PDF tiqme s surir coupv

GFK-0772

Buy GE Fanuc Series 90-30 NOW!

GE Fanuc Manual Series 90-30

PCM C Function Library Reference Manual

1-800-360-6802
sales@pdfsupply.com

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

FANUC

GE Fanuc Automation

Programmable Control Products

PCM C Function
Library Reference

Reference Manual

GFKO772A August 1996

]] GFL-002
Warnings, Cautions, and Notes

as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions that
could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alam Master GEnet PowerMotion Series One
CIMPLICITY Genius ProLoop SeriesSix
CIMPLICITY PowerTRAC Genius PowerTRAC PROMACRO Series Three
CIMPLICITY 90-ADS Helpmate SeriesFive VuMaster
CIMSTAR Logicmaster Series 90 Workmaster
Field Control Modelmaster

Copyright 1993-1996 GE Fanuc Automation North America, Inc.
All Rights Reserved

Preface

This manual provides a complete reference to all the library functions provided in the
PCM runtime libraries for the PCM C toolkit. It is written for experienced C
programmers who are also familiar with the operation of Series 90 PLCs. Readers new
to the C programming language or to Series 90 PLCs should familiarize themselves
thoroughly with these topics before attempting to use the material in this manual. The
list of publications at the end of this section contains helpful references.

Related Publications

GFK-0772A

For more information, refer to these publications:

Series90 ™ -70 ProgrammableController InstallationManual (GFK-0262): This manual
describes the hardware used in a Series 90-70 PLC system, and explains system setup
and operation.

Logicmaster™ 90-70 Programming Software User’s Manual (GFK-0263): This manual
describes operation of Logicmaster 90-70 software for configuring, programming,
monitoring, and controlling a Series 90-70 PLC and/or remote |/0O drop.

Series90 ™ -70 ProgrammableControllerReference Manual (GFK-0265): This manual
describes program structure and instructions for the Series 90-70 PLC.

Series 90 ™ -30 ProgrammableController Installation Manual (GFK-0356): This manual
describes the hardware used in a Series 90-30 PLC system, and explains system setup
and operation.

Logicmaster™ 90 Series 90-30/20/Micro Programming Software User’s Manual
(GFK-0466): This manual describes operation of Logicmaster 90-30 software for
configuring, programming, monitoring, and controlling a Series 90-30 PLC.

Series 90 ™ -30/20/Micro ProgrammableControllersReference Manual (GFK-0467): This
manual describes program structure and instructions for the Series 90-30 PLC.

C Programmer’s Toolkit for Series 90t PCMs User’s Manual (GFK-0771): This manual
contains information about the design and construction of C language application
programs for the GE Fanuc Series 90 PCM.

The C Primer. Hancock, Les, and Morris Krieger. New York: McGraw-Hill Book Co.,
Inc., 1982,

C: A Reference Manual. Harbison, Samuel P, and Greg L. Steele. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., Third Edition, 1988.

The C Programming Language. Kernighan, Brian W,, and Dennis M. Ritchie. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., Third Edition, 1988.

Programming in C. Kochan, Stephen. Hasbrouck Heights, New Jersey: Hayden Book
Co,, Inc., 1983.

Learning to Program in C. Plum, Thomas. Cardiff, New Jersey: Plum Hall, Inc., 1983.

Preface

We Welcome Your Comments and Suggestions

At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader’s Comment Card located on the next page.

Henry Konat
Senior Technical Writer

iv PCM C FunctionLibrary Reference Manual — August1996 GFK-0772A

Contents

ContentofthisManual
VTOS Service Functions By Category,
Task Management FuUNctions:

AsynchronousTrap FUNCions:,
Semaphore FUNCLIONS:
Time of Day Clock Functions: i
TiImMer FUNCLIONS: e
Communication Timer Functions: o...
Memory Management Functions:
Memory Module Functions: i
Device [/OFUNCLIONS:t e
Device Driver Support Functions:
Miscellaneous Functions: i
VME FUNCLIONS: ... e
PLC Service Request Interface API Service Functions By Category
PLC Hardware Type, Configuration, and Status Information:
PLC Program and Configuration Checksum Data:

Writing PLC Data References: i,
Controlling PLC Operation:

Reading and Setting the PLC Time of Day Clock:
ADOrt deV ..

AlloC_com _timer ...

0 N oo o o o oo ool A D DB W WL W W WwWNDDNDDNDDNDPREe

e =
= o

api_initialize

[y
N

BIOCK SEM ... e

=
N

Cancel_com _timer

-
a1

cancel_mixed_MEMOrY i

-
[op}

cancel_mixed_memory nowait

-
~

Cancel_timer

-
(o]

chg_priv_level

N
o

chg_priv_level_nowait

N
N

chk _genius_bus

N
~

chk_genius_bus nowait

N
(o]

chk_genius_device

N
[0}

chk_genius_device nowait i

w
o

CloSE eV ...

GFK-0772A PCM C Function Library Reference Manual — August 1996 v

Contents

clr io fault thl
clr_io fault tbl nowait
clr_plc_fault_tbl
clr_plc_fault_tbl_nowait
configure_comm_link L
Dealloc_ com_timer i,
Define led

establish_mixed_memory
establish_mixed_memory nowait
Get best buff
Get board id
Get buff
get_ config_info
get_config_info_nowait
get_CPU_tYPE FeV ittt
get_cpu_type rev._nowait,
Get date
Get dp buff
Get mem _ lim
get_memtype_SiZeSt
get_memtype_sizes nowait
Get Mod
Get next block
get one rackfaults il
get_one_rackfaults nowait
Gel_PCM BV o
get_ prgm_info
get_prgm_info_nowait L
get_rack slot faults L
get_rack_slot_faults nowait
Get task id

Get time ...

Vi PCM C Function Library Reference Manual — August 1996

33
35
37
39
41
42
43
45
49
50
51
52
53
59
62
63
65
66
68
70
72
74
75
76
77
79
81
82
83
85
87
88
90
92
94
96
97

GFK-0772A

Contents

NIt tasK ..o 99
Install_dev 100
Install iSr 101
loCtl eV ... 103
ISt ef L 107
ISet _gef .o 108
LiNK SemM .. 109
Max_avail buff 110
Max_avail mem 111
Notify tasko 112
PN BV .. 113
POSE At ... e 121
PrOCESS BNV . o 123
read _date e 125
read _date_ nowait e 127
Read eV e 129
read_io fault thl 132
read_io fault thl nowait 134
read localdata e 136
read localdata nowait 138
read_mixXed_MeMmMOKY 140
read_mixed_memory nowait 142
read_plc_fault_tbhl 144
read_plc_fault_tbl_nowait 146
read_prgmdata 148
read_prgmdata_nowait 150
read_SYSIMEM .. 152
read_sSysmem_NOWait i 158
read time ... e 160
read _time nowait e 162
read _timedate e 164
read_timedate nowait 166
release_request id 168
FEOSTATUS . ..ot 169
Reserve_dp_buff 171
ReSEt B . o e e 172
Reset gef ..o 173

GFK-0772A PCM C Function Library Reference Manual — August 1996 vii

Contents

RESUME tasK e 174
Return_buff ... e 175
Return_dp buff 176
SEEK BV . 177
Send_VMme INterrupt 180
Set date ... 182
set date nowait 184
Set dbd Ctl 186
St Bf 187
Set gef L 188
Set led .. 189
Set local date i 191
Set local time e 193
Set std deviCe e 196
SEt tIME .o e 197
set_time_nowait 199
set timedate e 201
set_timedate nowait 203
Set vme Ctl .. 205
Special_deV 209

Serial Port Setup Strings (special_code=5) 211

CPU Setup Strings (special_code =5) 212
Start_ CoOmM _tiMer 215
Start PIC . .. 217
Start_ PIC_NOIO o 218
start_plc_Noio_NoOwait 219
start_ plc_ NOWaILo 221
Start timer e 223
SEOP_PIC . 226
stop_plc_ nowait 227
Suspend_task 229
terminate_ComIM _SESSION it et e e e 230
Terminate task 231
Test Bf L e 232
Test _gef .o 233
Test task ... o e 234
UnblocK_sem e 235

viii PCM C Function Library Reference Manual — August 1996 GFK-0772A

Contents

UNIiNK Sem ..o e 236
update_plc_status 237
update_plc_status_nowait i 238
Vme_ clear Icl sem 240
VMeE Fread ... e e e 241
Vme test and Set 243
Vme test Icl Sem 245
VM WEIE L e 247
WVait aSt ..o e 249
Wait ef . e 251
Wit gef . .. 253
Wait task e e 254
Wait time .. 255
Where am i .o e e 257
Wt eV . e e 258
write localdata 261
write_localdata nowait 264
write_prgmdata 266
write_prgmdata_nowait 268
WIITE SYSIMIBIM L e 270
Write_SySmem_NOWaitot 273

GFK-0772A PCM C Function Library Reference Manual — August 1996 ix

Contents

Table 1. GE Fanuc Series 90-70 Module Address Allocation
for Standard Access AM Code —39H i,

Table 2. GE Fanuc Series 90-70 Module Address Allocation
for Short ACCeSSAM COAESttt e

GFK-0772 PCM C FunctionLibrary Reference Manual — February 1993
iX

Contents

Table 1. GE Fanuc Series 90-70 Module Address Allocation

for Standard Access AM Code —39H 206
Table 2. GE Fanuc Series 90-70 Module Address Allocation
for Short AccessAMCodeS ...t 207

X PCM C Function Library Reference Manual — August 1996 GFK-0772A

Chapter

PCM C Functions

This chapter provides a complete reference to all the library functions provided with the
PCM C toolkit. Two categories of functions are included: VTOS operating system
services and Series 90 PLC service request application program interface (PLC API)
services. All the functions are listed in alphabetical order.

Content of this Manual

GFK-0772A

The reference for each library function contains these items:

Usage

This section provides the calling format or formats for the function. It includes the
header file where the function prototype is defined plus the type specifications of
the function return value and all calling parameters. Function names and type
names appear in this typeface , while formal parameter names appear in
this typeface

Some functions have a variable number of parameters (for example, Open_dev
and its relatives). For these functions, all valid calling formats are defined.

Description

The purpose of the function and all its parameters are defined in this section. Valid
ranges of parameter values are also defined.

Return Value

The value or values returned by the function, including error codes, are defined in
this section.

See Also

This section contains a list of related functions. Functions which are used together
(for example, Link_sem , Unblock_sem , Block_sem , and Unlink_sem) and
functions with complementary purposes (for example, Suspend_task and
Resume_task) reference each other here.

Example

An example of C language code which uses the function is provided here. Examples
range from small code fragments to complete programs.

VTOS Service Functions By Category

This section summarizes VTOS services by grouping them in categories of related
services. For full details on all VTOS services, see the following pages of this manual.

Task Management Functions:

Function Name
Get_task_id
Init_task
Process_env
Resume_task
Set_std_device
Suspend_task
Terminate_task
Test_task
Wait_task

Event Flag Functions:

Function Name
Iset_ef

Iset_gef

Reset_ef
Reset_gef
Set_ef
Set_gef
Test_ef
Test_gef
Wait_ef
Wait_gef

AsynchronousTrap Functions:

Function Name
Disable_asts
Enable_asts
Post_ast

Wait_ast

Purpose

Returns the task ID value of the calling task.

Executes a VTOS application program or driver as a task.
Starts a PCM task using a saved environment block.
Allows a suspended task to execute.

Setsastandard I/0 channel for atask.

Prevents a task from executing.

Killsatask permanently and frees its resources.

Returns the set of active tasks.

Waits for a specified task to terminate.

Purpose

Sets one or more local event flags from an interrupt or
communicationtimerserviceroutine.

Sets one or more global event flags from an interrupt or com-
municationtimer serviceroutine.

Resets one or more local event flags.

Resets one or more global event flags.

Sets one or more local event flags.

Sets one or more global event flags.

Tests one or more local event flags.

Tests one or more global event flags.

Waits for one or more local event flags to be set.

Waits for one or more global event flags to be set.

Purpose

Preventsthe calling task from processing ASTs.

Permits the calling task to process ASTs.

Sends an asynchronous trap to a specified task.

Suspends execution of the calling task until an AST is received.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Semaphore Functions:

Function Name
Block_sem
Link_sem

Unblock_sem
Unlink_sem

Time of Day Clock Functions:

Function Name
Elapse

Get_date
Get_time

Timer Functions:

Function Name
Cancel_timer
Start_timer
Wait_time

Communication Timer Functions:

Function Name
Alloc_com_timer
Cancel_com_timer
Dealloc_com_timer
Start_com_timer

Memory Management Functions:

Function Name
Get_best_buff

Get_buff
Get_dp_buff
Get_mem_lim
Max_avail_buff
Max_avail_mem

Reserve_dp_buff

Return_buff
Return_dp_buff

Memory Module Functions:

Function Name
Get_mod

GFK-0772A PCM C Functions

Purpose

Check whether a semaphore is open; wait if not.

Link the calling task to a named semaphore; create one if it is
not found.

Release a semaphore and activate the first waiting task.
Unlink the calling task from a semaphore.

Purpose

Returns a count of milliseconds since the last time its count
was reset.

Returns the current date.

Returns the current time of day.

Purpose

Stopsatimer and undefinesiit.

Defines a timer and starts it counting from zero.

Suspends execution of the calling task for the specified time.

Purpose

Allocatesa communication timer to the calling task.
Stopsacommunication timer.
De-allocatesacommunicationtimer.
Startsapreviouslyallocated communicationtimer.

Purpose

Allocatesmemory from the mallest free memory block that is
at least as large as the requested size.

Allocatesmemory from the first free memory block which is at
least as large as the requested size.

Allocatesmemory from free VMEbus dual ported RAM ina
Series90-70PCM.

Returns the starting address of a memory block reserved for
applicationprograms.

Returns the size in bytes of the largest free memory block.
Returns the total number of bytes in free memory.

Reserves a specified block of VMEbus dual ported RAM ina
Series90-70PCM.

Returns the specified memory buffer to the free memory pool.
Returns the specified block of VMEbus dual ported RAM to
the free memory in a Series 90-70 PCM.

Purpose
Returns the address of a named memory module.

Device /O Functions:

Function Name
Abort_dev

Close_dev
Devctl_dev
loctl_dev

Open_dev
Read_dev
Seek_dev

Special_dev

Write_dev

Device Driver Support Functions:

Function Name
Get_next_block

Install_dev
Install_isr
Notify_task

Miscellaneous Functions:

Function Name
Define_led

Get_board_id
Get_pcm_rev
Set_dbd_ctl
Set_led
Where_am_i

VME Functions:

Function Name
Set_vme_ctl
Vme_clear_Icl_sem

Vme_read
Vme_test_and_set

Vme_test_lcl_sem

Vme_write

PCM 712 Functions:

Function Name

Send_vme_interrupt

Set_local_date
Set_local_time

Purpose

Abortsone or more 1/0 operationsonapreviously opened 1/0
channel.

Closesapreviouslyopened /0O channel.

Performs a specified control operation on a named device.
Performs a specified control operation on a previously opened
1/C0channel.

Opensachannel onanamed 1/0 device.
Returnsinputdatafromapreviously opened 1/0 channel.
Positions the data pointer of a previously opened 1/0 channel
toaspecified location.

Performs aspecial operation on apreviously opened 1/0
channel.

Sendsoutputtoapreviously opened I/0 channel.

Purpose

Returns device argument blocks to a VTOS device driver.
InstallsaVTOS device driver.

Installsa VTOS interruptserviceroutine.

Notifiesa VTOS task when a device operation completes.

Purpose

Defines the function of one of the programmable light-emit-
tingdiodes (LEDs).

Returns the PCM hardware type.

Returns the revision number of VTOS.

Sets the Series 90-70 PCM daughterboard control register.
Sets the state of one of the LEDs.

Returnsthe PLC rack/slot location of the PCM.

Purpose

Sets the VMEDbus access parameters in a Series 90-70 PCM.
Clear asemaphore in VMEbus dual ported RAM of the local
Series 90-70 PCM.

Read VMEbus dual ported RAM in adifferent module.
Acquire asemaphore in VMEbus dual ported RAM of a differ-
entmodule.

Acquire asemaphore in VMEbus dual ported RAM of the local
Series 90-70 PCM.

Write VMEDbus dual ported RAM in adifferent module.

Purpose

AssertsVME IRQ7 interrupt request fromaPCM712.
Sets the current date maintained by aPCM712.

Sets the time of day maintained by a PCM712.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

PLC Service Request Interface API Service Functions By Category

This section summarizes PLC API services by grouping them in categories of related
services. For full details on all PLC API services, see the following pages of this manual.

Managing API Services:

Function Name
api_initialize
configure_comm_link
establish_comm_session
release_request_id

regstatus
terminate_comm_session

Purpose

Initializedata used by PLC API services.

Specifies the communication path to the PLC CPU.
Establishescommunication with the PLC CPU.
Freesarequestidentifier returned by a previous nowait API
request.

Returns the current status of a pending nowait APl request.
Terminates communication with the PLC CPU.

PLC Hardware Type, Configuration, and Status Information:

Function Name
get_cpu_type_rev
get_cpu_type_rev_nowait
get_memtype_sizes
get_memtype_sizes_nowait
chg_priv_level
chg_priv_level_nowait
update_plc_status
update_plc_status_nowait

Purpose
Return the PLC CPU hardware type and firmwarerevision.

Return the sizes of user—-configurable PLC memory types.
Change the PLC access privilege level of the calling task.

Update PLC status data in the global structure
plc_status_info

PLC Program and Configuration Checksum Data:

Function Name
get_prgm_info
get_prgm_info_nowait
get_config_info
get_config_info_nowait

Reading PLC Data References:

Function Name
read_sysmem
read_sysmem_nowait
read_prgmdata
read_prgmdata_nowait
read_localdata
read_localdata_nowait

Writing PLC Data References:

Function Name
write_sysmem
write_sysmem_nowait
write_prgmdata
write_prgmdata_nowait
write_localdata
write_localdata_nowait

GFK-0772A PCM C Functions

Purpose
Return the PLC program checksums.

Return the PLC configuration data checksums.

Purpose
Read up to 2048 bytes of a single PLC reference type.

Read up to 2048 bytes of Series 90-70 %P data.

Read up to 2048 bytes of Series 90-70 %L data.

Purpose
Write up to 2048 bytes of a single PLC reference type.

Write up to 2048 bytes of Series 90-70 %P data.

Write up to 2048 bytes of Series 90-70 %L data.

Controlling PLC Operation:

Function Name
start_plc
start_plc_nowait
start_plc_noio
start_plc_noio_nowait
stop_plc
stop_plc_nowait

Reading Mixed PLC Data References:

Function Name
establish_mixed_memory
establish_mixed_memory_no-
wait

read_mixed_memory
read_mixed_memory_nowait
cancel_mixed_memory
cancel_mixed_memory_nowait

Function Name
clr_plc_fault_tbl
clr_plc_fault_tbl_nowait
clr_io_fault_tbl
clr_io_fault_tbl_nowait
chk_genius_bus
chk_genius_bus_nowait

chk_genius_device
chk_genius_device_nowait

get_one_rackfaults
get_one_rackfaults_nowait
get_rack_slot_faults
get_rack_slot_faults_nowait

read_plc_fault_tbl
read_plc_fault_tbl_nowait
read_io_fault_tbl
read_io_fault_tbl_nowait

Purpose
Set the PLC state to RUN mode.

Set the PLC state to RUN mode with outputs disabled.
(Series 90-70 PLC CPU request only)
Set the PLC state to STOP mode.

Purpose
Establisha mixed memory shopping list for subsequent
read_mixed_memory or read_mixed_memory_nowaitcalls.

Get the mixed memory data previously specified by an estab-
lish_mixed_memorpr establish_mixed_memory_nowestl.
Cancel the mixed memory shopping list previously specified
by an establish_mixed_memongr
establish_mixed_memory_nowaitcall.

Reading and Clearing PLC and I/O Faults:

Purpose
Clearthe entire PLC fault table.

Cleartheentirel/Ofaulttable.

Used to determine whether the specified Genius bus on the
module in the specified rack and slot has a faulted device.
(Series 90-70 PLC CPU request only)

Used to determine whether the specified Genius device at the
specified bus, rack, and slot address is faulted.

(Series 90-70 PLC CPU request only)

Return all the system fault bits for the specified PLC rack.
(Series 90-70 PLC CPU request only)

Used to determine which slot or slots, if any, in a specified rack
have faulted modules.

(Series 90-70 PLC CPU request only)

Read the entire PLC fault table.

Readtheentire |/Ofaulttable.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Reading and Setting the PLC Time of Day Clock:

GFK-0772A

Function Name
read_date
read_date_nowait
read_time
read_time_nowait
read_timedate
read_timedate_nowait
set_date
set_date_nowait
set_time
set_time_nowait
set_timedate
set_timedate_nowait

PCM C Functions

Purpose
Return the current date from the PLC time of day clock.

Return the current time from the PLC time of day clock.
Return the current time and date from the PLC time of day
clock inasingle operation.

Set the date in the PLC time of day clock.

Set the time in the PLC time of day clock.

Set the time and date in both the PLC and PCM time of day
clocksinasingle operation.

Abort_dev

m Usage
#include<vtos.h>

word Abort_dev (channel_handle, operation, notify _flag);
word channel_handle ;

word operation

word notify_flag ;

m Description

This function is used to abort 1/0 operations which are currently in progress on a
specified channel. Abort_dev can be used to selectively terminate all operations
of a given type, such as reads or writes, or it can be used to terminate all outstanding
operations for the specified channel. The channel_handle parameter must
contain a value which was returned by Open_dev. It specifies the channel for the
operation being aborted. The operation parameter specifies the type of
operation to be aborted. It must contain a value from this table.

operation Type of Operation
Value Aborted

ABORT_ALL Alldevice operations.
ABORT_OPEN Open_dev
ABORT_CLOSE Close_dev
ABORT_READ Read_dev
ABORT_WRITE Write_dev
ABORT_SEEK Seek_dev
ABORT_IOCTL loctl_dev
ABORT_SPECIAL Special_dev
ABORT_DEVCTL Devctl_dev

Abort_dev is most commonly used to abort Read_dev and Write_dev
operations.

The notify_flag parameter determines whether the task which initiated the
170 operation will be notified when the abort operation has completed. If its value is
non-zero, the task will be notified in the manner originally specified: by unblocking
the task (WAIT); setting an event flag (EVENT_NOTIFY); or posting an AST
(AST_NOTIFY). An ABORTED error status will be reported for each aborted 1/0
operation.

When a Read_dev or Write_dev operation is aborted, the number of
characters transferred before the abort is reported as shown in this table.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

notify _code of Aborted Operation
WAIT EVENT_NOTIFY AST_NOTIFY
Resultstructuretype None device_result ast_blk
Numberofcharacters | Functionreturnvalue | ioreturn —member arg2 member
transferred isin:
ABORT statusisin: _VTOS_error iostatus member argl member
If notify_flag is set to WAIT, the initiating task will not be notified.
Caution

If one task has initiated a WAIT mode I/O operation, and a different

task aborts the operation with notify _flag set to WAIT, the task
which is waiting for the 1/O operation to complete will never resume
execution.

m Return Value

SUCCESS is returned when there are no errors. If channel _handle isinvalid or
is not currently performing the specified type of 1/0 operation, IO_FAILEDis
returned, and _VTOS error contains BAD_HANDLE

m See Also

Read_dev, Seek _dev, Write_dev

m Example

#include <vtos.h>

word handle, task;
device_result evt_result;
byte buffer [130];

task = Get_task_id ();
handle = Open_dev ("COM1:", READ_MODE, WAIT, task);

Read_dev (handle, buffer, 128, EVENT_NOTIFY, task, EF_00,
(device_result far*)&evt_result);

Abort_dev (handle, ABORT_READ, TRUE);

if (evt_result.ioreturn !=0) {
/* Some characters were received before the abort. */
}

This example opens PCM serial port one for reading and then starts a read operation
in EVENT_NOTIFY mode. Abort_dev is called to abort the read operation, and
the number of characters received before the abort is checked.

PCM C Functions

Alloc_com_timer

10

m Usage
#include<vtos.h>

word Alloc_com_timer (void);

m Description

This function allocates one of four PCM communication timers. Communication
timers use PCM hardware interrupts and timers; they involve less processing
overhead than general purpose timers. There are no function parameters.

VTOS itself uses communication timers for CCM and serial communication. Timers
may or may not be available for C applications.

m Return Value

When the call succeeds, a non-zero timer handle is returned. If no timers are
available, zerois returned, and _VTOS_error contains NO_TIMERS.

Note

Communication timer handles and general purpose timer handles are
not interchangeable.

m See Also

Cancel_com_timer, Dealloc_com_timer, Start_com_timer

m Example

#include <vtos.h>

word com_timer_handle;
com_timer_handle = Alloc_com_timer ();

PCM C Function Library Reference Manual — August 1996

GFK-0772A

api_initialize

m Usage
#include<session.h>

void api_initialize (void);

m Description

This function must be called before any other PLC API interface call. It performsall
the initialization required for communication with the PLC CPU.

m Return Value

None.

m See Also

configure_comm_link, establish_comm_session,
terminate_comm_session

m Example

#include <session.h>

BYTE sesn_id;
REQSTAT status;

main ()

api_initialize ();
if (configure_comm_link ("S90BP”, NULL)) {
status = establish_comm_session ("#7”, &sesn_id);
if (status) {
/* An error occurred — the least significant byte of */
[* status contains the major error code, and the most */
/* significant byte contains the minor error code. */
}else {
/* Make PLC API service request calls. */
status = terminate_comm_session (sesn_id);
}
}

This example initializes the PLC service request application program interface and
opens a communication session with the PLC CPU.

Caution

The device_id string parameter for establish_comm_session
specifies a service point on the CPU: device. The same service point
number must not be used inan Open_dev call.

GFK-0772A PCM C Functions

Block sem

m Usage
#include<vtos.h>

void Block_sem (semaphore_handle);
word semaphore_handle

m Description

This function provides controlled access to PCM resources, such as memory modules
or other data objects in PCM memory, which are shared by two or more tasks.

When the shared resource is free, the Block_sem call returns immediately. But if
the resource is in use by another task, the call does not return until the resource is
free. The semaphore _handle must be a value returned by a previous, successful
call to Link_sem .

Unblock_sem must be called after each Block_sem call. Acallto
Unblock_sem must also be made after the task calls Link_sem to link to the
semaphore.

When a task is forced to wait at a semaphore, its priority is compared to the priority
of the task which currently controls the same semaphore. If the waiting task has
higher priority, the controlling task is temporarily promoted to the priority of the
waiting task. This allows the waiting task to gain control of the semaphore as
quickly as possible. If more than one task is waiting at the semaphore, the priority of
the controlling task is promoted to that of the highest priority waiting task.

Caution

Attempting to block on more than one semaphore at the same time is
likely to cause the calling task to deadlock. Since VTOS device
operations make extensive use of semaphores, applications should
never make a VTOS or PLC API function call while blocked on a
semaphore.

For more information on semaphores, see chapter 7, Multitasking, in the
C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

m Return Value

None.

12 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

Link_sem, Unblock_sem, Unlink_sem

m Example

#include <vtos.h>
word sem_handle;

sem_handle = Link_sem ("MY_SEM");
/* Access or modify the protected data. */
Unblock_sem (sem_handle);

Block_sem (sem_handle);
/* Access or modify the protected data. */
Unblock_sem (sem_handle);

PCM C Functions

13

Cancel_com_timer

m Usage
#include<vtos.h>

word Cancel_com_timer (com_timer_handle);
word com_timer_handle ;

m Description

This function is used to stop (cancel) a communication timer which was previously
started by Start_com_timer . The com_timer_handle is a handle returned by
a previous, successful call to Alloc_com_timer . The function has no effect if
com_timer_handle is invalid or the specified timer is not running.

m Return Value

None.

m See Also

Alloc_com_timer, Dealloc_com_timer, Start_com_timer

m Example

See Start_com_timer

14 PCM C Function Library Reference Manual — August 1996 GFK-0772A

cancel_mixed_memory

GFK-0772A

m Usage

#include<mxread.h>

REQSTATcancel_mixed_memory(session_id , list_id);

BYTEsession_id
BYTE list_id ;

m Description

This function cancels /ist_id

, a mixed memory ”shopping list” which was

previously defined by a successful call to establish_mixed_memory or

establish_mixed_memory_nowait

Since at most two lists may be active at any

time, this function or cancel_mixed_memory_nowait should be used to cancel
an obsolete list before defining a new one. The session id must be a value
returned by a previous, successful call to establish_comm_session

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

CONN_ID_NOT_FOUND

REQUEST_ERROR

The data list specified by list_id
has not been established.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

Anattempt to allocate memory for
therequestfailed.

m See Also

cancel_mixed_memory_nowait, establish_mixed_memory,
establish_mixed_memory_nowait, read_mixed_memory,
read_mixed_memory_nowait

m Example

See establish_mixed_memory

PCM C Functions

15

cancel_mixed_memor y_nowait

m Usage
#include<mxreadnw.h>

REQID cancel_mixed_memory_nowait (session_id,list_id)
BYTE session_id ;
BYTE list_id ;

m Description

See cancel_mixed_memory

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
CONN_ID_NOT_FOUND REQUEST_ERROR The data list specified by list_id

has not been established.

DEVICE_NOT_A/AILABLE | NO_COMMUNICATION | Communication hasnotbeen
established through callsto

api_initialize ,

configure_comm_link , and

establish_comm_session
NO_SMEM_AVAIL REQUEST_ERROR Anattempt to allocate memory for

therequestfailed.

m See Also

cancel_mixed_memory, establish_mixed_memory,
establish_mixed_memory_nowait, read_mixed_memory,
read_mixed_memory_nowait, reqstatus

m Example

See establish_mixed_memory_nowait.

16 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Cancel_timer

Usage
#include<vtos.h>

word Cancel_timer (timer_handle);
word timer_handle ;

Description

This function is used to stop (cancel) a general purpose timer which was previously
started by Start_timer . The timer_handle is the handle returned by
Start_timer . The function has no effect if timer_handle isinvalid.

Return Value

SUCCESS is returned when there are no errors. FAILURE is returned when
timer_handle isinvalid,and _VTOS error contains BAD_TIMER

See Also

Start_timer

Example

See Start_timer

GFK-0772A PCM C Functions

17

chg_priv_level

18

m Usage

#include<utils.h>

REQSTAT chg_priv_level

BYTE session_id
char far*

m Description

session_id , user_password);

user_password ;

This function enables the requesting process to change its PLC access privilege level.

The address in user_password

must point to a NUL terminated ASCII string

which contains a valid PLC password. The string length, not including the NUL
character, is limited to 7 characters. PLC passwords are case sensitive; uppercase
letters only should be used. If the password is valid, the requester’s privilege is
changed to the highest level assigned to the password. If PLC passwords have been
inactivated or disabled by the Logicmaster 90 configuration software package, or if
no passwords have been assigned, user_password
must be a value returned by a previous, successful

character. The session id
call to establish_comm_session

must point to an ASCII NUL

If an invalid password is specified or

passwords are disabled in the PLC CPU, the return value indicates failure.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PASSWORD

REQUEST_ERROR

The user_password is
not a correct password for
any PLC access privilege
level, or passwords have
beeninactivated ordisabled.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

update_plc_status

m Example

#include <utils.h>

REQSTAT status;
char password [] = "MYPWORD?”;

status = chg_priv_level (session_id, password);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* at a new PLC access privilege level */
}

This example assumes that MYPWORD has been assigned by Logicmaster 90 as a
password. It uses a WAIT mode request to change the PLC access privilege level.

PCM C Functions

19

chg_priv_level nowait

20

m Usage

#include<utilsnw.h>

REQID chg_priv_level_nowait (

BYTE session_id
char far*

m Description

See chg_priv_level

m Return Value

user_password ;

session_id , user_password);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PASSWORD

REQUEST_ERROR

The user_password is
not a correct password for
any PLC access privilege
level, or passwords have
beeninactivated ordisabled.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

regstatus, update_plc_status

m Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
char password [] = "MYPWORD”;

request_id = chg_priv_level_nowait (session_id, password);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* at a new PLC access privilege level */
}

This example assumes that MYPWORD has been assigned by Logicmaster 90 as a

password. It uses a NOWAIT mode request to change the PLC access privilege level.

PCM C Functions

21

chk_genius_bus

22

m Usage

#include<faults.h>

REQSTAT chk_genius_bus (session_id , rack_num , slot_ num
bus_num , bus_faulted);

BYTE session_id
BYTE rack_num
BYTE slot_num ;
BYTE bus_num ;

BOOLEANfar* bus_faulted

Description

This function allows the user to determine if a particular GENIUS bus, specified by
the rack/slot address of a Series 90-70 GENIUS Bus Controller module (in rack_num
and slot_num , respectively), and by the controller bus number (in bus_num), is
faulted. This request is valid only for Series 90-70 PLCs. Valid rack numbers are 0
through 7, valid slot numbers are 0 through 9, and valid bus numbers are 0 and 1.
The session_id must be a value returned by a previous, successful call to
establish_comm_session . When the request has completed successfully, the
BOOLEAN variable whose address is specified in bus_faulted will contain
TRUE if the specified bus is faulted, and FALSE otherwise.

Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num,

slot_num, or bus_num
out of range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communication has not been

established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAIT re-

questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults,
get_rack_slot_faults_nowait

m Example

#include <faults.h>

REQSTAT status;
BOOLEAN gbus_fltd;

status = chk_genius_bus (session_id, 0, 3, 1, &gbus_fitd);

if (status |= REQUEST_OK) {
[* investigate the error */
}else if (gbus_flted) {
/* the specified Genius bus is faulted */
}else {
/* the bus is not faulted */
}

This example uses a WAIT mode request to check bus one of the Genius Bus
Controller in slot three of PLC rack zero to determine whether it is faulted.

PCM C Functions

23

chk_genius_bus_nowait

24

m Usage

#include<faultsnw.h>

REQID chk_genius_bus_nowait (

bus_num, bus_faulted

BYTE session_id
BYTE rack_num
BYTE slot_num ;
BYTE bus_num,
BOOLEANfar* bus_faulted

m Description

See chk_genius_bus

m Return Value

The function returns a REQID value. When no error is detected in the request, it is

session_id , rack_num , slot_ num

);

sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The rack_num,
slot_num, or bus_num
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

chk_genius_bus, chk_genius_device, chk_genius_device_nowait,
get_one_rackfaults, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults _nowait, regstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
BOOLEAN gb_fitd;

request_id = chk_genius_bus_nowait (session_id, 0, 3, 1, &gb_fltd);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {
[* investigate the error */
}else if (gb_fited) {
/* the specified Genius bus is faulted */
}else {
/* the bus is not faulted */
}

This example uses a NOWAIT mode request to check bus one of the Genius Bus
Controller in slot three of PLC rack zero to determine whether it is faulted.

GFK-0772A PCM C Functions

chk_genius_device

m Usage
#include<faults.h>
REQSTAT chk_genius_device (session_id , rack_num , slot_ num
bus_num, device_num , device_faulted);
BYTE session_id
BYTE rack_num
BYTE slot_ num ;
BYTE bus_num,
BYTE device_num ;

BOOLEAN far* device_faulted ;

m Description

This function allows the user to determine if a particular Series 90-70 GENIUS device
(for example, a genius block or Hand Held Monitor) is faulted. This request is valid
only for Series 90-70 PLCs. The device is specified by the rack/slot address of a Series
90-70 GENIUS Bus Controller module (in rack_num and slot_num

respectively), the controller bus number (in bus_num), and the device number (in
device_num) on the bus. Valid rack numbers are 0 through 7, valid slot numbers
are 0 through 9, valid bus numbers are 0 and 1, and valid device numbers are 0
through 31. The session_id must be a value returned by a previous, successful
call to establish_comm_session . When the request has completed successfully,
the BOOLEAN variable whose address is specified in device faulted will
contain TRUE if the specified bus is faulted, and FALSE otherwise.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

INVALID_PARAMETER REQUEST_ERROR The rack_num,

slot_ num , bus num
or device_num isoutof
range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

26 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

chk_genius_bus, chk_genius_bus_nowait,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults,
get_rack_slot_faults_nowait

m Example

#include <faults.h>

REQSTAT status;
BOOLEAN gdev_fltd;

status = chk_genius_device (session_id, 0, 3, 1, 30, &gdev_fltd);

if (status |= REQUEST_OK) {

[* investigate the error */
}else if (gbus_flted) {

/* the specified Genius device is faulted */
}else {

/* the device is not faulted */

}
This example uses a WAIT mode request to check device 30 on bus one of the Genius
Bus Controller in slot three of PLC rack zero to determine whether it is faulted.
PCM C Functions 27

chk_genius_device nowait

28

m Usage
#include<faultsnw.h>
REQID chk_genius_device_nowait (session_id , rack_num
slot_num , bus_num ,
device_num , device_faulted);
BYTE session_id
BYTE rack_num
BYTE slot_num ;
BYTE bus_num,
BYTE device_num ;
BOOLEAN far* device_faulted ;

m Description

See chk_genius_device

m Return Value

The function returns a REQID value. When no error is detected in the request, it is

sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by reqgstatus

When REQID or the
is negative, it contains a value from this

table.
Most Significant Byte Least Significant Byte Error Condition
INVALID_PARAMETER REQUEST_ERROR The rack_num ,

slot_ num , bus num
or device_num isout of
range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
get_one_rackfaults, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults _nowait, regstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
BOOLEAN gdev_fltd;

request_id = chk_genius_device_nowait(session_id, 0, 3, 1, 30, &gdev_fitd);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {
[* investigate the error */
} else if (gbus_flted) {
/* the specified Genius device is faulted */
}else {
/* the device is not faulted */
}

This example uses a NOWAIT mode request to check device 30 on bus one of the
Genius Bus Controller in slot three of PLC rack zero to determine whether it is
faulted.

PCM C Functions

29

Close _dev

30

PCM C Function Library Reference Manual — August 1996

m Usage

#include<vtos.h>

word Close_dev (device_handle , notify_code
task_id [,< nowaitoptions >]);
word device_handle ;

word notify_code

word task id ;

where < nowait options > depend on the value of notify_code:

word Close_dev (device_handle ,WAIT, task id) ;

word Close_dev (device_handle ,EVENT_NOTIFY,
local_ef_ mask ,(device_resultfar)
word local_ef mask ;

device_resultfar* result_ptr

task id ,
result_ptr);

word Close_dev (device _handle

ast_routine [,

,AST_NOTIFY,
ast_handle 1);

task_id

void (far* ast_routine)(ast_blk far*);
word ast_handle ;
Description

This function is used to close a device or file which was previously opened by a
successful call to Open_dev ; device handle is the handle returned by
Open_dev. The task id is the task number returned by Get_task_id

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Close_dev s delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

When EVENT_NOTIFY is used, local ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Close_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in vtos.h

If the call succeeds, the ioreturn member of the structure at result _ptr

contains SUCCESS and the iostatus member is undefined; when a failure
occurs, ioreturn contains IO_FAILED, and iostatus contains an error status
code. For adiscussion of asynchronous 1/0 using event flags, see chapter 6, PCM
Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

GFK-0772A

GFK-0772A

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine, it passes the address of an ast_blk structure. The
ast_handle value isinthe handle member of the ast blk ; itis undefined if
no ast_handle was specified. If the call succeeds, the arg2 member of the
ast_blk contains SUCCESS and the argl member is undefined; when a failure
occurs, arg2 contains IO_FAILED, and argl contains an error status code. For a
discussion of asynchronous 1/0 using AST functions, see chapter 6, PCM Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

Return Value

In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, I0_FAILED isreturned; a status code value is available in the global variable
_VTOS error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available

in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status
SUCCESS Undefined Thedevicewassuccessfully closed.
10_FAILED BAD_HANDLE Aninvalid device_handle was specified.

ABORTED The operation was aborted before completion.
m See Also

Get_task_id, Open_dev, Reset_ef, Test_ef, Wait_ef

m Example

#include <vtos.h>
#include <dos.h>
#define AST_CLOSE 27

word close_wait_error, close_ef_error, close_ast_error, close_ast_done;
void far close_ast_func (ast_blk far* p)

if (p—>handle == AST_CLOSE) {
close_ast_done = 1;
if (p—>arg2 != SUCCESS)) {
/* There was a problem. */
close_ast_error = p—>arg1;
}
}

PCM C Functions

31

/*

*

void main ()

* Do some |I/O operations.

word h1, h2, h3, task_id, status;
device_result evt_result;
task_id = Get_task_id ();

hl = Open_dev ("Coml:", WRITE_MODE, WAIT, task_id);
h2 = Open_dev ("Com2:”, WRITE_MODE, WAIT, task_id);
h3 = Open_dev ("CPU:%R1", WRITE_MODE, WAIT, task_id);

Reset_ef (EF_01);
close_wait_error = close_ef_error =
close_ast_done = close_ast_error = 0;

Abort_dev(hl, ABORT_ALL, WAIT);
Abort_dev(h2, ABORT_ALL, WAIT);

Close_dev (hl, EVENT_NOTIFY, task_id,
EF_01, (device_result far*)&evt_result);

Close_dev (h2, AST_NOTIFY, task_id,
close_ast_func, AST_CLOSE);

status = Close_dev (h3, WAIT, task_id);
if (status != SUCCESS)) {
/* There was a problem. */
close_wait_error = _VTOS_error;

}
Wait_ef (EF_01);
if (evt_result.ioreturn != SUCCESS) {

/* There was a problem */
close_ef_error = evt_result.iostatus;

_disable ();
if (Iclose_ast_done) {
Wait_ast ();

_enable ();

In this example, main opens three I/0 channels on the PCM devices COM1:,
COM2; and CPU:. After some I/0 transfer operations, which are not shown here,
170 operations on the serial ports are aborted to assure that any pending nowait
read or write operations are stopped. Then, the channels are closed using
EVENT_NOTIFY, AST_NOTIFY, and WAIT modes, respectively. The program
makes the EVENT_NOTIFY and AST_NOTIFY requests first, followed by the WAIT
request. After the WAIT request has completed, the program waits for completion of
the EVENT_NOTIFY and AST_NOTIFY requests. When a problem occurs,
close_wait_error , close_ef error , and/orclose_ast_error will
contain an error code.

Note that a call to _disable is used to disable maskable PCM interrupts before
close_ast_done is tested. This prevents the AST from being processed between
the test and the Wait_ast call. If the AST is processed before Wait_ast is
called, the call never returns. The _enable function must be called whenever
_disable isused.

32 PCM C Function Library Reference Manual — August 1996 GFK-0772A

clr_io_fault_tbl

GFK-0772A

m Usage

#include<clrflt.h>

REQSTAT clr_io_fault_tbl (
BYTE session_id ;

m Description

session_id);

This function permits the user to clear all existing faults in the 1/0 Fault Table of the
must be a value returned by a previous, successful
call to establish_comm_session

PLC CPU. The session _id

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

33

34

m See Also

clr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl,
read_plc_fault_tbl_nowait

m Example

#include <clrflt.h>
REQSTAT status;
status = clr_io_fault_tbl (session_id);
if (status |= REQUEST_OK) {
[* investigate the error */

}else {
/* the 1/O fault table was cleared */
}

This example uses a WAIT mode request to clear the 1/0 fault table in the PLC CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

clr_io_fault_tbl nowait

GFK-0772A

m Usage

#include<clrfltnw.h>

REQIDclIr_io_fault_tbl_nowait (

BYTE session_id ;

m Description

See clr_io_fault_tbl

m Return Value

session_id);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the

is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

35

36

m See Also

clr_io_fault_tbl, clr_plc_fault_tbl, clr_plc_fault_tbl_nowait,
read_io_fault_tbl, read io_fault_tbl nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstat

regstatus

m Example

#include <clrfltnw.h>

REQID request_id;
REQSTAT status;

request_id = clr_io_fault_tbl_nowait (session_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the I/O fault table was cleared */
}

This example uses a NOWAIT mode request to clear the 1/0 fault table in the PLC

CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

clr_plc_fault_tbl

GFK-0772A

m Usage

#include<clrflt.h>

REQSTAT clr_plc_fault_tbl (

BYTE session_id ;

m Description

session_id);

This function permits the user to clear all existing faults in the PLC Fault Table of the
must be a value returned by a previous, successful

PLC CPU. The session _id

call to establish_comm_session

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

37

38

m See Also

clr_io_fault_tbl, clr_io_fault_tbl nowait,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl,
read_plc_fault_tbl_nowait

m Example

#include <clrflt.h>
REQSTAT status;
status = clr_plc_fault_tbl (session_id);
if (status |= REQUEST_OK) {
[* investigate the error */

}else {
/* the PLC fault table was cleared */
}

This example uses a WAIT mode request to clear the PLC fault table in the PLC CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

clr_plc_fault_tbl_nowait

GFK-0772A

m Usage

#include<clrfltnw.h>

REQIDclIr_plc_fault_tbl_nowait (

BYTE session_id ;

m Description

See clr_plc_fault_tbl

m Return Value

session_id

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by reqgstatus

table.

When REQID or the

is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

39

40

m See Also

clr_io_fault_tbl, cIr_io_fault_tbl_nowait, clr_plc_fault_tbl,
read_io_fault_tbl, read io_fault_tbl nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstatus

m Example

#include <clrfltnw.h>

REQID request_id;
REQSTAT status;

request_id = clr_plc_fault_tbl_nowait (session_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC fault table was cleared */
}

This example uses a NOWAIT mode request to clear the PLC fault table in the PLC

CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

configure_comm_link

GFK-0772A

PCM C Functions

Usage
#include<session.h>

BOOLEAN configure_comm_link (comm_id_string , config_data);
char far* comm_id_string ;
void far* config_data ;

Description

This function must be called after api_initialize . Itis called to identify the link
which will be used to communicate with the PLC CPU. The comm_id_string
parameter must contain the address of the character string "S90BP” . The address
in the config_data parameter is ignored by the PCM implementation of the PLC
API.

The call to establish_comm_session must occur after
configure_comm_link

Return Value

TRUE is returned if api_initialize has already been called,
establish_comm_session has not been called, and comm_id_string points
to the value ”S90BP”. If any of these conditions is not met, FALSE is returned.

See Also

api_initialize, establish_comm_session

Example

See api_initialize

41

Dealloc_com_timer

m Usage
include<vtos.h>

void Dealloc_com_timer (com_timer_handle),
word com_timer_handle

m Description

This function deallocates a communication timer which was previously allocated by

Alloc_com_timer. The com_timer_handle is the communication timer
handle returned by Alloc_com_timer . The function has no effect if
com_timer_handle isinvalid.

Dealloc_com_timer is rarely used. A task’s communication timers are

automatically deallocated if the task terminates.

m Return Value

None.

m See Also

Alloc_com_timer, Cancel_com_timer, Start_com_timer

m Example

#include <vtos.h>

word com_timer_handle;
com_timer_handle = Alloc_com_timer ();
/*

* use the timer

*

Dealloc_com_timer (com_timer_handle);

42 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Define_led

m Usage
#include<vtos.h>

word Define_led (

word led_number ;
word led_definition

m Description

led_number, led_definition);

1

This function has two purposes. It defines the communication events which will

cause one of two light emitting diodes (LEDs) on the PCM to flash. It is also used to

specify which PCM task will be permitted to control one of the LEDs with the

Set led function.

The top LED reports the operational status of the PCM and is not programmable.
LED 1, the center LED, and LED 2, the bottom LED, may be programmed by

Define_led . The led number

respectively.

When Define_led
flash an LED, the least significant byte of led_definition

is used to define PCM communication events which will

event definitions from this table, OR-ed together.

must contain 1 or 2, to specify LED 1 or LED 2,

contains one or more

Event Definition

Description

COM1_XMIT

The specified LED blinks once each time a message is sent from
serial port1.

COM1_RCV

The specified LED blinks once each time a message is received at
serial port1.

COM2Z2_XMIT

The specified LED blinks once each time a message is sent from
serial port2.

COM2_RCV

The specified LED blinks once each time a message is received at
serial port2.

BKP_XMIT

The specified LED blinks once each time a backplane message is sent.

BKP_RCV

The specified LED blinks once each time a backplane message is
received.

To permit a PCM task to use the Set led function to control the specified LED,
the number of the target task must be placed in the most significant byte of

led_definition

The number must be in the range of valid PCM task IDs, but

the specified task does not need to be active. The calling task’s number, returned by
Get_task_id , oradifferent task number may be specified.

Asinglecallto Define_led can perform both functions. The

led_definition

may contain a task number as well as event definitions for the

specified task. See the examples, below.

GFK-0772A PCM C Functions

43

44

m Return Value

Define_led returns a value from this table.
Return Value | _VTOS_error Description
Value
SUCCESS Undefined Thefunctioncompleted successfully.
FAILURE BAD_ARG The led_number orevent definitions in
led_definition is out of range.
NO_TASK The task number in led_definition is out of
range.
m See Also
Set led
m Example

#
include <vtos.h>

word mytask, result;

mytask = Get_task_id ();
result = Define_led (1, COM1_XMIT | COM1_RCV | COM2_XMIT | COM2_RCV);
result = Define_led (2, BKP_XMIT | BKP_RCV | (mytask << 8));

This example defines LED 1 to flash whenever a message is transmitted or received
on either PCM serial port. LED 2 is defined to flash whenever a message is
transmitted or received on the PLC backplane, and is also configured to permit the
calling task to program it with Set_led . Note that LED 2 will flash once per
second when the PCM time-of-day clock resynchronizes itself with the PLC CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Devctl dev

m Usage

#include<vtos.h>

word Devctl_dev (device_name , devctl_code , data_addr , count ,
notify_code , task id [,< nowaitoptions >])

char far* device_name ;

word devctl_code

void far* data_addr ;

word count ;

word notify_code ;

word task id ;

where <nowait options > depend on the value of notify_code

word Devctl_dev (device_name , devctl_code , data_addr , count
WAIT, task id);

word Devctl_dev (device_name , devctl_code , data_addr , count |,
EVENT_NOTIFY, task id , local_ef mask
(device_result far*) result_ptr);

word local_ef mask ;

device_resultfar* result_ptr

word Devctl_dev (device_name , devctl_code , data_addr , count
AST_NOTIFY, task_id , ast_routine [ast _handle 1]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

m Description

This function performs device control operations which are concerned with the
device itself rather than a particular channel. The device_name must contain a
valid PCM device name, ending with a colon, such as ’RAM:” or "COMZ1:”. The
task id is atask number returned by Get_task id . The devctl code
specifies the device operation to be performed, and the usage of data_addr and
count dependon devctl code . Valid devctl_code values are shown in this

table.
devctl_code | Supported Operation Description
Value Devices
1 ROM: Formatdevice Format the device specified by

device_name . All data objects (files, etc.)
maintained by the device will be destroyed.
Currently, only the ROM: device, optionally
available on the PCM 301 (GE Fanuccatalog
No.1C693PCM301)supportsthisoperation.
The data_addr and count parameters
areignored.

GFK-0772A PCM C Functions

46

devctl_code
Value

Supported
Devices

Operation

Description

2

COM1:
COM2:
RAM:
ROM:
PC:

Destroy object.

Destroy (delete) a data object maintained by
the device. The data_addr must point
to a NUL-terminated ASCII string
containing the name of the object to be
destroyed; count isignored.

RAM:
ROM:
PC:

Get object name.

Return the name at the position specified
by count inthe list of data objects on
the device specified by device_name .
The name is copied to a NUL-terminated
string at the address specified by
data_addr ; the C programmer must
ensure that the memory buffer at
data_addr s large enough for the
string. If count exceedsthe number of
objects in the device’s list,a NUL string is
returned.

ROM:

Getspace remaining.

Return the number of free bytes on the
device. The function return contains the
value, expressed as an unsigned integer.
The data_addr and count values
areignored.

coMm1:
comz2:

SetBREAKAST.

Specify anasynchronoustrap (AST) handler
function which will be called when a
BREAK condition is detected on the
specified device. The function address is
specified in data_addr , and count
isignored.

Only one task at a time may receive BREAK
ASTs for each port. The task specified in
task id supercedesany task which may
previously have seta BREAK AST for the
sameport.

coMm1:
comz:

ResetBREAKAST.

Disable AST notification of BREAKS. The
task specified in task id must
previously have called Devctl_dev

toset BREAK AST notification for the
specifieddevice.

coMm1:
comz:

Set ALLSENT
eventflag.

Specify alocal event flag which will be set
when all the data sent by a Write_dev
operationto the specified device has been
transmitted. The count parameter
contains alocal event flag mask specifying
the event flag or flags to be set;
data_addr isignored.

Only one task at a time may be notified of
the ALL SENT condition for each port. The
task specified in task id supercedes
any task which may previously have setan
ALL SENT event flag for the same port.

coMm1:
comz:

Reset ALL SENT
eventflag.

Disable ALL SENT eventflag notification.
The task specified in task _id must
previously have called Devctl_dev

toset ALL SENT notification for the
specifieddevice.

PCM C Function Library Reference Manual — August 1996

Devctl_code | Supported Operation Description

Value Devices
10 COoM1: Maskreceived data Mask any combination of parity, overrun and
COoM2: errors. framingerrors on the specified serial port.

Masking these errors prevents Read_dev
from terminating with an error status when
theyoccur. The data_addr parameteris
ignored, and the count parameter containsa
set of bits to specify the errors that will be
masked:

0x0010 — Parity error mask
0x0020 — Overrun errormask
0x0040 — Framingerrormask

For example, 0x0010 masks parity errorsonly,
0x0050 masks both parity and framing errors,
and 0x0070 masksall three.

When EVENT_NOTIFY is used, local ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Devctl_dev
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast
as a far pointer because its type is not specified by the function prototype in

vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined;
when a failure occurs, ioreturn contains IO_FAILED, and iostatus contains
an error status code. For adiscussion of asynchronous 1/0 using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to handle
the AST. The optional ast_handle contains a user-selected tag value for this
particular operation, to permit the AST function to identify it, if necessary. When
VTOS calls ast _routine , it passes the address of an ast_blk structure. The
ast_handle value isinthe handle member of the ast blk . Ifthe call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the argl
member is undefined; when a failure occurs, arg2 contains IO_FAILED, and argl
contains an error status code. For adiscussion of asynchronous 1/0 using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

Return Value

In WAIT mode, the value returned by a successful Devctl_dev call depends on
the devctl code . When an error occurs, IO_FAILED is returned; a status code
value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available
in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from the following table.

PCM C Functions 47

48

Return Value Status Value Completion Status
Dependson SUCCESS The operationwas successful.
devctl_code
10_FAILED ABORTED The operation was aborted before completion.
UNSUPT The specified devctl_code isnot supported by the
BAD_ARG specifieddevice.
NO_ACCESS The operation attempted to delete a file which is in use
orprotected.
NO_FILE The operation attempted to delete a non-existentfile.
NO_MEMORY The operation requires atemporary buffer which could
not be allocated.
NO_DEVICE The device_name isnotavalid device.
m See Also

loctl_dev, Special_dev

m Example

char name [16];

#include <vtos.h>

word status, task_id;
device_result evt_result;

task_id = Get_task_id ();
status = Devctl_dev ("ROM:”, 1, NULL, 0, WAIT, task_id);

status = Devctl_dev ("RAM:", 2, "MYFILE.DAT", 0, EVENT_NOTIFY,
task_id, EF_03,
(device_result far*)&evt_result);

devctl_value = Devctl_dev ("PC:”, 5, name, 2, AST_NOTIFY,
task_id, devctl_ast_func, AST_DEVCTL);

This example uses WAIT, EVENT_NOTIFY, and AST_NOTIFY Devctl_dev

requests to:

1. formatits ROM: device;

2. delete the file RAM:MYFILE.DAT, and

3. find the file name of the second directory entry in the current directory on the
current drive of a PC: device attached to the PCM file server port.

The PCM is assumed to be a PCM 301. The definitions of devctl_ast func and
AST_DEVCTL are not shown. See Close_dev.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Disable asts

m Usage
#include<vtos.h>

void Disable_asts (void);

m Description

This function prevents the calling task from executing asynchronous traps (ASTs)
until they are re-enabled by a subsequent Enable_asts call. ASTs are often
disabled while accessing data which is shared by mainline and AST functions in the
same task.

If ASTs are already pending, they will not be serviced until ASTs are re-enabled by

calling Enable_asts . Disable_asts may be called more than once (calls may
be nested), as long as one call to Enable_asts is eventually made for each
Disable_asts call.
Caution
After calling Disable_asts , never call Wait_ast before calling
Enable_asts. A PCM lockup or other unexpected operation may
result.

m Return Value

None.

m See Also

Enable_asts

m Example

#include <vtos.h>

Disable_asts ();

/*

* Access shared data.
*

Enable_asts ();

GFK-0772A PCM C Functions 49

Elapse

50

m Usage
#include<vtos.h>

long unsigned Elapse (continue_flag);
word continue_flag

m Description

This function returns the number of milliseconds since the last reset of its count. The

count is reset when continue_flag is zero,

m Return Value

The number of milliseconds is returned as a long unsigned integer.
m See Also

m Example

#include <vtos.h>

long unsigned ms_since_reset;
ms_since_reset = Elapse (0);

This example reads the Elapse countand resets it as well.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Enable_asts

GFK-0772A

m Usage
#include<vtos.h>

void Enable_asts (void);

m Description

This function enables the calling task to resume processing of asynchronous traps
(ASTs). If ASTs have not been disabled, the call has no effect.

m Return Value

None.

m See Also

Disable_asts

m Example

See Disable_asts

PCM C Functions

51

establish_comm_session

52

m Usage

#include<session.h>

REQSTAT establish_comm_session (device_id , session_id);

char far* device_id ;
BYTEfar* session_id

m Description

This function performs the steps needed to establish a communication session with
the PLC CPU. The device _id parameter must contain the address of a string
which specifies a channel number for the session. The string must start with the "#
character, followed by one or two decimal digit characters containing an integer in
the range 5 through 31, inclusive. The session_id parameter must contain the
address of a variable declared as type BYTE. When the function returnssuccessfully,
the BYTE at session_id will contain a value which must be used to identify the
current session in subsequent PLC API function calls.

Caution

The channel number specified in the device id parameter must not
be used inacall to Open_dev for the CPU:# device.

Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition
API_NOT_INITIALIZED REQUEST_ERROR No previous call to
api_initialize
wasmade.
DEVICE_NOT_A/AILABLE NO_COMMUNICATION The channel specified by
device_id could not be
opened..
NO_SMEM_AVAIL REQUEST_ERROR An attempttoallocate

memory for the request failed.

PCM C Function Library Reference Manual — August 1996

m See Also

api_initialize, configure_comm_link

m Example

See api_initialize

GFK-0772A

establish_mixed_memory

GFK-0772A

m Usage
#include<mxread.h>
REQSTAT establish_mixed_memory (session_id , list_size ,

mixed_list_ptr , list_id_ptr);

BYTE session_id
WORD list_size ;
MIXED_MEMORY_READ_STRUCfar'mixed_list_ptr ;
BYTE far* list_id_ptr ;

m Description

The functions establish_mixed_memory , read_mixed_memory , and
cancel_mixed_memory are used together to read a collection of PLC memory
data from the PLC CPU. The collection can contain up to 2 Kbytes of data, and can
include up to 59 different memory references in Series 90-30 PLCs and 256 different
references in Series 90-70 PLCs. This method is very efficient when the same
collection of data is requested from the PLC many times.

A collection (or ”shopping list””) of PLC data memory formats is specified by calling
establish_mixed_memory . Up to two different lists may be established at a
time. The mixed_list_ptr parameter must contain the address of a
MIXED_MEMORY_READ_STRWfructure, as defined in mixtypes.h . The
session_id must be a value returned by a previous, successful call to

establish_comm_session . The list_size must contain the size in BYTEs of

the MIXED_MEMORY_READ_STRURGluding all its memory formats. When the
function completes successfully, the address specified in the list_id ptr
parameter will contain a unique identifier value for the list.

The MIXED_MEMORY_READ_STRWfructure may be thought of as:

typedef struct mem_format_rec {
BYTE memory_type;
WORD mem_offset;
BYTE mem_length;

} MEM_FORMAT_STRUC;

typedef struct mixed_memory_read_rec {

char local_pblock_name[8];
WORD local_segment;
WORD num_mem_formats;

MEM_FORMAT_STRUC mem_formats [num_mem_formats];
} MIXED_MEMORY_READ_STRUC;

PCM C Functions

53

However, standard C compilers complain about the variable length array
declaration, mem_formats [num_mem_formats] . The array size could be
declared large enough to contain the maximum number of memory formats. But
there is no need to keep the shopping list around after it is passed to
establish_mixed_memory . The best solution is to simulate a variable length
array by allocating just enough free memory to hold one
MIXED_MEMORY_READ_STRUgtus zero or more copies of MEM_FORMAT_STRUC
The total number of MEM_FORMAT _STR$)Gncluding the one in the
MIXED_MEMORY_READ_STRUGnust equal the actual number of formats in the
list. After the list has been established, the memory is freed. The example program
below shows how to do this.

Caution

Any C source code which accesses members of a MEM_FORMAT_STRUC
must be compiled with the /Zp command line option of the

Microsoft C compiler. This option enables structure packing. To be
recognized by the PLC CPU, the MEM_FORMAT_STRUE&tructure must
be packed.

The local_pblock_name member must contain the name of a PLC program
subblock when any of the memory formats specifies Series 90-70 %L data. It must
contain the PLC program name when any of the memory formats specifies Series
90-70 %P data and none of the formats specify %L data. Each list may specify %L
data from at most one subblock.

The local_segment member must contain zero. The num_mem_formats
member must contain the number of memory formats in the list (that is, the number
of array elements in mem_formats).

The actual ”shopping list” of memory reference formats is contained in the
mem_formats array member of the MIXED_MEMORY_READ_STRUructure.
Each element of mem_formats specifies a PLC memory reference by type, starting
offset, and length.

The memory_type member of each mem_formats element must contain a valid
memory type. This table shows the memory type values from mixtypes.h and
memtypes.h which may be used.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

Reference Access Data memory_type
Type Type Type Value
%Al Analoglnput Register WORD Al_DATA
Analog InputHigh Alarm BYTE Al_HIALR
Analog InputLow Alarm BYTE Al_LOALR
Analog Input Fault/Ndrault BYTE Al_FAULT
AnalogInputDiagnostic BYTE Al_DIAG
%AQ Analog OutputRegister WORD AQ_DATA
AnalogOutputHigh Alarm BYTE AQ_HIALR
Analog OutputLow Alarm BYTE AQ _LOALR
Analog Output Fault/Nd-ault BYTE AQ_FAULT
AnalogOutputDiagnostic BYTE AQ_DIAG
%R RegisterMemory WORD R_DATA
%P ProgramRegister Memory (Series 90-70 PLC only) WORD P_DATA
%L LocalRegister Memory (Series 90-70 PLC only) WORD L_DATA
%I Input Status Table Discretememory I_STATUS_BYTE
Input Transition Table in BYTEmode. I_TRANS_BYTE
Input Override Table I_OVRD_BYTE
Input Diagnostic Table I_DIAG_BYTE
%Q Output Status Table Discretememory Q_STATUS BYTE
Output Transition Table in BYTEmode. Q_TRANS_BYTE
Output Override Table Q_OVRD_BYTE
Output Diagnostic Table Q_DIAG_BYTE
%T Temporary Status Table Discretememory T_STATUS_BYTE
Temporary Transition Table in BYTE mode. T_TRANS_BYTE
Temporary Override Table T_OVRD_BYTE
%M Internal Status Table Discretememory M_STATUS BYTE
Internal Transition Table in BYTEmode. M_TRANS_BYTE
Internal Override Table M_OVRD_BYTE
%SA System A Status Table Discretememory SA_STATUS BYTE
System A Transition Table in BYTEmode. SA_TRANS_BYTE
System A Override Table SA_OVRD_BYTE
%SB System B Status Table Discretememory SB_STATUS _BYTE
System B Transition Table in BYTEmode. SA_TRANS_BYTE
System B Override Table SB_OVRD_BYTE
%SC System C Status Table Discretememory SC_STATUS_BYTE
System C Transition Table in BYTEmode. SC_TRANS_BYTE
System C Override Table SC_OVRD_BYTE
%S System Status Table Discretememory S_STATUS_BYTE
System Transition Table in BYTEmode. S_TRANS_BYTE
System Override Table S_OVRD_BYTE
%G Global Genius Status Table Discretememory G_STATUS_BYTE
Global Genius Transition Table in BYTEmode. G_TRANS_BYTE
Global Genius Override Table G_OVRD_BYTE

GFK-0772A

PCM C Functions

55

Discrete Data Formats

Note that discrete memory types are specified as BYTE mode. To reduce PLC
processing, discrete data is requested and returned in the format used internally by
the PLC CPU. Consequently, the starting and ending references for discrete data
must be specified differently than for read_sysmem . This figure shows the
relationship of BYTE mode addressing to our usual way of thinking about discrete
references.

BYTE 2 BYTE 1 BYTE 0
%100024 11110111 11011110 11101101 %100001

T L %100003

%100021

Suppose that an application requires discrete input table values from %100003
through %100021, inclusive. %I100003 is in the first BYTE of the discrete input table;
this BYTE is addressed as BYTE zero. When the range of interest begins with any of
the inputs %100001 through %100008, the value in the mem_offset member of
the corresponding mem_formats element must be zero. Similarly, when the
range of interest starts within %100009 through %100016, the mem_offset value
must be one. A simple algorithm for calculating the byte offset value for any
conventional discrete reference is:

byte offset = (discrete_ref—-1)/8

where “/”” is the C language integer division operator, which produces an integer
result by simply throwing away any remainder. If you try this algorithm with any of
the discrete input references from the figure above, your result should agree with
the BYTE numbers above the groups of inputs. For example, %100008 is in BYTE 0,
%I100009 is in BYTE 1, and %100024 is in BYTE 2.

The mem_offset of each mem_formats element with a discrete
memory_type must contain a zero-based byte address calculated with this
algorithm.

The BYTE mode length for discrete references is simply the BYTE offset of the
ending reference minus the BYTE offset of the starting reference plus one:

byte_length = ending_byte_offset — starting_byte_offset + 1

where ending_byte offset and starting_byte offset are BYTE
offsets calculated using the previous algorithm. For example, the BYTE length
required to get two discrete references which are in the same BYTE is obviously one,
which agrees with the result produced by the algorithm. Furthermore, the result
using the range of references from %100008 through %100017, inclusive, is three; a
glance at the figure shows that this is correct. The mem_length of each
mem_formats element with a discrete memory_type must contain a BYTE
length calculated with this algorithm.

Returning to the example using %100003 through %100021, we see that the correct
mem_offset and mem_length values are zero and three, respectively. The
example program below includes C source code to use these inputs in a memory list.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

WORD Data Formats

The mem_offset

values for WORD data, such as %R, are also zero-based. They

are simply one less than the conventional. one-based references. For example, the

offset for %R00001 is zero; the offset for %P1000 is 999.

WORD data values for mem_length

The #define

values, for both discrete and word references.

m Return Value

are simply the number of words desired.

section of the example program below contains simple methods for
converting starting and ending references to mem_offset

and mem_length

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

CONN_ID_NOT_FOUND

REQUEST_ERROR

Two mixed memory”’shopping
lists” alreadyexist..

INVALID_CONN_SIZE

REQUEST_ERROR

The list_size specifies
too many point formats. The
maximum values are: 256 for
Series 90-70 PLC CPUsand 59
for Series 90-30 PLC CPUs.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

cancel_mixed_memory, cancel_mixed_memory_nowait,

establish_mixed_memory_nowait, read_localdata_nowait,
read_localdata_nowait, read_mixed_memaory,
read_mixed_memory_nowait, read_prgmdata, read_prgmdata_nowait,
read_sysmem, read_sysmem_nowait

m Example

PCM C Functions

57

58

#include <mxread.h>

#include <malloc.h>

#include <string.h>

#define NUM_FMTS 2

#define FIRST_L_REF 11

#define LAST_L_REF 16 /* %L00011 through %L00016, inclusive */
#define L_SIZE ~ (LAST_L_REF - FIRST_L_REF + 1)

#define FIRST_I_REF 3

#define LAST_I_REF 21 /* %100003 through %100021, inclusive */
#define I_SIZE ~ ((LAST_I_REF —1)/8 — (FIRST_I_REF —1)/8 + 1)

main ()

BYTE mixed_data [L_SIZE * sizeof (WORD) + |_SIZE * sizeof (BYTE) |;
WORD list_size, i_start;
REQSTAT status;
MIXED_MEMORY_READ_STRUC far* mmp;
void far* dp;
BYTE session_id,;
BYTE list_id;
/*
* Use api_initialize, configure_comm_link, and establish_comm_session
* to start PLC communication and initialize session_id.
*
list_size = MIXED_MEM_STRUC_SIZE + (NUM_FMTS - 1) * MEM_FMT_STRUC_SIZE;
mmp = malloc(list_size);

_fstrepy (mmp—>local_pblock_name, "LOCALB");
mmp—>local_segment = 0O;
mmp—>num_mem_formats = NUM_FMTS;

mmp—>mem_formats [0].memory_type = L_DATA,
mmp—>mem_formats [0].mem_offset = FIRST_L_REF - 1,
mmp—>mem_formats [0].mem_length = L_SIZE;

mmp—>mem_formats [1].memory_type = |_STATUS_BYTE;
mmp—>mem_formats [1].mem_offset = (FIRST_I_REF - 1) / 8;
mmp—>mem_formats [1].mem_length = |_SIZE;

status = establish_mixed_memory (session_id, list_size, mmp, &list_id);

if (status |= REQUEST_OK) {
[* investigate the error */
}else {
/* The new mixed memory list was established, so the */
[* buffer with the shopping list is no longer needed. */
free(mmp);
status = read_mixed_memory (session_id, list_id, mixed_data);
if (status |= REQUEST_OK) {
[* investigate the error */
}else {
/* The mixed memory data is available: L_SIZE WORDS of %L */
[* data start at mixed_data, and |_SIZE BYTES of %I data */
[* start at mixed_data + L_SIZE * sizeof (WORD). */
/* Cancel the PLC list_id when it is no longer needed. */
status = cancel_mixed_memory (session_id, list_id);

if (status |= REQUEST_OK) {
[* investigate the error */
}else {
/* the list was cancelled */
}

This program uses WAIT mode requests to establish a list for reading mixed memory;,
reading the data in the list, and cancelling the list.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

establish_mixed_memory_nowait

m Usage
#include<mxreadnw.h>
REQID establish_mixed_memory_nowait (session_id , list_size ,
mixed_list_ptr ,
list_id_ptr);
BYTE session_id
WORD list_size ;
MIXED_MEMORY_READ_STRid€ mixed_list_ptr ;
BYTE far* list_id_ptr ;

m Description

See establish_mixed_memory

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
CONN_ID_NOT_FOUND REQUEST_ERROR Two mixed memory”’shopping
lists” alreadyexist..
INVALID_CONN_SIZE REQUEST_ERROR The list_size specifies

too many point formats. The

maximum values are: 256 for

Series 90-70 PLC CPUs and 59
for Series 90-30 PLC CPUs.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

GFK-0772A PCM C Functions 59

m See Also

cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, read_localdata_nowait,
read_localdata_nowait, read_mixed_memaory,
read_mixed_memory_nowait, read_prgmdata, read_prgmdata_nowait,
read_sysmem, read_sysmem_nowait

m Example

#include <mxread.h>

#include <malloc.h>

#include <string.h>

#define NUM_FMTS 2

#define FIRST_L_REF 11

#define LAST_L_REF 16 /* %L00011 through %L00016, inclusive */
#define L_SIZE =~ (LAST_L_REF - FIRST_L_REF + 1)

#define FIRST_I_REF 3

#define LAST_I_REF 21 /* %100003 through %100021, inclusive */
#define I_SIZE ~ ((LAST_I_REF —1)/8 — (FIRST_I_REF —1)/8 + 1)

main ()

BYTE mixed_data [L_SIZE * sizeof (WORD) + |_SIZE * sizeof (BYTE) |;
WORD list_size, i_start;
REQSTAT status;
REQID request_id;
MIXED_MEMORY_READ_STRUC far* mmp;
void far* dp;
BYTE session_id,;
BYTE list_id;
/*
* Use api_initialize, configure_comm_link, and establish_comm_session
* to start PLC communication and initialize session_id.
*
list_size = MIXED_MEM_STRUC_SIZE + (NUM_FMTS - 1) * MEM_FMT_STRUC_SIZE;
mmp = malloc(list_size);

_fstrepy (mmp—>local_pblock_name, "LOCALB");
mmp—>local_segment = 0O;
mmp—>num_mem_formats = NUM_FMTS;

mmp—>mem_formats [0].memory_type = L_DATA,
mmp—>mem_formats [0].mem_offset = FIRST_L_REF - 1,
mmp—>mem_formats [0].mem_length = L_SIZE;

mmp—>mem_formats [1].memory_type = |_STATUS_BYTE;
mmp—>mem_formats [1].mem_offset = (FIRST_I_REF - 1) / 8;
mmp—>mem_formats [1].mem_length = |_SIZE;

60 PCM C Function Library Reference Manual — August 1996

GFK-0772A

request_id = establish_mixed_memory_nowait (session_id,
list_size, mmp, &list_id);
if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {
[* investigate the error */
}else {
/* The new mixed memory list was established, so the */
[* buffer with the shopping list is no longer needed. */
free(mmp);
request_id = read_mixed_memory_nowait (session_id,
list_id, mixed_data);
if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {
[* investigate the error */
}else {
/* The mixed memory data is available: L_SIZE WORDS of %L */
/* data start at mixed_data, and |_SIZE BYTES of %I data */
[* start at mixed_data + L_SIZE * sizeof (WORD). */
/* Cancel the PLC list_id when it is no longer needed. */
request_id = cancel_mixed_memory_nowait (session_id, list_id);
if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {
[* investigate the error */
}else {
/* the list was cancelled */
}

This example uses NOWAIT mode requests to establish a list for reading mixed
memory, reading the data in the list, and cancelling the list.

GFK-0772A PCM C Functions

Get_best_buff

62

Usage
#include<vtos.h>

void far* Get_best_buff (size_in_bytes),
long unsigned size_in_bytes

Description

This function allocates PCM free memory using the ”best fit” algorithm. The
size_in_bytes is the size of the desired memory block, which may be as large as
the largest block of free memory in the PCM. When PCM free memory is
fragmented, the smallest free memory block which is as large or larger than
size_in_bytes is returned.

Return Value

When the call succeeds, Get_best_buff returnsa far pointer to the newly
allocated memory block. If the allocation fails, a NULL pointer is returned.

See Also

Get_buff, Max_avail_buff, Return_buff

Example

#include <vtos.h>

byte far* buff_ptr;
long unsigned buff_size = 66000;

if (Max_avail_buff () < buff_size) {

[* sorry, can't allocate buff_size bytes */

}else {

buff_ptr = Get_best_buff (buff_size);
/* use the memory buffer */
Return_buff (buff_ptr);

This example allocates a 66,000 byte memory block, if one is available. The block is
used and then returned to free memory.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Get_board_id

m Usage

#include <vtos.h>

board_id Get_board_id (void);

m Description

This function returns hardware identification codes for the PCM where it executes.

m Return Value

Get_board_id returns a structure type, board_id

Series 90-70 PCMs and Series 90-70 standalone PCMs with various daughter boards
installed, the id member of this structure contains one of these values:

, defined in VTOS.H. For standard

Standard Series 90-70

Series 90-70 Standalone
PCM, PCM,

IC697PCM711 IC697PCM712 DaughterBoard Type
0x0000 0x0040 Nodaughterboard
0x001C 0x005C 64Kmemory board (192K bytes total)
0x001F 0x005F 128Kmemory board (256K bytes total)
0x001E 0x005E 256Kmemory board (384K bytes total)
0x001D 0x005D 512Kmemory board (640K bytes total)
0x001B 0x005B DLANcommunicationboard

For Series 90-70 display coprocessor modules, the id

one of these values:

member of this structure contains

Return Value

Module Type

0x0080

Series90-70 Graphics Display Coprocessor Module with
video daughter board.

0x0081

Series90-70 AlphanumericDisplay Coprocessor Module.

For Series 90-30 PCMs and derivative module types, the id member of this structure
contains one of these values:

Return Value

Module Type

0x00FF

Series90-30 PCM model IC693PCM300 (160K bytes).

0x00FE

Series 90-30 PCM model IC693PCM301 (192K bytes).

0x00FC

Series 90-30 PCM model IC693PCM311 (640K bytes).

0x0082

Series90-30 AlphanumericDisplay Coprocessor Module.

GFK-0772A PCM C Functions

63

64

The hardware_type member of the returned structure specifies the Series 90-70

hardware type when the PCM firmware version is 4.03 or

newer:

Value of hardware_type Hardware Type
0 PCMA1
1 PCMA2
2 PCMA3

The hardware_type value is undefined in a Series 90-30 PCM and when the PCM

firmware is older than version 4.03.

m See Also

m Example

#include <vtos.h>

#define 9030_PCM 0x0020
#define STANDALONE_PCM 0x0040
#define DISPLAY_COPROC 0x0080

board_id bid;

bid = Get_board_id ();
if (bid.id & 9030_PCM) {
/* a Series 90-30 PCM */
} else if (bid.id & DISPLAY_COPROC) {
/* an Alphanumeric or Graphic Display Coprocessor */
}else {
/* a Series 90-70 PCM */
if (Get_pcm_rev() >= 0x0403) {

}
if (bid.id & STANDALONE_PCM) {
/* a Series 90-70 standalone PCM */
}else {
/* a Series 90-70 standard PCM */
}
}

/* bid.hardware_type contains 0 (PCMA1), 1 (PCMA2) or 2 (PCMA3) */

This example shows how to determine the PCM hardware configuration from the

word value returned by Get_board_id

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Get_buff

GFK-0772A

PCM C Functions

Usage
#include<vtos.h>

void far* Get_buff (size_in_bytes),
long unsigned size_in_bytes ;

Description

This function allocates PCM free memory using the first fit” algorithm. The
size_in_bytes is the size of the desired memory block, which may be as large as
the largest block of free memory in the PCM. When PCM free memory is
fragmented, the list of free blocks is searched, and the first free memory block which
is as large or larger than size_in_byte s isreturned.

Return Value

When the call succeeds, Get_buff returnsa far pointer to the newly allocated
memory block. If the allocation fails, a NULL pointer is returned.

See Also
Get_best_buff, Max_avail_buff, Return_buff

Example

See Get_best_buf

65

get_config_info

66

m Usage

#include<chksum.h>
#include <apitypes.h>

REQSTAT get_config_info (

BYTE

CONFIG_INFO_STRUC far*

m Description

session_id , config_info_ptr);

session_id
config_info_ptr ;

This function retrieves length and checksum information about the Logicmaster 90
configuration data currently stored in the PLC PCU. It can be used to determine if
the configuration has changed. The session _id must be a value returned by a
previous, successful call to establish_comm_session The config_info_ptr
must contain the address of a structure of type CONFIG_INFO_STRUCas defined
in apitypes.h . This structure must be allocated by the caller; the caller is
responsible for ensuring that the allocated memory is large enough to hold the
requested data. After a successful return, the structure will contain data from the
current PLC configuration.

Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Error Condition

Most Significant Byte Least Significant Byte

DEVICE_NOT_A/AILABLE

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_COMMUNICATION

NO_SMEM_AVAIL

REQUEST_ERROR Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

There are 256 NOWAIT re-
questsalreadyoutstanding.

REQUEST_ERROR

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

get_config_info_nowait, get_prgm_info, get_prgm_info_nowait

m Example

#include <chksum.h>

REQSTAT status;
CONFIG_INFO_STRUC config_info;
status = get_config_info (session_id, &config_info);

This example uses a WAIT mode request to get the length and checksums of the
Logicmaster 90 configuration data in the PLC CPU.

PCM C Functions

67

get_config_info_nowait

m Usage
#include<chksumnw.h>
REQID get_config_info_nowait (session_id , config_info_ptr);
BYTE session_id

CONFIG_INFO_STRUCfar* config_info_ptr ;

m Description

See get_config_info

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqgstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

68 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

get_config_info, get_prgm_info, get_prgm_info_nowait,
regstatus

m Example

#include <chksumnw.h>

REQID request_id;
REQSTAT status;
CONFIG_INFO_STRUC config_info;

request_id = get_config_info_nowait (session_id, &config_info);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

[* the config info is available */
}

This example uses a NOWAIT mode request to get the length and checksums of the
Logicmaster 90 configuration data in the PLC CPU.

PCM C Functions

69

get_cpu_type_rev

m Usage
#include<utils.h>

REQSTAT get_cpu_type_rev (session_id , cpu_type rev);
BYTE session_id
CPU_TYPE_STRUCfar* cpu_type rev ;

m Description

This function obtains the major and minor CPU type, along with the major and
minor PLC CPU software revision. The session_id must be a value returned by
a previous, successful call to establish_comm_session . The cpu_type rev
parameter must contain the address of a structure of type CPU_TYPE_STRUCas
defined in apitypes.h . This structure must be allocated by the caller; the caller is
responsible for ensuring that the allocated memory is large enough to hold the
requested data. After a successful return, the structure at cpu_type _rev will
contain data from the PLC.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

70 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

get_cpu_type_rev_nowait

m Example

#include <utils.h>

REQSTAT status;
CPU_TYPE_STRUC cpu_type;
status = get_cpu_type_rev (session_id, &cpu_type);

This example uses a WAIT mode request to get the model number and firmware
release of the PLC CPU.

PCM C Functions

71

get_cpu_type_rev_nowait

m Usage
#include<utilsnw.h>
REQID get_cpu_type_rev_nowait (session_id , cpu_type rev);
BYTE session_id

CPU_TYPE_STRUCfar* cpu_type rev ;

m Description

See get_cpu_type_rev

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

72 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

get_cpu_type_rev, regstatus

m Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
CPU_TYPE_STRUC cpu_type;

request_id = get_cpu_type_rev_nowait (session_id, &cpu_type);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* the new PLC hardware data is available */
}

This example uses a NOWAIT mode request to get the model number and firmware
release of the PLC CPU.

PCM C Functions

73

Get_date

m Usage
#include<vtos.h>

long unsigned Get_date (void);

m Description

This function returns a long unsigned integer which contains the current day of the
week, day of the month, month and year from the PCM’s local internal time of day
clock, which is normally synchronized with the PLC CPU clock.

m Return Value

The date format is:

Most Least
Lo Day of Day of N
Significant Year Month the Month the Week Significant
Byte Byte

m See Also

Get_time

m Example

#include <vtos.h>
#include <stdio.h>

byte date [sizeof (long)];
*((long *)date) = Get_date ();

printf ("day of week = %d, day of month = %d, month = %d, year = %d\n”,
date [0], date [1], date [2], date [3]);

74 PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

Get_dp_buff

Usage
#include<vtos.h>

void far* Get_dp_buff (size_in_bytes),
word size_in_bytes

Description

This function allocates a block of VMEbus dual ported memory in a Series 90-70
PCM. The size _in_bytes parameter specifies the memory buffer size. When
the call succeeds, the buffer is reserved for exclusive use by the calling task.

Return Value

When Get_dp_buff completes successfully, it returns a far pointer to the
allocated buffer. If a buffer of the requested size is not available or the call is made in
a Series 90-30 PCM, a NULL pointer is returned and _VTOS_error contains
NO_MEMORY.

See Also
Reserve_dp_buff, Return_dp_buff

Example

#include <vtos.h>
struct mystruct far* vme_memory_ptr;

vme_memory_ptr = Get_dp_buff (4096);
if (vme_memory_ptr != NULL) {

[* use the VMEbus memory */
Return_dp_buff (vme_memory_ptr);

PCM C Functions

75

Get_mem_lim

m Usage
#include<vtos.h>

void far* Get_mem_lim (void);

m Description

This function returns the starting address of the memory block at the top of PCM
memory which has been excluded from VTOS use. This address is set by the Y
command of the PCM command interpreter. Memory in the excluded area may be
used as private memory by a PCM application.

To determine the end of the private application memory area, use Get_board_id
to find the PCM hardware type.

m Return Value

After a memory limit has been set using the PCM Y command, Get_mem_lim
returnsa far address which is one byte above the last memory byte available to
VTOS. When no limit has been set, Get_ mem_lim returns NULL.

m See Also
Get_board_id

m Example

#include <vtos.h>

byte far* private_memory_ptr;
private_memory_ptr = Get_mem_lim ();
if (private_memory_ptr != NULL) {

/* use the private memory */
}

76 PCM C Function Library Reference Manual — August 1996

GFK-0772A

get_memtype_sizes

GFK-0772A

m Usage

#include<utils.h>

REQSTAT get_memtype_sizes (

BYTE

MEM_SIZES_STRUC far*

m Description

session_id , mem_sizes),
session_id
mem_sizes;

This function obtains the sizes of various PLC memory types. The session_id

must be a value returned by a previous, successful call to
establish_comm_session

m Return Value

The mem_sizes parameter must contain the
address of a structure of type MEM_SIZES STRUCas defined in apitypes.h

This structure must be allocated by the caller; the caller is responsible for ensuring
that the allocated memory is large enough to hold the requested data. After a
successful return, the structure at mem_sizes will contain data from the PLC.

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

77

78

m See Also

get_memtype_sizes_nowait

m Example

#include <utils.h>

REQSTAT status;
MEM_SIZES_STRUC plc_mem_sizes;

status = get_memtype_sizes (session_id, &plc_mem_sizes);

This example uses a WAIT mode request to get the sizes of the PLC memory types.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

get_memtype_sizes nowait

m Usage
#include<utilsnw.h>
REQID get_memtype_sizes_nowait (session_id , mem_sizes);
BYTE session_id

MEM_SIZES STRUCfar* mem_sizes;

m Description

See get_memtype_sizes

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

GFK-0772A PCM C Functions

80

m See Also

get_memtype_sizes, regstatus

m Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
MEM_SIZES_STRUC plc_mem_sizes;

request_id = get_memtype_sizes_nowait (session_id, &plc_mem_sizes);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* the memory size data is available */
}

This example uses a NOWAIT mode request to get the sizes of the PLC memory
types.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Get_mod

m Usage
#include<vtos.h>
mod_hdr far* Get_mod (uppercase_module_name);
char far* uppercase_module_name ;

m Description

This function returns the address of a named memory module. The
uppercase_module_name must point to a NUL terminated ASCII string which
contains the name of a PCM memory module. The name is case sensitive, and all
alphabetic characters are expected to be upper case. For more information on PCM
memory modules, see chapter 5, PCM Libraries and Header Files, in the C Programmer’s
Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

m Return Value

Get_mod returns the far address of the mod_hdr structure at the start of the
named memory module. If no module with the specified name is found, NULL is
returned.

m See Also

m Example

#include <vtos.h>

char name[] = "MYMOD.DAT";
mod_hdr far* module_ptr;
module_ptr = Get_mod (name);

GFK-0772A PCM C Functions 81

Get_next_block

82

m Usage

#include<vtos.h>

arg_blk far* Get_next_block (semaphore_ptr),
void far* semaphore_ptr ;

m Description

This function returns device argument blocks to a VTOS device driver. A future
revision of this manual will discuss VTOS device drivers.

m Return Value
m See Also

m Example

PCM C Function Library Reference Manual — August 1996

GFK-0772A

get_one_rackfaults

GFK-0772A

m Usage

#include<faults.h>

REQSTAT get_one_rackfaults (

BYTE
BYTE

rack_fault_bits

session_id
rack_num ;

RACK_FAULT_STRUCfar* rack_fault_bits ;

m Description

session_id , rack_num

This function permits the user to retrieve all rack, slot, genius bus, and genius device
fault bits for a specified Series 90-70 PLC rack. This request is valid only for Series

90-70 PLCs. The session id
call to establish_comm_ses sion

must be a value returned by a previous, successful
. The rack_num parameter must contain

the number of the desired rack; valid rack numbers are 0 through 7. The

rack fault_bits

parameter must contain the address of a structure of type

RACK_FAULT_STRUGas defined in apitypes.h . This structure must be

allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data. After a successful return, the

structure at rack fault_bits

m Return Value

will contain current PLC fault bit data.

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The rack_num isout of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

83

84

m See Also
chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,

chk_genius_device_nowait, get_one_rackfaults_nowait,
get_rack_slot_faults, get_rack_slot_faults_nowait

m Example

#include <faults.h>

REQSTAT status;
RACK_FAULT_STRUC rack_bits;
status = get_one_rackfaults (session_id, rack_num, &rack_bits);

This example uses a WAIT mode request to determine if a fault exists in any of the
PLC racks.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

get_one_rackfaults_nowait

GFK-0772A

m Usage

#include<faultsnw.h>

REQID get_one_rackfaults_nowait (

BYTE
BYTE

rack_fault_bits

session_id
rack_num ;

RACK_FAULT_STRUCfar* rack_fault_bits ;

m Description

See get_one_rackfaults

m Return Value

session_id , rack_num

);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling reqstatus.
the REQSTAT value returned by reqstatus

this table.

When REQID or

is negative, it contains a value from

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The rack_num isout of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

85

86

m See Also

chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_rack_slot_faults, get_rack_slot_faults _nowait, regstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
RACK_FAULT_STRUC rack_bits;

request_id = get_one_rackfaults_nowait (session_id, rack_num, &rack_bits);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the fault data is available */
}

This example uses a NOWAIT mode request to determine if a fault exists in any of
the PLC racks.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Get_pcm_rev

GFK-0772A

m Usage
#include<vtos.h>

word Get_pcm_rev (void);

m Description

This function returns the PCM firmware revision number.

m Return Value

Get_pcm_rev returns a word value with the major revision number in the high
order byte and the minor revision number in the low order byte. Both are in
hexadecimal format. No errors are returned.

m See Also

m Example

#include <vtos.h>
#include <stdio.h>

word pcm_rev;
pcm_rev = Get_pcm_rev ();

printf ("The PCM firmware revision is %x.%02x.\n”",
pcm_rev >> 8, pcm_rev & 0xff);

This example formats the firmware revision number of the PCM where it executes
and prints itto STDOUT When run in a release 3.00 PCM, it prints:

The PCM firmware revision is 3.00.

PCM C Functions

87

get_prgm_info

88

m Usage

#include<chksum.h>

REQSTAT get_prgm_info (

BYTE

session_id , prog_info_ptr

session_id

PROGRAM_INFO_STRUCfar* prog_info_ptr

m Description

);

This function retrieves program name, size, and checksum information about the
program currently stored in the PLC CPU. It may be used to determine the program

name or whether the program has changed. The session _id

must be a value

returned by a previous, successful call to establish_comm_session . The

prog_info_ptr

PROGRAM_INFO_STRUGs defined in apitypes.h
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data. After a successful return, the
will contain data from the PLC.

structure at prog_info_ptr

m Return Value

parameter must contain the address of a structure of type
. This structure must be

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

get_config_info, get_config_info_nowait, get_prgm_info_nowait

m Example

#include <chksum.h>

PROGRAM_INFO_STRUC prog_info;
REQSTAT status;

status = get_prgm_info (session_id, &prog_info);

This example uses a WAIT mode request to get the program name and checksums of
the PLC program.

GFK-0772A PCM C Functions 89

get_prgm_info_nowait

m Usage
#include<chksumnw.h>
REQID get_prgm_info_nowait (session_id , prog_info_ptr);
BYTE session_id

PROGRAM_INFO_STRUCfar* prog_info_ptr ;

m Description

See get_prgm_info

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

90 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

get_config_info, get_config_info_nowait, get_prgm_info,
regstatus

m Example

#include <chksumnw.h>

REQID request_id;
REQSTAT status;
PROGRAM_INFO_STRUC prog_info;

request_id = get_prgm_info_nowait (session_id, &prog_info);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC program data is available */
}

This example uses a NOWAIT mode request to get the program name and
checksums of the PLC program.

PCM C Functions

91

get_rack_slot_faults

m Usage
#include<faults.h>
REQSTAT get_rack_slot_faults (session_id , rack_num
rack_slot_fault_bits);
BYTE session_id
BYTE rack_num

WORD far* rack_slot_fault_bits ;

m Description

This function permits the user to determine if there are one or more faults on a
specified Series 90-70 PLC rack (in rack_num), and, if so, which slot or slots within
that rack contain faulted modules. This request is valid only for Series 90-70 PLCs.
Valid rack numbers are 0 through 7. The session_id must be a value returned

by a previous, successful call to establish_comm_session . When the request
has completed successfully, the WORD variable whose address is specified in
rack_slot fault_bits will contain the following bit pattern:
Bit Value
Bit0 1-There is a fault anywhere on the rack.
(Least Significant Bit) 0 — There are no faults on the rack.
Bit1 1-The rack has failed (for example, been powered off).

0 - The rack is operating.

Bit2 1-Slot 0 in the rack is faulted.
0 - Slot 0 is not faulted.

Bit3 1-Slot 1 in the rack is faulted.
0 -Slot 1 is not faulted.

Bit11 1-Slot 9 in the rack is faulted.
0 - Slot 9 is not faulted.

92 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,

get_one_rackfaults_nowait, get_rack_slot_faults _nowait

m Example

#include <faults.h>

WORD rack_slot_bits;
REQSTAT status;

status = get_rack_slot_faults (session_id, rack_num, &rack_slot_bits);

This example uses a WAIT mode request to determine if a fault exists in any slot of

the specified PLC rack.

PCM C Functions

93

get_rack_slot_faults_nowait

94

m Usage

#include<faultsnw.h>

REQIDget_rack_slot_faults_nowait(

BYTE session_id
BYTE rack_num ;

session_id

, rack_num

rack_slot_fault_bits);

WORD far* rack_slot_fault_bits ;

m Description

See get_rack_slot_faults

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by reqgstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

chk_genius_bus, chk_genius_bus_nowait, chk_genius_device,
chk_genius_device_nowait, get_one_rackfaults,
get_one_rackfaults_nowait, get_rack_slot_faults, reqstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
WORD rack_slot_bits;

request_id = get_rack_slot_faults_nowait (session_id, rack_num,
&rack_slot_bits);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the fault data is available */
}

This example uses a NOWAIT mode request to determine if a fault exists in any slot
of the specified PLC rack.

PCM C Functions

95

Get_task id

96

m Usage
#include<vtos.h>

word Get_task_id (void);

m Description

This function returns the task identification number (task ID) of the calling task.

m Return Value

Get_task_id returns a 16-bit unsigned integer in the range from zero to fifteen.
There are no errors.

m See Also

m Example

#include <vtos.h>

word task_id;
task_id = Get_task_id ();

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Get_time

GFK-0772A

PCM C Functions

m Usage

#include<vtos.h>

long unsigned Get_time (format);
word format ;

Description

This function returns the current time of the PCM internal time-of-day clock. A
format value of zero (0) specifies that the time should be returned as a count of
milliseconds since midnight. Any non-zero formatvaluespecifiesanhours/minutes/
seconds/hundredthsformat.

The PCM clock is normally synchronized to the PLC CPU time of day clock within a
plus-or-minus one second tolerance.

Return Value

Get_time returns a long unsigned integer containing the current PCM time of
day. When format is zero, the return value contains the number of milliseconds
since 12:00 Midnight. The count is reset automatically to zero (0) every day at
Midnight. This format is useful when calculating the time between two events.
However, the Elapse function is better because its count is unaffected at
midnight or by resynchronization of the PCM clock to the PLC.

When format is non-zero, the time is returned in a four byte,
hours/minutes/seconds/hundredtiformat. The hours value is in the most
significant byte, minutes in the next most significant byte, seconds in the next most
significant byte, and hundredths of seconds in the least significant byte. The hour
value between Midnight and 1:00 a.m. is zero, and the hour value between 1:00
p.m. and 2:00 p.m. is 13. The resolution of this format is 10 milliseconds (one
hundredth second). This format is useful when the time of day is to be displayed.

97

98

m See Also

Elapse, Get_date

m Example

#include <vtos.h>
#include <stdio.h>

void main ()

byte hmsh [sizeof (long)];

long counts = Get_time (0);

((long)hmsh) = Get_time (1);

printf ("milliseconds since midnight = %Ilu\n”, counts);

printf (
"hours/minutes/seconds/hundredths = %02d:%02d:%02d.%02d\n”",
hmsh [3], hmsh [2], hmsh [1], hmsh [0]
)

This example gets both time formats and prints them to STDOUT The byte array,
hmsh, is defined to be the same size as a long integer. A type cast is used to assign
the value returned by Get _time directly toit.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Init_task

GFK-0772A

m Usage
#include<vtos.h>
void Init_task (task id , stack ptr , code ptr , data seg , env_ptr);
word task id ;
byte far* stack _ptr ;
void (far* code_ptr)();
word data_seg ;
env_blk far* env_ptr ;

m Description

This function is used primarily to execute a VTOS device driver as a task. A future
revision of this manual will discuss VTOS device drivers.

m Return Value
m See Also

m Example

PCM C Functions

99

Install_dev

m Usage
#include<vtos.h>

void Install_dev (dcb_ptr);
dcb_blk far* dcb_ptr ;

m Description

This function installs a PCM device driver. A future revision of this manual will
discuss VTOS device drivers.

m Return Value

None.

m See Also

m Example

100 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Install_isr

m Usage
#include<vtos.h>

void Install_isr (interrupt_number | isr_procedure);
word interrupt_number
word (far* isr_procedure)();

m Description

This function installs the address of isr_procedure as the interrupt vector for
interrupt_number . It may be used to provide a software interrupt interface to
functions called by more than one task.

Caution

VTOS makes extensive use of interrupts. User installed interrupt
handlers should be restricted to interrupt_number values in the
range 10 hexadecimal through 3F hexadecimal, inclusive.

The only special requirements for isr_procedure are that it must be declared
far and return a word value. It does not need to preserve the registers which are
overwritten by ordinary C functions.

Caution

Interrupt service routines installed by Install_isr must not be
compiled using the interrupt function keyword or perform a return
from interrupt on exit.

When a non-zero value is returned by isr_procedure , the VTOS scheduler runs
immediately. This mechanism permits high priority tasks to be made ready by
interrupts and start executing with the minimum time lag.

GFK-0772A PCM C Functions 101

m Return Value

None.
m See Also
m Example

#include <vtos.h>

word far isr_proc (void)
/* do something interesting */
return (0)

void main ()

Install_isr (0x21, isr_proc);

This example installs isr_proc as the interrupt service routine for software
interrupt 21 hexadecimal.

102 PCM C Function Library Reference Manual — August 1996 GFK-0772A

loctl_dev

m Usage
#include<vtos.h>
word loctl_dev (device_handle , ioctl_code , notify_code
task_id [, < nowaitoptions >]);

word device_handle ;
word Jioctl_code
word notify_code ;
word task id ;

where < nowait options > depend on the value of notify_code

word loctl_dev (device_handle , ioctl code ,WAIT, task id);

word loctl_dev (device_handle , ioctl_ code , EVENT_NOTIFY,
task_id , local_ef_ mask

(device_resultfar*) result_ptr);

word local_ef mask ;

device_resultfar* result_ptr

word loctl_dev (device_handle , ioctl_code , AST_NOTIFY,
task_id , ast_routine [ast _handle 1]);

void (far* ast_routine)(ast_blk far*);

word ast_handle ;

m Description

This function performs 1/0 control operations on the channel specified by
device_handle . The type of operation is specified by ioctl_code , which must
contain a value from this table.

GFK-0772A PCM C Functions 103

ioctl_code Supported Operation Return Value
Value Devices

1 CcOoM1: Is device_handle aphysical device 0 (No)
COoM2: (rather than afile)? -1 (Yes)
CPU:
RAM:
ROM:
REMnN:
PC:
NULL:

2 CcOoM1: Areany received characters available on the 0 (No)
COoM2: specifiedchannel? -1 (Yes)
CPU:
RAM:
ROM:
REMnN:
PC:
NULL:

3 CcOoM1: Is the channel ready to send output? 0 (No)
COoM2: -1 (Yes)
CPU:
REMnN:

4 CcOoM1: Purge the channel’s type-ahead buffer. 0 (Always)
COM2:
REMnN:

5 COoM1: Turn on Break. 0 (Always)
COM2:

6 COML: Turn off Break. 0 (Always)
COM2:

7 CcOoM1: Has a Break been detected since the last 0 (No)
CoM2: check? 1 (Yes)

8 COoM1: Isthere a CTRL-C character in the 0 (No)
COoM2: type-aheadbuffer? 1 (Yes)
RAM:
REMnN:
PC;
NULL:

9 CcOoM1: Turn on the Request To Send (RTS) output. 0 (Always)
COM2:

10 CcOoM1: Turn off the Request To Send (RTS) output. 0 (Always)
COM2:

11 COML: Turn on the Data Terminal Ready (DTR) 0 (Always)
COM2: output, enabling the RS-485 line drivers.

12 COoM1: Turn off the Data Terminal Ready (DTR) 0 (Always)
COoM2: output, disabling the RS-485 line drivers.

13 COML: Return the number of characters in the Thecharacter
CcoM2: type-ahead buffer for the specified channel. count
REMnN:

14 REMnN: Flush the output buffer for the specified 0 (Always)

channel.

104

PCM C Function Library Reference Manual — August 1996

GFK-0772A

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
loctl_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution. loctl_dev does not wait for external events, so WAIT mode
is almost always used. The EVENT_NOTIFY and AST_NOTIFY forms are included
for completeness.

When EVENT_NOTIFY is used, local ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Close_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result _ptr parameter must be explicitly cast
asa far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined; when
afailure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous 1/0 using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast _routine , it passes the address of an ast_blk structure.
The ast_handle value isinthe handle member of the ast _blk . Ifthe call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the argl
member is undefined; when a failure occurs, arg2 contains |IO_FAILED,and
argl contains an error status code. Foradiscussion of asynchronous 1/0 using
AST functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

m Return Value

In WAIT mode, the value returned by a successful loctl_dev call depends on the
ioctl_code. When an error occurs, |IO_FAILED isreturned; a status code value is
available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function is
undefined and should be ignored. The actual return and status values are available
in device_result and ast_blk structures, respectively.

GFK-0772A PCM C Functions 105

106

For all modes, the return and status variables contain values from this table.

Return Value | Status Value Completion Status
Dependson SUCCESS The operationwas successful.
ioctl_code
10_FAILED ABORTED The operation was aborted before completion.
UNSUPT The specified devctl_code is not supported by the
specifieddevice.
BAD_ARG The specified devctl_code is not supported by the
specified device, or device handle isinvalid.

m See Also

Devctl_dev, Special_dev

m Example

#include <vtos.h>

word handle, task_id;
device_result evt_result;

task_id = Get_task_id ();
handle = Open_dev ("COM1:", READ_MODE, WAIT, task_id);

if (loctl_dev (handle, 8, WAIT, task_id)) {
Reset_ef (EF_01);
loctl_dev (handle, 4, EVENT_NOTIFY, task_id,
EF_01, (device_result far*)&evt_result);

This example opens serial port one for reading, and then calls loctl_dev to look
for a CTRL-C character (ASCII End of Text, code 3) in the type-ahead buffer. If one
was detected, loctl_dev is called again to flush the buffer.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Iset_ef

m Usage
#include<vtos.h>

word Iset_ef (local_ef mask , task id),
word local_ef_mask ;
word task id ;

m Description

This function sets one or more local event flags, specified by bits in

local_ef _mask , forthe task specified by task id . The caller may specify its
own task or a different one. If any of the specified event flags have already been set,
they remain set. Event flags which are not specified remain unchanged. If the
specified task was waiting for one of the local event flags specified in

local ef mask , itis made ready.

Unlike Set_ef , this function does not call the VTOS scheduler directly. When
Iset_ef s called from a communication timer timeout function or an interrupt
service routine (installed by Install_isr), control is returned to the caller, which
can continue its processing.

m Return Value

Iset_ef returns one (1) if the task specified by task id was made ready when
the specified event flag or flags were set; otherwise it returns zero. The calling
interrupt service routine should return this same value, so that the VTOS scheduler
will run whenever a task is made ready.

m See Also

Iset_gef, Set_ef, Set_gef, Wait_ef

m Example

#include <vtos.h>

word task_ready;
task_ready = Iset_ef (EF_13 | EF_6, 7);

This example sets the local event flags in zero-based bits 13 and six (6) for task seven

().

GFK-0772A PCM C Functions 107

Iset_gef

m Usage
#include<vtos.h>

word Iset_gef (global_ef_mask);
word global_ef mask ;

m Description

This function sets the global event flag or flags specified by global _ef mask
Global event flags which were already set are unchanged. If one or more tasks are
waiting for the specified global event flag or flags, they are made ready.

Unlike Set_gef , this function does not call the VTOS scheduler directly. When
Iset_gef is called from a communication timer timeout function or an interrupt
service routine (installed by Install_isr), control is returned to the caller, which
can continue its processing.

m Return Value

Iset_gef returns one (1) if any tasks were made ready when the event flag or
flags were set; otherwise it returns zero. The calling interrupt service routine should
return this same value, so that the VTOS scheduler will run whenever a task is made
ready.

m See Also

Iset_ef, Set_ef, Set_gef, Wait_gef

m Example

#include <vtos.h>

word task_ready;
task_ready = Iset_gef (EF_10 | EF_03 | EF_01);

This example sets the global event flags in zero-based bits ten (10), three (3), and one

.

108 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Link_sem

GFK-0772A

m Usage
#inc lude <vtos.h>

word Link_sem (sem_name);
char far* sem_name

m Description

Before a task may use a semaphore, it must call Link_sem to get a handle for it.
The semaphore is specified by sem_name, which must point to a NUL terminated
ASCII string. The string may contain up to seven characters plus the NUL character.
Semaphore names are case sensitive: "MY_SEM” and "My_Sem” are different
semaphores.

If the semaphore does not already exist, it is created. If, however, the semaphore
does exist, calling Link_sem is equivalent to calling Block_sem . Consequently, a
call to Unblock _sem must always be made after the call to Link_sem and
before any other VTOS or PLC API function call.

m Return Value

Link_sem returns a handle which is used to identify the semaphore for all
subsequent operations.

m See Also

Block _sem, Unink_sem, Unblock_sem

m Example

#include <vtos.h>

char name[] = "MY_SEM”;

word handle;

handle = Link_sem (hame);

[* access the resource controlled by MY_SEM */
Unblock_sem (handle);

PCM C Functions 109

Max_avail_buff

m Usage
#include<vtos.h>

long unsigned Max_avail_buff (void);

m Description

This function returns the size of the largest available free memory buffer. This value
is the maximum size that can be allocated with a single call to Get_buff or
Get_best_buff

m Return Value

The buffer size in bytes is returned in a long unsigned integer. The call always
succeeds; there are no errors.

m See Also

Max_avail_mem

m Example

#include <vtos.h>

long unsigned largest_memory_block;
largest_memory_block = Max_avail_buff ();

110 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Max_avail_mem

m Usage
#include<vtos.h>

unsigned long Max_avail_mem (void);

m Description

This function returns the total size of all free memory buffers.

m Return Value

The total free memory size in bytes is returned in a long unsigned integer. The call
always succeeds; there are no errors.

m See Also

Max_avail_buff

m Example

#include <vtos.h>

long unsigned total_memory_available;
total_memory_available = Max_avail_mem ();

GFK-0772A PCM C Functions 111

Notify task

m Usage
#include<vtos.h>

void Notify_task (arg_block ptr);
arg_blk far* arg_block_ptr ;

m Description

This function is used by VTOS device drivers to notify other tasks when external
events occur. A future revision of this manual will discuss VTOS device drivers.

m Return Value
m See Also

m Example

112 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Open_dev

m Usage
#include<vtos.h>

word Open_dev (dev_name, open_mode , notify_code

task_id [, < nowaitoptions >]);
char far* dev_name;
word open_mode;
word notify_code ;
word task_id

where < nowait options > depend on the value of notify_code
word Open_dev (dev_name, open_mode ,WAIT, task id);

word Open_dev (dev_name, open_mode ,EVENT_NOTIFY, task id |,
local_ef_mask ,

(device_result far*) result_ptr);
word local_ef mask ;
device_resultfar* result_ptr

word Open_dev (dev_name, open_mode ,AST_NOTIFY, task id ,

ast _routine [, ast_handle 1);
void (far* ast_routine)(ast_blk far*);
word ast_handle ;

m Description

This function opens an input/output (1/0) channel for use by the application. The
dev_name may be the name of a physical device (such as the PCM serial ports,
COM1: and COM2:). Device names must be terminated with a colon. Optionally,
the physical device and colon may be followed by the name of a data object (such as
a file or PLC memory reference) which is maintained by the device. No ASCII space
characters are permitted in dev_name. Allvalid PCM devices, along with data
object formats (if any) for each, are listed in the following sections.

PCM Serial Ports: Either or both of the two PCM serial ports may be opened as /O
channels. No data objects are supported. d@be name format for serial ports is:

"COM1:”
"COM2:”

If an optional ASCII character code is specified, Read_dev operations on the channel
will terminate when the character is encountered in the input stream. For example,
character input from a terminal can be read as lines by specifying the ASCII Carriage
Return character (ASCII code 13 decimal) as the optional termination character.

"COM1:13”

An optional timeout value in the range of 0 to 4095 milliseconds can also be
specified. Note that it is not possible to specify both a termination character and a
value. But see the example code at Start_com_timer

"COM1:Tnnnn”

GFK-0772A PCM C Functions 113

PCM Remote Devices: Two (2) PLC backplane communication channels may be
opened as remote devices. No data objects are supported. The dev_name format
for remote devices is:

"REM1:"
"REM2:”

The CPU Device: Backplane communication between the PCM and PLC CPU takes
place through channels opened on the CPU device. A data object name is required,
as described in the following paragraphs.

PLC Data: A channel may be opened on the CPU device to access PLC data. The
portion of dev_name after the colon (’:") character specifies the starting location of
the data. Data specifications use the familiar Logicmaster 90 software notation:

"CPU:<PLC reference>[,<qualifiers>]"

References consist of the "%’ (per cent) character, one alphabetic character specifying
the reference table type, and a numeric starting offset within the specified table. All
PLC reference tables begin at offset value one (1), and leading '0’ characters in the
offset are ignored. Valid table types are:

Valid Table Types Description
%I Discrete inputcontacts.
%Q Discrete outputcoils.
%M Discreteinternal contacts.
%T Discretetemporary contacts..
%R Registertable.
%G Global Geniuscontacts.
%Al Analoginputs.
%AQ Analogoutputs.
%SA Specialcontacts.
%SB Specialcontacts.
%S Specialcontacts.

For example:

"CPU:%I10”
"CPU:%R99”
"CPU:%AI64"
"CPU:%T024"

The PLC discrete data types (%l, %Q, %M, %T, %G, %SA, %SB, %SC, and %S)
receive special handling. When two or more consecutive discrete references are
read or written, the point data is packed in bytes.

114 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

If the specified starting offset is not on an even byte boundary (offset values 1, 9, 17,
25, ...), data points are shifted within bytes to place the starting reference on a byte
boundary. When data is read from the PLC CPU, Read_dev returns the point at
the starting reference in the least significant bit of the least significant byte, and all
other points are shifted accordingly. If the device was opened in NATIVE_MODE
and the number of points read is not an exact multiple of eight (8), there will be one
or more points in the most significant byte which lie above the specified read size.
These extra points are set to zero in the data returned by Read_dev, regardless of
their PLC CPU values. When data is written to the PLC CPU, Write_dev

interprets the least significant bit of the least significant byte of data from the caller
as the point at the starting reference. If the device was opened in NATIVE_MODE
and the number of points written is not an exact multiple of eight (8), there will be
one or more points in the most significant byte which lie above the specified write
size. These extra points are ignored by Write_dev , regardless of their values in
the caller’s data.

The optional <qualifiers > may be used to specify the transition, override, or
diagnostic tables (when applicable) for the specified PLC reference. Qualifiers are
valid only for discrete data.

Qualifier Description
T Transitiontable.
0] Overridetable.
F Diagnostic(fault)table.

For example:

"CPU:%I101,0”
"CPU:%Q00100,F”
"CPU:%M1,T”

An optional size qualifier specifies whether the PLC bit or byte mode discrete tables
will be accessed:

Qualifier Description
1 Bitmode.
8 Byte mode.

In bit mode, the numeric offset part of the reference address is interpreted as a bit
offset; in byte mode, it is interpreted as a byte offset. For example, the starting
references

"CPU:%Q17,1"
"CPU:%Q3,8”

refer to the same discrete output. In byte mode, exact multiples of eight points are
always read and written, and the data always begins on a byte boundary.

Bit mode is the default; if no size qualifier is specified, the device is opened in bit
mode.

PCM C Functions

115

Table and size qualifiers may be combined. The size qualifier must be the final one:

"CPU:%M33,T,8"

Note that %GA through %GE references are not directly supported. Instead, they
may be accessed as subtypes of %G, as shown in this table.

Subtype Bit Mode Byte Mode
Start Reference Start Reference
%GA %G1281 %G161
%GB %G2561 %G321
%GC %G3841 %G481
%GD %G5121 %G641
%GE %G6401 %G801
PLC Status: Two PLC status data types, cpu_short_status , and
cpu_long_status, may be opened in READ_MODE only. They contain

information about the PLC CPU, its control program, and its state, and are defined
in the header file cpu_data.h

"CPU:#SSTAT”
"CPU#LSTAT”

PLC Time-of-Day: The PLC time-of-day clock may be opened in WRITE_MODE
and then read or written. The data type transferred during read and write
operations is cpu_tod_rec , definedin cpu_data.h . Writing to a channel
opened on this device sets both the PLC and PCM time-of-day clocks to the time and
date specified in the caller’s data. This method sets both clocks at once. It is
recommended because it avoids discrepancies between the two clocks.

"CPU:#TOD”

PLC Generic Message Channel: A PLC generic message channel may be opened
to send or receive PLC backplane messages. The messages may be PLC COMMREQ
messages, PLC service request messages, or messages from another PCM or other
Series 90 smart module. The dev_name format for a generic message channel is:

"CPU:#<number>"

where <number> is a decimal value in the range from 5 to 120, inclusive. For
example:

"CPU:#16”

116 PCM C Function Library Reference Manual — August 1996 GFK-0772A

PCM RAM Disk: Files on the PCM RAM disk device are opened by specifying the
RAM: device plus a file name. The dev_name formatfor RAM files is:

"RAM:< filename >"

File names consist of one (1) to 13 ASCII printing characters; the space character is
not permitted in file names, but all other printing characters are allowed. Lower
case alphabetic characters are converted to upper case. There is no built-in notion of
file extensions; file names may contain any number of dot (’.”) characters in any
location. Subdirectories are not supported.

For example:

"RAM:MYFILE.DAT"
"RAM:this.is.valid”

EEROM Device: The PCM 301 (GE Fanuc catalog no. 1C693PCM301) provides for
an optional Electrically Erasable Read Only Memory (EEROM) device. The
dev_name format for ROM files is identical to the format for RAM files:

For example:

"ROM:MYFILE.DAT”

PC: Device: The PC: device supports file access on a Personal Computer (PC)
from PCM applications. The PC must be attached to a PCM serial port and must be
running a compatible file transfer program. At present, this capability is
implemented only on DOS-based PCs. The dev_name format for the PC device is:

"PC:[< drive >:][< path >]< filename >"
The filename is subject to all restrictions of the PC file system and is not converted to
upper case. An optional <drive > letter and <path > specification may be used.

For example:

"PC:MYFILE.DAT"
"PC:A:MYFILE.DAT”
"PC.C:\MYPATH\MYFILE.DAT”

GFK-0772A PCM C Functions 117

The open_mode specifies how calling application may access the device, as shown

in this table.
Mode Description
READ_MODE Thismode permitsread-only access to the device or file. If the
specified file does not exist, an erroroccurs.
WRITE_MODE When dev_name specifies afile, this mode permits read and

write access. If the specified file exists, its contents are deleted;
if not, a new file is created.

When dev_name specifiesaserial port or remote device, this
mode permitswrite-only access to it.

APPEND_MODE

This mode permits read and write access to an existing file. If the
specified file does not exist, an empty file is created. Thefile
pointer is always positioned at the start of the file.

AUTO_REWIND_MODE

This mode causes the device to be rewound at the end of each
transfer. Every read or write operation occurs at the start of the
device or file. Thismode is available only for PLC data.

NATIVE_MODE

This mode changes the unit of data size from bytes to the native
size of the specified object. In all subsequent Read_dev,
Write_dev , Seek_dev, loctl_dev , and Special_dev

calls for this device, the specified length will be interpreted as
bits, bytes, or words as appropriate for the particular data.

For example, if "CPU:%I1” isopenedin NATIVE_MODE,a
read length of 8 will refer to 8 bits, rather than 8 bytes. Note,
however, that opening "CPU:%I1,8” in NATIVE_MODE
results in bytes as the unit of data size.

The notify_code

specifies the method used to notify the calling task that the

operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Open_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to

continue execution.

When EVENT_NOTIFY is used, local ef mask

set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are

not already set by using Reset_ef

the operation has completed, the structure at result_ptr will contain status
information. Note that the result _ptr parameter must be explicitly castas a
far pointer because its type is not specified by the function prototype in vtos.h
For a discussion of asynchronous I/0 using event flags, see chapter 6,

PCM Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s

Manual, GFK-0771.

118 PCM C Function Library Reference Manual — August 1996

to reset them before calling Open_dev. When

is a word with one or more bits

GFK-0772A

GFK-0772A

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast_routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk structure.
The ast_handle value is inthe handle member of the ast blk . Fora
discussion of asynchronous 1/0 using AST functions, see chapter 6, PCM Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

Return Value

Open_dev returns an unsigned integer handle which is used to refer to the named
data object in all subsequent device operations. If an error occurs, the call returns
IO_FAILED.

In WAIT mode, the handle is returned by the call if there are no errors. When an
error occurs, |O_FAILED isreturned; a status code value is available in the global
variable _VTOS_ error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function

call is undefined and may be ignored. Separate return and status values are
structures, respectively.

available in device_result

and ast_blk

For all modes, the return and status variables contain values from this table.

notify _code
WAIT EVENT_NOTIFY AST_NOTIFY
ResultStructure Type: None device_result ast_blk

Successfulcall:
Device handle is in the
SUCCESSisin

Functionreturnvalue
_VTOS_error

ioreturn member
iostatus member

arg2 member
argl member

Errordetected:
I0_FAILED isinthe
Errorcodeisin

Functionreturnvalue
_VTOS_error

joreturn member
jostatus member

arg2 member
argl member

m See Also

Close_dev, Read_dev, Seek_dev, Write_dev

PCM C Functions

119

120

m Example

#include <vtos.h>
#include <dos.h>

word handle, open_ast_error, open_ast_done;
void far open_ast_func (ast_blk far* p)

if (p—>handle == AST_OPEN) {
open_ast_done = 1;
open_ast_error = p—>argl;
if (open_ast_error == SUCCESS) {
/* The operation succeeded. */
handle = p—>arg2;

}

void main ()

char name[] = "COML1:";
word handle, task_id;
device_result evt_result;

task_id = Get_task_id ();

handle = Open_dev (name, READ_MODE, WAIT, task_id);
if (_VTOS_error != SUCCESS) {

/* There was a problem. */

}

Reset_ef (EF_01);

Open_dev (name, READ_MODE, EVENT_NOTIFY,
task_id, EF_01, (device_result far*)&evt_result);

Wait_ef (EF_01);

if (evt_result.iostatus '= SUCCESS) {
/* There was a problem. */
}else {
handle = evt_result.ioreturn;
}

open_ast_done = 0;
Open_dev (name, READ_MODE, AST_NOTIFY,
task_id, open_ast_func, AST_OPEN);

_disable();

if (lopen_ast_done) {
Wait_ast ();

_enable();

if (open_ast_error = SUCCESS) {
/* There was a problem */
}

This example uses WAIT EVENT_NOTIFY, and AST_NOTIFY Open_dev
requests to open COML1: in read only mode.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Post_ast

m Usage
#include<vtos.h>
void Post_ast (task_id , ast_routine [[< ast data >]);
word task _id ;
void (far* ast_routine)(ast_blk far*);

where the optional ast data consists of zero to five words:

void Post_ast (task_id , ast_routine [[ast _handle [,
ast_argl [[ast arg?2 [, ast arg3 |,
ast_arg4 1mD:
word ast_handle , ast argl , ast arg?2 , ast arg3 , ast_arg4

1

m Description

This function posts an asynchronous trap (AST) to the task specified by task id
Atask may post an AST to itself or to a different task. If the specified task is waiting
for ASTs, it will be made ready and then execute the specified ast routine

when its priority is sufficiently high. When a task posts an AST to itself,

ast_routine executes before Post_ast returns.

Up to five words of ast data may be passed to Post_ast , which creates a
temporary ast_blk structure and copies the data words to its corresponding
members. The ast_blk address is passed to ast_routine when itis called.
The ast_blk is deallocated immediately when ast_routine returns. One or
more words of ast data may be omitted from the right end of the parameter list.
However, Post_ast always copies five words at the top of its stack frame to the
ast_blk . Any words which are not specified in the call will be undefined in the
ast_blk

m Return Value

None.

m See Also

Disable_asts, Enable_asts, Wait_ast

GFK-0772A PCM C Functions 121

m Example

#include <vtos.h>
#include "myapp.h”

struct mod_data far* mod_data_p;
mod_hdr far* mod_p;
void main ()

Wait_gef (MODULE_EXISTS_GEF);
mod_p = Get_mod (APP_MODULE);
mod_data_p = (struct mod_data far*)(mod_p + 1);
/*
* When something interesting happens, send data to the other task by
* posting an AST.
*

Post_ast (mod_data_p—>task_num, mod_data_p—>func_ptr,
EVENT_TAG, WORD1, WORD2, WORD3, WORD4);

where myapp.h contains:

#define MODULE_EXISTS_GEF EF_00
#define APP_MODULE "APPMOD1”
#define EVENT_TAG EVENT1
#define WORD1 EVENT1_DATAl1
#define WORD2 EVENT1_DATA2
#define WORD3 EVENT1_DATAS
#define WORD4 EVENT1_DATA4

struct mod_data {
word task_num;
void (far* func_ptr) ();

This example uses Post_ast to send a message to another task when an event
occurs. The other task’s task id and ast _routine address are made known
through a shared memory module, "APPMOD21", whose name is defined in the
common header file, myapp.h . This information must be stored to the shared
module by the other task during its own initialization. The example code waits for
the MODULE_EXISTS_GEF global event flag to be set, indicating that the shared
module data is available.

When the AST is posted, the actual message is in the structure members of an
ast_blk ; they are passed to Post_ast as separate parameters. For this
simplified example, constants are used as message data. A real application would
send more interesting data.

122 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Process_env

m Usage
#include<vtos.h>

word Process_env (
env_blk far*
char far* far*

m Description

env_ptr,
env_ptr ;
bad_module_ptr ;

bad_module_ptr);

This function is used to execute the task which is described by the env_blk

structure pointed to by env_ptr .

address of a pointer to char .

m Return Value

Process_env

When certain errors occur, the pointer at bad_module_ptr

The bad_module ptr

returns an unsigned integer which contains one of these values.

will point to NUL

terminated character string containing the name of a PCM memory module, as

shown in this table.

parameter contains the

Return bad_module _ptr Completion
Value Points To Status
SUCCESS Undefined. Thecallcompleted successfully.

MODULE_NOT_FOUND

The executable module name
passed to Process_env .

A module name in the
command line string for the
executablemodule.

The specified module was not
found.

ILLEGAL_MODULE_TYPE

The module name passed to
Process_env .

The specified module is nota
codemodule.

MODULE_IN_USE

The module name passed to
Process_env .

The specified moduleisalarge
model code module which is
already in use by another task.

TASK_ID_IN_USE

The module name passed to
Process_env .

The task ID specified in the
environmentblock is already
in use by another task.

INSUFFICIENT_MEMORY

Undefined.

There is not enough free
memory to execute the specified
module.

PCM C Functions

123

m See Also

Init_task

m Example

#include <vtos.h>

WORD error_code;
env_blk task_env;
char far* far* bad_module_ptr;

error_code = Process_env(&task_env, &bad_module_ptr);

124 PCM C Function Library Reference Manual — August 1996 GFK-0772A

read_date

m Usage
#include<time.h>

REQSTAT read_date (
BYTE

session_id,
session_id

DATE_LONG_STRUCfar* plc_date ;

m Description

plc_date);

This function returns the internal date from the PLC CPU. The session id
must be a value returned by a previous, successful call to

establish_comm_session

The plc_date

parameter must contain the

address of a structure of type DATE_LONG_STRUGs defined in apitypes.h

This structure must be allocated by the caller; the caller is responsible for ensuring
that the allocated memory is large enough to hold the requested data. After a
successful return, the structure will contain the current PLC date and day of the

week.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

GFK-0772A PCM C Functions

125

m See Also

read_date nowait, read_time, read_timedate,

read_timedate nowait, read_time_nowait, set_date,

set_date nowait, set_time, set_timedate, set_timedate nowait,
set_time_nowait

m Example

#include <time.h>

DATE_LONG_STRUC plc_date;
REQSTAT status;
status = read_date (session_id, &plc_date);

This example uses a WAIT mode request to read the internal date value in the PLC
CPU.

126 PCM C Function Library Reference Manual — August 1996 GFK-0772A

read_date nowait

GFK-0772A

m Usage
#include<timenw.h>

REQID read_date_nowait (
BYTE
DATE_LONG_STRUC far*

m Description

See read_date

m Return Value

The function returns a REQID value. When no error is detected in the request, it is

session_id, plc_date
session_id
plc_date ;

);

sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

PCM C Functions

127

128

m See Also

read_date, read_time, read_timedate, read_timedate nowait,
read_time_nowait, set_date, set_date nowait, set_time,
set_timedate, set_timedate_nowait, set_time_nowait, reqstatus

m Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
DATE_LONG_STRUC plc_date;

request_id = read_date_nowait (session_id, &plc_date);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {
[* investigate the error */
}else {
/* the date is available */
}

This example uses a NOWAIT mode request to read the internal date value in the

PLC CPU.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Read dev

GFK-0772A

PCM C Functions

m Usage

#include<vtos.h>

word Read_dev (device_handle , buffer , size , notify_code

task id [,< nowaitoptions >]);
word device_handle ;
void far* buffer ;
word size ;
word notify_code ;
word task id ;

where <nowait options > depend on the value of notify_code

word Read_dev (device_handle , buffer , size ,WAIT, task id);

word Read_dev (device_handle , buffer , size ,EVENT_NOTIFY,
task_id , local _ef mask
(device_result far*) result_ptr);

word local_ef mask ;

device_resultfar* result_ptr

word Read_dev (device_handle , buffer , size ,AST_NOTIFY,

task_id , ast_routine [[ast_handle 1]);

void (far* ast_routine)(ast_blk far*);
word ast_handle ;
Description

This function reads an 1/0 channel which was previously opened; the

device _handle must be a value returned by Open_dev. The buffer

parameter contains the far address of a memory buffer where the data will be
stored, and size contains the number of data items to read. If the channel was
opened in NATIVE_MODE, size specifies a number of bits, bytes, or words,
depending on the type of the requested data. Otherwise, size specifies a
number of bytes. The caller is responsible for allocating buffer =~ and ensuring that
it is large enough to contain the requested data.

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Read_dev is delayed until the operation completes. The other notify _code

values cause the function to return immediately, allowing the calling task to
continue execution.

129

When EVENT_NOTIFY is used, local _ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Read_dev.

When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in

vtos.h . If the call succeeds, the ioreturn member of the structure at

result_ptr contains the number of characters read, and the iostatus

member contains SUCCESS; when a failure occurs, ioreturn contains the number
of characters that had been read when the failure occurred, and iostatus

contains an error status code. For a discussion of asynchronous 1/0 using event
flags, see chapter 6, PCM Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast routine contains the name of a function to handle
the AST. The optional ast_handle contains a user-selected tag value for this
particular operation, to permit the AST function to identify it, if necessary. When VTOS
calls ast routine, it passes the address of an ast_blk structure. The
ast_handle value is in the handle member of the ast blk . If the call
succeeds, the arg2 member of the ast_blk contains the number of characters
read, and the argl member contains SUCCESS; when a failure occurs, arg2
contains IO_FAILED, and argl contains an error status code. For a discussion of
asynchronous 1O using AST functions, see chapter 6, PCM Real-Time Programming, in
the C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

Return Value

In WAIT mode, the function return value contains the number of data items actually
read. When an error occurs, the return value will be less than size . A status code
value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures , respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status
Equal to size. SUCCESS The specified number of data items was read.
Lessthan size. PAST_EOF The end of data stream was encountered before
the read was completed.
ABORTED ANEVENT_NOTIFY or AST_NOTIFY call was
aborted before the read was completed.
BAD_HANDLE Aninvalid device_handle was specified. No
datawasread.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

Close_dev, Open_dev, Seek_dev, Write_dev

m Example

#include <vtos.h>

word chars_read, task, handle, tmr_hndl, flags;
device_result result;
char buf[1024];

task = Get_task_id();
handle = Open_dev(“COM1:13", READ_MODE | WRITE_MODE, WAIT, task);

tmr_hndl = Start_timer(RELATIVE_TIMEOUT | TASK_SPECIFIED | 7,
MS_COUNT_MODE, 0, 5000, EF_00);

chars_read = Read_dev(handle, buf, sizeof(buf),
EVENT_NOTIFY, task, EF_01, &result);

Wait_ef(EF_00 | EF_01);
flags = Test_ef();

if (flags & EF_01 && result.iostatus == SUCCESS) {
/* The number of characters is in chars_read. */
} else if (flags & EF_00) {
/* A timeout occurred. */
}else {
/* A device error occurred. */
}

This example reads lines of text, terminated by the carriage return character (ASCII
code 13 decimal) from serial port 1.

PCM C Functions

131

read _io_fault_tbl

m Usage
#include<faults.h>
REQSTAT read_io_fault_tbl (session_id, io_faults_ptr);
BYTE session_id

I0_FAULT_TBL_STRUCfar* io_faults_ptr ;

m Description

This function returns the entire contents of the PLC 1/0 Fault Table. The
session_id must be a value returned by a previous, successful call to

establish_comm_session . The io_faults ptr parameter must contain the
name of an array of structure type 10_FAULT_TBL_STRUG as defined in
apitypes.h . This array must be allocated by the caller and contain enough

elements to hold the entire table. The caller is responsible for ensuring that the
allocated memory is large enough to hold the requested data. After a successful
return, the array will contain all the current entries from the 1/0 Fault Table.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_A/AILABLE | NO_COMMUNICATION | Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITrequests
alreadyoutstanding.

132 PCM C Function Library Reference Manual — August 1996 GFK-0772A

m See Also
clr_io_fault_tbl, cIr_io_fault_tbl_nowait, clr_plc_fault_tbl,

clr_plc_fault_tbl_nowait, read_io_fault_tbl_nowait,
read_plc_fault_tbl, read_plc_fault_tbl_nowait

m Example

#include <faults.h>

IO_FAULT_TBL_STRUC io_fault_tbl;
REQSTAT status;
status = read_io_fault_tbl (session_id, &io_fault_tbl);

This example uses a WAIT mode request to read the 1/0 fault table in the PLC CPU.

GFK-0772A PCM C Functions 133

read io_fault_tbl nowait

134

m Usage

#include<faultsnw.h>

REQIDread_io_fault_tbl_nowait (

BYTE

IO_FAULT TBL_STRUCfar*

m Description

See read_io_fault_tbl

m Return Value

The function returns a REQID value. When no error is detected in the request, it is

session_id
io_faults_ptr);

session_id,

io_faults_ptr);

sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

clr_io_fault_tbl, cIr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_plc_fault_tbl, read_plc_fault_tbl_nowait, reqstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
IO_FAULT_TBL_STRUC io_faults[];

request_id = read_io_fault_tbl_nowait (session_id io_faults);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the fault data is available */
}

This example uses a NOWAIT mode request to read the 1/0 fault table in the PLC

CPU.

PCM C Functions

135

read_localdata

m Usage
#include<prgmem.h>

REQSTAT read_localdata (session_id , program_task_name
subblock_name , begin_addr , end_addr
data_buffer_ptr);

BYTE session_id

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

This function returns the specified range of %L (local) data from the specified Series
90-70 subblock in the specified main program. This request is valid only for Series
90-70 PLCs. The session_id must be a value returned by a previous, successful
call to establish_comm_session . The program_task name pointer must
contain the address of a NUL terminated ASCII string holding the name of the
control program task that owns the target subblock, and subblock_ name must
point to a NUL terminated ASCII string holding the subblock name. Valid names
consist of seven characters or less, not counting the NUL character. The

begin_addr parameter contains the one-based word index where the target data
begins, and end_addr contains the one-based word index where the data ends.
When the function succeeds, the requested data is copied to the region of memory
starting at the address in data_buffer_ptr . This memory buffer must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

136 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND | REQUEST_ERROR The program_task_name is
not the name of a PLC program
task.

INVALID_PARAMETER REQUEST_ERROR The subblock_name isnot

the name of a subblock in the
specified program, or end_addr
islessthan begin_addr or
out of range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION | Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITrequests
alreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata_nowait,
read_prgmdata, read_prgmdata_nowait, read_sysmem,
read_sysmem_nowait, write_localdata, write_localdata_nowait,
write_prgmdata, write_prgmdata_nowait, write_sysmem,
write_sysmem_nowait

m Example

#include <prgmem.h>

WORD buf[7];
REQSTAT status;

/*

* To request %L1 through %L7, inclusive from the subblock named
*"MYBLOCK” in the program named "MYPROG":

*

status = read_localdata (session_id, "MYPROG”, "MYBLOCK?”", 1, 7, buf);
/*

* To request %L28 only from the subblock named "SUB1” in the
* program named "LOADER™:
*

status = read_localdata (session_id, "LOADER”, "SUB1", 28, 28, buf);

This example uses a WAIT mode request to read the specified ranges of %L data in
the specified PLC program subblocks.

PCM C Functions

137

read_localdata_nowait

138

m Usage

#include<prgmemnw.h>

REQIDread_localdata_nowait (

session_id , program_task_name

subblock_name , begin_addr
, data_buffer ptr);

1

end_addr
BYTE session_id
charfar* program_task_name ;
char far* subblock_name ;
WORD begin_addr ;
WORD end_addr ;
void far* data_buffer_ptr

m Description

See read_localdata

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

TASK_NAME_NOT_FOUND

REQUEST_ERROR

The program_task_name is
not the name of a PLC program
task.

INVALID_PARAMETER

REQUEST_ERROR

The subblock_name isnot
the name of a subblock in the
specified program, or end_addr
islessthan begin_addr or
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata, read_prgmdata,
read_prgmdata_nowait, read_sysmem, read_sysmem_nowait,
regstatus, write_localdata, write_localdata_nowait,
write_prgmdata, write_prgmdata_nowait, write_sysmem,
write_sysmem_nowait

regstatus

m Example

#include <prgmemnw.h>
WORD buf;

REQID request_id;
REQSTAT status;

request_id = read_localdata_nowait (session_id, "LOADER”, "SUB1", 28, 28,
buf);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the %L data is available */
}

This example uses a NOWAIT mode request to read %L 28 only from subblock

"SUB1” in the program "LOADER".

PCM C Functions

139

read_mixed_memory

140

m Usage

#include<mxread.h>

REQSTAT read_mixed_memory(session_id , list_id

BYTE session_id
BYTE list_id ;
void far* data_ptr ;

m Description

, data_ptr);

This function is used to read all the PLC memory references specified in the mixed
memory specification list referred to by list_id
value returned by a previous, successful call to establish_comm_session , and
list_id must be a value returned by a successful call to

or establish_mixed_memory_nowait . The
data_ptr must contain the address of a block of memory large enough to hold all
the data specified by the list. When the function completes successfully, the PLC
data has been copied to the memory at data_ptr
allocated by the caller; the caller is responsible for ensuring that the allocated

establish_mixed_memory

memory is large enough to hold the requested data.

m Return Value

The session id must be a

. This memory buffer must be

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

CONN_ID_NOT_FOUND

REQUEST_ERROR

The list_id isnot a value
returned by a successful call to
establish_mixed_memory

or establish_mixed_
memory_nowait , or has

been cancelled by calling
cancel_mixed_memory or
cancel_mixed _memory_
nowait.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, establish_mixed_memory_nowait,
read_mixed_memory_nowait

m Example

See establish_mixed_memory

GFK-0772A PCM C Functions 141

read_mixed_memory_nowait

142

m Usage
#include<mxreadnw.h>
REQIDread_mixed_memory_nowait (session_id
BYTE session_id
BYTE list_id ;
void far* data_ptr ;

m Description

See read_mixed_memory

m Return Value

, list_id , data ptr);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling reqgstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte

Error Condition

CONN_ID_NOT_FOUND REQUEST_ERROR

The list_id isnot a value
returned by a successful call to
establish_mixed_memory

or establish_mixed_
memory_nowait , or has

been cancelled by calling
cancel_mixed_memory or
cancel_mixed _memory_
nowait.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
therequestfailed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITrequests

alreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

cancel_mixed_memory, cancel_mixed_memory_nowait,
establish_mixed_memory, establish_mixed_memory_nowait,
read_mixed_memory, regstatus

m Example

See establish_mixed_memory_nowait

GFK-0772A PCM C Functions 143

read plc_fault_tbl

144

m Usage
#include<faults.h>

REQSTAT read_plc_fault_tbl (
BYTE

session_id , plc_faults_ptr);

session_id

PLC_FAULT_TBL_STRUCfar* plc_faults_ptr ;

m Description

This function returns the entire contents of the PLC Fault Table. The session id
must be a value returned by a previous, successful call to

establish_comm_session

The plc_faults_ptr

parameter must contain

the name of an array of structure type PLC_FAULT_TBL_STRUCas defined in

apitypes.h

successful return, the array will contain all the current entries from the PLC Fault

Table.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

. This array must be allocated by the caller; the caller is responsible for
ensuring that the allocated memory is large enough to hold the entire table. After a

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL

REQUEST_ERROR

An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAITrequests
alreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also
clr_io_fault_tbl, cIr_io_fault_tbl_nowait, clr_plc_fault_tbl,

clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl_nowait

m Example

#include <faults.h>

PLC_FAULT_TBL_STRUC plc_faults[16];
REQSTAT status;
status = read_plc_fault_tbl (session_id, plc_faults);

This example uses a WAIT mode request to read the PLC fault table in the PLC CPU.

GFK-0772A PCM C Functions 145

read plc_fault_tbl nowait

m Usage
#include<faultsnw.h>
REQIDread_plc_fault_tbl_nowait (session_id , plc_faults_ptr);
BYTE session_id

PLC_FAULT_TBL_STRUCfar* plc_faults_ptr);

m Description

See read_plc_fault_tbl

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition

DEVICE_NOT_A/AILABLE NO_COMMUNICATION | Communicationhas not been
established through calls to
api_initialize ,
configure_comm_link , and
establish_comm_session

NO_SMEM_AVAIL REQUEST_ERROR An attempt to allocate memory for
therequestfailed.

NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITrequests
alreadyoutstanding.

146 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

clr_io_fault_tbl, cIr_io_fault_tbl_nowait, clr_plc_fault_tbl,
clr_plc_fault_tbl_nowait, read_io_fault_tbl,
read_io_fault_tbl_nowait, read_plc_fault_tbl, regstatus

m Example

#include <faultsnw.h>

REQID request_id;
REQSTAT status;
PLC_FAULT_TBL_STRUC plc_faults[16];

request_id = read_plc_fault_tbl_nowait (session_id, plc_faults);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the fault data is available */
}

This example uses a NOWAIT mode request to read the PLC fault table in the PLC
CPU.

PCM C Functions

147

read_prgmdata

m Usage
#include<prgmem.h>

REQSTAT read_prgmdata (session_id , program_task_name
begin_addr , end _addr , data_buffer_ptr);

BYTE session_id

charfar* program_task_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

This function returns the specified range of %P (program) data from the specified
Series 90-70 program. This request is valid only for Series 90-70 PLCs. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The program_task _name pointer must contain
the address of a NUL terminated ASCII string holding the name of the target
program. Valid names consist of seven characters or less, not counting the NUL
character. The begin_addr parameter contains the one-based word index where
the target data begins, and end_addr contains the one-based word index where
the data ends. When the function succeeds, the requested data is copied to the
region of memory starting at the address in data_buffer_ptr . This memory
buffer must be allocated by the caller; the caller is responsible for ensuring that the
allocated memory is large enough to hold the requested data.

148 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

TASK_NAME_NOTFOUND

REQUEST_ERROR

The program_task_name
is not the name of a PLC
programtask.

INVALID_PARAMETER

REQUEST_ERROR

The end_addr islessthan
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,

read_localdata_nowait, read_prgmdata_nowait, read_sysmem,
read_sysmem_nowait, write_localdata, write_localdata_nowait,

write_prgmdata, write_prgmdata_nowait, write_sysmem,

write_sysmem_nowait

m Example

#include <prgmem.h>

REQSTAT status;
WORD data_buffer[96-12+1];

status = read_prgmdata (session_id, "MYPROG", 12, 96, data_buffer);

This example uses a WAIT mode request to read %P12 through %P96, inclusive,
from a PLC program called "MYPROG!

PCM C Functions

149

read_prgmdata_nowait

150

m Usage

#include<prgmemnw.h>

REQIDread_prgmdata_nowait (

session_id,

data_buffer_ptr

BYTE session_id

char far* program_task_name ;
WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr

m Description

See read_prgmdata

m Return Value

The function returns a REQID value. When no error is detected in the request, it is

1

program_task_name
begin_addr, end_addr

sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

. When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

TASK_NAME_NOTFOUND

REQUEST_ERROR

The program_task_name
is not the name of a PLC

INVALID_PARAMETER

REQUEST_ERROR

programtask.

The end_addr islessthan
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_prgmdata, read_sysmem,
read_sysmem_nowait, reqstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

m Example

#include <prgmemnw.h>
/*

* Program Data Range begin_addr Value end_addr Value
*

* %P1 through %P24, inclusive 1 24

*

* %P39 through %P43, inclusive 39 43

*
WORD data_buffer[24—-1+1];

REQID request_id;
REQSTAT status;

request_id = read_prgmdata_nowait (session_id, "LOADER”, 1, 24, data_buffer);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the %P data is available */
}

This example uses a NOWAIT mode request to read the specified ranges of %P data
in the PLC.

GFK-0772A PCM C Functions 151

read_sysmem

m Usage
#include<sysmem.h>

REQSTAT read_sysmem (session_id,memory_type,begin_addr ,
end_addr, data_buffer_ptr);

BYTE session_id

BYTE memory_type

WORD begin_addr

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

This function returns the specified range of data from the specified PLC data type
(%I, %Q, %R, etc.) in the PLC CPU. The session _id must be a value returned
by a previous, successful call to establish_comm_session . The memory_type
parameter specifies the target memory type, begin_addr contains the index
where the target data begins, and end_addr contains the index where the data
ends. The end addr value must be greater than or equal to begin_addr , and
must not be larger than the size returned by get_memtype_sizes for the
specified memory type . The begin_addr value must be a value in the range
from one (1) to end_addr , inclusive.

When the function succeeds, the requested data is copied to the region of memory
starting at the address in data_buffer_ptr . This memory buffer must be
allocated by the caller; the caller is responsible for ensuring that the allocated
memory is large enough to hold the requested data.

PLC register data types, %R, %Al, and %AQ, are treated as 16 bit binary integer
values. The actual register content, however, may be signed or unsigned integers,
floating point values, or text.

The PLC discrete data types, %l, %Q, %M, %T, %S, %SA, %SB, %SC, and %G, are
returned in one or more bytes, with the bit specified by begin_addr in the least
significant bit of the least significant byte. For example, consider the inputs %100003
through %100021. The Logicmaster 90 programming software Reference Tables
display shows these inputs grouped into bytes, with %100001 through %I100008 in
the rightmost byte, etc. Our target range, %100003 through %100021, spans portions
of three bytes:

%100024 11110111 11011110 11101101 %100001

T L %100003

%100021

152 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

A read_sysmem
bytes. The data at begin_addr

range are set to zero.

%100026

The following table shows memory type values from memtypes.h

00000101 11110111

|

10111011

valid in read_sysmem requests.

request for %100003 through %100021 will return these three
is shifted into the least significant bit of the least
significant byte. Note that the bits in the final byte which are beyond the specified

%100003

%100021

which are

Reference Access Data memory_type
Type Type Type Value
%Al Analoglnput Register WORD Al_DATA
Analog InputHigh Alarm BYTE Al_HIALR
Analog InputLow Alarm BYTE Al_LOALR
Analog Input Fault/Ndrault BYTE Al_FAULT
AnalogInputDiagnostic BYTE Al_DIAG
%AQ Analog OutputRegister WORD AQ_DATA
AnalogOutputHigh Alarm BYTE AQ_HIALR
Analog OutputLow Alarm BYTE AQ _LOALR
Analog Output Fault/Nd-ault BYTE AQ_FAULT
AnalogOutputDiagnostic BYTE AQ_DIAG
%R RegisterMemory WORD R_DATA
%l Input Status Table Discrete I_STATUS
Input Transition Table I_TRANS
Input Override Table I_OVRD
Input Diagnostic Table I_DIAG
%Q Output Status Table Discrete Q_STATUS
Output Transition Table Q_TRANS
Output Override Table Q_OVRD
Output Diagnostic Table Q_DIAG
%T Temporary Status Table Discrete T_STATUS
Temporary TransitionTable T_TRANS
Temporary Override Table T_OVRD
%M Internal Status Table Discrete M_STATUS
Internal Transition Table M_TRANS
Internal Override Table M_OVRD
%SA System A Status Table Discrete SA_STATUS
System A Transition Table SA_TRANS
System A Override Table SA_OVRD
%SB System B Status Table Discrete SB_STATUS
System B Transition Table SB_TRANS
System B Override Table SB_OVRD
%SC System C Status Table Discrete SC_STATUS
System C Transition Table SC_TRANS
System C Override Table SC_OVRD

PCM C Functions

153

154

Reference Access Data memory_type
Type Type Type Value
%S System Status Table Discrete S_STATUS

System Transition Table S_TRANS
System Override Table S_OVRD

%G Global Genius Status Table Discrete G_STATUS
Global Genius Transition Table G_TRANS
Global Genius Override Table G_OVRD

Analog input diagnostic bytes (Al_DIAG) for Genius analog blocks (except RTD and
Thermocouple blocks) and Series 90-70 integral analog input modules contain the

fault information shown in this table.

Most
b e T [543 2[1]

Least

significant

bit
Inputlowalarm
Inputhighalarm
Inputunderrange
Inputoverrange
Inputopenwire

Expansionchannel notresponding
(integral modules only)

Analog input diagnostic bytes (Al_DIAG) for Genius RTD and Thermocouple
blocks contain the fault information shown in this table.

Most
A N IR HAEER

PCM C Function Library Reference Manual — August 1996

Least

significant

bit

Inputlowalarm
Inputhighalarm
Inputunderrange
Inputoverrange
Inputopenwire
Inputwiringerror
Internal channel fault
Inputshorted (RTD block only)

GFK-0772A

GFK-0772A

Analog output diagnostic bytes (AQ_DIAQ for Genius analog blocks and Series
90-70 integral analog output modules contain the fault information shown in this

table.
Most Least
significant significant
bit [8[7]6]5[4]3[2]1] bit
Outputunderrange
Outputoverrange
Feedbackerror

Analog input high alarm (Al_HIALR) and low alarm (AI_LOALR) references are
BOOLEAN values which are TRUE when the corresponding Al_DATA valueis
above its high alarm limit or below its low alarm limit, respectively.

The Series 90-70 types %GA, %GB, %GC, %GD, and %GE are accessed as subtypes

of %G data, as shown in this table.

Subtype

Start Reference

%GA
%GB
%GC
%GD
%GE

%G01281
%G02561
%G03841
%G05121
%G06401

For example, %GB00001 is accessed as %G02561, %GD00005 as %G06405, etc.

PCM C Functions

155

156

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The end_addr islessthan
begin_addr or out of
range.

NULL_SEGSEL_PTR

REQUEST_ERROR

The memory _type isnot
supported.

INVALID_SELECTOR

REQUEST_ERROR

The memory_type is
invalid.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,

read_localdata_nowait, read_sysmem_nowait, read_prgmdata,
read_prgmdata_nowait, reqstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m Example

#include <sysmem.h>

REQSTAT status;
BYTE sesn_id;
BYTE buff[26];

/* Read discrete output status %Q00001 through %Q00024: */
status = read_sysmem (sesn_id, Q_STATUS, 1, 24, buff);

/* Read discrete temporary transitions %T00017 through %T00208: */
status = read_sysmem (sesn_id, T_TRANS, 17, 208, buff);

/* Read discrete internal status %MO00035: */
status = read_sysmem (sesn_id, M_STATUS, 35, 35, buff);

/* Read discrete internal overrides %M00097 through %M00112: */
status = read_sysmem (sesn_id, M_OVRD, 97, 112, buff);

/* Read registers %R00093 through %R00098: */
status = read_sysmem (sesn_id, R_DATA, 93, 98, buff);

This example uses WAIT mode requests to read various PLC data.

GFK-0772A PCM C Functions 157

read_sysmem_nowait

158

m Usage

#include<sysmemnw.h>

REQID read_sysmem_nowait (

end_addr
BYTE session_id
BYTE memory_type

WORD begin_addr ;
WORD end_addr ;
void far*

Description

See read_sysmem .

m Return Value

data_buffer_ptr

session_id , memory type , begin_addr

, data_buffer ptr);

1

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The end_addr islessthan
begin_addr or out of
range.

NULL_SEGSEL_PTR

REQUEST_ERROR

The memory _type isnot
supported.

INVALID_SELECTOR

REQUEST_ERROR

The memory_type is
invalid.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_prgmdata,
read_prgmdata_nowait, regstatus, write_localdata,
write_localdata_nowait, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

m Example

#include <sysmemnw.h>

REQID reqidl, reqid2;
REQSTAT statl, stat2;
BYTE sesn_id;

WORD ai_data[4];
BYTE ai_diag[4];

/* Read analog input data %AIl0001 through %AI0004: */
regidl = read_sysmem_nowait (sesn_id, Al_DATA, 1, 4, ai_data);

if (reqidl < REQUEST_OK) {
statl = reqidl;
}else {
statl = reqgstatus (reqidl, TRUE);

}
/* Read analog input diagnostics %AI0001 through %AI10004: */
regid2 = read_sysmem_nowait (sesn_id, Al_DIAG, 1, 4, ai_diag);

if (reqid2 < REQUEST_OK) {
stat2 = reqid2;
}else {
stat2 = reqgstatus (reqid2, TRUE);

}
while (statl == REQUEST_IN_PROGRESS || stat2 == REQUEST_IN_PROGRESS) {
if (statl == REQUEST_IN_PROGRESS) {
statl = reqgstatus (reqidl, TRUE);

}

if (stat2 == REQUEST_IN_PROGRESS) {
stat2 = reqgstatus (reqid2, TRUE);

}

}

if (statl = REQUEST_OK || stat2 = REQUEST_OK) {
[* investigate the error */

}else {
/* the new analog input data is available */

}

This example uses NOWAIT mode requests to read analog inputs and their
diagnostic data.

PCM C Functions

159

read_time

160

m Usage
#include<time.h>
REQSTAT read_time (session_id, plc_time);
BYTE session_id
TIME_STRUCfar* plc_time ;

m Description

This function returns the current time of day from the PLC CPU clock. The

session_id
establish_comm_session

address of a structure of type TIME_STRUQ as defined in apitypes.h.

The plc_time

must be a value returned by a previous, successful call to
parameter must contain the

This

structure must be allocated by the caller; the caller is responsible for ensuring that
the allocated memory is large enough to hold the requested data. After a successful
return, the structure will contain the current PLC time of day.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

read_date, read_date nowait, read_timedate,

read_timedate nowait, read_time_nowait, set_date,

set_date nowait, set_time, set_timedate, set_timedate nowait,
set_time_nowait

m Example

#include <time.h>

TIME_STRUC plc_time;
REQSTAT status;
status = read_time (sesn_id, &plc_time);

This example uses a WAIT mode request to read the PLC internal time.

GFK-0772A PCM C Functions 161

read_time_nowait

m Usage
#include<timenw.h>

REQID read_time_nowait (session_id , plc_time),
BYTE session_id
TIME_STRUCfar* plc_time ;

m Description

See read_time

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

162 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, reqstatus, set_date, set_date_nowait,
set_time, set_timedate, set_timedate nowait, set_time_nowait

m Example

#include <timenw.h>

TIME_STRUC plc_time;
REQID request_id;
REQSTAT status;

request_id = read_time_nowait (sesn_id, &plc_time);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);
}

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC time is available */
}

This example uses a NOWAIT mode request to read the PLC internal time.

PCM C Functions

163

read_timedate

164

m Usage

#include<time.h>

REQSTAT read_timedate (

BYTE

session_id , plc_time_date

session_id

TIMESTAMP_LONG_STRUCfar* plc_time_date ;

m Description

);

This function returns the current time of day, date, and day of week from the PLC
CPU clock. The session_id must be a value returned by a previous, successful
call to establish_comm_session The plc_time parameter must contain
the address of a structure of type TIMESTAMP_LONG_STRU@s defined in
apitypes.h . This structure must be allocated by the caller; the caller is responsible
for ensuring that the allocated memory is large enough to hold the requested data.
After a successful return, the structure will contain the current PLC time and date.

Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also
read_date, read_date nowait, read_time, read_timedate nowait,

read_time_nowait, set_date, set_date nowait, set_time,
set_timedate, set_timedate nowait, set_time_nowait

m Example

#include <time.h>

TIMESTAMP_LONG_STRUC plc_time_date;
REQSTAT status;
status = read_timedate (sesn_id, &plc_time_date);

This example uses a WAIT mode request to read the PLC internal time and date.

GFK-0772A PCM C Functions 165

read_timedate nowait

166

m Usage

#include<timenw.h>

REQIDread_timedate_nowait (

BYTE

session_id

TIMESTAMP_LONG_STRUCfar* plc_time_date ;

m Description

See read_timedate

m Return Value

session_id , plc_time_date);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by reqstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_time_nowait, regstatus, set_date, set_date_nowait,
set_time, set_timedate, set_timedate nowait, set_time_nowait

m Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIMESTAMP_LONG_STRUC plc_time_date

request_id = read_timedate_nowait (sesn_id, &plc_time_date);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the new time and date are available */
}

This example uses a NOWAIT mode request to read the PLC internal time and date.

GFK-0772A PCM C Functions 167

release_request id

168

m Usage
#include<utilsnw.h>

BOOLEANT release_request_id (request_id);
REQID request_id ;

m Description

This function is called to free request id and return it to the pool of available
requests. The request id must be a value returned by a previous, successful
nowait service request. Calling this function is necessary only when regstatus s
called with the release_id parameter FALSE. This practice is not recommended.

m Return Value

The function returns a BOOLEAN value which is TRUE when request_id has
been returned to the free pool, and FALSE otherwise. If the call is made before the
request has completed, FALSE will be returned. The call should never be made
before reqstatus indicates the request has completed.

m See Also

regstatus

m Example

#include <utilsnw.h>

BOOLEAN released;
released = release_request_id (request_id);

This example releases a request_id previously uses by a NOWAIT mode request.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

regstatus

m Usage
#include<utilsnw.h>

REQSTAT reqstatus (request_id , release_id);
REQID request id ;
BOOLEAN release id ;

m Description

This function returns the current completion status of a nowait service request
specified by request id . If release _id is TRUE and the request has
completed, the specified request _id is released. If release id is FALSE or
the request has not completed, request _id is not released. When

release _id is FALSE and the request has completed, the application must
explicitly release request id at a later time. The recommended practice is to set
release _id TRUE always.

m Return Value

The function returns a REQSTAT value which contains the completion status of the
NOWAIT request specified by request id . Values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition
0 REQUEST_IN_PROGRESS Therequestisstill being processed.
0 REQUEST_OK Therequestcompletedsuccessfully.
Minor error statuscode | Major error status code The request was rejected. The major

and minor error codes contain values
explaining the rejection. Each
NOWAIT request function reference
contains the codes for that function.

All minor error codes are negative 8 bit integers. Consequently, a REQSTAT value
which indicates a request was rejected may be detected by testing for a negative
value.

GFK-0772A PCM C Functions 169

170

m See Also

release_request_id

m Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;
BYTE major, minor;

request_id = start_plc_noio_nowait (sesn_id);
status = reqstatus (request_id, release_id);

if (status == REQUEST_IN_PROGRESS) {

/* The request has not completed. */
} else if (status == REQUEST_OK) {

/* The request completed successfully. */
}else {

/* There was an error. The major and minor */

* error codes contain the reason for the error. *

major = MAJOR_ERR (status);

minor = MINOR_ERR (status);

This example calls reqgstatus to determine the status of a previous NOWAIT mode
request. Note that use of the MAJOR_ERR and MINOR_ERR macros requires that

status must not be a register variable.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Reserve _dp_buff

m Usage
#include<vtos.h>

intReserve_dp_buff(buf_address , size_in_bytes);
void far* buf_address ;
word size_in_bytes ;

m Description

This functions reserves a memory buffer in the VMEbus dual port memory of a
Series 90-70 PCM for exclusive use by the calling task. The buf address and
size_in_bytes parameters specify the location and size of the buffer,
respectively.

m Return Value

If the function completes successfully, SUCCESS is returned. If the specified buffer is
not available or the call is made in a Series 90-30 PCM, FAILURE is returned, and the
global variable _VTOS_error contains NO_MEMORY.

m See Also
Get_dp_buff, Return_dp_buff

m Example

#include <vtos.h>

byte far* dp_ptr = set_seg(0xA000);

ptr_off(dp_ptr) = 0x4000;

if (Reserve_dp_buff (dp_ptr, 4096) != FAILURE) {
/* use the buffer */
Return_dp_buff (dp_ptr);

GFK-0772A PCM C Functions 171

Reset_ef

m Usage
#include<vtos.h>

void Reset_ef (local_ef mask);
word local_ef_mask ;

m Description

This function clears one or more local event flags, specified by bits in

local_ef mask , forthe calling task. If any of the specified event flags have
already been cleared, they remain cleared. Event flags which are not specified
remain unchanged. Note that local event flags can be cleared only by the task
where they are local, although they can be set by other tasks. Tasks should reset any
local event flags specified in a Wait_ef call before making the Wait_ef call.

m Return Value

None.

m See Also

Iset_ef, Iset_gef, Reset_gef, Set_ef, Set_gef, Wait_ef,
Wait_gef

m Example

#include <vtos.h>

Reset_ef (Oxffff);

This example clears all the local event flags for the calling task.

172 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Reset gef

m Usage
#include<vtos.h>

void Reset_gef (global_ef_mask),
word global_ef mask ;

m Description

This function clears one or more global event flags, specified by bits in

global ef mask . If any of the specified event flags have already been cleared,
they remain cleared. Event flags which are not specified remain unchanged. Tasks
should reset any global event flags specified in a Wait_gef call before making the
Wait_gef call.

m Return Value

none.

m See Also

Iset_ef, Iset_gef, Reset_ef, Set_ef, Set_gef, Wait_ef,
Wait_gef

m Example

#include <vtos.h>

Reset_gef (EF_15 | EF_14 | EF_13 |EF 12);

This example clears the four specified global event flags.

GFK-0772A PCM C Functions 173

Resume_task

m Usage
#include<vtos.h>

void Resume_task (task _id);
word task id ;

m Description

This function is called to resume execution of a task which was suspended by calling
Suspend_task . The task id must contain the task number of the task to be
resumed.

When one task resumes a different task with higher priority, the newly resumed
task will begin to execute immediately. The calling task will not return from the
Resume_task call until the higher priority task is suspended or waits.

m Return Value

None.

m See Also

Suspend_task

m Example

#include <vtos.h>

Resume_task (6);

This example resumes execution of task six (6).

174 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Return_buff

m Usage
#include<vtos.h>

word Return_buff (buffer_ptr);
void far* buffer_ptr

m Description

This functions returns a memory buffer to PCM free memory. The buffer_ptr
must contain a far pointer to a memory buffer which was obtained by calling
Get_buff or Get _best buff

m Return Value

If the function completes successfully, SUCCESS is returned. Otherwise, FAILURE is
returned, and the global variable _VTOS_error contains BAD_BUFFER.

During program development, it is a good idea to check for error codes from
Return_buff . Two very common errors are to return a buffer pointer that has
been changed and to return a buffer twice. These errors can corrupt the VTOS free
memory list and cause symptoms with no obvious relationship to the actual error.
Checking the return value from Return_buff is the best method for discovering
these errors.

m See Also
Get_buff, Get_best_buff

m Example

#include <vtos.h>

word status;
byte far* p;

p = Get_buff (BUFFSIZE);
if (p!=NULL){

/* use the memory buffer */
status = Return_buff (p);

GFK-0772A PCM C Functions 175

Return_dp_buff

m Usage
#include<vtos.h>

int Return_dp_buff (buf_address);
void far* buf_address ;

m Description

This functions returns a memory buffer in the VMEbus dual port memory of a Series
90-70 PCM. The buf_address parameter must contain a far pointer to a
memory buffer which was either returned by Get_dp_buff or successfully
reserved by Reserve_dp_buff

m Return Value

If the function completes successfully, SUCCESS is returned. Otherwise, FAILURE is
returned, and the global variable _VTOS_error contains NO_MEMORY.

During program development, it is a good idea to check for error codes from
Return_dp_buff . Two very common errors are to return a buffer pointer that has
been changed and to return a buffer twice. These errors can corrupt the VMEbus
dual port memory and cause symptoms with no obvious relationship to the actual
error. Checking the return value from Return_dp_buff is the best method for
discovering these errors.

m See Also
Get_dp_buff, Reserve_dp_buff

m Example
See Get_dp_buff or Reserve_dp_buff

176 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Seek dev

m Usage
#include<vtos.h>
word Seek_dev (device_handle , position , notify_code
task_id [, < nowaitoptions >]);
word device_handle ;
long unsigned position
word notify_code ;
word task id ;

where < nowait options > depend on the value of notify_code
word Seek_dev (device_handle , position ,WAIT, task id);

word Seek_dev (device_handle , position ,EVENT_NOTIFY,
task id , local_ef_mask

(device_result far*) result_ptr);
word local_ef mask ;
device_resultfar* result_ptr

word Seek_dev (device_handle , position ,AST_NOTIFY, task id |,

ast_routine [, ast_handle 1);
void (far* ast_routine)(ast_blk far*);
word ast_handle ;

m Description

This function positions the data pointer of the 1/0 channel specified by

device _handle to a specified position relative to the start of the data
stream. The next Read_dev or Write_dev operation will occur at the
specified position. The device _handle must be a value returned by a

previous, successful call to Open_dev. If the device was opened using
NATIVE_MODE, position is interpreted in units of bits, bytes, or words, as
appropriate to the device’s data; otherwise, position is interpreted as bytes.

Note that there is no VTOS service to return the current position in an 1/0 stream. If
the application needs to seek to a position other than the start of the stream, it must
calculate that position.

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Seek_dev is delayed until the operation completes. The other notify _code
values cause the function to return immediately, allowing the calling task to
continue execution.

GFK-0772A PCM C Functions 177

178

When EVENT_NOTIFY is used, local _ef mask is a word with one or more bits

set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Seek_dev .
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast
asa far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at

result_ptr contains SUCCESS and the iostatus member is undefined; when

afailure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous 1/0 using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast _routine contains the name of a function to
handle the AST. The optional ast _handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk structure.
The ast_handle value isinthe handle member of the ast blk . Ifthe call
succeeds, the arg2 member of the ast_blk contains SUCCESS and the argl
member is undefined; when a failure occurs, arg2 contains IO_FAILED, and argl
contains an error status code. For adiscussion of asynchronous 1/0 using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

Return Value

In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, I0_FAILED isreturned; a status code value is available in the global variable
_VTOS error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status
SUCCESS Undefined Thefunctioncompleted successfully.
10_FAILED PAST_EOF The specified position s past the end of the

datastream.
ABORTED ANEVENT_NOTIFY or AST_NOTIFY call was
aborted before the function was completed.
BAD_HANDLE Aninvalid device_handle wasspecified.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

Devctl_dev, Open_dev, Read_dev, Write_dev

m Example

#include <vtos.h>
#include <string.h>

word chars_read, i, task, handle, seek_status;
char buf[1024];
char target[] = "target”;

seek_status = SUCCESS + 1,

task = Get_task_id();

handle = Open_dev("RAM:MY.TXT", READ_MODE | WRITE_MODE, WAIT, task);
chars_read = Read_dev(handle, buf, sizeof(buf), WAIT, task);

if (_VTOS_error == SUCCESS) {
for (i = 0; i < sizeof(buf) — strlen(target); ++i) {
if (strnicmp(buf+i, target, strlen(target)) == 0) {
seek_status = Seek_dev (handle, i, WAIT, task);
break;

}

if (seek_status == SUCCESS) {
/* The file is positioned at the start of the target string. */
}

This example calls Seek_dev to position the file pointer of a PCM RAM disk file to
the location of a target string.

The file is opened, and the first 1024 characters are read into buf . Then the buffer is
searched for the target string, using the case-insensitive string compare function. If
the search succeeds, Seek dev sets the file pointer to the location where the target
was found.

GFK-0772A PCM C Functions 179

Send_vme_interrupt

m Usage
#include<vtos.h>

intSend_vme_interrupt(id);
byte id;

m Description

Send_vme_interrupt may be used to generate a VMEDbus interrupt from a
Series 90-70 standalone PCM, IC697PCM712. There is no effect when
Send_vme_interrupt is called from either a standard Series 90-70 PCM,
01C697PCM711, or a Series 90-30 PCM with release 4.00 or later firmware.

Caution

If Send_vme_interrupt is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Send_vme_interrupt is provided in PCM C toolkit versions 1.04 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

The Series 90-70 standalone PCM can assert an interrupt request on IRQ7 only.
When Send_vme_interrupt is called and the VMEbus interrupt handler for IRQ7
polls for an interrupt ID, the value that was passed in the id parameter will be read
by the interrupt handler and used to identify the source of the interrupt. The id
value must be assigned by the interrupt handler when the system is initialized. The
example code for this function explains the Series 90-70 convention for obtaining
id .

This function is provided for use with VMEbus masters other than Series 90-70 PLC
CPUs. All versions of Series 90-70 PLC CPU firmware through release 5.xx log a
fault to the PLC Fault Table when Send_vme_interrupt isused.

m Return Value

When called from a program executing in a Series 90-70 standalone PCM,
Send_vme_interrupt always returns SUCCESS. When called from a standard
Series 90-70 PCM or Series 90-30 PCM with release 4.00 or later firmware,
Send_vme_interrupt always returns FAILURE.

180 PCM C Function Library Reference Manual — August 1996 GFK-0772A

m See Also

m Example

#include <vtos.h>
#define STANDALONE_PCM 0x0040

byte far* p;
int result;

if (Get_board_id() & STANDALONE_PCM) {
FP_SEG(p) = 0xA000;
FP_OFF(p) = 0x006b;
result = Send_vme_interrupt(*p);

This example verifies that it is running in a Series 90-70 standalone PCM and then
calls Send_vme_interrupt to send an interrupt.

The id parameter value for Send_vme_interrupt is read from offset 6b
hexadecimal (107 decimal) in the module’s VME dual port memory. This location is
used by Series 90-70 PLC CPUs to assign a unique interrupt vector to every smart
module in the PLC. We recommend that you use the same location for this purpose
in Series 90-70 standalone PCM applications.

The value of the id parameter has meaning only for the VME module that handles
the IRQ7 interrupt.

GFK-0772A PCM C Functions 181

set_date

182

m Usage
#include<time.h>
REQSTAT set_date (session_id , plc_date),
BYTE session_id

DATE_LONG_STRUCfar* plc_date ;

m Description

This function allows the user to set the internal date in the PLC CPU. The

session_id

establish_comm_session

date.

m Return Value

The function returns a REQSTAT value which contains the completion status of the

The plc_date

must be a value returned by a previous, successful call to
pointer must contain the address
of a structure of type DATE_LONG_STRU®@vhere the user has stored the new PLC

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One or more of the structure
members of plc_date is
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, set_date nowait,
set_time, set_timedate, set_timedate nowait, set_time_nowait

m Example

#include <time.h>

DATE_LONG_STRUC plc_date;
REQSTAT status;
status = set_date (sesn_id, &plc_date);

This example uses a WAIT mode request to set the PLC internal date.

GFK-0772A PCM C Functions 183

set_date_nowait

184

m Usage
#include<timenw.h>

REQID set_date_nowait (
BYTE
DATE_LONG_STRUfar*

m Description

See set _date

m Return Value

session_id , plc_date

session_id
plc_date

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One or more of the structure
members of plc_date is
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_time, set_timedate, set_timedate nowait, set_time_nowait

m Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
DATE_LONG_STRUC plc_date;

request_id = set_date_nowait (sesn_id, &plc_date);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {
[* investigate the error */
}else {
/* the PLC date was set */
}

This example uses a NOWAIT mode request to set the PLC internal date.

PCM C Functions

185

Set_dbd_ctl

Usage
#include<vtos.h>

void Set_dbd_ctl (control_reg_value);
word control_reg_value ;

Description

This function is called to set the Series 90-70 PCM 711 daughter board control
register, at the PCM microprocessor 1/0 port address 01a0 hexadecimal. The least
significant eight bits of the control_reg value are stored in the task control
block of the calling task. Whenever the VTOS scheduler switches between
application tasks, the newly executing task’s control_reg value is written to
the daughter board control register. Set_dbd_ctl is provided for controlling
daughter boards other than memory expansion boards.

Return Value

None.

See Also

Set_vme_ctl

Example

186 PCM C Function Library Reference Manual — August 1996

GFK-0772A

Set_ef

m Usage
#include<vtos.h>

void Set_ef (local_ef mask , task_ id),
word local_ef_mask ;
word task id ;

m Description

This function sets one or more local event flags, specified by the bits in

local_ef mask , forthe task specified in task id . If any of the specified event
flags have already been set, they remain set. Event flags which are not specified
remain unchanged. If the specified task was waiting for local event flags, it is made
ready.

Unlike Iset_ef , this function should not be called from an interrupt service
routine or communication timer routine. When Set_ef readies the specified task
as a result of setting event flags, it calls the VTOS scheduler. If the interrupt service
routine has lower priority, control is not returned to the interrupt service routine,
resulting in unexpected operation.

m Return Value

None.

m See Also

Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_gef, Wait_ef,
Wait_gef

m Example

#include <vtos.h>

Set_ef (EF_15 | EF_14);

This example sets two global event flags.

GFK-0772A PCM C Functions 187

Set_gef

m Usage
#include<vtos.h>

void Set_gef (global_ef_mask);
word global_ef mask

1

m Description

This function sets one or more global event flags, specified by the bits in
global _ef mask . If any of the specified event flags have already been set, they
remain set. Event flags which are not specified remain unchanged. If one or more
tasks are waiting for the specified global event flags, the highest priority waiting task
is made ready.

Unlike Iset_gef , this function should not be called from an interrupt service
routine. When Set_gef readies one or more tasks as a result of setting event flags,
it calls the VTOS scheduler. If the interrupt service routine has lower priority than
one of these tasks, control is not returned to the interrupt service routine, resulting
in unexpected operation.

m Return Value

None.

m See Also

Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Wait_ef,
Wait_gef

m Example

#include <vtos.h>

Set_gef (EF_03);

This example sets one global event flag.

188 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Set_led

GFK-0772A

m Usage

#include<vtos.h>

word Set_led (led_number , led_mode);
word led_number ;
word led_mode ;

Description

This function is called to set the state of one of two PCM light emitting diodes
(LEDs). The top LED reports the operational status of the PCM and is not
programmable. LED 1, the center LED, and LED 2, the bottom LED, may be
programmed by Set led . The led_number must contain one (1) or two (2), to
specify LED 1 or LED 2, respectively. The led_mode must contain one of the
values from this table.

led_mode Description
LED_ON Turn the specified LED on.
LED_OFF Turn the specified LED off.
BLINK_LED Blink the specified LED once.
FLASH_LED Flash the specified LED continuously.

Before an LED state can be set by Set led , the LED must be configured to permit
the calling task to program it. The application can call Define_led to configure
the LED; it can also be done in the PCMEXEC.BAT file which starts the application.

Only one PCM task at a time may control each LED.

m Return Value

The returnand _VTOS_error

values from Set led are shown in this table.

Return Value

Status Value

Completion Status

SUCCESS Undefined Thefunctioncompleted successfully.
FAILURE BAD_ARG The specified led_number or led_mode is
invalid.
NO_TASK The LED specified by led_number is not defined

for control by the calling task.

PCM C Functions

189

m See Also

Define_led

m Example

#include <vtos.h>

Set_led (1, LED_ON);
Set_led (2, FLASH_LED);

190 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Set_local_date

GFK-0772A

PCM C Functions

m Usage

#include <vtos.h>

typedef struct {
byte day_of week;
byte day_of month;
byte month;
byte year;

} ymd_date;

typedef struct {
word lo;
word hi;
} hilo_date;

typedef union {
ymd_date ymd;
hilo_date hilo;

unsigned long longdate;
} vtos_date;
int Set_local_date(hi_date, lo_date);

word hi_date ;
word Jo_date ;

Description

Set_local_date is used to initialize the date maintained by the Series 90-70
standalone PCM, IC697PCM712. In the standard Series 90-70 PCM, IC697PCM711,
and Series 90-30 PCMs, the date is automatically set to a value read from the PLC
CPU. However, the standalone PCM is unable to do so, and its date is undefined

The new date is specified in the hi_date and lo_date parameters. Use the union
type vtos_date to assign values to them, as shown in the example, below. Valid
ranges of date values are:

Parameter Range
Day of month 1.. last day of specified month
Month 1..12
Year 0..99

Year values in the range 80 .. 99 are assumed to be 1980 through 1999, and year
values zero through 79 are assumed to be 2000 through 2079. February 29 is a valid
day of month for leap years, but is not valid otherwise.

Set_local_date calculates the correct day of week for the specified date. The
calculated values range from zero through six, corresponding to Sunday through
Saturday. If a day of week value is passed in hi_date and lo_date, it is ignored.

Calling Set_local_date has no effect in a standard Series 90-70 PCM or a Series
90-30 PCM with release 4.00 or later firmware.

191

Caution

If Set_local_date is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Set_local_date is provided in PCM C toolkit versions 1.04 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

m Return Value

Set_local_date returns zero when the operation succeeds. If the specified date
is invalid, BAD_ARG is returned.

In a standard Series 90-70 PCM or Series 90-30 PCM with release 4.00 or later
firmware, Set_local_date returns the value in the lo_date parameter.

m See Also

Get_date, Set_local_time

m Example

#include <vtos.h>
#include <stdio.h>
#define STADNDALONE_PCM 0x0040

char* weekdays[] = {
"Sunday”, "Monday”, "Tuesday”, "Wednesday”,
"Thursday”, "Friday”, "Saturday”, "BAD DAY" };

char* months[] = {
"BAD MONTH?”, "January”, "February”, "March”,
"April”, "May”, "June”, "July”, "August”, "September”,
"October”, "November”, "December”, "BAD MONTH" };

int result;

date.ymd.day_of _month =29;
date.ymd.month =2;
date.ymd.year =92;

if (Get_board_id () & STANDALONE_PCM) {
result = Set_local_date(date.hilo.hi, date.hilo.lo);

if (fresult) {
date.longdate = Get_date();
printf("date = %s, %02d %s '%02d\n”,
(char far*)weekdays[date.ymd.day_of week],
date.ymd.day_of month,
(char far*)months[date.ymd.month],
date.ymd.year);

This example verifies that it is running in a Series 90-70 standalone PCM. If so, the
local date is set to 29 February 1992, a leap year day. Then Get_date is called, and
the full date, including the day of week, is printed. The result should be:

date = Saturday, 29 February '92

192 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Set_local time

GFK-0772A

m Usage

#include <vtos.h>

typedef struct {
byte hundredths;
byte secs;
byte mins;
byte hours;

} hmsh_time;

typedef struct {
word lo;
word hi;

} hilo_time;

typedef union {

hmsh_time hmsh;

hilo_time hilo;
unsigned long
} vtos_time;

int Set_local_time(
word mode,

word hi_time
word Jo_time

longtime;

mode, hi_time, lo_time);

m Description

PCM C Functions

Set_local_time is used to initialize the time maintained by the Series 90-70
standalone PCM, IC697PCM712. In a standard Series 90-70 PCM, 1IC697PCM711, or
a Series 90-30 PCM, the time is automatically synchronized with the PLC CPU time
of day clock. However, the standalone PCM is unable to do so, and its time is
undefined until it is initialized by calling Set_local_time.

The new time is specified in the hi_time and lo_time parameters, and mode
specifies whether hi_time and lo_time should be interpreted as hours, minutes,
seconds and hundredths of seconds or as a count of milliseconds since midnight.
Use the union type vtos_time to assign time values, as shown in the example,
below. Valid ranges of time values are:

Parameter Range
mode MS_SINCE_MIDNIT TIME_STRUCT
Milliseconds 0..86399999 (decimal)
since midnight
Hours 0..23
Minutes 0..59
Seconds 0..59
Hundredths 0..99
Calling Set_local_time has no effect in a standard Series 90-70 PCM or a Series

90-30 PCM with release 4.00 or later firmware.

193

194

Caution

If Set_local_time is called from any PCM with firmware earlier
than release 4.00, the PCM will reset itself. The example below shows
how to avoid this problem.

Set _local_time is provided in PCM C toolkit versions 1.04 and later. Attempting

to use it in earlier versions of the toolkit will cause a linkage error (unresolved
external reference).

m Return Value

Set _local_time returns zero when the operation succeeds. If the specified time

isinvalid, BAD_ARG isreturned.

In a standard Series 90-70 PCM or Series 90-30 PCM with release 4.00 or later
firmware, the return value of Set_local_time is undefined.

m See Also

Get_time, Set_local_date

m Example

#include <vtos.h>
#include <stdio.h>
#define STANDALONE_PCM 0x0040

vtos_time time;
int result;

time.hmsh.hundredths = 0;

time.hmsh.secs =0;
time.hmsh.mins =0;
time.hmsh.hours =8;

if (Get_board_id () & STANDALONE_PCM) {
result = Set_local_time(TIME_STRUCT,
time.hilo.hi, time.hilo.lo

if (fresult) {
time.longtime = Get_time(MS_SINCE_MIDNIT);
printf("time = %08Ix\n”, time.longtime);

time.longtime = Get_time(TIME_STRUCT);

printf("time = %02d:%02d:%02d.%02d\n”,
time.hmsh.hours,
time.hmsh.mins,
time.hmsh.secs,
time.hmsh.hundredths);

PCM C Function Library Reference Manual — August 1996

GFK-0772A

result = Set_local_time(MS_SINCE_MIDNIT, 0, 0);

if (fresult) {
time.longtime = Get_time(MS_SINCE_MIDNIT);
printf("time = %08Ix\n”, time.longtime);

time.longtime = Get_time(TIME_STRUCT);

printf("time = %02d:%02d:%02d.%02d\n”,
time.hmsh.hours,
time.hmsh.mins,
time.hmsh.secs,
time.hmsh.hundredths);

This example verifies that it is running in a Series 90-70 standalone PCM. If so, the
local time is set to exactly8:00a.m.usinghours/minutes/seconds/hundredthsformat.
Then Get_time is called twice to return the time in both formats. Next, the time is
set to midnight using milliseconds format, and two more calls to Get_time return it
in both formats. The program should print this output:

time = 01b77400
time = 08:00:00.01
time = 00000000
time = 00:00:00.00

GFK-0772A PCM C Functions 195

Set_std_device

m Usage
#include<vtos.h>

word Set_std_device (task _id , stdio_number , device_handle);
word task_id

word stdio_number ;

word device_handle ;

m Description

This function is used to redirect one of the predefined standard 1/0 channels,
STDIN, STDOUTor STDERR specified by stdio_number , for the task specified
by task id. The specified stream is redirected to the channel specified by
device_handle , which must contain a value returned by a successful call to
Open_dev. The caller may redirect standard 1/0 for itself or a different task.

Caution
Set_std_device does no error checking. Usinga task id value
greater than 15 can destroy VTOS data and cause mysterious errors or

PCM lockup.

m Return Value

Set_std_device always returns SUCCESS.
m See Also

m Example

#include <vtos.h>
word handle, task_id, status;

handle = Open_dev ("RAM:MYTASK.OUT", WRITE_MODE, WAIT, task_id);
status = Set_std_device (task_id, STDOUT, handle);

This example redirects standard output from the calling task to the PCM RAM disk
file”’MYTASK.OUT”.

196 PCM C Function Library Reference Manual — August 1996 GFK-0772A

set_time

GFK-0772A

m Usage

#include<time.h>

REQSTAT set_time (session_id , plc_time_date
BYTE session_id
TIME_STRUCfar* plc_time ;

m Description

This function allows the user to set the internal time in the PLC CPU. The

session_id

establish_comm_session

The plc_time

must be a value returned by a previous, successful call to
pointer must contain the address

of a structure of type TIME_STRUC where the user has stored the new PLC time.

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One of more of the structure
members of plc_time is
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

197

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate nowait, read_time_nowait, set_date,
set_date nowait, set_timedate, set_timedate nowait,
set_time_nowait

m Example

#include <time.h>

TIME_STRUC plc_time

/*

* Assign the desired time values to
* the members of plc_time.

*

REQSTAT status;
status = set_time (sesn_id, &plc_time);

This example uses a WAIT mode request to set the PLC internal time.

198 PCM C Function Library Reference Manual — August 1996 GFK-0772A

set_time_nowait

GFK-0772A

m Usage
#include<timenw.h>

REQID set_time_nowait (

session_id , plc_time

BYTE session_id

TIME_STRUCfar* plc_time

m Description

See set_time

m Return Value

1

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus.
the REQSTAT value returned by reqstatus

this table.

When REQID or

is negative, it contains a value from

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One of more of the structure
members of plc_time is
out of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

199

200

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_date nowait, set_time, set_timedate, set_timedate nowait

m Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIME_STRUC plc_time

request_id = set_time_nowait (sesn_id, &plc_time);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC time has been set */
}

This example uses a NOWAIT mode request to set the PLC internal time.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

set_timedate

GFK-0772A

m Usage
#include<time.h>

REQSTAT set_timedate (
BYTE

session_id , plc_time_date

session_id

TIMESTAMP_LONG_STRUCfar* plc_time_date ;

m Description

This function allows the user to set the internal time and date in the PLC CPU. The
must be a value returned by a previous, successful call to
pointer must contain the

session_id

establish_comm_session

The plc_time_date

);

address of a structure of type TIMESTAMP_LONG_STRUGvhere the user has
stored the new PLC time and date.

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One of more of the structure
members of plc_time_date
isout of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

201

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate nowait, read_time_nowait, set_date,
set_date nowait, set_time, set_timedate_nowait,
set_time_nowait

m Example

#include <time.h>

TIMESTAMP_LONG_STRUC plc_time_date;
/*

* Assign the desired time and date

* values to the members of plc_time_date.
*

REQSTAT status;
status = set_timedate (sesn_id, &plc_time_date);

This example uses a WAIT mode request to set the PLC internal time and date.

202 PCM C Function Library Reference Manual — August 1996 GFK-0772A

set_timedate nowait

GFK-0772A

m Usage

#include<timenw.h>

REQID set_timedate_nowait (

BYTE

session_id,
session_id

TIMESTAMP_LONG_STRUCfar* plc_time_date ;

m Description

See set_timedate

m Return Value

plc_time_date),

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by reqgstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

One of more of the structure
members of plc_time_date
isout of range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

203

204

m See Also

read_date, read_date_nowait, read_time, read_timedate,
read_timedate_nowait, read_time_nowait, reqstatus, set_date,
set_date nowait, set_time, set_timedate, set_time_nowait

m Example

#include <timenw.h>

REQID request_id;
REQSTAT status;
TIMESTAMP_LONG_STRUC plc_time_date;

request_id = set_timedate_nowait (sesn_id, &plc_time_date);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC time and date have been set */
}

This example uses a NOWAIT mode request to set the PLC internal time and date.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Set_vme_ctl

m Usage
#include<vtos.h>

void Set_vme_ctl (vme_block_num, address_modifier_code);
word vme_block_num ;
word address_modifier_code ;

m Description

This function is used to set the target address range for direct VMEbus access from
the Series 90-70 PCM. The Series 90-70 PCM is capable of operating as a bus master
on the Series 90-70 VMEDbus, and can read or write VME memory on any Series
90-70 smart module (but not the PLC CPU) or third party VME module. Three
independent VME address spaces are accessible from the PCM: standard
non-privileged, short non-privileged, and short supervisory.

The VME standard non-privileged address space covers 16 Megabytes. It is mapped
into a 64 Kbyte sliding window in the PCM. This window appears at segment 0B000
hexadecimal in the PCM, and spans the address range from 0B000:0000 through
0B000:0OFFFF. The entire VME address space, as seen by the PCM, comprises 256
non-overlapping 64 Kbyte segments. Set_vme_ctl sets the PCM window to
make any one of these segments visible. The vme_block_num parameter specifies
the VME segment to be placed in the PCM window, and

address_modifier_code contains STD_NON_PRIV.

The 16 Megabytes of VME standard non-privileged memory are assigned to Series
90-70 rack and slot addresses as shown in the following table.

GFK-0772A PCM C Functions 205

206

Table 1. GE Fanuc Series 90-70 Module Address Allocation
for Standard Access AM Code — 39H

SlotNumber/AddressAllocation

Rack

Number 2 3 4 5 6 7 8 9

0 000000 | 020000 | 040000 | 060000 | 080000 | OAOO000 [OCO000 | OEOO0O
to to to to to to to to

01FFFF | O3FFFF | 05FFFF | O7FFFF | 09FFFF | OBFFFF | ODFFFF | OFFFFF

0
100000through 7FFFFF user-defined for rack 0 only.

1 EO0000 | E20000 | E40000 | E60000 | E80000 | EAO0000 | ECO000 | EEO000
to to to to to to to to

ELIFFFF | E3FFFF | ESFFFF | E7FFFF | E9FFFF | EBFFFF | EDFFFF | EFFFFF

2 DO00000 | D20000 | D40000 | D60000 | D80O0OO | DAOOOO | DCOO0O | DEOOOO
to to to to to to to to

D1FFFF | D3FFFF | D5FFFF | D7FFFF | DOFFFF | DBFFFF | DDFFFF | DFFFFF

3 C00000 | C20000 | C40000 | C60000 | C80000 | CAO000 [CCO0O00 | CEOO0O
to to to to to to to to

CIFFFF | C3FFFF | C5FFFF | C7FFFF | COFFFF | CBFFFF | CDFFFF | CFFFFF

4 BO0000O | B20000 | B40000 | B60OOO | BB000O | BAOOOO | BCOOOO | BEOOOO
to to to to to to to to

B1FFFF B3FFFF B5FFFF B7FFFF BO9FFFF | BBFFFF | BDFFFF | BFFFFF

5 A00000 | A20000 | A40000 | AB0000 | AB80000 | AAO000 | AC0000 | AEO000
to to to to to to to to

ALFFFF | A3FFFF | ASFFFF | ATFFFF | A9FFFF | ABFFFF | ADFFFF | AFFFFF

6 900000 | 920000 940000 960000 | 980000 | 9AO0000 | 9CO000 | 9EO000
to to to to to to to to

91FFFF 93FFFF 95FFFF 97FFFF 99FFFF 9BFFFF | 9DFFFF | 9FFFFF

7 800000 | 820000 | 840000 | 860000 | 880000 | 8AO0000 | 8CO000 | 8EO000
to to to to to to to to

81FFFF 83FFFF 85FFFF 87FFFF 89FFFF 8BFFFF | 8DFFFF | 8FFFFF

The VME short access address spaces (short non-privileged and short supervisory)
are just 64 Kbytes wide. The entire short non-privileged or short supervisory space
for each Series 90-70 rack fits the PCM window, and is mapped to PCM addresses
0B000:0000 through 0B000:0FFFFE To access either of these address spaces in any
Series 90-70 rack, the vme _block num value must be zero and the
contains a value from this table.

address_modifier_code

PCM C Function Library Reference Manual — August 1996

GFK-0772A

GFK-0772A

Rack

address _modifier_code

Short Non-Privileged

Short Supervisory

SHORT_NP_RACKO

SHORT_SUP_RACKO

SHORT_NP_RACK1

SHORT SUP_RACK1

SHORT_NP_RACK2

SHORT_SUP_RACK2

SHORT_NP_RACK3

SHORT_SUP_RACK3

SHORT_NP_RACK4

SHORT_SUP_RACK4

SHORT_NP_RACKS5

SHORT _SUP_RACK5

SHORT_NP_RACKG®

SHORT _SUP_RACKS6

~N| OO | W DN

SHORT_NP_RACK7

SHORT _SUP_RACK?

The assignments of address ranges within the short access address spaces are shown

in this table. Each slot within a rack is assigned its own 2 Kbyte range.

Table 2. GE Fanuc Series 90-70 Module Address Allocation
for Short Access AM Codes

PCM C Functions

Slot

Address Range
(Hexadecimal)

Power Supply

O©CoOoO~NO O WwWN B

User-defined

None
None
1000H - 17FFH
1800H - 1FFFH
2000H - 27FFH
2800H - 2FFFH
3000H - 37FFH
3800H - 3FFFH
4000H - 47FFH
4800H - 4FFFH
5000H - FFFFH

207

m Return Value

None.
m See Also
m Example

#include <vtos.h>
#include <dos.h>

word vme_data, far* p;
long vme_addr;

FP_SEG(p) = VME_WIN_SEG;

FP_OFF(p) = 0x0100;

vme_addr = 0x820000;

Set_vme_ctl (vme_addr/0x10000L, STD_NON_PRIV);
vme_data = *p;

This example sets the PCM VME window to start at VMEbus Standard
Non-Privileged address 820000 hexadecimal, which is assigned to Series 90-70 rack 7,
slot 3. One word of data is read from offset 100 hexadecimal in the target VME
memory.

208 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Special_dev

m Usage
#include<vtos.h>
word Special_dev (device_handle , special_code , data_addr
count , notify_code , task id
[, < nowaitoptions >]);
word device_handle ;
word special_code ;
void far* data_addr ;
word count ;
word notify_code ;
word task _id ;

where <nowait options > depend on the value of notify_code

word Special_dev (device_handle , special_code , data_addr
count , WAIT, task_id);

word Special_dev (device_handle , special_code , data_addr
count ,EVENT_NOTIFY, task id , local_ef mask
(device_result far*) result_ptr);

word local_ef mask ;

device_resultfar* result_ptr

word Special_dev (device_handle , special_code , data_addr

count ,AST_NOTIFY, task id |,
ast_routine [, ast_handle 1);
void (far* ast_routine)(ast_blk far*);
word ast_handle

m Description

Special_dev performs several device-specific functions, as described in this table.

special_ Supported Operation Result
code Devices

1 RAM: Getfilesize. Return the size of the file or other data object spe-
ROM: cified by device_handle . Thesizeis
PC: returned as a long unsigned integer at the
NULL: address specifiedin data_addr ; count is

ignored, and any value may be passed.

2 PC: Setfile size. Set the size of the data object specified by

NULL: device_handle . Thesize is specified as along

unsigned integer at the address in data_addr ;
count isignored, and any
value may be passed.

GFK-0772A PCM C Functions 209

210

special_
code

Supported
Devices

Operation

Result

5

CPU:

Setpassword.

Specify a password to establish a new PLC access
privilege level, or disable synchronization of the
PCM time of day clock with the PLC CPU. The
channel specified by device_handle must be
on the CPU: device. The countvalue isignored.
The format of the parameter string specified

by data_addr is described in CPU Setup Strings
(special_code =5).

coMm1:
comz:

Set serial
communication
parameters.

Set the serial port communication parameters for
the PCM serial port channel specified by de-
vice_handle . The address of astring
containing the new parameters must be in
data_addr , and count isignored. The
parameter string is described on the next page.

CPU:

Set destination
address.

Setthe Series90rack/slotdestinationaddress for
generic messages sent from the CPU: device
channel specified by device_handle . The
data_addr parametershould contain the
addressofa msg_addr structure,as defined in
CPU_DATA.H, and count isignored.

RAM:
ROM:

Setaccess mode.

Set the access mode of PCM files. The access mode
values are one (1), indicating read only access, and
zero (0), indicating readAvrite

access. Mode values are specified in count;
data_addr isignored, and any address may be
passed.

CPU:

Set
segment/offset.

Set the PLC CPU reference memory type and off-
set for reads and writes on the CPU: device chan-
nel specified by device_handle . The
data_addr parameter should contain the
address of a spec_8_struct structure, as de-
finedin VTOS.H, and count isignored.

CPU:

Sethigh priority.

Send the generic messages written to the CPU:
device channel specified by device_handle as
high priority messages. The data_addr and
count areignored.

10

CPU:

Settimeout.

Setatimeout for Read_dev and Write_dev
transfers which occur on the channel specified by
device_handle that was opened on the CPU:
device. When a transfer times out before it com-
pletes, control returns to the task which initiated
the transfer, and the return status for the opera-
tion will indicate that a timeout erroroccurred.

11

CPU:

Getelementsize.

Return the element size of the data object speci-
fied by device_handle . Theelementsizeis
the number of bits in the unit element. Size
parameters for Read_dev, Write_dev , and
Seek_dev are always expressed as a number of
unitelements, which are usually eight-bit bytes.
Other elements sizes are often used for the CPU:
device, which accesses discrete

(single bit) and word (16-bit) data. The
elementsizeis returned as an unsigned integer at
the address specified in data_addr ;

count isignored, and any value may be passed.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Serial Port Setup Strings (special_code =5)

Serial port (COM1:, COMZ2:) setup strings for special_code = 5 have this format:

<baud_rate>,<parity>,<data_bits>,<stop_bits>,<flow_control>,
<physical_interface>,<duplex_mode>,<delay_value>,<typeahead_size>

where:

<baud_rate> =300, 600, 1200, 2400, 4800, 9600, 19200*, or 38400 — the number
of bits per second. Note that 38,400 baud is supported only by the Series 90-70
PCM, and only for RS-422 or RS-485 port configurations.

<parity> = O, E, N* - the type of parity checking: Odd, Even, or None.

<data_bits> =7 or 8* — the number of data bits per character. Use 8 unless text
with 7 bit characters will be the only data transferred.

<stop_bits> = 1* or 2 - the number of stop bits per character. The normal
selection for 300 baud and higher is 1.

<flow_control> = H* S, or N - the flow control method: Hardware (CTS/RTS),
Software (X—-ON, X-OFF) or None.

<physical_inter face> = 232*, 422, or 485 — the physical connection protocol
for the port: RS-323, RS-422, or RS-485. RS-422 is equivalent to RS-485. All
Series 90-30 PCMs support RS-232 only on COM1. 1C693PCM300 supports
RS-422/485 only on COM2.

With hardware flow control, RTS is turned on when the port is ready to transmit.
Then, transmission begins when CTS becomes active. RTS remains on until
<delay value> expires after the last character is sent.

With software or no flow control, RTS is not turned on, and transmission begins
immediately.

<duplex_mode> =2, 4*, or p - the type of physical connection: 2 = half duplex
(2 wire for RS-422/485), 4 = full duplex (4 wire for RS-422/485), p =
point-to—point. Available in PCM firmware version 3.00 or later.

In point-to—point mode:

® The receiver for the specified port is always enabled.

® When <physical_interface > =422 or 485, all RS-485 line drivers for the

specified port are enabled when the command is executed and remain on
continuously.

In full duplex mode:
® The receiver for the specified port is always enabled.

® When <physical_interface> = 422 or 485, the RS-485 line drivers for RTS
and transmitted data outputs on the specified port are turned on immediately
before transmitting and remain on until <delay value> expires after the last
character is sent. At all other times, these drivers are in their high-impedance
state (tri-stated).

GFK-0772A PCM C Functions 211

In half duplex mode:

® The receiver for the specified port is disabled immediately before transmitting
and remains off until <delay value> expires after the last character is sent.

® When <physical_interface> = 422 or 485, the RS-485 line drivers for RTS
and transmitted data outputs on the specified port are turned on immediately
before transmitting and remain on until <delay value> expires after the last
character is sent. At all other times, these drivers are in their high-impedance
state (tri-stated).

<delay_value> = the time in milliseconds between the end of the last outgoing
character and the time RTS is turned off (if applicable), RS-485 line drivers are
tri-stated (if applicable), the receiver is enabled in half duplex mode (if applicable),
and WAIT mode output statements complete execution. Default = 0.

Available in PCM firmware version 3.00 or later.

<typeahead_size> = the typeahead buffer size in characters for the port. The
port can accept up to one less than this number of characters without overflow
before an application reads the port. When overflow occurs, any additional
characters will be lost. Any size in the range 64 — 32750 bytes may be specified, but
the maximum may be limited by available system memory. Default = 320.
Available in PCM firmware version 3.00 or later.

* Default selection.

CPU Setup Strings (special_code =5)
PLC CPU (CPU) setup strings for special _code = 5 have this format:
<PLC_access_password>,<disable_clock_sync>

where:

<PLC_access_password> =the PLC access password for privilege level 2 or
higher. If passwords are enabled in the PLC CPU and the PLC has passwords at
level 2 and higher, the PCM will be unable to read or write PLC memory until the
PCM sends a valid password. Passwords are case sensitive, and valid passwords
may have upper case letters, numbers, and underbar (*_’) characters only. If an
empty string is specified for <PLC_access_password> , a password consisting of
eight NUL characters will be sent to the PLC CPU. There is no default.

<disable_clock_sync> = N - disables backplane messages the PCM normally
sends once per second to synchronize its internal time of day with the PLC CPU.
Any character other than ‘N’ or ‘n’ enables clock synchronization. Available in PCM
firmware version 4.03 or later.

Some applications may be sensitive to the impact that clock synchronization
messages have on PLC sweep time or backplane message rates. If these issues are
more important than time of day accuracy, use this option. Default =
synchronization enabled.

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Special_dev s delayed until the operation completes. The other notify _code

212 PCM C Function Library Reference Manual — August 1996 GFK-0772A

values cause the function to return immediately, allowing the calling task to
continue execution.

When EVENT_NOTIFY is used, local ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Special_dev
When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast
asa far pointer because its type is not specified by the function prototype in
vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains SUCCESS and the iostatus member is undefined; when
afailure occurs, ioreturn contains IO_FAILED, and iostatus contains an
error status code. For a discussion of asynchronous 1/0 using event flags, see
chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for Series 90 PCMs
User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast _routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine, it passes the address of an ast_blk

structure. The ast_handle value isinthe handle member of the ast blk . If
the call succeeds, the arg2 member of the ast_blk contains SUCCESS and the
argl member is undefined; when a failure occurs, arg2 contains I0_FAILED, and
argl contains an error status code. For adiscussion of asynchronous /0 using AST
functions, see chapter 6, Real-Time Programming, in the C Programmer’s Toolkit for
Series 90 PCMs User’s Manual, GFK-0771.

m Return Value

In WAIT mode, SUCCESS is returned when there are no errors. When an error
occurs, I0_FAILED isreturned; a status code value is available in the global variable
_VTOS error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

m See Also
loctl_dev

Abort_dev

GFK-0772A PCM C Functions 213

Example

}

}

}

#include <vtos.h>
#include <cpu_data.h>
#include <memtypes.h>

msg_addr other_pcm_addr;
special_dev_8_type new_plc_ref;

word hndl1, hndl2, spec_value;
word task = Get_task_id();

hndl1 = Open_dev("COML1:", WRITE_MODE, WAIT, task);
hndI2 = Open_dev("CPU:%R1", READ_MODE | WRITE_MODE, WAIT, task);

spec_value = Special_dev(hndl1, 5, "1200,E,7,1,S,485,2,,512", O,

if (spec_value == SUCCESS) {

other_pcm_addr.rack = 0;

other_pcm_addr.slot = 5;

other_pcm_addr.svc_point = 8;

spec_value = Special_dev(hndI2, 6, &other_pcm_addr, 0, WAIT, task);

if (spec_value == SUCCESS) {

new_plc_ref.type = Al_DATA,
new_plc_ref.offset = 0;

spec_value = Special_dev(hndI2, 8, &new_plc_ref, 0, WAIT, task);
if (spec_value == SUCCESS) {

WAIT, task);

/* The serial parameters were changed successfully. */

/* The channel will send messages to the PCM in rack 0, slot 5. */

/* The receiving PCM needs to call Open_dev, specifying device */
[* "CPU:#8" to receive the messages. Messages must be 32 bytes */
/* long and use structure type msg_hdr, defined in CPU_DATA.H, */
/* as the low order 16 bytes. */

/* The channel will now access %AI001 */

This example opens three 1/0 channels: one on serial port 1, one to access the PLC
register table at %R1, and one to send generic messages to the PLC CPU.
Special_dev s called three times to modify these channels.

The first call resets the serial communication settings for port 1 to 1200 baud, even
parity, seven data bits, one stop bit, software flow control, RS-485 interface, 2-wire
half duplex operation, and a 512-character type ahead buffer. The turnaround delay
is left at the default setting.

The second call changesthe rack/slot/service point address for a CPU channel to
specify another PCM, rather than the PLC CPU.

The third Special_dev call sets the channel to access the PLC analog input table
at %AIl001. Note that the offset member of special_dev_8_type is zero based.

214 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Start_com_timer

m Usage
#include<vtos.h>
void Start_com_timer (timer_handle , count , timeout_routine);
word timer_handle ;
word count ;
void (far* timeout_routine)(void);

m Description

This function starts a communication timer, specified by timer_handle , which

was previously allocated by a successful call to Alloc_com_timer . The count
parameter specifies the number of milliseconds which the timer will count before it
expires and timeout_routine is called. The maximum count value corresponds
to 65.535 seconds. A zero (0) count causes timeout _routine to execute
immediately.

The timeout_routines may not call most VTOS services, but Post_ast |,

Iset_ef , and Iset_gef may be called.

m Return Value

None.

m See Also

Alloc_com_timer, Cancel_com_timer, Dealloc_com_timer

GFK-0772A PCM C Functions 215

m Example

#include <vtos.h>
#include <stdio.h>

word task;

word far timeout_routine(void)
{

return(Iset_ef(EF_01, task));
}

void main ()

{
device_result result;
word com_tmr, local_flags, serial_hndl;
char buf[265];

task = Get_task_id();

Reset_ef(Oxffff);

com_tmr = Alloc_com_timer();

serial_hndl = Open_dev("com1:13”, READ_MODE | WRITE_MODE, WAIT, task);

if (com_tmr !=0) {
Start_com_timer(com_tmr, 10000, timeout_routine);

Read_dev(serial_hndl, buf, sizeof(buf), EVENT_NOTIFY, task, EF_00,
(device_result far*)&result);

Wait_ef(EF_00 | EF_01);
local_flags = Test_ef();
Reset_ef(local_flags);

if (local_flags & EF_01) {

/* The timeout occurred. */

printf("timeout occurred\n”);

Abort_dev(serial_hndl, ABORT_ALL, WAIT);
}else {

/* Process the received data. */

Cancel_timer(com_tmr);

buf[result.ioreturn] = 0;

printf("data received: %s\n”, (char far*)buf);

}

Dealloc_com_timer(com_tmr);

This example uses a communication timer to limit the wait time for serial input. Serial
port 1 is opened with an option that terminates Read_dev when a carriage return
(ASCII code 13 decimal) character is encountered.

The timer is started before calling Read_dev in EVENT_NOTIFY mode. If a carriage
return character is read before the timer expires, local event flag EF_00 is set by the
Read_dev call. If the timer expires first, event flag EF_01 is set by timeout_routine
In either case, the Wait_ef call in main returns.

The main program tests its local event flags to determine which event occurred. If a
timeout occurred, the Read_dev operation is aborted; otherwise the timer is cancelled.
Finally, the communication timer is deallocated.

216 PCM C Function Library Reference Manual — August 1996 GFK-0772A

start_plc

m Usage
#include<cntrl.h>

REQSTAT start_plc (session_id);
BYTE session_id ;

m Description

This function sets the PLC state to run mode. In Series 90-30 PLCs the output scan is
always enabled. For Series 90-70 PLCs, however, the output scan mode is dependent
on the CPU hardware switch setting. The session_id must be a value returned
by a previous, successful call to establish_comm_session

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

m See Also

start_plc_noio, start_plc_noio_nowait, start_plc_nowait,
stop_plc, stop_plc_nowait

m Example

#include <cntrl.h>

REQSTAT status;
status = start_plc (sesn_id);

This example uses a WAIT mode request to put the PLC in RUN mode with outputs
enabled.

GFK-0772A PCM C Functions 217

start_plc_noio

m Usage

#include<cntrl.h>

REQSTAT start_plc_noio (
BYTE session_id ;

m Description

session_id);

This function sets the state of a Series 90-70 PLC to run mode with 1/0 disabled,
even if the hardware switch on the CPU module is in the /0O ENABLE position. This

request is valid only for Series 90-70 PLCs. The session_id

must be a value

returned by a previous, successful call to establish_comm_session

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

start_plc, start_plc_noio_nowait, start_plc_nowait, stop_plc,

stop_plc_nowait

m Example

#include <cntrl.h>

REQSTAT status;

status = start_plc_noio (sesn_id);

This example uses a WAIT mode request to put the PLC in RUN mode with outputs
disabled.

218 PCM C Function Library Reference Manual — August 1996 GFK-0772A

start_plc_noio_nowait

GFK-0772A

m Usage
#include<cntrinw.h>

REQID start_plc_noio_nowait (
BYTE session_id ;

m Description

See start_plc_noio

m Return Value

session_id);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling reqgstatus . When REQID or

the REQSTAT value returned by reqstatus

this table.

is negative, it contains a value from

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

219

220

m See Also

regstatus, start_plc, start_plc_noio, start_plc_nowait,
stop_plc, stop_plc_nowait

m Example

#include <cntrinw.h>

REQID request_id;
REQSTAT status;

request_id = start_plc_noio_nowait (sesn_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC is running with outputs disabled */
}

This example uses a NOWAIT mode request to put the PLC in RUN mode with
outputs disabled.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

start_plc_nowait

GFK-0772A

m Usage
#include<cntrinw.h>

REQID start_plc_nowait (
BYTE session_id ;

m Description

session_id);

This function sets the PLC state to run mode. For Series 90-30 PLCs, the output scan
is always enabled. For Series 90-70 PLCs, however, the output scan mode is
dependent on the CPU hardware switch setting. The session_id must be a value
returned by a previous, successful call to establish_comm_session

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

221

222

m See Also

regstatus, start_plc, start_plc_noio, start_plc,
start_plc_noio_nowait, stop_plc, stop_plc_nowait

m Example

#include <cntrinw.h>

REQID request_id;
REQSTAT status;

request_id = start_plc_nowait (sesn_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */

} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the PLC is running with outputs enabled */
}

This example uses a NOWAIT mode request to put the PLC in RUN mode with

outputs enabled.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Start_timer

m Usage
#include<vtos.h>

word Start_timer (

word timer_code
word hi_cnt ;

word mid_cnt ;
word Jlow_cnt ;

where < notify option

timer_code , hi_cnt , mid_cnt
low_cnt , < notifyoption >);

> depends on the value of timer_code

word Start_timer (AST_NOTIFY_MODE | < othercodes >, hi_cnt ,
mid_cnt , low_cnt , ast routine [, ast handle 1]);

void (far* ast_routine)(ast_blk far*);

word ast_handle

word Start_timer (<

word

m Description

1

othercodes >, hi_cnt , mid_cnt ,
low_cnt , event flag _mask);
event_flag_mask

This function starts a general purpose timer. The timer_code consists of one or
more timer control codes OR-ed together, as shown in this table.

Control Code

Description

RELATIVE_TIMEOUT

The timer will expire at a future time calculated by adding the
current time of day to the time interval specified by hi_cnt,
mid_cnt , and low_cnt . Thisis the only timeout mode
supported by the currentimplementation; it mustbe specified.

REPEAT_MODE

The timer will restart when it expires. IFREPEAT_MODE is not spe-
cified, one-shot operation will occur.

TASK_SPECIFIED

This code specifies that VTOS should notify a task specified by the
task value bits. If this bit is not set, the calling task will be notified.

AST_NOTIFY_MODE

This code specifies that VTOS should notify the calling task when
the timer expires by posting an asynchronoustrap (AST).

Taskvalue

When TASK_SPECIFIED is used intimer_code, the task number val-
ue for the target task must be OR-ed into timer_code . The speci-
fied task will be notified using one or more of its local

event flags, as specified in event_flag_mask , or by the

specified ast_routine

When the special task value OXFF (-1 expressed asa byte)

is specified, the global event flags specified in event_flag_mask
will be set when the timer expires. Any tasks waiting for these flags
will be notified.

GFK-0772A PCM C Functions

223

The timeout value for Start_timer may contain any time duration in the range
from zero time to the largest number of milliseconds which can be expressed as a
long unsigned integer: 49 days, 17 hours, 2 minutes, 47 seconds, 295 milliseconds. It
may be specified either as milliseconds or clock time (days, hours, minutes, seconds,
milliseconds) format. This table shows the content of the three count parameters for
both formats.

Count Parameter Format Content
hi_cnt Milliseconds. | MS_COUNT_MODE.
Clocktime. A word value which contains the number of days in

the most significant byte and hours in the least
significantbyte.

mid_cnt Milliseconds. | A word value which contains the most significant
word of the long unsigned integer millisecond count.

Clocktime. A word value which contains the number of minutes
in the most significant byte and seconds iu the least
significantbyte.

low_cnt Milliseconds. | A word value which contains the /eas t significant
word of the long unsigned integer millisecond count.
Clocktime. A word value which contains the number of
milliseconds.

When timer_code includes AST_NOTIFY_MODE, the ast routine

parameter must contain the address of an asynchronous trap (AST) handler function
defined in the code for the task to be notified. The optional ast_handle contains
a user-selected tag value to identify the timeout event, if necessary, for the AST
function.

When timer_code does not include AST_NOTIFY_MODE, the
event_flag_mask parameter contains bits which specify one or more event flags.
The least significant byte of timer_code must specify a task to be notified. If the
task value corresponds to an actual application task, one or more of its local event
flags will be set when the timer expires, as specified in event flag mask . If the
task value contains OxFF , the global event flags specified by event flag mask

are set when the timer expires.

Return Value

Atimer handle value or zero (0) is returned. Valid timer handles are non-zero
unsigned integers. The handle may be used to identify the timer in calls to
Cancel_timer . When an error occurs, Start_timer returns zero (0), and an
error code from this tableisin _VTOS_error .

Error Code Description
BAD_OPCODE The timer_code isinvalid.
NO_TIMERS All the general purpose timers are being used.

PCM C Function Library Reference Manual — August 1996 GFK-0772A

m See Also

Cancel_timer, Wait_time

m Example

#include <vtos.h>

void far timer_ast_func (ast_blk far* p)

{

/*

* Process the timeout event identified by p—>handle. The argl .. arg4
* members are undefined.

*

}

void main ()
word hl, h2, h3, h4, h5;

h1 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | 7,
MS_COUNT_MODE, 0, 500, EF_02):

if ('\h1) {
/* _VTOS_error contains the error code */
MS_COUNT_MODE, 0, 500, EF_01 | EF_15);

h3 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | 14,
(6 << 8) | 23, (59 << 8) | 59, 999, EF 00);

h4 = Start_timer (RELATIVE_TIMEOUT | AST_NOTIFY_MODE,
MS_COUNT_MODE, 0, 500, timer_ast_func, 1);

h5 = Start_timer (RELATIVE_TIMEOUT | AST_NOTIFY_MODE,
0, (2<<8),0, 1, timer_ast_func, 2);

Cancel_timer (h3);

}
h2 = Start_timer (RELATIVE_TIMEOUT | TASK_SPECIFIED | OxFF,

This example starts five timers, identified by the handles h1, h2, h3, h4 | and
h5, respectively. The first timer runs for 500 milliseconds. When it expires, local
event flag EF_02 is set for task 7, which then becomes ready to run. Handle h1 is
checked to ensure that the timer was actually started. The second call also starts a
500 millisecond timer, and global event flags EF_01 and EF_15 are set when it
expires. The third call notifies task 14 via local event flag EF_00 when the timer
expires. The timer is set for six days, 23 hours, 59 minutes, 59 seconds and 999
milliseconds. The fourth call notifies the calling task with an AST when the 500
millisecond timer expires. The AST function, timer_ast_func , isalso defined in
the example. An AST handle value of one (1) identifies the timeout event to
timer_ast_func. The last call also notifies the calling task through
timer_ast_func when the two minute timeout expires. A different AST handle
value is used so that timer_ast_func can distinguish the two events. Finally,
timer handle h3 iscancelled.

PCM C Functions

225

stop_plc

226

m Usage

#include<cntrl.h>

REQSTAT stop_plc (
BYTE session_id ;

m Description

This function sets the PLC state to stop mode. When the execution sweep stops, the

session_id);

1/0 scan may or may nhot continue, depending on the 10Scan-Stop software
configuration item for the PLC CPU in the Logicmaster 90 I/0 configuration. The

session_id

m Return Value

must be a value returned by a previous, successful call to
establish_comm_session

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

start_plc, start_plc_noio, start_plc_noio_nowait,
start_plc_nowait, stop_plc_nowait

m Example

#include <cntrl.h>

REQSTAT status;
status = stop_plc (sesn_id);

This example uses a WAIT mode request to stop the PLC.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

stop_plc_nowait

GFK-0772A

m Usage
#include<cntrinw.h>

REQID stop_plc_nowait (
BYTE session_id ;

m Description

See stop_plc

m Return Value

session_id);

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus

table.

When REQID or the
is negative, it contains a value from this

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

227

228

m See Also

regstatus, start_plc, start_plc_noio, start_plc_noio_nowait,
start_plc_nowait, stop_plc

m Example

#include <cntrinw.h>

REQID request_id;
REQSTAT status;request_id = stop_plc_nowait (sesn_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqgstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {
/* investigate the error */
}else {
/* the PLC was stopped */
}

This example uses a NOWAIT mode request to stop the PLC.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Suspend_task

m Usage
#include<vtos.h>

void Suspend_task (task _id);
word task id ;

m Description

Suspend_task prevents a task from executing until it is resumed by calling
Resume_task . When a task is suspended, all VTOS activity which it previously
initiated, such asserial 1/0, will continue, but the task itself will no longer run. A
task may suspend itself; if so, it must be resumed by another task.

A task may be suspended more than once: for example, by several different tasks.
VTOS maintains a count of the number of times each task has been suspended. The
count is incremented on each Suspend_task call for a given task id and
decremented on each Resume_task call for the same task id . The suspended
task does not become active until the count reaches zero.

If a task is suspended while it is waiting for /0, asynchronous traps (ASTs), event
flags, or a timer, it will execute only after the event it is waiting for has occurred and
it has been resumed.

Caution

When a task which receives asynchronous traps (ASTs) regularly is
suspended, ast_blk structures for the task will accumulate until the
task is resumed. These structures can exhaust free memory if the task
remains suspended indefinitely, causing the PCM to lock up.

m Return Value

None.

m See Also

Resume_task

m Example

#include <vtos.h>

Suspend_task (15);

This example suspends task 15, which will not execute until it is resumed by calling
Resume_task .

GFK-0772A PCM C Functions 229

terminate_comm_session

230

m Usage

#include<session.h>

REQSTAT terminate_comm_session (

BYTE session_id ;

m Description

session_id

This function terminates a communication session which was previously opened by

calling api_initialize and establish_comm_session

. The session id must

be a value returned by a previous, successful call to establish_comm_session

m Return Value

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate
memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

api_initialize, establish_comm_session

m Example

See api_initialize

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Terminate_task

m Usage
#include<vtos.h>

void Terminate_task (task id);
word task id ;

m Description

Terminate_task causes the task specified lgsk id to be permanently de-activated.

The effect of Terminate_task is irreversible. The specified task’s resources (memory, open
communication channels, timers and pending ASTs) are returned to VTOS. However, code space in
RAM for the task is not de-allocated. A task can terminate itself or any other task. When a task
terminates itself, there is no return from the call. VTOS itself cBdisninate_task when a

task exits itsmain function.

Caution

DO NOT terminate any of the PCM system tasks, with Task ID values
zero through three. PCM lockup or unexpected operation will result.

m Return Value

None.

m See Also

Init_task, Process_env

m Example

#include <vtos.h>

Terminate_task (Get_task_id ());

In this example, the calling task terminates itself.

GFK-0772A PCM C Functions 231

Test_ef

m Usage
#include<vtos.h>

word Test_ef (void);

m Description

This function is used by the calling task to determine which, if any, of its local event
flags are set. There are no parameters. There is no mechanism for a task to test the
local event flags of a different task.

Note

The result returned by Test ef may not be valid by the time the
calling task decides what action to take following the call. Higher
priority tasks or interrupts can set additional event flags.

m Return Value

Aword is returned which contains the status of all the calling task’s local event flags.

m See Also

Iset_ef, Reset_ef, Set_ef, Wait_ef

m Example

#include <vtos.h>
word ef;
ef = Test_ef ();

Reset_ef (ef);
/* Check the individual flags in ef. */

}

In this example, the calling task calls Test_ef to look at its local event flags. The
flags which were set are reset. The task can now check the flags which were set.

232 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Test_gef

m Usage
#include<vtos.h>

word Test_gef (void);

m Description

This function is used to determine which, if any, global event flags are set. There are
no parameters. Any task may reset, set, and test global event flags.

Note

The result returned by Test_gef = may not be valid by the time the
calling task decides what action to take following the call. Higher
priority tasks or interrupts can set additional event flags or reset the
event flag of interest.

m Return Value

Aword is returned which contains the status of all global event flags.

m See Also

Iset_gef, Reset_gef, Set_gef, Wait_gef

m Example

#include <vtos.h>
Reset_gef (EF_12);

while (I(Test_gef () & EF_12)) {
/* repeat some action until stopped by another task */
}

The calling task of this example resets a global event flag and then performs some
repetitive processing until a different task stops it by setting the event flag. Note
that the operation might never occur; a higher priority task could pre-empt this one
and set the flag between the Reset_gef and Test _gef calls.

GFK-0772A PCM C Functions 233

Test_task

234

m Usage

#include<vtos.h>

word Test_task (void);

m Description

This function is used to determine which VTOS tasks have been started but not

terminated. It can be used to determine available task numbers, for the purposes of

installing new tasks.

m Return Value

Aword value is returned in which each bit which is set indicates a task number in

use.

m See Also

m Example

#include <vtos.h>
#include <stdio.h>

word task_masks [] ={
TASK_00_MASK, TASK_01_MASK, TASK_02_MASK, TASK_03_MASK,
TASK_04_MASK, TASK_05_MASK, TASK_06_MASK, TASK_07_MASK,
TASK_08_MASK, TASK_09_MASK, TASK_10_MASK, TASK_11_MASK,
TASK_12_MASK, TASK_13_MASK, TASK_14_MASK, TASK_15_MASK

5
inti;

word active_tasks;
active_tasks = Test_task ();
for (i=0;1<NUM_PCM_TASKS; ++l) {
if (active_tasks & task_masks [i])
printf ("task %d is active\n”, i);

This example prints the task numbers of all the currently active PCM tasks.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Unblock_sem

m Usage
#include<vtos.h>

void Unblock_sem (semaphore_handle);
word semaphore_handle ;

m Description

This function is called to release a semaphore, specified by semaphore_handle
which the calling task acquired by calling either Link_sem or Block_sem .
Semaphores must be unblocked before any other VTOS function call is made.

m Return Value

None.

m See Also

Block _sem, Link_sem, Unlink_sem

m Example

See Block_sem .

GFK-0772A PCM C Functions 235

Unlink_sem

m Usage
#include<vtos.h>

void Unlink_sem (semaphore_handle);
word semaphore_handle ;

m Description

This function is called when a task no longer requires the use of a particular
semaphore, specified by semaphore_handle . The handle must be a value
returned by a previous, successful call to Link_sem . If no other tasks are linked to
the semaphore, its memory block is released to free memory. This function is rarely
used.

m Return Value

None.

m See Also

Block _sem, Link_sem, Unblock _sem

m Example

See Block_sem .

236 PCM C Function Library Reference Manual — August 1996 GFK-0772A

update plc_status

GFK-0772A

m Usage

#include<utils.h>

REQSTAT update_plc_status (

BYTE session_id ;

m Description

session_id);

This function requests an update of the PLC status information record in the

plc_status_info
session_id

establish_comm_session

m Return Value

array corresponding to the specified session_id . The
must be a value returned by a previous, successful call to

Note that all other PLC requests also update this
information. This function has a minimal effect on PLC sweep time, and is most
often used when no other PLC data is required.

The function returns a REQSTAT value which contains the completion status of the
requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communicationhas not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

m Example

#include <utils.h>

REQSTAT status;

status = update_plc_status (sesn_id);

This example uses a WAIT mode request to update the PLC status data in the PCM.

PCM C Functions

237

update_plc_status_nowait

m Usage
#include<utilsnw.h>

REQID update_plc_status_nowait (session_id);
BYTE session_id ;

m Description

See update_plc_status

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus . When REQID or the

REQSTAT value returned by regstatus is negative, it contains a value from this
table.
Most Significant Byte Least Significant Byte Error Condition
DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communicationhas not been
established through callsto
api_initialize,

configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

238 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m See Also

regstatus

m Example

#include <utilsnw.h>

REQID request_id;
REQSTAT status;request_id = update_plc_status_nowait (sesn_id);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status = REQUEST_OK) {

[* investigate the error */
}else {

/* the new PLC status data is available */
}

This example uses a NOWAIT mode request to update the PLC status data in the
PCM.

PCM C Functions

239

Vme_clear_Icl _sem

m Usage
#include <vme.h>

int _cdecl Vme_clear_Icl_sem(void);

m Description

Vme_clear_Icl_sem is used by Series 90-70 PCM applications to clear a
semaphore in the VME memory of the host PCM after the application has acquired
the semaphore with Vme_test_Icl_sem and accessed the memory it controls.

Vme_clear_Icl_sem has no parameters.

Vme_clear_Icl_sem is provided in PCM C toolkit versions 1.05 and later.
Attempting to use it with earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

m Return Value

Vme_clear_Icl_sem returns a value from this table.

Return Value Completion Status
SUCCESS Apreviouslyacquired semaphorewascleared successfully.
NO_SEM_PREV_ACQUIRED No semaphore has been acquired in VME memory.

m See Also

Vme_read, Vme_test_and_set, Vme_test Icl_sem, Vme_write

m Example

See Vme_test Icl_sem

240 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Vme_read

GFK-0772A

m Usage

#include <vme.h>

int _cdecl Vme_read(void far *dest,

byte
word
byte
long
byte

m Description

vme_hi_adr,
vme_lo_adr,
vme_am_code,
len,

units);

Vme_read is used by Series 90-70 PCM applications to read VMEbus memory in
other modules in the Series 90-70 PLC. The PCM performs the memory read as a
VMEDbus master.

The vme_am_code parameter contains either STD_NON_PRIV or one of the
values SHORT_NP_RACKO through SHORT_NP_RACK?7, depending on the rack
location of the target module. When vme_am_code contains STD_NON_PRIV,
must contain the most significant 8 bits of the standard
non-privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non—privileged
address or the entire short non—privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACKO0 through SHORT_NP_RACK?.

The dest parameter specifies the far address of a memory buffer where data will

vme_hi_addr

be copied to, units

contains either BYTE_UNITS or WORD_UNITS, and len

specifies the number of bytes or words to copy. However, if vme_lo_addr specifies
an odd start address, the units
BYTE_UNITS will be used for the data transfer.

Vme_read is provided in PCM C toolkit versions 1.05 and later. Attempting to use it
in earlier versions of the toolkit will cause a linkage error (unresolved external

reference).

m Return Value

Vme_read returns a value from this table.

parameter will be silently ignored, and

Return Value _VTOS error Completion Status
SUCCESS SUCCESS Thespecified VME read completed successfully.
10_FAILED INVALID_PCM The PCM does not support VME transfer functions — it

VMEbuserror bits

is either a Series 90-30 PCM or a Series 90-70 PCM
with PCMAL1 hardware or firmware earlier than version
4.03

BUSGRT_MASK issetin_VTOS_error whenthe PLC
CPU refuses to grant the PCM access to the VMEbus.

BSERR_MASK or-ed with BUSHOG_MASK is re-
turned when there is no physical memory at the speci-
fied VMEDbus address, and when a PCM attempts to
read a VMEbus address located in its own VME
memory.

PCM C Functions

241

m See Also

Vme_clear_Icl_sem, Vme_test_and_set, Vme_test Icl_sem,
Vme_write

m Example

#include <vme.h>
#include <stdio.h>

byte read_data[32];
int status;

byte hi_adr;

byte rack = 0;

byte slot = 3;

if (1S9070_RACKSLOT_VALID(rack, slot)) {
/* handle the error */

}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_read(read_data, hi_adr, 0, STD_NON_PRIV, 32, BYTE_UNITS);

if (Istatus) {
intc,i,j;
char buf[20];

for (i= VME_DATA_LEN; i;) {
printf(“%04x: “, (VME_DATA_LEN —i));

for (j=16; i&&j; —j, —i) {
¢ =read_data[VME_DATA_LEN —iJ;
buf[16-j]=((c>=""&& c<='~)?2c:");
printf(“%02x “, ¢);

}
buf[16-j] = 0;
for (;j; —){

printf(“ “);

printf(“\"%s\"\n", (char far*)buf);

This example reads 32 bytes from the start of VME memory in the module in rack
zero, slot 3. The most significant byte of the VME address is calculated by the
S9070_VME_HI_ADDR macro in VME.H.

When the target module is a Series 90-70 PCM, the program should print this
output:

0000: 2056 20 4d 20 4520492044 204720452046 “VMEIDGEF
0010: 2037 20502043204d2037203120312041 “7PCM711A"

242 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Vme_test and_set

m Usage
#include <vme.h>

int _cdecl Vme_test_and_set(byte vme_hi_adr,
word vme_lo_adr,
byte vme_am_code,
byte units);

m Description

Vme_test_and_set is used by Series 90-70 PCM applications to control access to
VMEbus memory of other modules in its Series 90-70 PLC using a semaphore. It
works like the VMETS function block for Series 90-70 PLC CPUs. The PCM,
operating as a VMEbus master, uses a locked memory exchange to test the byte or
word semaphore at a specified VMEbus address.

Typically, PCM applications that use shared VMEbus memory provide a semaphore
to control access to that memory. The PCM whose memory is shared uses
Vme_test Icl_sem and Vme_clear_Icl_sem to access the semaphore locally,
while other PCMs use Vme_test_and_set

The vme_am_code parameter contains either STD_NON_PRIV or one of the values
SHORT_NP_RACKO through SHORT_NP_RACK?7, depending on the rack location
of the target module. When vme_am_code contains STD_NON_PRIV ,
vme_hi_addr must contain the most significant 8 bits of the standard
non-privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non—privileged
address or the entire short non-privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACKO through SHORT_NP_RACK?.

The units parameter contains either BYTE_UNITS or WORD_UNITS and
specifies whether the semaphore is a byte or word variable. However, if
vme_lo_addr specifies an odd start address, the units parameter will be silently
ignored, and BYTE_UNITS will be used for the data transfer.

Vme_test_and_set isprovided in PCM C toolkit versions 1.05 and later.
Attempting to use it in earlier versions of the toolkit will cause a linkage error
(unresolved external reference).

GFK-0772A PCM C Functions 243

m Return Value

Vme_test and_set returns a value from this table.

Return Value _VTOS error Completion Status
SEM_ACQUIRED SUCCESS The PCM acquired the specified semaphore and
the memory it controls.
SEM_NOT_ACQUIRED | SUCCESS The VME operationcompleted successfully, but the
semaphore was notacquired.
10_FAILED INVALID_PCM | The PCM does not support VME transfer functions

—itis either a Series 90-30 PCM or a Series 90-70
PCMwith PCMA1 hardware or firmwareearlier
thanversion4.03.

VMEbuserror BUSGRT_MASK ssetin _VTOS error when the

bits PLC CPU refuses to grant the PCM access to the
VMEbus.

BSERR_MASK or—ed with BUSHOG_MASK is re-
turned when there is no physical memory at the
specified VMEbus address, and whena PCM
attempts to read a VMEbus address located in its

own VME memory.
m See Also
Vme_clear_Icl_sem, Vme_read, Vme_test Icl_sem, Vme_write
m Example

#include <vme.h>
#include <stdio.h>

word sem_copy;
int status;

byte hi_adr;
byte rack = 0;
byte slot = 3;

if (1S9070_RACKSLOT_VALID(rack, slot)) {
/* handle the error */

}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_test_and_set(hi_adr, 0x4000, STD_NON_PRIV, WORD_UNITS);

if (I_VTOS_error)
if (status) {
/* the semaphore was acquired — access the data it controls */
/* then use VME_write() to release the semaphore */
sem_copy = 0;
VME_write(hi_adr, 0x4000, STD_NON_PRIV, &sem_copy, 1, WORD_UNITS);

}else {
/* the semaphore was not acquired — try again later */
}
}else {
[* _VTOS_error indicates an error occurred — process the error */

}

This example attempts to acquire a semaphore in VME memory. The most

significant byte of the VME address is calculated by the S9070_VME_HI_ADDR
macro in VME.H.

244 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Vme test_Icl_sem

m Usage

#include <vme.h>

int _cdecl Vme_test_Icl_sem(word local_vme_offset, byte units);

Description

Vme_test_Icl_sem is used by Series 90-70 PCM applications to acquire a semaphore
in the VME memory of the host PCM in order to access the memory it controls. This
function, along with Vme_clear_lcl_sem, enables sharing VME memory in the local
PCM with applications in the PLC CPU or in other PCMs. CPU applications would
use VMETS and VMEWRT function blocks to test and clear the this semaphore,
while applications in other PCMs would use Vme_test_and_set and Vme_write.

The local_vme_offset parameter is the VME memory offset of a semaphore in the
host PCM, and units contains either BYTE_UNITS or WORD_UNITS. However, if
local_vme_offset specifies an odd address, the units parameter will be silently
ignored, and BYTE_UNITS will be used for the semaphore operation.

Vme_test_Icl_sem is provided in PCM C toolkit versions 1.05 and later. Attempting
to use it with earlier versions of the toolkit will cause a linkage error (unresolved
external reference).

Return Value

Vme_test Icl_ sem returns a value from this table.

Return Value Completion Status

SEM_NOT_ACQUIRED

The specified semaphore was notacquired.

SEM_ACQUIRED

Thespecified semaphorewasacquired successfully.

INVALID_PCM

The PCM does not support VME transfer functions —it is
either a Series 90-30 PCM or a Series 90-70 PCM with
PCMAU1 hardware or firmware earlier than version 4.03.

INVALID_ADDR

The local_vme_offset parameteris invalid. Itis ei-
ther in memory used by the PLC CPU, or the PCM uses
PCMAZ1 hardware and the specified offsetis inaccessible.

TOO_MANY_SEMS

Only one semaphore can be acquired at one time, and one is
already inuse.

m See Also

Vme_clear_Icl_sem, Vme_read, Vme_test and_set, Vme_write

GFK-0772A PCM C Functions

245

m Example

#include <vme.h>
#include <stdio.h>

typedef struct {
word sem;
word data[31];
} vme_data_t;

vme_data_t far* vme_data_ptr;
int status;

FP_SEG(vme_data_ptr) = VME_DP_SEG;
FP_OFF(vme_data_ptr) = 0x4010;

status = Reserve_dp_buff(vme_data_ptr, sizeof(vme_data_t));

if (status == SUCCESS) {
status = Vme_test_Icl_sem(FP_OFF(vme_data_ptr), WORD_UNITS);
}

if (status == SEM_ACQUIRED) {
/* access the data */
Vme_clear_lIcl_sem();

}

This example reserves a block of VME memory. Then it acquires control of the
memory block using Vme_test Icl_ sem and accesses the data in the block.
Finally, control of the block is released by calling Vme_clear_Icl_sem

246 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Vme_write

GFK-0772A

m Usage

#include <vme.h>

int _cdecl Vme_write(byte vme_hi_adr,
word vme_lo_adr,
byte vme_am_code,
void far *src,

long len,
byte units);
Description

Vme_write is used by Series 90-70 PCM applications to write VMEbus memory in
other modules in the Series 90-70 PLC. The PCM performs the memory write as a
VMEDbus master.

The vme_am_code parameter contains either STD_NON_PRIV or one of the values
SHORT_NP_RACKO through SHORT_NP_RACK?7, depending on the rack location
of the target module. When vme_am_code contains STD_NON_PRIV ,
vme_hi_addr must contain the most significant 8 bits of the standard
non-privileged (A24) VMEbus address; otherwise it is ignored. The vme_lo_addr
parameter contains either the least significant 16 bits of a standard non—privileged
address or the entire short non—privileged (A16) address when vme_am_code
contains one of the values SHORT_NP_RACKO0 through SHORT_NP_RACK?.

The src parameter specifies the far address of a memory buffer where data will be
copied from, units contains either BYTE_UNITS or WORD_UNITS, and len
specifies the number of bytes or words to copy. However, if vme_lo_addr specifies
an odd start address, the units parameter will be silently ignored, and
BYTE_UNITS will be used for the data transfer.

Vme_write is provided in PCM C toolkit versions 1.05 and later. Attempting to use
it in earlier versions of the toolkit will cause a linkage error (unresolved external
reference).

m Return Value

Vme_write returns a value from this table.
Return Value _VTOS error Completion Status
SUCCESS SUCCESS Thespecified VME write completed successfully.
10_FAILED INVALID_PCM The PCM does not support VME transfer functions — it

VMEbuserror bits

is either a Series 90-30 PCM or a Series 90-70 PCM with
PCMAJ1 hardware or firmware earlier than
version4.03.

BUSGRT_MASK ssetin_VTOS error when the PLC
CPU refuses to grant the PCM access to the VMEbus.

BSERR_MASK or-ed with BUSHOG_MASK is re-
turned when there is no physical memory at the speci-
fied VMEDbus address, and when a PCM attempts to
read a VMEbus address located in its own VME
memory.

PCM C Functions

247

m See Also

Vme_clear_Icl_sem, Vme_test_and_set, Vme_test Icl_sem,
Vme_read

m Example

#include <vme.h>
#include <stdio.h>

byte write_data[32] = {
48, 49, 50, 51, 51, 53, 54, 55, 56, 5
64, 65, 66, 67, 68, 69, 70, 71, 72, 7

h

byte read_data[32] ={0};
int status;

byte hi_adr;

byte rack = 0;

byte slot = 3;

if (1S9070_RACKSLOT_VALID(rack, slot)) {
/* handle the error */

}

hi_adr = S9070_VME_HI_ADDR(rack, slot);
status = Vme_write(hi_adr, 0x4000, STD_NON_PRIV, write_data, 16, WORD_UNITS);

if (Istatus) {
status = Vme_read(read_data, hi_adr, 0x4000, STD_NON_PRIV, 32, BYTE_UNITS);
}

if (Istatus) {
intc,i,j;
char buf[20];
for (i= VME_DATA_LEN; i;) {
printf(“%04x: “, (VME_DATA_LEN —i));
for (j=16; i&&j; —j, —i) {
¢ =read_data[VME_DATA_LEN —iJ;
buf[16-j]=((c>=""&&c<='~)?2c:");
printf(“%02x “, ¢);

buf[16-j] = 0;
for (;; —i){

printf(“ “);
}

printf(“\"%s\"\n", (char far*)buf);

This example writes 16 words of data to offset 4000 hexadecimal of VME memory in
the module in rack zero, slot 3. The most significant byte of the VME address is
calculated by the S9070_VME_HI_ADDR macro in VME.H. The same data is read
back to a different buffer as bytes. When the target module has VME memory at the
specified address, the program should print this output

0000: 30 31 3233333536 37 3839 3a3b 3c 3d 3e 3f “0123356789:;<=>?"
0010: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f “@ABCDEFGHIJKLMNO”

248 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Wait_ast

GFK-0772A

m Usage
#include<vtos.h>

void Wait_ast (void);

m Description

Wait_ast suspends execution of the calling task until an asynchronous trap (AST)

is received.

If the event which posts the expected AST has already occurred, and
no other ASTs are posted, the calling task will never resume execution.

The example below shows how to avoid this problem.

m Return Value

None.

m See Also

Post_ast

PCM C Functions

Caution

249

250

m Example

#include <vtos.h>
#include <dos.h>

word event_occurred;
void far ast_func (ast_blk far* p)

{
event_occurred = TRUE;
[* process the event */

}

void main ()

event_occurred = FALSE;
/*

* Perform some operation with AST notification;

* specify ast_func as the AST handler function.
*
_disable ();
if (levent_occurred) {
Wait_ast ();

_enable ();

This example waits for an AST only when the expected event has not already
occurred. The _disable and _enable

functions are from the Microsoft C

runtime library. They disable and enable maskable interrupts, respectively, but only

within the task’s main execution thread. If the call to _enable

operation will result.

PCM C Function Library Reference Manual — August 1996

is omitted, erratic

GFK-0772A

Wait_ef

m Usage
#include<vtos.h>

void Wait_ef (local_ef mask);
word local_ef_mask ;

m Description

This function is called to wait for one or more of the calling task’s sixteen local event
flags; local_ef _mask specifies the flag or flags to wait for. If one of the
specified event flags is already set when Wait_ef is called, control returns
immediately to the calling task. Otherwise, the task remains suspended until at one
of the specified event flag is set. During this time, the task will be able to receive
ASTS, but it will not be able to process them. All the task’s event flags remain
unchanged.

A task’s local event flags may be set by any task, but only the task in which they are
local may test or reset them.

m Return Value

None.

m See Also

Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Set_gef,
Test_ef, Test_gef, Wait_gef

GFK-0772A PCM C Functions 251

m Example

#include <vtos.h>

Reset_ef (EF_00 | EF_12);

/*

* Perform an EVENT_NOTIFY /O operations using EF_00 for notification.
* Start a timer using EF_12 for notification.

*

Wait_ef (EF_00 | EF_12);

if (Test_ef () & EF_00) {

/*

* the 1/O operation completed

*

}else {

/*

* the 1/O operation timed out before completion
*

}

In this example, the calling task waits for either EF_00 or EF_12 to be set. Then
it tests it local event flags to determine whether EF_00 was the one which resumed

its execution.

252 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Wait_gef

m Usagae
#include<vtos.h>

void Wait_gef (global_ef_mask);
word global_ef mask ;

m Description

This function is called to wait for one or more of the sixteen global event flags;
global _ef mask specifies the flag or flags to wait for. If one of the specified event
flags is already set when Wait_gef s called, control returns immediately to the
calling task. Otherwise, the task remains suspended until at one of the specified
event flag is set. During this time, the task will be able to receive ASTs, but it will not
be able to process them. All the task’s event flags remain unchanged.

Global event flags may be set, reset, or tested by any task.

m Return Value

None.

m See Also

Iset_ef, Iset_gef, Reset_ef, Reset_gef, Set_ef, Set_gef,
Test_ef, Test_gef, Wait_ef

m Example

#include <vtos.h>

Reset_gef (EF_02);
Wait_gef (EF_02);

The task in this example resets global event flag EF_02 and then waits for another
task to set it.

GFK-0772A PCM C Functions 253

Wait_task

m Usage
#include<vtos.h>

void Wait_task (task_mask);
word task_mask ;

m Description

Wait_task suspends the calling task until one or more lower priority tasks,
specified by task _mask , have terminated. It may be used by a main task which
starts one or more temporary tasks and then waits for them to complete their
operation before it continues.

m Return Value

None.

m See Also

Init_task, Process_env

m Example

#include <vtos.h>

Wait_task (TASK_15_MASK);

The task in this example suspends itself until task number 15 terminates.

254 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Wait_time

GFK-0772A

m Usage
#include<vtos.h>

void Wait_time (
word hi_cnt ;
word mid_cnt ;
word Jlow_cnt ;

m Description

hi_ent |, mid_cnt | low_cnt),

When this function is called, the calling task is suspended until the time specified by

hi_ cnt |, mid _cnt

, and low_cnt

has expired. Any time duration which can be

expressed as a long unsigned integer number of milliseconds may be specified: zero
to 49 days, 17 hours, 2 minutes, 47 seconds, 295 milliseconds. The time value may be
specifiedeitherasmillisecondsorclocktime(days/hours/minutes/seconds/
milliseconds) format. This table shows the content of the three count parameters for

both formats.

Count Parameter Format Content
hi_cnt Milliseconds. | MS_COUNT_MODE.

Clocktime. A word value which contains the number of days in
the most significant byte and hours in the least
significantbyte.

mid_cnt Milliseconds. | A word value which contains the most significant
word of the long unsigned integer millisecond count.

Clocktime. A word value which contains the number of minutes
in the most significant byte and seconds iu the least
significantbyte.

low_cnt Milliseconds. | A word value which contains the /eas t significant
word of the long unsigned integer millisecond count.

Clocktime. A word value which contains the number of

milliseconds.

PCM C Functions

255

256

m Return Value

Wait_time has no return value. If an error occurs, an error code from this table

willbein _VTOS_error

Error Code

Description

NO_TIMERS Allthe general purpose timers are being used.

m See Also

Start_timer

m Example

#include <vtos.h>

Wait_time (MS_COUNT_MODE, 0, 500);
Wait_time ((6 << 8) | 23, (59 << 8) | 59, 999);

In this example, the calling task waits for 500 milliseconds. Then it waits for six days,
23 hours, 59 minutes, 59 seconds and 999 milliseconds.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

Where_am i

m Usage
#include<vtos.h>

long Where_am_i (void);

m Description

This function returns the PLC rack/slot location in which the PCM where it executes
isinstalled.

This function is available in PCM version 3.00 and later revisions.

m Return Value

When the call succeeds, Where_am_i returns a long integer which contains a
Series 90 PLC rack/slot address in the form used as the source and destination
addresses of generic backplane messages. The example below shows how to extract
the rack, slot and service point values.

Where_am_i does not know the PCM location for a short time after VTOS is
initialized. During this time, LONG_FAILURE is returned.

m See Also

m Example

#include <vtos.h>
#include <stdio.h>

long location;
int rack, slot, svc_pt;

location = Where_am_i ();

rack = location & 0x000F;

slot = (location >> 4) & 0x001F;
svc_pt = (location >> 9) & 0x003F;

printf ("PCM location is: rack %d, slot %d, service point %d\n”,
rack, slot, svc_pt);

This example prints the PCM location to the STDOUT device.

GFK-0772A PCM C Functions 257

Write_dev

258

PCM C Function Library Reference Manual — August 1996

m Usage
#include<vtos.h>
word Write_dev (device_handle , buffer , size , notify_code
task id [,< nowaitoptions >]);
word device_handle ;
void far* buffer ;
word size ;
word notify_code ;
word task id ;

where < nowait options > depend on the value of notify_code
word Write_dev (device_handle , buffer , size , WAIT, task id);

word Write_dev (device_handle , buffer , size , EVENT_NOTIFY,
task id , local_ef mask

(device_result far*) result_ptr);
word local_ef mask ;
device_resultfar* result_ptr

word Write_dev (device_handle , buffer | size , AST_NOTIFY,

task _id , ast_routine [[ast_handle 1]);
void (far* ast_routine)(ast_blk far*);
word ast_handle ;

Description

This function writes data to an 1/0 channel which was previously opened; the
device _handle must be a value returned by Open_dev. The buffer

parameter contains the far address of the data to be written, and size contains
the number of data items to write. If the channel was opened in NATIVE_MODE,
size specifies a number of bits, bytes, or words, depending on the type of the
requested data. Otherwise, size specifies a number of bytes.

The notify_code specifies the method used to notify the calling task that the
operation has completed,; its value may be WAIT, EVENT_NOTIFY, or AST_NOTIFY.
When WAIT is used, there are no nowait options , and the return from
Write_dev is delayed until the operation completes. The other notify_code
values cause the function to return immediately, allowing the calling task to
continue execution.

GFK-0772A

When EVENT_NOTIFY is used, local ef mask is a word with one or more bits
set; these bits correspond to the local event flags which VTOS will set when the
operation completes. The calling task should ensure that the event flag or flags are
not already set by using Reset_ef to reset them before calling Write_dev

When the operation has completed, the structure at result_ptr will contain
status information. Note that the result ptr parameter must be explicitly cast as
a far pointer because its type is not specified by the function prototype in

vtos.h . If the call succeeds, the ioreturn member of the structure at
result_ptr contains the number of data units written, and the iostatus

member contains SUCCESS; when a failure occurs, ioreturn contains the
number of characters written at the time when the failure occurred, and iostatus
contains an error status code. For a discussion of asynchronous 1/0 using event
flags, see chapter 6, Real-Time Programming, in the

C Programmer’s Toolkit for Series 90 PCMs User’s Manual, GFK-0771.

When AST_NOTIFY is used, VTOS posts an asynchronous trap (AST) after the
operation completes. The ast _routine contains the name of a function to
handle the AST. The optional ast_handle contains a user-selected tag value for
this particular operation, to permit the AST function to identify it, if necessary.
When VTOS calls ast_routine , it passes the address of an ast_blk

structure. The ast_handle value isinthe handle = member of the ast blk

If the call succeeds, the arg2 member of the ast_blk contains the number of
data units transferred, and the argl member contains SUCCESS; when a failure
occurs, arg2 contains IO_FAILED,and argl contains an error status code. For
adiscussion of asynchronous I/0 using AST functions, see chapter 6, Real-Time
Programming, in the C Programmer’s Toolkit for Series 90 PCMs User’s Manual,
GFK-0771.

Return Value

In WAIT mode, the function return value contains the number of data items actually
written. When an error occurs, the return value will be less than size . A status
code value is available in the global variable _VTOS_error .

In EVENT_NOTIFY and AST_NOTIFY modes, the value returned by the function
call is undefined and may be ignored. Separate return and status values are
available in device_result and ast_blk structures, respectively.

For all modes, the return and status variables contain values from this table.

Return Value Status Value Completion Status
Equal to size SUCCESS The specified number of data items was written.
Less than size ABORTED ANEVENT_NOTIFY or AST_NOTIFY callwas
aborted before the write was completed.
BAD_HANDLE Aninvalid device_handle was specified. No
datawas written.

PCM C Functions 259

260

m See Also

Close_dev, Open_dev, Read_dev, Seek_dev

m Example

#include <vtos.h>

word words_written, task, handle;
word buf[| ={1, 2,3,4,5,6,7,8}

task = Get_task_id();

handle = Open_dev("CPU:%R12", READ_MODE | WRITE_MODE | NATIVE_MODE,
WAIT, task);

words_written = Write_dev(handle, buf, sizeof(buf)/sizeof(word),
WAIT, task);
if (_VTOS_error == SUCCESS) {
/* The number of words is in words_written. */
}

This example uses a WAIT mode Write_dev request to write eight words to the
PLC register table, beginning at %R12.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

write_localdata

GFK-0772A

m Usage

#include<prgmem.h>

REQSTAT write_localdata (session_id , program_task_name
subblock_name , begin_addr , end_addr
data_buffer_ptr);

BYTE session_id

char far* program_task_name ;

char far* subblock_name ;

WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

This function writes the specified data to %L (local subblock) registers in the
specified Series 90-70 subblock in the specified main program. This request is valid
only for Series 90-70 PLCs. The session_id must be a value returned by a
previous, successful call to establish_comm_session . The

program_task _name pointer must contain the address of a NUL terminated
ASCII string holding the name of the control program task that owns the target
subblock, and subblock_name must point to a NUL terminated ASCII string
holding the subblock name. Valid names consist of seven characters or less, not
counting the NUL character. The begin_addr parameter contains the index
where the target data begins, and end_addr contains the index where the data

ends.

When the function succeeds, the data at data_buffer_ptr

of %L registers specified by begin_addr and end_addr inthe program
subblock specified by program_task name and subblock name

The data is treated as 16 bit binary integer values. The actual register content,
however, may be signed or unsigned integers, floating point values, or text.

PCM C Functions

is copied to the range

261

262

m Return Value

The function returns a REQSTAT value which contains the completion status
of the requested operation. When the request succeeds, REQUEST_OK is

returned; otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

TASK_NAME_NOT_FOUND

REQUEST_ERROR

The program_task_name
is not the name of a PLC
programtask.

INVALID_PARAMETER

REQUEST_ERROR

The subblock_name is
not the name of a subblock
in the specified program, or
end_addr is less than
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,
write_localdata_nowait, write_prgmdata,
write_prgmdata_nowait, write_sysmem, write_sysmem_nowait

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m Example

#include <prgmem.h>

WORD buf[7] ={1,2,3,4,5,6,7 };
REQSTAT status;

/*

* To write %L1 through %L7, inclusive in the subblock named
* "MYBLOCK" of the program named "MYPROG":

*

status = write_localdata(session_id, "MYPROG”, "MYBLOCK”", 1, 7, buf):
/*

* To write %L28 only in the subblock named "SUB1” of the
* program named "LOADER™:
*

status = write_localdata(session_id, "LOADER”, "SUB1", 28, 28, buf);

This example uses two WAIT mode requests to write to %L data in the specified PLC
program subblocks.

GFK-0772A PCM C Functions 263

write_localdata_nowait

264

m Usage

#include<prgmemnw.h>

REQID write_localdata_nowait (session_id , program_task_name
subblock_name , begin_addr
end_addr , data_buffer_ptr);

BYTE session_id

char far* program_task_name ;
char far* subblock_name ;
WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

See write_localdata

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling reqgstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.

Most Significant Byte Least Significant Byte Error Condition

TASK_NAME_NOT_FOUND | REQUEST_ERROR

The program_task_name
is not the name of a PLC
programtask.

INVALID_PARAMETER REQUEST_ERROR

The subblock_name is
not the name of a subblock
in the specified program, or
end_addr is less than
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,
write_localdata, write_prgmdata, write_prgmdata_nowait,
write_sysmem, write_sysmem_nowait

m Example

#include <prgmemnw.h>

WORD value = 0x1234;
REQID request_id;
REQSTAT status;

request_id = write_localdata_nowait(session_id, "LOADER”, "SUB1",
28, 28, &value);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

/* the %L data was written */
}

This example uses a NOWAIT mode request to write to %L data in the specified PLC
program subblock.

GFK-0772A PCM C Functions 265

write_prgmdata

m Usage
#include<prgmem.h>
REQSTAT write_prgmdata (session_id, program_task_name
begin_addr , end_addr , data_buffer_ptr);
BYTE session_id

char far* program_task_name ;
WORD begin_addr ;

WORD end_addr ;

void far* data_buffer_ptr ;

m Description

This function writes the specified data to %P (program) registers in the specified
Series 90-70 program. This request is valid only for Series 90-70 PLCs. The
session_id must be a value returned by a previous, successful call to
establish_comm_session . The program_task _name pointer must contain
the address of a NUL terminated ASCII string holding the name of the target
program. Valid names consist of seven characters or less, not counting the NUL
character. The begin_addr parameter contains the index where the target data
begins, and end_addr contains the index where the data ends.

When the function succeeds, the data at data_buffer_ptr is copied to the range
of %P registers specified by begin_addr and end_addr inthe program
specified by program_task name.

The data is treated as 16 bit binary integer values. The actual register content,
however, may be signed or unsigned integers, floating point values, or text.

The following table shows examples of target %L data ranges and their
corresponding begin_addr and end _addr values.

Program Data Range begin_addr Value end_addr Value
%P1 through %p24, inclusive. 1 24
%P39 through %p43, inclusive. 39 43
%P500 only. 500 500

266 PCM C Function Library Reference Manual — August 1996 GFK-0772A

GFK-0772A

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

TASK_NAME_NOT_FOUND

REQUEST_ERROR

The program_task_name
is not the name of a PLC
programtask.

INVALID_PARAMETER

REQUEST_ERROR

The subblock_name is
not the name of a subblock
in the specified program, or
end_addr is less than
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,
write_localdata, write_localdata_nowait,
write_prgmdata_nowait, write_sysmem, write_sysmem_nowait

m Example

#include <prgmem.h>

REQSTAT status;

WORD data[16] = {1, 2, 3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15, 16);

status = write_prgmdata (sesn_id, "MYPROG”, 497, 512, data);

This example uses a WAIT mode request to write to %P497 through %P512,

inclusive.

PCM C Functions

267

write_prgmdata_nowait

268

m Usage
#include<prgmemnw.h>
REQID write_prgmdata_nowait (session_id , program_task_name
begin_addr , end_addr

data_buffer_ptr);
BYTE session_id
charfar* program_task_name ;
WORD begin_addr ;
WORD end_addr ;
void far* data_buffer_ptr ;

Description

See write_prgmdata

Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be

used to check the status of the request by calling reqgstatus . When REQID or
the REQSTAT value returned by reqstatus is negative, it contains a value from
this table.
Most Significant Byte Least Significant Byte Error Condition
TASK_NAME_NOT_FOUND | REQUEST_ERROR The program_task_name
is not the name of a PLC
programtask.
INVALID_PARAMETER REQUEST_ERROR The subblock_name is

not the name of a subblock
in the specified program, or
end_addr is less than
begin_addr or out of
range.

DEVICE_NOT_A/AILABLE NO_COMMUNICATION Communication has not been

established through callsto
api_initialize,
configure_comm_link
and establish_comm_

session .
NO_SMEM_AVAIL REQUEST_ERROR Anattemptto allocate

memory for the request failed.
NO_UMEM_AVAIL REQUEST_ERROR There are 256 NOWAITre-

questsalreadyoutstanding.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,
write_localdata, write_localdata_nowait, write_prgmdata,
write_sysmem, write_sysmem_nowait

m Example

#include <prgmemnw.h>

REQID request_id;
REQSTAT status;
WORD data[16] ={1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16);

request_id = write_prgmdata_nowait(sesn_id, "MYPROG", 497, 512, data);

if (request_id < REQUEST_OK)) {
status = request_id;
}else {
do {
status = reqgstatus (request_id, TRUE);
/* do something else useful */
} while (status == REQUEST_IN_PROGRESS);

if (status |= REQUEST_OK) {

[* investigate the error */
}else {

* the %P data was written */
}

This example uses a NOWAIT mode request to write to %P497 through %P512,
inclusive.

GFK-0772A PCM C Functions 269

write_sysmem

m Usage
#include<sysmem.h>

REQSTAT write_sysmem (session_id , memory _type , begin_addr

end_addr , data_buffer_ptr);
BYTE session_id
BYTE memory_type

WORD begin_addr ;
WORD end_addr ;
void far* data_buffer_ptr ;

m Description

This function writes the specified data to the specified PLC reference (%I, %Q, %R,
etc.) in the PLC CPU. The session_id must be a value returned by a previous,
successful call to establish_comm_session . The memory _type parameter
specifies the target memory type, begin_addr contains the index where the
target data begins, and end_addr contains the index where the data ends. The
end_addr value must be greater than or equal to begin_addr , and must not be
larger than the size returned by get_memtype_sizes for the specified

memory type . The begin_addr value must be a value in the range from one (1)
to end_addr ,inclusive.

When the function succeeds, the data at data_buffer_ptr is copied to the range
of PLC references specified by memory type , begin_addr , and end_addr .

For PLC register data types, %R, %Al, and %AQ, the data at data buffer_ptr is
treated as 16 bit binary integer values. The actual register content, however, may be
signed or unsigned integers, floating point values, or text.

For the PLC discrete data types, %I, %Q, %M, %T, %S, %SA, %SB, %SC, and %G, the
data at data_buffer_ptr is expected to be one or more bytes, with the bit
specified by begin_addr in the least significant bit of the least significant byte.
For example, consider the outputs %Q00119 through %Q00129, inclusive. A
write_sysmem request to send these 11 outputs to the PLC CPU would require the
data to be arranged in two bytes as shown here:

%Q00134 00100001 00010010 %Q00119

* %Q00129

270 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Note that the internal PLC format of this data is quite different, as can be seen on
the Logicmaster 90 programming software Reference Tablesdisplay. The 11 points
of the example span three PLC bytes; the ““x”” values indicate that the original PLC
data at that location is unchanged:

%Q00136 XXXXXXX0 0100 100 10XXXXXX %Q00113

$— %Q00119

%Q00129

The following table shows memory type values from memtypes.h which are
valid in write_sysmem requests.

Reference Access Data memory_type
Type Type Type Value
%Al Analoglnput Register WORD Al_DATA
%AQ Analog OutputRegister WORD AQ_DATA
%R RegisterMemory WORD R_DATA
%I Input Status Table Discrete I_STATUS
%Q Output Status Table Discrete Q_STATUS
%T Temporary Status Table Discrete T_STATUS
%M Internal Status Table Discrete M_STATUS
%SA System A Status Table Discrete SA_STATUS
%SB System B Status Table Discrete SB_STATUS
%SC System C Status Table Discrete SC_STATUS
%S System Status Table Discrete S_STATUS
%G Global Genius Status Table Discrete G_STATUS

The Series 90-70 types %GA, %GB, %GC, %GD, and %GE are accessed as subtypes
of %G data, as shown in the description of read_sysmem .

GFK-0772A PCM C Functions 271

272

m Return Value

The function returns a REQSTAT value which contains the completion status of the

requested operation. When the request succeeds, REQUEST_OK is returned,;
otherwise, values from this table are returned.

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The end_addr is less than
begin_addr or out of
range.

NULL_SEGSEL_PTR

REQUEST_ERROR

The memory _type is
invalid.

INVALID_SELECTOR

REQUEST_ERROR

The memory _type isnot
supported for this request.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,

read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,

write_localdata, write_localdata_nowait, write_prgmdata,

write_prgmdata_nowait, write_sysmem_nowait

m Example

#include <sysmem.h>

REQSTAT status;
BYTE sesn_id;
WORD outputs = 0x2112;

status = write_sysmem (sesn_id, Q_STATUS, 119, 131, &outputs);

This example uses a WAIT mode request to send the 11 outputs %Q00119 through
%Q00131 shown in the description above.

PCM C Function Library Reference Manual — August 1996

GFK-0772A

write_sysmem_nowait

m Usage
#include<sysmemnw.h>

session_id , memory _type , begin_addr
end_addr , data_buffer_ptr);

REQID write_sysmem_nowait (

BYTE session_id
BYTE memory_type
WORD begin_addr
WORD end_addr ;

void far* data_buffer_ptr ;

m Description

See write_sysmem

m Return Value

The function returns a REQID value. When no error is detected in the request, it is
sent to the PLC CPU and a value of zero or greater is returned. This value may be
used to check the status of the request by calling regstatus
REQSTAT value returned by regstatus is negative, it contains a value from this
table.

When REQID or the

Most Significant Byte

Least Significant Byte

Error Condition

INVALID_PARAMETER

REQUEST_ERROR

The end_addr is less than
begin_addr or out of
range.

NULL_SEGSEL_PTR

REQUEST_ERROR

The memory _type is
invalid.

INVALID_SELECTOR

REQUEST_ERROR

The memory _type isnot
supported for this request.

DEVICE_NOT_A/AILABLE

NO_COMMUNICATION

Communication has not been
established through callsto
api_initialize,
configure_comm_link
and establish_comm_
session .

NO_SMEM_AVAIL

REQUEST_ERROR

Anattemptto allocate

memory for the request failed.

NO_UMEM_AVAIL

REQUEST_ERROR

There are 256 NOWAIT re-
questsalreadyoutstanding.

PCM C Functions

273

m See Also

establish_comm_session, get_memtype_sizes,
get_memtype_sizes_nowait, read_localdata,
read_localdata_nowait, read_sysmem, read_sysmem_nowait,
read_prgmdata, read_prgmdata_nowait, regstatus,
write_localdata, write_localdata_nowait, write_prgmdata,
write_prgmdata_nowait, write_sysmem

m Example

#include <sysmemnw.h>

REQID reqidl, reqid2;

REQSTAT statl, stat2;

BYTE sesn_id;

WORD aq_data[4] = { 12345, 12346, 12347, 12348 },
BYTE m_status[2] = { 0x55, Oxaa };

[* Write analog output data %AQ0009 through %Al10012: */
regidl = write_sysmem_nowait (sesn_id, AQ_DATA, 8, 12, ag_data);

if (reqidl < REQUEST_OK) {
statl = reqidl;
}else {
statl = reqgstatus (reqidl, TRUE);

}
[* Write internal contacts %M00037 through %M00045: */
regid2 = write_sysmem_nowait (sesn_id, M_STATUS, 37, 45, m_status);

if (reqid2 < REQUEST_OK) {
stat2 = reqid2;
}else {
stat2 = reqgstatus (reqid2, TRUE);

}
while (statl == REQUEST_IN_PROGRESS || stat2 == REQUEST_IN_PROGRESS) {
if (statl == REQUEST_IN_PROGRESS) {
statl = reqgstatus (reqidl, TRUE);

}

if (stat2 == REQUEST_IN_PROGRESS) {
stat2 = reqgstatus (reqid2, TRUE);

}

}

if (statl = REQUEST_OK || stat2 = REQUEST_OK) {
[* investigate the error */

}else {
/* the new analog input data is available */

}

This example uses a NOWAIT mode request to send the four analog outputs
%AQ0009 through %AQ0012 and the 8 internal coils %MO00037 through %MO00045.

274 PCM C Function Library Reference Manual — August 1996 GFK-0772A

Index

GFK-0772A

A

Abort_dey,
Alloc_com_timer, @]
api_initialize, @

Asynchronous Trap Functions, Q

B

Block_sem, L2

C

Cancel_com_timer,
cancel_mixed_memory,
cancel_mixed_memory_nowait, @]
Cancel_timer, [17]

chg_priv_level, @]
chg_priv_level_nowait, @
chk_genius_bus, P2
chk_genius_bus_nowait, @
chk_genius_device, @]
chk_genius_device_nowait,
Close_deyv, @

clr_io_fault_tbl, B3
clr_io_fault_tbl_nowait, @
clr_plc_fault_tbl, E?]
clr_plc_fault_tbl_nowait, B9
Communication Timer Functions, E
configure_comm_link,
Controlling PLC Operations, E

CPU Setup Strings,

D

Dealloc_com_timer, @

Define_led, @

Devctl_dev, f5

Device Driver Support Functions,@]
Device /O Functions, 4

Disable_asts, @
disable_clock_synchronization, 212
Discrete Data Formats,

E

EEPROM Device, [117]
Elapse, @

Enable_asts, 51l
establish_comm_session,

establish_mixed_memory, @

establish_mixed_memory_nowalit, @

Event Flag Functions, E

F

full duplex mode,

G

Get_best_buff, @

Get _board_id, E%]

Get_buff, g

get_config_info, @
get_config_info_nowait, @
get_cpu_type_rev, @
get_cpu_type_rev_nowait, @
Get_date,

Get_dp_buff, g
Get_mem_lim, [@
get_memtype_sizes, /7]
get_memtype_sizes_nowait, @
Get_mod,

Get_next_block, @
get_one_rackfaults, @
get_one_rackfaults_nowait, @
Get_pcm_reyv, E?]
get_prgm_info, @
get_prgm_info_nowait, @
get_rack_slot_faults, b2

Index-1

Index

Index-2

get_rack_slot_faults_nowait, @
Get task id, @
Get_time, E?]

H

half duplex mode,

Init_task, B9
Install_dev, @
Install_isr, [L01]

loctl_dey, @]
Iset_ef,
Iset_gef,

L
Link_sem, @

M

Managing API Services,@

Max_avail_buff
Max_avail_mem,

Memory Management Functions, E

Memory Module Functions, E

Miscellaneous Functions, @

N
Notify_task,

O
Open_dev,

P

PC: Device,

PCM Functions, E]

PCM Remote Devices,
PLC Generic Message Channel,

PLC Hardware Type, Configuration, and
Status Information,

PLC Program and Configuration Check-
sum Data,E

PLC Ram Disk, [117]

PLC Service Request Interface API Func-
tions by Catagory, E

Controlling PLC Operations, E

Managing API Services, fi

PLC Hardware Type, Configuration,
and Status Information,

PLC Program and Configuration Check-
sum Data,E

Reading and Clearing PLC and 1/0
Faults,

Reading and Setting the PLC Time of
Day Clock, ﬂ

Reading Mixed PLC Data References, f

Reading PLC Data References,

Writing PLC Data References,

PLC Status,
PLC Time_of_Day,
point-to-point mode,

Post_ast,

Process_env,

R

read_date,
read_date_nowait,
Read_dev,
read_io_fault_tbl,
read_io_fault_tbl_nowait,

read_localdata,

read_localdata_nowait,
read_mixed_memory,
read_mixed_memory_nowait,
read_plc_fault_tbl, [L44
read_plc_fault_tbl_nowait,
read_prgmdata, @

read_prgmdata_nowait,
read_sysmem,

GFK-0772A

Index

GFK-0772A

read_sysmem_nowait,

read_time,

read_time_nowait,

read_timedate, [164]
read_timedate_nowait,

Reading and Clearing PLC and 1/0 Faults,

Reading and Setting the PLC Time of Day
Clockﬂ

Reading Mixed PLC Data References,@
Reading PLC Data References,
release_request_id,

regstatus, m

Reserve_dp_buff,

Reset_ef,

Reset_gef,

Resume_task,

Return_buff,

Return_dp_buff,

S
Seek_dev,

Semaphore Functions, 3
Send_vme_interrupt,
Serial Port Setup Strings,
set_date,
set_date_nowait,
Set_dbd_ctl,

Set_ef,

Set_gef,

Set_led,
Set_local_date,
Set_local_time, @
Set_std_device, @
set_time,
set_time_nowait,
set_timedate, P01
set_timedate_nowait, 203

Set_vme_ctl,
Special_dev, 09
Start_com_timer,
start_plc,
start_plc_noio,
start_plc_noio_nowait,
start_plc_nowait,
Start_timer,
stop_plc,
stop_plc_nowait,
Suspend_task,

T

Task Management Functions,
terminate_comm_session,

Terminate_task,
Test_ef,
Test_gef,
Test_task,

Time of Day Clock Functions,
Timer Functions, §

U

Unblock_sem,
Unlink_sem,

update_plc_status,
update_plc_status_nowait,

V

VME Functions, 4
Vme_clear_Icl_sem, @
Vme_read,
Vme_test and_set, @
Vme_test Icl_sem, @
Vme_write,

VTOS Service Functions by Cata
Asynchronous Trap Functions,

ggory, Q

Communication Timer Functions, E

Index-3

Index

Index-4

Device Driver Support Functions,@]
Device l/OFunctions,

Event Flag Functions,

Memory Management Functions, H
Memory Module Functions,
Miscellaneous Functions, }

PCM [712 Functions,

Semaphore Functions,

Task Management Functions, P
Time of Day Clock Functions, 3
Timer Functions,

VME Functions,

W

Wait_ast,
Wait_ef,

Wait_gef,

Wait_task,

Wait_time,

Where_am _i,

WORD Data Formats, E?]
Write_dey,
write_localdata,
write_localdata_nowait, P64
write_prgmdata,
write_prgmdata_nowait,
write_sysmem, 270
write_sysmem_nowait,
Writing PLC Data References,@

GFK-0772A

	gfk0772a.pdf
	Chapter 1 PCM C Functions
	Content of this Manual
	VTOS Service Functions By Category
	PLC Service Request Interface API Service Functions By Category
	Abort_dev
	Alloc_com_timer
	api_initialize
	Block_sem
	Cancel_com_timer
	cancel_mixed_memory
	cancel_mixed_memory_nowait
	Cancel_timer
	chg_priv_level
	chg_priv_level_nowait
	chk_genius_bus
	chk_genius_bus_nowait
	chk_genius_device
	chk_genius_device_nowait
	Close_dev
	clr_io_fault_tbl
	clr_io_fault_tbl_nowait
	clr_plc_fault_tbl
	clr_plc_fault_tbl_nowait
	configure_comm_link
	Dealloc_com_timer
	Define_led
	Devctl_dev
	Disable_asts
	Elapse
	Enable_asts
	establish_comm_session
	establish_mixed_memory
	establish_mixed_memory_nowait
	Get_best_buff
	Get_board_id
	Get_buff
	get_config_info
	get_config_info_nowait
	get_cpu_type_rev
	get_cpu_type_rev_nowait
	Get_date
	Get_dp_buff
	Get_mem_lim
	get_memtype_sizes
	get_memtype_sizes_nowait
	Get_mod
	Get_next_block
	get_one_rackfaults
	get_one_rackfaults_nowait
	Get_pcm_rev
	get_prgm_info
	get_prgm_info_nowait
	get_rack_slot_faults
	get_rack_slot_faults_nowait
	Get_task_id
	Get_time
	Init_task
	Install_dev
	Install_isr
	Ioctl_dev
	Iset_ef
	Iset_gef
	Link_sem
	Max_avail_buff
	Max_avail_mem
	Notify_task
	Open_dev
	Post_ast
	Process_env
	read_date
	read_date_nowait
	Read_dev
	read_io_fault_tbl
	read_io_fault_tbl_nowait
	read_localdata
	read_localdata_nowait
	read_mixed_memory
	read_mixed_memory_nowait
	read_plc_fault_tbl
	read_plc_fault_tbl_nowait
	read_prgmdata
	read_prgmdata_nowait
	read_sysmem
	read_sysmem_nowait
	read_time
	read_time_nowait
	read_timedate
	read_timedate_nowait
	release_request_id
	reqstatus
	Reserve_dp_buff
	Reset_ef
	Reset_gef
	Resume_task
	Return_buff
	Return_dp_buff
	Seek_dev
	Send_vme_interrupt
	set_date
	set_date_nowait
	Set_dbd_ctl
	Set_ef
	Set_gef
	Set_led
	Set_local_date
	Set_local_time
	Set_std_device
	set_time
	set_time_nowait
	set_timedate
	set_timedate_nowait
	Set_vme_ctl
	Special_dev
	Start_com_timer
	start_plc
	start_plc_noio
	start_plc_noio_nowait
	start_plc_nowait
	Start_timer
	stop_plc
	stop_plc_nowait
	Suspend_task
	terminate_comm_session
	Terminate_task
	Test_ef
	Test_gef
	Test_task
	Unblock_sem
	Unlink_sem
	update_plc_status
	update_plc_status_nowait
	Vme_clear_lcl_sem
	Vme_read
	Vme_test_and_set
	Vme_test_lcl_sem
	Vme_write
	Wait_ast
	Wait_ef
	Wait_gef
	Wait_task
	Wait_time
	Where_am_i
	Write_dev
	write_localdata
	write_localdata_nowait
	write_prgmdata
	write_prgmdata_nowait
	write_sysmem
	write_sysmem_nowait

	Index

