

REQSTAT status;
CONFIG_INFO_STRUC config_info;
status = get_config_info (session_id, &config_info);

This example uses a WAIT mode request to get the length and checksums of the
Logicmaster 90 configuration data in the PLC CPU.

68 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_config_info_nowait

� Usage
#include <chksumnw.h>

REQID get_config_info_nowait (session_id , config_info_ptr);

BYTE session_id ;

CONFIG_INFO_STRUC far* config_info_ptr ;

� Description
See get_config_info .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

69GFK-0772A PCM C Functions

� See Also
get_config_info, get_prgm_info, get_prgm_info_nowait,
reqstatus

� Example

#include <chksumnw.h>

REQID request_id;
REQSTAT status;
CONFIG_INFO_STRUC config_info;

request_id = get_config_info_nowait (session_id, &config_info);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the config info is available */

}

This example uses a NOWAIT mode request to get the length and checksums of the
Logicmaster 90 configuration data in the PLC CPU.

70 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_cpu_type_rev

� Usage
#include <utils.h>

REQSTAT get_cpu_type_rev (session_id , cpu_type_rev);

BYTE session_id ;

CPU_TYPE_STRUC far* cpu_type_rev ;

� Description
This function obtains the major and minor CPU type, along with the major and
minor PLC CPU software revision. The session_id must be a value returned by
a previous, successful call to establish_comm_session . The cpu_type_rev
parameter must contain the address of a structure of type CPU_TYPE_STRUC, as
defined in apitypes.h . This structure must be allocated by the caller; the caller is
responsible for ensuring that the allocated memory is large enough to hold the
requested data. After a successful return, the structure at cpu_type_rev will
contain data from the PLC.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

71GFK-0772A PCM C Functions

� See Also
get_cpu_type_rev_nowait

� Example

#include <utils.h>

REQSTAT status;
CPU_TYPE_STRUC cpu_type;
status = get_cpu_type_rev (session_id, &cpu_type);

This example uses a WAIT mode request to get the model number and firmware
release of the PLC CPU.

72 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_cpu_type_rev_nowait

� Usage
#include <utilsnw.h>

REQID get_cpu_type_rev_nowait (session_id , cpu_type_rev);

BYTE session_id ;

CPU_TYPE_STRUC far* cpu_type_rev ;

� Description
See get_cpu_type_rev .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

73GFK-0772A PCM C Functions

� See Also
get_cpu_type_rev, reqstatus

� Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
CPU_TYPE_STRUC cpu_type;

request_id = get_cpu_type_rev_nowait (session_id, &cpu_type);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
 /* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the new PLC hardware data is available */

}

This example uses a NOWAIT mode request to get the model number and firmware
release of the PLC CPU.

74 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Get_date

� Usage
#include <vtos.h>

long unsigned Get_date (void);

� Description
This function returns a long unsigned integer which contains the current day of the
week, day of the month, month and year from the PCM’s local internal time of day
clock, which is normally synchronized with the PLC CPU clock.

� Return Value
The date format is:

 Most
Significant
 Byte

 Day of
 the Month

 Day of
 the Week Month Year

Least
Significant
Byte

� See Also
Get_time

� Example

#include <vtos.h>
#include <stdio.h>

byte date [sizeof (long)];

*((long *)date) = Get_date ();
printf (”day of week = %d, day of month = %d, month = %d, year = %d\n”,

date [0], date [1], date [2], date [3]);

75GFK-0772A PCM C Functions

Get_dp_buff

� Usage
#include <vtos.h>

void far* Get_dp_buff (size_in_bytes);

word size_in_bytes ;

� Description
This function allocates a block of VMEbus dual ported memory in a Series 90-70
PCM. The size_in_bytes parameter specifies the memory buffer size. When
the call succeeds, the buffer is reserved for exclusive use by the calling task.

� Return Value
When Get_dp_buff completes successfully, it returns a far pointer to the
allocated buffer. If a buffer of the requested size is not available or the call is made in
a Series 90-30 PCM, a NULL pointer is returned and _VTOS_error contains
NO_MEMORY.

� See Also
Reserve_dp_buff, Return_dp_buff

� Example

#include <vtos.h>

struct mystruct far* vme_memory_ptr;

vme_memory_ptr = Get_dp_buff (4096);
if (vme_memory_ptr != NULL) {

/* use the VMEbus memory */
Return_dp_buff (vme_memory_ptr);

}

76 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Get_mem_lim

� Usage
#include <vtos.h>

void far* Get_mem_lim (void);

� Description
This function returns the starting address of the memory block at the top of PCM
memory which has been excluded from VTOS use. This address is set by the Y
command of the PCM command interpreter. Memory in the excluded area may be
used as private memory by a PCM application.

To determine the end of the private application memory area, use Get_board_id
to find the PCM hardware type.

� Return Value
After a memory limit has been set using the PCM Y command, Get_mem_lim
returns a far address which is one byte above the last memory byte available to
VTOS. When no limit has been set, Get_mem_lim returns NULL.

� See Also
Get_board_id

� Example

#include <vtos.h>

byte far* private_memory_ptr;
private_memory_ptr = Get_mem_lim ();
if (private_memory_ptr != NULL) {

/* use the private memory */
}

77GFK-0772A PCM C Functions

get_memtype_sizes

� Usage
#include <utils.h>

REQSTAT get_memtype_sizes (session_id , mem_sizes);

BYTE session_id ;

MEM_SIZES_STRUC far* mem_sizes ;

� Description
This function obtains the sizes of various PLC memory types. The session_id
must be a value returned by a previous, successful call to
establish_comm_session . The mem_sizes parameter must contain the
address of a structure of type MEM_SIZES_STRUC, as defined in apitypes.h .
This structure must be allocated by the caller; the caller is responsible for ensuring
that the allocated memory is large enough to hold the requested data. After a
successful return, the structure at mem_sizes will contain data from the PLC.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

78 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
get_memtype_sizes_nowait

� Example

#include <utils.h>

REQSTAT status;
MEM_SIZES_STRUC plc_mem_sizes;
status = get_memtype_sizes (session_id, &plc_mem_sizes);

This example uses a WAIT mode request to get the sizes of the PLC memory types.

79GFK-0772A PCM C Functions

get_memtype_sizes_nowait

� Usage
#include <utilsnw.h>

REQID get_memtype_sizes_nowait (session_id , mem_sizes);

BYTE session_id ;

MEM_SIZES_STRUC far* mem_sizes ;

� Description
See get_memtype_sizes .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

80 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
get_memtype_sizes, reqstatus

� Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
MEM_SIZES_STRUC plc_mem_sizes;

request_id = get_memtype_sizes_nowait (session_id, &plc_mem_sizes);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the memory size data is available */

}

This example uses a NOWAIT mode request to get the sizes of the PLC memory
types.

81GFK-0772A PCM C Functions

Get_mod

� Usage
#include <vtos.h>

mod_hdr far* Get_mod (uppercase_module_name);

char far* uppercase_module_name ;

� Description
This function returns the address of a named memory module. The
uppercase_module_name must point to a NUL terminated ASCII string which
contains the name of a PCM memory module. The name is case sensitive, and all
alphabetic characters are expected to be upper case. For more information on PCM
memory modules, see chapter 5, PCM Libraries and Header Files, in the C Programmer’s
Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
Get_mod returns the far address of the mod_hdr structure at the start of the
named memory module. If no module with the specified name is found, NULL is
returned.

� See Also

� Example

#include <vtos.h>

char name[] = ”MYMOD.DAT”;
mod_hdr far* module_ptr;
module_ptr = Get_mod (name);

82 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Get_next_block

� Usage
#include <vtos.h>

arg_blk far* Get_next_block (semaphore_ptr);

void far* semaphore_ptr ;

� Description
This function returns device argument blocks to a VTOS device driver. A future
revision of this manual will discuss VTOS device drivers.

� Return Value

� See Also

� Example

83GFK-0772A PCM C Functions

get_one_rackfaults

� Usage
#include <faults.h>

REQSTAT get_one_rackfaults (session_id , rack_num ,

 rack_fault_bits);

BYTE session_id ;

BYTE rack_num ;

RACK_FAULT_STRUC far* rack_fault_bits ;

� Description
This function permits the user to retrieve all rack, slot, genius bus, and genius device
fault bits for a specified Series 90-70 PLC rack. This request is valid only for Series
90-70 PLCs. The session_id must be a value returned by a previous, successful
call to establish_comm_ses sion . The rack_num parameter must contain
the number of the desired rack; valid rack numbers are 0 through 7. The
rack_fault_bits parameter must contain the address of a structure of type
RACK_FAULT_STRUC, as defined in apitypes.h . This structure must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data. After a successful return, the
structure at rack_fault_bits will contain current PLC fault bit data.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num is out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

84 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults_nowait

� Example

#include <faults.h>

REQSTAT status;
RACK_FAULT_STRUC rack_bits;
status = get_one_rackfaults (session_id, rack_num, &rack_bits);

This example uses a WAIT mode request to determine if a fault exists in any of the
PLC racks.

85GFK-0772A PCM C Functions

get_one_rackfaults_nowait

� Usage
#include <faultsnw.h>

REQID get_one_rackfaults_nowait (session_id , rack_num ,

 rack_fault_bits);

BYTE session_id ;

BYTE rack_num ;

RACK_FAULT_STRUC far* rack_fault_bits ;

� Description
See get_one_rackfaults .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus. When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num is out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

86 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_rack_slot_faults, get_rack_slot_faults_nowait, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
RACK_FAULT_STRUC rack_bits;

request_id = get_one_rackfaults_nowait (session_id, rack_num, &rack_bits);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the fault data is available */

}

This example uses a NOWAIT mode request to determine if a fault exists in any of
the PLC racks.

87GFK-0772A PCM C Functions

Get_pcm_rev

� Usage
#include <vtos.h>

word Get_pcm_rev (void);

� Description
This function returns the PCM firmware revision number.

� Return Value
Get_pcm_rev returns a word value with the major revision number in the high
order byte and the minor revision number in the low order byte. Both are in
hexadecimal format. No errors are returned.

� See Also

� Example

#include <vtos.h>
#include <stdio.h>

word pcm_rev;

pcm_rev = Get_pcm_rev ();
printf (”The PCM firmware revision is %x.%02x.\n”,

pcm_rev >> 8, pcm_rev & 0xff);

This example formats the firmware revision number of the PCM where it executes
and prints it to STDOUT. When run in a release 3.00 PCM, it prints:

 The PCM firmware revision is 3.00.

88 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_prgm_info

� Usage
#include <chksum.h>

REQSTAT get_prgm_info (session_id , prog_info_ptr);

BYTE session_id ;

PROGRAM_INFO_STRUC far* prog_info_ptr ;

� Description
This function retrieves program name, size, and checksum information about the
program currently stored in the PLC CPU. It may be used to determine the program
name or whether the program has changed. The session_id must be a value
returned by a previous, successful call to establish_comm_session . The
prog_info_ptr parameter must contain the address of a structure of type
PROGRAM_INFO_STRUC, as defined in apitypes.h . This structure must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data. After a successful return, the
structure at prog_info_ptr will contain data from the PLC.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

89GFK-0772A PCM C Functions

� See Also
get_config_info, get_config_info_nowait, get_prgm_info_nowait

� Example

#include <chksum.h>

PROGRAM_INFO_STRUC prog_info;
REQSTAT status;
status = get_prgm_info (session_id, &prog_info);

This example uses a WAIT mode request to get the program name and checksums of
the PLC program.

90 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_prgm_info_nowait

� Usage
#include <chksumnw.h>

REQID get_prgm_info_nowait (session_id , prog_info_ptr);

BYTE session_id ;

PROGRAM_INFO_STRUC far* prog_info_ptr ;

� Description
See get_prgm_info .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

91GFK-0772A PCM C Functions

� See Also
get_config_info, get_config_info_nowait, get_prgm_info,
reqstatus

� Example

#include <chksumnw.h>

REQID request_id;
REQSTAT status;
PROGRAM_INFO_STRUC prog_info;

request_id = get_prgm_info_nowait (session_id, &prog_info);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC program data is available */

}

This example uses a NOWAIT mode request to get the program name and
checksums of the PLC program.

92 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_rack_slot_faults

� Usage
#include <faults.h>

REQSTAT get_rack_slot_faults (session_id , rack_num ,

 rack_slot_fault_bits);

BYTE session_id ;

BYTE rack_num
WORD far* rack_slot_fault_bits ;

� Description
This function permits the user to determine if there are one or more faults on a
specified Series 90-70 PLC rack (in rack_num), and, if so, which slot or slots within
that rack contain faulted modules. This request is valid only for Series 90-70 PLCs.
Valid rack numbers are 0 through 7. The session_id must be a value returned
by a previous, successful call to establish_comm_session . When the request
has completed successfully, the WORD variable whose address is specified in
rack_slot_fault_bits will contain the following bit pattern:

Bit Value

Bit 0
 (Least Significant Bit)

1 – There is a fault anywhere on the rack.
0 – There are no faults on the rack.

Bit 1 1 – The rack has failed (for example, been powered off).
0 – The rack is operating.

Bit 2 1 – Slot 0 in the rack is faulted.
0 – Slot 0 is not faulted.

Bit 3 1 – Slot 1 in the rack is faulted.
0 – Slot 1 is not faulted.

.

.

.

.

.

.

Bit 11 1 – Slot 9 in the rack is faulted.
0 – Slot 9 is not faulted.

93GFK-0772A PCM C Functions

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults_nowait

� Example

#include <faults.h>

WORD rack_slot_bits;
REQSTAT status;
status = get_rack_slot_faults (session_id, rack_num, &rack_slot_bits);

This example uses a WAIT mode request to determine if a fault exists in any slot of
the specified PLC rack.

94 PCM C Function Library Reference Manual – August 1996 GFK-0772A

get_rack_slot_faults_nowait

� Usage
#include <faultsnw.h>

REQID get_rack_slot_faults_nowait (session_id , rack_num ,

 rack_slot_fault_bits);

BYTE session_id ;

BYTE rack_num ;

WORD far* rack_slot_fault_bits ;

� Description
See get_rack_slot_faults .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

95GFK-0772A PCM C Functions

� See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
WORD rack_slot_bits;

request_id = get_rack_slot_faults_nowait (session_id, rack_num,
 &rack_slot_bits);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the fault data is available */

}

This example uses a NOWAIT mode request to determine if a fault exists in any slot
of the specified PLC rack.

96 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Get_task_id

� Usage
#include <vtos.h>

word Get_task_id (void);

� Description
This function returns the task identification number (task ID) of the calling task.

� Return Value
Get_task_id returns a 16-bit unsigned integer in the range from zero to fifteen.
There are no errors.

� See Also

� Example

#include <vtos.h>

word task_id;
task_id = Get_task_id ();

97GFK-0772A PCM C Functions

Get_time

� Usage
#include <vtos.h>

long unsigned Get_time (format);

word format ;

� Description
This function returns the current time of the PCM internal time-of-day clock. A
format value of zero (0) specifies that the time should be returned as a count of
milliseconds since midnight. Any non-zero format value specifies an hours/minutes/
seconds/hundredths format.

The PCM clock is normally synchronized to the PLC CPU time of day clock within a
plus-or-minus one second tolerance.

� Return Value
Get_time returns a long unsigned integer containing the current PCM time of
day. When format is zero, the return value contains the number of milliseconds
since 12:00 Midnight. The count is reset automatically to zero (0) every day at
Midnight. This format is useful when calculating the time between two events.
However, the Elapse function is better because its count is unaffected at
midnight or by resynchronization of the PCM clock to the PLC.

When format is non-zero, the time is returned in a four byte,
hours/minutes/seconds/hundredths format. The hours value is in the most
significant byte, minutes in the next most significant byte, seconds in the next most
significant byte, and hundredths of seconds in the least significant byte. The hour
value between Midnight and 1:00 a.m. is zero, and the hour value between 1:00
p.m. and 2:00 p.m. is 13. The resolution of this format is 10 milliseconds (one
hundredth second). This format is useful when the time of day is to be displayed.

98 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Elapse, Get_date

� Example

#include <vtos.h>
#include <stdio.h>

void main ()
{
 byte hmsh [sizeof (long)];

long counts = Get_time (0);
((long)hmsh) = Get_time (1);
printf (”milliseconds since midnight = %lu\n”, counts);
printf (

”hours/minutes/seconds/hundredths = %02d:%02d:%02d.%02d\n”,
hmsh [3], hmsh [2], hmsh [1], hmsh [0]
);

}

This example gets both time formats and prints them to STDOUT. The byte array,
hmsh, is defined to be the same size as a long integer. A type cast is used to assign
the value returned by Get_time directly to it.

99GFK-0772A PCM C Functions

Init_task

� Usage
#include <vtos.h>

void Init_task (task_id , stack_ptr , code_ptr , data_seg , env_ptr);

word task_id ;

byte far* stack_ptr ;

void (far* code_ptr)();

word data_seg ;

env_blk far* env_ptr ;

� Description
This function is used primarily to execute a VTOS device driver as a task. A future
revision of this manual will discuss VTOS device drivers.

� Return Value

� See Also

� Example

100 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Install_dev

� Usage
#include <vtos.h>

void Install_dev (dcb_ptr);

dcb_blk far* dcb_ptr ;

� Description
This function installs a PCM device driver. A future revision of this manual will
discuss VTOS device drivers.

� Return Value
None.

� See Also

� Example

101GFK-0772A PCM C Functions

Install_isr

� Usage
#include <vtos.h>

void Install_isr (interrupt_number , isr_procedure);

word interrupt_number ;

word (far* isr_procedure)();

� Description
This function installs the address of isr_procedure as the interrupt vector for
interrupt_number . It may be used to provide a software interrupt interface to
functions called by more than one task.

Caution

VTOS makes extensive use of interrupts. User installed interrupt
handlers should be restricted to interrupt_number values in the
range 10 hexadecimal through 3F hexadecimal, inclusive.

The only special requirements for isr_procedure are that it must be declared
far and return a word value. It does not need to preserve the registers which are
overwritten by ordinary C functions.

Caution

Interrupt service routines installed by Install_isr must not be
compiled using the interrupt function keyword or perform a return
from interrupt on exit.

When a non-zero value is returned by isr_procedure , the VTOS scheduler runs
immediately. This mechanism permits high priority tasks to be made ready by
interrupts and start executing with the minimum time lag.

102 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
None.

� See Also

� Example

#include <vtos.h>

word far isr_proc (void)
{

/* do something interesting */
return (0)

}

void main ()
{

Install_isr (0x21, isr_proc);
}

This example installs isr_proc as the interrupt service routine for software
interrupt 21 hexadecimal.

103GFK-0772A PCM C Functions

Ioctl_dev

� Usage
#include <vtos.h>

word Ioctl_dev (device_handle , ioctl_code , notify_code ,

 task_id [, < nowait options >]);

word device_handle ;

word ioctl_code ;

word notify_code ;

word task_id ;

where < nowait options > depend on the value of notify_code :

word Ioctl_dev (device_handle , ioctl_code , WAIT, task_id);

word Ioctl_dev (device_handle , ioctl_code , EVENT_NOTIFY,
 task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Ioctl_dev (device_handle , ioctl_code , AST_NOTIFY,

 task_id , ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
This function performs I/O control operations on the channel specified by
device_handle . The type of operation is specified by ioctl_code , which must
contain a value from this table.

104 PCM C Function Library Reference Manual – August 1996 GFK-0772A

ioctl_code
Value

Supported
Devices

Operation Return Value

 1 COM1:
COM2:
CPU:
RAM:
ROM:
REMn:
PC:
NULL:

Is device_handle a physical device
(rather than a file)?

0 (No)
-1 (Yes)

 2 COM1:
COM2:
CPU:
RAM:
ROM:
REMn:
PC:
NULL:

Are any received characters available on the
specified channel?

0 (No)
-1 (Yes)

 3 COM1:
COM2:
CPU:
REMn:

Is the channel ready to send output? 0 (No)
-1 (Yes)

 4 COM1:
COM2:
REMn:

Purge the channel’s type-ahead buffer. 0 (Always)

 5 COM1:
COM2:

Turn on Break. 0 (Always)

 6 COM1:
COM2:

Turn off Break. 0 (Always)

 7 COM1:
COM2:

Has a Break been detected since the last
check?

0 (No)
1 (Yes)

 8 COM1:
COM2:
RAM:
REMn:
PC;
NULL:

Is there a CTRL-C character in the
type-ahead buffer?

0 (No)
1 (Yes)

 9 COM1:
COM2:

Turn on the Request To Send (RTS) output. 0 (Always)

10 COM1:
COM2:

Turn off the Request To Send (RTS) output. 0 (Always)

11 COM1:
COM2:

Turn on the Data Terminal Ready (DTR)
output, enabling the RS-485 line drivers.

0 (Always)

12 COM1:
COM2:

Turn off the Data Terminal Ready (DTR)
output, disabling the RS-485 line drivers.

0 (Always)

13 COM1:
COM2:
REMn:

Return the number of characters in the
type-ahead buffer for the specified channel.

The character
count

14 REMn: Flush the output buffer for the specified
channel.

0 (Always)

105GFK-0772A PCM C Functions

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Ioctl_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution. Ioctl_dev does not wait for external events, so WAIT mode
is almost always used. The EVENT_NOTIFY and AST_NOTIFY forms are included
for completeness.

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Close_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast
as a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined; when
a failure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous I/O using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk structure.
The ast_handle value is in the handle member of the ast_blk . If the call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the arg1
member is undefined; when a failure occurs, arg2 contains IO_FAILED, and
arg1 contains an error status code. For a discussion of asynchronous I/O using
AST functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
In WAIT mode, the value returned by a successful Ioctl_dev call depends on the
ioctl_code. When an error occurs, IO_FAILED is returned; a status code value is
available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available
in device_result and ast_blk structures, respectively.

106 PCM C Function Library Reference Manual – August 1996 GFK-0772A

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status

Depends on
ioctl_code

SUCCESS The operation was successful.

IO_FAILED ABORTED The operation was aborted before completion.

UNSUPT The specified devctl_code is not supported by the
specified device.

BAD_ARG The specified devctl_code is not supported by the
specified device, or device_handle is invalid.

� See Also
Devctl_dev, Special_dev

� Example

#include <vtos.h>

word handle, task_id;
device_result evt_result;

task_id = Get_task_id ();
handle = Open_dev (”COM1:”, READ_MODE, WAIT, task_id);

if (Ioctl_dev (handle, 8, WAIT, task_id)) {
Reset_ef (EF_01);
Ioctl_dev (handle, 4, EVENT_NOTIFY, task_id,

 EF_01, (device_result far*)&evt_result);
}

This example opens serial port one for reading, and then calls Ioctl_dev to look
for a CTRL-C character (ASCII End of Text, code 3) in the type-ahead buffer. If one
was detected, Ioctl_dev is called again to flush the buffer.

107GFK-0772A PCM C Functions

Iset_ef

� Usage
#include <vtos.h>

word Iset_ef (local_ef_mask , task_id);

word local_ef_mask ;

word task_id ;

� Description
This function sets one or more local event flags, specified by bits in
local_ef_mask , for the task specified by task_id . The caller may specify its
own task or a different one. If any of the specified event flags have already been set,
they remain set. Event flags which are not specified remain unchanged. If the
specified task was waiting for one of the local event flags specified in
local_ef_mask , it is made ready.

Unlike Set_ef , this function does not call the VTOS scheduler directly. When
Iset_ef is called from a communication timer timeout function or an interrupt
service routine (installed by Install_isr), control is returned to the caller, which
can continue its processing.

� Return Value
Iset_ef returns one (1) if the task specified by task_id was made ready when
the specified event flag or flags were set; otherwise it returns zero. The calling
interrupt service routine should return this same value, so that the VTOS scheduler
will run whenever a task is made ready.

� See Also
Iset_gef, Set_ef, Set_gef, Wait_ef

� Example

#include <vtos.h>

word task_ready;
task_ready = Iset_ef (EF_13 | EF_6, 7);

This example sets the local event flags in zero-based bits 13 and six (6) for task seven
(7).

108 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Iset_gef

� Usage
#include <vtos.h>

word Iset_gef (global_ef_mask);

word global_ef_mask ;

� Description
This function sets the global event flag or flags specified by global_ef_mask .
Global event flags which were already set are unchanged. If one or more tasks are
waiting for the specified global event flag or flags, they are made ready.

Unlike Set_gef , this function does not call the VTOS scheduler directly. When
Iset_gef is called from a communication timer timeout function or an interrupt
service routine (installed by Install_isr), control is returned to the caller, which
can continue its processing.

� Return Value
Iset_gef returns one (1) if any tasks were made ready when the event flag or
flags were set; otherwise it returns zero. The calling interrupt service routine should
return this same value, so that the VTOS scheduler will run whenever a task is made
ready.

� See Also
Iset_ef, Set_ef, Set_gef, Wait_gef

� Example

#include <vtos.h>

word task_ready;
task_ready = Iset_gef (EF_10 | EF_03 | EF_01);

This example sets the global event flags in zero-based bits ten (10), three (3), and one
(1).

109GFK-0772A PCM C Functions

Link_sem

� Usage
#inc lude <vtos.h>

word Link_sem (sem_name);
char far* sem_name;

� Description
Before a task may use a semaphore, it must call Link_sem to get a handle for it.
The semaphore is specified by sem_name, which must point to a NUL terminated
ASCII string. The string may contain up to seven characters plus the NUL character.
Semaphore names are case sensitive: ”MY_SEM” and ”My_Sem” are different
semaphores.

If the semaphore does not already exist, it is created. If, however, the semaphore
does exist, calling Link_sem is equivalent to calling Block_sem . Consequently, a
call to Unblock_sem must always be made after the call to Link_sem and
before any other VTOS or PLC API function call.

� Return Value
Link_sem returns a handle which is used to identify the semaphore for all
subsequent operations.

� See Also
Block_sem, Unink_sem, Unblock_sem

� Example

#include <vtos.h>

char name[] = ”MY_SEM”;
word handle;
handle = Link_sem (name);
/* access the resource controlled by MY_SEM */
Unblock_sem (handle);

110 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Max_avail_buff

� Usage
#include <vtos.h>

long unsigned Max_avail_buff (void);

� Description
This function returns the size of the largest available free memory buffer. This value
is the maximum size that can be allocated with a single call to Get_buff or
Get_best_buff .

� Return Value
The buffer size in bytes is returned in a long unsigned integer. The call always
succeeds; there are no errors.

� See Also
Max_avail_mem

� Example

#include <vtos.h>

long unsigned largest_memory_block;
largest_memory_block = Max_avail_buff ();

111GFK-0772A PCM C Functions

Max_avail_mem

� Usage
#include <vtos.h>

unsigned long Max_avail_mem (void);

� Description
This function returns the total size of all free memory buffers.

� Return Value
The total free memory size in bytes is returned in a long unsigned integer. The call
always succeeds; there are no errors.

� See Also
Max_avail_buff

� Example

#include <vtos.h>

long unsigned total_memory_available;
total_memory_available = Max_avail_mem ();

112 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Notify_task

� Usage
#include <vtos.h>

void Notify_task (arg_block_ptr);

arg_blk far* arg_block_ptr ;

� Description
This function is used by VTOS device drivers to notify other tasks when external
events occur. A future revision of this manual will discuss VTOS device drivers.

� Return Value

� See Also

� Example

113GFK-0772A PCM C Functions

Open_dev

� Usage
#include <vtos.h>

word Open_dev (dev_name, open_mode , notify_code ,

 task_id [, < nowait options >]);

char far* dev_name;

word open_mode;

word notify_code ;

word task_id ;

where < nowait options > depend on the value of notify_code :

word Open_dev (dev_name, open_mode , WAIT, task_id);

word Open_dev (dev_name, open_mode , EVENT_NOTIFY, task_id ,

 local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Open_dev (dev_name, open_mode , AST_NOTIFY, task_id ,

 ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
This function opens an input/output (I/O) channel for use by the application. The
dev_name may be the name of a physical device (such as the PCM serial ports,
COM1: and COM2:). Device names must be terminated with a colon. Optionally,
the physical device and colon may be followed by the name of a data object (such as
a file or PLC memory reference) which is maintained by the device. No ASCII space
characters are permitted in dev_name. All valid PCM devices, along with data
object formats (if any) for each, are listed in the following sections.

PCM Serial Ports: Either or both of the two PCM serial ports may be opened as I/O
channels. No data objects are supported. The dev_name format for serial ports is:

 ”COM1:”
 ”COM2:”

If an optional ASCII character code is specified, Read_dev operations on the channel
will terminate when the character is encountered in the input stream. For example,
character input from a terminal can be read as lines by specifying the ASCII Carriage
Return character (ASCII code 13 decimal) as the optional termination character.

 ”COM1:13”

An optional timeout value in the range of 0 to 4095 milliseconds can also be
specified. Note that it is not possible to specify both a termination character and a
value. But see the example code at Start_com_timer .

 ”COM1:Tnnnn”

114 PCM C Function Library Reference Manual – August 1996 GFK-0772A

PCM Remote Devices: Two (2) PLC backplane communication channels may be
opened as remote devices. No data objects are supported. The dev_name format
for remote devices is:

 ”REM1:”
 ”REM2:”

The CPU Device: Backplane communication between the PCM and PLC CPU takes
place through channels opened on the CPU device. A data object name is required,
as described in the following paragraphs.

PLC Data: A channel may be opened on the CPU device to access PLC data. The
portion of dev_name after the colon (’:’) character specifies the starting location of
the data. Data specifications use the familiar Logicmaster 90 software notation:

 ”CPU:<PLC reference>[,<qualifiers>]”

References consist of the ’%’ (per cent) character, one alphabetic character specifying
the reference table type, and a numeric starting offset within the specified table. All
PLC reference tables begin at offset value one (1), and leading ’0’ characters in the
offset are ignored. Valid table types are:

Valid Table Types Description

%I
%Q
%M
%T
%R
%G

 %AI
 %AQ
 %SA
 %SB

%S

Discrete input contacts.
Discrete output coils.
Discrete internal contacts.
Discrete temporary contacts..
Register table.
Global Genius contacts.
Analog inputs.
Analog outputs.
Special contacts.
Special contacts.
Special contacts.

For example:

 ”CPU:%I10”
 ”CPU:%R99”
 ”CPU:%AI64”
 ”CPU:%T024”

The PLC discrete data types (%I, %Q, %M, %T, %G, %SA, %SB, %SC, and %S)
receive special handling. When two or more consecutive discrete references are
read or written, the point data is packed in bytes.

115GFK-0772A PCM C Functions

If the specified starting offset is not on an even byte boundary (offset values 1, 9, 17,
25, ...), data points are shifted within bytes to place the starting reference on a byte
boundary. When data is read from the PLC CPU, Read_dev returns the point at
the starting reference in the least significant bit of the least significant byte, and all
other points are shifted accordingly. If the device was opened in NATIVE_MODE
and the number of points read is not an exact multiple of eight (8), there will be one
or more points in the most significant byte which lie above the specified read size.
These extra points are set to zero in the data returned by Read_dev , regardless of
their PLC CPU values. When data is written to the PLC CPU, Write_dev
interprets the least significant bit of the least significant byte of data from the caller
as the point at the starting reference. If the device was opened in NATIVE_MODE
and the number of points written is not an exact multiple of eight (8), there will be
one or more points in the most significant byte which lie above the specified write
size. These extra points are ignored by Write_dev , regardless of their values in
the caller’s data.

The optional <qualifiers > may be used to specify the transition, override, or
diagnostic tables (when applicable) for the specified PLC reference. Qualifiers are
valid only for discrete data.

Qualifier Description

T
O
F

Transition table.
Override table.
Diagnostic (fault) table.

For example:

 ”CPU:%I101,O”
 ”CPU:%Q00100,F”
 ”CPU:%M1,T”

An optional size qualifier specifies whether the PLC bit or byte mode discrete tables
will be accessed:

Qualifier Description

1
8

Bit mode.
Byte mode.

In bit mode, the numeric offset part of the reference address is interpreted as a bit
offset; in byte mode, it is interpreted as a byte offset. For example, the starting
references

 ”CPU:%Q17,1”
 ”CPU:%Q3,8”

refer to the same discrete output. In byte mode, exact multiples of eight points are
always read and written, and the data always begins on a byte boundary.

Bit mode is the default; if no size qualifier is specified, the device is opened in bit
mode.

116 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Table and size qualifiers may be combined. The size qualifier must be the final one:

 ”CPU:%M33,T,8”

Note that %GA through %GE references are not directly supported. Instead, they
may be accessed as subtypes of %G, as shown in this table.

Subtype Bit Mode
Start Reference

Byte Mode
Start Reference

%GA
%GB
%GC
%GD
%GE

%G1281
%G2561
%G3841
%G5121
%G6401

%G161
%G321
%G481
%G641
%G801

PLC Status: Two PLC status data types, cpu_short_status , and
cpu_long_status, may be opened in READ_MODE only. They contain
information about the PLC CPU, its control program, and its state, and are defined
in the header file cpu_data.h .

 ”CPU:#SSTAT”
 ”CPU:#LSTAT”

PLC Time-of-Day: The PLC time-of-day clock may be opened in WRITE_MODE
and then read or written. The data type transferred during read and write
operations is cpu_tod_rec , defined in cpu_data.h . Writing to a channel
opened on this device sets both the PLC and PCM time-of-day clocks to the time and
date specified in the caller’s data. This method sets both clocks at once. It is
recommended because it avoids discrepancies between the two clocks.

 ”CPU:#TOD”

PLC Generic Message Channel: A PLC generic message channel may be opened
to send or receive PLC backplane messages. The messages may be PLC COMMREQ
messages, PLC service request messages, or messages from another PCM or other
Series 90 smart module. The dev_name format for a generic message channel is:

 ”CPU:#<number>”

where <number> is a decimal value in the range from 5 to 120, inclusive. For
example:

 ”CPU:#16”

117GFK-0772A PCM C Functions

PCM RAM Disk: Files on the PCM RAM disk device are opened by specifying the
RAM: device plus a file name. The dev_name format for RAM files is:

 ”RAM:< filename >”

File names consist of one (1) to 13 ASCII printing characters; the space character is
not permitted in file names, but all other printing characters are allowed. Lower
case alphabetic characters are converted to upper case. There is no built-in notion of
file extensions; file names may contain any number of dot (’.’) characters in any
location. Subdirectories are not supported.

For example:

 ”RAM:MYFILE.DAT”
 ”RAM:this.is.valid”

EEROM Device: The PCM 301 (GE Fanuc catalog no. IC693PCM301) provides for
an optional Electrically Erasable Read Only Memory (EEROM) device. The
dev_name format for ROM files is identical to the format for RAM files:

For example:

 ”ROM:MYFILE.DAT”

PC: Device: The PC: device supports file access on a Personal Computer (PC)
from PCM applications. The PC must be attached to a PCM serial port and must be
running a compatible file transfer program. At present, this capability is
implemented only on DOS-based PCs. The dev_name format for the PC device is:

 ”PC:[< drive >:][< path >]< filename >”

The filename is subject to all restrictions of the PC file system and is not converted to
upper case. An optional <drive > letter and <path > specification may be used.

For example:

 ”PC:MYFILE.DAT”
 ”PC:A:MYFILE.DAT”
 ”PC:C:\MYPATH\MYFILE.DAT”

118 PCM C Function Library Reference Manual – August 1996 GFK-0772A

The open_mode specifies how calling application may access the device, as shown
in this table.

Mode Description

READ_MODE This mode permits read-only access to the device or file. If the
specified file does not exist, an error occurs.

WRITE_MODE When dev_name specifies a file, this mode permits read and
write access. If the specified file exists, its contents are deleted;
if not, a new file is created.

When dev_name specifies a serial port or remote device, this
mode permits write-only access to it.

APPEND_MODE This mode permits read and write access to an existing file. If the
specified file does not exist, an empty file is created. The file
pointer is always positioned at the start of the file.

AUTO_REWIND_MODE This mode causes the device to be rewound at the end of each
transfer. Every read or write operation occurs at the start of the
device or file. This mode is available only for PLC data.

NATIVE_MODE This mode changes the unit of data size from bytes to the native
size of the specified object. In all subsequent Read_dev,
Write_dev , Seek_dev , Ioctl_dev , and Special_dev
calls for this device, the specified length will be interpreted as
bits, bytes, or words as appropriate for the particular data.
For example, if ”CPU:%I1” is opened in NATIVE_MODE, a
read length of 8 will refer to 8 bits, rather than 8 bytes. Note,
however, that opening ”CPU:%I1,8” in NATIVE_MODE
results in bytes as the unit of data size.

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Open_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Open_dev . When
the operation has completed, the structure at result_ptr will contain status
information. Note that the result_ptr parameter must be explicitly cast as a
far pointer because its type is not specified by the function prototype in vtos.h .
For a discussion of asynchronous I/O using event flags, see chapter 6,
PCM Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s
Manual, GFK-0771.

119GFK-0772A PCM C Functions

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk structure.
The ast_handle value is in the handle member of the ast_blk . For a
discussion of asynchronous I/O using AST functions, see chapter 6, PCM Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

� Return Value
Open_dev returns an unsigned integer handle which is used to refer to the named
data object in all subsequent device operations. If an error occurs, the call returns
IO_FAILED.

In WAIT mode, the handle is returned by the call if there are no errors. When an
error occurs, IO_FAILED is returned; a status code value is available in the global
variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

notify_code

WAIT EVENT_NOTIFY AST_NOTIFY

Result Structure Type: None device_result ast_blk

Successful call:
 Device handle is in the
SUCCESS is in

Function return value
_VTOS_error

ioreturn member
iostatus member

arg2 member
arg1 member

Error detected:
IO_FAILED is in the
Error code is in

Function return value
_VTOS_error

ioreturn member
iostatus member

arg2 member
arg1 member

� See Also
Close_dev, Read_dev, Seek_dev, Write_dev

120 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>
#include <dos.h>

word handle, open_ast_error, open_ast_done;

void far open_ast_func (ast_blk far* p)
{

if (p–>handle == AST_OPEN) {
 open_ast_done = 1;
 open_ast_error = p–>arg1;
 if (open_ast_error == SUCCESS) {

 /* The operation succeeded. */
 handle = p–>arg2;

 }
 }
}

void main ()
{

char name[] = ”COM1:”;
word handle, task_id;
device_result evt_result;

task_id = Get_task_id ();
handle = Open_dev (name, READ_MODE, WAIT, task_id);
if (_VTOS_error != SUCCESS) {
/* There was a problem. */
}
Reset_ef (EF_01);
Open_dev (name, READ_MODE, EVENT_NOTIFY,

 task_id, EF_01, (device_result far*)&evt_result);
Wait_ef (EF_01);

if (evt_result.iostatus != SUCCESS) {
 /* There was a problem. */
} else {

handle = evt_result.ioreturn;
}

open_ast_done = 0;
 Open_dev (name, READ_MODE, AST_NOTIFY,
 task_id, open_ast_func, AST_OPEN);

_disable();
if (!open_ast_done) {

 Wait_ast ();
}
_enable();

if (open_ast_error != SUCCESS) {
 /* There was a problem */

}
}

This example uses WAIT, EVENT_NOTIFY, and AST_NOTIFY Open_dev
requests to open COM1: in read only mode.

121GFK-0772A PCM C Functions

Post_ast

� Usage
#include <vtos.h>

void Post_ast (task_id , ast_routine [, < ast_data >]);

word task_id ;

void (far* ast_routine)(ast_blk far*);

where the optional ast_data consists of zero to five words:

void Post_ast (task_id , ast_routine [, ast_handle [,

 ast_arg1 [, ast_arg2 [, ast_arg3 [,

 ast_arg4]]]]]);

word ast_handle , ast_arg1 , ast_arg2 , ast_arg3 , ast_arg4 ;

� Description
This function posts an asynchronous trap (AST) to the task specified by task_id .
A task may post an AST to itself or to a different task. If the specified task is waiting
for ASTs, it will be made ready and then execute the specified ast_routine
when its priority is sufficiently high. When a task posts an AST to itself,
ast_routine executes before Post_ast returns.

Up to five words of ast_data may be passed to Post_ast , which creates a
temporary ast_blk structure and copies the data words to its corresponding
members. The ast_blk address is passed to ast_routine when it is called.
The ast_blk is deallocated immediately when ast_routine returns. One or
more words of ast_data may be omitted from the right end of the parameter list.
However, Post_ast always copies five words at the top of its stack frame to the
ast_blk . Any words which are not specified in the call will be undefined in the
ast_blk .

� Return Value
None.

� See Also
Disable_asts, Enable_asts, Wait_ast

122 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>
#include ”myapp.h”

struct mod_data far* mod_data_p;

mod_hdr far* mod_p;

void main ()
{

Wait_gef (MODULE_EXISTS_GEF);
mod_p = Get_mod (APP_MODULE);
mod_data_p = (struct mod_data far*)(mod_p + 1);

/*
 * When something interesting happens, send data to the other task by
 * posting an AST.
 */

Post_ast (mod_data_p–>task_num, mod_data_p–>func_ptr,
EVENT_TAG, WORD1, WORD2, WORD3, WORD4);

}

where myapp.h contains:

#define MODULE_EXISTS_GEF EF_00
#define APP_MODULE ”APPMOD1”
#define EVENT_TAG EVENT1
#define WORD1 EVENT1_DATA1
#define WORD2 EVENT1_DATA2
#define WORD3 EVENT1_DATA3
#define WORD4 EVENT1_DATA4

struct mod_data {
 word task_num;

void (far* func_ptr) ();
};

This example uses Post_ast to send a message to another task when an event
occurs. The other task’s task_id and ast_routine address are made known
through a shared memory module, ”APPMOD1”, whose name is defined in the
common header file, myapp.h . This information must be stored to the shared
module by the other task during its own initialization. The example code waits for
the MODULE_EXISTS_GEF global event flag to be set, indicating that the shared
module data is available.

When the AST is posted, the actual message is in the structure members of an
ast_blk ; they are passed to Post_ast as separate parameters. For this
simplified example, constants are used as message data. A real application would
send more interesting data.

123GFK-0772A PCM C Functions

Process_env

� Usage
#include <vtos.h>

word Process_env (env_ptr, bad_module_ptr);

env_blk far* env_ptr ;

char far* far* bad_module_ptr ;

� Description
This function is used to execute the task which is described by the env_blk
structure pointed to by env_ptr . The bad_module_ptr parameter contains the
address of a pointer to char .

� Return Value
Process_env returns an unsigned integer which contains one of these values.
When certain errors occur, the pointer at bad_module_ptr will point to NUL
terminated character string containing the name of a PCM memory module, as
shown in this table.

Return
Value

bad_module_ptr
 Points To

Completion
Status

SUCCESS Undefined. The call completed successfully.

MODULE_NOT_FOUND The executable module name
passed to Process_env .

The specified module was not
found.

A module name in the
command line string for the
executable module.

ILLEGAL_MODULE_TYPE The module name passed to
Process_env .

The specified module is not a
code module.

MODULE_IN_USE The module name passed to
Process_env .

The specified module is a large
model code module which is
 already in use by another task.

TASK_ID_IN_USE The module name passed to
Process_env .

The task ID specified in the
environment block is already
in use by another task.

INSUFFICIENT_MEMORY Undefined. There is not enough free
memory to execute the specified
module.

124 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Init_task

� Example

#include <vtos.h>

WORD error_code;
env_blk task_env;
char far* far* bad_module_ptr;

error_code = Process_env(&task_env, &bad_module_ptr);

125GFK-0772A PCM C Functions

read_date

� Usage
#include <time.h>

REQSTAT read_date (session_id, plc_date);

BYTE session_id ;

DATE_LONG_STRUC far* plc_date ;

� Description
This function returns the internal date from the PLC CPU. The session_id
must be a value returned by a previous, successful call to
establish_comm_session . The plc_date parameter must contain the
address of a structure of type DATE_LONG_STRUC, as defined in apitypes.h .
This structure must be allocated by the caller; the caller is responsible for ensuring
that the allocated memory is large enough to hold the requested data. After a
successful return, the structure will contain the current PLC date and day of the
week.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

126 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, set_date,
set_date_nowait, set_time, set_timedate, set_timedate_nowait,
set_time_nowait

� Example

#include <time.h>

DATE_LONG_STRUC plc_date;
REQSTAT status;
status = read_date (session_id, &plc_date);

This example uses a WAIT mode request to read the internal date value in the PLC
CPU.

127GFK-0772A PCM C Functions

read_date_nowait

� Usage
#include <timenw.h>

REQID read_date_nowait (session_id, plc_date);

BYTE session_id ;

DATE_LONG_STRUC far* plc_date ;

� Description
See read_date .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

128 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date, read_time, read_timedate, read_timedate_nowait,
read_time_nowait, set_date, set_date_nowait, set_time,
set_timedate, set_timedate_nowait, set_time_nowait, reqstatus

� Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
DATE_LONG_STRUC plc_date;

request_id = read_date_nowait (session_id, &plc_date);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

 status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the date is available */

}

This example uses a NOWAIT mode request to read the internal date value in the
PLC CPU.

129GFK-0772A PCM C Functions

Read_dev

� Usage
#include <vtos.h>

word Read_dev (device_handle , buffer , size , notify_code ,

 task_id [, < nowait options >]);

word device_handle ;

void far* buffer ;

word size ;

word notify_code ;

word task_id ;

where <nowait options > depend on the value of notify_code :

word Read_dev (device_handle , buffer , size , WAIT, task_id);

word Read_dev (device_handle , buffer , size , EVENT_NOTIFY,

 task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Read_dev (device_handle , buffer , size , AST_NOTIFY,

 task_id , ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
This function reads an I/O channel which was previously opened; the
device_handle must be a value returned by Open_dev . The buffer
parameter contains the far address of a memory buffer where the data will be
stored, and size contains the number of data items to read. If the channel was
opened in NATIVE_MODE, size specifies a number of bits, bytes, or words,
depending on the type of the requested data. Otherwise, size specifies a
number of bytes. The caller is responsible for allocating buffer and ensuring that
it is large enough to contain the requested data.

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Read_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

130 PCM C Function Library Reference Manual – August 1996 GFK-0772A

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Read_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains the number of characters read, and the iostatus
member contains SUCCESS; when a failure occurs, ioreturn contains the number
of characters that had been read when the failure occurred, and iostatus
contains an error status code. For a discussion of asynchronous I/O using event
flags, see chapter 6, PCM Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to handle
the AST. The optional ast_handle contains a user-selected tag value for this
particular operation, to permit the AST function to identify it, if necessary. When VTOS
calls ast_routine, it passes the address of an ast_blk structure. The
ast_handle value is in the handle member of the ast_blk . If the call
succeeds, the arg2 member of the ast_blk contains the number of characters
read, and the arg1 member contains SUCCESS; when a failure occurs, arg2
contains IO_FAILED, and arg1 contains an error status code. For a discussion of
asynchronous I/O using AST functions, see chapter 6, PCM Real-Time Programming, in
the C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
In WAIT mode, the function return value contains the number of data items actually
read. When an error occurs, the return value will be less than size . A status code
value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures , respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status

Equal to size. SUCCESS The specified number of data items was read.

Less than size. PAST_EOF The end of data stream was encountered before
the read was completed.

ABORTED An EVENT_NOTIFY or AST_NOTIFY call was
aborted before the read was completed.

BAD_HANDLE An invalid device_handle was specified. No
data was read.

131GFK-0772A PCM C Functions

� See Also
Close_dev, Open_dev, Seek_dev, Write_dev

� Example

#include <vtos.h>

word chars_read, task, handle, tmr_hndl, flags;
device_result result;
char buf[1024];

task = Get_task_id();
handle = Open_dev(“COM1:13”, READ_MODE | WRITE_MODE, WAIT, task);

tmr_hndl = Start_timer(RELATIVE_TIMEOUT | TASK_SPECIFIED | 7,
 MS_COUNT_MODE, 0, 5000, EF_00);

chars_read = Read_dev(handle, buf, sizeof(buf),
 EVENT_NOTIFY, task, EF_01, &result);

Wait_ef(EF_00 | EF_01);

flags = Test_ef();

if (flags & EF_01 && result.iostatus == SUCCESS) {
/* The number of characters is in chars_read. */

} else if (flags & EF_00) {
/* A timeout occurred. */

} else {
/* A device error occurred. */

}

This example reads lines of text, terminated by the carriage return character (ASCII
code 13 decimal) from serial port 1.

132 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_io_fault_tbl

� Usage
#include <faults.h>

REQSTAT read_io_fault_tbl (session_id, io_faults_ptr);

BYTE session_id ;

IO_FAULT_TBL_STRUC far* io_faults_ptr ;

� Description
This function returns the entire contents of the PLC I/O Fault Table. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The io_faults_ptr parameter must contain the
name of an array of structure type IO_FAULT_TBL_STRUC, as defined in
apitypes.h . This array must be allocated by the caller and contain enough
elements to hold the entire table. The caller is responsible for ensuring that the
allocated memory is large enough to hold the requested data. After a successful
return, the array will contain all the current entries from the I/O Fault Table.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

133GFK-0772A PCM C Functions

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl_nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait

� Example

#include <faults.h>

IO_FAULT_TBL_STRUC io_fault_tbl;
REQSTAT status;
status = read_io_fault_tbl (session_id, &io_fault_tbl);

This example uses a WAIT mode request to read the I/O fault table in the PLC CPU.

134 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_io_fault_tbl_nowait

� Usage
#include <faultsnw.h>

REQID read_io_fault_tbl_nowait (session_id, io_faults_ptr);

BYTE session_id ;

IO_FAULT_TBL_STRUC far* io_faults_ptr);

� Description
See read_io_fault_tbl .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

135GFK-0772A PCM C Functions

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
IO_FAULT_TBL_STRUC io_faults[];

request_id = read_io_fault_tbl_nowait (session_id io_faults);

if (request_id < REQUEST_OK) {
 status = request_id;
} else {

do {
status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the fault data is available */

}

This example uses a NOWAIT mode request to read the I/O fault table in the PLC
CPU.

136 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_localdata

� Usage
#include <prgmem.h>

REQSTAT read_localdata (session_id , program_task_name ,

 subblock_name , begin_addr , end_addr ,

 data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function returns the specified range of %L (local) data from the specified Series
90-70 subblock in the specified main program. This request is valid only for Series
90-70 PLCs. The session_id must be a value returned by a previous, successful
call to establish_comm_session . The program_task_name pointer must
contain the address of a NUL terminated ASCII string holding the name of the
control program task that owns the target subblock, and subblock_name must
point to a NUL terminated ASCII string holding the subblock name. Valid names
consist of seven characters or less, not counting the NUL character. The
begin_addr parameter contains the one-based word index where the target data
begins, and end_addr contains the one-based word index where the data ends.
When the function succeeds, the requested data is copied to the region of memory
starting at the address in data_buffer_ptr . This memory buffer must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

137GFK-0772A PCM C Functions

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name is
not the name of a PLC program
task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is not
the name of a subblock in the
specified program, or end_addr
is less than begin_addr or
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

� See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata_nowait,
read_prgmdata, read_prgmdata_nowait, read_sysmem,
read_sysmem_nowait, write_localdata, write_localdata_nowait,
write_prgmdata, write_prgmdata_nowait, write_sysmem,
write_sysmem_nowait

� Example

#include <prgmem.h>

WORD buf[7];
REQSTAT status;

/*
 * To request %L1 through %L7, inclusive from the subblock named
 * ”MYBLOCK” in the program named ”MYPROG”:
 */

status = read_localdata (session_id, ”MYPROG”, ”MYBLOCK”, 1, 7, buf);

/*
 * To request %L28 only from the subblock named ”SUB1” in the
 * program named ”LOADER”:
 */

status = read_localdata (session_id, ”LOADER”, ”SUB1”, 28, 28, buf);

This example uses a WAIT mode request to read the specified ranges of %L data in
the specified PLC program subblocks.

138 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_localdata_nowait

� Usage
#include <prgmemnw.h>

REQID read_localdata_nowait (session_id , program_task_name ,

 subblock_name , begin_addr ,

 end_addr , data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
See read_localdata .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name is
not the name of a PLC program
task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is not
the name of a subblock in the
specified program, or end_addr
is less than begin_addr or
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

139GFK-0772A PCM C Functions

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata, read_prgmdata,
read_prgmdata_nowait, read_sysmem, read_sysmem_nowait,
reqstatus, write_localdata, write_localdata_nowait,
write_prgmdata, write_prgmdata_nowait, write_sysmem,
write_sysmem_nowait

reqstatus

� Example

#include <prgmemnw.h>

WORD buf;

REQID request_id;
REQSTAT status;

request_id = read_localdata_nowait (session_id, ”LOADER”, ”SUB1”, 28, 28,
 buf);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the %L data is available */

}

This example uses a NOWAIT mode request to read %L28 only from subblock
”SUB1” in the program ”LOADER”.

140 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_mixed_memor y

� Usage

#include <mxread.h>

REQSTAT read_mixed_memory (session_id , list_id , data_ptr);

BYTE session_id ;

BYTE list_id ;

void far* data_ptr ;

� Description

This function is used to read all the PLC memory references specified in the mixed
memory specification list referred to by list_id . The session_id must be a
value returned by a previous, successful call to establish_comm_session , and
list_id must be a value returned by a successful call to
establish_mixed_memory or establish_mixed_memory_nowait . The
data_ptr must contain the address of a block of memory large enough to hold all
the data specified by the list. When the function completes successfully, the PLC
data has been copied to the memory at data_ptr . This memory buffer must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data.

� Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR The list_id is not a value
returned by a successful call to
establish_mixed_memory
or establish_mixed_
memory_nowait , or has
been cancelled by calling
cancel_mixed_memory or
cancel_mixed _memory_
nowait.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

141GFK-0772A PCM C Functions

� See Also
cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, establish_mixed_memory_nowait,
read_mixed_memory_nowait

� Example
See establish_mixed_memory .

142 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_mixed_memor y_nowait

� Usage
#include <mxreadnw.h>

REQID read_mixed_memory_nowait (session_id , list_id , data_ptr);

BYTE session_id ;

BYTE list_id ;

void far* data_ptr ;

� Description
See read_mixed_memory .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR The list_id is not a value
returned by a successful call to
establish_mixed_memory
or establish_mixed_
memory_nowait , or has
been cancelled by calling
cancel_mixed_memory or
cancel_mixed _memory_
nowait.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

143GFK-0772A PCM C Functions

� See Also
cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, establish_mixed_memory_nowait,
read_mixed_memory, reqstatus

� Example
See establish_mixed_memory_nowait .

144 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_plc_fault_tbl

� Usage
#include <faults.h>

REQSTAT read_plc_fault_tbl (session_id , plc_faults_ptr);

BYTE session_id ;

PLC_FAULT_TBL_STRUC far* plc_faults_ptr ;

� Description
This function returns the entire contents of the PLC Fault Table. The session_id
must be a value returned by a previous, successful call to
establish_comm_session . The plc_faults_ptr parameter must contain
the name of an array of structure type PLC_FAULT_TBL_STRUC, as defined in
apitypes.h . This array must be allocated by the caller; the caller is responsible for
ensuring that the allocated memory is large enough to hold the entire table. After a
successful return, the array will contain all the current entries from the PLC Fault
Table.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

145GFK-0772A PCM C Functions

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl_nowait

� Example

#include <faults.h>

PLC_FAULT_TBL_STRUC plc_faults[16];
REQSTAT status;
status = read_plc_fault_tbl (session_id, plc_faults);

This example uses a WAIT mode request to read the PLC fault table in the PLC CPU.

146 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_plc_fault_tbl_nowait

� Usage
#include <faultsnw.h>

REQID read_plc_fault_tbl_nowait (session_id , plc_faults_ptr);

BYTE session_id ;

PLC_FAULT_TBL_STRUC far* plc_faults_ptr);

� Description
See read_plc_fault_tbl .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT requests
already outstanding.

147GFK-0772A PCM C Functions

� See Also
clr_io_fault_tbl, clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl, reqstatus

� Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
PLC_FAULT_TBL_STRUC plc_faults[16];

request_id = read_plc_fault_tbl_nowait (session_id, plc_faults);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the fault data is available */

}

This example uses a NOWAIT mode request to read the PLC fault table in the PLC
CPU.

148 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_prgmdata

� Usage
#include <prgmem.h>

REQSTAT read_prgmdata (session_id , program_task_name ,

 begin_addr , end_addr , data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function returns the specified range of %P (program) data from the specified
Series 90-70 program. This request is valid only for Series 90-70 PLCs. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The program_task_name pointer must contain
the address of a NUL terminated ASCII string holding the name of the target
program. Valid names consist of seven characters or less, not counting the NUL
character. The begin_addr parameter contains the one-based word index where
the target data begins, and end_addr contains the one-based word index where
the data ends. When the function succeeds, the requested data is copied to the
region of memory starting at the address in data_buffer_ptr . This memory
buffer must be allocated by the caller; the caller is responsible for ensuring that the
allocated memory is large enough to hold the requested data.

149GFK-0772A PCM C Functions

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
 begin_addr or out of
range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_prgmdata_nowait, read_sysmem,
read_sysmem_nowait, write_localdata, write_localdata_nowait,
write_prgmdata, write_prgmdata_nowait, write_sysmem,
write_sysmem_nowait

� Example

#include <prgmem.h>

REQSTAT status;
WORD data_buffer[96–12+1];
status = read_prgmdata (session_id, ”MYPROG”, 12, 96, data_buffer);

This example uses a WAIT mode request to read %P12 through %P96, inclusive,
from a PLC program called ”MYPROG”.

150 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_prgmdata_nowait

� Usage
#include <prgmemnw.h>

REQID read_prgmdata_nowait (session_id, program_task_name ,

 begin_addr, end_addr ,

 data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
See read_prgmdata .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
 begin_addr or out of
range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

151GFK-0772A PCM C Functions

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_prgmdata, read_sysmem,
read_sysmem_nowait, reqstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

� Example

#include <prgmemnw.h>
/*
 * Program Data Range begin_addr Value end_addr Value
 *
 * %P1 through %P24, inclusive 1 24
 *
 * %P39 through %P43, inclusive 39 43
 */

WORD data_buffer[24–1+1];

REQID request_id;
REQSTAT status;

request_id = read_prgmdata_nowait (session_id, ”LOADER”, 1, 24, data_buffer);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

 } while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the %P data is available */

}

This example uses a NOWAIT mode request to read the specified ranges of %P data
in the PLC.

152 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_sysmem

� Usage
#include <sysmem.h>

REQSTAT read_sysmem (session_id, memory_type, begin_addr ,

 end_addr, data_buffer_ptr);

BYTE session_id ;

BYTE memory_type ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function returns the specified range of data from the specified PLC data type
(%I, %Q, %R, etc.) in the PLC CPU. The session_id must be a value returned
by a previous, successful call to establish_comm_session . The memory_type
parameter specifies the target memory type, begin_addr contains the index
where the target data begins, and end_addr contains the index where the data
ends. The end_addr value must be greater than or equal to begin_addr , and
must not be larger than the size returned by get_memtype_sizes for the
specified memory_type . The begin_addr value must be a value in the range
from one (1) to end_addr , inclusive.

When the function succeeds, the requested data is copied to the region of memory
starting at the address in data_buffer_ptr . This memory buffer must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data.

PLC register data types, %R, %AI, and %AQ, are treated as 16 bit binary integer
values. The actual register content, however, may be signed or unsigned integers,
floating point values, or text.

The PLC discrete data types, %I, %Q, %M, %T, %S, %SA, %SB, %SC, and %G, are
returned in one or more bytes, with the bit specified by begin_addr in the least
significant bit of the least significant byte. For example, consider the inputs %I00003
through %I00021. The Logicmaster 90 programming software Reference Tables
display shows these inputs grouped into bytes, with %I00001 through %I00008 in
the rightmost byte, etc. Our target range, %I00003 through %I00021, spans portions
of three bytes:

%I00024 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 %I00001

%I00003
%I00021

153GFK-0772A PCM C Functions

A read_sysmem request for %I00003 through %I00021 will return these three
bytes. The data at begin_addr is shifted into the least significant bit of the least
significant byte. Note that the bits in the final byte which are beyond the specified
range are set to zero.

%I00026 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 %I00003

%I00021

The following table shows memory_type values from memtypes.h which are
valid in read_sysmem requests.

Reference
 Type

Access
 Type

Data
 Type

memory_type
Value

%AI Analog Input Register
Analog Input High Alarm
Analog Input Low Alarm
Analog Input Fault/No Fault
Analog Input Diagnostic

WORD
BYTE
BYTE
BYTE
BYTE

AI_DATA
AI_HIALR
AI_LOALR
AI_FAULT
AI_DIAG

%AQ Analog Output Register
Analog Output High Alarm
Analog Output Low Alarm
Analog Output Fault/No Fault
Analog Output Diagnostic

WORD
BYTE
BYTE
BYTE
BYTE

AQ_DATA
AQ_HIALR
AQ_LOALR
AQ_FAULT
AQ_DIAG

%R Register Memory WORD R_DATA

%I Input Status Table
Input Transition Table
Input Override Table
Input Diagnostic Table

Discrete I_STATUS
I_TRANS
I_OVRD
I_DIAG

%Q Output Status Table
Output Transition Table
Output Override Table
Output Diagnostic Table

Discrete Q_STATUS
Q_TRANS
Q_OVRD
Q_DIAG

%T Temporary Status Table
Temporary Transition Table
Temporary Override Table

Discrete T_STATUS
T_TRANS
T_OVRD

%M Internal Status Table
Internal Transition Table
Internal Override Table

Discrete M_STATUS
M_TRANS
M_OVRD

%SA System A Status Table
System A Transition Table
System A Override Table

Discrete SA_STATUS
SA_TRANS
SA_OVRD

%SB System B Status Table
System B Transition Table
System B Override Table

Discrete SB_STATUS
SB_TRANS
SB_OVRD

%SC System C Status Table
System C Transition Table
System C Override Table

Discrete SC_STATUS
SC_TRANS
SC_OVRD

154 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Reference
 Type

Access
 Type

Data
 Type

memory_type
Value

%S System Status Table
System Transition Table
System Override Table

Discrete S_STATUS
S_TRANS
S_OVRD

%G Global Genius Status Table
Global Genius Transition Table
Global Genius Override Table

Discrete G_STATUS
G_TRANS
G_OVRD

Analog input diagnostic bytes (AI_DIAG) for Genius analog blocks (except RTD and
Thermocouple blocks) and Series 90-70 integral analog input modules contain the
fault information shown in this table.

Input low alarm

Input high alarm

Input underrange

Input overrange

Input open wire

Expansion channel not responding
 (integral modules only)

15 4 3 2678

Least
significant
bit

Most
significant
bit

Analog input diagnostic bytes (AI_DIAG) for Genius RTD and Thermocouple
blocks contain the fault information shown in this table.

Input low alarm

Input high alarm

Input underrange

Input overrange

Input open wire

Input wiring error

Internal channel fault

15 4 3678

Input shorted (RTD block only)

Least
significant
bit

Most
significant
bit

155GFK-0772A PCM C Functions

Analog output diagnostic bytes (AQ_DIAG) for Genius analog blocks and Series
90-70 integral analog output modules contain the fault information shown in this
table.

Output overrange

15 4 3 2678

Output underrange

Feedback error

Least
significant
bit

Most
significant
bit

Analog input high alarm (AI_HIALR) and low alarm (AI_LOALR) references are
BOOLEAN values which are TRUE when the corresponding AI_DATA value is
above its high alarm limit or below its low alarm limit, respectively.

The Series 90-70 types %GA, %GB, %GC, %GD, and %GE are accessed as subtypes
of %G data, as shown in this table.

Subtype Start Reference

%GA
%GB
%GC
%GD
%GE

%G01281
%G02561
%G03841
%G05121
%G06401

For example, %GB00001 is accessed as %G02561, %GD00005 as %G06405, etc.

156 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
 begin_addr or out of
range.

NULL_SEGSEL_PTR REQUEST_ERROR The memory_type is not
 supported.

INVALID_SELECTOR REQUEST_ERROR The memory_type is
invalid.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem_nowait, read_prgmdata,
read_prgmdata_nowait, reqstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

157GFK-0772A PCM C Functions

� Example

#include <sysmem.h>

REQSTAT status;
BYTE sesn_id;
BYTE buff[26];

/* Read discrete output status %Q00001 through %Q00024: */
status = read_sysmem (sesn_id, Q_STATUS, 1, 24, buff);

/* Read discrete temporary transitions %T00017 through %T00208: */
status = read_sysmem (sesn_id, T_TRANS, 17, 208, buff);

/* Read discrete internal status %M00035: */
status = read_sysmem (sesn_id, M_STATUS, 35, 35, buff);

/* Read discrete internal overrides %M00097 through %M00112: */
status = read_sysmem (sesn_id, M_OVRD, 97, 112, buff);

/* Read registers %R00093 through %R00098: */
status = read_sysmem (sesn_id, R_DATA, 93, 98, buff);

This example uses WAIT mode requests to read various PLC data.

158 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_sysmem_nowait

� Usage
#include <sysmemnw.h>

REQID read_sysmem_nowait (session_id , memory_type , begin_addr ,
 end_addr , data_buffer_ptr);

BYTE session_id ;

BYTE memory_type ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
See read_sysmem .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
 begin_addr or out of
range.

NULL_SEGSEL_PTR REQUEST_ERROR The memory_type is not
 supported.

INVALID_SELECTOR REQUEST_ERROR The memory_type is
invalid.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

159GFK-0772A PCM C Functions

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_prgmdata,
read_prgmdata_nowait, reqstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

� Example

#include <sysmemnw.h>

REQID reqid1, reqid2;
REQSTAT stat1, stat2;
BYTE sesn_id;
WORD ai_data[4];
BYTE ai_diag[4];

/* Read analog input data %AI0001 through %AI0004: */
reqid1 = read_sysmem_nowait (sesn_id, AI_DATA, 1, 4, ai_data);

if (reqid1 < REQUEST_OK) {
stat1 = reqid1;

} else {
stat1 = reqstatus (reqid1, TRUE);

}
/* Read analog input diagnostics %AI0001 through %AI0004: */
reqid2 = read_sysmem_nowait (sesn_id, AI_DIAG, 1, 4, ai_diag);

if (reqid2 < REQUEST_OK) {
stat2 = reqid2;

} else {
stat2 = reqstatus (reqid2, TRUE);

}
while (stat1 == REQUEST_IN_PROGRESS || stat2 == REQUEST_IN_PROGRESS) {

if (stat1 == REQUEST_IN_PROGRESS) {
stat1 = reqstatus (reqid1, TRUE);

}
if (stat2 == REQUEST_IN_PROGRESS) {

stat2 = reqstatus (reqid2, TRUE);
}

}
if (stat1 != REQUEST_OK || stat2 != REQUEST_OK) {

/* investigate the error */
} else {

/* the new analog input data is available */
}

This example uses NOWAIT mode requests to read analog inputs and their
diagnostic data.

160 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_time

� Usage
#include <time.h>

REQSTAT read_time (session_id, plc_time);

BYTE session_id ;

TIME_STRUC far* plc_time ;

� Description
This function returns the current time of day from the PLC CPU clock. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The plc_time parameter must contain the
address of a structure of type TIME_STRUC, as defined in apitypes.h. This
structure must be allocated by the caller; the caller is responsible for ensuring that
the allocated memory is large enough to hold the requested data. After a successful
return, the structure will contain the current PLC time of day.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

161GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_timedate,
read_timedate_nowait, read_time_nowait, set_date,
set_date_nowait, set_time, set_timedate, set_timedate_nowait,
set_time_nowait

� Example

#include <time.h>

TIME_STRUC plc_time;
REQSTAT status;
status = read_time (sesn_id, &plc_time);

This example uses a WAIT mode request to read the PLC internal time.

162 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_time_nowait

� Usage
#include <timenw.h>

REQID read_time_nowait (session_id , plc_time);

BYTE session_id ;

TIME_STRUC far* plc_time ;

� Description
See read_time .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

163GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, reqstatus, set_date, set_date_nowait,
set_time, set_timedate, set_timedate_nowait, set_time_nowait

� Example

#include <timenw.h>

TIME_STRUC plc_time;
REQID request_id;
REQSTAT status;

request_id = read_time_nowait (sesn_id, &plc_time);

if (request_id < REQUEST_OK) {
status = request_id;
} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC time is available */

}

This example uses a NOWAIT mode request to read the PLC internal time.

164 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_timedate

� Usage
#include <time.h>

REQSTAT read_timedate (session_id , plc_time_date);

BYTE session_id ;

TIMESTAMP_LONG_STRUC far* plc_time_date ;

� Description
This function returns the current time of day, date, and day of week from the PLC
CPU clock. The session_id must be a value returned by a previous, successful
call to establish_comm_session . The plc_time parameter must contain
the address of a structure of type TIMESTAMP_LONG_STRUC, as defined in
apitypes.h . This structure must be allocated by the caller; the caller is responsible
for ensuring that the allocated memory is large enough to hold the requested data.
After a successful return, the structure will contain the current PLC time and date.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

165GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_time, read_timedate_nowait,
read_time_nowait, set_date, set_date_nowait, set_time,
set_timedate, set_timedate_nowait, set_time_nowait

� Example

#include <time.h>

TIMESTAMP_LONG_STRUC plc_time_date;
REQSTAT status;
status = read_timedate (sesn_id, &plc_time_date);

This example uses a WAIT mode request to read the PLC internal time and date.

166 PCM C Function Library Reference Manual – August 1996 GFK-0772A

read_timedate_nowait

� Usage
#include <timenw.h>

REQID read_timedate_nowait (session_id , plc_time_date);

BYTE session_id ;

TIMESTAMP_LONG_STRUC far* plc_time_date ;

� Description
See read_timedate .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

167GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_time_nowait, reqstatus, set_date, set_date_nowait,
set_time, set_timedate, set_timedate_nowait, set_time_nowait

� Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIMESTAMP_LONG_STRUC plc_time_date

request_id = read_timedate_nowait (sesn_id, &plc_time_date);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the new time and date are available */

}

This example uses a NOWAIT mode request to read the PLC internal time and date.

168 PCM C Function Library Reference Manual – August 1996 GFK-0772A

release_request_id

� Usage
#include <utilsnw.h>

BOOLEAN release_request_id (request_id);

REQID request_id ;

� Description
This function is called to free request_id and return it to the pool of available
requests. The request_id must be a value returned by a previous, successful
nowait service request. Calling this function is necessary only when reqstatus is
called with the release_id parameter FALSE. This practice is not recommended.

� Return Value
The function returns a BOOLEAN value which is TRUE when request_id has
been returned to the free pool, and FALSE otherwise. If the call is made before the
request has completed, FALSE will be returned. The call should never be made
before reqstatus indicates the request has completed.

� See Also
reqstatus

� Example

#include <utilsnw.h>

BOOLEAN released;
released = release_request_id (request_id);

This example releases a request_id previously uses by a NOWAIT mode request.

169GFK-0772A PCM C Functions

reqstatus

� Usage
#include <utilsnw.h>

REQSTAT reqstatus (request_id , release_id);

REQID request_id ;

BOOLEAN release_id ;

� Description
This function returns the current completion status of a nowait service request
specified by request_id . If release_id is TRUE and the request has
completed, the specified request_id is released. If release_id is FALSE or
the request has not completed, request_id is not released. When
release_id is FALSE and the request has completed, the application must
explicitly release request_id at a later time. The recommended practice is to set
release_id TRUE always.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
NOWAIT request specified by request_id . Values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

0 REQUEST_IN_PROGRESS The request is still being processed.

0 REQUEST_OK The request completed successfully.

Minor error status code Major error status code The request was rejected. The major
and minor error codes contain values
explaining the rejection. Each
NOWAIT request function reference
contains the codes for that function.

All minor error codes are negative 8 bit integers. Consequently, a REQSTAT value
which indicates a request was rejected may be detected by testing for a negative
value.

170 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
release_request_id

� Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
BYTE major, minor;

request_id = start_plc_noio_nowait (sesn_id);
status = reqstatus (request_id, release_id);

if (status == REQUEST_IN_PROGRESS) {
/* The request has not completed. */

} else if (status == REQUEST_OK) {
/* The request completed successfully. */

} else {
/* There was an error. The major and minor */
/* error codes contain the reason for the error. */
major = MAJOR_ERR (status);
minor = MINOR_ERR (status);

}

This example calls reqstatus to determine the status of a previous NOWAIT mode
request. Note that use of the MAJOR_ERR and MINOR_ERR macros requires that
status must not be a register variable.

171GFK-0772A PCM C Functions

Reserve_dp_buff

� Usage
#include <vtos.h>

int Reserve_dp_buff(buf_address , size_in_bytes);

void far* buf_address ;

word size_in_bytes ;

� Description
This functions reserves a memory buffer in the VMEbus dual port memory of a
Series 90-70 PCM for exclusive use by the calling task. The buf_address and
size_in_bytes parameters specify the location and size of the buffer,
respectively.

� Return Value
If the function completes successfully, SUCCESS is returned. If the specified buffer is
not available or the call is made in a Series 90-30 PCM, FAILURE is returned, and the
global variable _VTOS_error contains NO_MEMORY.

� See Also
Get_dp_buff, Return_dp_buff

� Example

#include <vtos.h>

byte far* dp_ptr = set_seg(0xA000);
ptr_off(dp_ptr) = 0x4000;
if (Reserve_dp_buff (dp_ptr, 4096) != FAILURE) {

/* use the buffer */
Return_dp_buff (dp_ptr);

}

172 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Reset_ef

� Usage
#include <vtos.h>

void Reset_ef (local_ef_mask);

word local_ef_mask ;

� Description
This function clears one or more local event flags, specified by bits in
local_ef_mask , for the calling task. If any of the specified event flags have
already been cleared, they remain cleared. Event flags which are not specified
remain unchanged. Note that local event flags can be cleared only by the task
where they are local, although they can be set by other tasks. Tasks should reset any
local event flags specified in a Wait_ef call before making the Wait_ef call.

� Return Value
None.

� See Also
Iset_ef, Iset_gef, Reset_gef, Set_ef, Set_gef, Wait_ef,
Wait_gef

� Example

#include <vtos.h>

Reset_ef (0xffff);

This example clears all the local event flags for the calling task.

173GFK-0772A PCM C Functions

Reset_gef

� Usage
#include <vtos.h>

void Reset_gef (global_ef_mask);

word global_ef_mask ;

� Description
This function clears one or more global event flags, specified by bits in
global_ef_mask . If any of the specified event flags have already been cleared,
they remain cleared. Event flags which are not specified remain unchanged. Tasks
should reset any global event flags specified in a Wait_gef call before making the
Wait_gef call.

� Return Value
none.

� See Also
Iset_ef, Iset_gef, Reset_ef, Set_ef, Set_gef, Wait_ef,
Wait_gef

� Example

#include <vtos.h>

Reset_gef (EF_15 | EF_14 | EF_13 | EF_12);

This example clears the four specified global event flags.

174 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Resume_task

� Usage
#include <vtos.h>

void Resume_task (task_id);

word task_id ;

� Description
This function is called to resume execution of a task which was suspended by calling
Suspend_task . The task_id must contain the task number of the task to be
resumed.

When one task resumes a different task with higher priority, the newly resumed
task will begin to execute immediately. The calling task will not return from the
Resume_task call until the higher priority task is suspended or waits.

� Return Value
None.

� See Also
Suspend_task

� Example

#include <vtos.h>

Resume_task (6);

This example resumes execution of task six (6).

175GFK-0772A PCM C Functions

Return_buff

� Usage
#include <vtos.h>

word Return_buff (buffer_ptr);

void far* buffer_ptr ;

� Description
This functions returns a memory buffer to PCM free memory. The buffer_ptr
must contain a far pointer to a memory buffer which was obtained by calling
Get_buff or Get_best_buff .

� Return Value
If the function completes successfully, SUCCESS is returned. Otherwise, FAILURE is
returned, and the global variable _VTOS_error contains BAD_BUFFER.

During program development, it is a good idea to check for error codes from
Return_buff . Two very common errors are to return a buffer pointer that has
been changed and to return a buffer twice. These errors can corrupt the VTOS free
memory list and cause symptoms with no obvious relationship to the actual error.
Checking the return value from Return_buff is the best method for discovering
these errors.

� See Also
Get_buff, Get_best_buff

� Example

#include <vtos.h>

word status;
byte far* p;

p = Get_buff (BUFFSIZE);

if (p != NULL) {
 /* use the memory buffer */
status = Return_buff (p);

}

176 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Return_dp_buff

� Usage
#include <vtos.h>

int Return_dp_buff (buf_address);

void far* buf_address ;

� Description
This functions returns a memory buffer in the VMEbus dual port memory of a Series
90-70 PCM. The buf_address parameter must contain a far pointer to a
memory buffer which was either returned by Get_dp_buff or successfully
reserved by Reserve_dp_buff .

� Return Value
If the function completes successfully, SUCCESS is returned. Otherwise, FAILURE is
returned, and the global variable _VTOS_error contains NO_MEMORY.

During program development, it is a good idea to check for error codes from
Return_dp_buff . Two very common errors are to return a buffer pointer that has
been changed and to return a buffer twice. These errors can corrupt the VMEbus
dual port memory and cause symptoms with no obvious relationship to the actual
error. Checking the return value from Return_dp_buff is the best method for
discovering these errors.

� See Also
Get_dp_buff, Reserve_dp_buff

� Example
See Get_dp_buff or Reserve_dp_buff .

177GFK-0772A PCM C Functions

Seek_dev

� Usage
#include <vtos.h>

word Seek_dev (device_handle , position , notify_code ,

 task_id [, < nowait options >]);

word device_handle ;

long unsigned position ;

word notify_code ;

word task_id ;

where < nowait options > depend on the value of notify_code :

word Seek_dev (device_handle , position , WAIT, task_id);

word Seek_dev (device_handle , position , EVENT_NOTIFY,

 task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Seek_dev (device_handle , position , AST_NOTIFY, task_id ,

 ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
This function positions the data pointer of the I/O channel specified by
device_handle to a specified position relative to the start of the data
stream. The next Read_dev or Write_dev operation will occur at the
specified position. The device_handle must be a value returned by a
previous, successful call to Open_dev . If the device was opened using
NATIVE_MODE, position is interpreted in units of bits, bytes, or words, as
appropriate to the device’s data; otherwise, position is interpreted as bytes.

Note that there is no VTOS service to return the current position in an I/O stream. If
the application needs to seek to a position other than the start of the stream, it must
calculate that position.

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Seek_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

178 PCM C Function Library Reference Manual – August 1996 GFK-0772A

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Seek_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast
as a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined; when
a failure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous I/O using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk structure.
The ast_handle value is in the handle member of the ast_blk . If the call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the arg1
member is undefined; when a failure occurs, arg2 contains IO_FAILED, and arg1
contains an error status code. For a discussion of asynchronous I/O using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, IO_FAILED is returned; a status code value is available in the global variable
_VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status

SUCCESS Undefined The function completed successfully.

IO_FAILED PAST_EOF The specified position is past the end of the
data stream.

ABORTED An EVENT_NOTIFY or AST_NOTIFY call was
aborted before the function was completed.

BAD_HANDLE An invalid device_handle was specified.

179GFK-0772A PCM C Functions

� See Also
Devctl_dev, Open_dev, Read_dev, Write_dev

� Example

#include <vtos.h>
#include <string.h>

word chars_read, i, task, handle, seek_status;
char buf[1024];
char target[] = ”target”;

seek_status = SUCCESS + 1;
task = Get_task_id();
handle = Open_dev(”RAM:MY.TXT”, READ_MODE | WRITE_MODE, WAIT, task);
chars_read = Read_dev(handle, buf, sizeof(buf), WAIT, task);

if (_VTOS_error == SUCCESS) {
for (i = 0; i < sizeof(buf) – strlen(target); ++i) {

if (strnicmp(buf+i, target, strlen(target)) == 0) {
 seek_status = Seek_dev (handle, i, WAIT, task);
 break;

}
}

}

if (seek_status == SUCCESS) {
/* The file is positioned at the start of the target string. */

}

This example calls Seek_dev to position the file pointer of a PCM RAM disk file to
the location of a target string.

The file is opened, and the first 1024 characters are read into buf . Then the buffer is
searched for the target string, using the case-insensitive string compare function. If
the search succeeds, Seek_dev sets the file pointer to the location where the target
was found.

180 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Send_vme_interrupt

� Usage
#include <vtos.h>

int Send_vme_interrupt(id);

byte id ;

� Description
Send_vme_interrupt may be used to generate a VMEbus interrupt from a
Series 90–70 standalone PCM, IC697PCM712. There is no effect when
Send_vme_interrupt is called from either a standard Series 90–70 PCM,
0IC697PCM711, or a Series 90–30 PCM with release 4.00 or later firmware.

Caution

If Send_vme_interrupt is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Send_vme_interrupt is provided in PCM C toolkit versions 1.04 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

The Series 90–70 standalone PCM can assert an interrupt request on IRQ7 only.
When Send_vme_interrupt is called and the VMEbus interrupt handler for IRQ7
polls for an interrupt ID, the value that was passed in the id parameter will be read
by the interrupt handler and used to identify the source of the interrupt. The id
value must be assigned by the interrupt handler when the system is initialized. The
example code for this function explains the Series 90–70 convention for obtaining
id .

This function is provided for use with VMEbus masters other than Series 90–70 PLC
CPUs. All versions of Series 90–70 PLC CPU firmware through release 5.xx log a
fault to the PLC Fault Table when Send_vme_interrupt is used.

� Return Value
When called from a program executing in a Series 90–70 standalone PCM,
Send_vme_interrupt always returns SUCCESS. When called from a standard
Series 90–70 PCM or Series 90–30 PCM with release 4.00 or later firmware,
Send_vme_interrupt always returns FAILURE.

181GFK-0772A PCM C Functions

� See Also

� Example

#include <vtos.h>
#define STANDALONE_PCM 0x0040

byte far* p;
int result;

if (Get_board_id() & STANDALONE_PCM) {
FP_SEG(p) = 0xA000;
FP_OFF(p) = 0x006b;
result = Send_vme_interrupt(*p);

}

This example verifies that it is running in a Series 90–70 standalone PCM and then
calls Send_vme_interrupt to send an interrupt.

The id parameter value for Send_vme_interrupt is read from offset 6b
hexadecimal (107 decimal) in the module’s VME dual port memory. This location is
used by Series 90–70 PLC CPUs to assign a unique interrupt vector to every smart
module in the PLC. We recommend that you use the same location for this purpose
in Series 90–70 standalone PCM applications.

The value of the id parameter has meaning only for the VME module that handles
the IRQ7 interrupt.

182 PCM C Function Library Reference Manual – August 1996 GFK-0772A

set_date

� Usage
#include <time.h>

REQSTAT set_date (session_id , plc_date);

BYTE session_id ;

DATE_LONG_STRUC far* plc_date ;

� Description
This function allows the user to set the internal date in the PLC CPU. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The plc_date pointer must contain the address
of a structure of type DATE_LONG_STRUC where the user has stored the new PLC
date.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One or more of the structure
members of plc_date is
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

183GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, set_date_nowait,
set_time, set_timedate, set_timedate_nowait, set_time_nowait

� Example

#include <time.h>

DATE_LONG_STRUC plc_date;
REQSTAT status;
status = set_date (sesn_id, &plc_date);

This example uses a WAIT mode request to set the PLC internal date.

184 PCM C Function Library Reference Manual – August 1996 GFK-0772A

set_date_nowait

� Usage
#include <timenw.h>

REQID set_date_nowait (session_id , plc_date);

BYTE session_id ;

DATE_LONG_STRUC far* plc_date ;

� Description
See set_date .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One or more of the structure
members of plc_date is
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

185GFK-0772A PCM C Functions

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_time, set_timedate, set_timedate_nowait, set_time_nowait

� Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
DATE_LONG_STRUC plc_date;

request_id = set_date_nowait (sesn_id, &plc_date);

if (request_id < REQUEST_OK) {
 status = request_id;
} else {

do {
status = reqstatus (request_id, TRUE);

/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC date was set */

}

This example uses a NOWAIT mode request to set the PLC internal date.

186 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Set_dbd_ctl

� Usage
#include <vtos.h>

void Set_dbd_ctl (control_reg_value);

word control_reg_value ;

� Description
This function is called to set the Series 90-70 PCM 711 daughter board control
register, at the PCM microprocessor I/O port address 01a0 hexadecimal. The least
significant eight bits of the control_reg_value are stored in the task control
block of the calling task. Whenever the VTOS scheduler switches between
application tasks, the newly executing task’s control_reg_value is written to
the daughter board control register. Set_dbd_ctl is provided for controlling
daughter boards other than memory expansion boards.

� Return Value
None.

� See Also
Set_vme_ctl

� Example

187GFK-0772A PCM C Functions

Set_ef

� Usage
#include <vtos.h>

void Set_ef (local_ef_mask , task_id);

word local_ef_mask ;

word task_id ;

� Description
This function sets one or more local event flags, specified by the bits in
local_ef_mask , for the task specified in task_id . If any of the specified event
flags have already been set, they remain set. Event flags which are not specified
remain unchanged. If the specified task was waiting for local event flags, it is made
ready.

Unlike Iset_ef , this function should not be called from an interrupt service
routine or communication timer routine. When Set_ef readies the specified task
as a result of setting event flags, it calls the VTOS scheduler. If the interrupt service
routine has lower priority, control is not returned to the interrupt service routine,
resulting in unexpected operation.

� Return Value
None.

� See Also
Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_gef, Wait_ef,
Wait_gef

� Example

#include <vtos.h>

Set_ef (EF_15 | EF_14);

This example sets two global event flags.

188 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Set_gef

� Usage
#include <vtos.h>

void Set_gef (global_ef_mask);

word global_ef_mask ;

� Description
This function sets one or more global event flags, specified by the bits in
global_ef_mask . If any of the specified event flags have already been set, they
remain set. Event flags which are not specified remain unchanged. If one or more
tasks are waiting for the specified global event flags, the highest priority waiting task
is made ready.

Unlike Iset_gef , this function should not be called from an interrupt service
routine. When Set_gef readies one or more tasks as a result of setting event flags,
it calls the VTOS scheduler. If the interrupt service routine has lower priority than
one of these tasks, control is not returned to the interrupt service routine, resulting
in unexpected operation.

� Return Value
None.

� See Also
Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Wait_ef,
Wait_gef

� Example

#include <vtos.h>

Set_gef (EF_03);

This example sets one global event flag.

189GFK-0772A PCM C Functions

Set_led

� Usage
#include <vtos.h>

word Set_led (led_number , led_mode);

word led_number ;

word led_mode ;

� Description
This function is called to set the state of one of two PCM light emitting diodes
(LEDs). The top LED reports the operational status of the PCM and is not
programmable. LED 1, the center LED, and LED 2, the bottom LED, may be
programmed by Set_led . The led_number must contain one (1) or two (2), to
specify LED 1 or LED 2, respectively. The led_mode must contain one of the
values from this table.

led_mode Description

LED_ON Turn the specified LED on.

LED_OFF Turn the specified LED off.

BLINK_LED Blink the specified LED once.

FLASH_LED Flash the specified LED continuously.

Before an LED state can be set by Set_led , the LED must be configured to permit
the calling task to program it. The application can call Define_led to configure
the LED; it can also be done in the PCMEXEC.BAT file which starts the application.

Only one PCM task at a time may control each LED.

� Return Value
The return and _VTOS_error values from Set_led are shown in this table.

Return Value Status Value Completion Status

SUCCESS Undefined The function completed successfully.

FAILURE BAD_ARG The specified led_number or led_mode is
 invalid.

NO_TASK The LED specified by led_number is not defined
for control by the calling task.

190 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Define_led

� Example

#include <vtos.h>

Set_led (1, LED_ON);
Set_led (2, FLASH_LED);

191GFK-0772A PCM C Functions

Set_local_date

� Usage
#include <vtos.h>

typedef struct {
 byte day_of_week;

byte day_of_month;
byte month;
byte year;

} ymd_date;

typedef struct {
word lo;
word hi;

} hilo_date;

typedef union {
ymd_date ymd;
hilo_date hilo;
unsigned long longdate;

} vtos_date;

int Set_local_date(hi_date, lo_date);
word hi_date ;
word lo_date ;

� Description
Set_local_date is used to initialize the date maintained by the Series 90–70
standalone PCM, IC697PCM712. In the standard Series 90–70 PCM, IC697PCM711,
and Series 90–30 PCMs, the date is automatically set to a value read from the PLC
CPU. However, the standalone PCM is unable to do so, and its date is undefined
until it is initialized by calling Set_local_date .

The new date is specified in the hi_date and lo_date parameters. Use the union
type vtos_date to assign values to them, as shown in the example, below. Valid
ranges of date values are:

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Range
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Day of month ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1 .. last day of specified month

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Month ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1 .. 12

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Year ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0 .. 99

Year values in the range 80 .. 99 are assumed to be 1980 through 1999, and year
values zero through 79 are assumed to be 2000 through 2079. February 29 is a valid
day of month for leap years, but is not valid otherwise.

Set_local_date calculates the correct day of week for the specified date. The
calculated values range from zero through six, corresponding to Sunday through
Saturday. If a day of week value is passed in hi_date and lo_date, it is ignored.

Calling Set_local_date has no effect in a standard Series 90–70 PCM or a Series
90–30 PCM with release 4.00 or later firmware.

192 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Caution

If Set_local_date is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Set_local_date is provided in PCM C toolkit versions 1.04 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

� Return Value
Set_local_date returns zero when the operation succeeds. If the specified date
is invalid, BAD_ARG is returned.

In a standard Series 90–70 PCM or Series 90–30 PCM with release 4.00 or later
firmware, Set_local_date returns the value in the lo_date parameter.

� See Also
Get_date, Set_local_time

� Example

#include <vtos.h>
#include <stdio.h>
#define STADNDALONE_PCM 0x0040

char* weekdays[] = {
”Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”,
”Thursday”, ”Friday”, ”Saturday”, ”BAD DAY” };

char* months[] = {
”BAD MONTH”, ”January”, ”February”, ”March”,
”April”, ”May”, ”June”, ”July”, ”August”, ”September”,
”October”, ”November”, ”December”, ”BAD MONTH” };

int result;

date.ymd.day_of_month = 29;
date.ymd.month = 2;
date.ymd.year = 92;

if (Get_board_id () & STANDALONE_PCM) {
result = Set_local_date(date.hilo.hi, date.hilo.lo);

if (!result) {
date.longdate = Get_date();
printf(”date = %s, %02d %s ’%02d\n”,

(char far*)weekdays[date.ymd.day_of_week],
 date.ymd.day_of_month,
(char far*)months[date.ymd.month],
 date.ymd.year);

}
}

This example verifies that it is running in a Series 90–70 standalone PCM. If so, the
local date is set to 29 February 1992, a leap year day. Then Get_date is called, and
the full date, including the day of week, is printed. The result should be:

date = Saturday, 29 February ’92

193GFK-0772A PCM C Functions

Set_local_time

� Usage

#include <vtos.h>

typedef struct {
 byte hundredths;
 byte secs;
 byte mins;
 byte hours;
} hmsh_time;

typedef struct {
 word lo;
 word hi;
} hilo_time;

typedef union {
 hmsh_time hmsh;
 hilo_time hilo;
 unsigned long longtime;
} vtos_time;

int Set_local_time(mode, hi_time, lo_time);
word mode;
word hi_time ;
word lo_time ;

� Description

Set_local_time is used to initialize the time maintained by the Series 90–70
standalone PCM, IC697PCM712. In a standard Series 90–70 PCM, IC697PCM711, or
a Series 90–30 PCM, the time is automatically synchronized with the PLC CPU time
of day clock. However, the standalone PCM is unable to do so, and its time is
undefined until it is initialized by calling Set_local_time.

The new time is specified in the hi_time and lo_time parameters, and mode
specifies whether hi_time and lo_time should be interpreted as hours, minutes,
seconds and hundredths of seconds or as a count of milliseconds since midnight.
Use the union type vtos_time to assign time values, as shown in the example,
below. Valid ranges of time values are:

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Range
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

mode ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MS_SINCE_MIDNIT, TIME_STRUCT
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Milliseconds
 since midnight

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 .. 86399999 (decimal)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁHours

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0 .. 23ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Minutes

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 .. 59
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Seconds ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 .. 59
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Hundredths ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 .. 99

Calling Set_local_time has no effect in a standard Series 90–70 PCM or a Series
90–30 PCM with release 4.00 or later firmware.

194 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Caution

If Set_local_time is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Set_local_time is provided in PCM C toolkit versions 1.04 and later. Attempting
to use it in earlier versions of the toolkit will cause a linkage error (unresolved
external reference).

� Return Value

Set_local_time returns zero when the operation succeeds. If the specified time
is invalid, BAD_ARG is returned.

In a standard Series 90–70 PCM or Series 90–30 PCM with release 4.00 or later
firmware, the return value of Set_local_time is undefined.

� See Also

Get_time, Set_local_date

� Example

#include <vtos.h>
#include <stdio.h>
#define STANDALONE_PCM 0x0040

vtos_time time;
int result;

time.hmsh.hundredths = 0;
time.hmsh.secs = 0;
time.hmsh.mins = 0;
time.hmsh.hours = 8;

if (Get_board_id () & STANDALONE_PCM) {
 result = Set_local_time(TIME_STRUCT,
 time.hilo.hi, time.hilo.lo
);

 if (!result) {
 time.longtime = Get_time(MS_SINCE_MIDNIT);
 printf(”time = %08lx\n”, time.longtime);

 time.longtime = Get_time(TIME_STRUCT);
 printf(”time = %02d:%02d:%02d.%02d\n”,
 time.hmsh.hours,
 time.hmsh.mins,
 time.hmsh.secs,
 time.hmsh.hundredths);
 }

195GFK-0772A PCM C Functions

 result = Set_local_time(MS_SINCE_MIDNIT, 0, 0);

 if (!result) {
 time.longtime = Get_time(MS_SINCE_MIDNIT);
 printf(”time = %08lx\n”, time.longtime);

 time.longtime = Get_time(TIME_STRUCT);
 printf(”time = %02d:%02d:%02d.%02d\n”,
 time.hmsh.hours,
 time.hmsh.mins,
 time.hmsh.secs,
 time.hmsh.hundredths);
 }
}

This example verifies that it is running in a Series 90–70 standalone PCM. If so, the
local time is set to exactly 8:00 a.m. using hours/minutes/seconds/hundredths format.
Then Get_time is called twice to return the time in both formats. Next, the time is
set to midnight using milliseconds format, and two more calls to Get_time return it
in both formats. The program should print this output:

time = 01b77400
time = 08:00:00.01
time = 00000000
time = 00:00:00.00

196 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Set_std_device

� Usage
#include <vtos.h>

word Set_std_device (task_id , stdio_number , device_handle);

word task_id

word stdio_number ;

word device_handle ;

� Description
This function is used to redirect one of the predefined standard I/O channels,
STDIN, STDOUT, or STDERR, specified by stdio_number , for the task specified
by task_id. The specified stream is redirected to the channel specified by
device_handle , which must contain a value returned by a successful call to
Open_dev . The caller may redirect standard I/O for itself or a different task.

Caution

Set_std_device does no error checking. Using a task_id value
greater than 15 can destroy VTOS data and cause mysterious errors or
PCM lockup.

� Return Value
Set_std_device always returns SUCCESS.

� See Also

� Example

#include <vtos.h>

word handle, task_id, status;

handle = Open_dev (”RAM:MYTASK.OUT”, WRITE_MODE, WAIT, task_id);
status = Set_std_device (task_id, STDOUT, handle);

This example redirects standard output from the calling task to the PCM RAM disk
file ”MYTASK.OUT”.

197GFK-0772A PCM C Functions

set_time

� Usage
#include <time.h>

REQSTAT set_time (session_id , plc_time_date);

BYTE session_id ;

TIME_STRUC far* plc_time ;

� Description
This function allows the user to set the internal time in the PLC CPU. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The plc_time pointer must contain the address
of a structure of type TIME_STRUC where the user has stored the new PLC time.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One of more of the structure
members of plc_time is
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

198 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, set_date,
set_date_nowait, set_timedate, set_timedate_nowait,
set_time_nowait

� Example

#include <time.h>

TIME_STRUC plc_time
/*
 * Assign the desired time values to
 * the members of plc_time.
 */

REQSTAT status;
status = set_time (sesn_id, &plc_time);

This example uses a WAIT mode request to set the PLC internal time.

199GFK-0772A PCM C Functions

set_time_nowait

� Usage
#include <timenw.h>

REQID set_time_nowait (session_id , plc_time);

BYTE session_id ;

TIME_STRUC far* plc_time ;

� Description
See set_time .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus. When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One of more of the structure
members of plc_time is
out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

200 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_date_nowait, set_time, set_timedate, set_timedate_nowait

� Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIME_STRUC plc_time

request_id = set_time_nowait (sesn_id, &plc_time);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC time has been set */

}

This example uses a NOWAIT mode request to set the PLC internal time.

201GFK-0772A PCM C Functions

set_timedate

� Usage
#include <time.h>

REQSTAT set_timedate (session_id , plc_time_date);

BYTE session_id ;

TIMESTAMP_LONG_STRUC far* plc_time_date ;

� Description
This function allows the user to set the internal time and date in the PLC CPU. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The plc_time_date pointer must contain the
address of a structure of type TIMESTAMP_LONG_STRUC where the user has
stored the new PLC time and date.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One of more of the structure
members of plc_time_date
is out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

202 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, set_date,
set_date_nowait, set_time, set_timedate_nowait,
set_time_nowait

� Example

#include <time.h>

TIMESTAMP_LONG_STRUC plc_time_date;
/*
 * Assign the desired time and date
 * values to the members of plc_time_date.
 */

REQSTAT status;
status = set_timedate (sesn_id, &plc_time_date);

This example uses a WAIT mode request to set the PLC internal time and date.

203GFK-0772A PCM C Functions

set_timedate_nowait

� Usage
#include <timenw.h>

REQID set_timedate_nowait (session_id, plc_time_date);

BYTE session_id ;

TIMESTAMP_LONG_STRUC far* plc_time_date ;

� Description
See set_timedate .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR One of more of the structure
members of plc_time_date
is out of range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

204 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_date_nowait, set_time, set_timedate, set_time_nowait

� Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIMESTAMP_LONG_STRUC plc_time_date;

request_id = set_timedate_nowait (sesn_id, &plc_time_date);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
 /* the PLC time and date have been set */
}

This example uses a NOWAIT mode request to set the PLC internal time and date.

205GFK-0772A PCM C Functions

Set_vme_ctl

� Usage
#include <vtos.h>

void Set_vme_ctl (vme_block_num, address_modifier_code);

word vme_block_num ;

word address_modifier_code ;

� Description
This function is used to set the target address range for direct VMEbus access from
the Series 90-70 PCM. The Series 90-70 PCM is capable of operating as a bus master
on the Series 90-70 VMEbus, and can read or write VME memory on any Series
90-70 smart module (but not the PLC CPU) or third party VME module. Three
independent VME address spaces are accessible from the PCM: standard
non-privileged, short non-privileged, and short supervisory.

The VME standard non-privileged address space covers 16 Megabytes. It is mapped
into a 64 Kbyte sliding window in the PCM. This window appears at segment 0B000
hexadecimal in the PCM, and spans the address range from 0B000:0000 through
0B000:0FFFF. The entire VME address space, as seen by the PCM, comprises 256
non-overlapping 64 Kbyte segments. Set_vme_ctl sets the PCM window to
make any one of these segments visible. The vme_block_num parameter specifies
the VME segment to be placed in the PCM window, and
address_modifier_code contains STD_NON_PRIV.

The 16 Megabytes of VME standard non-privileged memory are assigned to Series
90-70 rack and slot addresses as shown in the following table.

206 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Table 1. GE Fanuc Series 90-70 Module Address Allocation
 for Standard Access AM Code – 39H

Rack
Slot Number/Address Allocation

Rack
Number 2 3 4 5 6 7 8 9

0 000000
to

01FFFF

020000
to

03FFFF

040000
to

05FFFF

060000
to

07FFFF

080000
to

09FFFF

0A0000
to

0BFFFF

0C0000
to

0DFFFF

0E0000
to

0FFFFF

0
100000 through 7FFFFF user-defined for rack 0 only.

1 E00000
to

E1FFFF

E20000
to

E3FFFF

E40000
to

E5FFFF

E60000
to

E7FFFF

E80000
to

E9FFFF

EA0000
to

EBFFFF

EC0000
to

EDFFFF

EE0000
to

EFFFFF

2 D00000
to

D1FFFF

D20000
to

D3FFFF

D40000
to

D5FFFF

D60000
to

D7FFFF

D80000
to

D9FFFF

DA0000
to

DBFFFF

DC0000
to

DDFFFF

DE0000
to

DFFFFF

3 C00000
to

C1FFFF

C20000
to

C3FFFF

C40000
to

C5FFFF

C60000
to

C7FFFF

C80000
to

C9FFFF

CA0000
to

CBFFFF

CC0000
to

CDFFFF

CE0000
to

CFFFFF

4 B00000
to

B1FFFF

B20000
to

B3FFFF

B40000
to

B5FFFF

B60000
to

B7FFFF

B80000
to

B9FFFF

BA0000
to

BBFFFF

BC0000
to

BDFFFF

BE0000
to

BFFFFF

5 A00000
to

A1FFFF

A20000
to

A3FFFF

A40000
to

A5FFFF

A60000
to

A7FFFF

A80000
to

A9FFFF

AA0000
to

ABFFFF

AC0000
to

ADFFFF

AE0000
to

AFFFFF

6 900000
to

91FFFF

920000
to

93FFFF

940000
to

95FFFF

960000
to

97FFFF

980000
to

99FFFF

9A0000
to

9BFFFF

9C0000
to

9DFFFF

9E0000
to

9FFFFF

7 800000
to

81FFFF

820000
to

83FFFF

840000
to

85FFFF

860000
to

87FFFF

880000
to

89FFFF

8A0000
to

8BFFFF

8C0000
to

8DFFFF

8E0000
to

8FFFFF

The VME short access address spaces (short non-privileged and short supervisory)
are just 64 Kbytes wide. The entire short non-privileged or short supervisory space
for each Series 90-70 rack fits the PCM window, and is mapped to PCM addresses
0B000:0000 through 0B000:0FFFF. To access either of these address spaces in any
Series 90-70 rack, the vme_block_num value must be zero and the
address_modifier_code contains a value from this table.

207GFK-0772A PCM C Functions

address_modifier_code

Rack Short Non-Privileged Short Supervisory

0 SHORT_NP_RACK0 SHORT_SUP_RACK0

1 SHORT_NP_RACK1 SHORT_SUP_RACK1

2 SHORT_NP_RACK2 SHORT_SUP_RACK2

3 SHORT_NP_RACK3 SHORT_SUP_RACK3

4 SHORT_NP_RACK4 SHORT_SUP_RACK4

5 SHORT_NP_RACK5 SHORT_SUP_RACK5

6 SHORT_NP_RACK6 SHORT_SUP_RACK6

7 SHORT_NP_RACK7 SHORT_SUP_RACK7

The assignments of address ranges within the short access address spaces are shown
in this table. Each slot within a rack is assigned its own 2 Kbyte range.

Table 2. GE Fanuc Series 90-70 Module Address Allocation
 for Short Access AM Codes

Slot Address Range
(Hexadecimal)

Power Supply
1
2
3
4
5
6
7
8
9

User-defined

None
None

1000H – 17FFH
1800H – 1FFFH
2000H – 27FFH
2800H – 2FFFH
3000H – 37FFH
3800H – 3FFFH
4000H – 47FFH
4800H – 4FFFH
5000H – FFFFH

208 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
None.

� See Also

� Example

#include <vtos.h>
#include <dos.h>

word vme_data, far* p;
long vme_addr;

FP_SEG(p) = VME_WIN_SEG;
FP_OFF(p) = 0x0100;
vme_addr = 0x820000;
Set_vme_ctl (vme_addr/0x10000L, STD_NON_PRIV);
vme_data = *p;

This example sets the PCM VME window to start at VMEbus Standard
Non-Privileged address 820000 hexadecimal, which is assigned to Series 90-70 rack 7,
slot 3. One word of data is read from offset 100 hexadecimal in the target VME
memory.

209GFK-0772A PCM C Functions

Special_dev

� Usage
#include <vtos.h>

word Special_dev (device_handle , special_code , data_addr ,

 count , notify_code , task_id

 [, < nowait options >]);

word device_handle ;

word special_code ;

void far* data_addr ;

word count ;

word notify_code ;

word task_id ;

where <nowait options > depend on the value of notify_code :

word Special_dev (device_handle , special_code , data_addr ,

 count , WAIT, task_id);

word Special_dev (device_handle , special_code , data_addr ,

 count , EVENT_NOTIFY, task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Special_dev (device_handle , special_code , data_addr ,

 count , AST_NOTIFY, task_id ,

 ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
Special_dev performs several device-specific functions, as described in this table.

special_
code

Supported
Devices

Operation Result

1 RAM:
ROM:
PC:
NULL:

Get file size. Return the size of the file or other data object spe-
cified by device_handle . The size is
returned as a long unsigned integer at the
address specified in data_addr ; count is
ignored, and any value may be passed.

2 PC:
NULL:

Set file size. Set the size of the data object specified by
device_handle . The size is specified as a long
unsigned integer at the address in data_addr ;
count is ignored, and any
value may be passed.

210 PCM C Function Library Reference Manual – August 1996 GFK-0772A

special_
code

Supported
Devices

Operation Result

5 CPU: Set password. Specify a password to establish a new PLC access
privilege level, or disable synchronization of the
PCM time of day clock with the PLC CPU. The
channel specified by device_handle must be
on the CPU: device. The count value is ignored.
The format of the parameter string specified
by data_addr is described in CPU Setup Strings
(special_code = 5).

COM1:
COM2:

Set serial
communication
parameters.

Set the serial port communication parameters for
the PCM serial port channel specified by de-
vice_handle . The address of a string
containing the new parameters must be in
data_addr , and count is ignored. The
parameter string is described on the next page.

6 CPU: Set destination
address.

Set the Series 90 rack/slot destination address for
generic messages sent from the CPU: device
channel specified by device_handle . The
data_addr parameter should contain the
address of a msg_addr structure, as defined in
CPU_DATA.H, and count is ignored.

7 RAM:
ROM:

Set access mode. Set the access mode of PCM files. The access mode
values are one (1), indicating read only access, and
zero (0), indicating read/write
access. Mode values are specified in count;
data_addr is ignored, and any address may be
passed.

8 CPU: Set
segment/offset.

Set the PLC CPU reference memory type and off-
set for reads and writes on the CPU: device chan-
nel specified by device_handle . The
data_addr parameter should contain the
address of a spec_8_struct structure, as de-
fined in VTOS.H, and count is ignored.

9 CPU: Set high priority. Send the generic messages written to the CPU:
device channel specified by device_handle as
high priority messages. The data_addr and
count are ignored.

10 CPU: Set timeout. Set a timeout for Read_dev and Write_dev
transfers which occur on the channel specified by
device_handle that was opened on the CPU:
device. When a transfer times out before it com-
pletes, control returns to the task which initiated
the transfer, and the return status for the opera-
tion will indicate that a timeout error occurred.

11 CPU: Get element size. Return the element size of the data object speci-
fied by device_handle . The element size is
the number of bits in the unit element. Size
parameters for Read_dev, Write_dev , and
Seek_dev are always expressed as a number of
unit elements, which are usually eight-bit bytes.
Other elements sizes are often used for the CPU:
device, which accesses discrete
(single bit) and word (16-bit) data. The
element size is returned as an unsigned integer at
the address specified in data_addr ;
count is ignored, and any value may be passed.

211GFK-0772A PCM C Functions

Serial Port Setup Strings (special_code = 5)

Serial port (COM1:, COM2:) setup strings for special_code = 5 have this format:

<baud_rate>,<parity>,<data_bits>,<stop_bits>,<flow_control>,
<physical_interface>,<duplex_mode>,<delay_value>,<typeahead_size>

where:

<baud_rate> = 300, 600, 1200, 2400, 4800, 9600, 19200*, or 38400 – the number
of bits per second. Note that 38,400 baud is supported only by the Series 90–70
PCM, and only for RS–422 or RS–485 port configurations.

<parity> = O, E, N* – the type of parity checking: Odd, Even, or None.

<data_bits> = 7 or 8* – the number of data bits per character. Use 8 unless text
with 7 bit characters will be the only data transferred.

<stop_bits> = 1* or 2 – the number of stop bits per character. The normal
selection for 300 baud and higher is 1.

<flow_contr ol> = H*, S, or N – the flow control method: Hardware (CTS/RTS),
Software (X–ON, X–OFF) or None.

<physical_inter face> = 232*, 422, or 485 – the physical connection protocol
for the port: RS–323, RS–422, or RS–485. RS–422 is equivalent to RS–485. All
Series 90–30 PCMs support RS–232 only on COM1. IC693PCM300 supports
RS–422/485 only on COM2.

With hardware flow control, RTS is turned on when the port is ready to transmit.
Then, transmission begins when CTS becomes active. RTS remains on until
<delay value> expires after the last character is sent.

With software or no flow control, RTS is not turned on, and transmission begins
immediately.

<duple x_mode> = 2, 4*, or p – the type of physical connection: 2 = half duplex
(2 wire for RS–422/485), 4 = full duplex (4 wire for RS–422/485), p =
point–to–point. Available in PCM firmware version 3.00 or later.

In point–to–point mode:

� The receiver for the specified port is always enabled.

� When <physical_interface > = 422 or 485, all RS–485 line drivers for the
specified port are enabled when the command is executed and remain on
continuously.

In full duplex mode:

� The receiver for the specified port is always enabled.

� When <physical_interface> = 422 or 485, the RS–485 line drivers for RTS
and transmitted data outputs on the specified port are turned on immediately
before transmitting and remain on until <delay_value> expires after the last
character is sent. At all other times, these drivers are in their high–impedance
state (tri–stated).

212 PCM C Function Library Reference Manual – August 1996 GFK-0772A

In half duplex mode:

� The receiver for the specified port is disabled immediately before transmitting
and remains off until <delay_value> expires after the last character is sent.

� When <physical_interface> = 422 or 485, the RS–485 line drivers for RTS
and transmitted data outputs on the specified port are turned on immediately
before transmitting and remain on until <delay_value> expires after the last
character is sent. At all other times, these drivers are in their high–impedance
state (tri–stated).

<delay_value> = the time in milliseconds between the end of the last outgoing
character and the time RTS is turned off (if applicable), RS–485 line drivers are
tri–stated (if applicable), the receiver is enabled in half duplex mode (if applicable),
and WAIT mode output statements complete execution. Default = 0.
Available in PCM firmware version 3.00 or later.

<typeahead_size> = the typeahead buffer size in characters for the port. The
port can accept up to one less than this number of characters without overflow
before an application reads the port. When overflow occurs, any additional
characters will be lost. Any size in the range 64 – 32750 bytes may be specified, but
the maximum may be limited by available system memory. Default = 320.
Available in PCM firmware version 3.00 or later.

* Default selection.

CPU Setup Strings (special_code = 5)

PLC CPU (CPU:) setup strings for special_code = 5 have this format:

<PLC_access_password>,<disable_clock_sync>

where:

<PLC_access_password> = the PLC access password for privilege level 2 or
higher. If passwords are enabled in the PLC CPU and the PLC has passwords at
level 2 and higher, the PCM will be unable to read or write PLC memory until the
PCM sends a valid password. Passwords are case sensitive, and valid passwords
may have upper case letters, numbers, and underbar (‘_’) characters only. If an
empty string is specified for <PLC_access_password> , a password consisting of
eight NUL characters will be sent to the PLC CPU. There is no default.

<disable_clock_sync> = N – disables backplane messages the PCM normally
sends once per second to synchronize its internal time of day with the PLC CPU.
Any character other than ‘N’ or ‘n’ enables clock synchronization. Available in PCM
firmware version 4.03 or later.

Some applications may be sensitive to the impact that clock synchronization
messages have on PLC sweep time or backplane message rates. If these issues are
more important than time of day accuracy, use this option. Default =
synchronization enabled.

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Special_dev is delayed until the operation completes. The other notify_code

213GFK-0772A PCM C Functions

values cause the function to return immediately, allowing the calling task to
continue execution.

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Special_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast
as a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined; when
a failure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous I/O using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine, it passes the address of an ast_blk
structure. The ast_handle value is in the handle member of the ast_blk . If
the call succeeds, the arg2 member of the ast_blk contains SUCCESS and the
arg1 member is undefined; when a failure occurs, arg2 contains IO_FAILED, and
arg1 contains an error status code. For a discussion of asynchronous I/O using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

� Return Value
In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, IO_FAILED is returned; a status code value is available in the global variable
_VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

� See Also
Ioctl_dev

Abort_dev

214 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>
#include <cpu_data.h>
#include <memtypes.h>

msg_addr other_pcm_addr;
special_dev_8_type new_plc_ref;

word hndl1, hndl2, spec_value;
word task = Get_task_id();

hndl1 = Open_dev(”COM1:”, WRITE_MODE, WAIT, task);
hndl2 = Open_dev(”CPU:%R1”, READ_MODE | WRITE_MODE, WAIT, task);

spec_value = Special_dev(hndl1, 5, ”1200,E,7,1,S,485,2,,512”, 0,
 WAIT, task);
if (spec_value == SUCCESS) {

/* The serial parameters were changed successfully. */
}

other_pcm_addr.rack = 0;
other_pcm_addr.slot = 5;
other_pcm_addr.svc_point = 8;

spec_value = Special_dev(hndl2, 6, &other_pcm_addr, 0, WAIT, task);

if (spec_value == SUCCESS) {
/* The channel will send messages to the PCM in rack 0, slot 5. */
/* The receiving PCM needs to call Open_dev, specifying device */
/* ”CPU:#8” to receive the messages. Messages must be 32 bytes */
/* long and use structure type msg_hdr, defined in CPU_DATA.H, */
/* as the low order 16 bytes. */

}

new_plc_ref.type = AI_DATA;
new_plc_ref.offset = 0;

spec_value = Special_dev(hndl2, 8, &new_plc_ref, 0, WAIT, task);
if (spec_value == SUCCESS) {

/* The channel will now access %AI001 */
}

This example opens three I/O channels: one on serial port 1, one to access the PLC
register table at %R1, and one to send generic messages to the PLC CPU.
Special_dev is called three times to modify these channels.

The first call resets the serial communication settings for port 1 to 1200 baud, even
parity, seven data bits, one stop bit, software flow control, RS-485 interface, 2-wire
half duplex operation, and a 512-character type ahead buffer. The turnaround delay
is left at the default setting.

The second call changes the rack/slot/service point address for a CPU channel to
specify another PCM, rather than the PLC CPU.

The third Special_dev call sets the channel to access the PLC analog input table
at %AI001. Note that the offset member of special_dev_8_type is zero based.

215GFK-0772A PCM C Functions

Start_com_timer

� Usage
#include <vtos.h>

void Start_com_timer (timer_handle , count , timeout_routine);

word timer_handle ;

word count ;

void (far* timeout_routine)(void);

� Description
This function starts a communication timer, specified by timer_handle , which
was previously allocated by a successful call to Alloc_com_timer . The count
parameter specifies the number of milliseconds which the timer will count before it
expires and timeout_routine is called. The maximum count value corresponds
to 65.535 seconds. A zero (0) count causes timeout_routine to execute
immediately.

The timeout_routines may not call most VTOS services, but Post_ast ,
Iset_ef , and Iset_gef may be called.

� Return Value
None.

� See Also
Alloc_com_timer, Cancel_com_timer, Dealloc_com_timer

216 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>
#include <stdio.h>

word task;

word far timeout_routine(void)
{

 return(Iset_ef(EF_01, task));
}

void main ()
{

 device_result result;
 word com_tmr, local_flags, serial_hndl;
 char buf[265];

 task = Get_task_id();
 Reset_ef(0xffff);

 com_tmr = Alloc_com_timer();
 serial_hndl = Open_dev(”com1:13”, READ_MODE | WRITE_MODE, WAIT, task);

 if (com_tmr != 0) {
 Start_com_timer(com_tmr, 10000, timeout_routine);

 Read_dev(serial_hndl, buf, sizeof(buf), EVENT_NOTIFY, task, EF_00,
 (device_result far*)&result);

 Wait_ef(EF_00 | EF_01);

 local_flags = Test_ef();
 Reset_ef(local_flags);

 if (local_flags & EF_01) {
 /* The timeout occurred. */
 printf(”timeout occurred\n”);

 Abort_dev(serial_hndl, ABORT_ALL, WAIT);
 } else {

 /* Process the received data. */
 Cancel_timer(com_tmr);
 buf[result.ioreturn] = 0;

 printf(”data received: %s\n”, (char far*)buf);
 }
 Dealloc_com_timer(com_tmr);

 }
}

This example uses a communication timer to limit the wait time for serial input. Serial
port 1 is opened with an option that terminates Read_dev when a carriage return
(ASCII code 13 decimal) character is encountered.

The timer is started before calling Read_dev in EVENT_NOTIFY mode. If a carriage
return character is read before the timer expires, local event flag EF_00 is set by the
Read_dev call. If the timer expires first, event flag EF_01 is set by timeout_routine .
In either case, the Wait_ef call in main returns.

The main program tests its local event flags to determine which event occurred. If a
timeout occurred, the Read_dev operation is aborted; otherwise the timer is cancelled.
Finally, the communication timer is deallocated.

217GFK-0772A PCM C Functions

start_plc

� Usage
#include <cntrl.h>

REQSTAT start_plc (session_id);

BYTE session_id ;

� Description
This function sets the PLC state to run mode. In Series 90-30 PLCs the output scan is
always enabled. For Series 90-70 PLCs, however, the output scan mode is dependent
on the CPU hardware switch setting. The session_id must be a value returned
by a previous, successful call to establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
start_plc_noio, start_plc_noio_nowait, start_plc_nowait,
stop_plc, stop_plc_nowait

� Example

#include <cntrl.h>

REQSTAT status;
status = start_plc (sesn_id);

This example uses a WAIT mode request to put the PLC in RUN mode with outputs
enabled.

218 PCM C Function Library Reference Manual – August 1996 GFK-0772A

start_plc_noio

� Usage
#include <cntrl.h>

REQSTAT start_plc_noio (session_id);

BYTE session_id ;

� Description
This function sets the state of a Series 90-70 PLC to run mode with I/O disabled,
even if the hardware switch on the CPU module is in the I/O ENABLE position. This
request is valid only for Series 90-70 PLCs. The session_id must be a value
returned by a previous, successful call to establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
start_plc, start_plc_noio_nowait, start_plc_nowait, stop_plc,
stop_plc_nowait

� Example

#include <cntrl.h>

REQSTAT status;
status = start_plc_noio (sesn_id);

This example uses a WAIT mode request to put the PLC in RUN mode with outputs
disabled.

219GFK-0772A PCM C Functions

start_plc_noio_nowait

� Usage
#include <cntrlnw.h>

REQID start_plc_noio_nowait (session_id);

BYTE session_id ;

� Description
See start_plc_noio .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

220 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
reqstatus, start_plc, start_plc_noio, start_plc_nowait,
stop_plc, stop_plc_nowait

� Example

#include <cntrlnw.h>

REQID request_id;
REQSTAT status;

request_id = start_plc_noio_nowait (sesn_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

 status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC is running with outputs disabled */

}

This example uses a NOWAIT mode request to put the PLC in RUN mode with
outputs disabled.

221GFK-0772A PCM C Functions

start_plc_nowait

� Usage
#include <cntrlnw.h>

REQID start_plc_nowait (session_id);

BYTE session_id ;

� Description
This function sets the PLC state to run mode. For Series 90-30 PLCs, the output scan
is always enabled. For Series 90-70 PLCs, however, the output scan mode is
dependent on the CPU hardware switch setting. The session_id must be a value
returned by a previous, successful call to establish_comm_session .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

222 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
reqstatus, start_plc, start_plc_noio, start_plc,
start_plc_noio_nowait, stop_plc, stop_plc_nowait

� Example

#include <cntrlnw.h>

REQID request_id;
REQSTAT status;

request_id = start_plc_nowait (sesn_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC is running with outputs enabled */

}

This example uses a NOWAIT mode request to put the PLC in RUN mode with
outputs enabled.

223GFK-0772A PCM C Functions

Start_timer

� Usage

#include <vtos.h>

word Start_timer (timer_code , hi_cnt , mid_cnt ,

 low_cnt , < notify option >);

word timer_code ;

word hi_cnt ;

word mid_cnt ;

word low_cnt ;

where < notify option > depends on the value of timer_code :

word Start_timer (AST_NOTIFY_MODE | < other codes >, hi_cnt ,

 mid_cnt , low_cnt , ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

word Start_timer (< other codes >, hi_cnt , mid_cnt ,

 low_cnt , event_flag_mask);

word event_flag_mask ;

� Description

This function starts a general purpose timer. The timer_code consists of one or
more timer control codes OR-ed together, as shown in this table.

Control Code Description

RELATIVE_TIMEOUT The timer will expire at a future time calculated by adding the
current time of day to the time interval specified by hi_cnt,
mid_cnt , and low_cnt . This is the only timeout mode
supported by the current implementation; it must be specified.

REPEAT_MODE The timer will restart when it expires. If REPEAT_MODE is not spe-
cified, one-shot operation will occur.

TASK_SPECIFIED This code specifies that VTOS should notify a task specified by the
task value bits. If this bit is not set, the calling task will be notified.

AST_NOTIFY_MODE This code specifies that VTOS should notify the calling task when
the timer expires by posting an asynchronous trap (AST).

Task value When TASK_SPECIFIED is used in timer_code, the task number val-
ue for the target task must be OR-ed into timer_code . The speci-
fied task will be notified using one or more of its local
event flags, as specified in event_flag_mask , or by the
specified ast_routine .

When the special task value 0xFF (-1 expressed as a byte)
is specified, the global event flags specified in event_flag_mask
will be set when the timer expires. Any tasks waiting for these flags
will be notified.

224 PCM C Function Library Reference Manual – August 1996 GFK-0772A

The timeout value for Start_timer may contain any time duration in the range
from zero time to the largest number of milliseconds which can be expressed as a
long unsigned integer: 49 days, 17 hours, 2 minutes, 47 seconds, 295 milliseconds. It
may be specified either as milliseconds or clock time (days, hours, minutes, seconds,
milliseconds) format. This table shows the content of the three count parameters for
both formats.

Count Parameter Format Content

hi_cnt Milliseconds. MS_COUNT_MODE.

Clock time. A word value which contains the number of days in
the most significant byte and hours in the least
significant byte.

mid_cnt Milliseconds. A word value which contains the most significant
word of the long unsigned integer millisecond count.

Clock time. A word value which contains the number of minutes
in the most significant byte and seconds iu the least
significant byte.

low_cnt Milliseconds. A word value which contains the leas t significant
word of the long unsigned integer millisecond count.

Clock time. A word value which contains the number of
milliseconds.

When timer_code includes AST_NOTIFY_MODE, the ast_routine
parameter must contain the address of an asynchronous trap (AST) handler function
defined in the code for the task to be notified. The optional ast_handle contains
a user-selected tag value to identify the timeout event, if necessary, for the AST
function.

When timer_code does not include AST_NOTIFY_MODE, the
event_flag_mask parameter contains bits which specify one or more event flags.
The least significant byte of timer_code must specify a task to be notified. If the
task value corresponds to an actual application task, one or more of its local event
flags will be set when the timer expires, as specified in event_flag_mask . If the
task value contains 0xFF , the global event flags specified by event_flag_mask
are set when the timer expires.

� Return Value
A timer handle value or zero (0) is returned. Valid timer handles are non-zero
unsigned integers. The handle may be used to identify the timer in calls to
Cancel_timer . When an error occurs, Start_timer returns zero (0), and an
error code from this table is in _VTOS_error .

Error Code Description

BAD_OPCODE The timer_code is invalid.

NO_TIMERS All the general purpose timers are being used.

225GFK-0772A PCM C Functions

� See Also
Cancel_timer, Wait_time

� Example

#include <vtos.h>

void far timer_ast_func (ast_blk far* p)
{
/*
 * Process the timeout event identified by p–>handle. The arg1 .. arg4
 * members are undefined.
 */
}

void main ()
{

word h1, h2, h3, h4, h5;

h1 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | 7,
 MS_COUNT_MODE, 0, 500, EF_02);

if (!h1) {
/* _VTOS_error contains the error code */

}
h2 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | 0xFF,

 MS_COUNT_MODE, 0, 500, EF_01 | EF_15);

h3 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | 14,
 (6 << 8) | 23, (59 << 8) | 59, 999, EF_00);

 h4 = Start_timer (RELATIVE_TIMEOUT | AST_NOTIFY_MODE,
 MS_COUNT_MODE, 0, 500, timer_ast_func, 1);

 h5 = Start_timer (RELATIVE_TIMEOUT | AST_NOTIFY_MODE,
 0, (2 << 8), 0, 1, timer_ast_func, 2);

Cancel_timer (h3);
}

This example starts five timers, identified by the handles h1 , h2 , h3, h4 , and
h5, respectively. The first timer runs for 500 milliseconds. When it expires, local
event flag EF_02 is set for task 7, which then becomes ready to run. Handle h1 is
checked to ensure that the timer was actually started. The second call also starts a
500 millisecond timer, and global event flags EF_01 and EF_15 are set when it
expires. The third call notifies task 14 via local event flag EF_00 when the timer
expires. The timer is set for six days, 23 hours, 59 minutes, 59 seconds and 999
milliseconds. The fourth call notifies the calling task with an AST when the 500
millisecond timer expires. The AST function, timer_ast_func , is also defined in
the example. An AST handle value of one (1) identifies the timeout event to
timer_ast_func. The last call also notifies the calling task through
timer_ast_func when the two minute timeout expires. A different AST handle
value is used so that timer_ast_func can distinguish the two events. Finally,
timer handle h3 is cancelled.

226 PCM C Function Library Reference Manual – August 1996 GFK-0772A

stop_plc

� Usage
#include <cntrl.h>

REQSTAT stop_plc (session_id);

BYTE session_id ;

� Description
This function sets the PLC state to stop mode. When the execution sweep stops, the
I/O scan may or may not continue, depending on the IOScan-Stop software
configuration item for the PLC CPU in the Logicmaster 90 I/O configuration. The
session_id must be a value returned by a previous, successful call to
establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
start_plc, start_plc_noio, start_plc_noio_nowait,
start_plc_nowait, stop_plc_nowait

� Example

#include <cntrl.h>

REQSTAT status;
status = stop_plc (sesn_id);

This example uses a WAIT mode request to stop the PLC.

227GFK-0772A PCM C Functions

stop_plc_nowait

� Usage
#include <cntrlnw.h>

REQID stop_plc_nowait (session_id);

BYTE session_id ;

� Description
See stop_plc .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

228 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
reqstatus, start_plc, start_plc_noio, start_plc_noio_nowait,
start_plc_nowait, stop_plc

� Example

#include <cntrlnw.h>

REQID request_id;
REQSTAT status;request_id = stop_plc_nowait (sesn_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the PLC was stopped */

}

This example uses a NOWAIT mode request to stop the PLC.

229GFK-0772A PCM C Functions

Suspend_task

� Usage
#include <vtos.h>

void Suspend_task (task_id);

word task_id ;

� Description
Suspend_task prevents a task from executing until it is resumed by calling
Resume_task . When a task is suspended, all VTOS activity which it previously
initiated, such as serial I/O, will continue, but the task itself will no longer run. A
task may suspend itself; if so, it must be resumed by another task.

A task may be suspended more than once: for example, by several different tasks.
VTOS maintains a count of the number of times each task has been suspended. The
count is incremented on each Suspend_task call for a given task_id and
decremented on each Resume_task call for the same task_id . The suspended
task does not become active until the count reaches zero.

If a task is suspended while it is waiting for I/O, asynchronous traps (ASTs), event
flags, or a timer, it will execute only after the event it is waiting for has occurred and
it has been resumed.

Caution

When a task which receives asynchronous traps (ASTs) regularly is
suspended, ast_blk structures for the task will accumulate until the
task is resumed. These structures can exhaust free memory if the task
remains suspended indefinitely, causing the PCM to lock up.

� Return Value
None.

� See Also
Resume_task

� Example

#include <vtos.h>

Suspend_task (15);

This example suspends task 15, which will not execute until it is resumed by calling
Resume_task .

230 PCM C Function Library Reference Manual – August 1996 GFK-0772A

terminate_comm_session

� Usage
#include <session.h>

REQSTAT terminate_comm_session (session_id);

BYTE session_id ;

� Description
This function terminates a communication session which was previously opened by
calling api_initialize and establish_comm_session . The session_id must
be a value returned by a previous, successful call to establish_comm_session .

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
api_initialize, establish_comm_session

� Example
See api_initialize .

231GFK-0772A PCM C Functions

Terminate_task

� Usage
#include <vtos.h>

void Terminate_task (task_id);

word task_id ;

� Description
Terminate_task causes the task specified by task_id to be permanently de-activated.
The effect of Terminate_task is irreversible. The specified task’s resources (memory, open
communication channels, timers and pending ASTs) are returned to VTOS. However, code space in
RAM for the task is not de-allocated. A task can terminate itself or any other task. When a task
terminates itself, there is no return from the call. VTOS itself calls Terminate_task when a
task exits its main function.

Caution

DO NOT terminate any of the PCM system tasks, with Task ID values
zero through three. PCM lockup or unexpected operation will result.

� Return Value
None.

� See Also
Init_task, Process_env

� Example

#include <vtos.h>

Terminate_task (Get_task_id ());

In this example, the calling task terminates itself.

232 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Test_ef

� Usage
#include <vtos.h>

word Test_ef (void);

� Description
This function is used by the calling task to determine which, if any, of its local event
flags are set. There are no parameters. There is no mechanism for a task to test the
local event flags of a different task.

Note

The result returned by Test_ef may not be valid by the time the
calling task decides what action to take following the call. Higher
priority tasks or interrupts can set additional event flags.

� Return Value
A word is returned which contains the status of all the calling task’s local event flags.

� See Also
Iset_ef, Reset_ef, Set_ef, Wait_ef

� Example

#include <vtos.h>

word ef;

ef = Test_ef ();
Reset_ef (ef);
/* Check the individual flags in ef. */

}

In this example, the calling task calls Test_ef to look at its local event flags. The
flags which were set are reset. The task can now check the flags which were set.

233GFK-0772A PCM C Functions

Test_gef

� Usage
#include <vtos.h>

word Test_gef (void);

� Description
This function is used to determine which, if any, global event flags are set. There are
no parameters. Any task may reset, set, and test global event flags.

Note

The result returned by Test_gef may not be valid by the time the
calling task decides what action to take following the call. Higher
priority tasks or interrupts can set additional event flags or reset the
event flag of interest.

� Return Value
A word is returned which contains the status of all global event flags.

� See Also
Iset_gef, Reset_gef, Set_gef, Wait_gef

� Example

#include <vtos.h>

Reset_gef (EF_12);

while (!(Test_gef () & EF_12)) {
/* repeat some action until stopped by another task */

}

The calling task of this example resets a global event flag and then performs some
repetitive processing until a different task stops it by setting the event flag. Note
that the operation might never occur; a higher priority task could pre-empt this one
and set the flag between the Reset_gef and Test_gef calls.

234 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Test_task

� Usage
#include <vtos.h>

word Test_task (void);

� Description
This function is used to determine which VTOS tasks have been started but not
terminated. It can be used to determine available task numbers, for the purposes of
installing new tasks.

� Return Value
A word value is returned in which each bit which is set indicates a task number in
use.

� See Also

� Example

#include <vtos.h>
#include <stdio.h>

word task_masks [] = {
TASK_00_MASK, TASK_01_MASK, TASK_02_MASK, TASK_03_MASK,
TASK_04_MASK, TASK_05_MASK, TASK_06_MASK, TASK_07_MASK,
TASK_08_MASK, TASK_09_MASK, TASK_10_MASK, TASK_11_MASK,
TASK_12_MASK, TASK_13_MASK, TASK_14_MASK, TASK_15_MASK

};

int i;

word active_tasks;
active_tasks = Test_task ();
for (i = 0; I < NUM_PCM_TASKS; ++I) {

if (active_tasks & task_masks [i])
printf (”task %d is active\n”, i);

}

This example prints the task numbers of all the currently active PCM tasks.

235GFK-0772A PCM C Functions

Unblock_sem

� Usage
#include <vtos.h>

void Unblock_sem (semaphore_handle);

word semaphore_handle ;

� Description
This function is called to release a semaphore, specified by semaphore_handle ,
which the calling task acquired by calling either Link_sem or Block_sem .
Semaphores must be unblocked before any other VTOS function call is made.

� Return Value
None.

� See Also
Block_sem, Link_sem, Unlink_sem

� Example
See Block_sem .

236 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Unlink_sem

� Usage
#include <vtos.h>

void Unlink_sem (semaphore_handle);

word semaphore_handle ;

� Description
This function is called when a task no longer requires the use of a particular
semaphore, specified by semaphore_handle . The handle must be a value
returned by a previous, successful call to Link_sem . If no other tasks are linked to
the semaphore, its memory block is released to free memory. This function is rarely
used.

� Return Value
None.

� See Also
Block_sem, Link_sem, Unblock_sem

� Example
See Block_sem .

237GFK-0772A PCM C Functions

update_plc_status

� Usage
#include <utils.h>

REQSTAT update_plc_status (session_id);

BYTE session_id ;

� Description
This function requests an update of the PLC status information record in the
plc_status_info array corresponding to the specified session_id . The
session_id must be a value returned by a previous, successful call to
establish_comm_session . Note that all other PLC requests also update this
information. This function has a minimal effect on PLC sweep time, and is most
often used when no other PLC data is required.

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also

� Example

#include <utils.h>

REQSTAT status;
status = update_plc_status (sesn_id);

This example uses a WAIT mode request to update the PLC status data in the PCM.

238 PCM C Function Library Reference Manual – August 1996 GFK-0772A

update_plc_status_nowait

� Usage
#include <utilsnw.h>

REQID update_plc_status_nowait (session_id);

BYTE session_id ;

� Description
See update_plc_status .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

239GFK-0772A PCM C Functions

� See Also
reqstatus

� Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;request_id = update_plc_status_nowait (sesn_id);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the new PLC status data is available */

}

This example uses a NOWAIT mode request to update the PLC status data in the
PCM.

240 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Vme_clear_lcl_sem

� Usage
#include <vme.h>

int _cdecl Vme_clear_lcl_sem(void);

� Description
Vme_clear_lcl_sem is used by Series 90–70 PCM applications to clear a
semaphore in the VME memory of the host PCM after the application has acquired
the semaphore with Vme_test_lcl_sem and accessed the memory it controls.

Vme_clear_lcl_sem has no parameters.

Vme_clear_lcl_sem is provided in PCM C toolkit versions 1.05 and later.
Attempting to use it with earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

� Return Value
Vme_clear_lcl_sem returns a value from this table.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Return Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Completion Status

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A previously acquired semaphore was cleared successfully.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

NO_SEM_PREV_ACQUIRED ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No semaphore has been acquired in VME memory.

� See Also
Vme_read, Vme_test_and_set, Vme_test_lcl_sem, Vme_write

� Example
See Vme_test_lcl_sem .

241GFK-0772A PCM C Functions

Vme_read

� Usage
#include <vme.h>

int _cdecl Vme_read(void far *dest,
 byte vme_hi_adr,
 word vme_lo_adr,
 byte vme_am_code,
 long len,
 byte units);

� Description
Vme_read is used by Series 90–70 PCM applications to read VMEbus memory in
other modules in the Series 90–70 PLC. The PCM performs the memory read as a
VMEbus master.

The vme_am_code parameter contains either STD_NON_PRIV or one of the
values SHORT_NP_RACK0 through SHORT_NP_RACK7, depending on the rack
location of the target module. When vme_am_code contains STD_NON_PRIV ,
vme_hi_addr must contain the most significant 8 bits of the standard
non–privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non–privileged
address or the entire short non–privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACK0 through SHORT_NP_RACK7.

The dest parameter specifies the far address of a memory buffer where data will
be copied to, units contains either BYTE_UNITS or WORD_UNITS, and len
specifies the number of bytes or words to copy. However, if vme_lo_addr specifies
an odd start address, the units parameter will be silently ignored, and
BYTE_UNITS will be used for the data transfer.

Vme_read is provided in PCM C toolkit versions 1.05 and later. Attempting to use it
in earlier versions of the toolkit will cause a linkage error (unresolved external
reference).

� Return Value
Vme_read returns a value from this table.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Return ValueÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

_VTOS_error ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Completion Status
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The specified VME read completed successfully.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IO_FAILED ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INVALID_PCM

VMEbus error bits

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PCM does not support VME transfer functions – it
is either a Series 90–30 PCM or a Series 90–70 PCM
with PCMA1 hardware or firmware earlier than version
4.03
.
BUSGRT_MASK is set in _VTOS_error when the PLC
CPU refuses to grant the PCM access to the VMEbus.

BSERR_MASK or–ed with BUSHOG_MASK is re-
turned when there is no physical memory at the speci-
fied VMEbus address, and when a PCM attempts to
read a VMEbus address located in its own VME
memory.

242 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Vme_clear_lcl_sem, Vme_test_and_set, Vme_test_lcl_sem,
Vme_write

� Example

#include <vme.h>
#include <stdio.h>

byte read_data[32];
int status;
byte hi_adr;
byte rack = 0;
byte slot = 3;

if (!S9070_RACKSLOT_VALID(rack, slot)) {
 /* handle the error */
}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_read(read_data, hi_adr, 0, STD_NON_PRIV, 32, BYTE_UNITS);

if (!status) {
 int c, i, j;
 char buf[20];

 for (i = VME_DATA_LEN; i;) {
 printf(“%04x: “, (VME_DATA_LEN – i));

 for (j=16; i&&j; ––j, ––i) {
 c = read_data[VME_DATA_LEN – i];
 buf[16–j] = ((c >= ‘ ‘ && c <= ‘~’) ? c : ‘.’);
 printf(“%02x “, c);
 }

 buf[16–j] = 0;

 for (; j; ––j) {
 printf(“ “);
 }

 printf(“ \”%s\”\n”, (char far*)buf);
 }
)

This example reads 32 bytes from the start of VME memory in the module in rack
zero, slot 3. The most significant byte of the VME address is calculated by the
S9070_VME_HI_ADDR macro in VME.H.

When the target module is a Series 90–70 PCM, the program should print this
output:

0000: 20 56 20 4d 20 45 20 49 20 44 20 47 20 45 20 46 “ V M E I D G E F”
0010: 20 37 20 50 20 43 20 4d 20 37 20 31 20 31 20 41 “ 7 P C M 7 1 1 A”

243GFK-0772A PCM C Functions

Vme_test_and_set

� Usage
#include <vme.h>

int _cdecl Vme_test_and_set(byte vme_hi_adr,
 word vme_lo_adr,
 byte vme_am_code,
 byte units);

� Description
Vme_test_and_set is used by Series 90–70 PCM applications to control access to
VMEbus memory of other modules in its Series 90–70 PLC using a semaphore. It
works like the VMETS function block for Series 90–70 PLC CPUs. The PCM,
operating as a VMEbus master, uses a locked memory exchange to test the byte or
word semaphore at a specified VMEbus address.

Typically, PCM applications that use shared VMEbus memory provide a semaphore
to control access to that memory. The PCM whose memory is shared uses
Vme_test_lcl_sem and Vme_clear_lcl_sem to access the semaphore locally,
while other PCMs use Vme_test_and_set .

The vme_am_code parameter contains either STD_NON_PRIV or one of the values
SHORT_NP_RACK0 through SHORT_NP_RACK7, depending on the rack location
of the target module. When vme_am_code contains STD_NON_PRIV ,
vme_hi_addr must contain the most significant 8 bits of the standard
non–privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non–privileged
address or the entire short non-privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACK0 through SHORT_NP_RACK7.

The units parameter contains either BYTE_UNITS or WORD_UNITS and
specifies whether the semaphore is a byte or word variable. However, if
vme_lo_addr specifies an odd start address, the units parameter will be silently
ignored, and BYTE_UNITS will be used for the data transfer.

Vme_test_and_set is provided in PCM C toolkit versions 1.05 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

244 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
Vme_test_and_set returns a value from this table.

ÁÁÁÁÁÁÁÁReturn Value ÁÁÁÁÁ_VTOS_errorÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCompletion StatusÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SEM_ACQUIRED
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SUCCESS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PCM acquired the specified semaphore and
the memory it controls.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SEM_NOT_ACQUIREDÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The VME operation completed successfully, but the
semaphore was not acquired.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

IO_FAILED
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INVALID_PCM

VMEbus error
bits

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PCM does not support VME transfer functions
– it is either a Series 90-30 PCM or a Series 90-70
PCM with PCMA1 hardware or firmware earlier
than version 4.03.

BUSGRT_MASK is set in _VTOS_error when the
PLC CPU refuses to grant the PCM access to the
VMEbus.

BSERR_MASK or–ed with BUSHOG_MASK is re-
turned when there is no physical memory at the
specified VMEbus address, and when a PCM
attempts to read a VMEbus address located in its
own VME memory.

� See Also
Vme_clear_lcl_sem, Vme_read, Vme_test_lcl_sem, Vme_write

� Example

#include <vme.h>
#include <stdio.h>

word sem_copy;
int status;
byte hi_adr;
byte rack = 0;
byte slot = 3;

if (!S9070_RACKSLOT_VALID(rack, slot)) {
 /* handle the error */
}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_test_and_set(hi_adr, 0x4000, STD_NON_PRIV, WORD_UNITS);

 if (!_VTOS_error)
 if (status) {

/* the semaphore was acquired – access the data it controls */
/* then use VME_write() to release the semaphore */

 sem_copy = 0;
 VME_write(hi_adr, 0x4000, STD_NON_PRIV, &sem_copy, 1, WORD_UNITS);
 } else {
 /* the semaphore was not acquired – try again later */
 }
} else {
 /* _VTOS_error indicates an error occurred – process the error */
}

This example attempts to acquire a semaphore in VME memory. The most
significant byte of the VME address is calculated by the S9070_VME_HI_ADDR
macro in VME.H.

245GFK-0772A PCM C Functions

Vme_test_lcl_sem

� Usage
#include <vme.h>

int _cdecl Vme_test_lcl_sem(word local_vme_offset, byte units);

� Description
Vme_test_lcl_sem is used by Series 90–70 PCM applications to acquire a semaphore
in the VME memory of the host PCM in order to access the memory it controls. This
function, along with Vme_clear_lcl_sem, enables sharing VME memory in the local
PCM with applications in the PLC CPU or in other PCMs. CPU applications would
use VMETS and VMEWRT function blocks to test and clear the this semaphore,
while applications in other PCMs would use Vme_test_and_set and Vme_write.

The local_vme_offset parameter is the VME memory offset of a semaphore in the
host PCM, and units contains either BYTE_UNITS or WORD_UNITS. However, if
local_vme_offset specifies an odd address, the units parameter will be silently
ignored, and BYTE_UNITS will be used for the semaphore operation.

Vme_test_lcl_sem is provided in PCM C toolkit versions 1.05 and later. Attempting
to use it with earlier versions of the toolkit will cause a linkage error (unresolved
external reference).

� Return Value
Vme_test_lcl_sem returns a value from this table.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Return Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Completion Status

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

SEM_NOT_ACQUIRED ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The specified semaphore was not acquired.

ÁÁÁÁÁÁÁÁÁSEM_ACQUIRED ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁThe specified semaphore was acquired successfully.ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

INVALID_PCM
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PCM does not support VME transfer functions – it is
either a Series 90–30 PCM or a Series 90–70 PCM with
PCMA1 hardware or firmware earlier than version 4.03.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

INVALID_ADDR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The local_vme_offset parameter is invalid. It is ei-
ther in memory used by the PLC CPU, or the PCM uses
PCMA1 hardware and the specified offset is inaccessible.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

TOO_MANY_SEMS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Only one semaphore can be acquired at one time, and one is
already in use.

� See Also
Vme_clear_lcl_sem, Vme_read, Vme_test_and_set, Vme_write

246 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vme.h>
#include <stdio.h>

typedef struct {
 word sem;
 word data[31];
} vme_data_t;

vme_data_t far* vme_data_ptr;
int status;

FP_SEG(vme_data_ptr) = VME_DP_SEG;
FP_OFF(vme_data_ptr) = 0x4010;

status = Reserve_dp_buff(vme_data_ptr, sizeof(vme_data_t));

if (status == SUCCESS) {
 status = Vme_test_lcl_sem(FP_OFF(vme_data_ptr), WORD_UNITS);
}

if (status == SEM_ACQUIRED) {
 /* access the data */
 Vme_clear_lcl_sem();
}

This example reserves a block of VME memory. Then it acquires control of the
memory block using Vme_test_lcl_sem and accesses the data in the block.
Finally, control of the block is released by calling Vme_clear_lcl_sem .

247GFK-0772A PCM C Functions

Vme_write

� Usage
#include <vme.h>

int _cdecl Vme_write(byte vme_hi_adr,
 word vme_lo_adr,
 byte vme_am_code,
 void far *src,
 long len,
 byte units);

� Description
Vme_write is used by Series 90–70 PCM applications to write VMEbus memory in
other modules in the Series 90–70 PLC. The PCM performs the memory write as a
VMEbus master.

The vme_am_code parameter contains either STD_NON_PRIV or one of the values
SHORT_NP_RACK0 through SHORT_NP_RACK7, depending on the rack location
of the target module. When vme_am_code contains STD_NON_PRIV ,
vme_hi_addr must contain the most significant 8 bits of the standard
non–privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non–privileged
address or the entire short non–privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACK0 through SHORT_NP_RACK7.

The src parameter specifies the far address of a memory buffer where data will be
copied from, units contains either BYTE_UNITS or WORD_UNITS, and len
specifies the number of bytes or words to copy. However, if vme_lo_addr specifies
an odd start address, the units parameter will be silently ignored, and
BYTE_UNITS will be used for the data transfer.

Vme_write is provided in PCM C toolkit versions 1.05 and later. Attempting to use
it in earlier versions of the toolkit will cause a linkage error (unresolved external
reference).

� Return Value
Vme_write returns a value from this table.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Return ValueÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

_VTOS_error ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Completion Status
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SUCCESS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The specified VME write completed successfully.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IO_FAILED ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INVALID_PCM

VMEbus error bits

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PCM does not support VME transfer functions – it
is either a Series 90-30 PCM or a Series 90-70 PCM with
PCMA1 hardware or firmware earlier than
version 4.03.

BUSGRT_MASK is set in _VTOS_error when the PLC
CPU refuses to grant the PCM access to the VMEbus.

BSERR_MASK or–ed with BUSHOG_MASK is re-
turned when there is no physical memory at the speci-
fied VMEbus address, and when a PCM attempts to
read a VMEbus address located in its own VME
memory.

248 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Vme_clear_lcl_sem, Vme_test_and_set, Vme_test_lcl_sem,
Vme_read

� Example

#include <vme.h>
#include <stdio.h>

byte write_data[32] = {
 48, 49, 50, 51, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
};
byte read_data[32] = { 0 };
int status;
byte hi_adr;
byte rack = 0;
byte slot = 3;

if (!S9070_RACKSLOT_VALID(rack, slot)) {
 /* handle the error */
}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_write(hi_adr, 0x4000, STD_NON_PRIV, write_data, 16, WORD_UNITS);

if (!status) {
 status = Vme_read(read_data, hi_adr, 0x4000, STD_NON_PRIV, 32, BYTE_UNITS);
}

if (!status) {
 int c, i, j;
 char buf[20];

 for (i = VME_DATA_LEN; i;) {
 printf(“%04x: “, (VME_DATA_LEN – i));

 for (j=16; i&&j; ––j, ––i) {
 c = read_data[VME_DATA_LEN – i];
 buf[16–j] = ((c >= ‘ ‘ && c <= ‘~’) ? c : ‘.’);
 printf(“%02x “, c);
 }

 buf[16–j] = 0;

 for (; j; ––j) {
 printf(“ “);
 }

 printf(“ \”%s\”\n”, (char far*)buf);
 }
}

This example writes 16 words of data to offset 4000 hexadecimal of VME memory in
the module in rack zero, slot 3. The most significant byte of the VME address is
calculated by the S9070_VME_HI_ADDR macro in VME.H. The same data is read
back to a different buffer as bytes. When the target module has VME memory at the
specified address, the program should print this output

0000: 30 31 32 33 33 35 36 37 38 39 3a 3b 3c 3d 3e 3f “0123356789:;<=>?”

0010: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f “@ABCDEFGHIJKLMNO”

249GFK-0772A PCM C Functions

Wait_ast

� Usage
#include <vtos.h>

void Wait_ast (void);

� Description
Wait_ast suspends execution of the calling task until an asynchronous trap (AST)
is received.

Caution

If the event which posts the expected AST has already occurred, and
no other ASTs are posted, the calling task will never resume execution.

The example below shows how to avoid this problem.

� Return Value
None.

� See Also
Post_ast

250 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>
#include <dos.h>

word event_occurred;

void far ast_func (ast_blk far* p)
{

event_occurred = TRUE;
/* process the event */
}

void main ()
{

event_occurred = FALSE;
/*
 * Perform some operation with AST notification;
 * specify ast_func as the AST handler function.
 */

_disable ();
if (!event_occurred) {

Wait_ast ();
}
_enable ();

}

This example waits for an AST only when the expected event has not already
occurred. The _disable and _enable functions are from the Microsoft C
runtime library. They disable and enable maskable interrupts, respectively, but only
within the task’s main execution thread. If the call to _enable is omitted, erratic
operation will result.

251GFK-0772A PCM C Functions

Wait_ef

� Usage
#include <vtos.h>

void Wait_ef (local_ef_mask);

word local_ef_mask ;

� Description
This function is called to wait for one or more of the calling task’s sixteen local event
flags; local_ef_mask specifies the flag or flags to wait for. If one of the
specified event flags is already set when Wait_ef is called, control returns
immediately to the calling task. Otherwise, the task remains suspended until at one
of the specified event flag is set. During this time, the task will be able to receive
ASTs, but it will not be able to process them. All the task’s event flags remain
unchanged.

A task’s local event flags may be set by any task, but only the task in which they are
local may test or reset them.

� Return Value
None.

� See Also
Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Set_gef,
Test_ef, Test_gef, Wait_gef

252 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Example

#include <vtos.h>

Reset_ef (EF_00 | EF_12);
/*
 * Perform an EVENT_NOTIFY I/O operations using EF_00 for notification.
 * Start a timer using EF_12 for notification.
 */
Wait_ef (EF_00 | EF_12);
if (Test_ef () & EF_00) {
/*
 * the I/O operation completed
 */
} else {
/*
 * the I/O operation timed out before completion
 */
}

In this example, the calling task waits for either EF_00 or EF_12 to be set. Then
it tests it local event flags to determine whether EF_00 was the one which resumed
its execution.

253GFK-0772A PCM C Functions

Wait_gef

� Usagae
#include <vtos.h>

void Wait_gef (global_ef_mask);

word global_ef_mask ;

� Description
This function is called to wait for one or more of the sixteen global event flags;
global_ef_mask specifies the flag or flags to wait for. If one of the specified event
flags is already set when Wait_gef is called, control returns immediately to the
calling task. Otherwise, the task remains suspended until at one of the specified
event flag is set. During this time, the task will be able to receive ASTs, but it will not
be able to process them. All the task’s event flags remain unchanged.

Global event flags may be set, reset, or tested by any task.

� Return Value
None.

� See Also
Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Set_gef,
Test_ef, Test_gef, Wait_ef

� Example

#include <vtos.h>

Reset_gef (EF_02);
Wait_gef (EF_02);

The task in this example resets global event flag EF_02 and then waits for another
task to set it.

254 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Wait_task

� Usage
#include <vtos.h>

void Wait_task (task_mask);

word task_mask ;

� Description
Wait_task suspends the calling task until one or more lower priority tasks,
specified by task_mask , have terminated. It may be used by a main task which
starts one or more temporary tasks and then waits for them to complete their
operation before it continues.

� Return Value
None.

� See Also
Init_task, Process_env

� Example

#include <vtos.h>

Wait_task (TASK_15_MASK);

The task in this example suspends itself until task number 15 terminates.

255GFK-0772A PCM C Functions

Wait_time

� Usage
#include <vtos.h>

void Wait_time (hi_cnt , mid_cnt , low_cnt);

word hi_cnt ;

word mid_cnt ;

word low_cnt ;

� Description
When this function is called, the calling task is suspended until the time specified by
hi_cnt , mid_cnt , and low_cnt has expired. Any time duration which can be
expressed as a long unsigned integer number of milliseconds may be specified: zero
to 49 days, 17 hours, 2 minutes, 47 seconds, 295 milliseconds. The time value may be
specified either as milliseconds or clock time (days/hours/minutes/seconds/
milliseconds) format. This table shows the content of the three count parameters for
both formats.

Count Parameter Format Content

hi_cnt Milliseconds. MS_COUNT_MODE.

Clock time. A word value which contains the number of days in
the most significant byte and hours in the least
significant byte.

mid_cnt Milliseconds. A word value which contains the most significant
word of the long unsigned integer millisecond count.

Clock time. A word value which contains the number of minutes
in the most significant byte and seconds iu the least
significant byte.

low_cnt Milliseconds. A word value which contains the leas t significant
word of the long unsigned integer millisecond count.

Clock time. A word value which contains the number of
milliseconds.

256 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
Wait_time has no return value. If an error occurs, an error code from this table
will be in _VTOS_error .

Error Code Description

NO_TIMERS All the general purpose timers are being used.

� See Also
Start_timer

� Example

#include <vtos.h>

Wait_time (MS_COUNT_MODE, 0, 500);
Wait_time ((6 << 8) | 23, (59 << 8) | 59, 999);

In this example, the calling task waits for 500 milliseconds. Then it waits for six days,
23 hours, 59 minutes, 59 seconds and 999 milliseconds.

257GFK-0772A PCM C Functions

Where_am_i

� Usage
#include <vtos.h>

long Where_am_i (void);

� Description
This function returns the PLC rack/slot location in which the PCM where it executes
is installed.

This function is available in PCM version 3.00 and later revisions.

� Return Value
When the call succeeds, Where_am_i returns a long integer which contains a
Series 90 PLC rack/slot address in the form used as the source and destination
addresses of generic backplane messages. The example below shows how to extract
the rack, slot and service point values.

Where_am_i does not know the PCM location for a short time after VTOS is
initialized. During this time, LONG_FAILURE is returned.

� See Also

� Example

#include <vtos.h>
#include <stdio.h>

long location;
int rack, slot, svc_pt;

location = Where_am_i ();
rack = location & 0x000F;
slot = (location >> 4) & 0x001F;
svc_pt = (location >> 9) & 0x003F;

printf (”PCM location is: rack %d, slot %d, service point %d\n”,
rack, slot, svc_pt);

This example prints the PCM location to the STDOUT device.

258 PCM C Function Library Reference Manual – August 1996 GFK-0772A

Write_dev

� Usage
#include <vtos.h>

word Write_dev (device_handle , buffer , size , notify_code ,

 task_id [, < nowait options >]);

word device_handle ;

void far* buffer ;

word size ;

word notify_code ;

word task_id ;

where < nowait options > depend on the value of notify_code :

word Write_dev (device_handle , buffer , size , WAIT, task_id);

word Write_dev (device_handle , buffer , size , EVENT_NOTIFY,

 task_id , local_ef_mask ,

 (device_result far*) result_ptr);

word local_ef_mask ;

device_result far* result_ptr ;

word Write_dev (device_handle , buffer , size , AST_NOTIFY,

 task_id , ast_routine [, ast_handle]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

� Description
This function writes data to an I/O channel which was previously opened; the
device_handle must be a value returned by Open_dev . The buffer
parameter contains the far address of the data to be written, and size contains
the number of data items to write. If the channel was opened in NATIVE_MODE,
size specifies a number of bits, bytes, or words, depending on the type of the
requested data. Otherwise, size specifies a number of bytes.

The notify_code specifies the method used to notify the calling task that the
operation has completed; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Write_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

259GFK-0772A PCM C Functions

When EVENT_NOTIFY is used, local_ef_mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Write_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result_ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains the number of data units written, and the iostatus
member contains SUCCESS; when a failure occurs, ioreturn contains the
number of characters written at the time when the failure occurred, and iostatus
 contains an error status code. For a discussion of asynchronous I/O using event
flags, see chapter 6, Real-Time Programming, in the
C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk
structure. The ast_handle value is in the handle member of the ast_blk .
If the call succeeds, the arg2 member of the ast_blk contains the number of
data units transferred, and the arg1 member contains SUCCESS; when a failure
occurs, arg2 contains IO_FAILED, and arg1 contains an error status code. For
a discussion of asynchronous I/O using AST functions, see chapter 6, Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

� Return Value
In WAIT mode, the function return value contains the number of data items actually
written. When an error occurs, the return value will be less than size . A status
code value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status

Equal to size SUCCESS The specified number of data items was written.

Less than size ABORTED An EVENT_NOTIFY or AST_NOTIFY call was
aborted before the write was completed.

BAD_HANDLE An invalid device_handle was specified. No
data was written.

260 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
Close_dev, Open_dev, Read_dev, Seek_dev

� Example

#include <vtos.h>

word words_written, task, handle;
word buf[] = { 1, 2, 3, 4, 5, 6, 7, 8 };

task = Get_task_id();

handle = Open_dev(”CPU:%R12”, READ_MODE | WRITE_MODE | NATIVE_MODE,
 WAIT, task);

words_written = Write_dev(handle, buf, sizeof(buf)/sizeof(word),
 WAIT, task);
if (_VTOS_error == SUCCESS) {

 /* The number of words is in words_written. */
}

This example uses a WAIT mode Write_dev request to write eight words to the
PLC register table, beginning at %R12.

261GFK-0772A PCM C Functions

write_localdata

� Usage
#include <prgmem.h>

REQSTAT write_localdata (session_id , program_task_name ,

 subblock_name , begin_addr , end_addr ,

 data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function writes the specified data to %L (local subblock) registers in the
specified Series 90-70 subblock in the specified main program. This request is valid
only for Series 90-70 PLCs. The session_id must be a value returned by a
previous, successful call to establish_comm_session . The
program_task_name pointer must contain the address of a NUL terminated
ASCII string holding the name of the control program task that owns the target
subblock, and subblock_name must point to a NUL terminated ASCII string
holding the subblock name. Valid names consist of seven characters or less, not
counting the NUL character. The begin_addr parameter contains the index
where the target data begins, and end_addr contains the index where the data
ends.

When the function succeeds, the data at data_buffer_ptr is copied to the range
of %L registers specified by begin_addr and end_addr in the program
subblock specified by program_task_name and subblock_name .

The data is treated as 16 bit binary integer values. The actual register content,
however, may be signed or unsigned integers, floating point values, or text.

262 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
The function returns a REQSTAT value which contains the completion status
of the requested operation. When the request succeeds, REQUEST_OK is
returned; otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is
not the name of a subblock
 in the specified program, or
end_addr is less than
begin_addr or out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata_nowait, write_prgmdata,
write_prgmdata_nowait, write_sysmem, write_sysmem_nowait

263GFK-0772A PCM C Functions

� Example

#include <prgmem.h>

WORD buf[7] = { 1,2,3,4,5,6,7 };
REQSTAT status;

/*
 * To write %L1 through %L7, inclusive in the subblock named
 * ”MYBLOCK” of the program named ”MYPROG”:
 */

status = write_localdata(session_id, ”MYPROG”, ”MYBLOCK”, 1, 7, buf):

/*
 * To write %L28 only in the subblock named ”SUB1” of the
 * program named ”LOADER”:
 */

status = write_localdata(session_id, ”LOADER”, ”SUB1”, 28, 28, buf);

This example uses two WAIT mode requests to write to %L data in the specified PLC
program subblocks.

264 PCM C Function Library Reference Manual – August 1996 GFK-0772A

write_localdata_nowait

� Usage

#include <prgmemnw.h>

REQID write_localdata_nowait (session_id , program_task_name ,

 subblock_name , begin_addr ,

 end_addr , data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description

See write_localdata .

� Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is
not the name of a subblock
 in the specified program, or
end_addr is less than
begin_addr or out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

265GFK-0772A PCM C Functions

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

� Example

#include <prgmemnw.h>

WORD value = 0x1234;
REQID request_id;
REQSTAT status;

request_id = write_localdata_nowait(session_id, ”LOADER”, ”SUB1”,
 28, 28, &value);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

 status = reqstatus (request_id, TRUE);
 /* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the %L data was written */

}

This example uses a NOWAIT mode request to write to %L data in the specified PLC
program subblock.

266 PCM C Function Library Reference Manual – August 1996 GFK-0772A

write_prgmdata

� Usage
#include <prgmem.h>

REQSTAT write_prgmdata (session_id, program_task_name ,
 begin_addr , end_addr , data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function writes the specified data to %P (program) registers in the specified
Series 90-70 program. This request is valid only for Series 90-70 PLCs. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The program_task_name pointer must contain
the address of a NUL terminated ASCII string holding the name of the target
program. Valid names consist of seven characters or less, not counting the NUL
character. The begin_addr parameter contains the index where the target data
begins, and end_addr contains the index where the data ends.

When the function succeeds, the data at data_buffer_ptr is copied to the range
of %P registers specified by begin_addr and end_addr in the program
specified by program_task_name.

The data is treated as 16 bit binary integer values. The actual register content,
however, may be signed or unsigned integers, floating point values, or text.

The following table shows examples of target %L data ranges and their
corresponding begin_addr and end_addr values.

Program Data Range begin_addr Value end_addr Value

%P1 through %p24, inclusive. 1 24

%P39 through %p43, inclusive. 39 43

%P500 only. 500 500

267GFK-0772A PCM C Functions

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is
not the name of a subblock
 in the specified program, or
end_addr is less than
begin_addr or out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata, write_localdata_nowait,
write_prgmdata_nowait, write_sysmem, write_sysmem_nowait

� Example

#include <prgmem.h>

REQSTAT status;
WORD data[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);

status = write_prgmdata (sesn_id, ”MYPROG”, 497, 512, data);

This example uses a WAIT mode request to write to %P497 through %P512,
inclusive.

268 PCM C Function Library Reference Manual – August 1996 GFK-0772A

write_prgmdata_nowait

� Usage
#include <prgmemnw.h>

REQID write_prgmdata_nowait (session_id , program_task_name ,

 begin_addr , end_addr ,

 data_buffer_ptr);

BYTE session_id ;

char far* program_task_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
See write_prgmdata .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND REQUEST_ERROR The program_task_name
is not the name of a PLC
program task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name is
not the name of a subblock
 in the specified program, or
end_addr is less than
begin_addr or out of
 range.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

269GFK-0772A PCM C Functions

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata, write_localdata_nowait, write_prgmdata,
write_sysmem, write_sysmem_nowait

� Example

#include <prgmemnw.h>

REQID request_id;
REQSTAT status;
WORD data[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);

request_id = write_prgmdata_nowait(sesn_id, ”MYPROG”, 497, 512, data);

if (request_id < REQUEST_OK) {
status = request_id;

} else {
do {

status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);
}

if (status != REQUEST_OK) {
/* investigate the error */

} else {
/* the %P data was written */

}

This example uses a NOWAIT mode request to write to %P497 through %P512,
inclusive.

270 PCM C Function Library Reference Manual – August 1996 GFK-0772A

write_sysmem

� Usage
#include <sysmem.h>

REQSTAT write_sysmem (session_id , memory_type , begin_addr ,

 end_addr , data_buffer_ptr);

BYTE session_id ;

BYTE memory_type ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
This function writes the specified data to the specified PLC reference (%I, %Q, %R,
etc.) in the PLC CPU. The session_id must be a value returned by a previous,
successful call to establish_comm_session . The memory_type parameter
specifies the target memory type, begin_addr contains the index where the
target data begins, and end_addr contains the index where the data ends. The
end_addr value must be greater than or equal to begin_addr , and must not be
larger than the size returned by get_memtype_sizes for the specified
memory_type . The begin_addr value must be a value in the range from one (1)
to end_addr , inclusive.

When the function succeeds, the data at data_buffer_ptr is copied to the range
of PLC references specified by memory_type , begin_addr , and end_addr .

For PLC register data types, %R, %AI, and %AQ, the data at data_buffer_ptr is
treated as 16 bit binary integer values. The actual register content, however, may be
signed or unsigned integers, floating point values, or text.

For the PLC discrete data types, %I, %Q, %M, %T, %S, %SA, %SB, %SC, and %G, the
data at data_buffer_ptr is expected to be one or more bytes, with the bit
specified by begin_addr in the least significant bit of the least significant byte.
For example, consider the outputs %Q00119 through %Q00129, inclusive. A
write_sysmem request to send these 11 outputs to the PLC CPU would require the
data to be arranged in two bytes as shown here:

%Q00134 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 %Q00119

%Q00129

271GFK-0772A PCM C Functions

Note that the internal PLC format of this data is quite different, as can be seen on
the Logicmaster 90 programming software Reference Tables display. The 11 points
of the example span three PLC bytes; the ‘‘x’’ values indicate that the original PLC
data at that location is unchanged:

%Q00136 x x x x x x x 0 0 1 0 0 1 0 0 1 0 x x x x x x %Q00113

%Q00119
%Q00129

The following table shows memory_type values from memtypes.h which are
valid in write_sysmem requests.

Reference
Type

Access
Type

Data
 Type

memory_type
Value

%AI Analog Input Register WORD AI_DATA

%AQ Analog Output Register WORD AQ_DATA

%R Register Memory WORD R_DATA

%I Input Status Table Discrete I_STATUS

%Q Output Status Table Discrete Q_STATUS

%T Temporary Status Table Discrete T_STATUS

%M Internal Status Table Discrete M_STATUS

%SA System A Status Table Discrete SA_STATUS

%SB System B Status Table Discrete SB_STATUS

%SC System C Status Table Discrete SC_STATUS

%S System Status Table Discrete S_STATUS

%G Global Genius Status Table Discrete G_STATUS

The Series 90-70 types %GA, %GB, %GC, %GD, and %GE are accessed as subtypes
of %G data, as shown in the description of read_sysmem .

272 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� Return Value
The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
begin_addr or out of
 range.

NULL_SEGSEL_PTR REQUEST_ERROR The memory_type is
invalid.

INVALID_SELECTOR REQUEST_ERROR The memory_type is not
supported for this request.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata, write_localdata_nowait, write_prgmdata,
write_prgmdata_nowait, write_sysmem_nowait

� Example

#include <sysmem.h>

REQSTAT status;
BYTE sesn_id;
WORD outputs = 0x2112;

status = write_sysmem (sesn_id, Q_STATUS, 119, 131, &outputs);

This example uses a WAIT mode request to send the 11 outputs %Q00119 through
%Q00131 shown in the description above.

273GFK-0772A PCM C Functions

write_sysmem_nowait

� Usage
#include <sysmemnw.h>

REQID write_sysmem_nowait (session_id , memory_type , begin_addr ,

 end_addr , data_buffer_ptr);

BYTE session_id ;

BYTE memory_type ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

� Description
See write_sysmem .

� Return Value
The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqstatus . When REQID or the
REQSTAT value returned by reqstatus is negative, it contains a value from this
table.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The end_addr is less than
begin_addr or out of
 range.

NULL_SEGSEL_PTR REQUEST_ERROR The memory_type is
invalid.

INVALID_SELECTOR REQUEST_ERROR The memory_type is not
supported for this request.

DEVICE_NOT_AVAILABLE NO_COMMUNICATION Communication has not been
established through calls to
api_initialize,
configure_comm_link ,
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate
memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-
quests already outstanding.

274 PCM C Function Library Reference Manual – August 1996 GFK-0772A

� See Also
establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, reqstatus,
write_localdata, write_localdata_nowait, write_prgmdata,
write_prgmdata_nowait, write_sysmem

� Example

#include <sysmemnw.h>

REQID reqid1, reqid2;
REQSTAT stat1, stat2;
BYTE sesn_id;
WORD aq_data[4] = { 12345, 12346, 12347, 12348 };
BYTE m_status[2] = { 0x55, 0xaa };

/* Write analog output data %AQ0009 through %AI0012: */
reqid1 = write_sysmem_nowait (sesn_id, AQ_DATA, 8, 12, aq_data);

if (reqid1 < REQUEST_OK) {
stat1 = reqid1;

} else {
stat1 = reqstatus (reqid1, TRUE);

}
/* Write internal contacts %M00037 through %M00045: */
reqid2 = write_sysmem_nowait (sesn_id, M_STATUS, 37, 45, m_status);

if (reqid2 < REQUEST_OK) {
 stat2 = reqid2;
} else {

stat2 = reqstatus (reqid2, TRUE);
}
while (stat1 == REQUEST_IN_PROGRESS || stat2 == REQUEST_IN_PROGRESS) {

if (stat1 == REQUEST_IN_PROGRESS) {
stat1 = reqstatus (reqid1, TRUE);

}
 if (stat2 == REQUEST_IN_PROGRESS) {

stat2 = reqstatus (reqid2, TRUE);
}

}
if (stat1 != REQUEST_OK || stat2 != REQUEST_OK) {

/* investigate the error */
} else {

/* the new analog input data is available */
}

This example uses a NOWAIT mode request to send the four analog outputs
%AQ0009 through %AQ0012 and the 8 internal coils %M00037 through %M00045.

Index

Index-1GFK-0772A

A
Abort_dev, 8

Alloc_com_timer, 10

api_initialize, 11

Asynchronous Trap Functions, 2

B
Block_sem, 12

C
Cancel_com_timer, 14

cancel_mixed_memory, 15

cancel_mixed_memory_nowait, 16

Cancel_timer, 17

chg_priv_level, 18

chg_priv_level_nowait, 20

chk_genius_bus, 22

chk_genius_bus_nowait, 24

chk_genius_device, 26

chk_genius_device_nowait, 28

Close_dev, 30

clr_io_fault_tbl, 33

clr_io_fault_tbl_nowait, 35

clr_plc_fault_tbl, 37

clr_plc_fault_tbl_nowait, 39

Communication Timer Functions, 3

configure_comm_link, 41

Controlling PLC Operations, 6

CPU Setup Strings, 212

D
Dealloc_com_timer, 42

Define_led, 43

Devctl_dev, 45

Device Driver Support Functions, 4

Device I/O Functions, 4

Disable_asts, 49

disable_clock_synchronization, 212

Discrete Data Formats, 56

E
EEPROM Device, 117

Elapse, 50

Enable_asts, 51

establish_comm_session, 52

establish_mixed_memory, 53

establish_mixed_memory_nowait, 59

Event Flag Functions, 2

F
full duplex mode, 211

G
Get_best_buff, 62

Get_board_id, 63

Get_buff, 65

get_config_info, 66

get_config_info_nowait, 68

get_cpu_type_rev, 70

get_cpu_type_rev_nowait, 72

Get_date, 74

Get_dp_buff, 75

Get_mem_lim, 76

get_memtype_sizes, 77

get_memtype_sizes_nowait, 79

Get_mod, 81

Get_next_block, 82

get_one_rackfaults, 83

get_one_rackfaults_nowait, 85

Get_pcm_rev, 87

get_prgm_info, 88

get_prgm_info_nowait, 90

get_rack_slot_faults, 92

Index

Index-2 GFK-0772A

get_rack_slot_faults_nowait, 94

Get_task_id, 96

Get_time, 97

H
half duplex mode, 212

I
Init_task, 99

Install_dev, 100

Install_isr, 101

Ioctl_dev, 103

Iset_ef, 107

Iset_gef, 108

L
Link_sem, 109

M
Managing API Services, 5

Max_avail_buff, 110

Max_avail_mem, 111

Memory Management Functions, 3

Memory Module Functions, 3

Miscellaneous Functions, 4

N
Notify_task, 112

O
Open_dev, 113

P
PC: Device, 117

PCM 712 Functions, 4

PCM Remote Devices, 114

PLC Generic Message Channel, 116

PLC Hardware Type, Configuration, and
Status Information, 5

PLC Program and Configuration Check-
sum Data, 5

PLC Ram Disk, 117

PLC Service Request Interface API Func-
tions by Catagory, 5

Controlling PLC Operations, 6
Managing API Services, 5
PLC Hardware Type, Configuration,

and Status Information, 5
PLC Program and Configuration Check-

sum Data, 5
Reading and Clearing PLC and I/O

Faults, 6
Reading and Setting the PLC Time of

Day Clock, 7
Reading Mixed PLC Data References, 6
Reading PLC Data References, 5
Writing PLC Data References, 5

PLC Status, 116

PLC Time_of_Day, 116

point-to-point mode, 211

Post_ast, 121

Process_env, 123

R
read_date, 125

read_date_nowait, 127

Read_dev, 129

read_io_fault_tbl, 132

read_io_fault_tbl_nowait, 134

read_localdata, 136

read_localdata_nowait, 138

read_mixed_memory, 140

read_mixed_memory_nowait, 142

read_plc_fault_tbl, 144

read_plc_fault_tbl_nowait, 146

read_prgmdata, 148

read_prgmdata_nowait, 150

read_sysmem, 152

Index

Index-3GFK-0772A

read_sysmem_nowait, 158

read_time, 160

read_time_nowait, 162

read_timedate, 164

read_timedate_nowait, 166

Reading and Clearing PLC and I/O Faults,
6

Reading and Setting the PLC Time of Day
Clock, 7

Reading Mixed PLC Data References, 6

Reading PLC Data References, 5

release_request_id, 168

reqstatus, 169

Reserve_dp_buff, 171

Reset_ef, 172

Reset_gef, 173

Resume_task, 174

Return_buff, 175

Return_dp_buff, 176

S
Seek_dev, 177

Semaphore Functions, 3

Send_vme_interrupt, 180

Serial Port Setup Strings, 211

set_date, 182

set_date_nowait, 184

Set_dbd_ctl, 186

Set_ef, 187

Set_gef, 188

Set_led, 189

Set_local_date, 191

Set_local_time, 193

Set_std_device, 196

set_time, 197

set_time_nowait, 199

set_timedate, 201

set_timedate_nowait, 203

Set_vme_ctl, 205

Special_dev, 209

Start_com_timer, 215

start_plc, 217

start_plc_noio, 218

start_plc_noio_nowait, 219

start_plc_nowait, 221

Start_timer, 223

stop_plc, 226

stop_plc_nowait, 227

Suspend_task, 229

T
Task Management Functions, 2

terminate_comm_session, 230

Terminate_task, 231

Test_ef, 232

Test_gef, 233

Test_task, 234

Time of Day Clock Functions, 3

Timer Functions, 3

U
Unblock_sem, 235

Unlink_sem, 236

update_plc_status, 237

update_plc_status_nowait, 238

V
VME Functions, 4

Vme_clear_lcl_sem, 240

Vme_read, 241

Vme_test_and_set, 243

Vme_test_lcl_sem, 245

Vme_write, 247

VTOS Service Functions by Catagory, 2
Asynchronous Trap Functions, 2
Communication Timer Functions, 3

Index

Index-4 GFK-0772A

Device Driver Support Functions, 4
Device I/O Functions, 4
Event Flag Functions, 2
Memory Management Functions, 3
Memory Module Functions, 3
Miscellaneous Functions, 4
PCM 712 Functions, 4
Semaphore Functions, 3
Task Management Functions, 2
Time of Day Clock Functions, 3
Timer Functions, 3
VME Functions, 4

W
Wait_ast, 249

Wait_ef, 251

Wait_gef, 253

Wait_task, 254

Wait_time, 255

Where_am_i, 257

WORD Data Formats, 57

Write_dev, 258

write_localdata, 261

write_localdata_nowait, 264

write_prgmdata, 266

write_prgmdata_nowait, 268

write_sysmem, 270

write_sysmem_nowait, 273

Writing PLC Data References, 5

	gfk0772a.pdf
	Chapter 1 PCM C Functions
	Content of this Manual
	VTOS Service Functions By Category
	PLC Service Request Interface API Service Functions By Category
	Abort_dev
	Alloc_com_timer
	api_initialize
	Block_sem
	Cancel_com_timer
	cancel_mixed_memory
	cancel_mixed_memory_nowait
	Cancel_timer
	chg_priv_level
	chg_priv_level_nowait
	chk_genius_bus
	chk_genius_bus_nowait
	chk_genius_device
	chk_genius_device_nowait
	Close_dev
	clr_io_fault_tbl
	clr_io_fault_tbl_nowait
	clr_plc_fault_tbl
	clr_plc_fault_tbl_nowait
	configure_comm_link
	Dealloc_com_timer
	Define_led
	Devctl_dev
	Disable_asts
	Elapse
	Enable_asts
	establish_comm_session
	establish_mixed_memory
	establish_mixed_memory_nowait
	Get_best_buff
	Get_board_id
	Get_buff
	get_config_info
	get_config_info_nowait
	get_cpu_type_rev
	get_cpu_type_rev_nowait
	Get_date
	Get_dp_buff
	Get_mem_lim
	get_memtype_sizes
	get_memtype_sizes_nowait
	Get_mod
	Get_next_block
	get_one_rackfaults
	get_one_rackfaults_nowait
	Get_pcm_rev
	get_prgm_info
	get_prgm_info_nowait
	get_rack_slot_faults
	get_rack_slot_faults_nowait
	Get_task_id
	Get_time
	Init_task
	Install_dev
	Install_isr
	Ioctl_dev
	Iset_ef
	Iset_gef
	Link_sem
	Max_avail_buff
	Max_avail_mem
	Notify_task
	Open_dev
	Post_ast
	Process_env
	read_date
	read_date_nowait
	Read_dev
	read_io_fault_tbl
	read_io_fault_tbl_nowait
	read_localdata
	read_localdata_nowait
	read_mixed_memory
	read_mixed_memory_nowait
	read_plc_fault_tbl
	read_plc_fault_tbl_nowait
	read_prgmdata
	read_prgmdata_nowait
	read_sysmem
	read_sysmem_nowait
	read_time
	read_time_nowait
	read_timedate
	read_timedate_nowait
	release_request_id
	reqstatus
	Reserve_dp_buff
	Reset_ef
	Reset_gef
	Resume_task
	Return_buff
	Return_dp_buff
	Seek_dev
	Send_vme_interrupt
	set_date
	set_date_nowait
	Set_dbd_ctl
	Set_ef
	Set_gef
	Set_led
	Set_local_date
	Set_local_time
	Set_std_device
	set_time
	set_time_nowait
	set_timedate
	set_timedate_nowait
	Set_vme_ctl
	Special_dev
	Start_com_timer
	start_plc
	start_plc_noio
	start_plc_noio_nowait
	start_plc_nowait
	Start_timer
	stop_plc
	stop_plc_nowait
	Suspend_task
	terminate_comm_session
	Terminate_task
	Test_ef
	Test_gef
	Test_task
	Unblock_sem
	Unlink_sem
	update_plc_status
	update_plc_status_nowait
	Vme_clear_lcl_sem
	Vme_read
	Vme_test_and_set
	Vme_test_lcl_sem
	Vme_write
	Wait_ast
	Wait_ef
	Wait_gef
	Wait_task
	Wait_time
	Where_am_i
	Write_dev
	write_localdata
	write_localdata_nowait
	write_prgmdata
	write_prgmdata_nowait
	write_sysmem
	write_sysmem_nowait

	Index

