
GFK-0402

GE Fanuc Manuals

series-90-30-9030

New In Stock!

Hand-Held Programmer

http://www.pdfsupply.com/automation/ge-fanuc-manuals/series-90-30-

9030/GFK-0402

www.pdfsupply.com

1-919-535-3180

Email: sales@pdfsupply.com

ÎÎ

GE Fanuc Automation

Programmable Control Products

Hand-Held Programmer
for Series 90�-30/20/Micr o
Programmable Controllers

User’s Manual

GFK-0402G Februar y 1996

GFL–002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions that
could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master CIMSTAR Helpmate PROMACRO Series Six
CIMPLICITY GEnet Logicmaster Series One Series 90
CIMPLICITY 90–ADS Genius Modelmaster Series Three VuMaster
CIMPLICITY PowerTRAC Genius PowerTRAC ProLoop Series Five Workmaster

Copyright 1990 - 1996 GE Fanuc Automation North America, Inc.
All Rights Reserved

1

restart lowapp ARestart oddapp: ARestarts for autonumbers that do not restart in
each chapter. figure bi level 1, reset table_big level 1, reset chap_big level 1, reset1
Lowapp Alwbox restart evenap:A1app_big level 1, resetA figure_ap level 1, reset
table_ap level 1, reset figure level 1, reset table level 1, reset these restarts
oddbox reset: 1evenbox reset: 1must be in the header frame of chapter 1. a:ebx, l 1
resetA a:obx:l 1, resetA a:bigbx level 1 resetA a:ftr level 1 resetA c:ebx, l 1 reset1
c:obx:l 1, reset1 c:bigbx level 1 reset1 c:ftr level 1 reset1 Reminders for
autonumbers that need to be restarted manually (first instance will always be 4)
let_in level 1: A. B. C. letter level 1:A.B.C. num level 1: 1. 2. 3. num_in level 1: 1. 2.
3. rom_in level 1: I. II. III. roman level 1: I. II. III. steps level 1: 1. 2. 3.

1-1GFK-0402G

Chapter 1 Introduction to the Hand-Held Programmer

The major features of the Hand-Held Programmer (catalog number IC693PRG300) for
the Series 90-30, 90-20 and Micro Programmable Logic Controllers include:

� Creating a Statement List program, including insert, edit and delete functions.

� Making on-line program changes.

� Searching a logic program for instructions and/or machine references.

� Performing optional dual use checking of discrete output references when
instructions are entered.

� Monitoring reference data or I/O point status while viewing the logic program.

� Monitoring reference data in table form in binary, hexadecimal, or decimal format.

� Monitoring register reference data in timer/counter format.

� Making on-line reference data changes.

� Four PLC access privilege levels

� Using the OEM protection key.

� Configuring I/O modules.

� Viewing PLC scan time, firmware revision code, and current logic memory usage.

� Loading, storing, and verifying program logic and configuration from/to/with the
Series 90 Memory Card or EEPROM.

� Starting or stopping the PLC from any mode of operation.

Keypad

The keypad on the Hand-Held Programmer consists of 42 keys, arranged as a matrix of
six keys across by seven keys down. The keypad is color-coded for easier identification
of the different keys. Becoming familiar with the programmer keys and their functions
will increase your programming efficiency.

Some of the keys have multiple uses, depending on the current operating mode and
function. A description of the valid keys and their usage is included in chapter 2,
Operation, and also in the beginning of each chapter of this manual.

1

1-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

LCD Screen
Information is displayed on an LCD screen which is two lines by sixteen characters in
size. The contents of the screen depends on the current operating mode and function.
The intensity of the screen can be increased or decreased by inserting a Phillips-head
screwdriver into the small square opening on the right side of the programmer and
turning it to the right or left, accordingly.

PLC Communications
The Hand-Held Programmer communicates with an attached PLC through an RS-422
compatible port. The cable connection supplies power to the Hand-Held Programmer
and indicates to the PLC that a Hand-Held Programmer is attached. Please refer to
chapter 2, Operation, for cable connection information.

Memor y Card Interface
An interface to a removable memory card is provided. This removable memory card is a
Series 90 Memory Card (catalog number IC693ACC303). The interface is used for
storage and/or retrieval of program logic and configuration data. Detailed information
on using the memory card to read, write, and verify data can be found in chapter 2.

Operating Modes
The Hand-Held Programmer supports four major operating modes:

Mode 1. Program Mode:

Program mode is used to create, alter, monitor, and debug Statement List (SL) logic
programs. Interaction (Read, Write, and Verify) with a Series 90 Memory Card or
EEPROM is also possible in program mode. Please refer to chapter 5, Program Edit, for
additional information on using program mode.

Mode 2. Data Mode:

Data mode enables you to view and alter values in various reference tables. Numerous
display formats are also supported. Please refer to chapter 6, Reference Tables, for
additional information on using data mode.

Mode 3. Protection Mode:

Protection mode enables you to control access to (protect) a programmable logic
controller, including program logic, reference data, and configuration information. The
use of this mode is optional. Additional information on protection mode can be found in
chapter 7, PLC Control and Status.

Mode 4. Configuration Mode:

In configuration mode, you can define the makeup of I/O modules in the PLC, including
both those I/O modules already installed as well as those to be installed at a later time.
Additional information on configuration mode can be found in chapter 3, PLC
Configuration, and chapter 4, I/O Configuration.

1

1-3GFK-0402G Chapter 1 Introduction to the Hand-Held Programmer

Several functions may be performed independent of the current mode of operation.
These functions include mode selection and starting or stopping the PLC. Please refer to
chapter 7, PLC Control and Status.

References

The data used in an application program is stored as either register or discrete
references. When entering a statement list program you must assign references to data
in the PLC system. A reference specifies both a memory type and a precise location
within that memory type. For example: %I0001 specifies address 1 in discrete input
memory and %R0256 specifies address 256 in register memory.

The %I symbol is used by the PLC to distinguish machine references from nicknames
(the % symbol is not entered or displayed on the HHP).

The valid register and discrete references that are used with the Series 90-30 and Series
90-20 programmable logic controllers are described in the following two tables.

Table 1-1. Register References

Type Description

%R The prefix %R is used to assign system register references, which will store program data such as the
results of calculations.

%AI The prefix %AI represents an analog input register. This prefix is followed by the register address of the
reference (for example, %AI0015). An analog input register holds the value of one analog input or other
value.

%AQ The prefix %AQ represents an analog output register. This prefix is followed by the register address of
the reference (for example, %AQ0056). An analog output register holds the value of one analog output or
other value.

Note

All register references are retained across a power cycle to the CPU.

1

1-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 1-2. Discrete References

Type Description

%I The %I prefix represents input references. This prefix is followed by the reference’s address in the
input table (for example, %I0121). %I references are located in the input status table, which stores the state
of all inputs received from input modules during the last input scan.

A reference address is assigned to discrete input modules using the Logicmaster 90-30/90-20
configuration software or the Hand-Held Programmer. Until a reference address is assigned, no data
will be received from the module.

%Q The %Q prefix represents physical output references. The dual use coil checking function of the HHP
checks for multiple uses of %Q references with relay coils or outputs on functions. Beginning with
Release 3 of Series 90-30 and Release 2 of Series 90-20 firmware, you can select the level of coil
checking desired (SINGLE, WARN MULTIPLE, or MULTIPLE). Refer to Chapter 3 for more information
about this feature.

The %Q prefix is followed by the reference’s address in the output table (for example, %Q0016). %Q refer-
ences are located in the output status table, which stores the state of the output references as last set by the
application program. This output status table’s values are sent to output modules at the end of the
program scan.

A reference address is assigned to discrete output modules using the Logicmaster 90-30/20/Micro
configuration software or the Hand-Held Programmer. Until a reference address is assigned, no data is
sent to the module. A particular %Q reference may be either retentive or non-retentive.

%M The %M prefix represents internal references. The dual use coil checking function of the HHP software
checks for multiple uses of %M references with relay coils or outputs on functions. Beginning with
Release 3 of Series 90-30 and Release 2 of Series 90-20 firmware, you can select the level of coil checking de-
sired (SINGLE, WARN MULTIPLE, or MULTIPLE). Refer to Chapter 3 for more information about
this feature. A particular %M reference may be either retentive or non-retentive.

%T The %T prefix represents temporary references. These references are never checked for multiple coil
use and can, therefore, be used many times in the same program even when coil use checking is
enabled.

Because this memory is intended for temporary use, it is never retained through power loss or
 RUN-to-STOP-to-RUN transitions and cannot be used with retentive coils.

%S The %S prefix represents system status references. These references are used to access special PLC
data, such as timers, scan information, and fault information. System references include %S, %SA,
%SB, and %SC references.

%S, %SA, %SB, and %SC can be used on any contacts.

%SA, %SB, and %SC can be used on retentive coils -(M)-.

%S can be used as a word or bit-string input reference to functions or function blocks.

%SA, %SB, and %SC can be used as a word or bit-string input or output reference to functions and
 function blocks .

%G The %G prefix represents global data references. These references are used to access data shared
among several PLCs. %G references can be used on contacts and retentive coils because %G memory
is always retentive. %G cannot be used on non-retentive coils.

Transitions and Overrides

The %I, %Q, %M, and %G user references have associated transition and override bits.
%T, %S, %SA, %SB, and %SC references have transition bits, but not override bits. The
CPU uses transition bits for counters and transitional coils. Note that counters do not
use the same kind of transition bits as coils. Transition bits for counters are stored within
the locating reference.

1

1-5GFK-0402G Chapter 1 Introduction to the Hand-Held Programmer

In the Series 90-30 model 331, 340, 341, and 351 CPU, override bits can be set. When
override bits are set, the associated references cannot be changed from the program or
the input device; they can only be changed on command from the programmer. Neither
the Series 90-30 model 311 or 313 CPU nor the Series 90-20 model 211 CPU supports
overriding discrete references.

Retentiveness of Data
Data is said to be retentive if it is saved by the PLC when the PLC is stopped. Unless
otherwise stated for a particular model of CPU, the Series 90 PLCs preserve program
logic, fault tables and diagnostics, overrides and output forces, word data (%R, %AI,
%AQ), bit data (%I, %S (%SC is retentive: not %SA or %SB), %G, fault bits and reserved
bits), %Q and %M data (unless used with non-retentive coils), and word data stored in
%Q and %M. %T data is not saved.

%Q and %M references are non-retentive (that is, cleared at power-up when the PLC
switches from STOP to RUN) whenever they are used with non-retentive coils.
Non-retentive coils include coils -()-, negated coils -(/)-, SET coils -(S)-, and RESET
coils -(R)-.

When %Q or %M references are used with retentive coils, or are used as function block
outputs, the contents are retained through power loss and RUN-to-STOP-to-RUN
transitions. Retentive coils include retentive coils -(M)-, negated retentive coils -(/M)-,
retentive SET coils -(SM)-, and retentive RESET coils -(RM)-. The last use of a %Q or
%M reference on a coil instruction determines its retentive state.

Table 1-3. Range and Size of User References for the Series 90-30 PLC
Models 311/313/331/340/341 CPUs

Model 311/313 CPU Model 331/340/341 CPU

Reference Type Reference Range Size Reference Range Size

User program memory Not applicable 3K words Not applicable 8K words (model 331)

40K words (model 341)
16K words (model 340)

Discrete inputs � %I0001 - %I0512 512 bits %I0001 - %I0512 512 bits

Discrete outputs � %Q0001 - %Q0512 512 bits %Q0001 - %Q0512 512 bits

Discrete globals %G0001 - %G1280 1280 bits %G0001 - %G1280 1280 bits

Internal coils %M0001 - %M1024 1024 bits %M0001 - %M1024 1024 bits

Temporary coils %T0001 - %T0256 256 bits %T0001 - %T0256 256 bits

System status references %S0001 - %S0032 32 bits %S0001 - %S0032 32 bits

%SA001 - %SA032 32 bits %SA001 - %SA032 32 bits

%SB001 - %SB032 32 bits %SB001 - %SB032 32 bits

%SC001 - %SC032 32 bits %SC001 - %SC032 32 bits

System register references %R0001 - %R0512 512 words %R0001 - %R2048 2048 words (model 331)

%R0001 - %R9999 9999 words (model 340/341)

Analog inputs %AI001 - %AI064 64 words %AI001 - %AI128
%AI001 - %AI1024

128 words (model 331)
1024 words (model 340/341)

Analog outputs %AQ001 - %AQ032 32 words %AQ001 - %AQ064
%AQ001 - %AQ256

64 words (model 331)
256 words (model 340/341)

System registers � %SR001 - %SR016 16 words %SR001 - %SR016 16 words

� The actual number of physical discrete inputs and outputs depends on the baseplate and modules installed.
Unused references can be used as internal references in your program.

� For reference table viewing only; can not be referenced in a user logic program.

1

1-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 1-4. Range and Size of User References for the Series 90-30 PLC
Model 351 CPU

Model 351 CPU

Reference Type Reference Range Size

User program memory Not applicable 40K words
Discrete inputs %I0001 - %I2048 2048 bits
Discrete outputs %Q0001 - %Q2048 2048 bits
Discrete globals %G0001 - %G1280 1280 bits
Internal coils %M0001 - %M4096 4096 bits
Temporary coils %T0001 - %T0256 256 bits
System status references %S0001 - %S0032 32 bits

%SA001 - %SA032 32 bits
%SB001 - %SB032 32 bits
%SC001 - %SC032 32 bits

System register references %R0001 - %R9999 9999 words
Analog inputs %AI001 - %AI2048 2048 words
Analog outputs %AQ001 - %AQ0512 512 words
System registers � %SR001 - %SR016 16 words

� For reference table viewing only; can not be referenced in a user logic program.

Table 1-5. Range and Size of User References for the Series 90-20 PLC

Reference Type Reference Range Size

User program logic Not applicable 1K words
Discrete inputs %I001 - %I016 16 bits
Discrete inputs, internal %I017 - %I048 32 bits
Discrete outputs %Q0001 - %Q0016 12 bits
Discrete outputs, internal with LED indicators %Q013 - %Q016 4 bits
Discrete outputs, internal %Q017 - %Q048 32 bits
Discrete globals %G0001 - %G1280 1280 bits
Discrete internal coils %M0001 - %M1024 1024 bits
Discrete temporary coils %T0001 - %T0256 256 bits
System status references %S0001 - %S0032 32 bits

%SA001 - %SA032 32 bits
%SB001 - %SB032 32 bits
%SC001 - %SC032 32 bits

System register references %R0001 - %R0256 256 words
Analog and High Speed Counter inputs %AI001 - %AI016 16 words
Analog outputs %AQ001 - %AQ016 16 words
System registers � %SR001 - %SR016 16 words

� For reference table viewing only; can not be referenced in a user logic program.

1

1-7GFK-0402G Chapter 1 Introduction to the Hand-Held Programmer

Table 1-6. Range and Size of User References for the Series 90 Micro PLC

Reference Type Reference Range Size

User program logic Not applicable 1K words
Discrete inputs %I001 - %I016 16 bits
Discrete inputs, internal %I017 - %I048 32 bits
Discrete outputs %Q0001 - %Q0016 12 bits
Discrete outputs, internal with LED indicators %Q013 - %Q016 4 bits
Discrete outputs, internal %Q017 - %Q048 32 bits
Discrete globals %G0001 - %G1280 1280 bits
Discrete internal coils %M0001 - %M1024 1024 bits
Discrete temporary coils %T0001 - %T0256 256 bits
System status references %S0001 - %S0032 32 bits

%SA001 - %SA032 32 bits
%SB001 - %SB032 32 bits
%SC001 - %SC032 32 bits

System register references %R0001 - %R0256 256 words
Analog and High Speed Counter inputs %AI001 - %AI016 16 words
Analog outputs %AQ001 - %AQ016 16 words
System registers � %SR001 - %SR016 16 words

� For reference table viewing only; can not be referenced in a user logic program.

Using the Hand-Held Programmer

When power is applied to the PLC, the Hand-Held Programmer begins diagnostic tests
on its hardware. Once these tests are successfully completed, the Hand-Held
Programmer can interact with the PLC.

Initially, you must select an operating mode: program mode, protection mode, data
mode, or configuration mode. When setting up a new system, you will normally want
to select configuration mode first, in order to configure the I/O modules to be used in the
system. In configuration mode, you can identify which PLC backplane slots contain I/O
modules, and the size (number of Input or Output points) for each module. Based on
the size of each module, a range of discrete input and output references can either be
assigned automatically by the Hand-Held Programmer, or optionally specified by the
user. The configuration of these I/O modules can be changed at any time.

After configuring the I/O modules, the next step is to program the actual logic
program. Program mode is selected for this. Once in program mode, you can create,
modify, and monitor the execution of program logic instructions. The optional Series
90 Memory Card or EEPROM can be used at any point to save or recall a particular
version of the program.

While attempting to debug a logic program, you may need to view and modify data in
one or more reference tables. Selecting data mode allows you to accomplish this. Once
in data mode, you can view any of the PLC reference tables in binary, hexadecimal, or
signed decimal format. Only the system register (%R) table can be viewed in
timer/counter format.

1

1-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Once a system has been properly configured and its logic program is functioning
correctly, you may want to protect parts of the system from any changes. Selecting
protection mode allows you to password-protect certain types of changes. A special
OEM protection feature can also be enabled to prevent unauthorized access.

#

a43409

ENT

TMR

ONDTR

RSTM

RST

SETM

SET
LD MODE

OUT

OUTM

AND
D

OR
E

NOT
F

BLK
UPCTR

DNCTR
RUN

I
A I

A Q
AQ

B M
T

C G
S

FUNC DEL

7 8 9 R

4 5 6

1 2 3

0

WRITE

CLR

READ

VRFY

SRCH

INS

HEX

DEC

SERIES 90–30
PROGRAMMABLE

CONTROLLER

GE Fanuc

HAND HELD PROGRAMMER

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

Î
Î
Î
ÎÎ
ÎÎÎÎÎ

Î

Î

LCD
SCREEN

KEYPAD
SLOT
FOR

MEMORY
CARD

CABLE TO PLC

(TWO LINES –
16 CHARACTERS

PER LINE)

IC693CBL303
6 FEET (2 METERS)

 Figure 1-1. Series 90-30/20/Micro Hand-Held Programmer

2 section level 1 1
figure bi level 1
table_big level 1

2-1GFK-0402G

Chapter 2 Operation

The setup and installation of the Hand-Held Programmer is easy. The Hand-Held
Programmer connects to a Series 90-30, 90-20, or Micro Programmable Logic Controller
through a cable attachment. The cable (catalog number IC693CBL303, 6 feet (2 meters)
long) attaches to both the Hand-Held Programmer and the programmable controller
through a latching connector (one on each end of the cable).
Power is supplied to the Hand-Held Programmer from the PLC through a connection in
the cable. The cable connection also provides an indication to the PLC that a Hand-Held
Programmer is attached as the programming device rather then a different programmer,
since this is the same connection for the Logicmaster 90-30/20/Micro programmer.

a43107

Î

ÎÎÎ

Î
Î
ÎÎÎÎÎÎÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎ

Î
Î

C
P
U

Series 90–30 PLC

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

ÎÎÎ

 Cable
(IC693CBL303)

Hand-held
Programmer

Figure 2-1. Hand-Held Programmer Connection to a Series 90-30 PLC

ÎÎ
ÎÎ

a44549
Series 90–20 PLC

ÎÎ

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

ÎÎ
ÎÎ Hand-held

Programmer

Cable (IC693CBL303)

Figure 2-2. Hand-Held Programmer Connection to a Series 90-20 PLC
a45438

Cable (IC693CBL303)

Hand-held
Series 90
Micro PLC(IC693PRG300)

Programmer

Figure 2-3. Hand-Held Programmer Cable Connection to a Series 90 Micro PLC

2

2-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Powering up the Hand-Held Programmer
The Hand-Held Programmer may be connected to a programmable logic controller
which is powered up, or it may be connected prior to power-up. When connected
during power-up, the Hand-Held Programmer momentarily displays the following
messages on the screen if no power-up diagnostic problems are found.

ROM CHECK OK
RAM CHECK OK

Following this momentary display, the screen will display CONFIGURING SYSTEM. The
amount of time this is displayed can be as long as 7 seconds if there are intelligent
modules plugged into the I/O slots. The initial screen displayed depends upon what
was last displayed when the Hand-Held Programmer was powered down. If the last
display was a data table in data mode, that same data table will be the first screen
displayed when power is restored. If any other display in a different mode was
displayed, the Mode Selection screen will be displayed when the Hand-Held
Programmer is powered up again.

The following example shows the Hand-Held Programmer screen viewing the register
(%R) table in timer/counter display format in data mode, with %R4 as the top reference
displayed, when the unit was powered down.

T/C R0004 0 0 <R
 0 0

The same display returns after restoring power.

In the next example, the Hand-Held Programmer was viewing instruction step #0015 in
program mode when the system was powered down.

#0015 <R
 LD NOT S0001

In this case, the mode selection screen is displayed after restoring power.

_ 1. PROGRAM <R
 2. DATA

Disconnecting the Hand-Held Programmer
The Hand-Held Programmer can be disconnected from the PLC while power is still
applied. If this occurs in the middle of a modification operation, such as inserting a new
logic instruction step, the operation is automatically canceled. The protection access
level will be set to its default state. Refer to chapter 7, PLC Control and Status, for more
information on password protection.

Keypad
The keypad consists of 42 keys, arranged as a matrix of six keys across by seven keys
down, as shown in the following illustration.

2

2-3GFK-0402G Chapter 2 Operation

ENT

TMR

ONDTR

RSTM

RST

SETM

SET
LD MODE

OUT

OUTM

AND
D

OR
E

NOT
F

BLK
UPCTR

DNCTR
RUN

I

A I

A Q

AQ

B M

T

C G

S
FUNC DEL

7 8 9 R

4 5 6

1 2 3

0

WRITE

#

CLR

READ

VRFY

SRCH

INS

HEX

DEC

SERIES 90–30
PROGRAMMABLE

CONTROLLER

GE Fanuc

HAND HELD PROGRAMMER

a43047

42-KEY
KEYPAD

Figure 2-4. Hand-Held Programmer Keypad

The keypad on the Hand-Held Programmer is color-coded for easier identification of the
different keys. Becoming familiar with the programmer keys and their functions will
increase your programming efficiency.

Note

Several keys provide access to two instructions. To access the instruction
printed on the lower half of the key, press the key twice.

MODE

RUN

DEL

SRCH

INS

ENT

CLR

2

2-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Edit and Display Control Keys

The blue Edit and Display Control keys are located on the right side of the keypad. The
CLR key is red. A description of these keys is provided in the following table:

Table 2-1. Edit and Display Control Keys

Key Description

Select an HHP operating mode.

Start or stop the PLC.

Delete an instruction step in program mode.

Delete configuration of currently displayed slot in I/O configuration mode.

Delete password at specified access level in protection mode.

Search for a given target or initiate a program check in program mode.

Begin an instruction step insertion operation in program mode.

Move between instruction steps in program mode.

Move view window around currently displayed table in data mode.
Select an I/O slot for viewing in configuration mode.
Enter a lower or higher access level in protection mode.

Move between function parameters in program mode.

Invoke or abort a reference table contents change in data mode.
Display a different PLC parameter, or position different binary bit for change in
PLC configuration mode.
Display a different module parameter or field in I/O configuration mode.
Display password for lower or higher access level; view/modify OEM key in
protection mode.
Move between subroutines when in Subroutine Declaration mode.

Complete an operation or user input.

Abort or cancel the current operation or user input.

LD
OUTM

OUT

SET

SETM

RST

RSTM

AND
D

OR
E

NOT
F

BLK

FUNC

ONDTR

TMR

DNCTR

UPCTR

AI
IA

AQ
QB

T
MC

S
G

R

AI
IA

AQ
QB

T
MC

AND
D

OR
E

NOT
F

#

2

2-5GFK-0402G Chapter 2 Operation

Ladder Logic Keys
The gray Ladder Logic keys are located on the upper portion of the keypad. These keys
are used to enter the program elements that make up the user’s program. A description
of these keys is provided in the following table:

Table 2-2. Ladder Logic Keys

Key Description

Program a boolean logic instruction in program mode.

Program a function or function block instruction in program mode.

Program TMR, ONDTR, UPCTR, DNCTR function blocks in program mode.

Change data mode display format to timer/counter; automatically select
register table if not displayed in data mode. (This does not apply to the
FUNC key.)

Specify a memory reference type in program and data mode.
I/AI and Q/AQ and G specify module types in configuration mode.

Specify a binary, decimal (possible signed) or hexadecimal value in program
and data mode.

Specify a slot number, reference address, point count or PLC parameter
value; value format may be either binary, signed decimal, or hexadecimal in
configuration mode.

Specify the alpha characters of a 1 - 4 digit hexadecimal password value.

Specify an instruction step in program mode.

Override, or cancel the override on, a discrete reference in data mode.

Indicate a new rack/slot number (GOTO) in configuration mode.

Zoom into or out of subroutine logic.

0 1 2 3

4 5 6 7

8 9

– +

DEC

HEX

VRFY

READ

WRITE

2

2-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Numeric Keys

The white Numeric keys are located on the lower left side of the keypad. They include
the keys for the numerals 0 through 9, the –/+ key, and the HEX/DEC key. A
description of these keys is provided in the following table:

Table 2-3. Numeric Keys

Key Description

Specify a binary, decimal (possible signed), or hexadecimal value in
program and data mode.

Specify a slot number, reference address, point count, or PLC parameter
value; value format may be either binary, signed decimal, or hexa-
decimal in configuration mode.

Specify a 1 - 4 digit hexadecimal password value in protection mode.

Specify a binary, decimal (possible signed), or hexadecimal value in
program and data mode.

Toggle PLC configuration parameter setting in configuration mode.

Toggle between run and stop mode in any mode.

Specify a signed decimal or hexadecimal constant in program mode.

Change display format between binary, signed decimal, and hexadecimal
in data mode.

Change display format between decimal, hexadecimal, and 8-bit binary in
configuration mode.

Program Transfer Keys

The Program Transfer keys are located in the blue shaded area in the lower right portion
of the keypad. They include the READ/VERIFY and WRITE keys.

Table 2-4. Program Transfer Keys

Key Description

Read or verify the memory card or system EEPROM in program mode.

Read configuration of module currently installed in slot.

Write the memory card or system EEPROM in program mode.

CLR T
MC

LD NOT
F

NOT
F

RUN

2

2-7GFK-0402G Chapter 2 Operation

Power-Up Key Sequences
The key sequences listed below can be used during power-up to provide additional start-up
instructions for the PLC, or to override the previous configuration. When used to override
the previous configuration these keys must be depressed simultaneously while the ROM
CHECK OK & RAM CHECK OK screen is being displayed and held depressed until the
mode screen is displayed on the HHP. (The keys must be pressed simultaneously until the
ROM CHECK OK, RAM CHECK OK message is removed from the screen.)

During power-up, the PLC may be instructed to totally clear all data stored within it. This
includes program logic, data tables, configuration, passwords, and the OEM key. To do this,
press and hold the CLR and M/T keys simultaneously while the PLC is powering up. A
ROM CHECK OK or RAM CHECK OK message is displayed on the Hand-Held
Programmer screen upon receiving power. Double key strokes must be held until after the
ROM CHECK OK and RAM CHECK OK message is cleared. Note that power-up sequences
from the HHP are not processed for warm start powerups.

Caution

Do not press the CLR and M/T keys to clear memory if an OEM program
is in RAM memory. All configuration data and logic will be lost.

The PLC can be configured to download a logic program during start-up from EEPROM
(located in the EEPROM socket on the baseplate of the Model 311 and in the CPU module
in a Model 331) to RAM, instead of running from the existing program in RAM. You can
override this option when testing changes to the program so that the program in RAM is
retained, and not overwritten by the program in EEPROM. To use RAM memory
regardless of the configuration, press LD and NOT keys simultaneously while the PLC is
powering up.

The PLC can be configured to power up in RUN or STOP mode, or in the same mode it
was powered down in. This configured state can be overridden to ensure that the PLC will
power up in STOP mode, regardless of the configuration. To do this, press NOT and RUN
simultaneously during power-up until the RAM CHECK OK, ROM CHECK OK message is
displayed on the screen.

Table 2-5. Power-Up Options

Key Sequence Description

Totally clears all data stored within the PLC, including program logic, data
tables, configuration, passwords, and the OEM key. Do not use this func-
tion if an OEM program is in RAM memory, as all configuration data and
logic will be lost.

Prevents the PLC during power-up from downloading a program from EE-
PROM to RAM and puts the CPU in the STOP mode. Use RAM
memory regardless of the configuration.

Ensures that the PLC powers up in the STOP mode.

– + 9 9#

9 DEL

ENT

SRCH 1# – +

2

2-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Special Key Sequences

Table 2-6. Special Key Sequences

Key Sequence Description

Clear all program logic instruction steps from memory without affecting
any other memory, such as data or configuration (only when in program
mode, will not work in program insert mode).

Begin the program check function (only when in program mode, will not
work when in program insert mode).

Selecting an Operating Mode

In general, most functions are available only in a single mode of operation. To interact
with a particular function, the correct mode of operation must first be selected.

1. Press the MODE key to select a new mode of operation. After pressing MODE, the
following initial screen will be displayed:

_ 1. PROGRAM <S
 2. DATA

2. Use the Up and Down cursor keys to scroll the menu selection display in order to
view other possible selections. Each press of the Up cursor key scrolls the menu up
one position; each press of the Down cursor key scrolls the menu down one
position. Possible selections include:

 1. PROGRAM
 2. DATA
 3. PROTECT
 4. CONFIG

3. To select an operating mode, enter the single digit corresponding to the desired
mode. The name of that mode does not have to be currently displayed on the menu
display in order for that mode to be selected.

4. Press the ENT key to invoke the new mode.

5. One alternate method of selecting the operating mode is to use the Up and Down
cursor keys to display the desired mode at the top of the screen and press the ENT
key to execute the selection. If the desired mode is already displayed at the top of

2

2-9GFK-0402G Chapter 2 Operation

the screen, simply press the ENT key. Pressing the ENT key with no mode value
entered will execute the current top menu selection.

Modes 1, 2, 3, and 4 are currently the only modes supported. If any other number is
entered on the mode selection screen, it will be ignored.

To cancel a mode change request, press the CLR key or press the desired new number.

Read/Write/V erify Functions
Support is provided for the storage of data in a secondary storage device. The secondary
storage device may be either an EEPROM installed in the PLC backplane or a Series 90
Memory Card inserted into the Hand-Held Programmer. For either secondary storage
device, the following PLC data is always stored:

� Program logic Statement List instructions.

� Registers.

� Slot configuration data.

� Passwords.

� OEM key.

Functionality is provided for writing, reading, and verifying this data with either an
EEPROM or Series 90 Memory Card. This functionality is available only in program
mode, when the PLC is stopped and not scanning I/O.

Series 90-30 CPU models 340, 341, and 351, and the Series 90 Micro PLC can have data
written to flash memory. During a write to flash, there is no in progress indication. Other
CPU models, that use EEPROM as a storage device, do have an in progress indication
during a write operation.

Starting/Stopping the PLC
The PLC may be started or stopped while in the Mode Selection screen, or in any of the
four major operating modes (program, data, protection, or configuration).

Selecting RUN/STOP Mode from Mode Selection Screen

The initial mode selection screen indicates that the PLC sweep is in the STOP mode as
shown by the <S in the upper right corner of the display screen.

_ 1. PROGRAM <S
 2. DATA

Initial display:

To select the RUN mode:

PRESS <–/+>KEY <SPress the key:RUN

After exiting the RUN/STOP Sweep Mode function, the HHP will return you to the
Mode Select menu.

2

2-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Selecting RUN/STOP Mode from an Operating Mode
Before the PLC’s operating state may be changed, a minimum access level of 2 must first
be selected. If the access privilege is only level 1, the change mode request will be
refused and a PROTECT error message will be displayed. See Chapter 7 for more
information on PROTECTION.

Before the PLC’s operating state is changed from stopped to running, the program is
first checked to ensure that no syntax errors exist in the program. If an error is found,
the request to execute the program is refused and an indication of the problem is
displayed by an error message. By exiting the start/stop function and entering program
mode if not already in that mode, you may view the instruction step containing the
error. It is possible that the program may contain multiple errors; but only the first error
detected, beginning with the start of the program, is displayed.

When making a mode change from STOP to RUN the following screen may be
displayed:

CLEAR FAULTS? <S
<ENT>=Y <CLR>=N

This indicates that there is a fault in the CPU. Check the fault indicator system tables SA,
SB, and SC. A fatal fault will not allow you to proceed into the run mode until it is
removed and cleared. A diagnostic fault must be cleared. To clear faults, press the ENT
key again. Press the CLR key to return to the stop mode and check tables for faults.

A change in the PLC operating state is first initiated by pressing the RUN key. The
desired state, run mode or stop mode, is then selected. The –/+ key is used to toggle
between the run mode and stop mode states. Pressing the –/+ key initially selects run
mode; pressing the –/+ key again toggles the selection to stop mode. Each time you
press the –/+ key, the mode is toggled. When the desired operating mode is displayed
on the screen, press the ENT key.

In the following example, the current operating state of the PLC in the configuration
mode is changed from run mode to stop mode.

1. If protect mode is selected, the initial display screen would appear as:

LEVEL3 <R

This screen indicates that the PLC is running (executing) a program, as shown by the
<R in the PLC state field (upper right corner) of the display screen.

2. Press the RUN key to initiate a change in the PLC operating state:

PRESS <+/–>KEY <R

3. Press the –/+ key to initially select run mode:

RUN MODE <R

2

2-11GFK-0402G Chapter 2 Operation

4. Press the –/+ key again to toggle the selection to stop mode:

STOP MODE <R

Each time the user presses the [–/+] key, the mode is toggled. When the desired
operating mode is displayed on the screen, the user initiates the change by pressing
the [ENT] key.

5. Then, press the ENT key:

LEVEL3 <S

This screen indicates that the PLC is now stopped, as indicated by the <S in the PLC
state field of the display screen.

Canceling a Mode Change
The CLR key may be used to cancel an operating mode change before activating it.
Press the CLR key twice to exit from the mode change screen and return to the currently
entered function.

User PROM Option
Application programs are normally developed in the CPU’s RAM memory and executed
from RAM memory. If additional program integrity is desired, or operation of the PLC
without a battery is desired, an optional EEPROM or EPROM can be installed in a spare
socket (labeled PROGRAM PROM) on the Model 311 backplane or in a socket on the
Model 331 CPU module. EEPROMs can be written to and read from. EPROMS can be
read when installed in the PLC, however they must be written to using an external
PROM burning device. Non-removable flash memory performs this function on the
Model 340, 341, and 351 CPUs.

A typical scheme for using these devices is to develop programs using an EEPROM.
When the program in RAM has been developed and debugged, it is saved to EEPROM.
The EEPROM can then be removed from the PLC and used as a master to make backup
or multiple copies of the program to EPROM memory. The EPROM can then be
installed in the socket provided in the CPU and used as a non-volatile memory for
battery-less operation, or to run the same program in multiple PLCs. The Model 331 CPU
has a jumper (JP1) located next to the EEPROM/EPROM socket to let you select between
EEPROM or EPROM.

 Jumper Selects
 3-2 EEPROM
 2-1 EPROM

When the EEPROM or EPROM is installed, the application program stored in the device
is automatically loaded into RAM memory whenever the CPU is powered-up. However,
this only happens, if EEPROM is selected as the Program Source parameter during
configuration with the Hand-Held Programmer or Logicmaster 90 configuration
software.

2

2-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Caution

If EEPROM is selected and a PROM is not in the socket or a blank
PROM is in the socket, on a power-up cycle a blank program will be
placed into the RAM memory, therefore the program in RAM will be lost.

EEPROM and EPROM memory chips are available from GE Fanuc. Catalog numbers for
these devices are listed in the following table.

Table 2-7. EEPROM and EPROM Memory Catalog Numbers

Catalog Number Description

GE Fanuc
PROM

Part Number
 Third Party Source
 Vendor Part Number

IC693ACC305 (Qty 4) 28C256 EEPROM, 350ns 44A725999-000 XICOR
XICOR

X28C256P or
X28C256-25

IC693ACC306 (Qty 4) 32Kx8 UV EPROM, 150ns 44A723379-000 NEC PD27C256AD-15

Atmel AT27C256-15DC1

Toshiba TC57256AD-15

Hitachi HN27C256AG-15

AMD AM27C256-150DC

Intel TD27C256A-1

Installing a Blank EEPROM/EPROM
Use the following procedure for installing a blank EEPROM or EPROM in a Series 90-30
or Series 90-20 PLC.

Caution

You must be careful when installing a blank EEPROM or EPROM in
the PROM socket of the CPU in a Series 90-30 or Series 90-20 or the
program in RAM memory will be lost.

1. Configure the CPU to

 PRG SRC RAM and REG SRC RAM

(see NOTE at end of this procedure)

2. Remove power from the PLC.

3. Remove the CPU from its socket on the baseplate.

4. Remove the faceplate and LED lens cover from the CPU. The PROM socket is now
accessible at the bottom of the CPU board.

5. Turn the screw at the center top of the socket counter clockwise so that the slot lines
up with the O. This allows an EEPROM or EPROM to be inserted.

2

2-13GFK-0402G Chapter 2 Operation

6. Insert the EEPROM or PROM into the socket with the notch facing the screw.

7. Turn the screw clockwise so that the slot lines up with the C. The EEPROM or
EPROM is now locked into the socket.

8. Set the jumper plug at the bottom of the socket for EEPROM (3-2) or PROM (2-1), as
required.

9. Replace the faceplate.

10. Insert the CPU into its connector in the baseplate.

11. Turn-on power to the PLC.

12. The CPU can now be configured to

 PRG SRC EEPROM and REG SRC EEPROM

Note
If not configured for Program (PRG) and Register (REG) from RAM
when power is applied after a blank EEPROM is inserted, the contents
of the blank PROM will be loaded into the RAM memory. The CPU can
be forced to load Program and Registers from RAM, if on power-up
using the Hand-Held Programmer the LD and NOT keys are depressed
simultaneously and held depressed during power-up until the MODE
selection menu is displayed.

Series 90 Memory Card
In addition to EEPROM a Series 90 Memory Card inserted into the Hand-Held Programmer
may be used to save, retrieve or verify program logic data and configuration data contained
on it versus the actual PLC contents. The Series 90 Memory Card is not supported by the
Model 351 CPU.

If the memory card or EEPROM has not been properly inserted before attempting a write,
read, or verify operation, the absence of the card or EEPROM will be detected as an error
and an error message will be displayed.

The PLC must also be stopped and must not be scanning I/O before you can perform a
memory card or EEPROM operation. If you attempt to write, read, or verify data when the
PLC is running, a RUNNING error message will be displayed on the screen. You must first
stop the PLC before attempting the desired operation again. Also, when the CPU is
configured for DO I/O, a DO I/O error message will be displayed on the screen. Change the
CPU configuration STOP MD DO I/O to STOP MD NO I/O.

It is possible that a communications error between the Hand-Held Programmer and the
memory card may occur during a write, read, or verify operation. If this occurs, the
operation will be canceled and a COMM ER error message will be displayed. Make sure
that the memory card is properly seated in the Hand-Held Programmer slot, before
attempting the operation again.

The following screen format is used to write, read, or verify the memory card or EEPROM.

Table 2-8. Read/Write/V erify Series 90 Memory Card or EEPROM

Operation Device <S

Device Address

2

2-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Operation:

The operation field indicates the particular operation which is to be performed on the
destination device, MEM CARD or EEPROM. Its modes of operation are listed below,
along with a description of each.

MODE OF OPERATION DESCRIPTION
————————————————— ——

READ Read the contents of the memory card or EEPROM into RAM.
WRITE Write the contents of RAM to the memory card or EEPROM.
VERIFY Verify contents of the memory card or EEPROM with RAM.

Device: This field identifies the destination device, which in this case, is the Series 90
Memory Card or EEPROM. This field may also function as an error
message window if you attempt a read, write, or verify operation without a
memory card or EEPROM properly inserted.

<S: <S indicates that the PLC is currently stopped. The PLC must be in STOP
NO I/O before you can perform a read, write, or verify operation. <R
displayed in this field would indicate that the PLC is currently running
(executing a program). If you attempt an operation with the PLC running
or in STOP DO I/O, an error message is displayed on the screen and the
operation will not be performed.

Device Address: This number is continuously updated while the device is being
read/written to indicate that the operation is in progress.

Loading RAM from the Memory Card or EEPROM
To read (load) the contents of a previously programmed Series 90 Memory Card or
EEPROM into RAM memory, follow this procedure:

1. In program mode, press the READ/VERIFY key:

READ MEM CARD <S

If EEPROM is desired, press the –/+ key to toggle the selection to EEPROM.

2. Then, press the ENT key twice to complete the read operation (see Reading Program
Logic Only for selective read). The above screen will be displayed while the transfer
is taking place. This time is approximately 1:35 (one minute, 35 seconds) for an OK
program in a Model 311.

READ OK <S

2

2-15GFK-0402G Chapter 2 Operation

Storing RAM to the Memory Card or EEPROM

To store (write) a copy of the contents of RAM memory into a Series 90 Memory Card or
EEPROM, follow this procedure: (Note: for the Model 340 or 341, use steps 1, 2, an 3; for all
other models use only steps 1 and 3)

1. In program mode, press the WRITE key:

WRITE MEM CARD <S

If EEPROM is desired, press the –/+ key to toggle the selection to EEPROM.

2. Then, in the Model 340 or 341, press the ENT key to choose the number of registers to save
(either 9999 or 2048). The second line of the display will read:

REGS TO SAVE: 9999

To save 2048 registers instead, press the –/+ key to toggle the selection to 2048.

3. For all models, press the ENT key to complete the write operation. The above screen
will be displayed while the transfer is taking place. This time is approximately 1:35
(one minute, 35 seconds) for an OK program in a Model 311.

WRITE OK <S

In order to write data, the memory card must not be write-protected (through the tab on
the card). If it is write protected when a write operation is requested, the write protect
will be detected and the request refused. A PROTECT error message will be displayed
on the screen. Remove the write protect condition from the Series 90 Memory Card
before attempting another programming operation.

WRITE PROTECT SCREW
(UNPROTECTED)

a45055ACTUAL SIZE (TOP VIEW)

ÎÎ
ÎÎ

Î
Î

WRITE PROTECT SCREW
(PROTECTED)

ACTUAL SIZE (END VIEW)

FanucEG

ÎÎ Î

Figure 2-5. EEPROM Memory Card (Catalog Number IC693ACC303)

2

2-16 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Verifying RAM with the Memory Card or EEPROM

To manually verify the contents of a previously programmed Series 90 Memory Card or
EEPROM with the PLC’s RAM memory, follow this procedure:

1. In program mode, press the READ/VERIFY key twice:

VERIFY MEM CARD <S

If EEPROM is desired, press the –/+ key to toggle the selection to MEM CARD or
EEPROM.

2. Then, press the ENT key twice to complete the verify operation (see Reading Program
Logic Only for selective read):

VERIFY OK <S

Error Messages During EEPROM/MEM Card Operation

The following error messages may occur during EEPROM/MEM card operations.

NO PRIV: Current privilege level of the PLC is too low for the intended operation
(see Chapter 7).

NO CARD: No memory card is inserted in the Hand-Held Programmer, or the
inserted card has insufficient capacity for the operation.

CFG ERR: The I/O configuration saved in the memory card is incompatible with the
target PLC (for example, EEPROM has a PCM configured and the target
PLC is 311/211).

ROM ERR: No EEPROM installed or EEPROM data has been corrupted or never
been written.

COMM ERR: The PLC model number saved on the device cannot be read into the
PLC or a data error occurred while reading a memory card.

PROTECT: The memory card is write protected.

VRFY ERR: The data in the device does not exactly match the data in PLC RAM.

PSW ERR: An attempt was made to read a configuration enabling passwords into a
PLC with passwords disabled or with an active password.

PRG ERR: The program saved in the device cannot be read into this PLC (for
example, the saved program reference is %R2000 and target PLC is a model
311 or 211).

DO I/O: CPU is configured for STOP MD DO I/O reconfigure the CPU for STOP MD
NO I/O.

2

2-17GFK-0402G Chapter 2 Operation

Program/Configuration Portability

Programs, configuration, and registers can be transported from one model to a different
model of a Series 90-30 or Series 90-20 CPU. This can be done using either an EEPROM,
a MEM card, or a UVEPROM (if copied from an EEPROM). In this discussion these
devices will be referred to as the device, since all of the rules apply equally to all three.
The model of the CPU from which the device was written is referred to as the source
CPU. The model of the CPU into which the contents of the device will be read is
referred to as the target CPU.

There are certain restrictions on this portability as listed below:

1. Programs must be compatible with the target CPU. That is, they must not have
references to addresses which do not exist in the target CPU and they must fit into
the size restrictions of the target CPU. If non-valid references are attempted and this
error is detected by the PLC, a PRG ERR message will be reported to the user by the
HHP.

2. Configurations must be compatible with the target CPU. That is, they must not
contain modules not supported by the target CPU nor have modules in racks not
supported by the target CPU. If this error is detected by the PLC, then a CFG ERR
message will be reported to the user by the HHP.

3. When reading configurations from a model which supports more slots into a CPU
which supports fewer slots, the slots higher then those supported by the target CPU
must be EMPTY.

4. When reading configurations from a model which supports fewer slots into a CPU
which supports more slots, the slots in the target CPU beyond those supported by
the source CPU will be set to EMPTY.

5. When reading registers from a CPU which supports a different number of registers
then the target CPU, those registers higher then those supported by the smaller CPU
will be ignored.

6. When configuration is read from one CPU model into a different model, the PLC
must change the CPU model in the configuration to match the target model. After
this configuration has been read and the model changed, the contents of the
configuration in RAM memory cannot be verified with the contents of the
configuration on the device.

7. The Model 351 CPU does not support the Series 90 Memory Card and its flash
memory is not removeable. Transporting programs to and from Model 351 CPUs is
done using Logicmaster -30/20/Micro software. With this exception, the following
discussions on reading the device also apply to reading data from the Model 351 flash memory.

A list of the error messages which can be produced as a result of attempting to read a
device can be found in Chapter 9 in this manual along with a description of possible
causes and corrective actions.

If the entire contents of the device are not read, then the data which was not read
remains intact within the PLC. For example, if only the program is being read, then the
configuration and registers will remain unchanged by the attempted read, regardless of
any errors encountered while reading the program.

Examples of program/configuration compatibility operations with the HHP are shown
on the following pages.

2

2-18 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Reading the entire device

To read (load) the entire contents of an EEPROM previously programmed from the same
CPU model follow this procedure:

READ MEM CARD <SIn PROGRAM mode, press the
VRFY

READ key:

To select which items will be read:

READ MEM CARD <S
PRG CFG REG

Press the ENT key:

To read the logic program, configuration, and registers saved on the card:

READ MEM CARD <S
PRG CFG REG xxxx

Press the ENT key:

The address at the end of the lower line will be continually updated as the read
operation progresses.

If the read is completed successfully, the HHP will display:

READ OK <S

If an error is encountered during the read operation, an error message will be displayed,
for example:

READ PRG ERR <S

If a program error is read, the contents of the PLC will be cleared (program,
configuration, and registers).

2

2-19GFK-0402G Chapter 2 Operation

Reading Program Logic Only

If desired, you can read only the program logic from the device, ignoring the
configuration and register data which was saved on the device. To do this use the
following procedure:

READ MEM CARD <SIn PROGRAM mode, press the
VRFY

READ key:

To select which items will be read:

READ MEM CARD <S
PRG CFG REG

Press the ENT key:

To read only the program logic:

READ MEM CARD <S
PRGPress the key:– +

Each time that you press the –/+ key allows the selection of other combinations of
program, configuration, and/or registers which will be read from the device. All possible
combinations or these three data types can be read. When the lower line of the display
contains the desired combination to be read:

READ MEM CARD <S
PRG xxxx

Press the ENT key:

Note that the address displayed at the end of the lower line will be continually updated
as the read operation progresses.

If the read is completed successfully, the HHP will display:

READ OK <S

If an error is detected during the read operation, an error message will be displayed, for
example:

READ PRG ERR <S

2

2-20 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

If an error is detected, the contents of the PLC logic program will be cleared. If the
attempt had been to read more then one type of data (for example, program and
registers), then each of those types of data would have been cleared upon detection of
an error.

Differing CPU Models

If the CPU model of the source PLC is not the same as the CPU model of the target CPU,
then the model must be changed when the configuration is read from the device. For
example, the device may have been written using a Series 90-20 model 211 CPU and the
contents of the device are being read into a Series 90-30 model 311 CPU. This changing
of the CPU model type applies ONLY when reading configuration.

To read the contents of a device from a different CPU model, use the following steps:

READ MEM CARD <SIn PROGRAM mode, press the
VRFY

READ key:

READ EEPROM <S
Press the key:– +

To select which items will be read:

READ EEPROM <S
PRG CFG REG

Press the ENT key:

To read the logic program, configuration, and registers saved on the card:

READ EEPROM <S
PRG CFG REG xxxx

Press the ENT key:

The address at the end of the lower line will be continually updated as the read
operation progresses. If the read is completed successfully, the HHP will display:

CHANGE MODEL? <S
<CLR>=N <ENT>=Y

2

2-21GFK-0402G Chapter 2 Operation

To change the model of the configuration being read into the PLC (the device contents
will be unaffected):

READ OK <SPress the ENT key:

If you do not want to change the model number of the new configuration (thereby
rejecting the data and aborting the read), use this step:

READ ABORTED <SPress the key:CLR

If the read operation is aborted, the contents of the memory areas in the PLC which
were being read from the device will be cleared. For example, if program and
configuration is being read and you elect to not change the model number, both the
program and configuration will be cleared.

EEPROM Source at Power-Up

If the EEPROM is chosen as the program source during the power-up sequence, then the
contents of the EEPROM will be rejected in its entirety if the EEPROM configuration is
not compatible with the CPU model in which it is installed. The EEPROM used as a
program source during power-up MUST have been written by a CPU of the same model.
If the models differ, or if the configuration is incompatible with the CPU in which it is
installed, the program, configuration, and registers in RAM memory will be cleared and
the PLC will power up in STOP mode. If this happens, a fatal fault will be generated.

Before Power Cycle After Power Cycle

Configuration of Program Source CPU Configuration of Program Source CPU
CPU will run with

program that was in

RAM EEPROM RAM EEPROM

RAM RAM RAM RAM RAM

EEPROM RAM RAM RAM EEPROM

EEPROM EEPROM EEPROM EEPROM EEPROM

RAM EEPROM EEPROM EEPROM EEPROM

EEPROM Blank EEPROM present RAM - Blank

EEPROM No EEPROM present RAM - Blank, no program

3 section level 1 1
figure bi level 1
table_big level 1

3-1GFK-0402G

Chapter 3 Series 90-30/20 PLC Configuration

A number of PLC parameters are user-configurable. Each of these parameters has a
default value which, for many users, will not need to be changed. These parameters,
their selections and default selections are shown in the following table.

Note
This chapter describes configuration for the Series 90-30 and 90-20 PLCs.
See Chapter 4 for configuration information for the Micro PLC.

Table 3-1. User-Configurable PLC Parameters

Parameter Selections Default Value

Key click ON (ENABLED)
OFF (DISABLED)

OFFKey click ON (ENABLED)
OFF (DISABLED)

OFF

Time of day clock
(Not available on Model 311/321,

Month
Day

Time of day clock
(Not available on Model 311/321,
Model 313/323, or Model 211)

Month
Day
Year

(Not available on Model 311/321,
Model 313/323, or Model 211)

Day
Year
Hour

Model 313/323, or Model 211)

Year
Hour
MinuteMinute
SecondSecond

Program source RAM
EEPROM

RAMProgram source RAM
EEPROM

RAM

Register source RAM
EEPROM

RAMRegister source RAM
EEPROM

RAM

Power-up mode RUN
STOP

SAME PDPower-up mode RUN
STOP
SAME PD

SAME PD
STOP
SAME PD

Active Constant Sweep Mode DISABLE
ENABLE

DISABLE

Active Constant Sweep Setting 5 - 200 msec 100 msec

Configured Constant Sweep Mode DISABLE
ENABLE

DISABLEConfigured Constant Sweep Mode DISABLE
ENABLE

DISABLE

Configured Constant Sweep Setting 5 - 200 msec 100 msec

I/O scan in stop mode NO I/O
DO I/O

NO I/OI/O scan in stop mode NO I/O
DO I/O

NO I/O

Dual use checking SINGLE
WRN MUL

SINGLEDual use checking SINGLE
WRN MUL
MULT

SINGLE
WRN MUL
MULT

Port idle time 1 - 60 seconds 10 seconds

3

3-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 3-1. User-Configurable PLC Parameters (continued)

Parameter Selections Default Value

Baud rate 300
600

19.2k
600
1200
24002400
4800
96009600
19.2k

Data bits 7 BITS
8 BITS

8 BITSData bits 7 BITS
8 BITS

8 BITS

Stop bits 1 BIT
2 BITS

1 BITStop bits 1 BIT
2 BITS

1 BIT

Parity ODD
NONE

ODDParity ODD
NONE
EVEN

ODD
NONE
EVEN

Modem turnaround time 0 to 255 counts 0

Disable passwords ENABLE
DISABLE

ENABLEDisable passwords ENABLE
DISABLE

ENABLE

CPU ID 6 ASCII characters 0 - F 000000

Default I/O Configuration ENABLE
DISABLE

ENABLEDefault I/O Configuration ENABLE
DISABLE

ENABLE

Checksum Words Per Sweep 8 through 32 8

This chapter describes how each parameter is configured.

The initial screen displayed in configuration mode is the last one viewed the previous
time configuration mode was selected, since the PLC was powered up. If this is the first
time configuration mode was entered, slot 1 of rack 0 (Model 331/340/341/351 CPU rack)
or slot 0 of rack 0 (Model 311/313) is displayed.

Entering Configuration Mode

In order to view and/or change the PLC parameters, you must first select the
configuration mode of operation.

1. To select configuration mode, press the MODE key to display the operating mode
selections.

_ 1. PROGRAM <S
 2. DATA

2. Press the 4 key to select configuration mode.

4
 2. DATA
_ 1. PROGRAM <S

3

3-3GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

3. Press the ENT key to enter the new mode.

The first screen displayed will be R0:00 for Model 311/321 and 313/323 or R0:0l for Model
331/340/341/351 and Model 211 (Model 211 is Series 90-20). This is the first PLC
configuration screen displayed. Use the z ‡ keys to view the other parameters and
the –/+ key to select the variable for a parameter.

R0:00 PLC <S
KEY CLK: OFF

Keypad Functionality

The following table gives an overview of how the keypad on the Hand-Held
Programmer is used in PLC configuration mode.

Table 3-2. Keypad Functionality in PLC Configuration Mode

Key Group Description

0 - 9
I/AI (A)

Specify a slot number or PLC parameter value; value format can
be either binary, signed decimal, or hexadecimal. (A)....(F) - these

0 - 9
I/AI (A)
Q/AQ (B)

Specify a slot number or PLC parameter value; value format can
be either binary, signed decimal, or hexadecimal. (A)....(F) - these
keys are used for entering hexadecimal digits A....F.Q/AQ (B)

M/T (C)
AND (D)

keys are used for entering hexadecimal digits A....F.
M/T (C)
AND (D)
OR (E)
NOT (F)
OR (E)
NOT (F)

HEX/DEC Change the display format between decimal, hexadecimal, and
8-bit binary.

–/+ Toggle the PLC configuration parameter setting.

CLR Abort or cancel the current operation or user input.

Up and Down cursor keys Select an I/O slot for viewing.

Left and Right cursor keys Display a different PLC parameter, or position different binary bit
for change.

Indicate a new rack/slot number (GOTO).

ENT Complete an operation or user input.

RUN Start or stop the PLC.

MODE Select an HHP operating mode.

3

3-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Display Format
The following screen format is used for configuring the PLC parameters:

Table 3-3. Configuration Screen Format

R
Rack

:
Slot
Module Type or Message

PLC
State

Parameter Label & Parameter Value

Rack #: Slot #: The rack #: slot # field indicates the currently displayed rack and slot.
For configuration purposes, the model 311 and 313 CPU module is em-
bedded in the backplane. The Model 331/340/341/351 and Model 211
CPU module is always located in slot 1 of rack 0.

Module Type or Message: The module type or message field normally displays the
designation PLC, indicating that PLC parameters are being configured.
This field also functions as an error message window.

PLC State: The PLC state field indicates whether the PLC is currently stopped or is
running (executing a program). A leading < character, followed by S if
the PLC is stopped or R if it is running, indicates the state of the PLC.

Parameter Label: The parameter label field contains a text string which is used as a
prompt to the user for a particular parameter.

Parameter Value: The parameter value field contains a value input by the user.

Locating a Slot or Rack and PLC Parameters
For configuration purposes, the Model 311/321 and 313/323 CPU (slot 0 of rack 0) is
embedded in the backplane. The Model 331/340/341/351 and 211 CPU module is always
located in slot 1 of rack 0.

The Up and Down cursor keys can be used to view the previous or next slot in the rack.
If the current slot is at the end of the current rack, the next slot displayed will be the
adjacent slot in the next/previous rack. For Model 211 slot 2 is always inputs, slot 3 is
always outputs and slot 4 is always High Speed Counter.

The # key, in conjunction with a slot number, can be used to go to a particular slot, as
shown in the following example.

1. When configuration mode is selected, the first screen displayed is the last slot
viewed the last time this mode was entered (except after power-up). For this
example, assume that slot 3 of the main rack was the last slot viewed:

R0:03 EMPTY <S

3

3-5GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

2. Press the # key to begin the GOTO operation:

R0:03 EMPTY <S
R_

3. Enter the number of the rack which contains the slot you want to go to. For this
example, enter a zero (0) for the main rack:

R0:03 EMPTY <S
R0:_

4. Then, enter the number of the slot you want to go to. For this example, enter a 1 for
slot 1 of the main rack:

R0:03 EMPTY <S
R0:1_

5. Then, press the ENT key. Slot 1 of the main rack is now displayed on the screen:

R0:01 PLC <S
KEY CLK: OFF

If a rack number greater then the maximum supported by the system is indicated, the
highest numbered rack will be displayed by default.

If a slot number greater then the maximum supported by the rack is entered as part of
the GOTO operation, the greatest numbered slot within the rack will be displayed by
default. For example, if the rack only contains five slots and you attempt to go to slot 9,
slot 5 will be displayed on the screen of the Hand-Held Programmer.

In either case, no error message will be displayed.

Key Click Parameter

When viewing the PLC configuration, the first parameter field encountered is the key
click (KEY CLK) parameter. By default, no audible click is heard when a key is pressed.
You can choose an audible feedback from the keys by enabling this parameter. Use the
–/+ key to toggle the selection between enabled (ON) and disabled (OFF).

Clock Parameter

The models 331, 340, 341, and 351 CPUs support a time-of-day clock. The month, day,
year, hour, minutes, and seconds can be set by the user.

Use the Right cursor key to scroll through the PLC parameters until the clock parameter
is displayed. Then, continue to press the Right cursor key to select each of the clock
parameters, in turn. To change a parameter, enter the new value and press the ENT key.

3

3-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Program Source Parameter

At power-up, you can specify that the program copy in RAM should be used, or that the
program copy in EEPROM should be loaded into RAM and used. This can be helpful
when you are running a program without battery backup.

Use the Right cursor key to scroll through the PLC parameters until the program source
(PRG SRC) parameter is displayed. Then, use the –/+ key to toggle the selection
between RAM and EEPROM. By default, the program copy in RAM will be used.

Register Source Parameter

At power-up, you can specify that the register table (R) values in RAM should be used, or
that the register table initialization values in EEPROM should be loaded into RAM and
used. This is also useful when you are running a program without battery backup.

Use the Right cursor key to scroll through the PLC parameters until the register source
(REG SRC) parameter is displayed. Then, use the –/+ key to toggle the selection
between RAM and EEPROM. By default, the register table copy in RAM will be used.

Note

Setting this parameter to EEPROM has no effect unless Program Source
is also set to EEPROM.

Power-Up Mode Parameter

The PLC can be configured to always power up in one of these modes:

1. RUN mode.

2. STOP mode.

3. The SAME mode Powered Down in (SAME PD).

STOP mode should be used when the program is not fully debugged or requires manual
intervention during start-up. RUN mode, on the other hand, should be used when
manual intervention is neither required nor allowed. The normal selection for this
parameter is to power up in the SAME mode that the system was powered down in.

Use the Right cursor key to scroll through the PLC parameters until the power-up mode
(PU MODE) parameter is displayed. Then, use the –/+ key to toggle the selection
between STOP, RUN, and SAME PD.

By default, the PLC will power up in the SAME PD mode powered down in.

Active Constant Sweep Mode Parameter

The PLC can be configured during RUN mode to use a constant amount of time per
sweep. The active constant sweep mode parameter gives you the ability to enable or
disable the constant sweep mode while the program is running, and have the effects
noticed immediately. This parameter can be used to toggle the sweep mode of the PLC
without changing the configured constant sweep mode parameter. The active constant
sweep mode parameter, once changed, is only valid during the current RUN mode.

3

3-7GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

When going from STOP to RUN mode, the configured sweep mode parameter value is
copied to the active sweep mode parameter.

Use the Right cursor key to scroll through the PLC parameters until the active constant
sweep mode (ACT CNSW) parameter is displayed. Then, use the –/+ key to toggle the
selection between DISABLE and ENABLE. By default, the PLC will execute every sweep
as fast as possible.

Active Constant Sweep Setting Parameter

If the Constant Sweep Mode is enabled in the PLC during RUN mode, then the Active
Constant Sweep Setting parameter can be used to adjust the sweep time. This allows
you to fine tune the sweep time while the PLC is running a program. Changing this
parameter does not affect the Configured Constant Sweep Setting parameter. The
Active Constant Sweep Setting is only valid during the current RUN mode, as long as
Active Constant Sweep Mode is enabled. Upon going from STOP to RUN mode, the
Configured Sweep Setting parameter value is copied to the Active Sweep Setting
parameter. If the Active Constant Sweep mode is disabled, this parameter is ignored.
The active constant sweep value can range between 5 and 200 milliseconds.

Use the Right cursor key to scroll through the PLC parameters until the Active Constant
Sweep setting (ACT CONS TM) parameter is displayed. To set the active sweep time,
enter a value between 5 and 200 milliseconds, and press the ENT key. The default
setting is 100 milliseconds.

Configured Constant Sweep Mode Parameter

The PLC can be configured to use a constant amount of time per sweep. The Constant
Sweep Mode parameter should be enabled when I/O points or register values must be
polled at a constant frequency, such as in control algorithms. The Configured Sweep
Mode parameter can be overridden by the Active Constant Sweep Mode parameter
during RUN mode, but upon going from STOP to RUN mode, the Configured Sweep
Mode parameter value is copied to the Active Constant Sweep Mode parameter (see
Active Constant Sweep Mode Parameter). The Configured Sweep Mode parameter can
only be edited during STOP mode.

Use the Right cursor key to scroll through the PLC parameters until the Configured
Constant Sweep mode (CFG CNSW) parameter is displayed. Then, use the –/+ key to
toggle the selection between DISABLE and ENABLE. By default, the PLC will execute
every sweep as fast as possible.

Configured Constant Sweep Setting Parameter

If the Configured Constant Sweep mode is enabled in the PLC, the sweep time value
must also be selected. The Configured Constant Sweep Setting parameter can be
overridden by the Active Constant Sweep Setting parameter during RUN mode, but
upon going from STOP to RUN mode, the Configured Constant Sweep Setting
parameter value is copied to the Active Constant Sweep Setting parameter. This allows
you to maintain a configured setting, while fine tuning the setting during RUN mode
with the active Constant Sweep Setting parameter. If the Configured Constant Sweep
mode is disabled, this parameter is ignored. The Configured Constant Sweep value can
range between 5 and 200 milliseconds.

3

3-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Use the Right cursor key to scroll through the PLC parameters until the Configured
Constant Sweep Setting (CFG CONS TM) parameter is displayed. To set the sweep time,
enter a value between 5 and 200 milliseconds, and press the ENT key. The default
setting is 100 milliseconds.

I/O Scan in Stop Mode Parameter
By default, the PLC will not scan I/O in stop mode. Enabling this parameter, however,
allows you to debug and test input and output wiring without a control program
installed.

Use the Right cursor key to scroll through the PLC parameters until the I/O scan in stop
mode (STOP MD) parameter is displayed. Then, use the –/+ key to toggle the selection
between NO I/O and DO I/O.

Dual Use Checking Parameter

The dual use checking parameter allows you to select whether or not %M and %Q
references should be restricted to single use as outputs within the user logic program.
When enabled, the system will not allow you to assign the same reference to two
different coils.

Note

This feature is not editable in a Model 351 CPU, since this parameter
applies to the user program, not the configuration.

Use the Right cursor key to scroll through the PLC parameters until the dual use
checking (COIL US) parameter is displayed. Then, use the –/+ key to toggle between
SINGLE, WRN MUL, and MULT. By default, WRN MUL is enabled. When toggling
from MULT to SINGLE or WRN MUL, the program is checked for multiple coil usage. If
multiple coils are detected, you can go to program mode and find the multiple coil usage
with the SRCH, #, –1 key sequence. When going to SINGLE, the transition is not
allowed; when going to WRN MUL, the transition is allowed. SINGLE check prevents
using the same %M or %Q coil reference in two or more locations in the program. WRN
MUL allows multiple coil uses of the same %M or %Q reference, but provides a warning
screen to the user that this is being done, and MULT allows multiple coil usage without a
warning.

Note

When an instruction is added and the coil use warning message is
displayed, the warning message should be verified with the search
function. It is possible that the use warning message is displayed even
though the coil is used only once in the program.

The PLC parameters described on the following pages are controlled by the Hand-Held
Programmer, but do not affect its operation. They are used for communications through
the power supply port with devices other than the HHP.

3

3-9GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

Port Idle Time Parameter
This parameter allows you to specify the maximum amount of time a communications
attachment to the PLC can be idle (no communications) before the PLC assumes that
communications has either been lost or terminated. The maximum allowable idle time
can range between 1 and 60 seconds, inclusive. The default value is 10 seconds.

Use the Right cursor key to scroll through the PLC parameters until the port idle time
(IDLE TM) parameter is displayed. To specify the amount of allowable idle time, enter a
value between 1 and 60 seconds, inclusive, and press the ENT key.

Baud Rate Parameter
The baud rate assigned to the communications port is selectable. The baud rates
supported are 300, 600, 1200, 2400, 4800, 9600, and I will add the Range function19.2k
with the default setting at 19.2k.

Use the Right cursor key to scroll through the PLC parameters until the baud rate
(BAUD RT) parameter is displayed. Then, use the –/+ key to toggle the selection
between the baud rates supported.

Data Bits Parameter
You can select either 7 or 8 data bits per word for Series 90 Protocol (SNP)
communications. The default value is 8 data bits per word.

Stop Bits Parameter
You can also select either 1 or 2 stop bits for Series 90 protocol communications. The
default value is 1 stop bit.

Use the Right cursor key to scroll through the PLC parameters until the stop bits (STOP
BT) parameter is displayed. Then, use the –/+ key to toggle the stop bits selection
between 1 BIT and 2 BITS.

Parity Parameter
The selections for parity in Series 90 protocol communications include even, odd, and no
parity. Odd parity is the default value parity.

Use the Right cursor key to scroll through the PLC parameters until the parity parameter
is displayed. Then, use the –/+ key to toggle the parity selection between ODD,
NONE, and EVEN.

Modem Turnaround Time Parameter
This parameter allows you to configure the turnaround delay time required for a
particular modem. You must specify a given number of counts, where each count
represents 0.01 seconds (10 msec). The number of counts can range from 0 (0 msec
delay) to 255 (2.55 sec delay). Use 0 (zero) for direct connection with no turnaround
time.

Use the Right cursor key to scroll through the PLC parameters until the modem
turnaround time (MDM TAT) parameter is displayed. To specify the number of counts,
enter a value between 0 and 255, inclusive, and press the ENT key.

3

3-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Password (ENABLE/DISABLE) Parameter

This parameter lets you enable or disable the password parameter. The default for this
parameter is ENABLE. See Chapter 7 for more information on passwords.

CPU ID Parameters ID1, ID2, and ID3

The next PLC parameter you can configure is CPU ID parameter ID1. This parameter is
the first of three consecutive parameters used to input a network identification name on
a Series 90 protocol network.

Each parameter is a 4-digit hexadecimal number. The four hexadecimal digits
correspond to two ASCII characters; thus, a 6-character identifier is entered two
characters at a time. If the total identifier consists of less then six characters, all trailing
characters must be set to the NULL character (ASCII 00H). By default, the PLC is not
assigned a network name; all characters are set to NULL.

Use the Right cursor key to scroll through the PLC parameters until the first ID
parameter is displayed. Enter the key sequence of the ASCII-hex numbers which
correspond to the network name you wish to specify. Then, press the ENT key. Follow
this same procedure for parameters ID2 and ID3.

This parameter has three inputs ID1, ID2, ID3 which combine together to form a 6
character ASCII word which gives this CPU a unique identification value. This value is
used to identify this CPU when it is connected to a communications bus network which
has more then one CPU connected on the network.

Assume that the network name ABCDE is to be assigned to the PLC. This name
corresponds to the ASCII-HEX sequence 41-42-43-44-45-00.

ID1 = 4142 which equals AB
ID2 = 4344 which equals CD
ID3 = 45-00 which equals E

Also assume that the previous parameter, MODEM TURNAROUND TIME, is currently
being viewed. Press the ‡ key two times to select the ID1 parameter.

R0:01 PLC <S
MDM TAT: 0

Initial display:

R0:01 PLC <S
ID1: 0000H

Press the key two times:

Press the key sequence
 RO:01 PLC <S
 ID1: 4142_H4 1 4 2 :

3

3-11GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

Press the ENT key: RO:01 PLC <S
 ID1: 4142_H

Press the RO:01 PLC <S
 ID2: 0000H

key:

Press the key sequence
 RO:01 PLC <S
 ID1: 4344_H4 3 4 4 :

Press the ENT key: RO:01 PLC <S
 ID2: 4344_H

R0:01 PLC <S
ID3: 0000H

Press the key:

Press the key sequence
RO:01 PLC <S
ID3: 4500_H4 5 0 0 :

Press the ENT key: RO:01 PLC <S
 ID3: 4500_H

Default I/O
The default I/O parameter allows you to view and change the current state of the
default I/O configuration function. The following example shows the key sequences and
resulting screens to view or edit this parameter. You can request that the PLC
reconfigure the I/O based on the default I/O configuration (refer to Chapter 4,
Reconfiguration for details. Refer to Table 5-3 for a list of the default I/O configuration.

R0:01 PLC <S
ID3:0000H

Initial display:

3

3-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

R0:01 PLC <S
DEF I/O: ENABLE

Press the key two times:

R0:01 PLC <S
DEF I/O: DISABLE

Press the key:– +

Note that on the previous display, the word DISABLE will be flashing to signify that you
have initiated a change to the current value of the configuration parameter. Also,
because of the ramifications of changing the value of this parameter, you will be
prompted to confirm the change. This confirmation display is shown below.

Press the ENT key: RO:01 PLC <S
 <ENT>=Y <CLR>=N

At this point you can either confirm or cancel the change to the default I/O configuration
parameter. If the change is confirmed and the value of the parameter has been changed
from DISABLE to ENABLE, all I/O modules will be reconfigured as as shown in Table
4-3. Note that all smart I/O modules, such as the HSC and GCM, will be dropped from
the configuration since they are not included in the default configuration. The slots that
these modules occupied will now be shown as EMPTY on the HHP. The PCM is
reconfigured to the default configuration.

If the change is confirmed and the value of the parameters has been changed from
ENABLE to DISABLE, no changes occur to the existing configuration. However, as new
I/O modules are detected at power-up in slots that were previously EMPTY, they will not
be configured automatically by the PLC.

Since the previous method of enabling and disabling the default I/O configuration is still
possible (along with this configuration parameter) it is possible for the value of this
parameter to change indirectly. For example, if the value of this parameter is DISABLE
and the key sequence #, –/+, 9, DEL is pressed while in configuration mode, the value
of this parameter would then become ENABLE. Conversely, if you were to disable the
default I/O configuration by manually changing the reference offset of an I/O module,
the value of this parameter would become DISABLE. Thus, changing this parameter’s
value from DISABLE to ENABLE would have the same effect as using the previous key
sequence.

When configuration is read from MEM card or EEPROM, or STOREd from Logicmaster
90-30 and this configuration has DEFAULT CONFIG enabled, the I/O will be
auto-configured but the CPU parameters will be set to the value that they have in the
configuration being read into the PLC.

When configuration is verified with a MEM card or EEPROM and the configuration on
the device has DEFAULT I/O enabled, the verify will always be successful.

When configuration is verified with Logicmaster 90-30 and the configuration on
Logicmaster 90-30 has DEFAULT CONFIG enabled, the results of the verify will be
determined by the value of the checksums. This means that a configuration that will

3

3-13GFK-0402G Chapter 3 Series 90-30/20 PLC Configuration

verify may not produce the same results if STOREd, since modules may have been
physically added since the Logicmaster 90-30 configuration was LOADed from the PLC

Checksum Words Per Sweep

This parameter allows you to select the number of words per sweep to be
checksummed. The selectable range is from 8 to 32 words (any number of words
between 8 and 32).

Canceling a Configuration Operation

The CLR key can be used to cancel the current parameter modification and restore the
original setting. When attempting to change the configuration of a PLC parameter, a
valid value must be entered. If an invalid value is specified, the configuration request
will be refused and a DAT ERR message will be displayed.

In a GOTO operation, described in the beginning of this chapter, the CLR key can be
used to cancel the operation and remain on the currently viewed slot. If a slot number
has already been entered, press the CLR key to erase the current input and remain in
slot selection mode. Pressing the CLR key a second time cancels the GOTO operation. If
no user input had been specified when the CLR key is pressed the first time, only a
single press of the CLR key is required to cancel the GOTO operation.

Exiting Configuration Mode
To exit the PLC configuration function, press the MODE key. The mode selection screen
will be displayed.

4 section level 1 1
figure bi level 1
table_big level 1

4-1GFK-0402G

Chapter 4 Series 90 Micro PLC Configuration

The Series 90 Micro PLC can be configured and programmed using the Series
90-30/20/Micro Hand-Held Programmer (IC693PRG300).

Configuration and programming using the Hand-Held Programmer must be done with
the Hand-Held Programmer (HHP) attached to and interfacing with the PLC.

This chapter has two Sections. Section 1 describes configuration of the Micro PLC CPU
parameters; Section 2 describes configuration of the High Speed Counter that is built
into the Micro PLC.

For detailed information about the Series 90 Micro PLC, refer to GFK-1065, the Series 90
Micro PLC User’s Manual.

a45452

GE Fanuc

COM3

OUTPUT

INPUT

PWR

OK

RUN

L H

85–265VAC

1

Q5

PROGRAMMABLE CONTROLLER

24 VDC. 120 / 240 VAC N.O. RELAY OUT

2 3 4 5 6 7 8

~~

SERIES 90 MICRO

24 VDC INPUT POS/NEG

Q1 COM1 Q2 COM2 Q3 Q4 Q6

24 VDC OUT

COM2I5 I6 I7 I8I1 I2 I3 I4 COM1

Figure 4-1. Series 90 Micro Programmable Logic Controller

4

4-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 1: Micro PLC Configuration

Table 4-1 lists all parameters for the Micro PLC except those concerning the High Speed
Counters (see Section 2 for details on configuring the High Speed Counters).
Parameters that are displayed for the user’s information only are denoted not editable
in the description.

Table 4-1. Micro PLC Parameters

Parameter Description Possible Values Default Value

I/O Scan-Stop Determines whether I/O is to be scanned while the PLC
is in STOP mode

YES
NO

NO

Pwr Up Mode Selects power up mode. LAST
STOP
RUN

LAST

Logic From Source of logic when the PLC is powered up RAM
PROM (flash memory)

RAM

Registers Selects source of register data when the PLC is powered
up.

RAM
PROM (flash memory)

RAM

Passwords Determines whether the password feature is enabled or
disabled. (Note: If passwords are disabled, the only way
to re-enable them is to clear the Micro PLC memory by
power cycling the unit with the battery removed.)

ENABLED
DISABLED

ENABLED

Baud Rate Data transmission rate (in bits per second) 300 4800
600 9600
1200 19200
2400

19200

Data Bits Determines whether the CPU recognizes 7-bit or 8-bit
words

7
8

8

Parity Determines whether parity is added to words ODD
EVEN
NONE

ODD

Stop Bits Number of stop bits used in transmission. (Most serial
devices use one stop bit; slower devices use two.)

1
2

1

Modem TT Selects modem turnaround time (time required for the
modem to start data transmission after receiving the
transmit request)

0-255 0

Idle Time Time (in seconds) the CPU waits for the next message to
be received from the programming device before it as-
sumes that the programming device has failed and pro-
ceeds to its base state

1-60 10

Sweep Mode Normal - the sweep runs until it is complete

Constant - the sweep runs for the time
 specified in Sweep Tmr

NORMAL
CNST

NORMAL

Sweep Tmr Constant sweep time (in milliseconds). Editable when
Sweep Mode is CNST; non-editable otherwise.

NORMAL mode - N/A
CNST mode - 5-200

N/A
100

4

4-3GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Table 4-1. Micro PLC Parameters (continued)

Parameter Description Possible Values Default Value

In RefAddr Discrete input reference %I00001 not editable %I00001

Input Size Discrete input size 8 not editable 8

Out RefAddr Discrete output reference %Q00001 %Q00001

Output Size Discrete output size 6 6

The HHP is used to develop, debug, and monitor ladder logic programs, and to monitor
data tables. You can use the HHP to perform the following tasks:

� Statement List logic program development, including insert, edit, and delete
functions. The Statement List programming instructions provide basic (boolean)
instructions to execute logical operations such as AND and OR, and many functions
to execute advanced operations including arithmetic operations, data conversion,
and data transfer.

� On-line program changes

� Search logic programs for instructions and/or specific references

� Monitor reference data while viewing logic program

� Monitor reference data in table form in binary, hexadecimal, or decimal formats

� Monitor timer and counter values

� View PLC scan time, firmware revision code and current logic memory use

� Load, store, and verify program logic and configuration between the Hand-Held
Programmer and a removable Memory Card (IC693ACC303) which allows programs
to be moved between PLCs or loaded into multiple PLCs

� Start or stop the PLC from any mode of operation

Note
Unlike other Series 90-30/20 models, the Series 90 Micro PLC requires
that, after a program has been edited, you save the program to the user
program in non-volatile flash memory. Refer to Storing the User Program
Using the HHP on page 4-6 for the required procedure for saving
programs when a Micro PLC program is modified in any way (create,
edit, insert, etc.).

HHP Configuration Screens
1. The following screen (Main Menu) will be displayed on the Hand-Held Programmer

after the Series 90 Micro PLC has successfully completed its power-up sequence.

_ 1. PROGRAM <S
 2. DATA

This screen allows you to select the mode of operation of the program. The choices are:
PROGRAM, DATA, PROTECT and CONFIG (Configuration). You can see the other
choices by pressing the UP and DOWN arrow keys. Each choice has a number in front
of it which is used to select the desired mode.

4

4-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

2. Enter the configuration mode by pressing the 4 key then the ENT key from the Main
Menu screen.

The up and down cursor keys allow you to move between power supply
configuration, CPU configuration, Input configuration, Output configuration, and
HSC configuration. The left and right arrows allow selection of parameters within
each of the configurations.

R0:01 PLC <S
KEY CLK: OFF

This screen indicates that the CPU function is located in rack 0 and slot 01 (R01:01).
For compatibility with Series 90-30 PLCs, the different functions mimic the rack and
slot locations. The Series 90 Micro PLC system is always in rack 0. The following
table shows the fixed slot assignments for the different functions of the 14-point
Micro PLC.

Slot Function Fixed/Configurable

0 Power Supply Fixed

1 CPU Parameters Configurable

2 Input Locations Fixed: %I1 to %I8

3 Output Locations Fixed: %Q1 to %Q6

4 High Speed Counter Fixed: I00497-I00512
 Q00497-Q00512
 AI00001-AI000015

If you want to transfer a program developed for a Series 90 Micro PLC to a Series
90-30 PLC, the I/O modules in the Series 90-30 PLC must be in the above listed rack
and slot locations for the program and configuration to work properly.

The screen shown above also shows the first configuration item which allows you to
change the Hand-Held Programmer Key Click feature. The default is KEY CLK: OFF.

3. Pressing the up arrow key causes the next screen to be displayed:

R0:00 PWR SUP <S
IO BASE: I8/Q6

This screen indicates that the baseplate located at rack 0 and slot 00 is a generic 8
Input/6 Output module.

4. Pressing the down arrow key causes the previous screen to be displayed:

R0:01 PLC <S
KEY CLK: OFF

Use the left and right arrow keys to view the other Micro PLC parameters for
configuration and the –/+ key to select the items within each parameter. Refer to
Table 4-1 for acceptable values and default values for Micro PLC parameters.

4

4-5GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

5. When all Micro PLC parameters have been configured, press the down arrow key
again to cause the input screen to be displayed (this is not configurable):

R0:02 I <S
 I16:I0001–I0008

If the program is transferred to a Series 90-30 Model 311, Model 313, Model 331,
Model 340, Model 341, or Model 351, the input module should be located in the first
I/O slot (slot 02 on the Model 331, Model 340, Model 341 and Model 351, and slot 01
on the Model 311 and Model 313).

6. Pressing the down arrow key again causes the output screen to be displayed (this is
not configurable):

R0:03 Q <S
 Q16:Q0001–Q0006

If the program is transferred to a Series 90-30 Model 311, Model 313, Model 331,
Model 340, Model 341, or Model 351, the output module should be located in the
second I/O slot (slot 03 on the Model 331, Model 340, Model 341, and Model 351, and
slot 02 on the Model 311 and Model 313).

7. Pressing the down arrow key again causes the first HSC screen to be displayed:

R0:04 HSC <S
 I16:I0497–I0512

If the program is transferred to a Series 90-30 Model 311, Model 313, Model 331,
Model 340, Model 341, or Model 351 the HSC module should be located in the third
I/O slot (slot 04 on the Model 331, Model 340, Model 341, and Model 351, and slot 03
on the Model 311 and Model 313).

The complete HSC configuration screens are discussed in Section 2..

4

4-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Storing the User Program Using the HHP

Unlike other Series 90-30 PLC models or the Series 90-20 PLC, the Series 90 Micro PLC
requires that, after a program has been edited, you save the program to the user
program in non-volatile flash memory. To do this, perform the following steps.

1. With the HHP showing a screen that resembles the following, press the WRITE key.

#XXXX <S
<END OF PROGRAM>

The following screen will result:

WRITE MEM CARD<S
PRG CFG REG

2. Next press the –/+ key twice. The following screen will appear:

WRITE USR PRG <S
ONLY

3. Finally, press the ENT key. This will store the user program. Note that this may take
about a minute. When the program has been stored, the following screen will be
displayed:

WRITE OK <S

At this point the program can be put into RUN mode.

4. To return to the program edit mode, press the ENT key.

The above procedure should be used any time that a Micro PLC program is modified in
any way (create, edit, insert, and so forth).

4

4-7GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Section 2: High Speed Counter Configuration

If you have just configured the Series 90 Micro PLC parameters using the Hand-Held
Programmer (see Section 1) all you need to do to select the High Speed Counter is use the
Down Arrow key [–] to sequence to the slot assigned to the High Speed Counter. Press the
READ key, then the ENT key.

Note

The Series 90 Micro PLC functions are assigned to rack and slot locations
corresponding to those in the Series 90-30 PLCs. The Series 90 Micro
PLC system is always in rack 0, and the its HSC functions are in slot 4.

When the Series 90 Micro PLC first powers up, it has default values for all of the HSC
parameters. To meet the requirements of most applications, the High Speed Counters
will have to be configured before they can be used.

Parameter Definitions
Tables 4-2 through 4-4 list all the configuration parameters in the Series 90 Micro PLC
High Speed Counter function and the abbreviations for those parameters as they are
displayed on the Hand-Held Programmer. Note that parameters 1 through 4 are
common to both A and B-type counters. Definitions for each parameter are provided on
pages 4-11 through 4-15. For detailed information on operation of the Series 90 Micro
PLC High Speed Counter function, see GFK-1065, the Series 90 Micro PLC User’s Manual.

Table 4-2. Common Parameter Abbreviations

Parameter HHP Screen
Number

HHP
Abbreviation

Value 1 Value 2 Value 3 Default

Counter Type 1 CNTR TYPE ALL A B1-3/A4 – ALL A

Output Failure Mode 2 FAIL MODE NORMAL FRCOFF HOLD NORMAL

4

4-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 4-3. Abbreviations for All Type A Counter Configuration

Parameter
HHP Screen

Number
HHP

Abbreviation Value 1 Value 2 Default

Counter 1 Enable/Disable 3 CTR1 ENABLE DISABLE DISABLE

Counter 1 Output Enable/Disable 4 CTR1 OUT ENABLE DISABLE DISABLE

Counter 1 Direction 5 CTR1 DIR UP DOWN UP

Counter 1 Mode 6 CTR1 MODE CONT 1 SHOT CONT

Counter 1 Preload/Strobe selection 7 CTR1 PRELOAD STROBE PRELOAD

Counter 1 Strobe Edge 8 STB EDGE1 POS NEG POS

Counter 1 Count Edge 9 CNT1 EDGE POS NEG POS

Time Base 1 10 TIME BS 1 – – 1000mS

High Limit 1 11 HI LIM 1 – – +32767

Low Limit 1 12 LO LIM 1 – – 0

ON Preset 1 13 ON PST 1 – – +32767

OFF Preset 1 14 OFF PST1 – – 0

Preload 1 15 PRELD 1 – – 0

Counter 1 PWM Output Enable/Disable* 16 PWMOUT1 ENABLE DISABLE DISABLE

Counter 1 Pulse Output Enable/Disable* 17 PULSEOUT1 ENABLE DISABLE DISABLE

Counter 2 Enable/Disable 18 CTR2 ENABLE DISABLE DISABLE

Counter 2 Output Enable/Disable 19 CTR2 OUT ENABLE DISABLE DISABLE

Counter 2 Direction 20 CTR2 DIR UP DOWN UP

Counter 2 Mode 21 CTR2 MODE CONT 1 SHOT CONT

Counter 2 Preload/Strobe selection 22 CTR2 PRELOAD STROBE PRELOAD

Counter 2 Strobe Edge 23 STB EDGE2 POS NEG POS

Counter 2 Count Edge 24 CNT2 EDGE POS NEG POS

Time Base 2 25 TIME BS 2 – – 1000mS

High Limit 2 26 HI LIM 2 – – +32767

Low Limit 2 27 LO LIM 2 – – 0

ON Preset 2 28 ON PST 2 – – +32767

OFF Preset 2 29 OFF PST2 – – 0

Preload 2 30 PRELD 2 – – 0

Counter 2 PWM Output Enable/Disable* 31 PWMOUT2 ENABLE DISABLE DISABLE

Counter 2 Pulse Output Enable/Disable* 32 PULSEOUT2 ENABLE DISABLE DISABLE

*These parameters apply only to DC IN/DC OUT type Series 90 Micro PLCs.

4

4-9GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Table 4-3. Abbreviations for All Type A Counter Configuration - continued

Parameter
HHP Screen

Number
HHP

Abbreviation Value 1 Value 2 Default

Counter 3 Enable/Disable 33 CTR3 ENABLE DISABLE DISABLE

Counter 3 Output Enable/Disable 34 CTR3 OUT ENABLE DISABLE DISABLE

Counter 3 Direction 35 CTR3 DIR UP DOWN UP

Counter 3 Mode 36 CTR3 MODE CONT 1 SHOT CONT

Counter 3 Preload/Strobe selection 37 CTR3 PRELOAD STROBE PRELOAD

Counter 3 Strobe Edge 38 STB EDGE3 POS NEG POS

Counter 3 Count Edge 39 CNT3 EDGE POS NEG POS

Time Base 3 40 TIME BS 3 – – 1000mS

High Limit 3 41 HI LIM 3 – – +32767

Low Limit 3 42 LO LIM 3 – – 0

ON Preset 3 43 ON PST 3 – – +32767

OFF Preset 3 44 OFF PST3 – – 0

Preload 3 45 PRELD 3 – – 0

Counter 3 PWM Output Enable/Disable* 46 PWMOUT3 ENABLE DISABLE DISABLE

Counter 3 Pulse Output Enable/Disable* 47 PULSEOUT3 ENABLE DISABLE DISABLE

Counter 4 Enable/Disable 48 CTR4 ENABLE DISABLE DISABLE

Counter 4 Output Enable/Disable 49 CTR4 OUT ENABLE DISABLE DISABLE

Counter 4 Direction 50 CTR4 DIR UP DOWN UP

Counter 4 Mode 51 CTR4 MODE CONT 1 SHOT CONT

Counter 4 Preload/Strobe selection 52 CTR4 PRELOAD STROBE PRELOAD

Counter 4 Strobe Edge 53 STB EDGE4 POS NEG POS

Counter 4 Count Edge 54 CNT4 EDGE POS NEG POS

Time Base 4 55 TIME BS 4 – – 1000

High Limit 4 56 HI LIM 4 – – +32767

Low Limit 4 57 LO LIM 4 – – 0

ON Preset 4 58 ON PST 4 – – +32767

OFF Preset 4 59 OFF PST4 – – 0

Preload 4 60 PRELD 4 – – 0

Counter 4 PWM Output Enable/Disable* 61 PWMOUT4 ENABLE DISABLE DISABLE

*These parameters apply only to DC IN/DC OUT type Series 90 Micro PLCs.

4

4-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 4-4. Abbreviations for Type B1–3/A4 Counter Configuration

Parameter HHP Screen
 Number

HHP
Abbreviation Value 1 Value 2 Default

Counter 1 Enable/Disable 3 CTR1 ENABLE DISABLE DISABLE

Counter 1 Output Enable/Disable 4 CTR1 OUT ENABLE DISABLE DISABLE

Counter 1 Direction 5 CTR1 DIR UP DOWN UP

Counter 1 Mode 6 CTR1 MODE CONT 1 SHOT CONT

Counter 1 Preload/Strobe selection 7 CTR1 PRELOAD STROBE PRELOAD

Counter 1 Strobe Edge 8 STB EDGE1 POS NEG POS

Counter 1 Count Edge 9 CNT1 EDGE POS NEG POS

Time Base 1 10 TIME BS 1 – – 1000mS

High Limit 1 11 HI LIM 1 – – +32767

Low Limit 1 12 LO LIM 1 – – 0

ON Preset 1 13 ON PST 1 – – +32767

OFF Preset 1 14 OFF PST1 – – 0

Preload 1 15 PRELD 1 – – 0

Counter 4 Enable/Disable 16 CTR4 ENABLE DISABLE DISABLE

Counter 4 Output Enable/Disable 17 CTR4 OUT ENABLE DISABLE DISABLE

Counter 4 Direction 18 CTR4 DIR UP DOWN UP

Counter 4 Mode 19 CTR4 MODE CONT 1 SHOT CONT

Counter 4 Preload/Strobe selection 20 CTR4 PRELOAD STROBE PRELOAD

Counter 4 Strobe Edge 21 STB EDGE4 POS NEG POS

Counter 4 Count Edge 22 CNT4 EDGE POS NEG POS

Time Base 4 23 TIME BS 4 – – 1000

High Limit 4 24 HI LIM 4 – – +32767

Low Limit 4 25 LO LIM 4 – – 0

ON Preset 4 26 ON PST 4 – – +32767

OFF Preset 4 27 OFF PST4 – – 0

Preload 4 28 PRELD 4 – – 0

Counter 4 PWM Output Enable/Disable* 29 PWMOUT4 ENABLE DISABLE DISABLE

*These parameters apply only to DC IN/DC OUT type Series 90 Micro PLCs.

Note
Counter 1 is an A-QUAD-B type counter and counter 4 is an A type counter.

4

4-11GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Counter Type
This parameter specifies the counter configuration type. A4 selects four identical,
independent (Type A) counters. B1-3, A4 selects one Type B counter (for A-Quad-B
counting) and one Type A counter.

Output Failure Mode
If the module detects a loss of the CPU, it can respond in three different ways:

� it can continue to operate normally, processing the inputs and controlling the
outputs according to its configuration (NORMAL);

� it can force all four outputs to turn off (FRCOFF);

� the module can hold the outputs at the current state (HOLD).

These responses remain in effect until the CPU returns to operation or the module is
power-cycled.

Counter Direction
Each counter can be configured to count either up or down. The default is Up.

Counter Mode
Each counter on a module has programmable count limits that define its range. The
counter can either count continuously within these limits, or count to either limit, then
stop.

Continuous Counting

In the continuous counting mode, if either the upper or lower limit is exceeded, the
counter wraps around to the other limit and continues counting. Continuous counting is
the default mode.

Single-Shot Counting

If single-shot counting is selected, the counter will count to its upper or lower limit, then
stop. When the counter is at the limit, counts in the opposite direction will count it back
off the limit. The Accumulator can also be changed by loading a new value from the CPU
or by applying a Preset Input.

Note

In either the single-shot or continuous mode, the counter stops at 1 past
the limit (that is, at n+1 if n is the high limit, and n–1 if n if the low
limit). Therefore, where N is the desired number of pulses to be
counted, you must configure the counter so that high limit=N–1, or
low limit=N+1.

4

4-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Strobe Edge
Strobe inputs are edge sensitive. Each Strobe input on the module can be individually
configured to have either the positive or the negative edge active. By default, they are
positive-edge sensitive.

Counter Timebase
For each counter, the timebase represents a span of time which can be used to measure
the rate of counting. For example, the program may be required to monitor the number
of count pulses which are occurring every 30 seconds.

A timebase from 1 msec to 65535 msec can be selected for each counter. The counter
timebase is set to 1 second (1000 msec) by default. The module stores the number of
counts that occurred during the last-completed timebase interval in the
Counts/Timebase register. The range of the Counts/Timebase register is –32768 and
+32767 counts. The timebase value selected should not allow the Counts/Timebase
register to overflow at the maximum count frequency. If it does, the sign of the
Counts/Timebase will change from (+) to (–) or (–) to (+).

Count Limits
Each counter can be assigned upper and lower count limits. All Accumulator preload
values and output on/off preset values must lie within these limits. The upper (high)
limit is the most positive, and the lower limit is the most negative. Both can be positive,
or both can be negative, but the high limit is always greater than the low limit.

If the Accumulator value is outside the new limits when the limits are changed it is
automatically adjusted to the low limit value. If the new limits are incompatible, that is,
(high < low or low > high), then they will be rejected and the old limits retained. In this
case a counter limit error code will be returned. To avoid this situation when the limits
are changed one at a time, a good rule to follow is: always move the high limit first when
shifting the limits up and always move the low limit first when shifting them down.

The limit range for both Type A and Type B counters is –32,768 to +32,767.

4

4-13GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Output Preset Positions
Each counter output has a preset ON and OFF position. The output state indicates when
the counter accumulator value is between the ON and OFF points.

If the output is enabled for the HSC channel being used, the output will turn on in
accordance with the following table:

 Preset closest to low limit Output ON Output OFF

ON > ON Preset > OFF Preset
< = OFF Preset < = ON Preset

OFF < = OFF Preset < = ON Preset
> ON Preset > OFF Preset

The output may be either on or off when the accumulator value lies between the Preset
points.

ON CONDITION INCLUDES PRESET POINTS

ON
PRESET

OFF
PRESET

OFF
PRESET

ON
PRESET

OFF CONDITION INCLUDES PRESET POINTS

a42970

For example:

ON PRESET
VALUE

OFF PRESET
VALUE

CORRESPONDING
OUTPUT

ACCUMULATOR
VALUE

a43003

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎÎ
ÎÎÎ ÎÎÎ

ÎÎÎ

ÎÎ
ÎÎ
ÎÎ

ON

OFF

COUNTS

TIME

4

4-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Location of Preset Points

The Preset points may be located anywhere within the counter range. When the
accumulator value is between the Preset points, the output ON/OFF state will always be
that of the lowest (most negative) Preset point. When the accumulator value is not
between the Preset points, the output ON/OFF state will be that of the most positive
preset. This is true regardless of the counter direction.

The following example compares the output state and accumulator value of a 16-bit
counter.

ACCUMULATOR
VALUE

COUNTER RANGE

0

OFF
PRESET

COUNTER
LOW
LIMIT

8000H
MINIMUM

LOW LIMIT

ON
PRESET

COUNTER
HIGH
LIMIT

7FFFH
MAXIMUM
HIGH LIMIT

OFF

ON

OUTPUT

If both preset points are within the counter range, the output always switches at the
Preset points. If only one of the Preset points is programmed within the counter range,
then the counter limits will function as the other Preset point. In the continuous mode,
the output will switch when wraparound occurs.

If neither of the Preset points is in the counter range then the output state will not
change; it will always be the state of the most positive Preset. If both Preset points are
equal and out of range, the output will always be OFF. If both Preset points are equal
and within the counter range, then the output will only be on for one count value - as
defined by the Preset points.

Preload Value
For each counter, a starting count value can be specified which will be used when the
Preload input is activated. If the counter should be reset to 0, enter 0 as the Preload
value. (The default value is 0.)

4

4-15GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Configuration Screens Common to both Counter Types (ALL A and B1-3, A4)

Note

Screen numbers correspond to parameter numbers listed in Tables 4-2
through 4-4.

Screen 1 - Counter Type

R0:04 HSC <S
CNTR TYPE:ALL A

This screen allows you to select the counter type. Press the–/+ key to select the type of
counter you desire, then press the ENT key. The CLR key (before enter is pressed) will
cancel the operation.

Screen 2 - Output Default/Module Failure Mode

R0:04 HSC <S
FAIL MODE:NORMAL

This screen selects the state that the outputs assume if communications with the PLC is
lost. NORMAL indicates that the outputs will continue to operate under control of the
counter. FRCOFF causes the outputs to be forced off if communications is lost, while
HOLD causes the High Speed Counter to retain the last state that the output points held
before communication was lost.

4

4-16 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

A4 Counter Specific Screens

The following screens will be displayed when ALL A is selected in Screen 1.

Screens 8, 23, 38, 53 - Strobe Edge

R0:04 HSC Vx.x <S
CTRx STB:POS

These screens configure the strobe input edge to trigger on a positive or negative going
signal.

Screens 9, 24, 39, 54 - Counter Strobe Edges

R0:04 HSC Vx.x <S
STB EDGE x:POS

This configuration selects whether the strobe edge will trigger on a positive-going or
negative-going signal.

Screens 3, 18, 33, 48 - Counter Enable

R0:04 HSC <S
CTRx :DISABLE

This series of four screens enables or disables the specified counter. This means that, for
each counter enabled, it will use certain portions of PLC reference memory and PLC
input and output resources. If CTR1 is set to ENABLE, screens 4 through15 will appear
(or 19 through 30 for counter number 2, 34 through 45 for counter number 3, and 49
through 60 for counter number 4).

Note
If the configured Series 90 Micro PLC is a DC IN/DC OUT type, this screen will
only appear if the PWM OUTx option and the PULSE OUTx option for the same
channel are disabled. (see screens 16 and 17 below)

Screens 4, 19, 34, 49 - Count Output Enable

R0:04 HSC <S
CTRx OUT:ENABLE

4

4-17GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Screens 5, 20, 35, 50 - Counter Direction

R0:04 HSC <S
CTRx DIR:UP

This series of three screens is used to set the count direction.

Screens 6, 21, 36, 51 - Counter Mode

R0:04 HSC <S
CTRx MODE:CONT

These screens specify the Counter Mode-continuous or one-shot.

Screens 7, 22, 37, 52 - Counter Strobe/Preload Selection

R0:04 HSC <S
CTRx :PRELOAD

This series of screens is used to select PRELOAD or STROBE type counting for Counters
1-4.

Screens 8, 23, 38, 53 - Strobe Edge

R0:04 HSC <S
STB EDGEx :POS

These screens configure the strobe input edge to trigger on a positive or negative-going
signal.

Screens 9, 24, 39, 54 - Counter Edge

R0:04 HSC <S
CTRx EDGE: POS

These screens configure the counter input edge to trigger on a positive or negative going
signal.

Screens 10, 25, 40, 55 - Time Base Value

R0:04 HSC <S
TIME BS x: 1000

These screens allow you to enter the time base that is used in the Counts Per Time Base
calculation. The default is 1000 milliseconds (1 second). To change the time base, select
the value using the numeric keys on the Hand-Held Programmer then press the ENT
key to record the value.

4

4-18 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Screens 11, 26, 41, 56 - High Limit

R0:04 HSC <S
HI LIM x: 32767

These screens are used to specify the highest (most positive) value the count
accumulator can reach. The default is 32767, which is the maximum value the Type A
counters can handle. As with the time base, use the Hand-Held Programmer numeric
keys to change the value, then press the ENT key to record it. Pressing CLR instead of
ENT cancels the entry.

Screens 12, 27, 42, 57 - Low Limit

R0:04 HSC <S
LO LIM x: 0

These screens specify the lowest (most negative) value for the count accumulator.

Screens 13, 28, 43, 58 - ON Preset Value

R0:04 HSC <S
ON PST x: 32767

When the counter accumulator exceeds this value (depending also on the value of the
OFF preset) the associated output is turned on (depending on the state, either enabled
or disabled, of the output control flags in the %Q data word). For details, see “Output
Preset Positions” on page 6-22.

Screens 14, 29, 44, 59 - OFF Preset Value

R0:04 HSC <S
OFF PST x: 0

When the counter accumulator exceeds this value, the associated output is turned off.

Screens 15, 30, 45, 60 - Preload Value

R0:04 HSC <S
PRELD x: 0

This parameter specifies the value that will be loaded into the accumulator when the
associated PRELOAD input on the terminal strip is asserted.

4

4-19GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

The following two screens will only be seen if the Series 90 Micro PLC model is a DC
IN/DC OUT unit.

Screens 16, 31, 46, 61 - PWM Output

This option can only be enabled if the CTRx option and the PULSE OUTx option for the
same channel are disabled.

R0:04 HSC <S
PWMOUTX: DISABLE

These screens select pulse width modulation (PWM) as the counter output.

Screens 17, 32, 47 - Pulse Output

This option can only be enabled if the CTRx option and the PWM OUTx option for the
same channel are disabled.

R0:04 HSC <S
PLSOUTx: DISABLE

These screens select a pulse signal as the counter output.

Note

The PULSE OUT option will only be available on counter channels 1-3.

4

4-20 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Type B Counter Specific Screens

The following screens are specific to B1-3/A4 counters and are displayed when B1-3/A4 is
selected as the counter type in Screen 1. In this type of configuration, counter 1 is the
A-Quad-B and counter 4 is the A-type counter.

Screens 3, 18 - Counter Enable

R0:04 HSC <S
CTRx :DISABLE

This series of two screens enables or disables a specified counter. This means that each
counter enabled will use certain portions of PLC reference memory and PLC input and
output resources. Only one set of the two screens is shown here. All of the other
counters are configured in the same manner, except that the counter number is different.
Note that if CTR1 is set to ENABLE then screens 4-15 will appear (or 19-30 for counter
number 4).

Note

If the configured Series 90 Micro PLC is a DC IN/DC OUT type, this screen will
appear only for the type A counter (channel 4) if the PWM OUT4 option is
disabled. (see screen 29)

Screens 4, 19 - Count Output Enable

R0:04 HSC <S
CTRx OUT:ENABLE

This series of three screens is used to set the counter output enable,

Screens 6, 20 - Counter Strobe/Preload Selection

R0:04 HSC <S
CTRx :PRELOAD

This series of three screens is used to set the counters as PRELOAD or STROBE type
counting.

Screens 8, 21 - Strobe Edge

R0:04 HSC <S
STB EDGEx :POS

These screens configure the strobe input edge to trigger on a positive or negative-going
signal.

4

4-21GFK-0402G Chapter 4 Series 90 Micro PLC Configuration

Screens 9, 22 - Counter Edge

R0:04 HSC <S
CTRx EDGE: POS

These screens configure the counter input edge to trigger on a positive or negative-going
signal.

Screens 10, 23 - Time Base Value

R0:04 HSC <S
TIME BS x: 1000

These screens allow you to enter the time base that is used in the the Counts Per Time
Base calculation. The default is 1000 milliseconds (1 second). To to change the time base,
select the value using the numeric keys on the Hand-Held Programmer, and then press
the ENT key to record the value.

Screens 11, 24 - High Limit

R0:04 HSC <S
HI LIM x: 32767

These screens are used to specify the highest (most positive) value of the count
accumulator. The default is 32767, which is the maximum value the Type A counters can
handle. As with the time base, use the Hand-Held Programmer numeric keys to change
the value, then press the ENT key to record it. Pressing CLR instead of ENT cancels the
entry.

Screens 12, 25 - Low Limit

R0:04 HSC <S
LO LIM x: 0

These screens specify the lowest (most negative) value for the count accumulator.

Screens 13, 26 - ON Preset Value

R0:04 HSC <S
ON PST x: 32767

When the counter accumulator reaches this value (depending also on the value of the
OFF preset) the associated output is turned on (depending on the state, either enabled
or disabled, of the output control flags in the %Q data word).

4

4-22 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Screens 14, 27 - OFF Preset Value

R0:04 HSC <S
OFF PST x: 0

This value is used in conjunction with the ON preset to indicate the accumulator value
at which the associated output point will be turned off.

Screens 15, 28 - Preload Value

R0:04 HSC <S
PRELD x: 0

This parameter specifies the value that will be loaded into the accumulator when the
associated PRELOAD input on the terminal strip is asserted.

Screen 29 - PWM Output

R0:04 HSC <S
PWM OUT4: DISBL

This screen selects PWM (pulse width modulation) as the counter 4 output. Note that
this option can only be enabled if CTR is set to DISABLE and the configured Series 90
Micro PLC is a DC IN/DC OUT model.

5 section level 1 1
figure bi level 1
table_big level 1

5-1GFK-0402G

Chapter 5 I/O Configuration

The left slot in a Series 90-30 PLC rack always contains the power supply. Model 311 and
313 CPUs are embedded in the backplane in 5 and 10-slot baseplates. Model 331, 340, 341,
and 351 CPU modules are always located in slot 1 of rack 0 (for configuration purposes, the
211 CPU is in slot 1 of rack 0). Model 331, 340, 341, and 351 CPU and expansion baseplates
are available in 5 and 10-slot versions. Slots for I/O modules are referenced as slots 1 to 5 for
the Model 311/313 5-slot baseplates; slots 1 to 10 for the Model 323 10-slot baseplate; slots 2
to 10 (or 2 to 5) for the Model 331/340/341/351 CPU baseplate; and slots 1 to 10 (or 1 to 5) for
Model 331/340/341/351 expansion baseplates. An example of a 5 and a 10-slot Series 90-30
PLC Model 311 or 313 is shown in the following figure (Models 311 and 313 appear
physically the same).

A 1 2 3 4 5 6 7 8

B 1 2 3 4 5 6 7 8

a43080

Î

F
A 1 2 3 4 5 6 7 8

F
B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

+

PWR
OK
RUN
BATT

PROGRAMMABLE

B
A
T
T
E
R
Y

Î
Î
Î
Î

Î
Î
ÎÎÎ
Î
Î
ÎÎ
ÎÎ
Î

CONTROLLER

POWER SUPPLY
STANDARD

24 VDC
OUTPUT

0.8A MAX.

50/60 HZ 90VA

125VDC, 50W

100-240 VAC

INPUT

SERIES 90–30

anFGE uc

a44646

ÎÎ

F
A 1 2 3 4 5 6 7 8

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

+

PWR
OK

RUN
BATT

B
A
T
T
E
R
Y

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8 F
B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

PROGRAMMABLE
CONTROLLER

POWER SUPPLY
STANDARD

24 VDC
OUTPUT

0.8A MAX.

50/60 HZ 90VA

125VDC, 50W

100-240 VAC

INPUT

a nFGE u c
SERIES 90–30

Figure 5-1. Series 90-30, Model 311 or Model 313 Programmable Logic Controller

5

5-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

An example of a 5-slot and a 10-slot Series 90-30 PLC Model 331, 340, 341, or 351 PLC is
shown in the following figure (Models 331, 340, 341, and 351 look physically the same).

100-240 VAC

A 1 2 3 4 5 6 7 8

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8

B 1 2 3 4 5 6 7 8

a44561

ÎÎ
ÎÎ

FF
A 1 2 3 4 5 6 7 8

F
B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

+

PWR
OK
RUN
BATT

PROGRAMMABLE

B
A
T
T
E
R
Y

Î
Î

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ

CONTROLLER

POWER SUPPLY
STANDARD

24 VDC
OUTPUT

0.8A MAX.

50/60 HZ 90VA

125VDC, 50W

INPUT

anFGE uc
SERIES 90–30

CPU

The Model 351 CPU faceplate is different than the CPU faceplates shown in the above illustrations.
See GFK-0356, the Series 90-30 Programmable Controller Installation Manual for more information.

*

a

Î

F
A 1 2 3 4 5 6 7 8

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

+

PWR

OK

RUN

BATT

B
A
T
T
E
R
Y

Î
Î
Î
Î
Î
Î

Î
Î
Î
ÎÎ
Î
Î
ÎÎ
ÎÎ
Î

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8
F

B 1 2 3 4 5 6 7 8

PROGRAMMABLE
CONTROLLER

POWER SUPPLY
STANDARD

nFGE u c
SERIES 90–30

24 VDC
OUTPUT

0.8A MAX.

50/60 HZ 90VA

125VDC, 50W

100-240 VAC

INPUT

a43081

CPU

Figure 5-2. Series 90-30, Model 331, Model 340, Model 341, or
Model 351 Programmable Logic Controller

5

5-3GFK-0402G Chapter 5 I/O Configuration

The Series 90-20 PLC hardware configuration consists of an I/O and Power Supply Base
Module (baseplate) and a plug-on CPU module. The baseplate contains the discrete
input and output circuits, the power supply, and terminal strips for user field wiring. I/O
consists of a fixed configuration of 16 inputs and 12 outputs. The following figure is an
example of a Series 90-20 PLC.

a44540

Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
Î
Î

ÎÎ
ÎÎ
Î
Î

ÎÎ
ÎÎ
Î
Î

ÎÎ
ÎÎ
Î
Î

ÎÎ
ÎÎ
Î
Î

Î
Î
Î
Î

Î
Î
Î
Î
Î
Î
Î
Î

Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î

ÎÎ
ÎÎ

ÎÎ
ÎÎ
Î
Î
ÎÎ
ÎÎ
Î
Î

Î
Î
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î

Î
Î
Î
Î
ÎÎ
ÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

Î
Î

ÎÎÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎ
ÎÎÎÎÎÎ

PROGRAM
PROM

ÎÎÎBATTERY

ÎÎ
INPUTS

ÎÎSTATUS

ÎÎÎ
ÎÎÎÎÎÎ

LOW
BATTERY

ÎÎ
ÎÎÎÎ
SYSTEM

PROM

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

ÎÎ
ÎÎ

1Î
Î

2ÎÎ
ÎÎ

3ÎÎ
ÎÎ

4Î
Î

5ÎÎ
ÎÎ

6ÎÎ
ÎÎ

7Î
Î

8

ÎÎ9Î10ÎÎ11ÎÎ12Î13ÎÎ14ÎÎ15Î16

ÎÎ1Î2ÎÎ3ÎÎ4Î5ÎÎ6ÎÎ7Î8ÎÎ
ÎÎ

9Î
Î

10ÎÎ
ÎÎ

11ÎÎ
ÎÎ

12Î
Î

13ÎÎ
ÎÎ

14ÎÎ
ÎÎ

15Î
Î

16

ÎÎOKÎRNÎÎCTÎÎPL

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎPOWER

ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

PROGRAMMING AND
COMMUNICATIONS PORT

Î
ÎÎÎÎOUTPUTS

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

SERIES 90–20
PROGRAMMABLE

CONTROLLER

GE Fanuc
ÎÎ

1
ÎÎ

20

ÎÎ21 ÎÎ40

ÎÎ
10

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ

FOR PERSONAL SAFETY
DISCONNECT POWER
BEFORE REMOVING
CPU FROM I/O BASE

ÎÎÎWARNING

Figure 5-3. Series 90-20 Programmable Logic Controller

I/O configuration for each slot for the Series 90-20 PLC is:

Rack Slot Configuration

Rack 0 Slot 0 Power Supply

Rack 0 Slot 1 CPU

Rack 0 Slot 2 Inputs (%I)

Rack 0 Slot 3 Outputs (%Q)

Rack 0 Slot 4 High Speed Counter

Selecting Rack Size
The size of each rack can be edited with the HHP by selecting slot 0 for that rack. To
select slot 0, first select the CPU slot then press the cursor up key to view the rack size.
For example, assume that a 10-slot rack has been powered up by pressing the CLR and
M keys which forces the PLC to automatically generate the default configuration. The
rack size is displayed and edited as described below.

The initial mode screen is displayed first.

_ 1. PROGRAM <S
 2. DATA

5

5-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

ENT
Press the sequence to go to the config mode.4

R0:01 PLC <S
KEY CLK: OFF

Press the key to view the rack size

R0:00 PWR SUP <S
RK SIZE: 10–SLOT

ENTPress to select the other (5-slot) rack size.- +

If there are no modules configured in slots 6 through 10, then the new rack size will be
selected.

R0:00 PWR SUP <S
RK SIZE: 5–SLOT

If there are any modules configured in slots 6 through 10, the following error message is
displayed.

R0:00 CFG ERR <S
RK SIZE: 5–SLOT

Note
Configuring a rack size different from the actual rack size will produce a
Non-fatal hardware failure fault in the PLC Fault Table. This is only a
diagnostic fault and will not inhibit the PLC from going to RUN mode.
Although RUN mode is allowed, problems may occur during RUN
mode due to the rack size mismatch.

Selecting Slots in a Rack
Slots in 5-slot racks are selected for display and editing in the same manner as selecting
slots in a 10-slot rack.

First, go to the initial config mode screen.

R0:01 PLC <S
KEY CLK: OFF

5

5-5GFK-0402G Chapter 5 I/O Configuration

 Then press the key four times to view the contents of slot 5.

R0:05 EMPTY <S

If the current rack is configured to be a 5-slot rack, the next down arrow key press will
display the first slot in rack 1. If the current rack is configured to be a 10-slot rack, then
additional presses of the down arrow key will display the contents of slots 6 through 10.

When the PLC automatically generates the default configuration for the system, it will
determine the rack size which is present and contains configurable modules. This
information will be used to configure the rack size. The reference address mapping for
slots in rack 0 is the same when rack 0 is a 5-slot rack as it is when rack 0 is a 10-slot rack.

I/O Slots

Each I/O slot may contain either a discrete, analog, or intelligent module. Intelligent
modules include Genius or Enhanced Genius Communications, High Speed Counter, I/O
Link Interface, Axis Positioning Modules, I/O Processor Module, and (in the Models
331/340/341/351 only) Programmable Coprocessor, Alphanumeric Display Coprocessor,
Communications Control and State Logic Processor modules. A slot may be configured
whether or not the module is physically present; if present, the module’s characteristics may
be read in as the default configurations.

Two types of I/O modules may be configured; non-intelligent and intelligent. Each of these
types is discussed in this chapter.

Remote I/O Rack Configuration

Configuration of remote I/O racks is similar to the configuration of the rack size described
previously. A second parameter in the power supply slot - RACK TYPE - must also be
configured.

Manual Rack Configuration

If no modules have been configured in a rack, the power supply slot will show EMPTY.
If not already configured, the power supply can be added to the configuration in one of
two ways. First, any module can be added into an I/O slot of the rack. In this case, the
PLC will automatically configure the power supply into slot 0 of the rack. Alternately,
the power supply can be configured manually as shown in the following steps:

R1:00 EMPTY <SInitial display:

5

5-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

To add the power supply to the configuration:

ENTREAD

VRFY
Press the key sequence : R1:00 PWR SUP <S

RK SIZE:10–SLOT

Racks an be configured in this manner even if they are not physically present. The
default rack type is an expansion rack. If no modules are configured in a rack, then the
rack type can be deleted from the configuration by pressing the DEL and ENT keys
while viewing the power supply slot for that rack. This can be used to prevent display of
power supplies in unused racks when the configuration is to be LOADed to Logicmaster
90-30/20/Micro software.

R:00 PWR SUP <S
RACK TYPE: EXPAN

To view the configured rack, press:

The configured rack type can be changed if desired. If the actual rack type does not
match the configured rack type, then a mismatch alarm will be generated for the power
supply slot of that rack and none of the I/O modules in that rack will be scanned. Note
that the rack type of the main rack (rack 0) cannot be changed.

If you want to select another rack type (for example, a remote rack) use the following
procedure.

R1:00 PWR SUP <S
RACK TYPE: REMOT

To select another rack type press: - +

The REMOT field will be blinking when this screen is displayed indicating a new type of
rack which can be, but has not yet been configured.

R1:00 PWR SUP <S
RACK TYPE: REMOT

To configure the rack as this type,press: ENT

Notice that the REMOT field is no longer blinking, indicating that the rack is now
configured to be a remote rack. If for some reason, you want to abort the operation, you
can do so by pressing CLR instead of ENT.

Note

Configuring a rack type different from the actual rack type will produce
a System configuration mismatch fault in the PLC Fault Table. This fault is
a fatal fault and will inhibit the PLC from going to the RUN mode.

5

5-7GFK-0402G Chapter 5 I/O Configuration

Automatic Rack Configuration

When the DEFAULT I/O CPU parameter is enabled, the PLC will automatically configure
the modules that are physically present in the system (with some restrictions - refer to
Reconfiguration later in this chapter for details). When this procedure is selected, the type
of the main rack is automatically configured. For other racks, if there are modules in the
rack which will be configured, then the rack type for that rack will also be automatically
configured. If there are no modules in that rack which are automatically configured,
then the power supply slot (also - rack type) will remain EMPTY.

Reading a Saved Configuration

When a saved configuration is read from a user memory device (EEPROM, UVEPROM,
MEM card, or flash memory), the type of each rack that was configured when the data
was saved is restored. Each rack is compared to the restored configuration and, if the
rack types are different a mismatch alarm is generated for slot 0 of that rack. Modules in
that rack will not be scanned until the mismatch is corrected.

If the DEFAULT I/O CPU parameter is enabled in the configuration being read, the
configured type for each rack in which a module will be configured is set to the type of
rack actually present.

None of the modules in a rack that is configured to be a type different then the rack
actually present will be scanned. In addition, COMM_REQ function blocks whose target
module is in such a rack will have their fault output set if the COMM_REQ is executed.
The parameters of intelligent I/O modules in such a rack cannot be edited with the HHP.
Loss, mismatch, or addition of module alarms will be generated for modules in the rack
as if the rack were not mismatched. For example, if the module in slot 4 matches the
module configured for slot 4, then no alarm will be generated for that slot).

5

5-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Keypad Functionality

The following table is an overview of how the keypad on the Hand-Held Programmer is
used in I/O Configuration mode.

Table 5-1. Keypad Functionality in I/O Configuration Mode

Key Group Description

 I/AI
 Q/AQ

Specify a module type (I, AI, Q, AQ, QI,
AQI,).

G/S Used to configure a GCM.

 0 - 9
 I/AI (A)

 Q/AQ (B)

 M/T (C)

Specify a slot number, reference address,
point count or parameter value; value
 format may be either binary, signed

 decimal, or hexadecimal. (A)....(F) - these
keys are used to enter hexadecimal digits

A....F.

AND (D)

OR (E)

NOT (F)

HEX/DEC Change display format between decimal,
hexadecimal, and 8-bit binary.

CLR Abort or cancel the current operation or
user input.

 Up and Down cursor keys Select a different slot for viewing.

 Left and Right cursor keys Display a different module parameter or
field.

Indicate a new rack/slot number (GOTO).

DEL Delete configuration of currently displayed
slot.

READ/VERIFY Read configuration of module currently
installed in slot.

ENT Complete an operation or user input.

RUN Start or stop the PLC.

MODE Select a Hand-Held Programmer
operating mode.

5

5-9GFK-0402G Chapter 5 I/O Configuration

Section 1: Non-Intelligent I/O Modules

The following screen format is used to configure non-intelligent I/O modules:

Table 5-2. Configuration of a Non-Intelligent I/O Module

R
Rack

:
Slot
unused Module Type or Message unused

 PLC
State

Reference
Type

#
Points :

Reference Range
(Low Bound) -

Reference Range
(High Bound)

Rack #, Slot #: The rack # and slot # fields indicate the currently displayed rack and
slot. The range of these fields depends on the CPU model (311 or 331) and
the backplane (5 or 10 slot) or rack (main or expansion) type.

Module Type or Message: The module type or message field normally displays the
currently configured module type. If no module is configured, the module
type will be displayed as EMPTY. The possible non-intelligent module types
are:

I
Q
AI
AQ
QI

Discrete Input
Discrete Output
Analog Input
Analog Output
Discrete Input/Output

This field also functions as an error message window.

PLC State: The PLC state field indicates whether the PLC is currently stopped or is
running (executing a program). A leading < character, followed by S if the
PLC is stopped or R if it is running, indicates the state of the PLC.

Reference Type: The reference type field indicates a memory reference type. Its
possible values include I, Q, AI, AQ, or QI.

Points: The # points field indicates the number of points (discrete modules) or
channels (analog modules) supported by the configured module.

Reference Range (Low Bound and High Bound): The low and high bound reference
range fields indicate the logical reference address range assigned to the slot.
The range is based on the number of points/channels on the module to be
installed.

When configuring a slot for a non-intelligent I/O module, both the module type and
point/channel count must be provided. If either is invalid (that is, a module type of R),
the configuration request will be refused and an EMPTY message will be displayed.
IOM ERR is displayed when a wrong point module type is entered. All discrete I/O
modules require a point count that is a multiple of 8.

5

5-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Assigning Reference Addresses to I/O Modules

You can specify where the I/O module should map into the reference tables, or you can
allow the module to default to a PLC-assigned range.

When the CPU chooses a default reference, it wil always choose an address higher than
the highest reference address of this type that has ever been used, regardless of which
addresses are currently being used. If such a selection is not possible (because the
highest possible address has previously been used), then REF ERR will be displayed and
you must specify an address.

You must specify a starting reference address whereby the entire module can be
mapped into the available reference address space. If the module will not completely fit
into the reference address space, the configuration request will be refused and a DAT
ERR message will be displayed.

The starting reference must be on a byte (multiple of 8) boundary in the reference space.
If you enter a starting reference not on a byte boundary, it will be automatically adjusted
to the next lowest byte boundary and a REF ADJ warning will be issued. You can accept
the adjusted starting reference by pressing the ENT key a second time, and the
configuration of this slot will be complete. Or, you can abort the configuration attempt
by pressing the CLR key.

Input addresses (I and AI) may not be overlapped as part of a slot configuration. If you
attempt such an overlap, the configuration request will be refused and an I/O ERR
message will be displayed. You must either map this module into a different reference
range, or abort the configuration of the module.

For discrete and analog outputs (Q and AQ), the reference range default will be overlaid
in the highest range of the map if there is no room left in the address map.

Module configuration changes, whether additions or modifications, can be performed
only when the PLC is stopped. You must first place the PLC in stop mode before
attempting to configure a module. If you attempt to make a change with the PLC
running, the configuration request will be refused and a RUNNING message will be
displayed.

Locating a Slot or Rack

For information on the procedure for locating a slot or rack, refer to Chapter 3, page 3-4
Locating a Slot or Rack and Parameters.

Configuring a Discrete Module

Follow this procedure to configure a discrete module:

1. Use the Up and Down cursor keys, or the # key, to display the correct slot in the
rack. For example, to configure a 16-point input module in slot 5 of the main rack,
the initial display would appear as:

R0:05 EMPTY <S

5

5-11GFK-0402G Chapter 5 I/O Configuration

2. Specify the module type (I, AI, Q, AQ, or GCM) by using the I/AI, Q/AQ, or G/S key
and the ENT key. For this example, press the I/AI key and then the ENT key to
specify an input module in slot 5 of the main rack:

R0:05 I <S
I_

3. Use the numeral keys and the ENT key on the Hand-Held Programmer to specify
the point size. For example, press the 1, 6, and ENT key to identify the input module
as a 16-point input module:

R0:05 I <S
I16:I_

4. Next, enter the reference range. For example, to enter the reference range %I0065 -
%I0080, press the key sequence 6, 5; then, press the ENT key:

R05:05 I <S
I16:I0065–I0080

The second line of this final display screen shows that a 16-point input module in
slot 5 of the main rack is mapped into the reference range %I0065 - %I0080.

If an error is made before the complete data is entered press the CLR key until the data
entered is deleted or empty (initial state) is reached.

Reading a Configuration

If a non-intelligent module is already installed in a backplane slot, you may indicate that
the actual installed hardware be used as the basis for the configuration. Once this is
done, the only additional input needed is to map the module into the reference address
space.

In the following example, an 8-point discrete output module is already installed in slot 4
of the main rack. To map this module into the reference range %Q0025 - %Q0032,
follow this procedure:

1. The initial display appears as:

R0:04 EMPTY <S

2. Press the READ/VERIFY key:

R0:04 READ <S

5

5-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

3. Next, press the ENT key:

R0:04 Q <S
 Q08:Q_

4. Press the key sequence 2, 5.

R0:04 Q <S
 Q08:Q 25_

5. Press the ENT key to complete this operation:

R0:04 Q <S
 Q08:Q0025–Q0032

Deleting an Existing Configuration
The DEL key may be used to delete a non-intelligent module from a particular
backplane slot. Use the Up and Down cursor keys, or the # key, to display the
configuration of the slot to be deleted. Press the DEL key and then the ENT key to
delete the reference type and address from the slot and return it to its initial state
(empty).

Replacing a Configuration
To change the current configuration by replacing the reference type, you must first
delete the existing slot configuration and then enter the new configuration, as previously
described. If the module type remains the same and only the reference address changes,
you can simply enter the new data over top of the old data.

The following example shows how to remap the currently configured 8-point discrete
output module from the reference range %Q0025 - %Q0032 to the reference range
%Q0033 - %Q0040.

1. The initial display appears as:

R0:04 Q <S
 Q08:Q0025–Q0032

2. Press the key sequence 3, 3 for the new reference range:

R0:04 Q <S
 Q08:Q 33_

3. Then, press the ENT key to complete this replacement operation:

R0:04 Q <S
 Q08:Q0033–Q0040

5

5-13GFK-0402G Chapter 5 I/O Configuration

Canceling a Configuration Operation

The CLR key may be used to cancel the current configuration operation and leave the
slot in its initial state. With the current configuration displayed on the screen, press the
CLR key once to cancel the reference address.

Press the CLR key a second time to delete the reference type and return the slot to its
initial state.

This must be done before the configuration is complete, that is, the high reference has
been entered. If configuration is complete, it must be deleted and data entered from the
beginning.

Reconfiguration

You can request that the PLC reconfigure the I/O based on the default configuration
algorithm. To do this, type a special key sequence (shown below) on the Hand-Held
Programmer when the Hand-Held Programmer is in the Configuration Mode. The
Hand-Held Programmer does not have to be on any particular screen, but the PLC must
be in the STOP mode and not scanning I/O. The following example shows how to
request a new configuration.

R0:01 PLC <S
KEY CLK: OFF

Initial display:

R0:01 PLC <S
R_

Press the key:#

R0:01 PLC <S
R–9_

9Press the key sequence :- +

R0:01 PLC <S
KEY CLK: OFF

DELPress the key :

5

5-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

System Configuration - Default

When a Series 90-30 PLC is powered-up, a default I/O configuration is available with no
intervention by the user - it happens automatically. The following table shows how I/O
references are assigned to each slot in the PLC. The 5-slot Models 311 and 313 PLC will
have I/O addresses assigned to every slot. The 10-slot Model 313 PLC will have discrete
I/O addresses assigned to each slot, but slots 9 and 10 will not be assigned analog I/O
addresses. The Model 331/340/341/351 PLCs will have analog and discrete addresses
assigned to 15 of its slots (Rack 0, Slot 2 to Rack 1, Slot 6).

Table 5-3. Default I/O Configuration

Discrete Discrete Analog Analog

Rack Slot Input Output Input Output Notes

0 1 %I001-032 %Q001-032 %AI001-008 %AQ001-004 This slot not configured in
Models 331, 340, 341, or 351

0 2 %I033-064 %Q033-064 %AI009-016 %AQ005-008

0 3 %I065-096 %Q065-096 %AI017-024 %AQ009-012

0 4 %I097-128 %Q097-128 %AI025-032 %AQ013-016

0 5 %I129-160 %Q129-160 %AI033-040 %AQ017-020 Last slot in 5-slot Models
311/313/331/340/341/351

0 6 %I161-192 %Q161-192 %AI041-048 %AQ021-024

0 7 %I193-224 %Q193-224 %AI049-056 %AQ025-028

0 8 %I225-256 %Q225-256 %AI057-064 %AQ029-032 This is the last slot in a 10-slot
Model 313 to receive analog
configuration

0 9 %I257-288 %Q257-288 %AI065-072 %AQ033-036

0 10 %I289-320 %Q289-320 %AI073-0080 %AQ037-040 Last slot in 10-slot Model 313

1 1 %I321-352 %Q321-352 %AI081-088 %AQ041-044

1 2 %I353-384 %Q353-384 %AI089-096 %AQ045-048

1 3 %I385-416 %Q385-416 %AI097-104 %AQ049-052

1 4 %I417-448 %Q417-448 %AI105-112 %AQ053-056

1 5 %I449-480 %Q449-480 %AI113-120 %AQ057-060

1 6 %I481-512 %Q481-512 %AI121-128 %AQ061-064 This is last slot to receive con-
figuration in Models
331/340/341/351

1 7 - - - -

1 8 - - - -

1 9 - - - -

1 10 - - - -

For those users who want to configure a system different then the default (additional
I/O modules, different I/O references, etc.) - system configuration can be done by the
user with either the Hand-Held Programmer or with the Configuration Software
available with the Logicmaster 90-30/20/Micro Programming Software.

5

5-15GFK-0402G Chapter 5 I/O Configuration

I/O Link Interface Module Configuration

The I/O Link Interface module provides an interface between the Series 9 0-30 PLC and
the Fanuc I/O Link. This module operates as a slave device. The module can be
configured as a 32 point or 64 point Input and Output (combination) module by
positioning a jumper on the board. When set for 64 I/O points, the module will be
configured with the HHP using the same key sequences and displays that are used to
configure the 64-point generic I/O module.

For more information on assigning I/O references, see page 5-10, Assigning Reference
Addresses to I/O Modules.

Configuration Sequence

The following examples show the key sequences and resulting displays with which to
configure the I/O Link Interface module when it is set for 32 I/O points.

R0:02 EMPTY <SInitial display:

R0:02 I _ <SA I
IA

Press the key:

R0:02 QI _ <S
AQ
Q

B
Press the key:

R0:02 QI _ <S
QI _

Press the key:ENT

Note that the I/AI and Q/AQ keys could have been pressed in the reverse order with the
same result; a module type of QI.

R0:02 QI <S
QI32: I _

ENTPress the key sequence: 3 2

At this point the desired reference address can be entered. The same restrictions apply
to the I/O Link Interface modules as to any other I/O Modules. In addition, since the %I

5

5-16 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

references and %Q references must be the same the HHP will automatically program
the %Q reference when you program the %I reference. This restriction also currently
exists for the Series 90-30 High Speed Counter (HSC).

If you change either the %I or %Q reference, the HHP will again automatically program
both references to the new value and a REF ADJ message will appear on the HHP
screen. In the following example, an I/O Link Interface module is assigned the
references %I0001-%I0032 and %Q001-%Q0032.

R0:02 QI <S
Q132: I _

Initial display:

R0:02 QI <S
QI32:I0001–I0032

ENTPress the key sequence :1

R0:02 QI <S
Q132:Q0001–Q0032

Press the key:

The following method for configuring the I/O Link Interface module can only be used
when the module is physically present in the slot.

R0:02 EMPTY <S
Q132: I _

Initial display:

ENTREAD

VRFY
Press the key sequence R0:02 QI <S

Q132:I _
:

You can now enter the desired reference address.

5

5-17GFK-0402G Chapter 5 I/O Configuration

Section 2: Intelligent I/O Modules

Two additional screen formats may be encountered when attempting to configure an
intelligent I/O module.

Table 5-4. Configuration of an Intelligent I/O Module (Installed)

Rack Slot PLC
R # : # unused Module Type or Message unused State

Parameter Label & Parameter Value

Table 5-5. Configuration of an Intelligent I/O Module (Not Installed)

Rack Slot PLC
R # : # unused B Board id M Module id unused State

Parameter Label: The parameter label field contains a module-supplied text string used
as a prompt to the user for a particular parameter.

Parameter Value: The parameter value field contains a value input by the user. The
display format may be binary, signed decimal, or hexadecimal. Each
parameter value has an acceptable range. If an illegal value is entered
which does not fit in this range, the configuration request will be refused
and a DAT ERR message will be displayed.

The configuration of an intelligent I/O module requires that the module be currently
plugged into the backplane of the PLC.

Reading a Configuration

Intelligent I/O modules are capable of providing the PLC with a configuration file which
describes the parameters it requires. This description includes any associated I/O
reference range mapping, the number of parameters, a text string for each parameter to
be used as a prompt, the valid data value range for each parameter, and the default data
display format (binary, signed decimal, or hexadecimal) which the data should be
displayed/input in. In order for this information to be used, you must indicate to the
PLC that it should read the indicated slot in which the intelligent module resides. If the
indicated slot does not contain a module, the configuration request will be refused and
an EMPTY message will be displayed. You must then install the desired module in the
slot and attempt the operation again.

5

5-18 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 3: Genius Communications Module

The Series 90-30 Genius Communications module is an intelligent module that provides
automatic, global data communications between a Series 90-30 PLC and other PLCs.
Refer to GFK-0412, Series 90-30 Genius Communications Module User’s Manual for
more information on this module. Refer to the Series 90-30 Enhanced Genius
Communications Module User’s Manual (GFK-0695) for information on configuration of that
module with the Hand-Held Programmer.

Reading a Configuration
The Genius Communications module cannot actually be read to determine its current
configuration. When a command is initiated to read the slot containing a Genius
communications module, the PLC will respond with the default set of parameters for the
module. These defaults may be edited and then stored to the module the same as for
any other module.

In the following example, a Genius Communications module has been installed in slot 6
of the main rack (0), but the slot has not been configured.

1. The initial display screen shows that slot 6 in the main rack has not yet been
configured:

R0:06 EMPTY <S

2. Press the READ/VERIFY key and then the ENT key to read the configuration from
the Genius Communications module residing in this slot:

R0:06 GCM <S
BUS ADR: 16

The first parameter, the BUS ADR parameter, assigns a node address in the range 16
to 23, inclusive, to the module. Any data the module broadcasts will be identified by
its bus address.

3. For example, to assign a bus address of 17 to the module, press the key sequence 1, 7,
ENT.

R0:06 GCM <S
BUS ADR: 17

4. Press the Right cursor key to select the next parameter, which is baud rate. This
parameter indicates the baud rate of the Genius bus. Four baud rates are supported,
153.6K standard, 76.8K, 38.4K, and 153.6K extended, where 153.6K standard is the
default. You may use the -/+ key to scroll through these selections. When the
correct baud rate is displayed, press the ENT key to accept it, then press the ‡ (right
cursor) key to select the next parameter.

5

5-19GFK-0402G Chapter 5 I/O Configuration

5. The next parameter is the first of eight which defines the relative mapping of each
node (16 through 23, inclusive) on the Genius bus into the global (G) memory space.
By default, 32 bits are assigned to each node, accounting for the full 256 bits
supported by the module. The following table shows the starting address and data
size for each bus address:

Bus Address Starting G Reference Address Valid Data Size (Bits)
16 G0001 0 ... 256
17 G0033 0 ... 224
18 G0065 0 ... 192
19 G0097 0 ... 160
20 G0129 0 ... 128
21 G0161 0 ... 96
22 G0193 0 ... 64
23 G0225 0 ... 32

Press the Right cursor key to view each of the default node bus address assignments.
In this example, the Genius Communications module will occupy bus address 17.

6. Press the Right cursor key to display the screen showing 17 as the bus address.

R0:06 GCM*BA17<S
G032:G0033–G0064

The asterisk (*) character preceding the bus address indicator (BA17) denotes that
address as being assigned to the Genius Communications module for data
transmission. All other nodes are for data reception from other devices.

7. For this example, the Genius Communications module will be configured to support
32 bits on node 16, 64 bits on node 17, and 128 bits on node 20. Nodes 18, 21, 22, and
23 will not support any data as they are covered by the requirements of nodes 17 and
20. No device is installed on node 19, so it will not be used.

8. Node 16 is already configured for 32 bits by default, so no change is required.

9. Press the Right cursor key to display node 17. Node 17 needs to support 64 bits, so
this setting must be modified by pressing the key sequence 6, 4, ENT.

R0:06 GCM BA17<S
G064:G0033–G0096

10. Node 18 is skipped because its 32 bits are used as part of node 17’s configuration.
No device is installed as node 19, so no data is expected from it. Press the Right
cursor key to display node 19, then press 0, ENT.

R0:06 GCM BA19<S
G000:

5

5-20 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Note that the 32 references associated with node 19, G0097 - G0128, are now lost to the user.

11. Press the Right cursor key to display node 20. Then, press the key sequence 1 2 8 .

R0:06 GCM BA20<S
G 128_

12. Press the ENT key:

R0:06 GCM BA20<S
G128:G0129–G0256

Since all 256 bits are now accounted for, you will not be allowed to view the settings for
nodes 21, 22, or 23, or make assignments to them.

Creating a Generic Module Configuration

The G/S key may be used to configure a slot for a Genius Communications module not
currently installed in the slot.

1. With slot 6 displayed in its initial state as empty, press the G/S key:

R0:06 GCM_ <S

2. Then, press the ENT key. The same default configuration is established, as
previously described.

R0:06 GCM <S
BUS ADR: 16

5

5-21GFK-0402G Chapter 5 I/O Configuration

Section 4: High Speed Counter

The Series 90-30 High Speed Counter (HSC), catalog number IC693APU300, module
provides direct processing of rapid pulse signals up to 80 kHz for industrial control
applications. This module is able to sense inputs, process the input count information,
and control the outputs without needing to communicate with a CPU.

The High Speed Counter parameters can be configured using the HHP as described in
the Series 90-30 High Speed Counter User’s Manual, GFK-0293.

Note that with an earlier version (release 1) of the Series 90-30 PLC, only the first 15
configuration parameters for the HSC were saved in volatile RAM memory. This version
of the PLC (release 2) allows all 78 bytes to be saved. To save ALL of the High Speed
Counter parameters in the non-volatile RAM of a PLC (release 2 or later) simply edit the
parameters as described in the HSC manual. When power is cycled, ALL of the edited
parameters will be sent to the HSC by the CPU.

For details of using the Hand-Held Programmer to configure the High Speed Counter,
refer to Chapter 6, Configuration Programming in the Series 90-30 High Speed Counter
User’s Manual (GFK-0293).

5

5-22 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 5: Programmable Coprocessor Module

Editing PCM Parameters
Programmable Coprocessor Module parameters can be edited with the Hand-Held
Programmer if you have a Release 3 or later CPU and a Release 2.51 or later PCM. The
parameters are edited in exactly the same manner as for Intelligent I/O Modules
described previously in this chapter.

Freezing configuration
Processing a change to the PCM’s configuration takes 15 seconds or more. Processing
multiple parameter changes simultaneously takes the same time as processing a change
to a single parameter. Since changing several parameters at once is a common
occurrence, changes to individual parameters are remembered by the module but are
not processed and do not take effect until specifically commanded to do so.

When a PCM parameter is changed, an asterisk (*) will appear before the module name
on the top line of the HHP screen. This indicates that the module’s previous
configuration has been frozen, and that the module is not yet using the change(s) you
have just made. You can continue editing, and this and all subsequent changes will be
remembered by the module. However, if power is lost while a module’s configuration is
frozen, the changes (edits) you have made made will be lost.

When the configuration for a module is frozen in this manner, you can tell the system
that editing of all of the parameters is complete by pressing the WRITE and ENT keys.
The edited changes are then processed all at once by the PCM and the asterisk will
disappear from the display, indicating that the new values are being used by the PCM
and have been saved in the PLC’s non-volatile memory.

If you decide to abandon the changes that you have made so far, they can be discarded
by pressing the CLR and ENT keys. If you do this, the configuration parameters will
revert to the values they had before the configuration was frozen.

If you attempt to leave the current slot (either by pressing the , –, or # key) while the
module’s configuration is frozen, you will be prompted to indicate whether to use the
new combination of values, discard the new values and return to the old configuration,
or to continue editing the changes. If you attempt to change the HHP mode or go to
RUN mode, the FROZEN error message will be displayed. Once changes have been made
which are not being used by the module, you cannot leave the slot until the changes are saved or
discarded.

Example of Editing a PCM

For this example, assume that a 192K PCM (IC693PCM301) module resides in slot 2 of
the CPU rack and that the PLC was powered up with the CLR and M/T keys depressed
(that is, the PLC was cleared). In this example, we want to change the mode from CCM
only (the default) to PROGRAMMER PORT and to change the data rate for both ports to
9600 baud.

5

5-23GFK-0402G Chapter 5 I/O Configuration

R0:02 PCM301 <S
VERSION:3.01

Initial display:

To view the mode parameter:

R0:02 PCM301 <S
MODE:CCM ONLY

Press the key:

To view other possible modes,

R0:02 PCM301 <S
MODE:PROGRAM PRT

Press the key:- +

Each time that you press the -/+ key, other modes will be displayed. When the desired
mode is displayed (it will be blinking),

R0:02*PCM301 <S
MODE:PROGRAM PRTPress the ENT key:

The asterisk to the left of PCM indicates that the module’s configuration is now frozen.
That is, the new mode value of PROGRAMMER PORT is remembered and displayed,
but the module is still using the old value of CCM ONLY. If power were cycled at this
time, the mode parameter would have the old value of CCM ONLY.

If you should attempt to change HHP modes or go to RUN mode when the module’s
configuration is frozen, the FROZEN error message will be displayed. For example:

R0:08 FROZEN <S
MODE:PROGRAM PRT

Press the key:MODE

5

5-24 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

To refresh the display of the module name, press any key, for example:

R0:02*PCM301 <S
MODE:PROGRAM PRT

Press the ENT key :

If an attempt is made to view the configuration of a module in another slot at this time,
the HHP will prompt you for the changes. For example:

SAVE CHANGES? <S
<ENT>=Y <CLR>=N

Press the key:

Since the port baud rate parameters have not yet been edited at this point in our
example, we do not want to save the changes yet.

DISCARD CHGS? <S
<ENT>=Y <CLR>=N

Press the CLR key:

If the changes are discarded at this time, we will lose the change we made to the mode
parameter. That is, the configuration would revert to CCM ONLY, which is what it was
before the configuration was frozen. Since we have more parameters to edit:

R0:02*PCM301 <S
MODE:PROGRAM PRT

Press the CLR key:

Again, the asterisk indicates that the module’s configuration is still frozen and the edited
changes are not yet being used by the module. To display the baud rate parameter for
port 1,

DATA RT 1:19200
Press the key sequence :

R0:02*PCM301 <S

Notice that the asterisk remains to the left of the module’s name. This indicates that the
module’s configuration is still frozen. It is possible to edit this and other parameters at
this time, however none of the changes will be used by the module until they are saved
as indicated below.

5

5-25GFK-0402G Chapter 5 I/O Configuration

To change the port 1 baud rate to 9600:

R0:02*PCM301 <S
DATA RT 1:9600

Press the key:- +

To display the baud rate parameter for port 2:

R0:02*PCM301 <S
DATA RT 2:19200

Press the key six times:

To change the port 2 baud rate to 9600:

R0:02*PCM301 <S
DATA RT 2:9600

Press the - + key:

To save the edited changes that we have made:

SAVE CHANGES? <S
<ENT>=Y <CLR>=N

Press the WRITE key:

If the CLR key is pressed at this time, the SAVE operation will be aborted. Since we do
want to save the changes,

PROCESSING <S
CHANGES

Press the key:ENT

The word PROCESSING will continue to blink until the module has completed
processing of the new values. The HHP will then redisplay the last parameter that had
been displayed:

R0:02 PCM301 <S
DATA RT 2:9600

Notice that the asterisk to the left of PCM301 is gone, indicating that the configuration is
no longer frozen and that the module is using the new values.

To continue the example, suppose that you start changing parameters, then realize that
you have made a mistake. The changes made so far (that is, since the configuration was
frozen) can be discarded, reverting to the previous configuration.

5

5-26 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Change the baud rate parameter for port 2 to 4800:

R0:02*PCM301 <S
DATA RT 2:4800

Press the key sequence:- +
ENT

Notice that the configuration is frozen and that the actual baud rate being used by the
PCM is 9600 (the previously configured baud rate).

To discard the changes,

DISCARD CHGS? <S
<ENT>=Y <CLR>=N

Press the CLR key:

If you press CLR again at this time, the discard operation would be aborted.

R0:02 PCM301 <S
DATA RT 2:9600

Press the key:ENT

The module’s configuration is no longer frozen. The parameters have the same value
they had before we changed the baud rate to 4800. Since the specific application will
vary from module to module, the PCM User’s Manual (GFK-0255) should be consulted
for information on editing specific parameters.

5

5-27GFK-0402G Chapter 5 I/O Configuration

Section 6: Analog I/O Modules

This section describes configuration of Series 90-30 Analog I/O modules with the
Hand-Held Programmer. The analog I/O modules included in this section are:

� IC693ALG222 - Voltage Input (16 Channels)

� IC693ALG223 - Current Input (16 Channels)

� IC693ALG392 - Current/Voltage Output (8 Channels)

� IC693ALG442 - Current/Voltage Combination Module (4 Input/2 Output Channels)

For detailed information on Series 90-30 Analog I/O modules, refer to GFK-0898, the
Series 90-30 Programmable Controller I/O Module Specifications manual.

Configuring the 16-Channel Voltage Input Module

The 16-Channel Analog Voltage Input module, catalog number IC693ALG222, provides up to
16 single-ended or eight differential input channels, each capable of converting an analog
input signal to a digital value for use as required by your application. This module provides
two input ranges:

� 0 to 10 V (unipolar)

� – 10 to +10 V (bipolar)

Voltage Ranges and Input Modes

The default input mode and range is single-ended, unipolar, with the user data scaled so
that 0 volts corresponds to a count of 0 and 10 volts corresponds to a count of +32000. The
other range and mode are selected by changing the configuration parameters using the
Logicmaster 90-30 configurator software or the Hand-Held Programmer. The range can be
configured for bipolar –10 to +10 V where –10 V corresponds to a count of –32000, 0 V
corresponds to a count of 0, and +10 V corresponds to a count of +32000.

High and Low alarm limits are available on all ranges. Ranges can be configured on a per
channel basis.

Although you can change the number of actively scanned channels with the Logicmaster
90-30 configurator function, the Hand-Held Programmer does not support editing the
number of actively scanned channels. If the 16-Channel Analog Voltage Input module is
initialized by a Hand-Held Programmer, the number of actively scanned channels is 16.

If a module had been previously configured with Logicmaster 90-30 software and the
number of actively scanned channels has been changed from 16, that number will be
displayed on the bottom line of the Hand-Held Programmer display following the AI.
You can edit data with the Hand-Held Programmer only for the active channels, but can
not change the number of actively scanned channels.

5

5-28 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Module Present
If a module is physically present in a system, it can be added to the system’s
configuration by reading the module into it. For example, assume that a 16-Channel
Analog Voltage Input module is installed in slot 3 of a Model 311 PLC system. It can be
added to the configuration with the following sequence. Use the Up and Down cursor
keys or the # key to display the selected slot.

Initial Display

R0:03 EMPTY >S

To add the IC693ALG222 module to the configuration, press the READ/VERIFY key.
The following screen will be displayed:

R0:03 HI–DEN V >S
 I40:I_

Note
This field cannot be changed with the Hand-Held programmer. However,
it can be changed using the Logicmaster 90-30 software configurator func-
tion. The Hand-Held Programmer will always reflect the currently active
length of the status field.

For more information on assigning I/O references, see page 5-10, Assigning Reference
Addresses to I/O Modules.

Pressing the ENT key will allow the PLC to select the starting address of the status data.
You can select a specific starting address by pressing the key sequence for the desired
address and pressing the ENT key. For example to specify the starting address as I17,
press the key sequence 1, 7, ENT. The following screen will be displayed:

R0:03 HI–DEN V >S
 I40:I17–I56

5

5-29GFK-0402G Chapter 5 I/O Configuration

Selecting %AI Reference
After the starting %I address has been selected, pressing the ENT key again will cause
the following screen to be displayed:

R0:03 HI–DEN V >S
 AI16:AI_

This screen allows you to select the starting address for the %AI reference. Note that the
length of the status field (16) is displayed as the first two digits following the first AI on
the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

In the AI field you can select the next available address (the default) by pressing the ENT
key or by entering a specific address. To enter a specific address, press the starting
reference number keys and the ENT. key (for example 3, 5, then ENT.

R0:03 HI–DEN V >S
 AI16:AI035–AI051

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

Removing Module From Configuration
If required, this module can be removed from the current configuration. Assume that
the module is currently configured in rack 0, slot 3. It can be deleted with the following
sequence:

 Initial Display

R0:03 HI–DEN V >S
 AI16:AI_

To delete the module, press the DEL, ENT key sequence. The display will then be:

R0:03 EMPTY >S

5

5-30 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Selecting Module Mode

To display the module mode, press the → key. The display will show the current mode
of the module. The default mode is Single Ended.

R0:03 HI–DEN V >S
 HI–DEN V:SINGLE

You can toggle between the Single Ended and Differential modes by pressing the ± key.
Each mode will be selected as shown. The range selected is the one currently displayed.

R0:03 HI–DEN V >S
 HI–DEN V:DIFFERE

When the desired mode for the module is displayed on the screen you can selected it by
pressing the ENT key.

Selecting Input Channel Ranges
The range for each of the 16 channels can be displayed and selected or changed as
described below. Assume that the %AI address is as previously selected.

R0:03 HI–DEN V >S
 HI–DEN V:SINGLE

To display the channel ranges press the → key. The display will show Channel 1 (or the
currently selected channel) and the first available range.

R0:03 HI–DEN V >S
CHAN 1: 0 – 10

You can toggle through the range for each channel by pressing the ± key. Each range
will be displayed as shown. The range selected is the one currently displayed.

R0:03 HI–DEN V >S
CHAN 1:–10 – 10

5

5-31GFK-0402G Chapter 5 I/O Configuration

Alarm Limits Display

To view the alarm limits for the channel currently displayed, press the → key again (the
first time caused the channel ranges to be available for editing). The following screen is
displayed:

R0:03 HI–DEN V >S
CH 1 LO: 0

The display is the entry field for the low alarm limit for the displayed channel (in this
case, Channel 1). You can enter the desired low alarm limit value using the numeric keys
and the ± key for specifying negative values. Enter the low alarm limit using a value
within the valid limits as listed in Table 3-7. After you have entered the low alarm limit
value, press the → key again to advance to the high alarm limit display for this channel.
The following screen is displayed at this time.

R0:03 HI–DEN V >S
CH 1: HI: 32000

The display shows the entry field for the high alarm limit for the currently displayed
channel. You can enter positive or negative numbers (see table 3-7) using the ± and
numeric keys. After selecting the low and high alarm limits for channel 1 (or the
currently displayed channel), you can view the next channel by pressing the → key.

R0:03 HI–DEN V >S
CHAN 2:0 – 10

Edit the range, and low and high alarm limits as described for Channel 1. All active
channels can be changed in this manner. Return to the initial display screen by pressing
the ENT key or by pressing the ← key until the initial screen is displayed.

Saved Configurations
Configurations that contain a 16-Channel Analog Voltage Input module can be saved to
an EEPROM or MEM card and read into the CPU at a later time. MEM cards and
EEPROMs containing these configurations can be read into any Release 4 or later CPU.
Refer to Chapter 2 of this manual for detailed information on the Save and Restore
operations.

5

5-32 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Configuring the 16-Channel Current Input Module

The 16-Channel Analog Current Input module, catalog number IC693ALG223, provides up
to 16 single-ended input channels, each capable of converting an analog input signal to a
digital value for use as required by your application. This module provides three input
ranges:

� 4 to 20 mA

� 0 to 20 mA

� 4 to 20 mA Enhanced

Current Ranges

The default range is 4 to 20 mA with user data scaled so that 4 mA corresponds to a count
of 0 and 20 mA corresponds to a count of 32000. The other ranges are selected by changing
the configuration parameters using the IC641 configurator software or the Hand-Held
Programmer. The range can be configured so that the input range is 0 to 20 mA with user
data scaled so that 0 mA corresponds to a count of 0 and 20 mA corresponds to a count of
32000. Full 12-bit resolution is available over the 4 to 20 and 0 to 20 mA ranges.

A 4 to 20 mA Enhanced range can also be selected. When this range is selected, 0 mA
corresponds to a count of –8000, 4 mA corresponds to a count of 0 (zero) and 20 mA
corresponds to a count of +32000. The Enhanced range uses the same hardware as the 0 to
20 mA range but automatically provides 4 to 20 mA range scaling with the exception that
negative digital values are provided to the user for input current levels between 4 mA and 0
mA. This gives you the capability of selecting a low alarm limit that detects when the input
current falls from 4 mA to 0 mA, which provides for open-wire fault detection in 4 to 20 mA
applications. High and Low alarm limits are available on all ranges. Ranges can be
configured on a per channel basis. The module also reports module status and user-side
supply status to the CPU.

Although you can change the number of actively scanned channels with the Logicmaster
90-30 configurator function, the Hand-Held Programmer does not support editing the
number of actively scanned channels. If the 16-Channel Analog Input module is
initialized by a Hand-Held Programmer, the number of actively scanned channels is 16.

If a module had been previously configured with Logicmaster 90-30 software and the
number of actively scanned channels has been changed from 16, that number will be
displayed on the bottom line of the Hand-Held Programmer display following the AI.
You can edit data with the Hand-Held Programmer only for the active channels, but can
not change the number of actively scanned channels.

Module Present
If a module is physically present in a system, it can be added to the system’s
configuration by reading the module into it. For example, assume that a 16-Channel
Analog Current Input module is installed in slot 3 of a Model 311 PLC system. It can be
added to the configuration with the following sequence. Use the Up and Down cursor
keys or the # key to display the selected slot.

5

5-33GFK-0402G Chapter 5 I/O Configuration

Initial Display

R0:03 EMPTY >S

To add the IC693ALG223 module to the configuration, press the READ/VERIFY key.
The following screen will be displayed:

R0:03 HI–DEN C >S
 I40:I_

For more information on assigning I/O references, see page 5-10, Assigning Reference
Addresses to I/O Modules.

Selecting %I Reference

At this point the starting %I reference address for the status data returned from the
module must be entered. Notice that the length of the status field (40) is displayed as
the first two digits following the first I on the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

Pressing the ENT key will allow the PLC to select the starting address of the status data.
You can select a specific starting address by pressing the key sequence for the desired
address and pressing the ENT key. For example to specify the starting address as I17,
press the key sequence 1, 7, ENT. The following screen will be displayed:

R0:03 HI–DEN C >S
 I40:I17–I56

5

5-34 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Selecting %AI Reference
After the starting %I address has been selected, pressing the ENT key again will cause
the following screen to be displayed:

R0:03 HI–DEN C >S
 AI16:AI_

This screen allows you to select the starting address for the %AI reference. Note that the
length of the status field (16) is displayed as the first two digits following the first AI on
the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

In the AI field you can select the next available address (the default) by pressing the ENT
key or by entering a specific address. To enter a specific address, press the starting
reference number keys and the ENT. key (for example 3, 5, then ENT.

R0:03 HI–DEN C >S
 AI16:AI035–AI051

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

Removing Module From Configuration
If required, this module can be removed from the current configuration. Assume that
the module is currently configured in rack 0, slot 3. It can be deleted with the following
sequence:

R0:03 HI–DEN C >S
 AI16:AI_

To delete the module, press the DEL, ENT key sequence. The display will then be:

R0:03 EMPTY >S

5

5-35GFK-0402G Chapter 5 I/O Configuration

Selecting Input Channel Ranges

The range for each of the 16 channels can be displayed and selected or changed as
described below. Assume that the %AI address is as previously selected.

initial display

R0:03 HI–DEN C >S
 AI16:AI035–AI051

To display the channel ranges press the → key. The display will show Channel 1 (or the
currently selected channel) and the first available range.

R0:03 HI–DEN C >S
CHANNEL 1: 4–20

You can toggle through the range for each channel by pressing the ± key. Each range
will be displayed as shown. The range selected is the one currently displayed.

R0:03 HI–DEN C >S
CHANNEL 1: 0–20

R0:03 HI–DEN C >S
CHANNEL 1: 4–20+

Alarm Limits Display

To view the alarm limits for the channel currently displayed, press the → key again (the
first time caused the channel ranges to be available for editing). The following screen is
displayed:

R0:03 HI–DEN C >S
CHAN 1 LO: 00000

The display is the entry field for the low alarm limit for the displayed channel (in this
case, Channel 1). You can enter the desired low alarm limit value using the numeric keys
and the ± key for specifying negative values. Enter the low alarm limit using a value
within the valid limits as listed in Table 2. After you have entered the low alarm limit
value, press the → key again to advance to the high alarm limit display for this channel.
The following screen is displayed at this time.

5

5-36 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

R0:03 HI–DEN C >S
CHAN 1 HI: 32000

The display shows the entry field for the high alarm limit for the currently displayed
channel. You can enter positive or negative numbers (see table 2) using the ± and
numeric keys. After selecting the low and high alarm limits for channel 1 (or the
currently displayed channel), you can view the next channel by pressing the → key.

R0:03 HI–DEN C >S
CHANNEL 2: 4–20

Edit the range, and low and high alarm limits as described for Channel 1. All active
channels can be changed in this manner. Return to the initial display screen by pressing
the ENT key or by pressing the ← key until the initial screen is displayed.

Saved Configurations
Configurations that contain a 16-Channel Analog Current Input module can be saved to
an EEPROM or MEM card and read into the CPU at a later time. MEM cards and
EEPROMs containing these configurations can be read into any Release 4 or later CPU.
Refer to Chapter 2 of this manual for detailed information on the Save and Restore
operations.

5

5-37GFK-0402G Chapter 5 I/O Configuration

Configuring the 8-Channel Current/Voltage Input Module

The 8-Channel Analog Current/Voltage Output module, catalog number IC693ALG392,
provides up to eight single-ended output channels with current loop outputs or voltage
outputs. Each analog output channel is capable of providing two current output ranges or
two voltage output ranges. Each channel can be individually configured for the output
range required for your application. The module has no jumpers or switches for
configuration.

All ranges can be configured using either the Logicmaster 90-30 programming software
configurator function or the Series 90-30 Hand-Held Programmer. The default range is 0 to
+ 10 volts. Configurable current and voltage output ranges are:

� 0 to +10 volts (unipolar)

� – 10 to +10 volts (bipolar)

� 0 to 20 milliamps

� 4 to 20 milliamps

Each channel is capable of converting 15 to 16 bits (depending on the range selected) of
binary (digital) data to an analog output for use as required by your application. All eight
channels are updated every 12 ms. User data in the %AQ registers is in a 16-bit 2’s
complement format. In current modes, an open-wire fault is reported to the CPU for each
channel. The module can go to a known last state when system power is interrupted. As
long as user power is applied to the module, each output will maintain its last value, or reset
to zero, as determined by how you have configured the module.

Although you can change the number of actively scanned channels with the Logicmaster
90-30 configurator function, the Hand-Held Programmer does not support editing the
number of actively scanned channels. If the 8-Channel Analog Current/Voltage Output
module is initialized by a Hand-Held Programmer, the number of actively scanned
channels is 8.

If a module had been previously configured with Logicmaster 90-30 software and the
number of actively scanned channels has been changed from 8, that number will be
displayed on the bottom line of the Hand-Held Programmer display following the AQ
entry. You can edit data with the Hand-Held Programmer only for the active channels,
but you can not change the number of actively scanned channels.

Module Present
If a module is physically present in a system, it can be added to the system’s
configuration by reading the module into the configuration file. For example, assume
that an 8-Channel Analog Current/Voltage Output module is installed in slot 3 of a
Model 311 PLC system. It can be added to the configuration with the following
sequence. Use the ↑ and ↓ arrow cursor keys or the # key to display the selected slot.

5

5-38 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Initial Display

R0:03 EMPTY >S

To add the IC693ALG392 module to the configuration, press the READ/VERIFY, ENT
key sequence. The following screen will be displayed:

R0:03 AO 1.00 >S
 I16:I_

For more information on assigning I/O references, see page 5-10, Assigning Reference
Addresses to I/O Modules.

Selecting %I Reference

At this point the starting %I reference address for the status data returned from the
module must be entered. Notice that the length of the status field (16) is displayed as
the first two digits following the first I on the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

Pressing the ENT key will allow the PLC to select the starting address of the status data.
You can select a specific starting address by pressing the key sequence for the desired
address and pressing the ENT key. For example to specify the starting address as I17,
press the key sequence 1, 7, ENT. The following screen will be displayed:

R0:03 AO 1.00 >S
 I16:I0017–I0032

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

After selecting the starting %I address and pressing the ENT key, the following screen
appears.

R0:03 AO 1.00 >S
 AQ8:AQ_

5

5-39GFK-0402G Chapter 5 I/O Configuration

Selecting %AQ Reference

This screen allows you to select the starting address for the %AQ reference by specifying
the starting reference in the %AQ field. You can select the next available address (the
default) or enter a specific address. Pressing the ENT key will allow the PLC to select
the starting addresses.

To enter a specific address (for example %AQ35), press the starting reference number
keys and the ENT key. For example, to specify a starting address of %AQ35, press the
key sequence 3, 5, ENT.

R0:03 AO 1.00 >S
 AQ8:AQ035–AQ043

Note that the length of the status field (8) is displayed as the first two digits following
the first AQ on the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. Howev-
er, it can be changed using the Logicmaster 90-30 software configurator
function. The Hand-Held Programmer will always reflect the currently
active length of the status field.

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

Removing Module From Configuration

If required, this module can be removed from the current rack configuration. Assume
that the module is currently configured in rack 0, slot 3. It can be deleted with the
following sequence:

 Initial Display

R0:03 AO 1.00 >S
 AQ8:AQ_

To delete the module, press the DEL, ENT key sequence. The display will then be:

R0:03 EMPTY >S

If the CLR key had been pressed after the DEL key (instead of the ENT key), the delete
operation would have been aborted.

5

5-40 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Selecting Module Default Mode

The default STOP mode of the module, either HOLD or DEFLOW, can be displayed and
modified, if required, by using the following procedure.

R0:03 AO 1.00 >S
 I16:I0017–I0032

To display the module‘s default STOP mode, press → →. The display will show the
current mode of the module. The default mode is HOLD.

R0:03 AO 1.00 >S
HLS/DEF:HOLD

You can toggle between the HOLD and DEFLOW modes by pressing the ± key. The
range selected is the one currently displayed.

R0:03 AO 1.00 >S
HLS/DEF:DEF LOW

When the desired mode for the module is displayed on the screen it can be accepted by
pressing the ENT key. To return to the previous screen, press the ← key.

Selecting Output Channel Ranges
The range for each of the 8 channels can be displayed and selected or changed as
described below. There are two current and two voltage ranges that can be selected.

 Initial Display

R0:03 AO 1.00 >S
 I16:I0017–I0032

To display the channel ranges press → → →. The display will show Channel 1 (or the
currently selected channel) and the first available range.

R0:03 AO 1.00 >S
CHAN 1: 0 – 10 V

You can toggle through the range for each channel by pressing the ± key. Each range
will be displayed as shown. Each of the ranges are shown below. The range that will be
selected is the one currently displayed.

5

5-41GFK-0402G Chapter 5 I/O Configuration

R0:03 AO 1.00 >S
CHAN 1: –10 – 10

R0:03 AO 1.00 >S
CHAN 1:4 – 20 MA

R0:03 AO 1.00 >S
CHAN 1:0 – 20 MA

When the desired range for the module is displayed on the screen it can be accepted by
pressing the ENT key. To return to the previous screen, press the ← key. To view the
next channel’s range display, press the → key.

R0:03 AO 1.00 >S
CHAN 2: 0 – 10 V

Edit this channel’s range the same as you did for the first channel. The range of all active
channels can be changed in the same manner. Return to the initial display screen by
pressing the ENT key or by pressing the ← key until the initial screen is displayed..

Saved Configurations
Configurations that contain an 8-Channel Analog Current/Voltage Output module can
be saved to an EEPROM or MEM card and read from that device into the CPU at a later
time. MEM cards and EEPROMs containing these configurations can be read into any
Release 4 or later Series 90-30 CPU (cannot be read into a Series 90-20 CPU). Refer to
Chapter 2 of this manual for detailed information on the Save and Restore operations.

5

5-42 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Configuring the Current/Voltage Combination Input/Output Module

The Analog Current/Voltage Combination Input/Output module, catalog number
IC693ALG442, provides up to 4 differential input current or voltage channels and 2
single-ended output channels with either current loop outputs or voltage outputs. Each
channel can be individually configured for the current or voltage range, as applicable,
required for your application. All module configuration is done through software, except for
a jumper required for selecting the current input mode. All ranges can be configured using
either the Logicmaster 90-30 programming software configurator function or the Series
90-30 Hand-Held Programmer.

Note that in this module’s description, the module will be referred to simply as the Analog
Combo Module.

Each analog input is capable of providing five input ranges (two voltage and three current), which
are:

� 0 to +10 volts (unipolar) - default range for both input and output channels.

� –10 to +10 volts (bipolar)

� 0 to 20 mA

� 4 to 20 mA

� 4 to 20 mA Enhanced

The default input range is voltage mode 0 to +10 volts (unipolar) with user data scaled
so that 0V corresponds to a count of 0 and 10V corresponds to a count of 32000.

Each analog output is capable of providing four output ranges (two voltage and two current):

� 0 to +10 volts (unipolar) - default range for both input and output channels.

� – 10 to +10 volts (bipolar)

� 0 to 20 milliamps

� 4 to 20 milliamps

Although you can change the number of actively scanned channels with the Logicmaster
90-30 configurator function, the Hand-Held Programmer does not support editing the
number of actively scanned channels. If the 8-Channel Analog Current/Voltage Output
module is initialized by a Hand-Held Programmer, the number of actively scanned
channels is 8.

If a module had been previously configured with Logicmaster 90-30 software and the
number of actively scanned channels has been changed from 8, that number will be
displayed on the bottom line of the Hand-Held Programmer display following the AQ
entry. You can edit data with the Hand-Held Programmer only for the active channels,
but you can not change the number of actively scanned channels.

5

5-43GFK-0402G Chapter 5 I/O Configuration

Module Present
If a module is physically present in a system, it can be added to the system’s
configuration by reading the module into the configuration file. For example, assume
that an 8-Channel Analog Current/Voltage Output module is installed in slot 3 of a
Model 311 PLC system. It can be added to the configuration with the following
sequence. Use the ↑ and ↓ arrow cursor keys or the # key to display the selected slot.

Initial Display

R0:03 EMPTY <S

To add the IC693ALG442 module to the configuration, press the READ/VERIFY, ENT
key sequence. The following screen will be displayed:

R0:03 AIO 1.00<S
 AQ2:AQ_

For more information on assigning I/O references, see page 5-10, Assigning Reference
Addresses to I/O Modules.

Selecting %AQ Reference
This screen allows you to select the starting address for the %AQ reference by specifying
the starting reference in the %AQ field. You can select the next available address (the
default) or enter a specific address. Pressing the ENT key will allow the PLC to select
the starting addresses.

To enter a specific address (for example %AQ35), press the starting reference number
keys and the ENT key. For example, to specify a starting address of %AQ35, press the
key sequence 3, 5, ENT.

R0:03 AIO 1.00<S
 AQ2:AQ035–AQ036

Note that the length of the status field (2) is displayed as the first digit following the first
AQ on the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

5

5-44 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

After selecting the starting %AQ address and pressing the ENT key, the next screen that
appears is:

R0:03 AIO 1.00<S
 AI4:AI_

Selecting %AI Reference

This screen allows you to select the starting address for the %AI reference by specifying
the starting reference in the %AI field. You can select the next available address (the
default) or enter a specific address. Pressing the ENT key will allow the PLC to select
the starting addresses.

To enter a specific address (for example %AI35), press the starting reference number
keys and the ENT key. For example, to specify a starting address of %AQ35, press the
key sequence 3, 5, ENT.

R0:03 AIO 1.00<S
 AI4:AI035–AI038

Note that the length of the status field (4) is displayed as the first digit following the first
AQ on the second line of the display.

Note

This field cannot be changed with the Hand-Held programmer. However,
it can be changed using the Logicmaster 90-30 software configurator func-
tion. The Hand-Held Programmer will always reflect the currently active
length of the status field.

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

After selecting the starting %AQ address and pressing the ENT key, the next screen that
appears is:

R0:03 AIO 1.00<S
 I24:I_

5

5-45GFK-0402G Chapter 5 I/O Configuration

Selecting %I Reference

At this point the starting %I reference address for the status data returned from the
module must be entered. Notice that the length of the status field (24) is displayed as
the first two digits following the first I on the second line of the display.

Note
This field cannot be changed with the Hand-Held programmer. However, it
can be changed using the Logicmaster 90-30 software configurator function.
The Hand-Held Programmer will always reflect the currently active length of
the status field.

Pressing the ENT key will allow the PLC to select the starting address of the status data.
You can select a specific starting address by pressing the key sequence for the desired
address and pressing the ENT key. For example to specify the starting address as I17,
press the key sequence 1, 7, ENT. The following screen will be displayed:

R0:03 AIO 1.00<S
 I24:I017–I040

You can press the CLR key at any time to abort the configuration you have just selected
and return the slot to EMPTY.

After selecting the starting %I address and pressing the ENT key, the following screen
appears.

Default Configuration

In addition to configuring the Analog Combo module with Logicmaster 90-30 software
or by using the READ/VERIFY, ENT key sequence with the Hand-Held Programmer, it
can automatically be configured when the PLC creates the default configuration at
start-up. Refer to System Configuration - Default on page 5-15 for details. The module can
ONLY be automatically configured when it is physically present in a baseplate.

5

5-46 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Removing Module From Configuration
If required, this module can be removed from the current rack configuration. Assume
that the module is currently configured in rack 0, slot 3. It can be deleted with the
following sequence:

R0:03 AIO 1.00<S
 AQ2:AQ_

To delete the module, press the DEL, ENT key sequence. The display will then be:

R0:03 EMPTY <S

If the CLR key had been pressed after the DEL key (instead of the ENT key), the delete
operation would have been aborted.

Selecting Module Default Mode

The default STOP mode of the module, either HOLD or DEFLOW, can be displayed and
modified, if required, by using the following procedure.

R0:03 AIO 1.00<S
 AQ2:AQ035–AQ036

To display the module‘s default STOP mode, press the → key. The display will show
the current mode of the module. The default mode is HOLD.

R0:03 AIO 1.00<S
HLS/DEF:HOLD

You can toggle between the HOLD and DEFLOW modes by pressing the ± key. The
range selected is the one currently displayed on the screen.

R0:03 AIO 1.00<S
HLS/DEF:DEF LOW

When the desired mode for the module is displayed on the screen it can be accepted by
pressing the ENT key. To return to the previous screen, press the ← key.

5

5-47GFK-0402G Chapter 5 I/O Configuration

Selecting Output Channel Ranges
The range for each of the output and input channels can be displayed and selected or
changed as described below. There are two current and two voltage ranges that can be
selected for each channel.

 Initial Display (Output Channels)

R0:03 AIO 1.00<S
 AQ2:AQ035–AQ036

To display the output channel ranges press → →. The display will show Channel 1 (or
the currently selected channel) and the first available range.

R0:03 AIO 1.00<S
CH 1–Q:0–10

You can toggle through the range for each channel by pressing the ± key. Each range
will be displayed as shown. Each of the ranges are shown below. The range that will be
selected is the one currently displayed.

R0:03 AIO 1.00<S
CH 1–Q:–10+10

R0:03 AIO 1.00<S
CH 1–Q:4–20

R0:03 AIO 1.00<S
CH 1–Q:0–20

When the desired range for the module is displayed on the screen it can be accepted by
pressing the ENT key. To return to the previous screen, press the ← key. To view the
next channel’s range display, press the → key.

R0:03 AIO 1.00<S
CH 2–Q:0–10

Edit this channel’s range the same as you did for the first channel. The range of all active
output channels can be changed in the same manner. To view the first of the Input
channels, press the → key and the following screen is displayed.

5

5-48 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Selecting Input Channel Ranges
To display the input channel ranges press → →. The display will show Channel 1 (or the
currently selected channel) and the first available range.

R0:03 AIO 1.00<S
CH 1–I:0–10

You can toggle through the range for each input channel by pressing the ± key. Each
range will be displayed as shown. Each of the ranges are shown below. The range that
will be selected is the one currently displayed.

R0:03 AIO 1.00<S
CH 1–I:–10+10

R0:03 AIO 1.00<S
CH 1–I:4–20

R0:03 AIO 1.00<S
CH 1–I:0–20

R0:03 AIO 1.00<S
CH 1–I:4–20+

When the desired range for the module is displayed on the screen it can be accepted by
pressing the ENT key. To return to the previous screen, press the ← key.

Selecting Low and High Alarm limits
 To view the alarm limits display, press the → key and the following screen will be
displayed.

R0:03 AIO 1.00<S
CH 1–I LO: 00000

This display is the entry field for the low alarm limit for this channel. You can enter alarm
limit values using the numeric keys (0 through 9) and the ± key for negative values. To
accept the value you have entered, or you can press the ENT key or press the ← key to
return to the previous screen. To view and make entries for each of the channels, press

5

5-49GFK-0402G Chapter 5 I/O Configuration

the → key until you have viewed the alarm lo limit screen for each channel. Press the
→ key again to advance to the next alarm limit screen for this channel.

R0:03 AIO 1.oo<S
CH 1–I HI:+32000

This screen shows the entry field for the high alarm limit for this channel. You can enter
positive or negative integer values using the ± key and the numeric keys. To view the
next channel, again press the → key

R0:03 AIO 1.00<S
CH 2–I:0–10

Edit the alarm limits in the same manner as you did for the first channel. All active
channels can be changed with the above key sequences.

Return to the initial display screen by pressing the ENT key or by repeatedly pressing
the ← key until the initial screen is displayed..

Freeze Mode
If parameter data is entered to values that are illegal, such as a low limit alarm greater
than an upper limit value, or entering a negative alarm for unipolar modes, the module
will enter freese mode. This mode will not allow you to exit from the present channel
parameters (range, low alarm limit, and high alarm limit) until the illegal condition is
removed. If you should press the ← key to go below the range parameter or the → key
to try to move past the high alarm limit, the Hand-Held Programmer will stay on those
parameters.
If you press the ↑ and ↓ keys to change slots, the screen will display:

SAVE CHANGES <S
<ENT>=Y <CLR>=N

If you do not want to save the changes to the CPU, press the CLR key, the screen display
will then be

DISCARDCHANGES<S
<ENT>=Y <CLR>=N

If you do not want to discard the changes you have made, press the CLR key. This will take
you back to the last parameter that was being modified with all changes intact. You can
now fix the problem that had caused entry into the freeze mode.

If you do want to discard the changes you have made in order to get back to the point you
were at before entering the illegal value, press the ENT key. The Hand-Held

5

5-50 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programmer will then return to the last parameter screen with all of the changes reset to
what they were before the illegal data was entered.

If, however, at this point you want to save the data to the CPU from the SAVE
CHANGES screen shown below

SAVE CHANGES <S
<ENT>=Y <CLR>=N

press the ENT key. If there was an illegal value entered, the Hand-Held Programmer
will return with a CFG ERR message on the top line of the screen. If all the data is valid,
then when you press either the ↑ and ↓ keys, the HHP display will move to the next
slot.

Saved Configurations
Configurations that contain Analog Combo modules can be saved to an EEPROM or
MEM card and read from that device into the CPU at a later time. MEM cards and
EEPROMs containing these configurations can be read into any Release 4 or later Series
90-30 CPU (cannot be read into a Series 90-20 CPU). Refer to Chapter 2 of this manual
for detailed information on the Save and Restore operations.

6 section level 1 1
figure bi level 1
table_big level 1

6-1GFK-0402G

Chapter 6 Program Edit

The Series 90-30/20/Micro Hand-Held Programmer supports four major operating
modes. Of these four modes, Program mode is used to create, alter, monitor, and debug
Statement List (SL) logic programs entered by the user.

CPU 351 operations. The only operations supported by the Model 351 CPU in PROGRAM
mode are writing to and reading from the user flash memory. You must use Logicmaster
90-30/20/Micro programming software to edit the CPU 351.

Interaction (Read, Write, and Verify) with an EEPROM or Series 90 Memory Card is also
possible in program mode. For information on performing a read, write, or verify
operation, please refer to chapter 2, Operation.

Program mode allows you to:

� Program a boolean logic, function, or function block instruction.

� Specify a memory reference type.
� Specify an instruction step.
� Specify a decimal (possibly signed) or hexadecimal constant or value.
� Change the display format of a monitored value between signed decimal and

hexadecimal.
� Begin an instruction step insertion operation.
� Move between instruction steps.
� Move between function parameters.
� Search for a given target.
� Delete an instruction step.
� Replace an instruction and/or reference with the PLC running.
� Abort or cancel the current operation or user input.
� Check the program for instruction and/or reference usage errors.
� Clear program memory.
� Complete an operation or user input.
� Monitor the execution of a program.
� Write, read, or verify Memory Card or system EEPROM.
� Start or stop the PLC.
� Select an HHP operating mode.

The initial instruction step displayed in program mode is the last one viewed the
previous time program mode was selected, since the PLC was powered up. If this is the
first time program mode was entered, by default the first instruction step is the initial
instruction step displayed:

6

6-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

This chapter describes how to enter program mode and use these features listed above
to edit a user logic program.

Entering Program Mode

In order to program the attached programmable logic controller, you must first select the
program mode of operation. To select program mode, press the MODE key to display
the operating mode selections.

_ 1, PROGRAM <S
 2. DATA

Press the 1 key to select program mode or the ENT key since the desired mode
(Program) is at the top of the screen.

1_ 1. PROGRAM <S
 2. DATA

Press the ENT key to invoke the new mode. The first screen displayed in program mode is::

#0001 <S
<END OF PROGRAM>

Note

If the OEM key has been activated, you cannot enter program mode.
Please refer to chapter 7, PLC Control and Status, for additional
information on OEM protection.

Keypad Functionality

The following table gives an overview of how the keypad on the Hand-Held
Programmer is used in program mode.

Table 6-1. Keypad Functionality in Program Mode

Key Group Description

LD Program a boolean logic instruction.
OUT/OUTM

SETM/SET

RSTM/RST

AND/OR/NOT

BLK

FUNC Program a function or function block instruction.

6

6-3GFK-0402G Chapter 6 Program Edit

Table 6-1. Keypad Functionality in Program Mode - Continued

Key Group Description

I/AI Specify a memory reference type.
Q/AQ

M/T

G/S

R

Specify an instruction step.
0 - 9

-/+
Specify a decimal (possible signed) or hexadecimal value.

I/AI (A) These keys are used to specify the hexadecimal digits A
through F.

Q/AQ (B)

M/T (C)

AND (D)

OR (E)

NOT (F)

CLR Abort or cancel the current operation or user input.
Up and Down cursor keys Move between instruction steps.
Left and Right cursor keys Move between function parameters.
ENT Complete an operation or user input.
INS Begin an instruction step insertion operation.
WRITE Write MEM CARD or system EEPROM.
READ/VERIFY Read or verify MEM CARD or system EEPROM.
SRCH Search for a given target.
DEL Delete an instruction step.
RUN Start or stop the PLC.
MODE Select an HHP operating mode.

Displaying a Step or Parameter

A single instruction step or function parameter can be viewed on the LCD screen at a
time. Four cursor keys allow you to sequentially scroll through an existing statement list
program. These keys include the Up (), Down (–), Left (z), and Right (‡) cursor
keys.

The Up and Down cursor keys are used to view the next and previous steps,
respectively, of the program, from the current instruction step. Function parameters
cannot be viewed with these keys.

The Left and Right cursor keys are used to view the next and previous parameters,
respectively, of a function. They are only valid if the current instruction step is a
function. New instruction steps may not be viewed with these keys.

6

6-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following example illustrates the use of the cursor keys. A simple ladder logic
program is first shown in ladder diagram form, followed by the same program shown in
Statement List (SL) form. Examples of using the cursor keys to view elements of this
program follow.

 Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————| TMR |——()——
 | | | 0.1s|
 |%I0002 | | |
 |——]/[—— CONST-|PV |
 | +00025 | |
 | —————
 | %R0001

Representation of the Ladder Diagram
in Statement List Programming Language

#0001:
#0002:
#0003:

#0004:

LD
OR
FUNC

OUT

NOT
10
P1:
P2:
P3:

%I0001
%I0002
TMR
10
25
%R0001
%Q0001

The initial screen on the Hand-Held Programmer displays step 1:

#0001 <S
 LD I0001 O

Pressing the Down (–) cursor key displays step 2:

#0002 <S
 OR NOT I0002 O

Press the Down (–) cursor key:

#0003 <S
FUNC 10 TMR

Pressing the Down cursor key again will display the next step of the user program (in
this case, step #0004). Pressing the Up cursor key will display the previous step.

Pressing the Right (‡) cursor key when step #0003 is displayed on the screen will
display the first parameter of instruction step #0003:

#0003 <S
P01 10 TMR

6

6-5GFK-0402G Chapter 6 Program Edit

Pressing the Right (‡) cursor key again will display the next parameter of this same
step. Pressing the Left cursor key will display the previous parameter.

Inserting an Instruction Step

A new instruction step, or series of steps, may be inserted before the current instruction
step by pressing the INS key. A blank step is displayed, with an underline cursor
indicating where to insert the new instruction. New instruction steps may only be
inserted when the PLC is stopped, as indicated by <S in the upper right corner of the
display screen.

To insert a new instruction step, follow this procedure:

1. Use the cursor keys to display the step where the insertion is to occur. If this is the
start of a new program, the display screen appears as:

#0001 <S
<END OF PROGRAM>

2. Press the INS key to enable the insert mode of operation. You may now proceed to
insert the new instruction, as described in the following paragraphs.

3. After entering each instruction step or function parameter, press the ENT key to
accept it. To complete the insert of the current instruction and continue inserting
additional instructions, press the ENT key once. This allows you to remain in insert
mode.

4. To complete the insert of the current instruction and then exit insert mode, press the
ENT key a second time, with no data entered. This second press of the ENT key
allows you to exit insert mode.

5. Press the CLR key to abort insert mode.

Entering an Instruction Type
For each instruction step, you must indicate an instruction type. The instruction type
may be either:

� A basic element.

� A standard function.

� A function block.

Refer to the beginning of chapter 9 for a complete listing of the basic elements and
standard functions and function blocks of the Statement List (SL) language.

Other guidelines to follow when entering an instruction step include:

After beginning the insert or edit of an instruction, you may decide to abort the current
changes. This is done by pressing the CLR key.

6

6-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

1. When entering a reference address, you must enter the reference type first and then
the number. For example, to enter the reference address Q12, use the key sequence
shown below:

AQ
Q

B
1 2

2. When entering a basic element which uses the modifier NOT, BLK, +, or -, the base
part of the instruction type must be entered before the modifier. For example, to
enter an LD NOT element, you must first enter the base part LD followed by the
modifier NOT.

3. When entering a function or function block, the FUNC key must be pressed before
entering the function number.

4. When entering a constant parameter, the sign of the number (+ or -) may be entered
or toggled either before or after the actual value is entered.

5. When entering a constant parameter, the base of the number (decimal or
hexadecimal) may be changed either before or after entering the value by pressing
the HEX/DEC key. If the base of the number is changed after entering the value,
that value will automatically be converted to the new base when the HEX/DEC key
is pressed.

6. When a numeric field portion of an operand fills up, additionally entered digits are
shifted through the field from right to left, with the leftmost (most significant) digit
being lost.

Entering an Operand for a Basic Element
Most instructions require that an operand be provided. For basic elements, this operand
would be a reference address for a discrete memory (%I, %Q, %M, %T, %G, %S, %SA,
%SB, or %SC). Table 8-2 in chapter 8, Statement List Programming Language, lists the valid
memory types for the basic elements. The % portion of the discrete memory type is not
entered or shown in the display when using the HHP.

Entering an Operand for a Function
For functions and function blocks, the operand may consist of one or more parameters.
Each parameter may be a machine reference address or a constant (signed decimal or
hexadecimal). In this case, the instruction type must be entered first, and each operand
parameter must then be completed, or left unspecified, before the next one is
programmed. The description of each function and function block in chapter 8 includes
a listing of the valid memory types for each parameter of a particular function or
function block.

Replacing an Instruction Step
When inserting or changing an instruction step, you may wish to replace the instruction
type, operand, or both. The current instruction step may be edited or replaced by
overwriting part or all of the instruction step. Existing instruction steps are normally
only replaced when the PLC is stopped, as indicated by <S in the upper right corner of

6

6-7GFK-0402G Chapter 6 Program Edit

the display screen. However, a special form of replacement, called substitution change,
is supported when the PLC is running.

Note

In order to replace program logic, the access privilege must be level 4 if
the PLC is running, or at least level 3 if the PLC is stopped. OEM
protection cannot be asserted. If either of these conditions is not met,
replacement changes will not be allowed.

To replace or edit the current instruction step, follow this procedure:

1. Use the cursor keys to display the step where the edit is to occur.

2. You may now proceed to edit or replace the instruction, as described in the
following paragraphs. The procedure for replacing part of a basic element differs
somewhat from that of a function or function block.

3. To complete the replacement of the current instruction, press the ENT key. Replace
mode is exited with the just-replaced instruction still displayed.

4. Press the CLR key to abort replace mode.

Replacing Part of a Basic Element

The instruction type of a basic element may be changed any time prior to accepting the
instruction step into the rung. If only a modifier, such as NOT or BLK, needs to be
added, the base of the instruction type is preserved. To remove a modifier, you must
specify the base again. A different base may also be specified, but the modifier is not
preserved as part of this replacement.

The reference address operand of a basic element may also be changed any time prior to
accepting the instruction step. You may change only the address offset portion of the
reference address by pressing only numeric keys. If the memory type indicator is
specified again, the address offset portion of the operand is not preserved.

To replace both the instruction type and the reference address operand, each may be
replaced individually. Or, you may replace all the current entries for an instruction step
at one time by pressing the CLR key.

Boolean Instruction Change
To change the current instruction step from LD I0001 to LD NOT I0001.

#0003 <S
 LD I0001 O

The initial display is:

#0003 REPLACE <S
 LD NOT I0001 O

Press the key:
F
 NOT

6

6-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 <S
 LD NOT I0001 O

Press the key:ENT

Reference Address Change
To change the current instruction step from LD I0001 to LD Q0001,

#0003 <S
 LD I0001 O

The initial display is:

#0003 REPLACE <S
 LD Q 1_ O

Press the key sequnece :
AQ
QB

1

#0003 <S
 LD Q0001 O

Press the key:ENT

Boolean Instruction and Reference Address Change
To change the current instruction step from LD I0001 to LD NOT Q0001,

#0003 <S
 LD I0001 O

The initial display is:

#0003 REPLACE <S
 LD NOT Q 1 _ O

Press the key sequence

F
 NOT AQ

QB
1 :

#0003 <S
 LD NOT Q0001 O

Press the key:ENT

6

6-9GFK-0402G Chapter 6 Program Edit

Reference Address to Constant Change
To change parameter P01 of the currently displayed instruction step (FUNC 60, ADD)
from R0001 to 12,

#0007 ADD <S
P01 R0001 O

The initial display is:

#0007 REPLACE <S
P01 12_ O

Press the key sequence :1 2

#0007 ADD <S
P01 12

Press the key:ENT

Replacing Functions and Function Block Parameters
Simple replacement changes for function and function block parameters may only be
performed on the currently displayed parameter. Use the Left cursor key to display the
parameter you wish to change. Reference address changes are performed the same as
for basic elements, as described in the preceding paragraphs.

If the Left cursor key is pressed when the first parameter is displayed, the function
declaration screen is displayed. You may then replace the current function or function
block with another one. As long as the new selection is of the same substitution group,
the current contents of all parameters are retained. If the new selection belongs to a
different substitution group, the contents of the parameters will be lost. (Refer to the
information on making on-line changes in this chapter for a listing of the available
substitution groups.)

Function Parameter Change
To change parameter P01 of the current function (FUNC 55, GE) from R0001 to R0002:

#0019 <S
FUNC 55 GE

The initial display is:

6

6-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0019 GE <S
P01 R0001 O

Press the cursor key:

#0019 REPLACE <S
P01 R 2_ O

Press the key sequence and :R 2

#0019 GE <R
P01 R0002 O

Press the key:
ENT

Function Substitution Change
To change the current instruction step from FUNC 57 GT to FUNC 55 GE,

#0019 <S
FUNC 57 GT

The initial display is:

#0019 <S
FUNC 55_ GE

Press the key sequence:

FUN 5 5

#0019 <S
FUNC 55 GE

Press the key:ENT

Deleting an Instruction Step
The current instruction step may be deleted by pressing the DEL key and then the ENT
key. All instruction steps beneath the step deleted will scroll up in the program to fill the
gap left by the deletion. Note that instruction steps may only be deleted when the PLC
is stopped, as indicated by <S in the upper right corner of the display screen.

To delete the current instruction step, follow this procedure:

1. Use the cursor keys to display the step where the deletion is to occur.

2. Press the DEL key to enable the delete mode of operation.

6

6-11GFK-0402G Chapter 6 Program Edit

If you press the DEL key only once to enable the delete mode of operation and then
press the ENT key, you will delete the current instruction step and terminate the
delete mode.

3. Press DEL a second time to delete the current instruction step and remain in delete
mode after the deletion is completed.

4. Press CLR to abort delete mode.

The cursor keys are used to display the step where the deletion is to occur. In this
example the element to be deleted is in step #0002.

#0002 <S

Initial display:
 OR NOT I0002

#0002 DEL <S
 OR NOT I0002

Press the key:DEL

(DEL is blinking)

#0002 <S
FUNC TMR

Press the key:ENT

Func 10 TMR is the element that was in step #0003 and has now been moved down to
step #0002.

Deleting a Program

To clear all of the program logic instruction steps from memory without affecting any
other memory, such as data or configuration, press the following keys, in the order
shown. When in the program mode of operation the CPU must be stopped.

#0001 <S
<END OF PROGRAM>

DEL- + 9 9 9

The CLR key may be used to cancel the memory clear request before pressing the DEL
key.

Press the CLR key again to view the last screen displayed before the key sequence was
entered to clear program memory.

6

6-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Searching for an Instruction Element

The search function may be used to search for:

� An instruction.

� An instruction plus reference address.

� A reference address.

� A coil instruction with or without reference address.

� A constant.

� A particular instruction step.

To search for an element, follow this procedure:

1. The search operation is initiated by pressing the SRCH key.

2. Then, identify the element to be searched for (Q12 in example).

#0001 SRCH <S

#0001 SRCH <S
 Q12

3. Press the ENT key to begin the search operation. The search begins in the forward
direction, with the next step or parameter immediately following the current
instruction step or parameter. If the <END OF PROGRAM> step is reached before
the element is located, the search will wrap to the beginning of the program and
continue with instruction step #0001.

4. Use the SRCH and ENT key sequence to search for the next occurrence of the search
without specifying a new element to search for.

5. If the search proves unsuccessful, the current instruction step or parameter will
remain displayed on the LCD screen, along with a NOT FND message:

#0003 NOT FND <S
 LD I0001

A search for an instruction step number greater then the number of steps in the
program will be successfully completed when the <END OF PROGRAM> step is
reached.

6. Press the CLR key to abort search mode.

Assume that the following simple program already exists in the PLC, and that the first
step is currently being viewed. Both the Ladder Diagram (LD) and Statement List (SL)
forms of the program are given. Examples follow of the usage of the search operation to
view this program.

6

6-13GFK-0402G Chapter 6 Program Edit

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [————————————| TMR |———()——
 | | | 0.1s|
 |%Q0001 | | |
 |——]/[——— CONST -|PV |
 | +00025 | |
 | —————
 | %R0001

Representation of the Ladder Diagram
in Statement List Programming Language

#0001:
#0002:
#0003:

#0004:

LD
OR
FUNC

OUT

NOT
10
P1:
P2:
P3:

%I0001
%Q0001
TMR
10
25
%R0001
%Q0001

Using the MODE key and the ENTER key go to the Program mode of operation. Also
use the RUN key, the +/- key and the ENTER key to be sure the PLC is in the stop mode
of operation.

#0001 <S
 LD I0001 O

Initial display:

Search For Q1

#0001 SRCH <S
_

Press the key:SRCH

#0001 SRCH <S
 Q 1_

Press the key sequence :
AQ
QB

1

#0002 <S
 OR NOT Q0001

Press the key:

ENT

6

6-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Press the SRCH #0002 <S
_

:

#0004 <S
 OUT Q0001 O

Press the :ENT

Search for TMR Instruction

#0004 SRCH <S
_

Press the :SRCH

#0004 SRCH <S
FUNC 10_ TMR

Press the key:
ONDTR

TMR

#0003 <S
FUNC 10 TMR

Press the key:ENT

Search for Instruction OUT with Reference Q1

#0003 SRCH <S
_

Press the key:SRCH

#0003 SRCH <S
 OUT Q 1 _

Press the key sequence

OUT
OUTM AQ

QB
1 :

6

6-15GFK-0402G Chapter 6 Program Edit

#0004 <S
 OUT Q0001 O

Press the key:ENT

Search for Instruction Parameter 10

#0004 SRCH <S
_

Press the key:SRCH

#0004 SRCH <S
10_

Press the key sequence :1 0

#0003 TMR <SPress the key:ENT

P1 10

Search for Instruction Step #99

Searching for a step that is beyond the end of the program.

#0003 SRCH <S
_

Press the key:SRCH

#0003 SRCH <S
#99

Press the key sequence

:99#

#0005 <SPress the key:ENT

<END OF PROGRAM>

Note that in the above sequence the pressing of the [SRCH] key is optional. You could
have entered only the key sequence [#] [9] [9] [ENT] and achieved the same result.
Also, when searching for a timer, the TMR key toggles between TMR and ONDTR.

6

6-16 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Wildcard Coil Search

A special “wildcard” coil search operation may also be performed. The coil search
operation will locate the next coil instruction (optionally with a reference address
modifier), regardless of the coil type (OUT, OUTM, OUT NOT, OUTM NOT, SET, SETM,
RST, RSTM, OUT+, OUT-).

The wildcard search is initiated by pressing the SRCH key twice before specifying the
type of search to be performed. Then, follow the search procedure described above,
beginning with step 2.

Search for Coil Instruction and Reference Address

Using the sample program used in the previous search examples.

#0005 SRCH <S
_

Press the key:SRCH

#0005 COIL SR <S
_

Press the key:SRCH

#0005 COIL SR <S
 Q 1_

Press the key sequence :
AQ
QB

1

#0004 <S
 OUT Q0001 O

Press the key:ENT

Search for Coil Instruction

#0005 SRCH <S
_

Press the key:SRCH

#0005 COIL SR <S
_

Press the key:SRCH

6

6-17GFK-0402G Chapter 6 Program Edit

#0004 <S
 OUT Q0001 O

Press the key:ENT

Monitoring Program Execution

The value associated with an instruction parameter reference address may be monitored
while viewing the program logic. Three display formats are supported:

1. Boolean for discrete instructions.

2. Signed decimal for function parameters.

3. Hexadecimal for function parameters.

Note

A double precision signed decimal format is not supported for
parameters of Double Precision Arithmetic functions. Only the low
word of the double precision value is monitored in signed decimal
format.

Data values are monitored both when the PLC is running and when it is stopped. Data
values monitored in program mode cannot be changed; changes must be made in data
mode. Please refer to chapter 6, Reference Tables, for more information on changing data
values.

When viewing a contact which represents an internal or external device the power flow
indicator displayed is for the condition of the element displayed on the screen.

Boolean No Power Flow Display

#0005 <S
 LD I0001 O

The O in the lower right position
indicates no power flow through
Input 1.

Boolean Power Flow Display

#0017 <S
 LD NOT S0001

The block indicates power flow through
S0001. Note that this is a NOT contact,
S0001, thus there is power through this
element.

6

6-18 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Signed Decimal Word Display

#0033 ADD <R
P1 R0001 716

Hexadecimal Word Display

#0044 AND <S
P1 R0012 3E16H

Pressing the HEX/DEC key when viewing a function parameter enables you to toggle
between hexadecimal and signed decimal format. If you display a different parameter
or function after changing the display format and then redisplay the first parameter or
function, the new display format will still be used. After power down or when
transitioning from run to stop, stop to run, the display will return to default display.

Initial display:

#0059 SUB <R
P2 65

Decimal Display

Press the key:
HEX

DEC

#0059 SUB <R
P2 0041H

Hexadecimal Display

Please refer to appendix D for a listing of the default display formats for each function
parameter.

Making On-Line Changes

The PLC must be in Protection Level 4 to make On-Line changes.

A limited number of changes may be made to the user logic program when the PLC is
running. Normally, only changes which are simple byte-for-byte substitutions that do
not change the size of the program are supported.

1. To begin an on-line change, you must first be in replace mode with the PLC running.
Once the change is begun, data monitoring of that instruction step is not performed.

2. Use the cursor keys to display the step where the edit is to occur.

3. You may now proceed to edit or replace the instruction.

4. Press the ENT key to complete the on-line change.

5. Press the CLR key to abort replace mode, or if an error is made.

6

6-19GFK-0402G Chapter 6 Program Edit

Valid On-Line Changes
The following table lists programming functions by groups. The groups listed below
indicate what parts of an instruction step may be legally changed in an on-line substitution.
Note that on-line changes may occur only within the same group; changes cannot be made
across groups. Multiple changes within the same instruction step are supported.

Table 6-2. On-Line Substitution Groups
Function Group Function Group

Reference address Function 61 (DPADD)
Decimal constant Function 63 (DPSUB)
Hexadecimal constant Function 65 (DPMUL)

Function 67 (DPDIV)
LD Function 69 (DPMOD)

 LD NOT

Function 22 (BITSET)
AND Function 24 (BITCLR)
AND NOT

Function 86 (PIDISA)
OR Function 87 (PIDIND)
OR NOT

Function 60 (ADD)
OUT, OUTM Function 62 (SUB)
OUTNOT Function 64 (MUL)
OUTM NOT Function 66 (DIV)
OUT+, OUT– Function 68 (MOD)

Function 101 (SREQB)
Function 15 (UPCTR) Function 105 (SRNEB)
Function 16 (DNCTR) Function 109 (SRLTB)

Function 113 (SRLEB)
Function 23 (AND) Function 117 (SRGTB)
Function 25 (OR) Function 121 (SRGEB)

 Function 27 (XOR)

Function 102 (SREQW)
Function 30 (SHL) Function 106 (SRNEW)
Function 31 (SHR) Function 110 (SRLTW)

Function 114 (SRLEW)
Function 32 (ROL) Function 118 (SRGTW)
Function 33 (ROR) Function 122 (SRGEI)

Function 52 (EQ) Function 103 (SREQI)
Function 53 (NE) Function 107 (SRNEI)
Function 54 (LE) Function 111 (SRLTI)
Function 55 (GE) Function 115 (SRLEI)
Function 56 (LT) Function 119 (SRGTI)
Function 57 (GT) Function 123 (SRGEI)

Function 72 (DPEQ) Function 104 (SREQDI)
Function 73 (DPNE) Function 108 (SRNEDI)
Function 74 (DPLE) Function 112 (SRLTDI)
Function 75 (DPGE) Function 116 (SRLEDI)
Function 76 (DPLT) Function 120 (SRGTDI)
Function 77 (DPGT) Function 124 (SRGEDI)

6

6-20 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Program Syntax Errors
Program syntax errors are those errors which the system detects in user-provided data.
They may be caused by an illegal sequence of otherwise valid individual instructions.
Any Statement List program which passes the program check can be translated into
relay ladder diagram form.

Typical examples of these errors include:

� JUMP, MCR, or END MCR nesting errors.

� The use of more then 256 total JUMP and MCR functions.

� The placement of an ENDSW function within a JUMP or MCR range.

� Incorrect instruction sequences.

� The dual use of %Q or %M references, if the dual use checking configuration
parameter is disabled at the time the instructions are entered. (This prompts a
warning only.)

� Corrupted memory (unknown instructions).

The program check function automatically scans for these errors whenever the
operating state of the PLC is changed from stopped to running. Please refer to chapter
7, PLC Control and Status, for additional information on stopping and starting the PLC.
Chapter 9, Error Messages, provides a listing of possible non-system errors and their
corrective action.

To begin the program check function, enter the following key sequence, in order, while
in the program mode of operation and when the CPU is in STOP.

SRCH - + 1 ENT
#

The program check function always begins at the start of the program and stops with
the first error found. Chapter 9 describes the corrective action to take for each
non-system error. If no errors are found, the current instruction step remains displayed
and no message is displayed.

The program check function is automatically performed before writing a program to
EEPROM or memory card, and before a LOAD operation is performed by Logicmaster
90 software. If a non-system error is detected, the program header is marked to indicate
that error.

Aborting the Insert/Edit Operation
After beginning the insert or edit of an instruction, you may decide to abort the current
changes. This is done by pressing the CLR key.

Press the CLR key once to erase the current instruction entry and remain in insert mode.

Press the CLR key a second time to abort the insert operation. All instructions beginning
with the next instruction step are scrolled up one instruction step in the program.

If you had just begun the insert operation and no data was currently entered on the
screen, only a single press of the CLR key would be required.

6

6-21GFK-0402G Chapter 6 Program Edit

Completing the Insert/Replace Operation

When all the necessary information has been entered as part of an insert or replace
operation, the operation may be completed by pressing the ENT key. The ENT key
functions differently depending on whether the operation was to insert or replace.

To complete the insert of the current instruction and continue inserting additional
instructions, press the ENT key once. This allows you to remain in insert mode.

To complete the insert of the current instruction and then exit insert mode, press the
ENT key a second time, with no data entered. This second press of the ENT key allows
you to exit insert mode.

To complete the replacement of the current instruction, press the ENT key. Replace
mode is exited with the just-replaced instruction still displayed.

When you press the ENT key to accept an instruction, the instruction is checked in its
entirety to ensure that the instruction is correct and that all required operands have been
specified. For functions, only the current parameter is checked. Any constant, reference
address, or function number present is checked to ensure that it falls into the range of
acceptable values. An “INS ERR” message will be displayed if any errors are found.

Exiting Program Mode

To exit the program edit function, press the MODE key. The mode selection screen will
be displayed.

_ 1. PROGRAM <S
 2. DATA

MODE

7 section level 1 1
figure bi level 1
table_big level 1

7-1GFK-0402G

Chapter 7 Reference Tables

The Reference Table function (data mode) enables you to view and change the contents of data
tables within the PLC. You can also change the format of the display to better reflect the
numerical base and type of the data items.

The following tables can be accessed from within the Reference Tables function:

� Discrete inputs (%I)

� Discrete outputs (%Q)

� Internal coils (%M)

� Temporary coils (%T)

� Discrete globals (%G)

� System status references (%S, %SA, %SB, and %SC)

� Analog inputs (%AI)

� Analog outputs (%AQ)

� Register references (%R)

� System register references (%SR)

This chapter describes how to enter the data mode of operation and how to view and/or
change the contents of data tables within the programmable controller.

Entering Data Mode

In order to display the data tables, you must first select the data mode of operation.

1. To select data mode, press the MODE key to display the operating mode selections.

_ 1. PROGRAM <S
 2. DATA

2. Press the 2 key to select data mode.

2_ 1. PROGRAM <S
 2. DATA

7

7-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

3. Press the ENT key to invoke the new mode. The first screen displayed in data mode
will be:

 >I0001 0 <S
 I0002 0

Upon entering this function, the display defaults to what was displayed the last time the
reference tables function was selected, since the PLC was powered up. If this is the first
time data mode was entered, the discrete inputs (%I) table is displayed. %I0001 is the
topmost reference displayed, and binary is the display format.

Keypad Functionality

The following table gives an overview of how the keypad on the Hand-Held
Programmer is used in data mode.

Table 7-1. Keypad Functionality in Data Mode

Key Group Description

TMR/ONDTR
UPCTR/DNCTR

Change display format to timer/counter; automatically select register table if
not displayed.

I/AI Specify a memory reference type.
Q/AQ

M/T

G/S

R

HEX/DEC Change display format between binary, signed decimal, and hexadecimal.

0 - 9
–/+

Specify a binary, decimal (possible signed) or hexadecimal value.

I/AI (A) These keys are only used for specifying the hexadecimal digits A through F.
Q/AQ (B)

M/T (C)

AND (D)

OR (E)

NOT (F)

CLR Abort or cancel the current operation or user input.

Up and Down cursor keys Move view window around currently displayed table.

Right cursor key Invoke a reference table contents change.

Left cursor key Abort a reference table contents change.

Override, or cancel the override, on a discrete reference.

ENT Complete an operation or user input.

RUN Start or stop the PLC.

MODE Select an HHP operating mode.

7

7-3GFK-0402G Chapter 7 Reference Tables

Display Format

A number of display formats may be encountered, depending on which table is
displayed.

Discrete Reference Tables
The discrete reference tables %I, %Q, %M, %T, %G, %S, %SA, %SB, and %SC each
support three possible display formats, when in data mode, as shown below.

Table 7-2. Screen Format of a Discrete Reference Table in Binary Format

> Top Reference
Binary

0/1
PLC
State

> Bottom Reference
Binary

0/1

Table 7-3. Screen Format of a Discrete Reference Table in Signed Decimal Format

> Top Reference Signed Decimal –32768 ... 32767
PLC
State

Bottom Reference Signed Decimal –32768 ... 32767

Table 7-4. Screen Format of a Discrete Reference Table in Hexadecimal Format

> Top Reference Hexadecimal 0000 ... FFFF H
PLC
State

Bottom Reference Hexadecimal 0000 ... FFFF H

Top Reference: The top reference field indicates the address of the current reference
address. Only the data value of the top reference can be changed.

PLC State: The PLC state field indicates whether the PLC is currently stopped or is
running (executing a program). A leading < character, followed by an S if
the PLC is stopped or R if it is running, indicates the state of the PLC.

Bottom Reference: The bottom reference field indicates the address of the second item
in the data table which can be viewed.

Binary Field: The binary field contains the data value associated with a reference
address, with a display format of single-bit binary.

Signed Decimal: The signed decimal field contains the data value associated with a
reference address, with a display format of 16-bit signed decimal.

Hexadecimal: The hexadecimal field contains the data value associated with a reference
address, with a display of 16-bit (4-digit) hexadecimal.

7

7-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Register Reference Tables
The register reference tables %R, %AI, %AQ, and %SR each support three common
display formats when in data mode. Two of these, signed decimal format and
hexadecimal format, are exactly like those detailed above for the discrete tables. The
third, binary format, is different then the binary format for the discrete tables. For
register tables, the binary field contains a data value with a display format of 16-bit
binary. The screen format is as follows.

Table 7-5. Screen Format of a Register Table in Binary Format

> Top Reference PLC
State

Binary 16 {0/1}

In addition, the %R table supports an additional display format, timer/counter. The
timer/counter display format is useful as a timer/counter access function. This screen
format is shown below:

Table 7-6. Screen Format for Viewing a %R Table in Timer/Counter Format

Timer/Counter Top Reference
EN
0/1

Q
0/1

PLC
State

Preset Value –32768 ... 32767 Current Value –32768 ... 32767

EN: The EN field indicates the current state of the enable bit within the timer/counter
control word. It will be either a 1 (enabled) or a 0 (not enabled).

Q: The Q field indicates the current state of the output bit within the timer/counter
control word. It will be either a 1 (indicating timing or counting completion
has occurred) or a 0 (indicating timing or counting completion has not
occurred).

Preset Value: The preset value field indicates the preset value currently applied to the
timer or counter. It will be a signed decimal number.

Current Value: The current value field indicates the current, or elapsed, value currently
extracted from the timer or counter. It will be a signed decimal number.

7

7-5GFK-0402G Chapter 7 Reference Tables

Error Messages

Error messages are displayed in a window on the screen which overlays the currently
displayed information. The original information is redisplayed when the next key is
pressed.

Table 7-7. Screen Format for Displaying Messages in Binary Format

> Top Reference Message
PLC
State

Table 7-8. Screen Format for Displaying Messages in Signed Decimal and Hexadecimal
Format

> Top Reference Message
PLC
State

Bottom Reference Signed Decimal –32768 ... 32767

Table 7-9. Screen Format for Displaying Messages in Timer/Counter Format

T/C Top Reference
EN
0/1

Q
0/1

PLC
State

Preset Value –32768 ... 32767 Message

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Changing the Format of a Display

The HEX/DEC, TMR/ONDTR, and UPCTR/DNCTR keys are used to change the format
of a display. The current display format (binary, signed decimal, or hexadecimal) is
maintained when changing the display to view a different reference table. The
exception to this is when changing from the display of the %R table in timer/counter
format to another table, or when remaining in the %R table and pressing the HEX/DEC
key. In these cases, the display format is returned to what it was before the
TMR/ONDTR or UPCTR/DNCTR key was pressed.

Changing the Format of a Discrete Reference Table

The following example illustrates how to change the format of a discrete reference table:

1. After entering data mode, use the Down cursor key to display %I0022 as the top
reference displayed. The initial display format is single-bit binary.

>I0022 0 <S
 I0023 0

7

7-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

2. Press the HEX/DEC key to change the display format to signed decimal. Note that
%I0022 is no longer the top reference displayed; it has been replaced as the top
reference by %I0017 because all word-sized data (signed decimal and hexadecimal)
is word-aligned within a discrete memory table on a multiple of sixteen points
boundary.

>I0017 0 <S
 I0033 0

3. Press the HEX/DEC key again to change the display format to hexadecimal.

>I0017 0000H <S
 I0033 0000H

4. Pressing the HEX/DEC key a third time will return the display format to single-bit
binary. However, %I0017 is retained as the top reference, instead of restoring the
original top reference to %I0022.

Changing the Format of a Register Reference Table

The following example illustrates how to change the format of a register reference table.

1. From the last discrete reference table screen in the previous example, enter the key
sequence R, 1 and press the ENT key. The %R reference table is displayed in 16-bit
binary form, with %R000I the top reference displayed.

>R0001 <S
0000000000000000

2. Press the HEX/DEC key to change the format to signed decimal:

>R0001 0 <S
 R0002 0

3. Press the HEX/DEC key again to change the format to hexadecimal:

>R0001 0000H <S
 R0002 0000H

4. Pressing the HEX/DEC key a third time returns the display format to 16-bit binary.

>R0001 <S
0000000000000000

7

7-7GFK-0402G Chapter 7 Reference Tables

5. Press the TMR/ONDTR/ or UPCTR/DNCTR key to change the format to
timer/counter:

T/C R0001 0 0 <S
 0 0

6. Press the HEX/DEC key to return to 16-bit binary display again.

>R0001 <S
0000000000000000

Selecting a Different Top Reference
There are several ways to select a different top reference on the display screen.

The Up and Down cursor keys can be used to scroll the top reference within the current
table. For example, if the %I reference table is currently being displayed in single-bit
binary form and %I0022 is the top reference displayed, pressing the Down cursor key
will select %I0023 as the top reference. Moving the cursor beyond the upper or lower
boundary of a table causes the display to wrap. Both the highest and lowest references
in the table will be simultaneously displayed.

Another way of selecting a different top reference is by typing in a new reference
address, for any table, and then pressing the ENT key. If the reference address specified
exceeds the limits of the table, the last reference in that table will be selected as the top
reference.

The TMR/ONDTR and UPCTR/DNCTR keys can be used to select the %R table in
timer/counter format from any reference table.

The CLR key can be used to abort a request to change the top reference on the display
screen and remain on the current display.

Changing Table Data
The value of the top reference selected can be changed to another value. This change
can occur regardless of whether the PLC is stopped or is running, provided that you
have the proper access privilege for writing to data memory. Without the correct
privilege, your request to initiate a data table change will be denied. The PROTECT
message will be displayed when the ENT key is depressed and the data table change is
attempted. (Refer to chapter 7, PLC Control and Status for additional information on
obtaining the proper access privilege through protection mode.)

Any value entered as a change is restricted to the current data format. For example, if
the display format is signed decimal, you can enter a change only as a signed decimal
value. A hexadecimal value could not be entered. In register reference tables (%R, %AI,
and %AQ) with a current display format of 16-bit binary, a data value change must be
entered in hexadecimal.

When attempting to modify a boolean value, only the digits 0 and 1 are valid. If you try
to enter any other digit, the key will be ignored; no message will be displayed. To correct
this unsuccessful attempt, either specify a valid boolean value or press the CLR key to
abort the change.

7

7-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

When attempting to modify a signed decimal value, the valid range is between –32,768
and +32,767, inclusive. If you try to enter a value which is not in this range, the request
will be rejected. Again, to correct this unsuccessful attempt, either specify a valid value
or press the CLR key to abort the change.

In the %R reference table, with timer/counter as the display format, data value changes
are restricted to the preset register only. A change to the preset value will be retained
only if –1 has been specified for the preset parameter or –1 in the register specified for
holding the preset variable of the associated timer/counter function block. Please refer
to section 1 of chapter 8 for additional information on timers and counters.

The following example illustrates how to change the value of the top selected reference:

1. Assume that the %I reference table is currently displayed and that %I0022 is the top
reference. The display format is single-bit binary:

>I0022 0 <S
 I0023 0

2. Press the Right cursor key:

>I0022 _ <S
 I0023 0

The blinking _ (underscore) character on the display screen indicates that a new data
value can be entered for the top reference displayed.

3. Press the 1 key:

>I0022 1_ <S
 I0023 0

4. Press the ENT key:

>I0022 1 <S
 I0023 0

The data value of %I0022 has now been changed from 0 to 1.

Canceling a Data Value Change Operation
To completely abort a data change operation that has already been started, press the Left
cursor key to immediately terminate the change. The data value change operation is
immediately aborted, and the original data value is restored.

To continue with a data change operation, but erase the change value typed in so far,
press the CLR key. The data value which has already been typed in is erased, but the
data change operation is still active.

Pressing the CLR key a second time, with no data value currently typed in, will abort the
data change operation. This is the same as using the Left cursor key, described above, to
abort the data value change operation.

A I
IA

AQ
QB

S
G

T
M

T
MC

T
MC

A I
IA

A I
IA

AQ
QB

R

Press the Following Key(s)

AQ
QB

7

7-9GFK-0402G Chapter 7 Reference Tables

Overriding a Discrete Reference

In the Model 331, 340, 341, and 351 CPUs, a discrete reference within the %I, %Q, %M,
or %G table (top reference only) can be overridden, regardless of whether the PLC is
stopped or is running. (This function is not available in the Series 90-30 Model 311 or
Model 313 CPU, or the Series 90-20 Model 211 CPU). An override may be invoked only if
the current data format is binary, and if the proper privilege level is accessed. Once it is
overridden, you can still change the reference’s contents, as previously described.

With the reference you wish to override displayed as the top reference, press the # key
to invoke the override. The data value of the reference blinks to indicate that the
reference is now overridden. This override condition is maintained whether or not the
reference is displayed on the screen. To cancel the override, press the # key again with
the overridden reference displayed as the top reference.

Clearing a Data Table

The Reference Tables function enables you to clear an entire data table, initializing the
contents of that table to all zeros (0). In order to clear a table, the PLC must be in stop
and data mode.

1. Press the key which corresponds to the type of data table you wish to clear.

To Clear This Table

%I data table: press

%Q data table: press

%M data table: press

%G data table: press

%T data table: press

%AI data table: press

%AQ data table: press

%R data table: press

7

7-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

2. Press the following key sequence:

– + 9 9 9

DEL key.

3. Press the

Note

When clearing one of the data tables %I, %Q, %M, or %G, the overrides
associated with the table being cleared are automatically removed.

The following example illustrates how to clear a register (%R) table when in the Data
Mode and initialize its contents to all zeros.

>R0001 <S
0001100001100010

The initial display appears as:

>R_ <SPress the key:R

>R–999_ <S
Press the key sequence

– + 9 9 9 :

>R0001 <S
0000000000000000

Press the key:DEL

The CLR key can be used to cancel the clear request anytime before the DEL key is
pressed.

7

7-11GFK-0402G Chapter 7 Reference Tables

Clearing all Overrides
An input (%I) or output (%Q) status table, a discrete global (%G) table, or an internal coil
(%M) table can be cleared of all overrides when the PLC is stopped. The procedure is
the same as described above for clearing a data table and initializing its contents to all
zeros, except that the # key is added to the sequence of keys to press. Press the key that
corresponds to the type of data table you wish to clear, then press:

– + 9 9 9 :DEL#

Viewing Special System Registers
A special view-only reference table is supported as part of the Reference Tables function.
This table, known as the System Registers (%SR) table, contains information about
certain PLC operating parameters. Interaction with this table is identical to that of the
standard register (%R) table, except that timer/counter display format is not valid, table
value changes are not allowed, and System Register 15 (Program Memory Available) is
always displayed in decimal.

The system register definitions are listed in the following table, along with the display
format required for proper viewing.

Table 7-10. Special System Registers

Reference Display Format Description

%SR001 Hexadecimal Type of PLC.

%SR002 Hexadecimal Revision code of the PLC’s firmware.

%SR003 - %SR006 Hexadecimal Encoded form of level 2 password.

%SR007 - %SR010 Hexadecimal Encoded form of level 3 password.

%SR011 - %SR014 Hexadecimal Encoded form of level 4 password.

%SR015 Signed decimal User program memory still available.

%SR016 Signed decimal Current scan time of the PLC in milliseconds.

The following example illustrates how information about the PLC operating parameters
can be obtained from the special system registers.

1. Assume that the %I table is displayed in binary mode, as shown below.

>I0001 0 <R
 I0002 1

2. Press the key sequence G/S, G/S, R, 1 to view system register %SR001:

>SR 1_ <R
 I0002 1

7

7-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

3. Press the ENT key:

SR001 <R
0011010100000000

4. Press the key sequence HEX/DEC, HEX/DEC. From this screen, you can determine
the CPU model number and firmware revision code. In the following example
screen, the CPU is a Model 311 (0331 would be displayed for a Model 331, etc.) and
the firmware revision code is 01.10.

>SR001 0311H <R
 SR002 0110H

5. Press the Down cursor key twice to display system registers SR003 and SR004. From
this screen, you can view the first two words of the encoded password for level 2.

>SR003 EODDH <R
 SR004 3D98H

6. Pressing the Down cursor key twice again will display the last two words of the
encoded password for level 2 (SR005 and SR006). Subsequent presses will display
the first two words (SR007 and SR008) or the last two words (SR009 and SR010) of
the level 3 password, and the first two words (SR011 and SR012) or the last two
words (SR013 and SR014) of the level 4 password.

7. Press the – cursor key twice to display system registers SR015 and SR016. Press the
HEX/DEC key twice to change the display from hexadecimal to decimal. From this
screen, you can determine the amount of program memory available for additional
logic and the current scan time. In this example, the attached PLC still has 5000
bytes of (one word of user program memory is two bytes) user program memory
available for additional logic, and its current scan time is 54 milliseconds.

>SR015 5000 <R
SR016 54

Exiting Data Mode

To exit the reference table function, press the MODE key. The mode selection screen will
be displayed.

_1. PROGRAM <S
 2. DATA

MODE

8 section level 1 1
figure bi level 1
table_big level 1

8-1GFK-0402G

Chapter 8 PLC Control and Status

Protection mode enables you to control access to various functions of the programmable
controller. You can restrict others from changing (or, in some cases, even viewing)
program logic, configuration data, reference data, subroutines, and the protection levels
themselves. Four levels of user passwords are provided for PLC protection; provisions
for setting, displaying, changing, or deleting them are supported. Also, a software lock
can be applied to individual subroutines. An additional feature, OEM protection, is also
supported. OEM protection supersedes user specified protection.

This chapter describes how to change the current access level, display and modify
passwords, and use the OEM protection feature.

Protection Levels

The first of the following tables identifies the protection available at each of the four
levels of user password protection capabilities. Note that Level 1 access is always
available; it can not be password protected. Levels 2, 3, and 4 can all be password
protected to prevent unauthorized access to certain functions.

The second table shows how access to the different functions is modified when the OEM
level of protection is engaged. Note that in the OEM protection mode the end user’s
privileges of reading or writing to (viewing and changing) the logic program are taken
away.

Table 8-1. Password Protection*

Program Data Configuration Passwords

Level Run Stop Run Stop Run Stop Run Stop

4 R/W R/W R/W R/W R R/W R/W R/W

3 R R/W R/W R/W R R/W

2 R R R/W R/W R R

1 R R R R R R

* Not OEM protected (OEM key unlocked).
R = Read privilege; W = Write privilege.

8

8-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 8-2. OEM Protection

Program Data
Module

Configuration Passwords

Level Run Stop Run Stop Run Stop Run Stop

4 R/W R/W R R R/W R/W

3 R/W R/W R R

2 R/W R/W R R

1 R R R R

R = Read privilege; W = Write privilege.

The actual access availability to the different functions of the programmable controller at
a given time is governed by the last level which was viewed on the HHP screen. This
availability of access level can automatically change when disconnecting the Hand-Held
Programmer from the programmable controller, or by cycling power on the PLC. In
either case, the access level is returned to a default level. If the programmable controller
is not password protected (all levels have a NULL password), this default level will be
level 4. If the PLC is password protected (at least one level has a password other then
NULL), this default level will be one level less then the lowest numbered level which is
password protected. For example, if levels 4 and 3 are password protected, level 2 would
be the default access level. When displaying a level of access, that level can be toggled
between the users mode and the OEM mode only if the OEM password is known.
When the level of access is in the OEM protection mode the letters OEM will be
displayed on the screen. See the section on screen displays and locking & releasing
OEM protection for more information.

Entering Protection Mode

When protection mode is selected, the initial screen is dependent on the current level of
access privilege.

1. To select the protection mode, press the MODE key to display the operating mode
selections. The _ and 1 will be blinking.

_ 1. PROGRAM <S
 2. DATA

2. Press the 3 key to select protection mode.

3_ 1. PROGRAM <S
 2. DATA

3. Press the ENT key to enter the new mode.

LEVEL4 <S

8

8-3GFK-0402G Chapter 8 PLC Control and Status

If the programmable controller is not password protected, the initial screen will show
level 4, the default level, if no passwords have been set.

If the programmable controller is password protected and the access level has not been
changed since the Hand-Held Programmer was attached to the PLC or since the PLC
was last powered up, the initial screen will show the lowest level not password
protected. Remember that the level viewed on the screen last or the default level is the
one that is enabled at a given time.

If the programmable controller is password protected but the access level has been
changed, the initial screen will show the last level you specified access for.

To move to another level of access from the one presently displayed the up/down cursor
keys are used. To display a higher level of privileges the password for that level must be
known. No password is needed to move the display to a lower level of access from the
one presently displayed. (See the section on changing the users access level.)

Password Enable and Disable Configuration
One of the parameters associated with the configuration of the CPU while in the CPU
configuration mode of operation is whether to enable or disable the password protection
capabilities of the CPU. When set for disable no passwords can be set. The default state
for password protection is enable.

Note
If one or more access levels is currently password protected, you cannot
disable the password protection feature. All levels of protection (level 2,
3, 4) must have the Null password in it.

To disable passwords, follow this procedure:

1. Starting in the configuration mode on the HHP and looking at Rack 0 slot 0 (for the
Model 311 and Model 313) and (Rack 0, Slot 1 for Model 331, Model 340, Model 341,
and Model 351). Use the right arrow key to advance to the password enable and
disable screen. The initial display screen shows that passwords are enabled.

R0:01 PLC <S
PASSWRD: ENABLE

2. Press the –/+ key, the display will toggle to password disable.

R0:01 PLC <S
PASSWRD: DISABLE

3. Press the ENT key

R0:01 PLC <S
<ENT>=Y <CLR>=N

4. Since password protection cannot be easily re-enabled, this screen will prompt you
to confirm the request to disable it.

8

8-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

5. Pressing the CLR key cancels the disable request, and no change will occur. Pressing
the ENT key confirms the request, and password protection will be disabled.

6. If you attempt to re-enable password protection on this screen by pressing the –/+
key again, the request will be denied and an error message will be displayed.

R0:01 PROTECT <S
PASSWRD: DISABLE

The same error message will be displayed if you attempt to later password protect
any access level through the protect mode function.

Once the system has been configured to disable passwords, they can only be re-enabled
by clearing the PLC’s memory through a power cycle. To do this, press the CLR and M/T
keys simultaneously (see Table 2-5) while the PLC is powering-up.

Keypad Functionality

The following table gives an overview of how the keypad on the Hand-Held
Programmer is used in protection mode.

Table 8-3. Keypad Functionality in Protection Mode

Key Group Description

0 - 9 Specify a 1 to 4 digit hexadecimal password value.

I/AI (A)

Q/AQ (B) Hexadecimal letter (A to F) is in upper left corner of designated key

M/T (C)

AND (D)

OR (E)

NOT (F)

CLR Abort or cancel the current operation or user input.

Up cursor key Enter lower access level.

Down cursor key Enter higher access level.

Right cursor key Display password for lower access level.

Left cursor key Display password for higher access level; view/modify OEM key.

DEL Delete password at specified access level.

ENT Complete an operation or user input.

RUN Start or stop the PLC.

MODE Select an HHP operating mode.

8

8-5GFK-0402G Chapter 8 PLC Control and Status

Moving to another level of access

Two different screen formats are used to change the current access level, one which
shows the current access level and a second screen format for specifying a higher access
level. Both of these screen formats are shown below.

Table 8-4. Current Access Level

L E V E L
Level

unused
OEM

Protection unused
PLC
State

unused

Table 8-5. Higher Access Level

L E V E L
Level

unused
OEM

Protection unused
PLC
State

P S W unused
Level

unused : Password unused

Level #: The level # field indicates a password level. Its value can range between 1 and
4, inclusive.

OEM Protection: The OEM protection field indicates whether or not OEM protection
has been activated. This field will be blank if OEM protection has not been
activated; it will contain the indicator OEM if it has been activated.

PLC State: The PLC state field indicates whether the PLC is currently stopped or is
running (executing a program). A leading < character, followed by S if the
PLC is stopped or R if it is running, indicates the state of the PLC.

Password: The password field is where you input a 1 to 4 hexadecimal digit password
corresponding to a given access level. Four hexadecimal digits provide
65,536 unique passwords. The same password can be used for more then
one level; passwords do not have to be unique. The specification of leading
zeros is significant; 12, 012, and 0012 are different passwords.

The Up and Down cursor keys can be used to display a lower or higher access level,
respectively. For example, if the current access level is 4 and you wish to change this to
2, you would press the Up cursor key twice and then press the ENT key to accept the
change. However, since this is a change to a lower level, you do not have to specify the
password for level 2 in order to make the desired change.

LEVEL4 <RInitial display:

LEVEL4 <R
PSW 3 :_

Press the key:

8

8-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

LEVEL4 <R
PSW 2 :_

Press the key:

LEVEL4 <R
PSW 2 :_

Press the key:ENT

To change to a higher level, you must specify the password for the higher level in order
to make the desired change. For example, if the current access level is 1 and you wish to
change this to 3, you would press the Down cursor key twice and and then enter the
password. If the password for level 3 is A5A5, you would press the key sequence I/AI, 5,
I/AI, 5 and then press the ENT key. If the wrong password is entered, or no password is
entered at all, the access change request will be refused and a DATA ER message will be
displayed. If the correct password is known, specify it correctly and attempt the level
change again. Otherwise, press the CLR key to abort the change.

LEVEL1 <R
Initial display:

LEVEL1 <R
PSW 2 :_

Press the key:

LEVEL4 <R
PSW 2 :_

Press the key:

LEVEL1 <R
PSW 3 :A5A5_

Press the key sequence

:
A I

IA
5 5

A I

IA

LEVEL3 <RPress the key:ENT

It is possible that the higher access level which you wish to invoke is not password
protected. The PLC can not be password protected at all. In this case, the reserved

8

8-7GFK-0402G Chapter 8 PLC Control and Status

password which indicates a NULL password, should be specified. The NULL password
is specified when ENT is pressed while the password field is empty.

The CLR key can be used to cancel the access level change prior to activating it. If a
password is currently specified, pressing the CLR key will only erase the current user
input. Pressing the CLR key a second time cancels the operation. If no user input has
been specified when the CLR key is pressed the first time, only a single press of the CLR
key is required to cancel the operation.

Displaying and Modifying Passwords
Passwords can be displayed and modified only if level 4 access has been gained by
displaying level 4 on the screen and is being displayed on the screen. If you attempt to
view passwords without level 4 access, your request will be refused and a PROTECT
message will be displayed.

When the Level 4 access is displayed on the screen the right cursor key is used to display
the password for level 4. Repeated presses of the right cursor key will display the
password for levels 3 and 2. When reviewing levels 2 or 3, while in Level 4 mode of
protection, and it is desired to display a password belonging to a higher Level, use the
left cursor key.

When displaying a password, the actual password will be shown if one exists. If a
password does exist it can be changed or deleted. If the indicated level is not password
protected, the designation NULL will be shown instead. In such a case, a password can
then be set, if desired. Whenever you attempt to assign a password to a particular level,
the password must be specified first. Otherwise, the assignment is refused and a DAT
ERR� message will be displayed. You must specify the desired password before pressing
the ENT key to activate.

The following screen format is used to view and modify passwords:

Table 8-6. Specify/Change Password for Specified Level

L E V E L
Level

unused
OEM

Protection unused
PLC
State

S E T unused
Level

unused : Password unused

In the following example, level 4 is password protected with password 1234, level 3 is
not password protected, and level 2 is password protected with password 0AB1. Follow
this procedure to assign the password 0AB1 to level 3 instead of level 2, and remove the
password from level 2.

1. The initial display screen shows level 4 as the current access level:

LEVEL4 <S

2. Press the Right cursor key three times to display the level 2 password:

LEVEL4 <S
SET 2 :0AB1

8

8-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

3. Press the DEL key and then the ENT key to delete the level 2 password:

LEVEL4 <S
SET 2 :NULL

At this point, the password assigned to level 2 has been successfully deleted. The
deletion of a password affects only that password; no other level’s password is
affected. A password for level 3 can now be assigned.

4. Press the Left cursor key to display the level 3 password:

LEVEL4 <S
SET 3 :NULL

5. Press the key sequence I/AI, Q/AQ, 1; then, press the ENT key:

LEVEL4 <S
SET 3 :0AB1_

Alternatively, you could have assigned password 0AB1 to level 3 first and then
deleted the password from level 2. Passwords for different levels do not have to be
unique.

Canceling a Password Change

The CLR key may be used to cancel a password change prior to activating it (pressing
the ENT key). If a password is currently specified, pressing the CLR key will only erase
the current user input. Pressing the CLR key from any screen while viewing passwords
returns the user to the display of the current access level.

Pressing the CLR key a second time cancels the operation. If no user input has been
specified when the CLR key is pressed the first time, only a single press of the CLR key is
required to cancel the operation.

Locking and Releasing OEM Protection

OEM protection is a level of security intended for OEM use, as opposed to the normal
four levels of passwords which are intended for end-user use. With OEM protection
locked (enabled), the privilege versus protection level table is modified as shown below
(refer to Table 7-2). Note that both read and write privileges are lost to the end-user.

The following screen format is used to lock and release OEM protection:

Table 8-7. Lock and Release OEM Protection

L E V E L
Level

unused
OEM

Protection unused
PLC
State

O E M K E Y : OEM Key unused

8

8-9GFK-0402G Chapter 8 PLC Control and Status

The OEM key field contains a 1 to 4 hexadecimal digit password which controls OEM
protection. Four hexadecimal digits provide 65,536 unique passwords. The same
password can be used for more then one level. OEM passwords can also be used as user
passwords; they do not have to be unique. The specification of leading zeros is optional;
12, 012, and 0012 all refer to different passwords. Zero counts as part of the password.

The Left cursor key enables you to lock or release OEM protection from any password
access level. When the Left cursor key is pressed, the system prompts you for the OEM
key. If correctly entered, the current status of OEM protection (locked or released) will
be toggled. If currently locked, it will be released; if currently released, it will be locked.
If the wrong OEM key is entered, or no key is entered at all, the lock or release request
will be refused and a PSW ERR message will be displayed. If the correct key is known,
enter it correctly and attempt the lock or release request again. Otherwise, press the
CLR key to abort the request. Assume that the OEM key is 1234 and OEM level is locked
and it is to be unlocked in Mode 3 (protect) mode, and access Level 3.

LEVEL3 OEM <S
Initial display:

LEVEL3 OEM <S
OEM KEY:_

Press the key:

LEVEL3 OEM <S
OEM KEY:1234_

Press the key sequence

:2 41 3

LEVEL3 <SPress the key:ENT

Note that OEM protection, which had been locked, is now released. IF it is desired to
lock OEM protection again, the exact same sequence shown above would be followed.

Canceling an OEM Protection Operation
The CLR key can be used to cancel the OEM protection lock/release operation prior to
activating it. If an OEM key is currently specified, pressing the CLR key will only erase
the current user input. Pressing the CLR key a second time cancels the operation. If no
user input has been specified when the CLR key is pressed the first time, only a single
press of CLR key is required to cancel the operation.

Displaying and Modifying the OEM Key
The OEM key can be displayed and modified only if level 4 access has been gained and
OEM protection is currently released. If you attempt to view an OEM key with OEM

8

8-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

protection locked, the request will be refused and a PROTECT message will be
displayed. The same error message will be displayed if you attempt to view an OEM
key from any access level other then 4.

When displaying the OEM key, the actual password will be shown if one exists. If a
password does exist, it can be changed or deleted. If the OEM key does not exist, the
designation NULL will be shown instead. In such a case, a password can be set, if
desired. Whenever you attempt to assign an OEM key, the OEM key must be specified
first. Otherwise, the assignment is refused and a DATA ER message will be displayed.

It is up to the OEM to lock OEM protection after programming a new key to protect
against the key being viewed or modified. Before you lock OEM protection, however,
the OEM key must first be set. (The NULL key 0000 is not valid as a key specification.)
Otherwise, the lock request is refused.

The following screen format is used to display and modify the OEM key:

Table 8-8. Specify/Change OEM Key

L E V E L
Level

unused
OEM

Protection unused
PLC
State

S E T K E Y : OEM Key unused

In the following example, the current access level is level 4 and an OEM key has not yet
been set. Follow this procedure to establish FEDC as the OEM key and then lock OEM
protection.

1. The initial display screen shows level 4 as the current access level:

LEVEL4 <S

2. Press the Left cursor key; the system will prompt you for the OEM key:

LEVEL4 <S
OEM KEY:_

Press the key:

8

8-11GFK-0402G Chapter 8 PLC Control and Status

3. Since OEM protection is not currently locked, and level 4 access has been achieved,
you can view the current OEM key. Press the Left cursor key again.

LEVEL4 <S
SET KEY:NULL

Press the key:

Since no OEM key has ever been specified, NULL is displayed to signify the absence
of a key.

4. Press the following key sequence to enter the OEM key; then, press the ENT key:

LEVEL4 <S
SET KEY:FEDC

F
 NOT

E
OR

D
AND

C
M :
T

At this point, the OEM key has been set, but OEM protection has not been locked.

5. To initiate the lock operation, press the Right cursor key to display the previous
screen:

LEVEL4 <S
OEM KEY:_

Press the key:

6. From this screen, you can lock OEM protection by entering the key sequence of the
OEM key and pressing the ENT key.

Removing OEM Protection
The OEM key can be removed when OEM protection is no longer required. In order to
delete an existing OEM key, it must first be displayed, as described in the previous
example. Once displayed, press the DEL and ENT keys to remove the key.

Canceling an OEM Key Change
The CLR key can be used to cancel an OEM key change prior to activating it. If an OEM
key is currently specified, pressing the CLR key will only erase the current user input.
Pressing the CLR key a second time cancels the operation. If no user input has been
specified when the CLR key is pressed the first time, only a single press of CLR key is
required to cancel the operation.

Reading EEPROM, Memory Card, or Flash Memory With an OEM Key
When an EEPROM, Memory Card, or flash memory is read into the PLC and the saved
configuration contains an OEM key, the OEM protection will be AUTOMATICALLY
locked after a successful read.

8

8-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Subroutine Protection Levels

Series 90-30 Release 3.0, provides an additional level of program logic protection to
control view and edit access to individual subroutines (subroutines are not supported in
the Series 90-20 PLC). Two types of subroutine locks are available: VIEW, in which
zooms are disabled for a locked subroutine, and EDIT, in which the information in a
locked subroutine can not be altered. The Hand-Held Programmer allows you to display
the subroutine protection status.

Note

Setting and modifying of subroutine lock passwords, and locking and
releasing of subroutines can only be done with Logicmaster
90-30/20/Micro software.

User specified protection of the PLC program applies to all subroutines within the
program. Subroutine Protection, however, provides you with a means to limit access at
the subroutine level without locking the entire program. For example, if the PLC is not
password protected and OEM protection is disabled, any subroutine in the program
could be view-locked or edit-locked through Logicmaster 90-30/20/Micro without
affecting view or edit access to the remainder of the program logic.

Display of Subroutine Protection Status

The protection status of each subroutine is displayed in the Subroutine Declaration List
which exists in the Subroutine Declaration submode. View-locked and edit-locked
subroutines appear in the list with a lower case v or e, respectively, following the
subroutine number (for example, #0002vSUBR 02, #0003eSUBR 03). Subroutines for
which protection has been released appear in the list with a blank following the
subroutine number.

Attempt to Zoom Into a View-Locked Subroutine

There are two ways that you can to zoom into a subroutine. The first is from the
Subroutine Declaration List and the second is from a Subroutine Call Function. If the
desired subroutine is view-locked, the zoom will not be permitted and an error message
will be displayed.

Zoom From the Subroutine Declaration List

The following example shows how to enter the Subroutine Declaration mode.

_ 1. PROGRAM <S
 2. DATA

Press the key:MODE

8

8-13GFK-0402G Chapter 8 PLC Control and Status

_ 1. MAIN <S
 2. SUBR

Press the key:ENT

Next, cursor down to SUBR.

_ 2. SUBR <SPress the key:

Then, to enter the Subroutine Declaration mode:

#0001 NO SUBR <S
#0002 NO SUBR

Press the key:ENT

You are now in Subroutine Declaration mode where declarations of up to 64 subroutines
can be viewed. To locate the desired subroutine declaration, use the ↑ or ↓ key, or the #
key with the desired subroutine number. At this point, use the # and ‡ keys to zoom into the
desired subroutine. If the subroutine is view-locked, an error message is displayed.

Note
In this case, you must first unlock the subroutine or change its locked
status to edit-locked using Logicmaster 90-30/20/Micro software before
you can zoom into the program statement list.

The following screen will appear when you attempt to zoom into view-locked
subroutine 01.

#0001vPROTECT <S
#0002 SUBR02

Press the key sequence :#

Zoom From a Subroutine Call Function

If you cursor to the Subroutine Call Function and attempt to zoom into the subroutine

logic by entering the # keys and the subroutine is view-locked, the

PROTECT error message is displayed.

Note
You must use Logicmaster 90-30/20/Micro software to unlock the
subroutine or change its locked status to edit-locked in order to zoom in.

8

8-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Attempt to Make Changes to Edit-Locked Subroutine

If you zoom into an edit-locked subroutine from either the Subroutine Declaration List
or a Subroutine Call Function, any attempt to change the statement list instructions will
cause the PROTECT error message to be displayed.

Note

The subroutine must be unlocked using Logicmaster 90-30/20/Micro
software before any editing within that subroutine will be permitted.

Deletion of a Locked Subroutine

There are no restrictions against the deletion of a locked subroutine or a program
containing a locked subroutine. As described in Entering Subroutines in Chapter 9, a
subroutine can only be deleted if the program contains no CALLs to that subroutine.

Program Check

If an error is detected by program check within a view-locked subroutine, only the entry
for that subroutine in the Subroutine Declaration List is displayed. No zoom into the
subroutine’s statement list will occur.

9 section level 1 1
figure bi level 1
table_big level 1

9-1GFK-0402G

Chapter 9 Statement List Programming Language

This chapter does not apply to the Model 351 CPU. Logicmaster 90-30/20/Micro
programming software must be used to program the Model 351 CPU.

The Statement List programming language allows you to implement any well-formed
Boolean equation as a sequence of contacts and coils. This chapter defines the basic
elements, functions, and function blocks which you can use to program an attached
Series 90-30 PLC, Series 90-20 PLC, or Series 90 Micro PLC.

Relay Ladder Logic
The basic programming structure of a programmable controller is relay logic. The ladder
logic is made up of a group of logic elements called rungs.

The relay ladder rungs, as drawn on paper, have two sides; with contacts, function
blocks (function blocks explained later in this chapter), and coils connecting the two
sides together. The left side is called the power bus simulating the L1 side of the power
line. This is the starting side and usually has input coils and coil contacts attached to it.
The right side is the side of this logic group and usually has outputs and coils attached to
it. Contacts are basic symbols used to represent conditions to be evaluated in order to
determine the control of an output coil. Each contact and coil has a label attached to it
which identifies the external or internal device that it represents. This label is also the
programmable controllers internal storage location for storing the conditions of this
contact or coil.

A contact may represent the status of an external push button attached to an input to the
PLC. If this was the first input to the PLC, the contact would normally be labeled I0001.
I for input and 0001 for the number of the input it represents. A contact can also
represent the status of an internal or external output coil. In this case it would have the
same label as the coil. Coils are usually labeled with a Q for an external (real world) coil
or an M for an internal memory coil. This Q or M is followed by a number which is the
number of the coil being represented. The I, Q, and M also represent the internal
location where the status of the contact or coil is stored in the memory of the
programmable controller.

 Horizontal
 Power | I0001 I0002 Connecting Line Q0002 Q0001 |
 Rail |——————] [————————————]/[—————————————————————] [—————————()——————|
 | |
 Normally Open Normally Closed Normally Open External
 Contact Contact Contact Output
 Representing Representing Representing Coil No. 1
 Input No. 1 Input No. 2 Condition of
 External Output
 No. 2

9

9-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

A ladder rung is built by connecting the contacts in series and parallel combinations to
form sequences of logic. Contacts connected in series are said to be ANDed together and
those that are connected in parallel are said to be ORed together. These contacts are of
two types; normally open and normally closed, similar to that of a mechanical relay.

A normally open contact will pass power from its left side to its right side when the
device it represents is on (passing power or current). A normally closed contact will pass
power from its left side to it right side only when the device it represents is off (has no
current flow or no power flow). When this normally closed contact is connected in
series with another contact it is said to be NOT ANDed, and when it is connected in
parallel it is said to be NOT ORed.

 | I0001 I0002
 |——————] [———————] [——————
 |

Two Normally Open contacts in Series

 | I0001
 |——————] [——————————
 | |
 | I0002 |
 |——————] [————
 |

Two Normally Open contacts in Parallel

 | I0001 I0003
 |——————] [———————] [—————
 | |
 | I0002 | < ——————— Vertical connecting line
 |——————] [————
 |

Combination of Series and Parallel Contacts

When there is continuous current flow or power is passed through a continuous line of
connected contacts starting at the power rail and traveling towards the right to the coil
at the end of this rung of logic, the coil will turn on. Power flow only travels from left to
right through contacts and horizontal connecting lines. On vertical connecting lines
power flow can travel in either direction top to bottom or bottom to top.

The Statement List is a mnemonic form used to enter the ladder logic program using the
Hand Held Programmer (HHP). The instructions AND, OR, NOT AND, NOT OR,
LOAD, OUT, etc. along with input and output address are used to place the program
logic into the programming memory of the Central Processing Unit (CPU).

The following table lists all of the basic elements that you can use when programming in
the Statement List Language.

LD

LD

LD

F
 NOT

BLK

AND
D

AND
D BLK

 NOT

E
OR

E
OR

E
OR BLK

F
 NOT

FD
AND

9

9-3GFK-0402G Chapter 9 Statement List Programming Language

Table 9-1. Statement List Language Basic Elements

Graphic Symbol Description Key Sequence Operation

LD ——] [——
Normally open
contact, start of
sequence

A normally open contact acts as
a relay that passes power flow
if the associated reference is
ON (1).

LDNOT ——]/[—— Normally closed
contact, start of
sequence

A normally closed contact acts
as a relay that passes power
flow if the associated reference
is OFF (0).

LD BLK not applicable Mark a point
within a rung

Set a marker at a point
within an incomplete rung. Af-
ter a subsequent OUT BLK
instruction is executed, addi-
tional logic will begin at the
marked position.

AND
Normally open
contact, continue
series sequence

Add a normally open contact
in series with the previous con-
tact.

AND
NOT

Normally closed
contact, continue
series sequence

Add a normally closed
contact in series with the pre-
vious contact.

AND
BLK

AND two blocks of
serial logic

AND together the current
logic block with the last block
saved using the LD BLK func-
tion.

OR
Normally open
contact, continue
parallel sequence

Add a normally open contact
in parallel with the previous
contact.

OR
NOT

Normally closed
contact, continue
parallel sequence

Add a normally closed contact
in parallel with the previous
contact.

OR BLK OR two blocks of
parallel logic

OR together the current logic
block with the last block saved
using the LD BLK function.

——] [——

——] [————|
|

——] [————

——]/[——
|
|

——] [——

——] [—— |
——] [——

|
|
|—— ——

——] [——

——

——] [——

——] [————]/[——

——] [——

——] [——

——] [——
|
|

——] [——

——] [——
|
|

|
|

|
|

—— ——

F
 NOT

OUTM

OUT

OUTM

OUT

OUTM

OUT

OUTM

OUT

OUTM

OUT

OUTM

OUT F
 NOT

SET

SETM

SET

SETM

SET

SETM

RST

RSTM

RST

RSTM

RST

RSTM

9

9-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 9-1. Statement List Language Basic Elements - Continued

Graphic Symbol Description Key Sequence Operation

OUT -()- Non-retentive
coil with normally
open contacts

The coil sets a discrete
output ON while it receives
power flow. It is non-
retentive.

OUTM -(M)— Retentive coil with
normally open con-
tacts

The retentive coil sets a dis-
crete output ON while it re-
ceives power flow. The state
of the retentive coil is re-
tained across power failure.

OUT
NOT

—(/)— Non-retentive coil
with normally
closed contacts

The negated coil sets a dis-
crete output ON when it
does not receive power flow.
It is not retentive.

OUTM
NOT

—(/M)— Retentive coil with
normally closed
contacts

The negated retentive coil
sets a discrete output ON
when it does not receive
power flow. The state of the
negated retentive coil is re-
tained across power failure.

SET —(S)— Non-retentive set
latch coil

When a set coil receives pow-
er flow, its reference stays
ON (whether or not the coil
itself receives power flow)
until it is reset by power flow
to a reset coil. The set coil is
non-retentive.

SETM —(SM)— Retentive set latch
coil

The retentive set coil sets a
 discrete output ON if the coil
receives power flow. The
output remains ON until re-
set by a reset coil. The state
of the retentive coil is
 retained across power failure
 or when the PLC transitions
from stop mode to run
mode.

RST —(R)— Non-retentive
 reset latch coil

The reset coil sets a discrete
machine output or internal
output OFF if the coil re-
ceives power flow. The out-
put remains OFF until reset
by a set coil. The reset coil is
non-retentive.

RSTM —(RM)— Retentive reset
latch coil

The retentive reset coil sets a
discrete machine output or
internal output OFF if it re-
ceives power flow. The out-
put remains OFF until set by
a retentive set coil. The state
of this coil is retained across
power failure or when the
PLC transitions from stop
mode to run mode.

9

9-5GFK-0402G Chapter 9 Statement List Programming Language

Table 9-1. Statement List Language Basic Elements - Continued

Graphic Symbol Description Key Sequence Operation

OUT+ —(↑)— OFF-ON
transitional coil
(one shot) on
power flow

 If the output associated with
a positive transition coil is
OFF, when the coil receives
power flow it will be set to
ON for one sweep. This coil
can be used as a one-shot.

OUT— —(↓)— ON-OFF
transitional coil
(one shot) on no
power flow

If the output associated with
this coil is OFF, when the coil
stops receiving power flow,
the reference will be set to
ON for one sweep.

OUT
BLK

Return to previous
LD BLK marker

 Return the logic to a point
within the rung marked by
the LD BLK instruction.

Entering a Program

When entering a program each of the basic symbols contacts, coils, and function blocks
are entered into program memory locations called steps. Each step has a number
starting with one at the beginning of the program and incrementing in sequential order
until the last element in the program has been entered.

When the CPU solves the logic it starts at step one and proceeds sequentially to the
highest step number then starts over (see Chapter 2 in the Series 90-30 PLC Reference
Manual, GFK-0467, for more information).

For each instruction step you will need to indicate an instruction type. This can be a
basic element or a standard function block i.e.: AND, OR_, Function 10, etc. Also a
companion operand, in most cases, must be provided. For a basic element this operand
would be the discrete memory type (I, Q, M, T, G, S, SA, SB, SC) followed by its reference
numbered address location within this memory type. In the case of a function block the
operand would be one or more parameters. Each parameter could be an internal CPU
reference address or a constant.

OUTM

OUT

OUTM

OUT

OUTM

OUT BLK

– +

– +

– +

9

9-6 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table lists the allowable memory types for the basic elements listed in the
previous table.

Table 9-2. Allowable Memory Types for Basic Elements

Instruction %I %Q %M %T %G %S %R %AI %AQ Constant

LD • • • • • •

LD NOT • • • • • •

LD BLK

AND • • • • • •

AND NOT • • • • • •

AND BLK

OR • • • • • •

OR NOT • • • • • •

OR BLK

OUT • • •

OUTM • • • •�

OUT NOT • • •

OUTM NOT • • • •�

SET • • •

SETM • • • •�

RST • • •

RSTM • • • •�

OUT+ • • • • •�

OUT— • • • • •�

OUT BLK

� Only %SA, %SB, and %SC are used. %S cannot be used.

Guidelines for Entering Programs
Several rules and guidelines which should be followed when entering new rungs,
elements of logic, or when modifying an existing program are listed below:

1. Entering new logic or modifying old logic:

• For new logic the CPU must be in the stop mode and the HHP must be in the
Program and Insert mode.

2. When programming an element the following order of programming must be
followed:

• First, enter the element type, that is, AND, OR, OUT, etc.

• Second, enter the discrete memory type: I, Q, M, T, G, S, SA, SB, SC.

• Third, enter the numerical address (reference) within the memory type.

• Fourth, press the ENTER key to place the element into the program memory of
the CPU.

9

9-7GFK-0402G Chapter 9 Statement List Programming Language

3. The first element of a rung must always be a serial contact off of the left power bus.
The element type will be LD or LD NOT. Elements may then be placed in parallel or
series with this first element.

4. The last element in a rung must be a coil, except when CEND, NOOP, and ENDSW
are used and when power flow from a function block is not needed.

5. When using the Hand-Held Programmer there is no restriction as to the number of
parallel contacts that can be placed across a single contact. The same is true for
contacts being placed in series. However if the Logicmaster 90 method of
programming is to be used to view, monitor or modify the program, there are the
following restrictions:

• Only eight (8) parallel contacts are allowed. The number of contacts or group of
parallel contacts that can be placed in series is restricted to nine (9).

6. Functions cannot have contacts or other functions placed in parallel with them.

7. All functions except CEND, LABEL, ENDMCR, NOOP, and ENDSW must have
control logic programmed before it in a rung. Thus functions cannot be
programmed to the power rail or be the first element in a rung.

Entering Subroutines

Subroutines can be included in a statement list program to enhance the overall operation
of your Series 90-30 PLC system (subroutines cannot be included in a Series 90-20 PLC
program). In order to enter a subroutine, you must define the subroutine. To do this,
first enter Program Mode. Once you are in Program Mode, you then enter a sub-mode
which is where you do the actual subroutine definition. To access the Subroutine
Declaration mode, use the following procedure:

Initial display after pressing the MODE key: _ 1. PROGRAM <S
 2. DATA

Press the _ 1. MAIN <S
 2. SUBR

key :
ENT

At this point, press the ENT key again to enter Program Mode to access the Main
program or cursor down to SUBR and press the ENT key to enter the Subroutine
Declaration mode.

_ 2. SUBR <SPress the key :

9

9-8 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0001 NO SUBR <S
#0002 NO SUBR

Press the key :ENT

You are now in the Subroutine Declaration mode where declarations of all 64 possible
subroutines can be viewed. You can view these declarations by using the or – keys, or
the # key with a subroutine number key sequence following it.

Once the subroutines have been viewed, you can then enter the # and ‡ keys to zoom
into the desired subroutine and declare it. Once the subroutine is declared, you can
zoom out of the subroutine by entering the # and z keys to return to the Subroutine
Declaration level. Use the following key sequence to declare the subroutine.

#0001 NO SUBR <S
#0002 NO SUBR

Initial display:

#0001 S01 <S
<END OF SUBR>

Press the key sequence :#

You can now enter instructions for the selected subroutine. For example, to define a
subroutine with the following statement list program:

#0001: LD NOT %I0001
#0002: OUT %Q0001

Enter the following key sequences:

#0001 S01 <S
<END OF SUBR>

Initial display:

#0001 INS S01 <SPress the key sequence :INS

#0001 S01 <S
 LD NOT I 1_

Press the key sequence

:LD
F
 NOT

A1
1A

1

9

9-9GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS S01 <S
_

Press the :ENT

#0002 INS S01 <S
 OUT Q 1_

Press the key sequence

OUTM

OUT

AQ
QB

1 :

#0003 INS S01 <S
_

Press the key:ENT

#0003 S01 <S
<END OF SUBR>

Press the key:ENT

You can now zoom out of the subroutine to define other subroutines or to return to the
main program definition. To zoom out of a subroutine, and return to the subroutine
declaration list, enter the following key sequence:

#0001 SUBR 01 <S
#0002 NO SUBR

Press the key sequence :#

If you have accessed the subroutine from a Subroutine Call Function in other
subroutines, use of the zoom out key sequence, as shown above, will return you one call
level at a time. If you have accessed the subroutine from a Subroutine Call Function in
the Main program, the key sequence #, #, z will return you to the location of that Call
in the Main program. Otherwise, this key sequence will return you to the Declaration
Level in Subroutine Mode where you had first zoomed into a subroutine.

If you are at the subroutine declaration level already, you can either declare additional
subroutines using the above method, cursor up or down to subroutines that are already
declared and zoom into them for editing, zoom back to the main program Call
Subroutine Function by entering the #, z key sequence, or return to Program Mode by
pressing the MODE key.

Subroutine Deletion
In order to delete an existing subroutine from the program, you must be at the
subroutine declaration level (using the key sequence described above). Once in the
Subroutine Declaration level, you can cursor to the subroutine being deleted and enter
the DEL, ENT key sequence. Subroutines that are called in the main program or in
other subroutines cannot be deleted. If this is attempted, an error will be detected by the
program check and the error message USE ERR will be displayed on the HHP screen.

9

9-10 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Subroutine Zoom
The subroutine statement list program can be viewed with the HHP in Program Mode.
To view the subroutine statement list instructions, cursor to the Subroutine Call Function
and zoom into the subroutine logic by pressing the # ‡ keys. To zoom out of the
current subroutine program, press the # z keys. If subroutine calls are nested within
each other, these keys will let you access the calls one level at a time. If at any time, you
want to return to the top level of the subroutine call in the main program, enter the key
sequence # # z .

Error Display
The following error conditions will be detected and result in messages displayed on the
HHP screen:

� There are a maximum of 64 subroutine declarations. The message DATA ERR will be
displayed on the HHP if an attempt is made to call a subroutine number exceeding 64.

� There is a total of 16K bytes of user program memory available for each subroutine
logic block. The message MEM OVR will be displayed if the remaining user
program memory is exceeded.

� Nested subroutine calls are allowed with 8 nesting levels. This will be checked at
run-time and a fault will be logged if the nesting level of 8 is exceeded. The fault to
be logged will be in fault group APPLICATION FAULT, and the error code is
app_stack_overflow. This fault is non-fatal, and the PLC will go to STOP Mode
when the fault is logged. If you have exceeded the subroutine nesting limit and are
zooming down through the CALLSUB instructions, you will receive a NEST ERR
message when you attempt to zoom into the ninth subroutine in the call sequence.

� A subroutine call cannot be connected directly to the power rail. If this is done, the
error message SEQ ERR will be displayed on the HHP screen.

� If the 64 Call instruction limit per logic block is exceeded, the error message CAL
OVR will be displayed.

Impact on Other PLC Functions

The use of subroutines will have the following impact on PLC operation.

� A Read or Write operation to/from EEPROM/MEM CARD is not allowed when in
Subroutine Declaration Mode.

� A Search operation will search the current block (i.e., main program block or current
subroutine block) that is being edited or viewed. Program check will check the
entire program including all subroutine blocks.

� A Read/Write EEPROM/MEM CARD will read/store the entire program including all
subroutine blocks.

9

9-11GFK-0402G Chapter 9 Statement List Programming Language

How to Enter a Logic Element Using the HHP

In order to program the attached PLC, you must first select the program mode of
operation. When selecting the program mode of operation, the initial instruction step
displayed is the last one viewed the previous time that program mode was selected,
since the PLC was powered up. If entering program mode for the first time, by default
the first instruction step is treated as the initial instruction step to be displayed.

In the following example, assume that you are viewing a reference table, and wish to
select the program mode of operation. Further assume that you have not entered the
program mode since the PLC was last powered up, that there is no program in the CPU,
and there is no OEM protection and that you have at least level 3 access of availability. If
the following screen is displayed while attempting to enter your logic it means that your
system is password protected and you should refer to Chapter 8 for more details.

#0001 PROTECT <S
 LD I0001 O

>R0001 0000H <S
 R0002 0000H

Initial display:

1_1. PROGRAM <S
 2. DATA

Press the MODE

(“_ 1.” is blinking)

key:

1_1. PROGRAM <S
 2. DATA

(“_ 1.” is blinking)

Press the key:1

The following screen is not valid with a Series 90-20 PLC system.

1_1. MAIN <S
 2. SUBR

(“_ 1.” is blinking)

Press the key:1

9

9-12 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0001 <S
<END OF PROGRAM>

Press the key:ENT

(“_ 1.” is blinking)

If <R is displayed instead of <S it means that the CPU is in the Run Mode. If this is the
case use the following procedure to put the CPU into the STOP mode. Otherwise skip
to: ”Enter the Insert Mode of Operation”.

PRESS <–/+>KEY<RPress the key:RUN

The -/+ key is used to toggle between the ”RUN MODE” and ”STOP MODE” states.
Pressing the -/+ key initially selects ”RUN MODE”.

RUN MODE <RPress the key:– +

Pushing the —/+ key toggles the selection to ”STOP MODE”.

STOP MODE <RPress the key:– +

Each time the —/+ key is pressed, the mode is toggled. When the desired operating
mode is displayed on the screen, the change is initiated by pressing the ENT key.

#0001 <S
<END OR PROGRAM>

Press the key:ENT

Note that the PLC State field now indicates “stopped” by <S being displayed.

Enter the Insert Mode of Operation

#0001 INS <S
_

Press the key:INS

“—” Blinking

You are now ready to enter an element into Step 1 (#0001 on the screen). This is the
beginning of the program and the beginning of a rung of logic, therefore the contact
must be a normally open or normally closed series contact.

9

9-13GFK-0402G Chapter 9 Statement List Programming Language

Enter a normally open contact that is attached to the left power bus and reference this
contact to input number 1 (I0001). The ladder logic will look like the following:

 |%I0001
 |——] [——————————————
 |

The statement list for the above ladder logic is:

0001: LD I0001

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD _

Press the key:LD

#0001 INS <S
 LD I 1_

Press the key sequence :
A I
IA

1

At this point if an error was made or a wrong key was pressed, press the CLR key as
many times as needed to clear the ERROR and re-enter the data or start over. See
chapter 5, Program Edit for more details.

Pressing the Enter key at this point will place the programmed element into the CPU
memory. The display will then advance to the next step.

#0002 INS <S
_

Press the key:ENT

Important - Please Read the Following

To enter program steps using the Hand-Held Programmer, the CPU must be in the STOP
mode and the Hand-Held Programmer must be in the PROGRAM and INSERT modes. After
you press the INS key, the initial display will be:

#0001 INS <S
_

You can now begin entering program steps.

9

9-14 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

SINGLE CONTACT, SINGLE COIL

To implement the following logic using LD, NOT, and OUT.

 |%I0001 %Q0001
 |——]/[——()—
 |

Statement List

#0001: LD NOT %I0001
#0002: OUT %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:
A I
IA

LD
F
 NOT 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1

#0003 INS <S
_

Press the key:ENT

9

9-15GFK-0402G Chapter 9 Statement List Programming Language

SERIES CONTACTS, SINGLE COIL

To implement the following logic using the AND element.

 |%I0001 %I0002 %Q0001
 |——]/[—————————] [———()——
 |

Statement List
#0001: LD NOT %I0001
#0002: AND %I0002
#0003 OUT %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT 1_

Press the key sequence

:
A I
IA

LD
F
 NOT 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 AND I 2_

Press the key sequence

: AND A I
IA

2
D

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1

#0004 INS <S
_

Press the key:ENT

9

9-16 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

SINGLE PARALLEL CONTACTS, SINGLE COIL

To implement the following logic using the OR element.

 |%I0001 %Q0001
 |——]/[——()——
 | |
 |%I0002 |
 |——] [———

Statement List
#0001: LD NOT %I0001
#0002: OR %I0002
#0003: OUT %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:
A I
IA

LD
F

 NOT 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OR I 2_

Press the key sequence

:
OR A I

IA
2

E

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1

#0004 INS <S
_

Press the key:ENT

9

9-17GFK-0402G Chapter 9 Statement List Programming Language

MULTIPLE PARALLEL CONTACTS, SINGLE COIL

To implement the following logic using the OR BLK element.

 |%I0001 %I0002 %Q0001
 |——]/[—————] [———(↑)—
 | |
 |%SA001 %M0001 |
 |——] [—————]/[——

Statement List

#0001: LD NOT %I0001
#0002: AND %I0002

 #0003: LD %SA001
#0004: AND NOT %M0001
#0005: OR BLK

 #0006: OUT+ %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:
A I
IA

LD
F
 NOT 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 AND I 2_

Press the key sequence

:
AND A I

IA
2

D

#0003 INS <S
_

Press the key:ENT

9

9-18 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 LD SA 1_

Press the key sequence

S

G
1LD

S

G

S

G
:

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 AND NOT M 1_

Press the key sequence

AND
D F

 NOT
T
M

C
1 :

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
 OR BLK _

Press the key sequence :OR
E

BLK :

#0006 INS <S
_

Press the key:ENT

#0006 INS <S
 OUT+ Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1
– +

#0007 INS <S
_

Press the key:ENT

9

9-19GFK-0402G Chapter 9 Statement List Programming Language

SERIES/PARALLEL CONTACTS, SINGLE COIL

To implement the following logic using the AND BLK element.

 |%I0001 %I0002 %M0001
 |——]/[—————] [——(M)——
 | | |
 | |%T0001 |
 | ——] [——
 |

Statement List

#0001: LD NOT %I0001
#0002: LD %I0002

 #0003: OR %T0001
 #0004: AND BLK

#0005: OUTM %M0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:
A I
IA

LD
F
 NOT 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 LD I 2_

Press the key sequence

:
A I
IA

2LD

#0003 INS <S
_

Press the key:ENT

9

9-20 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 OR T 1_

Press the key sequence

OR
E

T
M

C
1 :

T
M

C

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 AND BLK

Press the key sequence :AND
D BLK :

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
 OUTM M 1_

Press the key sequence

:
OUTM

OUT
1

OUTM

OUT

T
M

C

#0006 INS <S
_

Press the key:ENT

9

9-21GFK-0402G Chapter 9 Statement List Programming Language

NESTED MULTIPLE COILS (”PILOT LIGHT”)

To implement the following logic coils in parallel using the OUT NOT element.

 |%I0001 %M0001
 |——] [———(/)——
 | |
 | |%Q0001
 | ——()——

Statement List
#0001: LD %I0001
#0002: OUT NOT %M0001
#0003: OUT %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

I
A

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT NOT M 1_

Press the key sequence

 NOTOUTM

OUT
1

F

T
MC

 :

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1

#0004 INS <S
_

Press the key:ENT

9

9-22 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

NON-NESTED MULTIPLE COILS

To implement the following logic using LD BLK and OUT BLK elements.

 |%I0001 %I0002 %Q0001
 |——]/[—————] [——()——
 | |
 | |%I0003 %Q0002
 | ——] [——()——
 |

Statement List

#0001: LD NOT %I0001
#0002: LD BLK
#0003 AND %I0002

 #0004: OUT %Q0001
 #0005: OUT BLK
 #0006: AND %I0003
 #0007: OUT %Q0002

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:
A I

IA
LD 1 NOT

F

#0002 INS <S
_

Press the key:ENT

#0005 INS <S
 LD BLK

Press the key sequence :BLK :LD

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 AND I 2_

Press the key sequence

:
AND A I

IA
2

D

9

9-23GFK-0402G Chapter 9 Statement List Programming Language

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 OUT Q 1_

Press the key sequence

:
OUTM

OUT

AQ
QB

1

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
 OUT BLK

Press the key sequence :OUTM

OUT
BLK

#0006 INS <S
_

Press the key:ENT

#0006 INS <S
 AND I 3_

Press the key sequence

:
AND A I

IA
3

D

#0007 INS <S
_

Press the key:ENT

#0007 INS <S
 OUT Q 2_

Press the key sequence

:
OUTM

OUT

AQ
QB

2

#0008 INS <S
_

Press the key:ENT

9

9-24 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

ONE SHOT ON LOSS OF POWER FLOW

To implement the following logic using LD and OUT -.

 |%I0001 %Q0001
 |——] [——(↓)——
 |

Statement List

#0001: LD %I0001
#0002: OUT - %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

IA
LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT– Q 1_

Press the key sequence

OUTM
OUT 1 :– + – +

AQ
Q

B

#0003 INS <S
_

Press the key:ENT

9

9-25GFK-0402G Chapter 9 Statement List Programming Language

ONE SHOT ON POWER FLOW

To implement the following logic using LD and OUT+.

 |%I0001 %Q0001
 |——] [———(↑)——
 |

Statement list

#0001: LD %I0001
#0002: OUT+ %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

IA
LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ Q 1_

Press the key sequence

OUTM
OUT 1 :

– +
AQ
QB

#0003 INS <S
_

Press the key:ENT

9

9-26 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

RETENTIVE LATCH

To implement the following logic using SETM.

 |%I0001 %Q0001
 |——] [——(SM) ——
 |

Statement List

#0001: LD %I0001
#0002: SETM %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

IA
LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 SETM Q 1_

Press the key sequence

SET
SETM 1 :

AQ
Q

B

#0003 INS <S
_

Press the key:ENT

9

9-27GFK-0402G Chapter 9 Statement List Programming Language

RESETTING A RETENTIVE LATCH

To implement the following logic using RSTM.

 |%I0001 %Q0001
 |——] [——(RM) ——
 |

Statement List

#0001: LD %I0001
#0002: RSTM %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 RSTM Q 1_

Press the key sequence

RST
RSTM 1 :

AQ
Q

B

#0003 INS <S
_

Press the key:ENT

9

9-28 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

SERIES PARALLEL CONTACTS WITH A LATCH

To implement the following logic using LD, OR NOT, AND NOT, SET.

 |%I0001 %I0002 %Q0001
 |——] [———|——————————]/[———(S)——
 | |
 |%I0003 |
 |——]/[———|
 |

Statement List

#0001: LD %I0001
#0002: OR NOT %I0003
#0003: AND NOT %I0002
#0004: SET %Q0001

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

I
A

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OR NOT I 3_

Press the key sequence

OR
E

3 :
A I
IA

OR
E

#0003 INS <S
_

Press the key:ENT

9

9-29GFK-0402G Chapter 9 Statement List Programming Language

#0003 INS <S
 AND NOT I 2_

Press the key sequence

AND
D

2 :
A I
I

A
NOT

F

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 SET Q 1_

Press the key sequence

1 :SET

SETM

SET

SETM

AQ
QB

#0005 INS <S
_

Press the key:ENT

9

9-30 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Data Types

Data types include the following:

Table 9-3. Data Types

Type Name Description Data Format

INT Signed
 Integer

Signed integers use 16-bit memory
data locations, and are represented in 2’s
complement notation. The valid range
 of an INT data type is —32768 to
+32767.

 Register 1
 S| (16 bit positions)
16 1

DINT Double
Precision
Signed Integer

Double precision signed integers are
stored in 32-bit data memory locations
(actually two consecutive 16-bit
memory locations) and represented
 in 2’s complement notation. (Bit 32 is
the sign bit.) The valid range of a DINT
data type is —2147483648 to
+2147483867.

 Register 2 Register 1
S|
 32 17 16 1

 (Two’s Complement Value)

BIT Bit A Bit data type is the smallest unit of
memory. It has two states, 1 or 0. A BIT
string may have length N.

BYTE Byte A Byte data type has an 8-bit value. The
valid range of a BYTE data type is 0 to
255. A BYTE string may have length N.

WORD Word A Word data type uses 16 consecutive
bits of data memory; but, instead of the
bits in the data location representing a
number, the bits are independent of
each other. Each bit represents its own
binary state (1 or 0), and the bits are not
looked at together to represent an
integer number. The valid range of
word values is 0 to FFFF.

 Register 1
 (16 bit positions)
16 1

BCD—4 Four-Digit
Binary Coded
Decimal

Four-digit BCD numbers use 16-bit data
memory locations. Each BCD
digit uses four bits and can represent
numbers between 0 and 9. This BCD
coding of the 16 bits has a legal value
range of 0 to 9999.

 Register 1
4 | 3 | 2 | 1 (4 BCD digits)
16 13 9 5 1

S = Sign bit (0 = positive, 1 = negative).

9

9-31GFK-0402G Chapter 9 Statement List Programming Language

Standard Functions and Function Blocks

The standard functions and function blocks of the Statement List programming lan-
guage are listed in the following table. The abbreviation (mnemonic), function number,
function name, and description of each is included. All functions are conditionally
executed, except for the LABEL, END MCR, NOOP, and ENDSW functions, .

Table 9-4. Statement List Language Standard Functions and Function Blocks

Abbreviation
Function No. Function Name Description

Page
9-xx

Timers and Counters

TMR 10 Stopwatch timer Provides simple ”stopwatch” timing. 39

ONDTR 13 On-delay timer Provides on-delay timing. 43

OFDTR 14 Off-delay timer Provides off-delay timing 48

UPCTR 15 Up counter Provides incremental counting. 53

DNCTR 16 Down counter Provides decremental counting. 57

Arithmetic Functions

ADD
DPADD

60
61

Signed addition
Double precision signed addition

Add one signed word or double word
value to another.

62
62

SUB
DPSUB

62
63

Signed subtraction
Double precision signed subtraction

Subtract one signed word or double word
value from another.

67
67

MUL
DPMUL

64
65

Signed multiplication
Double precision signed multiplication

Multiply one signed word or double
word value by another.

72
72

DIV
DPDIV

66
67

Signed division
Double precision signed division

Divide one signed word or double word
value by another.

77
77

MOD
DPMOD

68
69

Signed modulo division
Double precision signed modulo division

Modulo divide one signed word or double
word value by another.

82
82

SQRT
DPSQRT

70
71

Signed square root
Double precision signed square root

Find square root of one signed word
or double word value.

86
86

Relational Functions

EQ
DPEQ

52
72

Equal test
Double precision equal test

Test for one signed word or double word
value equal to another.

91
91

NE
DPNE

53
73

Not equal test
Double precision not equal test

Test for one signed word or double word
value not equal to another.

95
95

GT
DPGT

57
77

Greater than test
Double precision greater than test

Test for one signed word or double word
value greater than another.

99
99

GE
DPGE

55
75

Greater than or equal test
Double precision greater than or equal test

Test for one signed word or double word
value greater than or equal to another.

103
103

LT
DPLT

56
76

Less than test
Double precision less than test

Test for one signed word or double word
value less than another.

107
107

LE
DPLE

54
74

Less than or equal test
Double precision less than or equal test

Test for one signed word or double word
value less than or equal to another.

111
111

RANGI
RANGDI
RANGW

140
141
142

Integer range
Double precision signed integer range
Word range

Test for a signed integer, double precision
signed integer, or word value to be within a
specified range

115
115
115

9

9-32 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 9-4. Statement List Language Standard Functions and Function Blocks - Continued

Abbreviation
Function No. Function Name Description

Page
9-xx

Operation Functions

AND 23 Bitwise “and” Bitwise “and” two words. 122

OR 25 Bitwise “or” Bitwise “or” two words. 126

XOR 27 Bitwise “exclusive or” Bitwise “exclusive or” two words. 130

NOT 29 Bitwise one’s complement Bitwise negate (one’s complements) a word. 134

SHL 30 Bit shift left Shift all bits in a word array left a given number of bit
positions.

137

SHR 31 Bit shift right Shift all bits in a word array right a given number of bit
positions.

143

ROL 32 Bit rotate left Rotate all bits in a word array left a given number of bit
positions.

149

ROR 33 Bit rotate right Rotate all bits in a word array right a given number of bit
positions.

155

BITSET 22 Bit set Set a particular bit in a string to a 1. 161

BITCLR 24 Bit clear Set a particular bit in a string of bits to 0. 165

BITTST 26 Bit test Determine if a certain bit in a string of bits is set to 1 or 0. 169

BITPOS 28 Bit position Determines which bit in a string of bits is set to 1. 172

MSKCMPW 143 Masked Compare Word Compare contents of two bit strings (16-bit words) with
ability to mask selected bits.

176

MSKCMPD 144 Masked Compare Dword Compare contents of two bit strings (32-bit words) with
ability to mask selected bits.

176

Data Move Functions

The default display format of the following Data Move functions is signed integer.
They are functionally equivalent to the Data Move functions listed below.

MOVIN 37 Multiple (array) integer move Copy an array of multiple words from one location to
another.

184

BMOVI 38 Constant block move Fill seven consecutive words with a block of seven
constants.

192

MOVBN 40 Multiple bit move Move one or more bits from one reference to another. 188

SHFRB 46 Shift register bit Implement a shift register with bit resolution 208

The default display format of the following Data Move functions is hexadecimal.
They are functionally equivalent to the Data Move functions listed above.

MOVWN 42 Multiple (array) word move Copy an array of multiple words from one location to
another.

184

BMOVW 43 Constant block move Fill seven consecutive words with a block of seven
constants.

192

BLKCL 44 Block clear. Fills a word or group of consecutive words with zeros. 198

SHFRW 45 N stage word shift register Perform a word shift through an array of words. 201

SEQB 47 N stage bit sequencer Perform a bit sequence shift through an array of bits. 212

COMMREQ 88 Communications request Communicate a particular request to a module in the
system.

220

Conversion Functions

BCD 80 Integer to BCD conversion Convert an integer value to a 4-digit BCD value. 225

INT 81 BCD to integer conversion Convert a 4-digit BCD value to an integer value. 229

9

9-33GFK-0402G Chapter 9 Statement List Programming Language

Table 9-4. Statement List Language Standard Functions and Function Blocks - Continued

Abbreviation
Function No. Function Name Description

Page
9-xx

Control Functions

DOI/O 85 Do I/O update Perform an immediate update of a
designated range of discrete or analog inputs
or outputs.

234

PIDISA 86 PID (proportional/integral/derivative con-
trol algorithm) ISA

Implements a standard PID ISA algorithm. 254

PIDIND 87 PID (proportional/integral/derivative con-
trol algorithm) IND

Implements an independent term PID IND
algorithm.

254

SVCRQ 89 System service request Request one of the PLC’s special services. 251

CALL SUB 90 Call subroutine Request a particular subroutine. 266

ENDSW 0 Terminate program logic execution An unconditionally executed function that
acts as a (temporary) program logic execution
stream terminator. Normally used during
system debug.

241

NOOP 1 No operation An unconditionally executed function used in
support of Logicmaster 90-30/20/Micro soft-
ware package. It supports rung comments
functionality.

241

JUMP 3 Nested jump Control the execution path through the user’s
logic program. The jump range extends to
the previous/next matching LABEL function
encountered.

242

MCR 4 Nested master control relay Used as a master control relay. MCR range
extends to the next END MCD function en-
countered.

246

ENDMCR 8 Master control sequence end An unconditionally executed function which
terminates a control range. END MCR de-
fines the end of a control range for a prior
MCR with matching label number.

246

LABEL 7 Target number for jump function. Provides a destination for a nested JUMP
function with a matching label number.

250

Table Functions

SREQB 101 Search equal to (Byte) Search for all array values equal to a specified
byte value.

270

SREQW 102 Search equal to (Word) Search for all array values equal to a specified
word value.

270

SREQI 103 Search equal to (INT) � Search for all array values equal to a specified
integer value.

270

SREQDI 104 Search equal to (DINT) � Search for all array values equal to a specified
double precision integer value.

270

SRNEB 105 Search not equal to (Byte) Search for all array values not equal to a spe-
cified byte value.

272

SRNEW 106 Search not equal to (Word) Search for all array values not equal to a spe-
cified word value.

272

SRNEI 107 Search not equal to (INT) Search for all array values not equal to a spe-
cified integer value.

272

SRNEDI 108 Search not equal to (DINT) Search for all array values not equal to a spe-
cified double precision integer value.

272

� INT = Integer; DINT = Double precision integer

9

9-34 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 9-4. Statement List Language Standard Functions and Function Blocks - Continued

Abbreviation
Function No. Function Name Description

Page
9-xx

Table Functions — Continued

SRLTB 109 Search less than (Byte) Search for all array values less than a specified byte
value.

274

SRLTW 110 Search less than (Word) Search for all array values less than a specified
word value.

274

SRLTI 111 Search less than (INT) Search for all array values less than a specified in-
teger value.

274

SRLTDI 112 Search less than (DINT) Search for all array values less than a specified
double precision integer value.

274

SRLEB 113 Search less than or equal to (Byte) Search for all array values less than or equal to a
specified byte value.

276

SRLEW 114 Search less than or equal to (Word) Search for all array values less than or equal to a
specified word value.

276

SRLEI 115 Search less than or equal to (INT) Search for all array values less than or equal to a
specified integer value.

276

SRLEDI 116 Search less than or equal to (DINT) Search for all array values less than or equal to a
specified double precision integer value.

276

SRGTB 117 Search greater than (Byte) Search for all array values greater than a specified
byte value.

278

SRGTW 118 Search greater than (Word) Search for all array values greater than a specified
word value.

278

SRGTI 119 Search greater than (INT) Search for all array values greater than a specified
integer value.

278

SRGTDI 120 Search greater than (DINT) Search for all array values greater than a specified
double precision integer value.

278

SRGEB 121 Search greater than or equal to (Byte) Search for all array values greater than or equal to
a specified byte value.

280

SRGEW 122 Search greater than or equal to (Word) Search for all array values greater than or equal to
a specified word value.

280

SRGEI 123 Search greater than or equal to (INT) Search for all array values greater than or equal to
a specified integer value.

280

SRGEDI 124 Search greater than or equal to (DINT) Search for all array values greater than or equal to
a specified double precision integer value.

280

MOVABI 130 Copy array source to destination (bit) Copy specified number of bits from a source array
to a destination array.

290

MOVABY 131 Copy array source to destination (byte) Copy specified number of bytes from a source
array to a destination array.

290

MOVAW 132 Copy array source to destination (word) Copy specified number of words from a source
array to a destination array.

290

MOVAI 133 Copy array source to destination (INT) Copy specified number of integer values from a
source array to a destination array.

290

MOVADI 134 Copy array source to destination (DINT) Copy specified number of double precision integer
values from a source array to a
destination array.

290

9

9-35GFK-0402G Chapter 9 Statement List Programming Language

Editing Functions and Function Blocks
Functions and function blocks are programmed by first pressing the FUNC key, followed
by a one or two-digit function number, with the exception that TMR/ONDTR,
UPCTR/DNCTR can also be selected by pressing the applicable key on the HHP. Refer to
appendix C for a list of supported functions and function blocks.

All functions and function blocks (except for the CEND, LABEL, ENDMCR, NOOP and
END functions) have at least one Boolean input; several have more than one Boolean
input. The logic controlling a Boolean input must be programmed prior to the actual
programming of the function or function block. For those functions and function blocks
with more than one Boolean input, the logic for each input must be programmed in
top-to-bottom order. Many functions and function blocks have a single Boolean output
which either indicates a result of the operation, or merely propagates power flow. In
addition, many functions and function blocks have parameters which must be specified
as part of programming them. Refer to the following sections in this chapter for
information on Boolean inputs, Boolean outputs, and parameters associated with each
function and function block.

The functions CEND, LABEL, ENDMCR, NOOP and END are referred to as single
instruction sequences. These functions have no Boolean inputs or Boolean output. When
one of them appears, it is treated as an instruction sequence consisting of only a single
instruction.

Many functions and function blocks have parameters where a constant is a valid
memory type. You can specify whether a constant should be entered as a decimal or
hexadecimal value by pressing the HEX/DEC key. By default, the entry base is always
decimal. Pressing the HEX/DEC key toggles between the two bases.

Many functions and function blocks have word-size parameters, where a discrete
reference is a valid memory type. The discrete reference address must be on a byte
boundary (for example, %I1, %I9, %I17, %I33). If you enter a reference address not on a
byte boundary, the software will automatically adjust the reference address downwards
to the nearest byte boundary. The message, REF ADJ, is displayed to warn you of the
adjustment which has been made and the next parameter screen is not displayed as part
of this operation.

For example, if you tried to enter %I2 as a reference address, it would be automatically
adjusted down to the nearest word boundary, %I1. The current screen would be
displayed, showing the adjustment made along with an informative message indicating
that the change was made.

#0002 REF ADJ <S
P1 I0001_

For all double precision functions, the parameters are double-size words; each of these
parameters occupies two registers (32-bits), the one specified and the next higher
register.

For TMR, ONDTR, UPCTR, and DNCTR function blocks, and the SEQB function, the
location parameters are triple-size words. Therefore, the data occupies the register
specified plus the two following registers.

For the DOI/O function, if %I or %Q is being snapshot, the start and end parameters
must bracket a multiple of eight discrete points. To do this, the start parameter is

9

9-36 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

restricted to the beginning of a byte boundary (%I, %I9, %I17), and the end parameter is
restricted to the end of a byte boundary (%I8, %I16, %I24).

To program an instruction sequence which contains one or more functions or function
blocks, follow these guidelines:

1. A function or function block which has one or more Boolean inputs cannot be the
first instruction of an instruction sequence.

2. The Boolean output of a function or function block does not have to be connected to
any other logic. For example, a function or function block may terminate an
instruction sequence.

3. If a Boolean output of a function block is used to control other logic, it may only
control the enable input of another function or function block, or control an output
coil.

4. No contact instruction may follow a function or function block instruction in an
instruction sequence.

5. Functions and function blocks with multiple Boolean inputs cannot appear after
another function in an instruction sequence.

As function numbers are entered, the function mnemonic corresponding to the currently
entered number is displayed immediately to the right. If no mnemonic is displayed, the
current function number is not defined. The +/– key may be used to sequence through
function numbers in increasing order only.

For functions and function blocks with multiple Boolean inputs, the logic for each input
is programmed in the top-down order in which they appear in the function or function
block definition. For the ONDTR function block, this means the enable input logic is
programmed first.

A Function Block and its associated parameters are programmed into a single CPU logic
memory location called a step. This step contains the function type and each parameter
of this function.

The Up and Down cursor keys are used to view the next and previous steps,
respectively, of the program, from the current instruction step. Function parameters
cannot be viewed with these keys. The Function Type is programmed as the first item in
a step then the Left and Right cursor keys are used to view the next and previous
parameters, respectively, of a function. They are only valid if the current instruction step
is a function. New instruction steps may not be viewed with these keys.

9

9-37GFK-0402G Chapter 9 Statement List Programming Language

Section 1: Timers and Counters

Timers and Counters have operating values as well as programming parameters. One of
the operating values is also the same as a programming parameter. The operating values
are:

CURRENT VALUE: The current value is the present count or elapsed time since the
timer/counter started.

PRESET VALUE: The preset value indicates how many time units (tenth of a second
or hundredth of a second) or counts the function should delay from the time the
function received power flow to the time it passes power flow through it.

CONTROL WORD: The control word is used to store the state of the enable input,
Q output and the timer accuracy.

These values are located in and occupy three sequentially numbered register locations of
the register memory. The lowest numbered register of the three is the defining location
for this timer or counter.

Table 9-5. Operating Registers and Register Locations

Data Located in the Register
Consecutive

Registers

current value (CV)

preset value (PV)

control word

register 1 *

register 2

register 3

* Programmed as the Timer/Counter Location Register Address

The timer/counter location register (register 1) is the register number that is
programmed as parameter P3 (timer location) when programming a timer, and as
parameter P2 (counter location) when programming a counter. The data found in this
register is the current value of the timer or counter it represents. The preset value can be
found in the second of the three consecutive registers, which for a timer is programmed
as parameter P2, and for a counter is programmed as parameter P1. The third register of
the three consecutive registers has the control word stored in it.

Caution

Do not write to the third register of the three sequential registers which
contain Timer and Counter operating values. Changing the data in the
control information word may result in unexpected operation of the PLC.

When programming the preset parameter (which is P2 for a timer and P1 for a counter)
a special constant value of * 1 (minus 1) may be used. This special constant value of * 1
tells the controller to use the data located in the second register of the three sequential
operating registers as the preset value. Thus by programming a * 1 as the preset

9

9-38 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

parameter you can go to the data mode and call up the second operating register for a
specific counter or timer and load data into this register to represent the preset value.

Note

When programming a * 1 as the preset parameter value the preset data
is not stored in the program, and is retained only as a value in this
operating register.

9

9-39GFK-0402G Chapter 9 Statement List Programming Language

Stop-Watch Timer (TMR) Function 10
The stop-watch timer (TMR) is a conditionally executed function which provides simple
stop-watch timing. When the logic controlling the enable (EN) input passes power flow
to this function the current value starts at a value of zero and increments in steps which
are equal to the value programmed as the timer accuracy parameter P1. It continues
incrementing as long as the function receives power flow at its enable (EN) inputs, even
if the current value is greater then the preset value up to a decimal value of 32767.
When power flow is removed from the enable input the current value stops
incrementing and is reset to zero.

Power flow will pass through this function when the current value is equal to or greater
then the preset value (timer parameter P2). If power flow to the enable input is removed
power flow through this function is also removed. This Timer is retentive upon power
failure. When the CPU mode is changed to the Stop Mode and power flow is
maintained at the Enable input, the current value will stop incrementing and maintain
its value when returning to the Run Mode. The current value will continue to increment
starting from this maintained value.

Timing is done is increments of tenth (.1) of a second or hundredths (.01) of a second; the
preset value programmed as parameter P2 is a value that represents a number of these
timing increments. For example, assume that tenths of a second is programmed as the
timer accuracy for parameter P1 and the number 50 is a constant value programmed as
the preset parameter P2. Power flow through this function will take place after 50 tenths
of a second increments were recorded into the current value, which is 5 seconds after the
enable input receives and maintains power flow. If the timer accuracy was programmed
as hundredths of a second and the preset remained at 50, power flow would occur after
50 one hundredths of a second increments were recorded into the current value which is
0.5 seconds or one half second after the enable input received and maintained power
flow.

 | |
 (Logic for Enable Input)(enable) —| TMR |— Power flow output to
 |time | a coil or another function
 |(P1) |
 | |
 | |
 Preset Value —(P2)—|PV |
 |_____|
 (location)
 Address (P3)

—| TMR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. Must start with an LD element.

2. Type of function (Function 10).

3. Parameter P1 (timer accuracy), base value for timing increments;

1 = one hundredth of a second (.01 second),
10 = one tenth of a second (0.1 second).

4. Parameter P2 (preset time), a constant number or the number of a register that will
contain the preset value.

5. Parameter P3 (timer location), number of the first register of the three sequential
registers containing the operating values.

9

9-40 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies the valid memory types for each of the TMR function
block’s parameters:

Allowable Memory Types for TMR (Function 10)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Timer Accuracy (P01) •�

Preset Time (P02) • • • • • • • • •�

Timer Location (P03) •

� Only constants of 1, 10, and 100 are allowed.
� Only positive constants are allowed, except * 1 which indicates no preset parameter.

Timer Accuracy (P01): The timer accuracy parameter indicates the time base of the
timer. A constant of 1 indicates a time base of 0.01 seconds; 10 indicates a
time base of 0.1 seconds; and 100 indicates a time base of .001 seconds.

Preset Time (P02): The preset time parameter indicates the time period for the
stop-watch timer. If specified, it is indicated by a positive (only) 16-bit two’s
complement signed integer (0 ... 32,767). The constant * 1 indicates that no
preset time parameter is specified. For this case, the preset time will be
accessed from the timer data structure. (Operating Register)

Timer Location (P03): The timer location gives the address of a three-word data
structure which is used by the timer function block.

Programming Example for TMR Function

In the following example, power flow will be passed through the Timer to turn on
%Q0001 at a time of 2.5 seconds after input 1 is closed or input 2 is opened. The Time
Base or Timer Accuracy is a tenth of a second (.01); the Preset is a constant of 25, and
Location of this Timer is Register 1.

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————| TMR |——()——
 | | | |
 |%I0002 | | |
 |——]/[—— CONST —|PV |
 | +0025 | |
 | —————
 | %R0001

Statement List Representation

#0001: LD %I0001
#0002: OR NOT %I0002
#0003: FUNC 10 TMR

P1: 10
P2: 25
P3: %R0001

#0004: OUT %Q0001

9

9-41GFK-0402G Chapter 9 Statement List Programming Language

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

IA
LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OR NOT I 2_

Press the key sequence

OR
E

2 :
A I
I

A
NOT
F

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
FUNC 10 TMR

Press the key sequence

FUNC 0 :1
ONDTR

TMRor

#0003 TMR <S
P01

Press the key:ENT

9

9-42 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 TMR <S
P 10

Press the key sequence 01 :

#0003 TMR <S
P02

Press the key:ENT

#0003 TMR <S
P02 25_

Press the key sequence 52 :

#0003 TMR <S
P03

Press the key:ENT

#0003 TMR <S
P03 R 1_

Press the key sequence 1R :

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
OUT Q 1_

Press the key sequence

1 :
OUTM

OUT

AQ
Q

B

9

9-43GFK-0402G Chapter 9 Statement List Programming Language

On Delay (ONDTR) Function 13
The on-delay timer (ONDTR) is a conditionally executed function which provides
on-delay timing. When the logic controlling the enable (EN) input passes power flow to
this function the current value starts at a value of zero and increments as long as the
function receives power flow at its enable (EN) input even if the current value is greater
then the preset value up to a decimal value of 32767. The timing increments may be in
tenths of a second or hundredths or a second. When power flow is removed from the
enable input the current value stops incrementing and maintains its current value.
When power flow is restored to this functions enable input, the current value will
continue to increment starting from this maintained value.

Power flow will pass through this function when the current value of timing increments
is equal to or greater then the specified number of timing increments programmed in as
the preset value (timer parameter P2).

When the logic connected to the reset (R) input passes power to this function the current
value is reset to zero and the power flow through this function is also removed. Power
flow to the reset input is dominant over the enable input. That is, if power flow is
received at both the enable input and the reset input at the same time; the current value
will be set to a value of zero, it will not increment in value, and there will be no power
flow through the function.

The On Delay timer is retentive on power failure to the CPU, and when the mode is
changed from run to stop and back to run again. There is no automatic initialization of this
timer during power up, i.e. the current value does not go to zero unless this timer is reset.

 | |
 (Logic for Enable Input(enable) —|ONDTR|— Power flow output to
 |time | a coil or another function
 |(P1) |
 | |
 (Logic for Reset Input (reset) —|R |
 | |
 Preset Value—(P2)—|PV |
 |_____|
 (location)
 Address (P3)

—|ONDTR|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. Must start with an LD element.

2. Logic controlling the reset input from the left bus. This logic must start with an LD
element.

3. Type of function (Function 13).

4. Parameter (P1) Timer Accuracy or base value for timing increments;

1 = one hundredth of a second (.01 second),
10 = one tenth of a second (0.1 second).

5. Parameter (P2) Preset Time, a constant number or the number of a register that will
contain the preset value.

6. Parameter (P3) Timer Location, number of the first register of the three sequential
registers containing the operating values.

9

9-44 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies the valid memory types for each of the ONDTR function
block’s parameters:

Allowable Memory Types for ONDTR (Function 13)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Timer Accuracy (P01) •�

Preset Time (P02) • • • • • • • • •�

Timer Location (P03) •

� Only constants of 1, 10, and 100 are allowed.
� Only positive constants are allowed, except —1 which indicates no preset parameter.

Timer Accuracy (P01): The timer accuracy parameter indicates the time base of the
timer. A constant of 1 indicates a time base of 0.01 seconds; 10 indicates
time base of 0.1 seconds; and 100 indicates a time base of .001 seconds.

Preset Time (P02): The preset time parameter indicates the time period for the on-delay
timer. It is indicated by a positive (only) 16-bit two’s complement signed
integer (0 ... 32,767). The constant * 1 indicates that no preset time
parameter is specified. For this case, the preset time will be accessed from
the timer data structure (Operating Registers).

Timer Location (P03): The timer location gives the address of a three-word data
structure which is used by the timer function block.

Programming Example for ONDTR Function

In the following example power flow will be passed through the Timer to turn on
%Q0002 after a specified time delay from the time input number 1 closes or internal
contact 2 is turned on. The time delay will be the number of tenths of a second specified
by the decimal number stored in Register 90. A not contact of coil %Q0001 is
programmed to the reset input, thus when coil %Q0001 is off (current flow will occur
through the reset logic). The current value will not increment and is set to zero.

The Time Base or Accuracy P1 is a tenth of a second (0.1).
The Preset P2 is a number stored in register 90.
The Location Register P3 is Register 4.

Ladder Diagram Representation

 |%I0001 ————— %Q0002
 |——] [———————————|ONDTR|——()——
 | | | |
 |%M0002 | | |
 |——] [—— ———|R |
 | | | |
 |%Q0001 | | |
 |——]/[——————— | |
 | | |
 %R0090 —|PV |
 —————
 %R0004

9

9-45GFK-0402G Chapter 9 Statement List Programming Language

Statement List Representation

 #0001: LD %I0001
 #0002: OR %M0002

#0003: LD NOT %Q0001
#0004: FUNC 13 ONDTR

P1: 10
P2: %R0090
P3: %R0004

#0005: OUT %Q0002

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OR M 2_

Press the key sequence

OR
E

2 :
T

C
M

#0003 INS <S
_

Press the key:ENT

9

9-46 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Next, the logic for the reset input is programmed.

#0003 INS <S
 LD NOT Q 1_

Press the key sequence

LD :
F
 NOT

AQ
Q

B
1

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 13_ ONDTR

Press the key sequence

31 :FUNC

#0004 ONDTR <S
P1 _

Press the key:ENT

#0004 ONDTR <S
P1 10_

Press the key sequence 01 :

#0004 ONDTR <S
P2 _

Press the key:ENT

#0004 ONDTR <S
P2 R 90_

Press the key sequence

09 :R

#0003 ONDTR <S
P3 _

Press the key:ENT

9

9-47GFK-0402G Chapter 9 Statement List Programming Language

#0004 ONDTR <S
P3 R 4_

Press the key sequence 4R :

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 2_

Press the key sequence

2 :OUTM

OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-48 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Off Delay (OFDTR) Function 14

The off-delay timer (OFDTR) increments while power flow is off, and resets to zero,
when power flow is on. Time may be counted in tenths of seconds (the default
selection), or hundredths of seconds. The range is 0 to +32767 time units. The state of
this timer is retentive on power failure; no automatic initialization occurs at power-up.

When the OFDTR first receives power flow, it passes power to the right and clears the
current value (CV) located in the operating registers of the timer. The output remains on
as long as the function receives power flow. If the function stops receiving power flow
from the left, it continues to pass power to the right and the timer starts accumulating
time in CV. Each time the function is invoked with the enabling logic set OFF, the
current value is updated to reflect the time since the timer was turned off. When the
current value (CV) is equal to or greater than the preset value (PV), the function stops
passing power flow to the right.

When the function receives power flow again, the current value resets to zero and the
output is enabled again.

ENABLE

Q

A B C D E F G H

A = ENABLE and Q both go high; timer is reset (CV = 0).

B = ENABLE goes low; timer starts accumulating time.

C = CV reaches PV; Q goes low, and timer stops accumulating time.

D = ENABLE goes high; timer is reset (CV = 0).

E = ENABLE goes low; timer starts accumulating time.

F = ENABLE goes high; timer is reset (CV=0).

G = ENABLE goes low; timer begins accumulating time.

H = CV reaches PV; Q goes low, and timer stops accumulating time.

 | |
 (Logic for Enable Input)(enable) —|OFDTR|— Power flow output to
 |time | a coil or another function
 |(P1) |
 | |
 | |
 | |
 Preset Value—(P2)—|PV |
 |_____|
 (location)
 Address (P3)

—|OFDTR|—

9

9-49GFK-0402G Chapter 9 Statement List Programming Language

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. Must start with an LD element.

2. Type of function (Function 14)

3. Parameter (P1) Timer Accuracy or base value for timing increments;
1 = one hundredth of a second (.01 second),
10 = one tenth of a second (0.1 second).

4. Parameter (P2) Preset Time, a constant number or the register that will contain the
preset value.

5. Parameter (P3) Timer Location, the first register of the three sequential registers
containing the operating values.

Parameters for OFDTR (Function 14)

The following table specifies the valid memory types for each of the OFDTR function
block’s parameters:

Allowable Memory Types for OFDTR (Function 14)

Parameter %I %Q %M %T %G %S %R %A
I

%A
Q

Constant

Timer Accuracy (P01) •�

Preset Time (P02) • • • • • • • • •�

Timer Location (P03) •

� Only constants of 1, 10, and 100 are allowed.
� Only positive constants are allowed, except —1 which indicates no preset parameter.

Timer Accuracy (P1): The timer accuracy parameter indicates the time base of the timer.
A constant of 1 indicates a time base of 0.01 second; 10 indicates a time base of
0.1 seconds; and 100 indicates a time base of .001 seconds.. Other values are
not accepted as a valid parameter value.

Preset Time (P2): The preset time parameter indicates the time period for the off-delay
timer. It is indicated by a positive (only) 16-bit twos complement signed integer
(0...32,767). A constant of -1 indicates that no preset time parameter is specified.
In this case, the preset time will be accessed from the timer’s Operating Registers.

Timer Location (P3): The timer location gives the address of a three-word data
structure used by the timer function block.

9

9-50 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for OFDTR Function

In the following example, power flow will be passed through the OFDTR to turn on
%Q0001 when %I001 is enabled. After 2.5 seconds %Q0001 goes from being closed to
opened. The Time Base or Timer Accuracy is a tenth of a second (.1); the Preset is a
constant of 25, and the Location of this OFDTR is Register 1.

Ladder Diagram Representation

.1
Seconds

OFDTR

PV

%R0001

%Q0001
()

CONST
+0025

%I0001
] [

Statement List Representation

#0001: LD %I0001
#0002: FUNC 14 OFDTR

P1: 10
P2: 25
P3: %R0001

#0003: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

9

9-51GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 14_ OFDTR

Press the key sequence

41 :FUNC

Or press the key 3 times
ONDTR

TMR

#0002 OFDTR <S
P01 _

Press the key:ENT

#0002 OFDTR <S
P1 10_

Press the key sequence 01 :

#0002 OFDTR <S
P02 _

Press the key:ENT

#0002 OFDTR <S
P02 25_

Press the key sequence 5 :2

#0002 OFDTR <S
P03 _

Press the key:ENT

9

9-52 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 OFDTR <S
P03 R 1_

Press the key sequence 1R :

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

2 :OUTM

OUT

AQ
QB

#0004 INS <S
_

Press the key:ENT

9

9-53GFK-0402G Chapter 9 Statement List Programming Language

Up Counter (UPCTR) Function 15

The up counter (UPCTR)is a conditionally executed function which provides incremental
counting. Each time the logic controlling the count input goes from a condition of no
power flow to a condition of power flow to this function the current value will be
incremented by a value of one. The current value will increment until the decimal
number 32767 is reached. This up counter will pass power flow when the current value
is equal to or greater than the the number programmed as the preset value.

When the logic controlling the reset (R) input passes power flow to the reset input the
current value will be reset to zero and the power flow through this function will be
removed. Power flow to the reset input is dominant over the count input. If power flow
is being received at the reset input when the count input goes from a condition of no
power flow to a condition of power flow the current value will stay at a value of zero
and will not increment. These power flow conditions are shown in the following table
(this table is applicable to both the Up Counter and Down Counter functions).

Power Flow
Condition Power Flow at Counter Input Power Flow Through This Counter

at
Reset Input

Previous
Condition

Current
Execution Counter Execution CV < PV CV w PV

No No No CV does not increment No Yes*
No No Yes CV increments by 1 No Yes
No Yes No CV does not increment No Yes
No Yes Yes CV does not increment No Yes
Yes No No CV resets to zero Off Off
Yes No Yes CV resets to zero Off Off
Yes Yes No CV resets to zero Off Off
Yes Yes Yes CV resets to zero Off Off

CV=cur rent value, PV=preset value, Yes=power flow, No=no power flow, <=less than, w =greater than or equal to
* When there is no power flow to the enable input and the preset value is changed to less than the current count, power
 flow will pass through this function.

The up counter is retentive on power failure to the CPU, and when the mode is changed
from run to stop and back to run again. There is no automatic initialization during
power up; the current value does not go to zero unless this up counter is reset.

 | |
 (Logic for controlling (count) —|UPCTR|— Power flow output to
 counting) | | a coil or another function
 | |
 | |
 (Logic for controlling (reset) —|R |
 the Reset) | |
 Preset Value (P1) —|PV |
 |_____|
 (location)
 Address (P2)

—|UPCTR|—

9

9-54 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Elements and Sequential Order of Programming

1. Logic controlling the count input from the left bus. Must start with an LD element.

2. Logic controlling the reset input from the left bus. This logic must start with an LD
element.

3. Type of function (Function 15).

4. Parameter P1 (preset value). This can be a constant number or the number of a
register that will contain the preset value.

5. Parameter P2 (counter location), number of the first register of the three sequential
registers containing the operating values.

The following table specifies which memory types are valid for each of the UPCTR
function block’s parameters:

Allowable Memory Types for UPCTR (Function 15)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Preset Value (P01) • • • • • • • • •�

Counter Location (P02) •

� Only positive constants are allowed, except * 1 which indicates no preset parameter.

Preset Value (P01): The preset value parameter indicates the count range for the up
counter. If specified, it is indicated by a positive (only) 16-bit two’s
complement signed integer (0 ... 32,767). The constant * 1 indicates that no
preset count parameter is specified. For this case, the preset count will be
accessed from the counter data structure (Operating Register).

Counter Location (P02): The counter location gives the address of a three-word data
structure which is used by the counter function block.

Programming Example for UPCTR Function

In the following example power flow will be passed through the Counter Function to
turn on %Q0001 after the input %I0001 goes from an open state to a closed state 8 times
(for a count of 8). Each time input 1 goes from open line (no power flow) to closed
(power flow) the current value will increment by one. When input %I0002 closes (gives
power flow), the reset line is activated setting the current count to zero and preventing
power flow through this counter, and %Q0001 is turned OFF. The preset value is a
constant 8; the location register is register 10.

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————|UPCTR|——()——
 | | |
 |%I0002 | |
 |——] [———————————|R |
 | |
 | |
 00008 —|PV |
 —————
 (Location)
 %R0010

9

9-55GFK-0402G Chapter 9 Statement List Programming Language

Statement List Representation

#0001: LD %I0001
#0002: LD %I0002
#0003: FUNC 15 UPCTR

P1: 8
P2: %R0010

#0004: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 LD I 2_

Press the key sequence

:
A I
IA

LD 2

#0003 INS <S
_

Press the key:ENT

9

9-56 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
FUNC 15_ UPCTR

Press the key sequence

51 :FUNC
DNCTR

UPCTRor

#0003 UPCTR <S
P01_

Press the key:ENT

#0003 UPCTR <S
P01_ 8_

Press the key sequence 8 :

#0003 UPCTR
P02 _

Press the key:ENT

#0003 UPCTR <S
P02 R 10_

Press the key sequence

01 :R

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0005 INS <S
_

Press the key:ENT

9

9-57GFK-0402G Chapter 9 Statement List Programming Language

Down Counter (DNCTR) Function 16

The down counter (DNCTR)is a conditionally executed function which provides
decremental counting from a preset value. Each time the logic controlling the count
input goes from a condition of no power flow to a condition of power flow the current
value will be decremented by a value of one. The current value will decrement in value
from the preset value until a decimal value of * 32768 is reached. This down counter will
pass power flow when the current value is equal to or less then zero.

When the logic controlling the reset (R) input passes power flow to the reset input the
current value will be set to the value programmed as the preset value and power flow
through the function will be removed. Power flow to the reset input is dominant over
the count input. That is if power flow is being received at the reset input when the count
input goes from a condition of no power flow to a condition of power flow the current
value will stay at the value programmed as the preset value and will not decrement.

The down counter is retentive on power failure to the CPU, and when the mode is
changed from run to stop and back to run again. There is no automatic initialization of
the down counter during power up, i.e.: the current value does not go to the preset
value unless the down counter is reset.

 | |
 (Logic for count input) (count) —|DNCTR|— Power flow output to
 | | a coil or another function
 | |
 | |
 (Logic for reset input (reset) —|R |
 | |
 Preset Value —(P1) —|PV |
 |_____|
 (location)
 Address (P2)

—|DNCTR|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the count input from the left bus. Must start with an LD element.

2. Logic controlling the reset input from the left bus. This logic must start with an LD
element.

3. Type of function (Function 15).

4. Parameter P1 (preset value). This can be a constant number or the number of a
register that will contain the preset value.

5. Parameter P2 (counter location), number of the first register of the three sequential
registers containing the operating values.

9

9-58 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies which memory types are valid for each of the DNCTR
function block’s parameters:

Allowable Memory Types for DNCTR (Function 16)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Preset Value (P01) • • • • • • • • •�

Counter Location (P02) •

� Only positive constants are allowed, except –1 which indicates no preset parameter.

Preset Value (P01): The preset value parameter indicates the count range for the down
counter. If specified, it is indicated by a positive (only) 16-bit two’s
complement signed integer (0 ... 32,767). The constant –1 indicates that no
preset count parameter is specified. For this case, the preset count will be
accessed from the counter data structure.

Counter Location (P02): The counter location gives the address of a three-word data
structure which is used by the counter function block.

Programming Example for DNCTR Function

In the following example each time input %I0001 goes from open (no power flow) to
closed (power flow) the current value will decrement by a value of one. When the
current value is less then or equal to zero, power flow through this function will take
place and output coil %Q0001 will be turned on. In this example the starting number is
8 (the preset value), thus after 8 counts %Q0001 will turn on. When input %I0002 closes
power flow is removed (coil %Q0001 will turn off) and the current value will be changed
to 8, the preset value.

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————|DNCTR|——()——
 | | |
 |%I0002 | |
 |——] [———————————|R |
 | |
 | |
 00008 —|PV |
 —————
 (Location)
 %R0061

Statement List Representation

#0001: LD %I0001
#0002: LD %I0002
#0003: FUNC 16 DNCTR

P1: 8
P2: %R0061

#0004: OUT %Q0001

9

9-59GFK-0402G Chapter 9 Statement List Programming Language

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 LD I 2_

Press the key sequence

:
A I

IA
LD 2

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
FUNC 16 DNCTR

Press the key sequence

61FUNC
DNCTR

UPCTRor :
DNCTR

UPCTR

#0003 DNCTR <S
P01_

Press the key:ENT

9

9-60 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 DNCTR <S
P01_ 8_

Press the key sequence 8 :

#0003 DNCTR <S
P02 _

Press the key:ENT

#0003 DNCTR <S
P02 R 61 _

Press the key sequence

16R :

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0005 INS <S
_

Press the key:ENT

9

9-61GFK-0402G Chapter 9 Statement List Programming Language

Section 2: Arithmetic Functions

This section describes the arithmetic functions for Series 90-30 and 90-20 PLCs.
Arithmetic functions provide both single and double precision addition, subtraction,
multiplication and division operators:

Abbreviation Function Description

ADD Addition Add two numbers.

DPADD Double Precision Addition Adds two signed double word numbers.

SUB Subtraction Subtract one number from another.

DPSUB Double Precision Subtraction Subtracts one signed double word number from another.

MUL Multiplication Multiply two numbers.

DPMUL Double Precision Multiplication Multiplies one signed double word number by another.

DIV Division Divide one number by another, giving only the quotient
as a result.

DPDIV Double Precision Division Divides one signed double word number by another,
giving only the quotient as a result.

MOD Modulo Division Divide one number by another, giving a remainder as a
result.

DPMOD Double Precision Modulo Division Divides one signed double word number by another,
giving the remainder as a result.

SQRT Square Root Finds the square root of an integer.

DPSQRT Double Precision Square Root Finds the square root of a double precision integer.

Note

Division and modulo division are similar functions which differ in their
output; division finds a quotient, while modulo division finds a remainder.

9

9-62 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Addition (ADD) Function 60
Double Precision Addition (DPADD) Function 61

Two addition functions are available. The signed addition function (ADD) is a
conditionally executed function which adds one signed integer value to another, and the
double precision signed addition function (DPADD) is a conditionally executed function
which adds one signed double word value to another.

When power flow to the enable (EN) input occurs, and the function is executed by the CPU
a new signed addition (for ADD) or double precision signed addition (for DPADD) will take
place. During a signed addition or double precision signed addition execution the value
located in P1 (input 1) is added to the value in P2 (input 2). The result of this addition is
stored in the memory location specified by P3 (Q). The ADD and DPADD functions operate
on INT (signed integer) and DINT (double precision integer) data respectively. The INT
ADD function is Function 60 and the DINT ADD function is function 61.

ADD Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(16—bit two’s complement signed integers) and must be within the range –32768 to
+32767. If the addition results in overflow, a value outside of the range –32768 to
+32767, the results of the addition will be set to the largest possible value, either –32768
or +32767. The sign is set to show the direction of the overflow. This function will pass
power flow when there is power flow to the enable input and the results of the addition
are within the range –32768 to +32767 (no overflow).

If discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on a byte boundary.

DPADD Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(32-bit two’s complement signed integers) and must be within the range * 2,147,483,648
to +2,147,483,647. When using the HHP to program a constant into parameters P1 or P2
the constant must be in the range of a single precision number (* 32768 to +32767).

The memory locations for P1, P2, and P3 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words, or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The HHP can only display a maximum of 16 bits (one register, AI, or AQ word) at a time,
therefore a double precision number outside of the range * 32768 to +32767 cannot be
monitored using the HHP. The hexadecimal or binary number for each register, AI, or
AQ word can be programmed or monitored provided that they are placed together
outside of the CPU to form the 32 Bit double precision signed number.

If the double precision addition results in overflow, a value outside of the range
* 2,147,483,648 to +2,147,483,647, the results of the addition will be set to the largest
possible value, * 2,147,483,648 or +2,147,483,647. The sign is set to show the direction of
the overflow. The DPADD function will pass power flow when there is power flow to
the enable input and the results of the addition are within the range –2,147,483,648 to
+2,147,483,647 (no overflow).

9

9-63GFK-0402G Chapter 9 Statement List Programming Language

P1 (Input 1) + P2 (Input 2) = P3 (Q)

 | |
 (Logic for controlling (enable) —| ADD |— Power flow output to
 power flow) |DINT | a coil or another function
 | |
 (Value to be added) — (P1)—|I1 Q|—(P3)— (Location where result is
 (Value to be added) — (P2)—|I2 | stored)
 |_____|

—| ADD |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 60 (ADD) or Function 61 (DPADD).

3. Parameter P1 (input 1), one of the values to be added. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2), the other value to be added.

5. Parameter P3 (Q), the memory location where the result is to be stored.

The following tables specify the valid memory types for each of the parameters for the
ADD and DPADD functions.

Allowable Memory Types for ADD (Function 60)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Output Q (P03) • • • • • • • •

Allowable Memory Types for DPADD (Function 61)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

Output Q (P03) • • •

� Note that double precision constants are constrained to the range —32,768 to +32,767.

9

9-64 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

202Programming Example for Addition

This example of programming uses the DPADD function. In this example a contact from
a one shot (OUT +) is used as the controlling element for power flow to the enable
function. When input %I0001 closes (passes power flow), %M0001 will pass power flow
to the enable input of the ADD function for one sweep of the CPU scan. Therefore, the
addition will occur only once. When the additions take place a value located in registers
R201 and R202 as indicated by P1 is added to the constant 25 specified by P2. The results
of this addition is stored in registers R203 and R204 as specified by P3. If the value of this
addition is in the range * 2,147,483,648 to +2,147,483,647 (no overflow) power flow will
be passed on to output coil %Q0001 for only one scan of the CPU (only while the enable
input has power flow). For example, register 201 has the value of 50 and register 203 has
a value of 20 in it before input 1 closes. After input 1 closes the value in register 203 will
be 75 (50 + 25 = 75).

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [——(↑)——
 |
 |
 |%M0001 ————— %Q0001
 |——] [———| ADD |——()——
 | |DINT |
 | |
 %R0201 —|I1 Q|—%R0203
 | |
 CONST —|I2 |
 +0025 —————

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001
#0004: FUNC 61 DPADD

 P1: %R0201
 P2: 25

 P3: %R0203
#0005: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

9

9-65GFK-0402G Chapter 9 Statement List Programming Language

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I

IA
LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :
T

C
M

OUTM
OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 61_ DPADD

Press the key sequence

16 :FUNC

#0004 DPADD <S
P01 _

Press the key:ENT

9

9-66 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 DPADD <S
P01 R 201_

Press the key sequence

02 :R 1

#0004 DPADD <S
P02_

Press the key:ENT

#0004 DPADD <S
P02 25

Press the key sequence 52 :

#0004 DPADD <S
P03_

Press the key:ENT

#0004 DPADD <S
P03 R 203_

Press the key sequence

02 :R 3

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-67GFK-0402G Chapter 9 Statement List Programming Language

Subtraction (SUB) Function 62
Double Precision Subtraction (DPSUB) Function 63

Two subtraction functions are available. The signed subtraction function (SUB) is a
conditionally executed function which subtracts one signed integer value from another.
The double precision signed subtraction function (DPSUB) is a conditionally executed
function which subtracts one signed double word value from another.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new signed subtraction (for
SUB) or double precision signed subtraction (for DPSUB) will take place. During a
signed subtraction or double precision signed subtraction execution the value in P2
(input 2) is subtracted from the value in P1 (input 1). The results of this signed or double
precision signed subtraction is stored in the memory location specified by P3 (Q). The
SUB and DPSUB functions operate on INT (signed integer) and DINT (double precision
signed integer) data respectively. The INT SUB function is Function 62 and the DINT
SUB function is Function 63.

SUB Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(16-bit two’s complement signed integers) and must be with the range * 32768 to
+32767. If the subtraction results in overflow, a value out side of the range * 32768 to
+32767, the results of the subtraction will be set to the largest possible value * 32768 or
+32767. The sign is set to show the direction of the overflow.

This function will pass power flow when there is power flow to the enable input and the
results of the subtraction are within the range * 32768 to +32767 (no overflow). If
discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on a byte boundary.

DPSUB Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(32-bit two’s complement signed integers) and must be within the range * 2,147,483,648
to +2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(* 32768 to +32767).

The memory locations for P1, P2, and P3 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number to be stored. The address
of the lower of the two registers, AI words, or AQ words is used as the reference to store
and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range * 32768 to
+32767 cannot be monitored using the Hand-Held Programmer. The hexadecimal or
binary number for each register, AI, or AQ word may be programmed or monitored
provided that they are placed together outside of the CPU to form the 32 Bit double
precision signed number.

If the subtraction results in overflow, a value outside of the range * 2,147,483,648 to
+2,147,483,647, the results of the subtraction will be set to the largest possible value
* 2,147,483,648 or +2,147,483,647. The sign is set to show the direction of the overflow.
This function will pass power flow when there is power flow to the enable input and the
results of the addition are within the range * 2,147,483,648 to +2,147,483,647 (no
overflow).

9

9-68 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

P1 (Input 1) - P2 (Input 2) = P3 (Q)

 | |
 (Logic for controlling (enable) —| SUB |— Power flow output to
 power flow) |DINT | a coil or another function
 | |
 (Value to be subtracted from)—(P1)—|I1 Q|—(P3)—(The result is stored here)
 | |
 (Value to be subtracted by)—(P2)—|I2 |
 Constant or Location |_____|

—| SUB |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 62 (SUB) or Function 63 (DPSUB).

3. Parameter P1 (input 1): value to be subtracted from. This can be a constant number
or a memory location where the value is stored.

4. Parameter P2 (input 2): value to be subtracted. This can be a constant number or a
memory location where the value is stored.

5. Parameter P3 (Q): memory location where the result is to be stored.

The following tables specify the valid memory types each of the parameters for the SUB
and DPSUB functions.

Allowable Memory Types for SUB (Function 62)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Output Q (P03) • • • • • • • •

Allowable Memory Types for DPSUB (Function 63)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

Output Q (P03) • • •

� Note that double precision constants are constrained to the range –32,768 to +32,767.

9

9-69GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Subtraction

This example of programming uses the DPSUB function. In this example a contact from
a one shot (OUT +) is used as the controlling element for power flow to the enable
function. When input %I0001 closes (passes power flow), %M0001 will pass power flow
to the enable input of the SUB function for one sweep of the CPU scan. Therefore, the
subtraction will occur only once. When the subtraction takes place a decimal number
representation of the binary bits located in memory locations AI33 through AI64 as
specified by P2 will be subtracted from the value stored in register 200 and 201 as
specified by P1. The results will be stored in registers R203 and R204 as specified by P3.
If the value of this subtraction is in the range of * 2,147,483,648 to +2,147,483,647 (no
overflow) power flow will be passed on to the coil %Q0001 for only one CPU scan (only
while the enable input receives power flow). For example, if register 200 has the value of
50 and and the decimal value of AI33 through AI64 is 70. After input 1 closes the value
in register 203 will be * 20 (50 * 70= * 20).

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [———(↑)——
 |
 |
 |%M0001 ————— %Q0001
 |——] [———| SUB |———()——
 | |DINT |
 | |
 %R0200 —|I1 Q|—%R0203
 | |
 %AI0033—|I2 |
 —————

Statement List Representation

#0001: LD %I0001
 #0002: OUT+ %M0001

#0003: LD %M0001
#0004: FUNC 63 DPSUB

 P1: %R200
P2: %AI33
P3: %R0203

#0005: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

9

9-70 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0001 INS <S
 LD I 1_

Press the key sequence

:A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :
T

C
M

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 63_ DPSUB

Press the key sequence

36 :FUNC

#0004 DPSUB <S
P01 _

Press the key:ENT

9

9-71GFK-0402G Chapter 9 Statement List Programming Language

#0004 DPSUB <S
P01 R 200_

Press the key sequence

02 :R 0

#0004 DPSUB <S
P02_

Press the key:ENT

#0004 DPSUB <S
P02 AI 33_

Press the key sequence

33 :
A I
IA

A I
IA

#0004 DPSUB <S
P03_

Press the key:ENT

#0004 DPSUB <S
P03 R 203_

Press the key sequence

02 :R 3

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-72 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Multiplication (MUL) Function 64
Double Precision Multiplication (DPMUL) Function 65

Two multiplication functions are available. The signed multiplication function (MUL) is a
conditionally executed function which multiplies one signed integer word value by
another. The double precision signed multiplication function (DPMUL) is a conditionally
executed function which multiplies one signed double word value by another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed multiplication (for
MUL) or double precision signed multiplication (for DPMUL) will take place. During a
signed or double precision signed multiplication execution the value in P1 (input 1) is
multiplied by the value in P2 (input 2). The results of this multiplication is stored in the
memory location specified by P3 (Q). The MUL and DPMUL functions operate on INT
(signed integer) and DINT (double precision integer) data respectively. The INT MUL
function is Function 64 and the DINT MUL function is Function 65.

MUL Function Description

 The three values specified by parameters P1, P2, and P3 must be the same data type
(16-bit two’s complement signed integers) and must be within the range * 32768 to
+32767. If the signed multiplication results in overflow, a value outside of the range
* 32768 to +32767, the results of the multiplication will be set to the largest possible
value * 32768 or +32767. The sign is set to show the direction of the overflow.

This function will pass power flow when there is power flow to the enable input and the
results of the multiplication are within the range * 32768 to +32767 (no overflow).

If discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on a byte boundary.

DPMUL Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(32-bit two’s complement signed integers) and must be with in the range * 2,147,483,648
to +2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(* 32768 to +32767).

The memory locations for P1, P2, and P3 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range * 32768 to
+32767 cannot be monitored using the Hand-Held Programmer. The hexadecimal or
binary number for each register, AI, or AQ word may be programmed or monitored
provided that they are placed together outside of the CPU to form the 32 Bit double
precision signed number.

If the multiplication results in overflow, a value outside of the range –2,147,483,648 to
+2,147,483,647, the results of the multiplication will be set to the largest possible value
–2,147,483,648 or +2,147,483,647. The sign is set to show the direction of the overflow.
This function will pass power flow when there is power flow to the enable input and the
results of the multiplication are within the range –2,147,483,648 to +2,147,483,647 (no
overflow).

9

9-73GFK-0402G Chapter 9 Statement List Programming Language

P1 (Input 1) x P2 (Input 2) = P3 (Q)

 | |
 (Logic for controlling (enable) —| MUL |— Power flow output to
 power flow) |DINT | a coil or another function
 | |
 (Value to be multiplied) —(P1)—|I1 Q|—(P3)—(The result is stored in
 | | this location)
 (Other value to be multiplied)—(P2)—|I2 |
 |_____|

—| MUL |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 64 (MUL) or Function 65 (DPMUL).

3. Parameter P1 (input 1): value to be multiplied. This can be a constant number or a
memory location where the value is stored.

4. Parameter P2 (input 2): the other value being multiplied. This can be a constant
number or a memory location where the value is stored.

5. Parameter P3 (Q): memory location where the result is to be stored.

The following tables specify which memory types are valid for each of the parameters
for the MUL and DPMUL functions.

Allowable Memory Types for MUL (Function 64)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Output Q (P03) • • • • • • • •

Allowable Memory Types for DPMUL (Function 65)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

Output Q (P03) • • •

� Note that double precision constants are constrained to the range * 32,768 to +32,767.

9

9-74 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for Multiplication

This programming example uses the DPMUL function. In this example a contact from a
one shot (OUT +) is used as the controlling element for the power flow to the enable
input of the multiply function. When input %I0001 closes (passes power flow), %M0001
will pass power flow to the enable input of the multiply function for only one sweep of
the CPU scan. Therefore, the multiplication will only occur once each time input 1 is
closed. When the multiplication takes place a value located in registers 199 and 200 as
specified by P1 is multiplied by the value located in registers 201 and 202 as specified by
P2. The results of this multiplication is stored in registers 203 and 204 as specified by P3.
If the value of this multiplication is in the range * 2,147,483,648 to +2,147,483,647 power
flow will be passed on to the output coil %Q0001 for only one scan of the CPU (only
while the enable input has power flow). For example, if register 199 has a value of 75 in
it and register 201 has a value of 20 in it, after input 1 closes the value in register 203 will
be 1500 (75 x 20 = 1500).

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [———(↑)—
 |
 |
 |%M0001 ————— %Q0001
 |——] [———| MUL|——()—
 | | DINT|
 | |
 R0199 P1—|I1 Q|—%R0203
 | |
 R0201 P2—|I2 |
 —————

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001

 #0003: LD %M0001
#0004: FUNC 65 DPMUL

P1: %R0199
P2: %R0201
P3: %R0203

#0005: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

9

9-75GFK-0402G Chapter 9 Statement List Programming Language

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :
T

C
M

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 65_ DPMUL

Press the key sequence

56 :FUNC

#0004 DPMUL <S
P01 _

Press the key:ENT

9

9-76 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 DPMUL <S
P01 R 199_

Press the key sequence

91 :R 9

#0004 DPMUL <S
P02_

Press the key:ENT

#0004 DPMUL <S
P02 R 201_

Press the key sequence

02 :R 1

#0004 DPMUL <S
P03_

Press the key:ENT

#0004 DPMUL <S
P03 R 203_

Press the key sequence

02 :R 3

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
Q

B

#0006 INS <S
_

Press the key:ENT

9

9-77GFK-0402G Chapter 9 Statement List Programming Language

Division (DIV) Function 66
Double Precision Division (DPDIV) Function 67

Two division functions are available. The signed division function (DIV) is a
conditionally executed function which divides one signed word value by another and
gives only the quotient as the result. The double precision signed division function
(DPDIV) is a conditionally executed function which divides one signed double word
value by another and gives only the quotient as a result.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed division (for DIV) or
double precision signed division (for DPDIV) will take place. During a signed division or
double precision signed division execution the value in P1 (input 1) is divided by the
value in P2 (input 2). The results of this signed division is the quotient only (the
remainder is lost) and is stored in the memory location specified by P3 (Q). To obtain the
remainder use the Modulo Division Function 68 (for signed division) or Double precision
Module Division Function 69 (for double precision division). Functions 68 and 69 find
only the remainder and the quotient is lost.

DIV Function Description

 The three values specified by parameters P1, P2, and P3 must be the same data type
(16-bit two’s complement signed integers) and must be within the range * 32768 to
+32767. If an attempt to divide by zero is made the quotient will be set to either * 32768
or +32767 depending on the sign of the number being divided and no power flow will
pass through this function.

This function will pass power flow when there is power flow to the enable input and no
attempt has been made to divide by zero. If discrete memory types are used for
parameters P1, P2, and P3 the beginning address must be on a byte boundary.

DPDIV Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(32-bit two’s complement signed integers) and must be within the range * 2,147,483,648
to +2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(* 32768 to +32767).

The memory locations for P1, P2, and P3 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range * 32768 to
+32767 can not be monitored using the Hand-Held Programmer. The hexadecimal or
binary number for each register, AI, or AQ word may be programmed or monitored
provided that they are placed together outside of the CPU to form the 32 Bit double
precision signed number.

If the division results in overflow, a value outside of the range * 2,147,483,648 to
+2,147,483,647, the results of the division will be set to the largest possible value
* 2,147,483,648 or +2,147,483,647. The sign is set to show the direction of the overflow.
This function will pass power flow when there is power flow to the enable input and the

9

9-78 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

results of the division are within the range * 2,147,483,648 to +2,147,483,647 (no
overflow).

To prevent multiple divisions from taking place, it is advisable to have the power flow to
the enable input controlled by a contact from a one shot element (OUT+ or OUT*).

*P1 (Input 1) B P2 (Input 2) = P3 (Q) quotient

 | |
 (Logic for controlling (enable) —| DIV |— Power flow output to
 power flow) |DINT | a coil or another function
 | |
 (Value to be divided) —(P1)—|I1 Q|—(P3)—(The result is stored here)
 (dividend) | | (quotient)
 (Value to be divided by) —(P2)—|I2 |
 (divisor) |_____|

 *P1 divided by P2, result stored in P3

—| DIV |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 66 (DIV) or Function 67 (DPDIV).

3. Parameter P1 (input 1): value to be divided (dividend). This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the divisor. This can be a constant number or a memory
location where the value is stored.

5. Parameter P3 (Q): memory location where the result (quotient) is to be stored.

The following tables specify which memory types are valid for each of the parameters
for the DIV and DPDIV functions.

Allowable Memory Types for DIV (Function 66)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Output Q (P03) • • • • • • • •

Allowable Memory Types for DPDIV (Function 67)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

Output Q (P03) • • •

� Note that double precision constants are constrained to the range * 32,768 to +32,767.

9

9-79GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Division

This example of programming uses the DPDIV function. In this example a contact from
a one shot (OUT +) is used as the controlling element for the power flow to the enable
input of the divide function. When input %I0001 closes (passes power flow), %M0001
will pass power flow to the enable input of the divide function for only one sweep of the
CPU scan. Therefore, the division will only occur once each time input 1 is closed.
When the division takes place a value located in registers 199 and 200 as specified by P1
is divided by the value located in registers 201 and 202 as specified by P2. The results of
this division is stored in registers 203 and 204 as specified by P3. If the value in register
201 is not zero (divide by zero) power flow will be passed through this function to turn
on output Q1 for only one CPU scan (only while the enable input has power flow. For
example, if register 199 and 200 has a value of 50 and register 201 and 202 has a value of
4 then register 203 and 204 will have a value of 12 after input 1 is closed. 50 B 4 = 12.50,
only the quotient is given as a result of this division.

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [———(↑)——
 |
 |
 |%M0001 ————— %Q0001
 |——] [———| DIV |———()——
 | |DINT |
 | |
 R0199 P1—|I1 Q|—%R0203
 | |
 R0201 P2—|I2 |
 —————

 Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001

 #0004: FUNC 67 DPDIV
P1: %R0199
P2: %R0201
P3: %R0203

#0005: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

9

9-80 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :
T

C
M

OUTM

OUT – +

:

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 67_ DPDIV

Press the key sequence

76 :FUNC

#0004 DPDIV <S
P01 _

Press the key:ENT

9

9-81GFK-0402G Chapter 9 Statement List Programming Language

#0004 DPDIV <S
P01 R 199_

Press the key sequence

91 :R 9

#0004 DPDIV <S
P02_

Press the key:ENT

#0004 DPDIV <S
P02 R 201_

Press the key sequence

02 :1

#0004 DPDIV <S
P03_

Press the key:ENT

#0004 DPDIV <S
P03 R 203_

Press the key sequence

02 :R 3

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-82 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Modulo Division (MOD) Function 68
Double Precision Modulo Division (DPMOD) Function 69

Two modulo division functions are available. Division and modulo division are similar
functions which differ only in their output; division finds a quotient, while modulo
division finds a remainder. The signed modulo division function (MOD) is a
conditionally executed function which modulo divides one signed word value by
another. The double precision signed modulo division function (DPMOD) is a
conditionally executed function which modulo divides one signed double word value by
another.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new signed division (for
MOD) or double precision signed division (for DPMPOD) will take place. During a
signed division or double precision signed division execution the value in P1 (input 1) is
divided by the value in P2 (input 2). The result of this signed division is the remainder
only (the quotient is lost) and is stored in the memory location specified by P3 (Q). To
obtain the quotient use the DIV Function 66 (for signed division) or DPDIV Function 67
(for double precision signed division). Functions 66 and 67 find only the quotient; the
remainder is lost.

MOD Function Description

 The three values specified by parameters P1, P2, and P3 must be the same data type
(16-bit two’s complement signed integers) and must be within the range * 32768 to
+32767. If an attempt to divide by zero is made the remainder will be set to either
* 32768 or +32767 depending on the sign of the number being divided and no power
flow will pass through this function.

This function will pass power flow when there is power flow to the enable input and no
attempt has been made to divide by zero. If discrete memory types are used for
parameters P1, P2, and P3 the beginning address must be on a byte boundary.

DPMOD Function Description

The three values specified by parameters P1, P2, and P3 must be the same data type
(32-bit two’s complement signed integers) and must be within the range * 2,147,483,648
to +2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(* 32768 to +32767).

The memory locations for P1, P2, and P3 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand* Held Programmer can only display a maximum of 16 bits (one Register, AI,
or AQ word) at a time, therefore a double precision number outside of the range * 32768
to +32767 can not be monitored using the Hand* Held Programmer. The hexadecimal
or binary number for each register, AI, or AQ word may be programmed or monitored
provided that they are placed together outside of the CPU to form the 32 Bit double
precision signed number.

9

9-83GFK-0402G Chapter 9 Statement List Programming Language

If the division results in overflow, a value outside of the range * 2,147,483,648 to
+2,147,483,647, the result of the division will be set to the largest possible value
* 2,147,483,648 or +2,147,483,647. The sign is set to show the direction of the overflow.
This function will pass power flow when there is power flow to the enable input and the
results of the division are within the range * 2,147,483,648 to +2,147,483,647 (no
overflow).

*P1 (Input 1) B P2 (Input 2) = P3 (Q) Remainder

 | |
 (Logic for controlling (enable) —| MOD |— Power flow output to
 power flow) |DINT | a coil or another function
 | |
 (value to be divided) — (P1)—|I1 Q|—(P3)—(The result is stored here)
 (dividend) | | (remainder)
 (value to be divided by — P2—|I2 |
 (divisor) |_____|

 *PI divided by P2, remainder of division is stored in P3.

—| MOD |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 68 (MOD) or Function 69 (DPMOD).

3. Parameter P1 (input 1): value to be divided (dividend). This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the divisor. This can be a constant number or a memory
location where the value is stored.

5. Parameter P3 (Q): memory location where the result (remainder) is to be stored.

The following tables specify which memory types are valid for each of the parameters
for the MOD and DPMOD functions.

Allowable Memory Types for MOD (Function 68)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Output Q (P03) • • • • • • • •

Allowable Memory Types for DPMOD (Function 69)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

Output Q (P03) • • •

� Note that double precision constants are constrained to the range —32,768 to +32,767.

9

9-84 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for Modulo Division

This example of programming uses the DPMOD function. In this example a contact
from a one shot (OUT +) is used as the controlling element for the power flow to the
enable input of the divide function. When input %I0001 closes (passes power flow),
%M0001 will pass power flow to the enable input of the DPMOD function for only one
sweep of the CPU scan. Therefore, the division will only occur once each time input 1 is
closed. When the division takes place a value located in registers 199 and 200 as
specified by P1 is divided by the value located in registers 201 and 202 as specified by P2.
The remainder of this division is stored in registers 203 and 204 as specified by P3. If the
value in register 201 is not zero (divide by zero) power flow will be passed through this
function to turn on output Q1 for only one CPU scan (only while the enable input has
power flow. For example, if register 199 and 200 has a value of 50 and register 201 and
202 has a value of 4 then register 203 and 204 will have a value of 2 after input 1 is closed.
50 B 4 = 12.50, only the remainder is given as a result of this division.

(50 B 4 = 12.50, 12 x 4 =48, 50 — 48 = 2 remainder)

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [———(↑)——
 |
 |
 |%M0001 ————— %Q0001
 |——] [———| MOD |———()——
 | |DINT |
 | |
 R0199 P1—|I1 Q|—%R0203
 | |
 R0201 P2—|I2 |
 —————

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001
#0004: FUNC 69 DPMOD

P1: %R0199
P2: %R0201
P3: %R0203

#0005: OUT %Q0001

9

9-85GFK-0402G Chapter 9 Statement List Programming Language

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:
A I
IA

LD 1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :
T

C
M

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 69_ DPMOD

Press the key sequence

96 :FUNC

9

9-86 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 DPMOD <S
P01 _

Press the key:ENT

#0004 DPMOD <S
P01 R 199_

Press the key sequence

91 :R 9

#0004 DPMOD <S
P02_

Press the key:ENT

#0004 DPMOD <S
P02 R 201_

Press the key sequence

02 :1R

#0004 DPMOD <S
P03_

Press the key:ENT

#0004 DPMOD <S
P03 R 203_

Press the key sequence

02 :R 3

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-87GFK-0402G Chapter 9 Statement List Programming Language

Square Root, INT (SQRT) Function 70
Square Root, DINT (DPSQRT) Function 71

The Square Root (SQRT) function is a conditionally executed function which is used to
find the square root of an integer value. When the function receives power flow to the
enable input, the value of output Q (P2) is set to the integer portion of the square root of
the input IN (P1) value whose square root is to be calculated. The output Q must be the
same data type as IN. The IN parameter must be a constant or reference for the value
on which the square root is to be calculated.

The SQRT function operates on two types of data: INT (signed integer) and DINT
(double-precision integer). The INT Square Root function is function number 70 and the
DINT Square Root function is function number 71.

OK is set to true if the function is performed without overflow; otherwise, ok is set false.

 | |
 (Logic for controlling) (enable) —|SQRT_|— (ok) Power flow output to a
 power flow) | INT | coil or another function
 | |
 (Value whose square root —(P1)—|IN Q|—(P2)— (Location where square root
 is to be calculated) |_____| is stored)

—|SQRT_|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 70 (SQRT) or Function 71 (DPSQRT).

3. Parameter P1 (IN): value whose square root is to be calculated. This can be a
constant number or a memory location where the value is stored.

4. Parameter P2 (Q): the location where the integer portion of the square root of input
(IN) is stored. This can be a constant number or a memory location where the value
is stored.

The following tables specify which memory types are valid for each of the SQRT and
DPSQRT function parameters.

Allowable Memory Types for SQRT (Function 70)

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

IN (P01) • • • • • • • • •�

ok • •

Q (P02) • • • • • • • •

• = Valid reference or place where power may flow through the function.
� = Constants are limited to integer values for double integer operations.

9

9-88 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Allowable Memory Types for DPSQRT (Function 71)

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

IN (P01) • • • •�

ok • •

Q (P02) • • •

• = Valid reference or place where power may flow through the function.
� = Constants are limited to integer values for double integer operations.

Programming Example for Square Root Function

In the following example, the square root of the constant (180) is calculated. When input
%S0005 closes (passes power flow), the SQRT function is executed. The value 13 which
represents the integer portion of the result will be placed in %AI001 and the OK output
will be set to TRUE.

Ladder Diagram Representation

 | ————————
 | %S0005 | SQRT | %Q0001
 |———] [———————| INT |———()——
 | | |
 | | |
 | CONST P1—|IN Q|—P2— %AI0001
 | 180 |________|

 Statement List Representation

#0001: LD %S0005
#0002: FUNC 70 SQRT

 P01: 180
 P02: %AI001

#0003: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD S 5_

Press the key sequence

:
S
G

LD 5
S
G

9

9-89GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 70_SQRT

Press the key sequence

07 :FUNC

#0002 SQRT <S
P01 _

Press the key:ENT

#0002 SQRT <S
P01 180_

Press the key sequence

81 :0

#0002 SQRT <S
P02 _

Press the key:ENT

#0002 SQRT <S
P02 AI 1_

Press the key sequence

:1
A I
IA

A I
IA

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
_

Press the key:ENT

9

9-90 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 3: Relational Functions

Relational functions are used to compare two numbers of the same data type which can
be either single or double precision integers. When the function receives power flow to
the enable input, the function is executed and it compares the value I1 to the value I2.
These values must be the same data type. The following relational functions are
described in this section:

Abbreviation Function Description

EQ
DPEQ

Equal
Double Precision Equal

Test two signed word numbers for equality.
Test two signed double word numbers for equality.

NE
DPNE

Not Equal
Double Precision Not Equal

Test two signed word numbers for non-equality.
Test two signed double word numbers for non-equality.

GT
DPGT

Greater Than
Double Precision Greater Than

Test for one signed word number greater than another.
Test for one signed double word number greater than another.

GE

DPGE

Greater Than or Equal
Double Precision Greater Than or Equal

Test for one signed word number greater than or equal
to another.
Test for one signed double word number greater than or equal
to another.

LT
DPLT

Less Than
Double Precision Less Than

Test for one signed word number less than another.
Test for one signed double word number less than
another.

LE

DPLE

Less Than or Equal
Double Precision Less Than or Equal

Test for one signed word number less than or equal to another.

Test for one signed double word number less than or equal to
another.

RANGI
RANGDI
RANGW

Integer Range
Double Precision Range
Word range

Test for an integer to be within a specified range.
Test for a double word value to be within a specified range.
Test for a word value to be within a specified range.

Each of the relational functions is described in this section.

9

9-91GFK-0402G Chapter 9 Statement List Programming Language

Equal (EQ) Function 52
Double Precision Equal (DPEQ) Function 72

Two equal functions are available. The equal test (EQ) is a conditionally executed
function which tests for one signed word value equal to another. The double precision
equal test (DPEQ) is a conditionally executed function which tests for one signed double
word value equal to another.

When the logic controlling the enable input to the function passes power flow to this
functions enable input the function is executed by the CPU and a new comparison will
take place. During the execution of an equal comparison the signed value (for EQ) or
double precision signed value (for DPEQ) in P1 (input 1) is compared to see if it is equal
to the signed (for EQ) or double precision signed (for DPEQ) value in P2 (input 2). If the
comparison is equal power flow will pass to a coil or another function. The difference in
the two functions is that the EQ function operates on INT (signed integer) values and
the DPEQ function operates on DINT (double precision signed) values. The INT EQ
function is Function 52 and the DINT EQ function is Function 72.

EQ Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit
two’s complement signed integers) and must be within the range * 32768 to +32767.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is equal to the value specified by parameter P2.

If discrete memory types are used for parameters P1 and P2 the beginning address must
be on a byte boundary.

DPEQ Function Description

The two values specified by parameters P1 and P2, must be the same data type (32-bit
two’s complement signed integers) and must be within the range * 2,147,483,648 to
+2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(–32768 to +32767).

The memory locations for P1 and P2 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range * 32768 to
+32767 cannot be programmed into the CPU or monitored using the Hand-Held
Programmer. The hexadecimal or binary number for each register, AI, or AQ word can
be programmed in or monitored provided that they are placed together outside of the
CPU to form the 32 Bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is equal to the value specified by parameter P2.

9

9-92 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

P1 (Input 1) = P2 (Input 2)

 | |
 (Logic for controlling (enable) —| EQ_ |—
 power flow) |DINT |
 | |
 |—(Value to be compared) —(P1)—|I1 Q|—Power flow output to a coil
 | | or another function if P1 = P2
 (Other value to be compared) —(P2)—|I2 |
 |_____|

—| EQ_ |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 52 (EQ) or Function 72 (DPEQ).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the parameters
for the EQ and DPEQ functions.

Allowable Memory Types for EQ (Function 52)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Allowable Memory Types for DPEQ (Function 72)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

� Note that double precision constants are constrained to the range * 32,768 to +32,767.

9

9-93GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Equal Function

This example of programming uses the EQ function. In this example when input %I0001 is
closed (passing power to the enable input) the data located in the 16 bits of register 250
(parameter P1) is compared to the data represented by the 16 bits of the discrete input I17
through I32 (parameter P2= I17). If these two values are equal then power flow will be
passed onto output coil %Q0001.

For example, assume that the value in register 250 is decimal value 156 which is
0000000010011100 in binary. In order to have power flow pass through this function when
%I0001 is closed the discrete inputs I19, I20, I21 and I24 must also be on (this makes the
binary data in inputs 17 through 32 equal to the binary data stored in register 250).

Condition of Inputs 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0

Input Number 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

0 = OFF (no power flow) 1 = ON (power flow)

Ladder Diagram Representation

 |%I0001 —————
 |——] [———| EQ — |
 | | INT |
 | | %Q0001
 R0250 P1—|I1 Q|——()——
 | |
 %I0017 P2—|I2 |
 —————

Statement List Representation

#0001: LD %I0001
#0002 FUNC 52 EQ

 P1: %R0250
 P2: %I0017

#0003: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 5
A I
IA

9

9-94 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 52_ EQ

Press the key sequence

25 :FUNC

#0002 EQ <S
P01 _

Press the key:ENT

#0002 EQ <S
P01 R 250_

Press the key sequence

52 :0R

#0002 EQ <S
P02 _

Press the key:ENT

#0002 EQ <S
P02 I 17_

Press the key sequence

:7
A I
IA

1

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
_

Press the key:ENT

9

9-95GFK-0402G Chapter 9 Statement List Programming Language

Not Equal Comparison (NE) Function 53
Double Precision Not Equal Comparison (DPNE) Function 73

Two not equal test functions are available. The not equal test (NE) is a conditionally
executed function which tests for one signed word value not equal to another. The
double precision not equal test (DPNE) is a conditionally executed function which tests
for one signed double word value not equal to another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new comparison (for NE) or
double precision signed comparison (for DPNE) will take place. During the execution of
a not equal comparison or double precision signed comparison the signed value in P1
(input 1) is compared to see if it is not equal to the signed value in P2 (input 2). If the
comparison is not equal power flow is passed. The NE and DPNE functions operate on
INT (signed integer) and DINT (double precision signed integer) data respectively. The
INT NE function is Function 53 and the DINT NE function is Function 73.

NE Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit
two’s complement signed integers) and must be within the range * 32768 to +32767.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is not equal to the value specified by parameter P2.

If discrete memory types are used for parameters P1 and P2 the beginning address must
be on a byte boundary.

DPNE Function Description

The two values specified by parameters P1 and P2, must be the same data type (32-bit
two’s complement signed integers) and must be within the range * 2,147,483,648 to
+2,147,483,647. When using the Hand* Held Programmer (HHP) to program a
constant into parameters P1 or P2 the constant must be in the range of a single precision
number (* 32768 to +32767).

The memory locations for P1 and P2 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand* Held Programmer can only display a maximum of 16 bits (one Register, AI,
or AQ word) at a time, therefore a double precision number outside of the range * 32768
to +32767 cannot be programmed into the CPU or monitored using the Hand* Held
Programmer. The hexadecimal or binary number for each register, AI, or AQ word can
be programmed into the CPU or monitored provided that they are placed together
outside of the CPU to form the 32 Bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is not equal to the value specified by parameter P2.

9

9-96 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

*P1 (Input 1) ≠ P2 (Input 2)

 | |
 (Logic for controlling) (enable) —| NE_ |—
 power flow |DINT |
 | |
 (Value to be compared) —(P1)—|I1 Q|— Power flow output to
 | | a coil or another function
 (Other value to be compared) —(P2)—|I2 |
 |_____|

—| NE_ |—

* 0 means not equal to

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 53 (NE) or Function 73 (DPNE).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the NE and
DPNE function parameters:

Allowable Memory Types for NE (Function 53)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • •

Input 2 (P02) • • • • • • • • •

Allowable Memory Types for DPNE (Function 73)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • •�

Input 2 (P02) • • • •�

� Note that double precision constants are constrained to the range * 32,768 to +32,767.

9

9-97GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Not Equal Comparison Function

This example of programming uses the NE function. In this example when input
%I0001 is closed (passing power flow to the enable input) the data located in register 240
(parameter P1) is compared to the constant 3650 programmed as parameter P2. If the
value in register 240 is not equal to the number 3650 then output %Q0001 will be turned
on. For example, if the value in register 240 is * 3650 then output %Q0001 will turn on
because this is a signed function and 3650 is not equal to * 3650.

Ladder Diagram Representation

 |%I0001 —————
 |——] [———| NE – |
 | | INT |
 | | %Q0001
 R0240 P1—|I1 Q|——()——
 | |
 CONST +3650 P2—|I2 |
 —————

 Statement List Representation

#0001: LD %I0001
#0002: FUNC 53 NE

 P1: %R0240
 P2: 3650
 #0003: OUT %Q0001

After pressing Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 5
A I
IA

#0002 INS <S
_

Press the key:ENT

9

9-98 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
FUNC 53_ NE

Press the key sequence

35 :FUNC

#0003 NE <S
P01 _

Press the key:ENT

#0002 NE <S
P01 R 240_

Press the key sequence

42 :0R

#0002 NE <S
P02 _

Press the key:ENT

#0002 NE <S
P02 3650_

Press the key sequence

56 :03

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
_

Press the key:ENT

9

9-99GFK-0402G Chapter 9 Statement List Programming Language

Greater Than Comparison (GT) Function 57
Double Precision Greater Than Comparison (DPGT) Function 77

Two greater than test functions are available. The greater than test (GT) is a
conditionally executed function which tests for one signed word value greater than
another. The double precision greater than test (DPGT) is a conditionally executed
function which tests for one signed double word value greater than another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed comparison (for GT)
or double precision signed comparison (for DPGT) will take place. During the execution
of a greater than comparison the signed value in P1 (input 1) is compared to see if it is
greater than the signed value in P2 (input 2). The GT and DPGT functions operate on
INT (signed integer) and DINT (double precision signed integer) data respectively. The
INT GT function is Function 57 and the DINT GT function is Function 77

GT Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit
two’s complement signed integers) and must be within the range –32768 to +32767.
This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is greater than the value specified by parameter P2.

If discrete memory types are used for parameters P1, and P2 the beginning address must
be on a byte boundary.

DPGT Function Description

The two values specified by parameters P1 and P2, must be the same data type (32-bit
two’s complement signed integers) and must be within the range –2,147,483,648 to
+2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(–32768 to +32767).

The memory locations for P1 and P2 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range –32768 to
+32767 cannot be programmed into the CPU or monitored using the Hand-Held
Programmer. The hexadecimal or binary number for each register AI, or AQ word can
be programmed or monitored provided that they are placed together outside of the CPU
to form the 32 Bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is greater than the value specified by parameter P2.

9

9-100 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 | |
 (Logic for controlling (enable) —| GT_ |
 power flow) | |
 |DINT |
 | |
 (Value to be compared) —(P1)—|I1 Q|—Power flow output to a coil
 | | or another function.
 | |
 (Other value to be compared) —(P2)—|I2 |
 |_____|

—| GT_ |

*P1 (Input 1) > P2 (Input 2)

* > means greater than

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 57 (GT) or Function 77 (DPGT).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the GT and DPGT
function parameters:

Allowable Memory Types for GT (Function 57)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 • • • • • • • • •

I2 • • • • • • • • •

Allowable Memory Types for DPGT (Function 77)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 • • • •�

I2 • • • •�

� Note that double precision constants are constrained to the range –32,768 to +32,767.

9

9-101GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Greater Than Function

This example of programming uses the GT function. In this example when input %I0001
is closed (passing power flow to the enable input) the data located in register 240
(Parameter P1) is compared to the constant –75 programmed in as parameter P2. If the
value in register 240 is greater than –75 then the output %Q0001 will be turned on. For
example, if the value in register 240 is 25, which is greater than –75, output %Q0001 will
turn on.

Ladder Diagram Representation

 |%I0001 —————
 |——] [———————————| GT |
 | | INT |
 | | %Q0001
 %R0240 ——P1 —|I1 Q|——()——
 | |
 CONST ——P2 —|I2 |
 —0075 —————

Statement List Representation

#0001 LD %I0001
#0002 FUNC 57

P1: %R0240
P2: –75

#0003 OUT %Q0001

After pressing INS key: Programming sequence

Keystrokes HHP Display

Initial display: #0001 INS <S
 _

Press the key sequence LD 1
A1
1A #0001 INS <S

 LD I 1_

#0002 INS <S
 _

Press the ENT

Press the key sequence FUNC 5 7 #0002 INS <S
 FUNC 57_ GT

9

9-102 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 GT <S
 P01 _

Press the ENT key:

#0002 GT <S
 P01 R 240 _

Press the key sequence

R 2 4 0 :

#0002 GT <S
 P02 _

Press the ENT key:

Press the key sequence 7 5 #0002 GT <S
 P02 –75_

– +

#0003 INS <S
 _

Press the ENT key:

Press the key sequence 1 #0003 INS <S
 OUT Q 1_

AQ
QB

OUTM
OUT

:

#0004 INS >S
 _

Press the ENT key:

9

9-103GFK-0402G Chapter 9 Statement List Programming Language

Greater Than or Equal Comparison (GE) Function 55
Double Precision Greater Than or Equal Comparison (DPGE) Function 75

There are two greater than or equal to comparison functions. The greater than or equal
to test (GE) is a conditionally executed function which tests for one signed word value
greater than or equal to another. The double precision greater than or equal to test
(DPGE) is a conditionally executed function which tests for one signed double word
value greater than or equal to another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed comparison (for GE)
or double precision signed comparison (for DPGE) will take place. During the execution
of a signed greater than or equal to comparison or double precision signed greater than
or equal to comparison the signed value in P1 (input 1) is compared to see if it is greater
than or equal to the signed value in P2 (input 2). The GE and DPGE functions operate
on INT (signed integer) and DINT (double precision integer) respectively. The GE
function is Function 55 and the DPGE function is Function 75.

GE Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit
two’s complement signed integers) and must be within the range –32768 to +32767.
This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is greater than or equal to the value specified by
parameter P2.

If discrete memory types are used for parameters P1, and P2 the beginning address must
be on a byte boundary.

DPGE Function Description

The two values specified by parameters P1 and P2, must be the same data type (32-bit
two’s complement signed integers) and must be within the range –2,147,483,648 to
+2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(–32768 to +32767).

The memory locations for P1 and P2 are each 32 Bits long. The storage area for each
Register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number to be stored. The address
of the lower of the two registers, AI words, or AQ words is used as the reference to store
and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range –32768 to
+32767 cannot be programmed into the CPU or monitored using the Hand-Held
Programmer. The hexadecimal or binary number for each register, AI, or AQ word can
be programmed or monitored provided that they are placed together outside of the CPU
to form the 32 Bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is greater than or equal to the value specified by
parameter P2.

9

9-104 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

* P1 (Input 1) w P2 (Input 2)

 | |
 (Logic for controlling(enable) —| GE_ |—
 power flow) | |
 |DINT |
 | |
 (Value to be compared) (P1)—|I1 Q|— Power flow output to a coil
 | | or another function
 | |
 (Other value to be (P2)—|I2 |
 compared) |_____|

—| GE_ |—

* w means greater than or equal to

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 55 (GE) or Function 75 (DPGE).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the GE and DPGE
function parameters:

Allowable Memory Types for GE (Function 55)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 P1 • • • • • • • • •

I2 P2 • • • • • • • • •

Allowable Memory Types for DPGE (Function 75)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 (P1) • • • •�

I2 (P2) • • • •�

� Note that double precision constants are constrained to the range –32,768 to +32,767.

9

9-105GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for Greater Than or Equal Comparison
This example of programming uses the DPGE function. In this example when input
%I0001 is closed (passing power flow to the enable input) the data located in the two
memory locations %AI001 and %AI002 (Parameter P1) is compared to the constant 75
programmed as parameter P2. If the combined value in the two memory locations
%AI001 and %IA002 is greater than or equal to 75 then the output %Q0001 will be
turned on. For example, if the value in memory locations %AI001 is 78, the output
%Q0001 will turn on.

Ladder Diagram Representation

 |%I0001 —————
 +——] [———————————| GE |—
 | |DINT |
 | | %Q0001
 %AI0001 —P1— |I1 Q|——()
 | |
 CONST —P2— |I2 |—
 +0075 | |
 —————

Statement List Representation

#0001 LD %I0001
#0002 FUNC 75 DPGE

P1: %AI001
P2: 75

#0003 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

Initial display: #0001 INS <S
_

Press the key sequence LD 1
A1
1A #0001 INS <S

 LD I 1_

#0002 INS <S
 _

Press the ENT key:

Press the key sequence FUNC 7 5 #0002 INS <S
 FUNC 75_ DPGE

9

9-106 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 DPGE <S
 P01 _

Press the ENT key:

#0002 DPGE <S
 P01 AI 1_

Press the key sequence
1AI

IA

AI

A I

#0002 DPGE <S
 P02 _

Press the ENT key:

Press the key sequence 7 5 #0002 DPGE <S
 P02 75_

:

#0003 INS <S
 _

Press the ENT key:

Press the key sequence 1 #0003 INS <S
 OUT Q 1_

AQ
QB

 OUTM
OUT

:

#0004 INS >S
 _

Press the ENT key:

9

9-107GFK-0402G Chapter 9 Statement List Programming Language

Less Than Comparison (LT) Function 56
Double Precision Less Than Comparison (DPLT) Function 76

There are two less than comparison functions. The less than test (LT) is a conditionally
executed function which tests for one signed word value less than another. The double
precision less than test (DPLT) is a conditionally executed function which tests for one
signed double word value less than another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed less than comparison
(for LT) or double precision signed less than comparison (DPLT) will take place. During
the execution of a less than comparison the signed value in P1 (input 1) is compared to
determine if it is less than the signed value in P2 (input 2). The LT and DPLT functions
operate on INT (signed integer) and DINT (double precision signed integer) data
respectively. The INT LT function is Function 56 and the DINT LT function is Function
76.

LT Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit
two’s complement signed integers) and must be within the range –32768 to +32767.
This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is less than the value specified by parameter P2.

If discrete memory types are used for parameters P1, and P2 the beginning address must
be on a byte boundary.

DPLT Function Description

The two values specified by parameters P1 and P2, must be the same data type (3-bit
two’s complement signed integers) and must be within the range –2,147,483,648 to
+2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(–32768 to +32767).

The memory locations for P1 and P2 are each 32 Bits long. The storage area for each
register, AI and AQ is 16 Bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range –32768 to
+32767 cannot be programmed into the CPU or monitored using the Hand-Held
Programmer. The hexadecimal or binary number for each register, AI, or AQ word may
be programmed or monitored provided that they are placed together outside of the CPU
to form the 32 Bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is greater than the value specified by parameter P2.

9

9-108 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

* P1 (Input 1) < P2 (Input 2)

 | |
 (Logic for controlling(enable) —| LT_ |—
 power flow | |
 |DINT |
 | |
 (Value to be compared) (P1)—|I1 Q|—Power flow output to a coil
 | | or another function
 | |
 (Other value to be (P2)—|I2 |
 compared) |_____|

—| LT_ |—

* < means less than

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 56 (LT) or Function 76 (DPLT).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the LT and DPLT
function parameters.

Allowable Memory Types for LT (Function 56)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 (P1) • • • • • • • • •

I2 (P2) • • • • • • • • •

Allowable Memory Types for DPLT (Function 76)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 (P1) • • • •�

I2 (P2) • • • •�

� Note that double precision constants are constrained to the range –32,768 to +32,767.

9

9-109GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for LT Function

This example of programming uses the LT function. In this example when input %I0001
is closed (passing power flow to the enable input) the data located in register 240
(Parameter P1) is compared to the constant 38 programmed as parameter P2. If the
value in register 240 is less than 38 then the output %Q0001 will be turned on. Assume
that the value in register 240 is 38. The output %Q0001 will not turn on because the
value in register 38 is equal to the constant 38, and this is a less than function.

Ladder Diagram Representation

 |%I0001 —————
 +——] [———————————| LT |
 | | INT |
 | | %Q0001
 %R0240 ——P1 —|I1 Q|——()——
 | |
 CONST ——P2 —|I2 |
 +0038 | |
 —————

Statement List Representation:

 #0001 LD %I0001
#0002 FUNC 56 LT

P1: %R0240
P2: 38

 #0003 OUT %Q0001

After pressing INS key:

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
 _

Press the key:ENT

9

9-110 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
 FUNC 56_ LT

Press the key sequence

65 :FUNC

#0002 LT <S
 P01 _

Press the key:ENT

#0002 LT <S
 P01 R 240_

Press the key sequence

02 :R 4

#0002 LT <S
 P02 _

Press the key:ENT

#0002 LT <S
 P02 38_

Press the key sequence 8 :3

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-111GFK-0402G Chapter 9 Statement List Programming Language

Less Than or Equal To Comparison (LE) Function 54
Double Precision Less Than or Equal To Comparison (DPLE) Function 74

There are two less than or equal to comparison functions. The less than or equal to test
(LE) is a conditionally executed function which tests for one signed word value less than
or equal to another. The double precision less than or equal to test (DPLE) is a
conditionally executed function which tests for one signed double word value less than
or equal to another.

When the logic controlling the enable input to the function passes power flow to the
enable input the function is executed by the CPU and a new signed comparison (for LE)
or double precision signed comparison (for DPLE) will take place. During the execution
the signed value in P1 (input 1) is compared to see if it is less than or equal to the signed
value in P2 (input 2). The LE and DPLE functions operate on INT (signed integer) and
DINT (double precision signed integer) data respectively. The INT LE function is
Function 54 and the DINT LE function is Function 74.

LE Function Description

The two values specified by parameters P1 and P2, must be the same data type (16-bit two’s
complement signed integers) and must be within the range –32768 to +32767. This
function will pass power flow when there is power flow to the enable input and the value
specified by parameter P1 is less than or equal to the value specified by parameter P2.

If discrete memory types are used for parameters P1 and P2 the beginning address must
be on a byte boundary.

DPLE Function Description

The two values specified by parameters P1 and P2, must be the same data type (32-bit
two’s complement signed integers) and must be within the range –2,147,483,648 to
+2,147,483,647. When using the Hand-Held Programmer to program a constant into
parameters P1 or P2 the constant must be in the range of a single precision number
(–32768 to +32767).

The memory locations for P1 and P2 are each 32 bits long. The storage area for each
Register, AI and AQ is 16 bits long, therefore two consecutive registers, AI words or AQ
words must be used for each double precision signed number which is to be stored. The
address of the lower of the two registers, AI words, or AQ words is used as the reference
to store and retrieve the double precision number.

The Hand-Held Programmer can only display a maximum of 16 bits (one Register, AI, or
AQ word) at a time, therefore a double precision number outside of the range –32768 to
+32767 cannot be programmed into the CPU or monitored using the Hand-Held
Programmer. The hexadecimal or binary number for each register, AI, or AQ word can
be programmed into or monitored provided that they are placed together outside of the
CPU to form the 32 bit double precision signed number.

This function will pass power flow when there is power flow to the enable input and the
value specified by parameter P1 is less than or equal to the value specified by parameter P2.

9

9-112 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

* P1 (Input 1) v P2 (Input 2)

 | |
 (Logic for controlling power(enable) —| LE |—
 flow) | |
 |DINT |
 | |
 (Value to be compared) (P1)—|I1 Q|—Power flow output to a coil
 | | or another function
 (Other value to be compared) (P2)—|I2 |
 |_____|

—| LE |—

* v means less than or equal to

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 54 (LE) or Function 74 (DPLE).

3. Parameter P1 (input 1): one of the values to be compared. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be compared. This can be a constant
number or a memory location where the value is stored.

The following tables specify which memory types are valid for each of the LE and DPLE
function parameters:

Allowable Memory Types for LE (Function 54)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 P1 • • • • • • • • •

I2 P2 • • • • • • • • •

Allowable Memory Types for DPLE (Function 74)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

I1 P1 • • • •†

I2 P2 • • • •†

† Note that double precision constants are constrained to the range –32,768 to
+32,767.

Programming Example for LE Function

This example of programming uses the LE function. In this example when input %I0001
is closed (passing power flow to the enable input) the data located in register 240
(parameter P1) is compared to the data located in register 280 (parameter P2). If the
value in register 240 is less than or equal to the value in register 280 than output %Q0001
will be turned on. Lets say that the value located in register 240 is 860 and the value in
register 280 is 2580 then the output %Q0001 will turn on.

9

9-113GFK-0402G Chapter 9 Statement List Programming Language

Ladder Diagram Representation

 |%I0001 —————
 |——] [———————————| LE |—
 | | INT |
 | | %Q0001
 %R0240 ——P1 —|I1 Q|——()
 | |
 %R0280 ——P2 —|I2 |
 —————

Statement List Representation:

#0001 LD %I0001
#0002 FUNC 54 LE

P1: %R0240
P2: %R0280

#0003 OUT %Q0001

After pressing INS key:

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 FUNC 54_ LE

Press the key sequence

45 :FUNC

9

9-114 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 LE <S
 P01 _

Press the key:ENT

#0002 LE <S
 P01 R 240_

Press the key sequence

02 :R 4

#0002 LE <S
 P02 _

Press the key:ENT

#0002 LE <S
 P02 R 280_

Press the key sequence

02 :R 8

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-115GFK-0402G Chapter 9 Statement List Programming Language

Integer Range (RANGI) Function 140
Double Precision Range (RANGDI) Function 141
Word Range (RANGW) Function 142

The RANGE function is used to determine if a value is between the range of two
numbers. The RANGE function has four parameters: a Boolean enable (EN), limit 1 (L1),
limit 2 (L2), and an input (IN). The RANGE function can operate on either signed
integer (INT), double precision signed integer (DINT) or word (WORD) values. The
default data type is signed integer; however, it can be changed after selecting the
function.

When the logic controlling the enable input (EN) to the function passes power flow, the
function is enabled by the CPU, and the RANGE function block will compare the value
in input parameter IN (P03) against the range specified by the values in the limit
parameters L1 (P01) and L2 (P02). The values specified by L1 and L2 must be the same
data type. When the value in IN is within the range specified by L1 and L2, inclusive,
output parameter Q is set ON (1). Otherwise, Q is set OFF (0).

 | |
 (enable) —| EQ_ |
 | |
 | INT |
 | |
 (limit parameter I1) (P01)—|L1 Q|— (output parameter Q)
 | |
 (limit parameter I2) (P02)—|L2 |
 | |
 (value to be compared) (P03)—|IN |
 |_____|

—|RANGE|

Note
Limit parameters L1 and L2 represent the end points of a range. There
are no minimum/maximum or high/low connotation assigned to either
parameter. Thus, a desired range of 0 to 100 could be specified by
assigning 0 to L1 and 100 to L2 or 0 to L2 and 100 to L1.

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function, either Function 140 (RANGI), Function 141 (RANGDI), or Function
142 (RANGW).

3. Parameter P1 (limit 1): one of the limit values. This can be a constant number or a
memory location where the value is stored.

4. Parameter P2 (limit 2): the other limit value. This can be a constant number or a
memory location where the value is stored.

5. Parameter P3 (input); the value to be compared to the limit values.

The following tables specify which memory types are valid for each of the LE and DPLE
function parameters:

9

9-116 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Allowable Memory Types for RANGI (Function 140) and RANGW (Function 142)

Parameter %I %Q %M %T %G %S %R %AI %AQ const

Limit 1 (P01) • • • • • • • • •�
Limit 2 (P02) • • • • • • • • •�
Input (P03) • • • • • • • •

� Constants are limited to integer values for double precision signed integer operations.

Allowable Memory Types for RANGDI (Function 141)

Parameter %I %Q %M %T %G %S %R %AI %AQ const

Limit 1 (P01) • • • •�
Limit 2 (P02) • • • •�
Input (P03) • • •

� Constants are limited to integer values for double precision signed integer operations.

Programming Examples for RANGE Function

The following two examples for the RANGE function illustrate how to enter the INT and
DINT RANGE instructions using the Hand-Held Programmer.

Example 1:

In the following example, %AI001 is checked to be within a range specified by two
constants, 0 and 1000.

 | _____
 |%I0001 | |
 +——| |—————————+RANGE|
 | | INT |
 | | | %Q0001
 | 1000–P1 —+L1 Q+———()—
 | | |
 | 0 –P2 —+L2 |
%AI001 – P3 —+	IN

RANGE Truth Table

Enable State
%I0001

L1 Value
Constant

L2 Value
Constant

IN Value
%AI001

Q State
%Q0001

ON 1000 0 < 0 OFF
ON 1000 0 0 — 1000 ON
ON 1000 0 > 1000 OFF
OFF 1000 0 Not Applicable OFF

9

9-117GFK-0402G Chapter 9 Statement List Programming Language

Statement List Representation:

#0001 LD %I0001
#0002 FUNC 140 RANGI

P1: 1000
P2: 0
P3 %AI0001

#0003 OUT %Q0001

After pressing INS key:

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 140_RANGI

Press the key sequence

41 :FUNC 0

#0002 RANGI <S
P01 _

Press the key:ENT

#0002 RANGI <S
P01 1000_

Press the key sequence

00 :1 0

#0002 RANGI <S
P02 _

Press the key:ENT

9

9-118 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 RANGI <S
P02 0Press the 0 key:

#0002 RANGI <S
P03 _

Press the key:ENT

#0002 RANGI <S
P03 %AI1

Press the key sequence

:1
A I
IA

A I
IA

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-119GFK-0402G Chapter 9 Statement List Programming Language

Example 2:

In this example, the value of %AI001 is checked to be within a range specified by two
register values. For this example, assume that the value in %R0001 is 500 and the value in
%R0002 is 0.

| _____
|%I0001 | |
+——| |———————+RANGE|
| | INT |
| | | %Q0001
|%R0001 –P1 —+L1 Q+——()—
| | |
|%R0002 –P2 —+L2 |
| | |
|%AI001 –P3 —+IN |
| |_____|
|

RANGE Truth Table

Enable State
%I0001

L1 Value
%R0001

L2 Value
%R0002

IN Value
%AI001

Q State
%Q0001

ON 500 0 < 0 OFF
ON 500 0 0 — 500 ON
ON 500 0 > 500 OFF
OFF 500 0 Not Applicable

Statement List Representation:

#0001 LD %I0001
#0002 FUNC 140 RANGI

P1: %R0001
P2: %R0002
P3 %AI001

#0003 OUT %Q0001

After pressing INS key:

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

9

9-120 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 140_RANGI

Press the key sequence

41 :FUNC 0

#0002 RANGI <S
P01 _

Press the key:ENT

#0002 RANGI <S
P01 %R1_

Press the key sequence

1 :R

#0002 RANGI <S
P02 _

Press the key:ENT

#0002 RANGI <S
P02 %R2_

Press the key sequence

2 :R

#0002 RANGI <S
P03 _

Press the key:ENT

#0002 RANGI <S
P03 %AI1

Press the key sequence

:1
A I
IA

A I
IA

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-121GFK-0402G Chapter 9 Statement List Programming Language

Section 4: Bit Operation Functions

Bit Operation functions perform comparison and movement operations on bit strings which
are one or more words in length. Bit Operation functions require word or double word
data. The default data type is word. Data types cannot be mixed within the function.
Although data must be specified in 16-bit word or 32-bit double word increments, these
functions operate on data as a continuous string of bits, with bit 1 of the first word being the
Least Significant Bit (LSB). The last bit of the last word is the Most Significant BIT (MSB).
For example, if you specified three words of data beginning at reference %R100, it would be
operated on as 48 contiguous bits:

%R100 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ← bit 1

%R101 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

%R102 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

Caution

Overlapping input and output reference address ranges in multi-word
functions may produce unexpected results during program execution.

The following bit operations are described in this section:

Abbreviation Function Description

AND Logical AND If a bit in bit string I1 and the corresponding bit in bit
string I2 are both 1, place a 1 in the corresponding
location in output string Q.

OR Logical OR If a bit in bit string I1 and/or the corresponding bit in bit
string I2 are both 1, place a 1 in the corresponding
location in output string Q.

XOR Logical
Exclusive OR

If a bit in bit string I1 and the corresponding bit in string
I2 are different, place a 1 in the corresponding location in
the output bit string.

NOT Logical Invert Set the state of each bit in output bit string Q to the
opposite state of the corresponding bit in bit string I1.

SHL Shift Left Shift all the bits in a word or string of words to the left by
a specified number of places.

SHR Shift Right Shift all the bits in a word or string of words to the right by
a specified number of places.

ROL Rotate Left Rotate all the bits in a string a specified number of places
tothe left.

ROR Rotate Right Rotate all the bits in a string a specified number of places
to the right.

BITSET Bit Set Set a bit in a bit string to 1.
BITCLR Bit Clear Clear a bit within a string by setting that bit to 0.
BITTST Bit Test Test a bit within a bit string to determine whether that bit

is currently 1 or 0.
BITPOS Bit Position Locate a bit set to 1 in a bit string.
MSKCMPW
MSKCMPD

Masked
Compare

Compare the bits in the first string with the corresponding
bits in the second.

9

9-122 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Bitwise and (AND) Function 23

The bitwise “and” function (AND) is a conditionally executed function which bitwise
“ands” one 16-bit word with another.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new bitwise AND function
will take place.

The AND function examines each bit in the memory location specified by P1 (input 1)
and the corresponding bit in the memory location specified by P2 (input 2), beginning at
the first (lowest addressed) bit in each. For each two bits examined, if both are 1, then a
1 is placed in the corresponding location in the string of bits starting at the location
specified by P3 (output Q). If either or both bits is 0, then a 0 is placed in the
corresponding location in the string of bits starting at the location specified by P3. The
three parameters (P01) input 1, (P02) input 2, and (P03) Q are all 16-bit words.

If discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on an 8 point boundary.

Power flow through this function will follow the conditions of this functions enable input.

 | |
 (Logic for controlling (enable) —| AND |— Power flow output to a coil
 enable input) | | or another function
 | WORD|
 | |
 Location of value to (P01) —|I1 Q|—P(03) Location of Results
 be ANDed or a constant | |
 (P02) —|I2 |
 Location of value to |_____|
 ANDed or constant

—| AND |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 23 (AND).

3. Parameter P1 (input 1): one of the values to be ANDed. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be ANDed. This can be a constant
number or a memory location where the value is stored.

5. Parameter P3 (Q). The memory location where the result is to be stored.

9

9-123GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the AND
function parameters:

Allowable Memory Types for AND (Function 23)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • • •

Input 2 (P02) • • • • • • • • • •

Output Q (P03) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

Programming Example for AND Function

In this example when input %I0001 is closed (passing power flow) to the enable input).
The 16 bits of register 1, specified by parameter P1 are bitwise ANDed to the 16 bits of
register 2 specified by parameter P(2) and the result is stored in register 3. For example,
if the decimal number 337 is stored in %R0001 and decimal number 346 is stored in
%R0002, the result will be decimal number 336 stored in %R0003.

The Binary Bits stored in the registers for this example are:

%R0001 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1

%R0002 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0

%R0003 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————| AND |——()——
 | | WORD|
 | |
 %R0001 ——P1 —|I1 Q|—P3 ———————%R0003
 | |
 %R0002 ——P2 —|I2 |
 —————

Statement List Representation

#0001 LD %I0001
#0002 FUNC 23 AND

P1: %R0001
P2: %R0002

 P3: %R0003
#0003 OUT %Q0001

9

9-124 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 FUNC 23_ AND

Press the key sequence

32 :FUNC

#0002 AND <S
 P01 _

Press the key:ENT

#0002 AND <S
 P01 R 1_

Press the key sequence

:R 1

#0002 AND <S
 P02 _

Press the key:ENT

9

9-125GFK-0402G Chapter 9 Statement List Programming Language

#0002 AND <S
 P02 R 2_

Press the key sequence

:R 2

#0002 AND <S
 P03 _

Press the key:ENT

#0002 AND <S
 P03 R 3_

Press the key sequence

:R 3

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-126 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Bitwise or (OR) Function 25

The bitwise “or” function (OR) is a conditionally executed function which bitwise “or’s”
one 16-bit word to another.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new Bitwise OR function
will take place.

Each scan that power flow is received, at the enable input the OR function examines
each bit in P1 (Input1) and the corresponding bit in P2 (Input2). Beginning at the first
(lowest addressed) bit in each. For each two bits examined, if either or both bits are 1,
then a 1 is placed in the corresponding location in bit string Q. The three parameters
input (P01) 1, input (P02) 2, and (P03) Q are all 16-bit words.

If discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on a byte boundary.

Power flow through this function will follow the conditions of this functions enable input.

 | |
 Logic controlling (enable) —| OR |— Power flow output to a
 the enable input | | coil or another function
 | WORD|
 | |
 Location of value to (P01) —|I1 Q|— (P03) Location of Results
 be ORed or a constant | |
 | |
 Location of value to (P02) —|I2 |
 be ORed or a constant |_____|

—| OR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 25 (OR).

3. Parameter P1 (input 1): one of the values to be ORed. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be ORed. This can be a constant number
or a memory location where the value is stored.

5. Parameter P3 (Q). The memory location where the result is to be stored.

9

9-127GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the OR function
parameters:

Allowable Memory Types for OR (Function 25)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • • •

Input 2 (P02) • • • • • • • • • •

Output Q (P03) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

Programming Example for OR Function

In this example when input %I0001 is closed (passing power flow to the enable input).
The 16 bits of register 1, specified by parameter P1 are bitwise ORed to the 16 bits of
register 2, specified by parameter P2 and the result is stored in register 3 as specified by
parameter P3. For example, if decimal number 337 is stored in %R0001 and decimal
number 346 is stored in %R0002, the result will be decimal number 347 in %R0003.

The binary bits stored in the register are:

%R0001 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1

%R0002 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0

%R0003 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————| OR |——()——
 | | WORD|
 | |
 %R0001 ——P1 —|I1 Q|—P3 ———————%R0003
 | |
 %R0002 ——P2 —|I2 |
 —————

Statement List Representation:

#0001 LD %I0001
#0002 FUNC 25 OR

P1: %R0001
P2: %R0002
P3: %R0003

#0003 OUT %Q0001

9

9-128 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 FUNC 25_ OR

Press the key sequence

52 :FUNC

#0002 OR <S
 P01 _

Press the key:ENT

#0002 OR <S
 P01 R 1_

Press the key sequence

1 :R

#0002 OR <S
 P02 _

Press the key:ENT

9

9-129GFK-0402G Chapter 9 Statement List Programming Language

#0002 OR <S
 P02 R 2_

Press the key sequence

2 :R

#0002 OR <S
 P03 _

Press the key:ENT

#0002 OR <S
 P03 R 3_

Press the key sequence

3 :R

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-130 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Bitwise Exclusive or (XOR) Function 27

The bitwise “exclusive or” function (XOR) is a conditionally executed function which
bitwise “exclusive or’s” one 16-bit word to another.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new Bitwise XOR Function
will take place.

Each scan that power is received, the XOR function examines each bit in P1 (input 1) and
the corresponding bit in P2 (input 2) beginning at the first (lowest addressed) bit in each.
For each two bits examined, if only one is 1, then a 1 is placed in the corresponding
location in the string of bits starting at the location specified by parameter 3 (Q). The
three parameters input (P01) 1, input (P02) 2, and output Q (P03) are all 16-bit words.

If input P2 and output P3 begin at the same reference, a 1 placed in the bits specified by
P1 will cause the corresponding bit specified by P2 and P3 to alternate between 0 and 1,
changing state with each scan as long as power is received. Longer cycles may be
programmed by pulsing the power flow to the function at twice the desired rate of
flashing. The power flow pulse should be one scan long (one-shot type coil, or
self-resetting timer).

If discrete memory types are used for parameters P1, P2, and P3 the beginning address
must be on a byte boundary.

Power flow through this function will follow the condition of this functions enable input.

 | |
 (Logic controlling the (enable) —| XOR |— Power flow output to coil
 enable input) | | or another function
 | WORD|
 | |
 Location of value or (P01) —|I1 Q|—(P03) Location of Results
 constant to be XORed | |
 | |
 Location of value or (P02) —|I2 |
 constant to be XORed |_____|

—| XOR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 27 (XOR).

3. Parameter P1 (input 1): one of the values to be XORed. This can be a constant
number or a memory location where the value is stored.

4. Parameter P2 (input 2): the other value to be XORed. This can be a constant number
or a memory location where the value is stored.

5. Parameter P3 (Q). The memory location where the result is to be stored.

9

9-131GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the XOR function
parameters:

Allowable Memory Types for XOR (Function 27)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • • •

Input 2 (P02) • • • • • • • • • •

Output Q (P03) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

Programming Example for XOR Function

In this example when input %I0001 is closed (passing power flow to the enable input).
The 16 bits of register %R0140, specified by parameter P1 are bitwise XORed to the 16
bits of register %R0141 specified by parameter P2. The result is stored in Register
%R0281 specified by parameter P3. For example, if register R0140 has the decimal
number 8136 in it and register %R0141 has the decimal number –8137 in it. The result
in Register R0281 is the decimal number –1.

 %R140 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0

 XOR

 %R141 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1

%R281–RESULT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [———————————| XOR |——()——
 | | WORD|
 | |
 %R0140 ——P1 —|I1 Q|—P3 ———————%R0281
 | |
 %R0141 ——P2 —|I2 |
 —————

Statement List Representation:

#0001 LD %I0001
#0002 FUNC 27 XOR

P1: %R0140
P2: %R0141
P3: %R0281

#0003 OUT %Q0001

9

9-132 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 FUNC 27_ XOR

Press the key sequence

72 :FUNC

#0002 XOR <S
 P01 _

Press the key:ENT

#0002 XOR <S
 P01 R 140_

Press the key sequence

01 :R 4

#0002 XOR <S
 P02 _

Press the key:ENT

9

9-133GFK-0402G Chapter 9 Statement List Programming Language

#0002 XOR <S
 P02 R 141_

Press the key sequence

11 :R 4

#0002 XOR <S
 P03 _

Press the key:ENT

#0002 XOR <S
 P03 R 281_

Press the key sequence

12 :R 8

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-134 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Bitwise NOT (NOT) Function 29
The bitwise one’s complement function (NOT) is a conditionally executed function
which bitwise negates (one’s complements) a 16-bit word.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU and a new NOT function will
take place.

All bits in P1 (input 1) are altered when power flow is received, making output P2 (Q) a
mirror image of the bits specified by P1 (input 1). The two parameters input (P01) 1 and
output (P02) Q are both 16-bit words.

If discrete memory types are used for parameters P1, and P2 the beginning address must
be on a byte boundary.

 | |
 Logic controlling (enable) —| NOT |— Power flow to a coil
 the enable input | | or another function
 | WORD|
 | |
 Location or constant (P01) —|I1 Q|— (P02) Location of Results
 value to be changed |_____|

—| NOT |—

 WORD (P1) 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0

 NOT

RESULT (P2) 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 29 (NOT).

3. Parameter P1 (input 1): the values to be NOTed. This can be a constant number or a
memory location where the value is stored.

4. Parameter P2 (Q): the memory location where the result of the NOT operation is to be
stored.

The following table specifies which memory types are valid for each of the NOT
function parameters:

Allowable Memory Types for NOT (Function 29)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input 1 (P01) • • • • • • • • • •

Output Q (P02) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

9

9-135GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for NOT Function

For example, if in this example when input %I0001 is closed (passing power flow to the
enable input). The 16 bits of register 250, specified by parameter P1 are altered. (1’s
becomes 0’s and 0’s becomes 1’s) and are stored in register 251. R1 contains decimal
number 8136 then R2 will contain the decimal number –8137 or the result.

 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0

NOT

 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1

Ladder Diagram Representation

 |%I0001 ————— %Q0003
 |——] [———————————| NOT |——()——
 | | WORD|
 | |
 %R0250 ——P1 —|I1 Q|—P2 ———————%R0251
 —————

Statement List Representation

 #0001 LD %I0001
#0002 FUNC 29 NOT

P1: %R0250
P2: %R0251

#0003 OUT %Q0003

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

9

9-136 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 FUNC 29_ NOT

Press the key sequence

92 :FUNC

#0002 NOT <S
 P01 _

Press the key:ENT

#0002 NOT <S
 P01 R 250_

Press the key sequence

02 :R 5

#0002 NOT <S
 P02 _

Press the key:ENT

#0002 NOT <S
 P02 R 251_

Press the key sequence

12 :R 5

#0002 XOR <S
 _

Press the key:ENT

#0002 INS <S
 OUT Q 3_

Press the key sequence

1 :OUTM

OUT

AQ
QB

9

9-137GFK-0402G Chapter 9 Statement List Programming Language

Bit Shift Left (SHL) Function 30
The bit shift left function (SHL) is a conditionally executed function which shifts all bits
in a word array left a given number of bit positions.

 LSB

B2 † 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 † B1

When the logic controlling the enable input to the function passes power flow to the enable
(EN) input the function is executed by the CPU. During the execution of a shift left function
all of the bits in a word or a group of consecutive 16 bit words connected together to form a
continuous string of bits are shifted left a specified number of bit locations.

The location of the word or group of words is specified by parameter P1 which is the
memory address location for the first word of the group of consecutive words containing
the group of bits to be shifted.

The number of 16 bit words in the consecutive group of words forming the continuous
string bits is specified by parameter P3 (LEN). The limits of LEN depend on the memory
type being used and the starting address of the first word of the group of words containing
the bits to be shifted, and the starting address of the final memory location where the
shifted bits are to be stored. If the length plus the memory address exceeds the total number
of words for that memory type DATA ERR will be displayed on the screen of the
Hand-Held Programmer.

The number of bit locations that each bit is shifted each time this function is executed is
specified by parameter P2 (N). The number of location specified by N must be more then
zero and less then the total number of bits in the group of consecutive words.

When the shift occurs a number of bits specified by N will be shifted out of the left end
(highest bit location) of the last word of the group of bits. The last bit shifted out of the
group will determine the condition of B2 (see note below) which is power flow through this
function. A zero shifted out will be no power flow, and a one shifted out will give power
flow.

Also the same number of bits are shifted into the vacant locations located at the right end
(lowest bit location) of the group of bits. The state of the bits being shifted into the vacant
locations is specified by the condition of the logic programmed into the B1 input. Power
flow from the left bus to the B1 input will enter a one. No power flow to the B1 input will
enter a zero into the group of vacant bit locations. If a length (N parameter P2) greater than
one has been specified as the number of bits to be shifted, each of the vacant locations will
be filled with the same value (0 or 1).

If the number of bits to be shifted (N) is greater than the number of bits in the array (LEN)
* 16, then the array (Q) is filled with copies of the input bit (B1), and the input bit is copied
to the output power flow (B2). If the number of bits to be shifted is zero, then no shifting is
performed; the output array is untouched; and power flow is OFF.

The result of the shifted operation is stored in the location of the word or group of
consecutive words specified by parameter P4 (Q) which is the memory address location for
the first word of the group of consecutive words containing the string of bits that has been
shifted.

Parameters P1 and P4 are memory locations representing 16 bit words, and parameters P2
and P3 are constants, while B1 input is the result of some logic attached to this functions B1
input. If discrete memory types are used for parameters P1, P2, and P4 the beginning
address must be on an 8 point boundary.

9

9-138 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Power flow through this function occurs only when the functions enable input is receiving
power flow and the last bit shifted out is a one.

Note
The B2 output is used with Logicmaster 90 programming software as a
connection point for connecting another function or coil to the power
flow condition of this function.

 | |
 Logic controlling the (enable) —| SHL |— Power flow through this function
 enable input | | as determined by state of last bit
 | WORD| shifted out
 | |
 Memory location for first (P01) —|IN B2|—
 word | LEN |
 | |
 | 001 |—(P03) Number of words to be
 Constant value specifying | | shifted
 number of bits to be (P02) —|N Q|—(P04) Location where first shifted
 shifted | | word is to be stored.
 | |
 Logic controlling state —|B1 |
 of bits into vacant locations |_____|

—| SHL |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Logic from the left bus controlling the state of input B1. This logic must start with an
LD element.

3. Type of function: Function 30 (SHL).

4. Parameter P1 (IN): the memory address location for the first word of the group of
words containing the bits to be shifted.

5. Parameter P2 (N): a constant specifying the number of bits to be shifted each time a
shift takes place.

6. Parameter P3: a constant specifying the number of words (each word is 16 bits long)
that will be connected together to form the total number of bits in the group.

7. Parameter P4 (Q): the memory address location where the first word of the group of
words containing the results of the bits that have been shifted is to be stored.

The following table specifies which memory types are valid for each of the SHL function
parameters:

Allowable Memory Types for SHL (Function 30)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • •

Distance N (P02) • • • • • • • • •

Length LEN (P03) •

Output Q (P04) • • • • • •† • • •

† Only %SA, %SB, and %SC are used. %S cannot be used.

9

9-139GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for SHL Function

In the following example a contact from a one shot (OUT+) is used as the controlling
element for power flow to the enable function. When input %I0001 closes (passes
power flow), %M0001 will pass power flow to the enable input of the SHL function for
one sweep of the CPU scan.

The 32 bits of two consecutive 16-Bit words starting at Register 1 and ending with
Register 2 (note that the length P3 is 2). The two 16-bit words will shift left one bit space
(N (P2)=1). The result will be placed into the two consecutive 16-bit words starting at
R10.

The first bit of Register 10 will have the same state as %I0002, the logic controlling the
power flow to B1 input. For example, if B1 is passing powerflow giving an on condition
for a state of 1 and Registers 1 and 2 have the bit pattern as shown below, then Registers
10 and 11 be as shown below. The last bit shifted out of Register 2 was a one, therefore
this function will pass powerflow.

Ladder Diagram Representation

 %I0001 %M0001
 |——] [———()——
 | ______
 |%M0001 | |
 |——] [——————————————————————| SHL |—
 | | WORD |
 | | | %Q0001
 | %R0001 ——P1 —|IN B2|—————————————————()——
 | | LEN |
 | | 0002 |—P3 ———————CONST +0002
 | | |
 | CONST +0001 ——P2 —|N Q|—P4 ———————%R0010
 |%I0002 | |
 |——] [——————————————————— —|B1 |
 | |______|

RESULTS OF
THE SHIFT
FUNCTION

INITIAL
REGISTER

BIT
PATTERN

VALUE INPUT
FROM

STATUS OF B1

a43866
00 0 1 0 0 1 1 0 0 0 1 1 1 0 1%R0001

01 1 1 0 1 0 0 0 0 1 1 1 0 1 0

00 1 0 1 1 0 0 0 1 1 1 0

0 1 0 0 0 0 0 1 1 1 0 1 0 01 1

1 10

%R0002

%R0010

%R0011

STATUS OF B2
AFTER SHIFT

 Statement List Representation

#0001 LD %I0001
#0002 OUT+ %M0001
#0003 LD %M0001
#0004: LD %I0002
#0005: FUNC 30 SHL

P1: %R0001
 P2: 0001

P3: 0002
 P4: %R0010

#0006: OUT %Q0001

9

9-140 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

:
T

C
M 1

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C
M

#0004 INS <S
 _

Press the key:ENT

#0004 INS <S
 LD I2

Press the key sequence

:LD 2
A I
IA

9

9-141GFK-0402G Chapter 9 Statement List Programming Language

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 FUNC 30_ SHL

Press the key sequence

03 :FUNC

#0005 SHL <S
 P01 _

Press the key:ENT

#0005 SHL <S
 P01 R 1_

Press the key sequence

1R :

#0005 SHL <S
 P02 _

Press the key:ENT

#0005 SHL <S
 P02 1_

Press the key sequence 1 :

#0005 SHL <S
 P03 _

Press the key:ENT

#0005 SHL <S
 P03 2_

Press the key sequence 2 :

9

9-142 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0005 SHL <S
 P04 _

Press the key:ENT

#0005 SHL <S
P04 R10_

Press the key sequence

: 0R 1

#0006 INS <S
 _

Press the key:ENT

#0006 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0007 INS <S
 _

Press the key:ENT

9

9-143GFK-0402G Chapter 9 Statement List Programming Language

Bit Shift Right (SHR) Function 31
The bit shift right function (SHR) is a conditionally executed function which shifts all bits
in a word array right a given number of bit positions.

LSB

 B1 ‡ 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 ‡ B2

When the logic controlling the enable input to the function passes power flow to the enable
(EN) input the function is executed by the CPU. During the execution of a shift right
function all of the bits in a word or a group of consecutive 16 bit words connected together
to form a continuous string of bits are shifted to the right a specified number of memory bit
locations.

The location of the word or group of words is specified by parameter P1 which is the
memory address location for the first word of the group of consecutive words containing
the group of bits to be shifted.

The number of 16 bit words in the consecutive group of words forming the continuous
string of bits is specified by parameter P3 (LEN). The limits of LEN depend on the memory
type being used and the starting address of the first word of the group of words containing
the bits to be shifted, and the starting address of the final memory location where the
shifted bits are to be stored. If the length plus the memory address exceed the total number
of words for that memory type DATA ERR will be displayed on the screen of the
Hand-Held Programmer.

The number of bit locations that each bit is shifted each time this function is executed is
specified by parameter P2 (N). The number of locations specified by N must be more then
zero and less then the total number of bits in the group of consecutive words specified in
the LEN parameter.

When the shift occurs the number of bits specified by N will be shifted out of the right end
(lowest bit location) of the first word of the group of bits. The last bit shifted out of the
group will determine the condition of B2 (see the note below) which determines power
flow through this function. A zero shifted out will result in no power flow, and a one shifted
out will give power flow.

If the number of bits to be shifted (N) is greater than the number of bits in the array
(LEN) * 16, then the array (Q) is filled with copies of the input bit (B1), and the input bit
is copied to the output power flow (B2). If the number of bits to be shifted is zero, then
no shifting is performed; the output array is untouched; and power flow is OFF.

Also the same number of bits are shifted into the vacant locations located at the left end
(highest bit location) of the group of bits. The state of the bits being shifted into the vacant
locations is specified by the condition of the logic programmed into the B1 input. Power
flow from the left bus to the B1 input will enter a one. No power flow to the B1 input will
enter a zero into the group of vacant bit locations. If a length (N parameter P2) greater than
one has been specified as the number of bits to be shifted, each of the vacant locations will
be filled with the same value (0 or 1).

The results of the shifted operation are stored in the location of the word or group of
consecutive words specified by parameter P4 (Q) which is the memory address location for
the first word of the group of consecutive words containing the group of bits that has been
shifted.

Parameters P1 and P4 are memory locations representing 16 bit words, and parameters P2
and P3 are constants, while B1 input is the results of some logic attached to this functions B1
input.

9

9-144 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

If discrete memory types are used for parameters P1, P2, and P4 the beginning address
must be on an 8 point boundary.

Power flow through this function occurs only when the functions enable input is receiving
power flow and the last bit shifted out is a one.

Note

B2 is used with Logicmaster 90 as a connection point for connecting
another function or coil to the power flow condition of this function.

 | |
 Logic for controlling (enable) —| SHR |— Power flow through this function
 the enable input | | as determined by state of last bit
 | WORD| shifted out of B2
 | |
 Memory location for (P01) —|IN B2|—
 first word | LEN |
 | |
 | 001 |—(P03) Number of words to be shifted
 Constant value specifying | |
 number of bits to be (P02) —|N Q|—(P04) Location of first word where
 shifted | | results of shift are stored
 Logic controlling state —|B1 |
 of bits into vacant positions |_____|

—| SHR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Logic from the left bus controlling the state of input B1. This logic must start with an
LD element.

3. Type of function: Function 31 (SHR).

4. Parameter P1 (IN): the memory address location for the first word of the group of
words containing the bits to be shifted.

5. Parameter P2 (N): a constant specifying the number of bits to be shifted each time a
shift takes place.

6. Parameter P3: a constant specifying the number of words (each word is 16 bits long)
that will be connected together to form the total number of bits in the group.

7. Parameter P4 (Q): the memory address location where the first word of the group of
words containing the results of the bits that have been shifted is to be stored.

The following table specifies which memory types are valid for each of the SHR function
parameters:

Allowable Memory Types for SHR (Function 31)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • •

Distance N (P02) • • • • • • • • •

Length LEN (P03) •

Output Q (P04) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

9

9-145GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for SHR Function

In the following example a contact from a one shot (out) is used as the controlling
element for powerflow to the enable function. When input one closes (passes power
flow), %M0001 will pass powerflow to the enable input of the SHR function for one
sweep of the CPU scan.

The 32 bits of the two consecutive 16-bit words start at Register 10 and end with Register
11 (note that the length P3 is 2). These two 16-bit words will shift right one bit space (N
(P2)=1). The result will be placed into two consecutive 16 bits words starting at R20.

The last bit of Register 11 will have the same state as the logic controlling the powerflow
to B1. Lets say that B1 is passing powerflow giving an on condition for a state of 1 and
Registers 10 and 11 have the bit pattern shown below then Registers 20 and 21 will have
the bit pattern as shown. The last bit shifted out of Register 10 was a one therefore this
function will pass powerflow.

Ladder Diagram Representation

 | %I0001 %M0001
 |———] [———()——
 | ______
 | %M0001 | |
 |———] [——————————————————————| SHR |—
 | | WORD |
 | | | %Q0001
 | %R0010 ——P1 — |IN B2|—————————————————()——
 | | LEN |
 | | 0002 |—P3 ———————CONST +0002
 | | |
 | CONST +0001 ——P2 — |N Q|—P4 ———————%R0020
 | %I0002 | |
 |———] [————————————————————— |B1 |
 | |______|

R0010%

R0011

R0020

R0021

 STATUS OF B2
AFTER SHIFTING

RESULTS OF
THE SHIFT
FUNCTION

a45054

00 0 1 0 0 1 1 0 0 0 1 1 1 0 1

01 1 1 0 1 0 0 0 0 1 1 1 0 1 0

00 0 0 0 0 1 1 0 0 0 1 1

1 0 1 0 1 0 0 0 0 1 1 1 0 11 1

1 01

%

%

%

INITIAL
REGISTER

BIT
PATTERN

9

9-146 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001
#0004: LD %I0002

 #0005: FUNC 31 SHR
P1: %R0010
P2: %0001
P3: %0002
P4: %R0020

#0006: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

:
T

C M 1
OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C
M

9

9-147GFK-0402G Chapter 9 Statement List Programming Language

#0004 INS <S
 _

Press the key:ENT

#0004 INS <S
 LD I2

Press the key sequence

:LD 2
A I
IA

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 FUNC 31_ SHR

Press the key sequence

13 :FUNC

#0005 SHR <S
 P01 _

Press the key:ENT

#0005 SHR <S
 P01 R 10_

Press the key sequence

1R :0

#0005 SHR <S
 P02 _

Press the key:ENT

#0005 SHR <S
 P02 1_

Press the key sequence 1 :

#0005 SHR <S
 P03 _

Press the key:ENT

9

9-148 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0005 SHR <S
 P03 2_

Press the key sequence 2 :

#0005 SHR <S
 P04 _

Press the key:ENT

#0005 SHR <S
P04 R 20_

Press the key sequence

: 0R 2

#0005 INS <S
 _

Press the key:ENT

#0006 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0007 INS <S
 _

Press the key:ENT

9

9-149GFK-0402G Chapter 9 Statement List Programming Language

Bit Rotate Left (ROL) Function 32
The bit rotate left function (ROL) is a conditionally executed function which rotates all
bits in a word array left a given number of bit positions.

 LSB

† 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 †

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU. During the execution all of the
bits in a word or a group of consecutive 16 bit words connected together to form a
continuous string of bits are shifted left a specified number of memory bit locations. The
bits which are shifted out of the left end (highest bit location) of the group of bits are
shifted into the vacant locations at the right end (lowest bit location) of the group of bits

The location of the word or group of words is specified by parameter P1 which is the
memory address location for the first word of the group of consecutive words containing
the group of bits to be rotated.

The number of 16 bit words in the consecutive group of words forming the continuous
string of bits is specified by parameter P3 (LEN). The limits of LEN depend on the
memory type being used and the starting address of the first word of the group of
words containing the bits to be shifted, and the starting address of the final memory
location where the shifted bits are to be stored. If the length plus the memory address
exceed the total number of words for that memory type DATA ERR will be displayed on
the screen of the Hand-Held Programmer.

The number of bit locations that each bit is shifted each time this function is executed is
specified by parameter P2 (N). The number of locations specified by N must be more
then zero and less then the total number of bits in the group of consecutive words.

When the shift occurs a number of bits specified by N will be shifted out of the left end
(highest bit location) of the last word of the group of bits. These bits are shifted into the
vacant locations created by the shift which is located at the right end (lowest bit location)
of the group of bits.

If the number of bits to rotate (N) is greater then the specified length of the array (LEN)
in bits and there is power flow into the ROL function, then the entire output array will
be set equal to the input array and power flow out of ROL will be off. If power flow into
ROL is ON and no error is detected, then power flow out of ROL is on.

The results of the shifted operation are stored in the location of the word or group of
consecutive words specified by parameter P4 (Q) which is the memory address location
for the first word of the group of consecutive words containing the string of bits that has
been shifted.

Parameters P1, P2, and P4 are 16 bit word memory locations representing 16 bit words,
and parameter P3 is a constant. If discrete memory types are used for parameters P1, P2,
and P4, the beginning address must be on an 8-point boundary.

Power flow through this function occurs only when the functions enable input is
receiving power flow. To prevent multiple rotations from taking place it is advisable to
have the power flow to the enable input be controlled by a contact of a one shot element
(OUT+ or OUT–).

9

9-150 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 | |
 Logic controlling (enable) —| ROL |— Power flow output to a
 enable input | | coil or another function
 | |
 | |
 Location of first word (P01) —|IN Q|— (P04) Location of result of
 of group of words. | LEN | shifted operation
 | |
 | 001 |— (P03) Number of 16 bit words to
 | | be rotated
 Number of bits to be (P02) —|N |
 rotated with each execution |_____|

WORD

—| ROL |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 32 (ROL).

3. Parameter P1 (IN): the memory address location for the first word of the group of
words containing the bits to be rotated.

4. Parameter P2 (N): number of bits to be rotated each time a shift takes place. This can
be a constant value or a memory location where the value is stored.

5. Parameter P3: a constant specifying the number of words (each word is 16 bits long)
that will be connected together to form the total number of bits in the group.

6. parameter P4 (Q): the memory address location where the first word of the group of
words containing the results of the bits that have been rotated is to be stored.

The following table specifies which memory types are valid for each of the ROL function
parameters:

Allowable Memory Types for ROL (Function 32)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • •

Distance N (P02) • • • • • • • • •

Length LEN (P03) •

Output Q (P04) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

9

9-151GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for ROL Function

In the following example a contact for a one shot (OUT+) is used as the controlling element
for power flow to the enable function. Thus when input one closes (passes power flow),
%M0001 will pass power flow to the input of the ROL function for one sweep of the CPU
scan. Therefore ROL will occur only once. When the ROL function takes place the 48 bits
of registers %R0030, %R0031 and %R0032 specified by parameter P1 will rotate left two bit
spaces (N(P2)= 2). The result will be placed into the 16-bit words of registers %R0002,
%R0003 and %R0004 specified by parameter P4. Parameter P2 is a constant of 2 specifying
the number of bits to be rotated (shifted) each time a rotate is executed. P3 specifies the
number of words to be connected together to form the total number of bits in the word.

Before Rotate Left:

a43864

01 0 0 1 1 0 0 1 1 0 0 0 0 1 1

01 1 1 1 0 0 0 1 0 1 1 0

1 1 0 0 0 1 0 0 0 0 0 0 1 0

%R0030

%R0031

%R0032 1 0

0 00

After Rotate Left:

R0002

R0003

R0004

a43865

00 1 1 0 0 1 1 0 0 0 0 1 1 1 1

11 0 1 0 0 1 0 1 1 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0 1 00 0

1 00

%

%

%

Ladder Diagram Representation

 |%I0001 %M0001
 +——] [———()
 | _____
 |%M0001 | | %Q0001
 +——] [——————————————————————| ROL |—————————————————————————()——————
 | | WORD|
 | |
 %R0030 ————P1 —|IN Q|—P4 %R0002
 | LEN |
 | 001 |—P3 +0003
 CONST ————P2 —|N |
 +0002 |_____|

9

9-152 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001
#0004: FUNC 32 ROL

P1: %R0030
P2: +0002

 P3: +0003
 P4: %R0002

#0005: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
I

A

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

:
T

C
M 1

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C
M

9

9-153GFK-0402G Chapter 9 Statement List Programming Language

#0004 INS <S
 _

Press the key:ENT

#0004 INS <S
 FUNC 32_ ROL

Press the key sequence

23 :FUNC

#0004 INS <S
 P01 _

Press the key:ENT

#0005 INS <S
 P01 R 30_

Press the key sequence

3R :0

#0004 ROL <S
 P02 _

Press the key:ENT

#0005 ROL <S
 P02 2_

Press the key sequence 2 :

#0004 ROL <S
 P03 _

Press the key:ENT

#0004 ROL <S
 P03 3_

Press the key sequence 3 :

9

9-154 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 ROL <S
 P04 _

Press the key:ENT

#0005 ROL <S
P04 R 2_

Press the key sequence

:R 2

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
 _

Press the key:ENT

9

9-155GFK-0402G Chapter 9 Statement List Programming Language

Bit Rotate Right (ROR) Function 33
The bit rotate right function (ROR) is a conditionally executed function which rotates all
bits in a word array right a given number of bit positions.

 LSB

‡ 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 ‡

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU. During the execution all of the
bits in a word or a group of consecutive 16 bit words connected together to form a
continuous string of bits are shifted right a specified number of memory bit locations.
The bits which are shifted out of the right end (lowest bit location) of the group of bits
are shifted into the vacant locations at the left end (highest bit location) of the group of
bits

The location of the word or group of words is specified by parameter P1 which is the
memory address location for the first word of the group of consecutive words containing
the group of bits to be rotated.

The number of 16 bit words in the consecutive group of words forming the continuous
string of bits is specified by parameter P3 (LEN). The limits of LEN depend on the
memory type being used and the starting address of the first word of the group of
words containing the bits to be shifted, and the starting address of the final memory
location where the shifted bits are to be stored. If the length plus the memory address
exceed the total number of words for that memory type DATA ERR will be displayed on
the screen of the Hand-Held Programmer.

The number of bit locations that each bit is shifted each time this function is executed is
specified by parameter P2 (N). The number of location specified by N must be more then
zero and less then the total number of bits in the group of consecutive words.

When the shift occurs a number of bits specified by N will be shifted out of the right end
(lowest bit location) of the first word of the group of bits. These bits are shifted into the
vacant locations created by the shift which is located at the left end (highest bit location)
of the group of bits

If the number of bits to rotate (N) is greater then the specified length of the array (LEN)
in bits and there is power flow into the ROR function, then the entire output array will
be set equal to the input array and power flow out of ROR will be off. If power flow into
ROR is ON and no error is detected, then power flow out of ROL is on.

The results of the shifted operation is stored in the location of the word or group of
consecutive words which is specified by parameter P4 (Q) which is the memory address
location for the first word of the group of consecutive words containing the string of bits
that has been shifted.

Parameters P1, P2 and P4 are 16 bit word memory locations representing 16 bit words,
and parameter P3 is a constant. If discrete memory types are used for parameters P1, P2,
and P4 the beginning address must be on an 8 point boundary.

Power flow through this function occurs only when the functions enable input is
receiving power flow and no faults occur. If a fault occurs, power flow output will be off.

To prevent multiple rotations from taking place it is advisable to have the power flow to
the enable input be controlled by a contact of a one shot element (OUT+ or OUT–).

9

9-156 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 | |
 Logic controlling (enable) —| ROR |— Power flow to a coil or
 enable input | | another function
 | WORD|
 | | Memory location containing
 Location of first word (P01) —|IN Q|—(P04) results of bits that have
 or group of words to be | | been rotated
 rotated | LEN |
 | 001 |—(P03) Number of 16 bit words
 Constant specifying number | | to be rotated
 of bits to be rotated (P02) —|N |
 each execution |_____|

—| ROR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 33 (ROR).

3. Parameter P1 (IN): the memory address location for the first word of the group of
words containing the bits to be rotated.

4. Parameter P2 (N): the number of bits to be rotated each time a shift takes place. This
can be a constant or a memory location where the value is stored.

5. Parameter P3: a constant specifying the number of words (each word is 16 bits long)
that will be connected together to form the total number of bits in the group.

6. Parameter P4 (Q): the memory address location where the first word of the group of
words containing the results of the bits that have been rotated is to be stored.

The following table specifies which memory types are valid for each of the ROR function
parameters:

Allowable Memory Types for ROR (Function 33)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • •

Distance N (P02) • • • • • • • • •

Length LEN (P03) •

Output Q (P04) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

9

9-157GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for ROR Function

In the following example a contact for a one shot (OUT+) is used as the controlling
element for power flow to the enable function. When input one closes (passes power
flow), %M0001 will pass power flow to the input of the ROR function for one sweep of
the CPU scan. Therefore ROR will occur only once. When the ROR function takes place
the 48 bits of register %R0032, %R0033 and %R0034 specified by parameter P1 will rotate
right two bit spaces N(P2)=2

The result will be placed into the 16-bit words of registers %R0032, %R0033 and %R0034
specified by parameter P4 (any register or memory location could have been used here,
it does not have to be the same as the input location). Parameter P2 is a constant of 2
specifying the number of bits (which will be 2) to be rotated (shifted) each time a rotate
is executed. P3 parameter specifies the number of words that will be connected together
to form the total number of bits in the word, which for this example is three words.

Before Rotate Right:

R0032

R0033

R0034

a43862

01 0 0 1 1 0 0 1 1 0 0 0 0 1 1

01 1 1 1 0 0 0 1 0 1 1 0

1 1 0 0 0 1 0 0 0 0 0 0 1 0

%

%

%
1 0

0 00

After Rotate Right:

a43863

00 1 0 0 0 1 1 0 0 1 1 0 0 0 0

01 1 0 1 0 1 0 0 0 1 0 1

1 1 1 0 0 0 0 1 0 0 0 0 0 0

% R0032

% R0033

% R0034 1 1

1 01

Ladder Diagram Representation

 |%I0001 %M0001
 +——] [———()
 | _____
 |%M0001 | | %Q0001
 +——] [——————————————————————| ROR |—————————————————————————()——————
 | | WORD|
 | |
 %R0032 ————P1 —|IN Q|—P4 %R0032
 | |
 | LEN |
 | 001 |—P3 +0003
 CONST ————P2 —|N |
 +0002 |_____|

9

9-158 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Statement List Representation:

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001
#0004: FUNC 33 ROR

P1: %R0032
P2: +0002
P3: +0003
P4: %R0032

0005: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
I

A

#0002 INS <S
 _

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

:
T

C
M 1

OUTM

OUT – +

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C
M

9

9-159GFK-0402G Chapter 9 Statement List Programming Language

#0004 INS <S
 _

Press the key:ENT

#0004 INS <S
 FUNC 33_ ROR

Press the key sequence

33 :FUNC

#0004 R0R <S
 P01 _

Press the key:ENT

#0004 ROR <S
 P01 R 32_

Press the key sequence

3R :2

#0004 ROR <S
 P02 _

Press the key:ENT

#0004 ROR <S
 P02 2_

Press the key sequence 2 :

#0004 ROR <S
 P03 _

Press the key:ENT

#0004 ROR <S
 P03 3_

Press the key sequence 3 :

9

9-160 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 ROR <S
 P04 _

Press the key:ENT

#0004 ROR <S
P04 R 32_

Press the key sequence

R 3 2 :

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0006 INS <S
 _

Press the key:ENT

9

9-161GFK-0402G Chapter 9 Statement List Programming Language

Bit Set (BITSET) Function 22

The Bit Set function (BITSET) is a conditionally executed function which is used to SET a
particular bit in a string of bits to a 1.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new bit set function will
take place.

The IN parameter specifies the beginning of the bit string. The BIT parameter specifies
the number of the bit to be set in the bit string. Bits in the bit string are numbered
beginning with 1, starting with the least significant bit to the most significant bit. The
LEN parameter specifies the length of the bit string in words. The state of the power
flow output is determined by the ability of the function block to operate properly based
upon the value of the parameters at the time of execution.

Since the BIT parameter can be specified from a word in a reference table, it is possible
that a bit number greater than the length of the bit string could be encountered by the
function block. In this case, the function block cannot execute, the power flow output is
0 and the contents of the bit string are not affected. If the function block can execute
properly, the power flow output is a 1 and the bit specified by parameters P1 (IN) and P2
(BIT) is set to 1.

 | |
 Logic for enable (enable) —| BIT_SET |— Power flow output to a coil
 input | | or another function
 | |
 Beginning of bit string (P01) —|IN |
 | |
 Number of bit in bit (P02) —|BIT |
 string to be set | LEN |—(P03) Length of bit string in
 |_________| words

—| BIT_SET |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 22 (BITSET).

3. Parameter P1 (IN): the memory address location for the first word in the bit string
containing the bit to be set.

4. Parameter P2 (BIT): the number of the bit in the bit string to be set. This can be a
constant or a memory location containing the value.

5. Parameter P3 (LEN): specifies the length of the bit string in words. This is a a
constant number.

9

9-162 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies which memory types are valid for each of the BITSET
function parameters:

Allowable Memory Types for BITSET (Function 22)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN (P01) • • • • • • • • • • •

BIT (P02) • • • • • • • • •

LEN (P03) •

Programming Example for BITSET Function

In this example, the discrete reference %M0027 in the bit string %M0017 - %M0080 will
be set to 1 when the function is executed. Since the BIT parameter is a constant and less
then LEN x 16, the power flow output will be set to 1.

Ladder Diagram Representation

 |%I0023 ———————— %Q0001
 |——] [———————————| BIT_SET|—————————————————————————————————————()——
 | | |
 | |
 %M0017 ——P1 —|IN |
 | |
 const ——P2 —|BIT |
 11 | LEN |—P3 +0004
 ————————

Statement List Representation

#0001 LD %I0023
 #0002 FUNC 22 BITSET

P1: %M0017
P2: 11
P3: 4

 #0003 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

9

9-163GFK-0402G Chapter 9 Statement List Programming Language

#0001 INS <S
 LD I 23_

Press the key sequence

:3LD 2
A I
 IA

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 22_ BITSET

Press the key sequence

22 :FUNC

#0002 BITSET <S
 P01 _

Press the key:ENT

#0002 BITSET <S
P01 M 17_

Press the key sequence

1 :7
T

C M

#0002 BITSET <S
 P02 _

Press the key:ENT

#0002 BITSET <S
 P02 11_

Press the key sequence 1 :1

#0002 BITSET <S
 P03 _

Press the key:ENT

#0002 BITSET <S
 P03 4_

Press the key sequence 4 :

9

9-164 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-165GFK-0402G Chapter 9 Statement List Programming Language

Bit Clear (BITCLR) Function 24
The Bit Clear function (BITCLR) is a conditionally executed function which is used to
SET a particular bit in a string of bits to 0.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new bit clear function will
take place.

The IN parameter specifies the beginning of the bit string. The BIT parameter specifies
the number of the bit to be set in the bit string. Bits in the bit string are numbered
beginning with 1, starting with the least significant bit to the most significant bit. The
LEN parameter specifies the length of the string bit in words. The state of the power
flow output is determined by the ability of the function block to operate properly based
upon the value of the parameters at the time of execution.

Since the BIT parameter can be specified from a word in a reference table, it is possible
that a bit number greater than the length of the bit string could be encountered by the
function block. In this case, the function block cannot execute, the power flow output is
0 and the contents of the bit string are not affected. If the function block can execute
properly, the power flow output is a 1 and the bit specified by IN and BIT is set to 0.

 | |
 Logic for enable (enable) —| BIT_CLR |— Power flow output to a coil
 input | | or another function
 | |
 Beginning of bit string (P01) —|IN |
 | |
 Number of bit in bit (P02) —|BIT |
 string to be set | LEN |—(P03) Length of bit string in
 |_________| words

—| BIT_CLR |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 24 (BITCLR).

3. Parameter P1 (IN): the memory address location for the first word in the bit string
containing the bit to be set.

4. Parameter P2 (BIT): the number of the bit in the bit string to be set. This can be a
constant or a memory location containing the value.

5. Parameter P3 (LEN): specifies the length of the bit string in words. This is a a
constant number.

The following table specifies which memory types are valid for each of the BITCLR
function parameters:

Allowable Memory Types for BITCLR (Function 24)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN (P01) • • • • • • • • • • •

BIT (P02) • • • • • • • • •

LEN (P02) •

9

9-166 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for BITCLR Function

In this example, the discrete reference %M0244 in the bit string %M0233 - %M0280 will
be set to 0 when the function is executed. Since the BIT parameter is a constant and less
then LEN x 16, the power flow output will be set to 1.

Ladder Diagram Representation

 |%I0023 ———————— %Q0001
 |——] [———————————| BIT_CLR|—————————————————————————————————————()——
 | | |
 | |
 %M0233 ——P1—|IN |
 | |
 const ——P2—|BIT |
 12 | LEN |—P3 +0003
 ————————

 Statement List Representation

#0001 LD %I0023
#0002 FUNC 24 BITCLR

 P1: %M0233
P2: 12
P3: 3

 #0003 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 23_

Press the key sequence

:3LD 2
A I
 IA

#0002 INS <S
_

Press the key:ENT

9

9-167GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
FUNC 24_ BITCLR

Press the key sequence

42 :FUNC

#0002 BITCLR <S
 P01 _

Press the key:ENT

#0002 BITCLR <S
P01 M 233_

Press the key sequence

2 :3
T

C
M 3

#0002 BITCLR <S
 P02 _

Press the key:ENT

#0002 BITCLR <S
 P02 12_

Press the key sequence 2 :1

#0002 BITCLR <S
 P03 _

Press the key:ENT

#0002 BITCLR <S
 P03 3_

Press the key sequence 3 :

#0003 INS <S
 _

Press the key:ENT

9

9-168 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-169GFK-0402G Chapter 9 Statement List Programming Language

Bit Test (BITTST) Function 26
The Bit Test function (BITTST) is a conditionally executed function which is used to
determine if a particular bit in a string of bits is set to 1 or 0.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new Bit Test function will
take place.

The IN parameter specifies the beginning of the bit string. The BIT parameter specifies
the number of the bit to be tested in the bit string. Bits in the bit string are numbered
beginning with 1, starting with the least significant bit to the most significant bit. The
LEN parameter specifies the length of the string bit in words. The output (Q) of the
function block is set to the current state (1 or 0) of the tested bit.

The BITTST function has the possibility of not being able to execute properly since the
BIT parameter can be specified from a word in a reference table and a bit number
greater than the length of the bit string could be encountered at the time of execution.
However, there is not a power flow output to indicate failure of the function block to
execute. When this error situation occurs the function block output Q will be 0.

 | |
 Logic for enable (enable) —| BIT_TST |— Power flow output to a coil
 input | | or another function
 | |
 Beginning of bit string (P01) —|IN |
 | |
 Number of bit in bit (P02) —|BIT |
 string to be set | LEN |—(P03) Length of bit string in
 |_________| words

 —| BIT_TST |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 26 (BITTST).

3. Parameter P1 (IN): the memory address location for the first word in the bit string
containing the bit to be set.

4. Parameter P2 (BIT): the number of the bit in the bit string to be tested. This can be a
constant or a memory location containing the value.

5. Parameter P3 (LEN): specifies the length of the bit string in words. This is a a
constant number.

The following table specifies which memory types are valid for each of the BITTST
function parameters:

Allowable Memory Types for BITTST (Function 26)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN (P01) • • • • • • • • • • • •

BIT (P02) • • • • • • • • •

LEN (P03) •

9

9-170 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for BITTST Function

In this example, output Q of the function block will be set to the current state of %I0007
in the bit string %I0001 -%I0032.

Ladder Diagram Representation

 |%M0015 ———————— %Q0001
 |——] [———————————| BIT_TST|—————————————————————————————————————()——
 | | |
 | |
 %I0001 ——P1 —|IN |
 | |
 const ——P2 —|BIT |
 7 | LEN |—P3 +0002
 ————————

 Statement List Representation

#0001 LD %M0015
#0002 FUNC 26 BITTST

P1: %I0001
P2: 7

 P3: 2

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD M 15_

Press the key sequence

:5LD 1
T

C
M

#0002 INS <S
_

Press the key:ENT

9

9-171GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
 FUNC 26_ BITTST

Press the key sequence

62 :FUNC

#0002 BITTST <S
 P01 _

Press the key:ENT

#0002 BITTST <S
 P01 I 1_

Press the key sequence :1
A I
I A

#0002 BITTST <S
 P02 _

Press the key:ENT

#0002 BITTST <S
 P02 7_

Press the key sequence 7 :

#0002 BITTST <S
 P03 _

Press the key:ENT

#0002 BITTST <S
 P03 2_

Press the key sequence 2 :

#0003 INS <S
 _

Press the key:ENT

9

9-172 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Bit Position (BITPOS) Function 28

The Bit Position function (BITPOS) is a conditionally executed function which is used to
determine which bit in a string of bits is set to 1.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new Bit Position function
will take place.

The IN parameter specifies the beginning of the bit string and LEN specifies the length
of the bit string in words. When executed, the function block searches the bit string
starting with the least significant bit until either a bit equal to 1 is found or the length of
the string is searched. If a bit equal to 1 is found, the bit number within the bit string is
written to the POS parameter. Bits are numbered in the bit string beginning with 1 and
starting with the least significant bit to the most significant bit. If a bit equal to 1 is not
found in the bit string, a 0 is written to the POS parameter. In either case, the function
block power flow output is a 1 whenever the function block is executed.

 | |
 Logic for enable (enable) —| BIT_POS |—Power flow output to a coil
 input | | or another function
 | |
 Beginning of bit string (P01) —|IN |
 | |
 Length of bit string (P02) —|LEN |
 in words | POS |—(P03) Result of bit position
 |_________| search

—| BIT_POS |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 28 (BITPOS).

3. Parameter P1 (IN): the memory address location for the first word in the bit string
containing the bit to be set.

4. Parameter P2 (LEN): specifies the length of the bit string (in words) to be searched.

5. Parameter P3 (POS): contains the result of the bit position search. This is a memory
location where the result is stored.

The following table specifies which memory types are valid for each of the BITPOS
function parameters:

Allowable Memory Types for BITPOS (Function 28)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN (P01) • • • • • • • • • • • •

LEN (P02) •

POS (P03) • • • • • • • •

9

9-173GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for BITPOS Function

In this example, the bit string %G0017 -%G0080 is searched starting at %G0017 for a bit
that is set to 1. Assume that the value of word %G0017 = 0, word %G0033 = 4H, word
%G0049 = 80H, and word %G0065 = 0A40H at the time the function block is executed.
The word %Q0233 will be set to 19 decimal. The function block output OK will be a 1.

Ladder Diagram Representation

 |%M0015 ———————— %Q0001
 |——] [———————————| BIT_POS|—————————————————————————————————————()——
 | | |
 | |
 %G0017 ——P1 —|IN |
 | |
 const ——P2 —|BIT |
 4 | POS |—P03—%Q0233
 ————————

Statement List Representation

#0001 LD %M0015
#0002 FUNC 28 BITPOS

P1: %G0017
 P2: 4
 P3: %Q0233
 #0003 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD M 15_

Press the key sequence

:5LD 1
T

C
M

#0002 INS <S
_

Press the key:ENT

9

9-174 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
FUNC 28 BITPOS

Press the key sequence

82 :FUNC

#0002 BITPOS <S
 P01 _

Press the key:ENT

#0002 BITPOS <S
P01 G17_

Press the key sequence

1 :7
S

 G

#0002 BITPOS <S
 P02 _

Press the key:ENT

#0002 BITPOS <S
 P02 4_

Press the key sequence 4 :

#0002 BITPOS <S
P03 _

Press the key:ENT

#0002 BITPOS <S
P03 Q233_

Press the key sequence

:33
AQ

QB
2

#0003 INS <S
_

Press the key:ENT

9

9-175GFK-0402G Chapter 9 Statement List Programming Language

#0003 INS <S
 OUT Q 1_

Press the key sequence 1 :AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-176 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Masked Compare Word (MSKCMPW) Function 143
Masked Compare Dword (MSKCMPD) Function 144

The Masked Compare function is used to compare the contents of two bit strings with
the ability to mask selected bits. The length of the bit strings to be compared is specified
by the LEN parameter where the value of LEN specifies the number of 16 bit words for
MSKCMPW and 32 bit words for MSKCMPD.

When the logic controlling the enable input to the function passes power flow to the
enable input, the function begins comparing the bits in the first string (I1) with the
corresponding bits in the second string (I2). Comparison continues until a miscompare is
found, or until the end of the string is reached.

The BIT input is used to store the bit number where the next comparison should start
with a 0 indicating the first bit in the string. The BN output is used to store the bit
number where the last comparison occurred; a 1 indicates the first bit in the string.
Using the same reference for BIT and BN causes the compare to start at the next bit
position after a miscompare or at the beginning if all bits compared successfully upon
the next execution of the function block.

If you want to start the next comparison at some other location in the string, you can
enter different references for BIT and BN. If the value of BIT is a location that is beyond
the end of the string, BIT is reset to a 0 before starting the next comparison.

IF all Bits in I1 and I2 are the Same

If all corresponding bits in strings I1 and I2 match, the function sets the miscompare
output (MC) to 0 and BN to the highest bit number in the input strings. The comparison
then stops. On the next execution of the Masked Compare, it will be reset to 0.

If a Miscompare is Found

When the two bits currently being compared are not the same, the function then checks
the corresponding numbered bit in string M (the mask). If the mask bit is a 1, the
comparison continues until another miscompare or the end of the input strings is
reached.

If a miscompare is detected and the corresponding mask bit is a 0, the function:

1. Sets the corresponding mask bit in M to a 1.

2. Sets the miscompare (MC) output to 1.

3. Updates the output bit string Q to match the new content of mask string M.

4. Sets the bit number output (BN) to the number of the miscompared bit.

5. Stops the comparison.

9

9-177GFK-0402G Chapter 9 Statement List Programming Language

 | |
 (Logic for controlling (enable) —| |
 power flo | |
 | WORD|
 | |
 (Starting address of first (P1) —|I1 MC|—(Logic set by miscompare)
 bit string to be compared) | |
 | LEN |—(P5) (Number of words in bit
 | | string)
 (Starting address of second (P2) –|I2 |
 bit string to be compared |I2 |
 | Q|–(P6) (Output copy of mask (M)
 (Starting address of bit (P3) —|M | bit string
 string mask) | |
 | BN|–(P7) (Reference containing bit
 | | number of last compare)
 (Address for bit location (P4) —|BIT |
 for start of next comparison) |_____|

—|MASK_
 |COMP_|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 143 (MSKCMPW) or Function 144 (MSKCMPD).

3. Parameter P1 (I1): the starting memory address of the first bit string to be compared.

4. Parameter P2 (I2): the starting memory address of the second bit string to be
compared.

5. Parameter P3 (M): the starting memory address of the bit string mask.

6. Parameter P4 (BIT): specifies the location of the bit number where the next
comparison should start.

7. Parameter P5 (LEN): the number of words (16-bit words for MSKCMPW; 32-bit
words for MSKCMPD) in the bit string.

8. Parameter P6 (Q): output copy of the bit string mask (M).

9. Parameter P7 (BN): memory location where the last compare occurred.

The following table specifies which memory types are valid for the Masked Compare
function parameters:

9

9-178 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Allowable Memory Types for Masked Compare Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

I1 (P01) o o o o o o • • •

I2 (P02) o o o o o o • • •

M (P03) o o o o o� o • • •

BIT (P04) • • • • • • • • • •

LEN (P05) •�

MC • •

Q (P06) o o o o o� o • • •

BN (P07) • • • • • • • • • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for WORD data only; not valid for DWORD.
� = %SA, %SB, %SC only; %S cannot be used.
� = Max const value of 4095 for WORD and 2047 for DWORD.

Programming example for MSKCMPW Function
In the following example, when %I0001 is TRUE, the MSKCMPW function block is
executed. %M0001 through %M0016 is compared with %M0017 through %M0032.
%M0033 through %M0048 contains the mask value. The value in %R0001 determines at
which bit position the comparison starts within the two input strings. The contents of
these references before the function block is executed are as follows:

(I1) %M0001 = 10 1 0 1 1 0 0 0 1 1 0 1 1 0 0

10 1 0 1 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 10 0

1 11(I2) %M0017 =

(M/Q) %M0033 =

(BIT/BN) %R0001 = 9
(MC) %Q0001 = FALSE

The contents of these references after the function block is executed are as follows:

(I1) %M0001 = 10 1 0 1 1 0 0 0 1 1 0 1 1 0 0

10 1 0 1 0 1 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 0 1 1 1 10 0

1 11(I2) %M0017 =

(M/Q) %M0033 =

(BIT/BN) %R0001 = 9
(MC) %Q0001 = TRUE

9

9-179GFK-0402G Chapter 9 Statement List Programming Language

Ladder Diagram Representation

 |%I0001 —————
 |——] [————————————|MASK_|
 | |COMP_|
 | WORD|
 | | %Q0001
 %M0001——(P01) —|I1 MC|—————————————————————————————————()
 | LEN |——(P05)—
 | 0001|
 | |
 %M0017 ——(P02) — |I2 Q|——(P06) %M0033
 | |
 %M0033 ——(P03) —|M BN|——(P07) %R0001
 | |
 | |
 %R0001 ——(P04) —|BIT |
 | |
 —————

 Statement List Representation

#0001: LD %I0001
#0002 FUNC 143 MSKCMPW

P01: %M0001
P02: %M0017
P03: %M0033
P04: %R0001

 P05: 1
P06: %M0033
P07: %R0001

#0003: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

9

9-180 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 143_MSKCMPW

Press the key sequence

41 :FUNC 3

#0002 MSKCMPW <S
P01 _

Press the key:ENT

#0002 MSKCMPW <S
P01 M 1_

Press the key sequence 1 :T
MC

#0002 MSKCMPW <S
P02 _

Press the key:ENT

#0002 MSKCMPW <S
P02 _ M17_

Press the key sequence:

71
T
MC

#0002 MSKCMPW <S
P03 _

Press the key:ENT

#0002 MSKCMPW <S
P03 M33_

Press the key sequence:

33
T
MC

9

9-181GFK-0402G Chapter 9 Statement List Programming Language

#0002 MSKCMPW <S
P04 _

Press the key:ENT

#0002 MSKCMPW <S
P04 R 1_1R

Press the key sequence

#0002 MSKCMPW <S
P05 _

Press the key:ENT

#0002 MSKCMPW <S
P05 1_

Press the key :1

#0002 MSKCMPW <S
P06 _

Press the key:ENT

#0002 MSKCMPW <S
P06 M33_

Press the key sequence

33 :
T
MC

#0002 MSKCMPW <S
P07 _

Press the key:ENT

#0002 MSKCMPW <S
P07 _ R 1_

Press the key sequence

1R

9

9-182 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
 QB

#0004 INS <S
_

Press the key:ENT

9

9-183GFK-0402G Chapter 9 Statement List Programming Language

Section 5: Data Move Functions

Data Move functions provide move (single word, constant, and word array),
initialization, shift register, bit sequencer, and communications request operations.

Abbreviation Function Description

MOVEN Move Copies data as an array of multiple 16-bit words. Data can thus be
moved into a different data type without prior conversion.

MOVBN Move Bits Move one or more bits from one reference to another.

BMOVE Block Move Copies a block of seven constants to a specified memory location.
The constants are input as part of the function.

BLKCL Block Clear Replaces the content of a block of data with all zeros. This
function may be used to clear an area of bit memory (%I, %Q,
%M, and %T) or word memory (%R, %AI, or %AQ).

SHFR Shift Register Fills an area of memory with selected data.

SEQB

SHFRB Shift Register Bit Implements a shift register which shifts a single specified bit.

COMRQ Communications Request Allows the program to communicate with an intelligent module,
such as a PCM, or Genius Communications Module.

Descriptions of each of these functions are included in this section.

9

9-184 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Multiple Word Move MOVEN (MOVIN and MOVWN) Functions 37 and 42
The multiple (array) word move function (MOVIN or MOVWN) is a conditionally
executed function which moves a copy of an array of multiple 16-bit words from one
location to another. The MOVEN function has two forms, MOVIN (Function 37) and
MOVWN (Function 42). The two functions differ only in the default display format
applied to their parameters, signed integer will be displayed for the MOVIN function
and hexadecimal will be displayed for the MOVWN function.

The location of the word or group of words to be copied is specified by parameter P1
which is the memory address location for the first word of the group of consecutive
words to be copied.

The number of 16 bit words in the consecutive group of words to be copied is specified
by parameter P2 (LEN). The limits of LEN depend on the memory type being used and
the starting address of the first word of the group of words to be copied, and the starting
address of the final memory location where the words have been copied to. If the length
plus the memory address exceed the total number of words for that memory type DATA
ERR will be displayed on the screen of the Hand-Held Programmer.

The group of words are copied to a location in memory that is specified by parameter P3
(Q) which is the memory address location for the first word of the group of consecutive
words that have been copied or is loaded with the same constant value as specified by
P1, when P1 is a constant.

Parameters P1 and P3 are word memory locations representing 16 bit words. If discrete
memory types are used for parameters P1 and P3 the beginning address must be on an 8
point boundary.

Power flow through this function occurs only when the functions enable input is
receiving power flow.

 | |
 Logic controlling (enable) —|MOVE |— Power flow to a coil
 power flow to enable | | or another function
 input | INT |
 | |
 Location of word or (P01) —|IN Q|— (P03) Location of copied values
 words to be moved | LEN |— (P02) Constant specifying number
 | | of words to be copied
 | 001 |
 |_____|

—|MOVE |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 37 (MOVIN) or Function 42 (MOVWN).

3. Parameter P1 (IN): the data to be moved. This can be a constant value or the
memory address location for the first word of the group of words containing the bits
to be copied.

4. Parameter P2 (LEN): a constant specifying the number of 16 bit words to be copied
each time a move takes place. LEN cannot be greater than 256.

5. Parameter P3 (Q): the memory address location where the first word of the group
of words that have been copied is stored.

9

9-185GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the MOVEN
function parameters:

Allowable Memory Types for MOVIN (Function 37) and MOVWN (Function 42)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • • •

Output Q (P03) • • • • • •� • • •

LEN (P02) � •

� Only %SA, %SB, and %SC are used. %S cannot be used.
� LEN cannot be greater than 256.

Programming Example for MOVIN Function

In the following example the contact of a one shot (OUT–) is used as the controlling
element for power flow to enable the MOVIN function. When input one closes, power
flow from the left bus to %Q0001 is removed and %Q0001 will turn on for one sweep of
the CPU scan. This ensures that the move of data will take place only once. When the
function is executed, the 16 bit word or words in memory locations %R0001 and %R0002
specified by starting location parameter P1 are copied to memory locations %R0030 and
%R0031 specified by parameter P3. The number of words to be copied is specified by
the constant 2 specified by parameter P2.

Ladder Diagram Representation

 |%I0001 %Q0001
 |——]/[———(↓)
 |
 | _____
 | %Q0001 | | %Q0001
 |———] [——————————————————————|MOVE |— —————————————————————()
 | | INT |
 | |
 | |
 %R0001 ———————————— (P01) —|IN Q|— (P03) —— %R0030
 | LEN |— (P02) —— CONST +0002
 | |
 | 001 |
 |_____|

Statement List Representation

#0001: LD NOT %I0001
#0002: OUT– %Q0001
#0003: LD %Q0001
#0004: FUNC 37 MOVIN

 P01: %R000
 P02: 2

P03: %R0030
#0005: OUT %Q0001

9

9-186 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:LD 1
F
 NOT A I

IA

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT– Q 1_

Press the key sequence

1 :OUTM
OUT – + – + AQ

QB

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD Q 1_

Press the key sequence

LD :1
AQ
QB

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 37_ MOVIN

Press the key sequence

73 :FUNC

9

9-187GFK-0402G Chapter 9 Statement List Programming Language

#0004 MOVIN <S
P01 _

Press the key:ENT

#0004 MOVIN <S
P01 R 1_

Press the key sequence

1 :R

#0004 MOVIN <S
P02_

Press the key:ENT

#0004 MOVIN <S
P02 R 2_

Press the key sequence 2 :

#0004 MOVIN <S
P03_

Press the key:ENT

#0004 MOVIN <S
P03 R 30_

Press the key sequence

03 :R

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-188 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Move Bits (MOVBN) Function 40

The Move Bits function (MOVBN) is a conditionally executed function which is used to
move one or more bits from one reference to another reference.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new move bits function
will take place.

The MOVBN function is used to move a bit string from one reference to another
reference. The IN parameter specifies the beginning of the bit string and the LEN
parameter specifies the length of the bit string in bits. The Q parameter specifies the
destination of the move. Any discrete or word reference can be specified for IN and Q
within the parameter restrictions as stated below. Since IN and Q are not restricted to a
word or byte boundary and LEN is in bits, it is possible to define a bit string that does
not occupy an entire byte or word. The unused bits in the byte or word are not affected
when the function is executed.

If word memory is specified for IN or Q it is assumed that the first bit position to move
from or to is the least significant bit of the word specified by IN or Q, If IN is a constant,
the least significant LEN bit of a bit pattern that corresponds to the value of the constant
is moved into Q. The power flow output is a 1 whenever the function is executed.

 | |
 Logic for enable (enable) —| MOVE_BIT |— Power flow output to a coil
 input | | or another function
 | |
 Beginning of bit string (P01) —|IN |
 | |
 Length of bit string (P02) —|LEN Q |—(P03) Destination of move
 in bits | |
 |__________|

—| MOVE_BIT |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 40 (MOVBN).

3. Parameter P1 (IN): beginning of the bit string to be moved. This can be a constant
value or the memory address location for the first word of the bit string containing
the bit or bits to be moved.

4. Parameter P2 (LEN): a constant specifying the number of bits in the bit string that
will be moved from one location to another each time a move takes place. The limit
for LEN is 16 if the IN parameter is a constant; otherwise the limit is 256.

5. Parameter P3 (Q): the memory address location where the bit or bit string will be
moved to.

9

9-189GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the MOVBN
function parameters:

Allowable Memory Types for MOVBN (Function 40)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN • • • • • • • • • • • • •

LEN � •

Q • • • • • • • • • • •

� The limit for LEN is 16 if the IN parameter is a constant; otherwise the limit is 256.

Programming Example for MOVBN Function

In this example, a bit string of 9 bits %I0012 to %I0020 specified by parameter P1
(starting with %I0012) and P2 (constant value of 9) will be moved to the bit string
%Q0125 to %Q0133 specified by parameter P3 (%Q0125). The power flow output will
be a 1 when the function is executed.

Affected Word Before Move After Move

%I0024 - %I0009 0110 1001 1110 1010 0110 1001 1110 1010

%Q0136 - %Q0121 1100 0000 0000 0011 1101 0011 1101 0011

Ladder Diagram Representation

 |%G0007 ———————— %Q0001
 |——] [———————————————|MOVE_BIT|—————————————————————————————————————()——
 | | |
 | |
 %I0012 ——(P1) —|IN |
 | |
 const ——(P2) —|LEN |
 +0009 | Q |— (P3)— @Q0125
 ————————

Statement List Representation

#0001 LD %G0007
#0002 FUNC 40 MOVBN

P1: %I0012
P2: 9
P3: %Q0125

9

9-190 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
LD G 7_

Press the key sequence

:LD 7
S

 G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 40_ MOVBN

Press the key sequence

04 :FUNC

#0002 MOVBN <S
P01 _

Press the key:ENT

#0002 MOVBN <S
P01 I12_

Press the key sequence

 :1
A I
IA

2

#0002 MOVBN <S
P02 _

Press the key:ENT

9

9-191GFK-0402G Chapter 9 Statement List Programming Language

#0002 MOVBN <S
P02 9_

Press the key sequence 9 :

#0002 MOVBN <S
P03 _

Press the key:ENT

#0002 MOVBN <S
P03 Q125

Press the key sequence

52 :1
AQ
QB

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0004 INS <S
_

Press the key:ENT

9

9-192 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Block Move BMOVE (BMOVI and BMOVW) Functions 38 and 43

The constant block move function (BMOVI or BMOVW) is a conditionally executed
function which fills seven consecutive words with a block of seven constants. The
BMOVE function has two forms, BMOVI (Function 38) and BMOVW (Function 43). The
two functions differ only in the default display format applied to their parameters,
signed integer for BMOVI and hexadecimal for BMOVW.

The group of constants are copied to locations in memory that are specified by
parameter P8 (Q) which is the memory address location for the first word of the seven
consecutive memory locations that the constants are being copied into. Each of these
memory locations is 16 bits long.

Parameters P1 through P7 are constants representing a 16 bit word. If a discrete memory
type is used for parameter P8 the beginning address must be on an 8 point boundary.

To prevent multiple moves from taking place it is advisable to have the power flow to
the enable input be controlled by a contact of a one shot element (OUT+ or OUT–).
Power flow through this function occurs only when the functions enable input is
receiving power flow.

 (Logic for controlling | |
 power flow) (enable) —|BLKMV|— (ok)
 | |
 | INT |
 | |
 — constant value (P1) —|IN1 Q|—(P8) First word of memory location
 | | constants are copied into
 — constant value (P2) —|IN2 |
 | |
 — constant value (P3) —|IN3 |
 | |
 — constant value (P4) —|IN4 |
 | |
 — constant value (P5) —|IN5 |
 | |
 — constant value (P6) —|IN6 |
 | |
 — constant value (P7) —|IN7 |
 |_____|

—|BLKMV|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 38 (BMOVI) or Function 43 (BMOVW).

3. Parameter P1 - P7 (IN1-IN7): value to be copied. The value specified by each of
these seven parameters is a constant value representing a 16 bit word.

4. Parameter P8 (Q): the memory address location where the bit or bit string will be
moved to.

9

9-193GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the BMOVE
function parameters:

 Allowable Memory Types for BMOVI (Function 38) and BMOVW (Function 43)

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

IN1 - IN7 •

ok • •

Q • • • • o� • • • •

• = Valid reference for WORD or INT, or place where power may flow through the function.
o = Valid reference for WORD data only.
� = %SA, %SB, %SC only; %S cannot be used.

Programming Example for BMOVI Function

In the following example a contact from a one shot (OUT+) is used as the controlling
element for power flow to the enable function. When input %I0001 closes (passes
power flow), %M0001 will pass power flow to the enable input of the BMOVI function
for one sweep of the CPU scan. The Block Move function (BMOVI) copies the seven
input constants represented by P1 through P7 into memory locations %R00010 through
%R00016.

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [——(↑)——
 |
 | _____
 |%M0001 | | %Q0001
 |——] [——————————————|BLKMV|— —————————————————()——
 | | _INT|
 | |
 CONST—|IN1 Q|—%R00010
 +32767 | |
 | |
 CONST—|IN2 |
 —32768 | |
 | |
 CONST—|IN3 |
 +00001 | |
 | |
 CONST—|IN4 |
 +00002 | |
 | |
 CONST—|IN5 |
 —00002 | |
 | |
 CONST—|IN6 |
 —00001 | |
 | |
 CONST—|IN7 |
 +00001 | |
 |_____|

9

9-194 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Statement List Representation

#0001: LD %I0001
 #0002: OUT+ %M0001

#0003: LD %M0001
#0004: FUNC 38 BMOVI

P1: +32767
P2: –32768

 P3: 1
P4: 2
P5: 2
P6: 1
P7: 1
P8: %R010

#0005: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :OUTM
OUT – + T

C
M

#0003 <S
_

Press the key:ENT

9

9-195GFK-0402G Chapter 9 Statement List Programming Language

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
FUNC 38_ BMOVI

Press the key sequence

83 :FUNC

#0004 BMOVI <S
P01 _

Press the key:ENT

#0004 BMOVI <S
P01 32767_

Press the key sequence

2 :3

67 7

#0004 BMOVI <S
P02 _

Press the key:ENT

#0004 BMOVI <S
P02 –32768

Press the key sequence

2 :3

67 8– +

#0004 BMOVI <S
P03 _

Press the key:ENT

9

9-196 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 BMOVI <S
 P03 1_

Press the key sequence 1 :

#0004 BMOVI <S
P04 _

Press the key:ENT

#0004 BMOVI <S
 P04 2_

Press the key sequence 2 :

#0004 BMOVI <S
 P05 _

Press the key:ENT

#0004 BMOVI <S
 P05 2_

Press the key sequence 2 :

#0004 BMOVI <S
P06 _

Press the key:ENT

#0004 BMOVI <S
 P06 1_

Press the key sequence 1 :

#0004 BMOVI <S
P07_

Press the key:ENT

9

9-197GFK-0402G Chapter 9 Statement List Programming Language

#0004 BMOVI <S
 P07 1_

Press the key sequence 1 :

#0004 BMOVI <S
P08_

Press the key:ENT

#0004 BMOVI <S
P08 R 10_

Press the key sequence

01 :R

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
OUT+ Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB– +

#0006 INS <S
_

Press the key:ENT

9

9-198 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Block Clear (BLKCL) Function 44

The block clear function (BLKCL) is a conditionally executed function which fills an array
of 16-bit words with the constant zero.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input the function is executed by the CPU. During the execution all of the
bits in a word or a group of consecutive 16 bit words located at a starting memory
location specified by parameter P1 are changed to zeros. If this starting location is for a
discrete memory type (%I, %Q, %M, or %T) the transition information associated with
the reference is also cleared.

The location of the word or group of words which will have all of their bits changed to
zero is specified by parameter P1 which is the memory address location for the first
word of the group of consecutive words to be zeroed.

The number of 16 bit words in the consecutive group of words to be cleared is specified
by parameter P2 (LEN). The limits of LEN depend on the memory type being used and
the starting address of the first word of the group of words to be copied, and the starting
address of the final memory location where the words have been cleared. If the length
plus the memory address exceed the total number of words for that memory type DATA
ERR will be displayed on the screen of the Hand-Held Programmer.

Parameter P1 specifies memory locations representing 16 bit words. If discrete memory
types are used for parameters P1 and P2, the beginning address must be on a 16 point
boundary. Power flow through this function occurs only when the functions enable
input is receiving power flow.

To prevent multiple moves from taking place it is advisable to have the power flow to
the enable input be controlled by a contact of a one shot element (OUT+ or OUT–).

 | |
 Logic controlling (enable) —|BLOCK|— Power flow through this
 power flow to enable | | function to control a coil
 input | CLR | or another function
 | |
 Location of first word (P01) —|IN1 |
 of block of words to be | |
 cleared. | LEN |
 | 001 |— (P02) Constant specifying number
 |_____| of words to be cleared

—|BLOCK|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Type of function: Function 44 (BLKCL).

3. Parameter P1 (IN): location of word or group of words that are to have their bits
changed to 0 (zero). This is the starting memory location for the first word of the
group of words to be zeroed.

4. Parameter P2 (LEN): a constant specifying the number of 16 bit words in the
consecutive group of words to be zeroed.

9

9-199GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the BLKCL
function parameters:

Allowable Memory Types for BLKCL (Function 44)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Start IN (P01) • • • • • •� • • •

Length LEN (P02) •

� Only %SA, %SB, and %SC are used. %S cannot be used.

Programming Example for BLKCL Function

In this example when input %I0001 is closed (passing power flow to the enable input of
the function block) zeros will be moved into the 32 (two 16 Bit words specified by
parameter P2) discrete Global memory location beginning at %G0017 specified by
parameter P1 and ending at location %G0048 (32 locations from %G0017 to %G0048).

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [————————————————————|BLOCK|——————————————————————————————————()——
 | | CLR |
 | |
 | |
 %G0017 ——————(P01) —|IN1 |
 | LEN |
 | | CONST
 | 001 |— (P02) —— +0002
 —————

Statement List Representation

#0001 LD %I0001
#0002 FUNC 44 BLKCL

P1: %G0017
P2: +0002

 #0003 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

9

9-200 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 44_ BLKCL

Press the key sequence

44 :FUNC

#0002 BLKCL <S
P01 _

Press the key:ENT

#0002 BLKCL <S
 P01 G 17_

Press the key sequence

7 :
S
G 1

#0002 BLKCL <S
P02 _

Press the key:ENT

#0004 BLKCL <S
 P02 2_

Press the key sequence 2 :

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

9

9-201GFK-0402G Chapter 9 Statement List Programming Language

Shift Register SHFR (SHFRW) Function 45

The “N” stage word shift register function (SHFRW) is a conditionally executed function
which performs a word shift through an array of 16 bit words.

The shift register is a group of sequentially numbered memory storage locations, with each
memory location containing a 16 bit word. The number of 16 bit memory storage locations
in the sequentially numbered group of storage locations is specified by the constant
programmed in P3, the LEN parameter (maximum 512 for a model 311 CPU, 2048 for a
model 331 CPU). The address of the first and lowest numbered storage location is specified
by parameter P2. The address for the last and highest numbered storage location in the
group is equal to the address specified for the first address plus the number of memory
locations in the group specified by parameter P3 (LEN) minus one.

To make this group of sequentially numbered memory storage location be a shift register,
each time a shift command is received, the contents (16 bit word) of each memory
location is moved to the next higher numbered memory location. Thus a 16 bit word
starts at the first memory location and on every shift command will move one memory
storage location to the next higher numbered memory storage location until it reaches
the highest numbered (last) memory storage location in this group of storage locations.
When this 16 bit word reaches the last storage area available in this group it is
transferred to the storage location specified by parameter P4. The previous contents of
the storage location specified by parameter P4 are lost.

The limits of LEN depend on the memory type being used and the starting address of
the first word of the group of words in the shift register, and the number of 16 bit words
specified by the parameter P3 (LEN). If the length plus the memory address exceed the
total number of words for that memory type DATA ERR will be displayed on the screen
of the Hand-Held Programmer.

When the logic controlling the enable input to the function passes power flow to the enable
(EN) input the function is executed by the CPU and a new shift register function will take
place. During the execution of a shift register function all of the bits in the 16 bit word
which has the highest memory address of this group of 16 bit words are moved (shifted
out) to the 16 bit memory location specified by parameter P4 (Q). After these bits are
stored, and during the same execution of this function, the data stored as 16 bit words in
each of the other memory locations in this group of memory location is moved (shifted),
one 16 bit word at a time, to the next higher 16 bit memory location. The bits stored in the
16 bit word whose location is specified by parameter P1 is moved into the lowest 16 bit
memory location of this group (this is also the starting location of the group specified by
parameter P2) which was left vacant when the above shift of words took place.

When the logic controlling the reset input (R) to this function passes power flow to the reset
(R) input a reset to this function will take place. During a reset all of the bits in all the
memory locations within this group of words are set to zero, starting at the lowest address
specified by parameter P2 and ending at the highest address which is an address equal the
address specified by parameter P2 plus the number of addresses specified by the LEN
constant parameter P3 minus one. The bits stored in the memory location specified by
parameter P4 (Q) and parameter P1 (IN) are not changed by the reset of this function.

Power flow to the reset input is dominant over power flow to the enable input. That is if
power flow is received at both the enable and the rest input at the same time; no shift or
move of memory contents will take place and all of the 16 bit of each word in every
memory location from the lowest to the highest location in the group of memory
locations will be set to zero.

Power flow through this function will follow the condition of the enable input.
Parameters P1, P2, and P4 are memory locations representing 16 bit words.

9

9-202 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 WORD IN 5 Shift Locations=P3
 ————————— —————————
 | 16 BITS | ——> | 16 BITS |<— First memory address location
 ————————— Number |—————————| of shift register
 of words |____v____|
 Memory address in shift >|____v____| WORD OUT
 location of word Register |____v____| ————————— Memory address
 to be shifted in (P3) |_________| ——> | 16 BITS | location of word
 (P1) | ————————— shifted out of the
 | group of locations
 | (P4)
 |_ Last and highest location
 of the group of locations

 | | Power flow through this function
 Logic controlling (enable) —| SHFR|— controlling another function or
 power flow to the | | a coil
 enable input | WORD|
 | |
 Logic controlling power | | Address of storage location
 flow to the reset (reset) —|R Q|— (P04) for the word shifted out of
 input | LEN | the group
 | |
 | 004 |— (P03) Number of memory locations
 | | in the group
 Memory address for word | |
 to be moved into the (P01) —|IN |
 shifting register | |
 | |
 Memory address of the (P02) —|ST |
 first word of the group |_____|
 of words to be shifted

—| SHFR|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Logic controlling the reset input from the left bus. This must start with an LD
element.

3. Type of function: Function 45 (SHFRW).

4. Parameter P1 (IN): the address for the memory location which contains the 16 bit
word which is to be moved into the memory location left vacant when the word
shift took place.

5. Parameter P2 (ST): the memory address location for the first memory location of the
group of memory locations containing the words to be shifted.

6. Parameter P3 (LEN): a constant specifying the number of memory locations in the
group of memory locations making up the shift register.

7. Parameter P4 (Q): the memory address location where the 16 bit word which was
moved out of the group of 16 bit memory locations is to be stored.

9

9-203GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the SHFRW
parameters:

Allowable Memory Types for SHFRW (Function 45)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Input IN (P01) • • • • • • • • • •

Location ST (P02) • • • • • •� • • •

Length LEN (P03) •

Output Q (P04) • • • • • •� • • •

� Only %SA, %SB, and %SC are used. %S cannot be used.

Programming Example for SHFR Function

In the following example when input %I0001 is closed (passing power flow to the enable
input) and when a SHFR function is executed the bits in the 16 bit word which has the
highest memory address of the group (%R0014) of 16 bit words is copied into the 16 bit
memory location of %R0060 specified by parameter P4. After the bits are stored the data
stored as bits in each of the other words, specified by registers %R0011, %R0012, %R0013
automatically remove one 16 bit word at a time starting with %R0013. %R0013 moves to
%R0014, %R0012 moves to %R0013 and %R0011 moves to %R0012. Also the 16 Bit word
in P1 specified by %R0001 is copied into %R0011.

After the Shift has been completed, a reset operation takes place. All of the 16 bit words
stored in Registers (%R011 to %R0014) specified by parameter P2 and set to zero,
however registers %R0001 and %R0060 specified by parameters P1 and P4 respectively
remain unchanged:

LOWEST STARTING
MEMORY LOCATION
ADDRESSED BY P2

MEMORY
LOCATION

WHOSE NUMBER
IS EQUAL TO

P3 (LEN)

16 BIT WORD

a43861

16 BIT WORD 5

INPUT STORAGE
LOCATION (P1)

ADDRESSED BY P1

16 BIT WORD

16 BIT WORD

16 BIT WORD

P1

%R0011

%R0012

%R0013

%R0014
P4

%R006016 BIT WORD

OUTPUT (Q) STORAGE
LOCATION ADDRESSED

BY P4

HIGHEST
MEMORY
LOCATION

9

9-204 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Assume that decimal numbers in the registers are as follows.

 Before
Shift
 (→)

After
Shift

After
Reset

 %R0001 5 5 5

 %R0011 20 5 0

 %R0012 25 20 0

 %R0013 4 25 0

 %R0014 100 4 0

 %R0060 0 100 100

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

LENGTH OF
4 WORDS (P3)

a43860

%R0060

4 WORDS (P2)WORD IN (P1)

WORD OUT (P4)

%R0011

%R0012

%R0013

%R0014

%R0001

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [——(↑)——
 |
 |%M0001 ————— %Q0001
 |——] [—————————————————————————| SHFR|——————————————————————————()——
 | | WORD|
 |%T0002 | |
 |——] [—————————————————————————|R Q|—(P04)— %R0060
 | | LEN |
 | |
 | 004 |— (P03)
 | |
 %R0001 ———(P01) —|IN |
 | |
 | |
 %R0011 ———(P02) —|ST |
 —————

9

9-205GFK-0402G Chapter 9 Statement List Programming Language

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0001
#0003: LD %M0001

 #0004: LD %T0002
#0005: FUNC 45 SHFRW

P1: %R0001
P2: %R0011
P3: 4
P4: %R0060

#0006: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

1 :OUTM
OUT – + T

C
M

#0003 <S
_

Press the key:ENT

9

9-206 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 LD M 1_

Press the key sequence

LD :1
T

C
M

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 LD T 2_

Press the key sequence

LD :2
T

C
M

T

C
M

#0005 INS <S
_

Press the key:ENT

#0005 INS <S
 FUNC 45_ SHFRW

Press the key sequence

54 :FUNC

#0005 SHFRW <S
P01 _

Press the key:ENT

#0005 SHFRW <S
 P01 R 1_

Press the key sequence 1 :R

#0005 SHFRW <S
 P02 _

Press the key:ENT

9

9-207GFK-0402G Chapter 9 Statement List Programming Language

#0005 SHFRW <S
 P02 R 11_

Press the key sequence

1 :R 1

#0005 SHFRW <S
 P03 _

Press the key:ENT

#0005 SHFRW <S
 P03 4_

Press the key sequence 4 :

#0005 SHFRW <S
 P04 _

Press the key:ENT

#0005 SHFRW <S
 P04 R 60_

Press the key sequence

06 :R

#0006 INS <S
 _

Press the key:ENT

#0006 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0007 INS <S
_

Press the key:ENT

9

9-208 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Shift Register Bit (SHFRB) Function 46
The Shift Register Bit function (SHFRB) is a conditionally executed function which is
used to implement a shift register that will shift a specified bit.

When the logic controlling the enable input to the function passes power flow to the
enable (EN) input, the function is executed by the CPU and a new shift register bit
function will take place. When the reset (R) input is a 1 all bits in the shift register are
set to 0. The bits specified by IN and Q are not changed during the reset. The power
flow output is a 1 whenever the function executes.

The Shift Register Bit function implements a shift register on the bit level. The IN
parameter specifies the bit to be shifted into the shift register. The ST parameter
specifies the starting address of the shift register. The LEN parameter specifies the
length of the shift register in bits. The Q parameter specifies the destination of the bit
that is shifted out of the shift register.

Any discrete or word reference can be specified for IN, ST, and Q within the parameter
restrictions stated below. Since ST is not restricted to a word or byte boundary and LEN
is in bits it is possible to define a shift register that does not occupy an entire byte or
word. The unused bits in the byte or word are not affected by the execution of the
function.

If a word reference is specified for IN or Q it is assumed that the least significant bit of
the word specified by IN or Q is the bit to be used. If a word reference is specified for ST
it is assumed that the beginning of the shift register is the least significant bit of the word
specified by ST.

 | | Power flow through this function
 Logic controlling (enable) —| SHFRB|— controlling another function or
 power flow to the | | a coil
 enable input | |
 | |
 Logic controlling (reset) —|R Q|— (P04) Address of storage location
 power flow to the | | for the bit shifted out of
 reset input | | the shift register
 | |
 Memory address for bit to (P01) —|IN |
 to be moved into shift register | |
 | |
 Starting address of the (P02) —|ST |
 shift register | |
 | LEN |— (P03) Length of shift register
 |______|

—| SHFRB|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This must start with an LD
element.

2. Logic controlling the reset input from the left bus. This must start with an LD
element.

3. Type of function: Function 46 (SHFRW).

4. Parameter P1 (IN): the address for the memory location which contains the bit
which is to be moved into the shift register.

5. Parameter P2 (ST): the memory address location for the first memory location of
shift register.

9

9-209GFK-0402G Chapter 9 Statement List Programming Language

6. Parameter P3 (LEN): a constant specifying the length of the shift register in bits.

7. Parameter P4 (Q): the memory address location where the bit which was moved
out of the shift register is to be stored.

The following table specifies which memory types are valid for each of the SHFRB
function parameters:

Allowable Memory Types for SHFRB (Function 46)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

IN • • • • • • • • • • • • •

ST • • • • • • • • • • •

LEN� •

Q • • • • • • • • • • •

� LEN is between 1 and 256. The ending address determined by ST and LEN must not cross reference table boundaries

Programming Example for SHFRB Function

In this example the bit string starting with %I0012, specified by parameter P1, is shifted
into the shift register %G0021 to %G0024, specified by parameter P2. The most
significant bit, %G0024 is shifted out of the shift register to the reference %Q0123,
specified by parameter P4.

Ladder Diagram Representation

 |%G0007 —————— %Q0001
 |——] [—————————————————| SHFRB|—————————————————————————————————————()——
 | | |
 |%T0121 | |
 |——] [—————————————————|R Q|—(P4)—— %G0123
 | | |
 %I0012 —————(P1)—|IN |
 | |
 %G0021 —————(P2)—|ST |
 | |
 | LEN |—P3— const 4
 |______|

Statement List Representation

#0001 LD %G0007
 #0002 LD %T0121

#0003 FUNC 46 SHFRB
P1: %I0012
P2: %G0021
P3: 4
P4: %Q0123

#0004 OUT %Q0001

9

9-210 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD G 7_

Press the key sequence

:LD 7S
G

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
LD T 121_

Press the key sequence

:LD 1
T

C M
T

C M 1 2

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
FUNC 46 SHFRB

Press the key sequence

64 :FUNC

#0003 SHFRB <S
P01 _

Press the key:ENT

#0003 SHFRB <S
P01 I12_

Press the key sequence

21 :
A I
I

A

9

9-211GFK-0402G Chapter 9 Statement List Programming Language

#0003 SHFRB <S
 P02 G21_

Press the key sequence

1 :
S
G 2

#0003 SHFRB <S
P03 _

Press the key:ENT

#0003 SHFRB <S
P03 4_

Press the key sequence 4 :

#0003 SHFRB <S
P04 _

Press the key:ENT

#0003 SHFEB <S
P04 Q123

Press the key sequence

:31 2
AQ
QB

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM

OUT

AQ
QB

#0005 INS <S
_

Press the key:ENT

9

9-212 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Stage Bit Sequencer (SEQB) Function 47
The “N” stage bit sequencer function (SEQB) is a conditionally executed function which
performs a bit sequence shift through an array of bits.

The stage bit sequencer is a group of sequentially numbered memory locations with
each location one bit long. The number of bits in the group is its length which is
specified by parameter P3 (LEN). The memory address location of the first bit of this
group, which is the starting address of the group of bits, is specified by parameter P2.
Beginning at the starting address each bit is assigned a number by the CPU. The
numbers start at one for the first bit located at the starting address and increment
sequentially to the maximum number of bits in the group, which is the length number
specified by parameter P3. Each of these locations is called a step and the number given
by the CPU to each of the single bit memory locations is called the step number. This
stage bit sequencer also has a pointer, which is an indicating device that points to the
step number.

Each location in this group of bits can have a 1 (one) to represent an ON condition
(power flow) or a 0 (zero) to represent an off condition (no power flow) stored in it. The
location or step indicated by the pointer is the only location or step in the group that has
a one (indicates an on condition) stored in it. All other locations or steps have a zero
(indicates an off condition) stored in it. Memory locations in this group of memory
locations that have had their bit set to a one by other logic, since this stage bit sequencer
has been reset, will not be affected and will also be set to a one. If the group of bits
making up the bit shift sequencer are stored in discrete memory locations such as %Q,
%M, %T, and %G contacts may be taken off of these points and used in the relay logic to
control coils or functions.

When the logic controlling the enable input to this function changes from a condition of
passing no power flow to a condition of passing power flow to this functions enable
(EN) input and when the logic step where this function is stored in programmed
memory is executed by the CPU, one execution of this stage bit sequencer function will
take place. During the execution of a stage bit sequencer function the pointer will move
from the step it is presently pointing to the next higher numbered step or next lower
numbered step. The direction that the pointer will move is determined by the condition
of the logic controlling the DIR input. When the logic at the DIR input is passing power
flow to the DIR input the pointer will increment to the next higher step number. If the
logic at the DIR input in not passing power flow to the DIR input the pointer will
decrement to the next lower step number.

When the pointer is at the highest numbered step of the group and is told to increment
it will move to the beginning step number (lowest step number) which is step number
one. Also if the pointer is located at step number one (the lowest step number of the
group) and is told to decrement it will move to the highest step number of the group.

When the logic controlling the reset input to this function passes power flow to this
functions reset (RST) input and each time the logic step where this function is stored in
programmed memory is executed by the CPU the pointer will move to the step number
specified by parameter P1 (STEP), which may be a constant or a number located in the
16 bit memory location specified by parameter P1. Also all memory locations of the
stage bit sequencer (except the new pointer location) and the remaining memory
locations to the next 16 bit boundary will be set to a zero. If a minus one (–1) or zero (0)
is programmed in as parameter P1, it will signify no parameter and the pointer will be
moved to step number one, while setting as above the bits in the other steps and the
remaining memory locations to the next 16 point boundary to a zero (0).

9

9-213GFK-0402G Chapter 9 Statement List Programming Language

The constant specified by parameter P1, or the value located in the 16 bit memory
location specified by parameter P1 should not be allowed to be larger then the number
of steps specified by parameter P3 in this stage bit sequencer. If the step number is
larger then the number of steps in the stage bit sequencer, upon power flow to the reset
input, a one (1) will be placed into the single bit memory location equal to the equivalent
step number. The next execution of the stage bit sequencer will move the pointer to step
number one if incrementing and to the highest numbered step when decrementing.

Power flow to the reset input is dominant over the enable input. That is if power flow is
received at both the enable input and the reset input at the same time; the pointer will
move to the step number specified by parameter P1. Power flow through this function
will follow the condition of the logic connected to the enable input of this function.

When parameters P1 and P2 are memory locations they represent 16 bit words. If
discrete memory types are used for parameters P1, and P2 the beginning address must
be on a 16 point boundary.

The enable (EN) input is interpreted differently depending on the state it was in the
previous time the bit sequencer function block was executed. The reset (R) input
dominates over the enable input, as shown in the following table:

R
Current

Execution

EN
Previous
Execution

EN
Current

Execution
Bit Sequencer Execution

False False False Bit sequencer does not execute.
False False True Bit sequencer increments/decrements by 1.
False True False Bit sequencer does not execute.
False True True Bit sequencer does not execute.
True False False Bit sequencer reset.
True False True Bit sequencer reset.
True True False Bit sequencer reset.
True True True Bit sequencer reset.

The stage bit sequencer has operating values as well as programming parameters. One
of the operating values has the same value as a programming parameter. The operating
values are:

� CURRENT STEP: The number of the step where the pointer is currently located.

� NUMBER OF STEPS: How many steps or single bit memory locations there are in
the group of single bit memory locations making up the stage bit sequencer. This
value is also a programming parameter.

� CONTROL WORD: This is the information used by the CPU to control this function

These values are located in and occupy three sequentially numbered register locations in
the register memory. The lowest numbered register of the three is the defining location
for this stage bit sequencer. The address for this register must be on a three register
boundary. Thus, if you subtract one from this register number (the lowest of the three
sequential registers) the new number must be divisible by three, i.e. the registers must be
grouped as follows; R1 __ __, R4 __ __, R7 __ __, R10 __ __ etc.

9

9-214 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 9-6. Operating Registers and Register Locations

 Sequencer Location: Current Step Register number programmed as P4

 Sequencer Location + 1: Number of Steps

 Sequencer Location + 2: Control Information

This stage bit sequencer location register is the register number which is programmed as
parameter P4. The data found in this register is the current step number that the pointer
is pointing to (the current location of the pointer). The number of steps in the bit
sequencer can be found in the second of the three consecutive registers, which is
programmed as parameter P3. The third register of the three consecutively numbered
registers has the control word stored in it.

Caution

Do not write to sequencer location + 2. Changing the data in the control
information word may result in unexpected operation of the PLC.

When programming the parameter data for a stage bit sequencer note that parameter
P3, which specifies the number of steps with in the stage bit sequencer, is a constant
value and is also automatically placed by the CPU into the second register of the three
sequential operating value registers.

 | |
 —Logic controlling (enable) —| BIT |— Power flow through this function
 power flow to the | | controlling another function
 enable input | SEQ | or coil
 | |
 Logic controlling (reset) —|RST |
 power flow to the | LEN |— (P03) The total number of bits in
 reset input | | the group
 | 001 |
 Logic controlling power |DIR |
 flow to the direction | |
 input | |
 | |
 Step number where the (P01) —|STEP |
 pointer will reset to | |
 | |
 | |
 Memory location for (P02) —|ST |
 the starting bit | |
 |_____|

 (P04)– Location

—| BIT |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Logic controlling the reset input from the left bus. This logic must start with an LD
element.

3. Logic controlling the direction input from the left bus. This logic must start with an
LD element.

9

9-215GFK-0402G Chapter 9 Statement List Programming Language

4. Parameter P1 (STEP): the number of the step that the pointer is to go to when power
flow is received at the reset input. This can be a constant value or a memory address
location where the value is stored.

5. Parameter P2 (STRT): starting memory address where the stage bit sequencer is
stored in memory (address which contains the first step of the stage bit sequencer).

6. Parameter P3 (LEN): a constant value specifying the number of steps in the stage bit
sequencer.

7. Parameter P4 (LOC): the number of the first register of the three sequential registers
containing the operating values.

The following table specifies which memory types are valid for each of the SEQB
function parameters:

Allowable Memory Types for SEQB (Function 47)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

STEP (P01) • • • • • • • • • •�

Start STRT (P02) • • • • • • • •�

LEN (P03) •

Location (P04) •

� Only positive constants are allowed, except –1 which indicates no step parameter.
� Only constant –1, which indicates no STRT parameter.
P1 = Reset step number for the pointer to move to
P2 = Memory address location for the group of bits
P3 = Number of bit (steps) within the group
P4 = Lowest numbered register of the three sequentially numbered control registers

Programming Example for SEQB Function

In this example there are 14 memory locations specified by parameter P3, which are
memory location %Q0017 through %Q0032 specified by parameter P2 in the stage bit
sequencer. The pointer will move to step 12 specified by parameter P1 when %I0002 is
on, passing power flow to the reset input. The pointer will increment through the step
numbers if %I0003 is on and decrement through the step numbers if %I0003 is off.

The operating values are stored in registers %R0001, %R0002 and %R0003 as specified
by parameter P4.

9

9-216 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Memory locations not in the stage bit
sequencer but are in the 16 point
boundary are affected by the reset
execution

 Pointer
 location

 ↓

Step Number 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Before execution 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Memory Location 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 %Q

 Pointer
 location

 ↓
Step Number 14 13 12 11 10 9 8 7 6 5 4 3 2 1

After execution I3 ON 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Incrementing Memory
Location

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 %Q

 Pointer
 location

 ↓
Step Number 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I2 ON After Reset 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Memory Location 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 %Q

• Pointer will increment (I3 on Passing Power Flow) to step 14 (memory location Q30)
and return to step 1 (memory location Q17) on the next execution.

• Pointer will decrement (I3 OFF no power flow) to step 1 (memory location Q17) then
on the next execution will move to step 14 (memory location Q30)

• Upon reset (I2 on passing power flow) memory locations 17 through 32 are set to zero
 except 28 (step 12), the reset step location which is set to a one. Memory location 33 is

 unaffected because it is not within the group bits of the 16 bit word boundary of Q17.

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [——————————————————————| BIT |———————————————————————————————()——
 | | SEQ |
 | |
 |%I0002 | |
 |——] [——————————————————————|RST |
 | | LEN |— (P03)— 14
 | |
 |%I0003 | |
 |——] [——————————————————————| 001 |
 | |DIR |
 | |
 CONST ————————————(P01) —|STEP |
 +0012 | |
 | |
 %Q0017 ————————————(P02) —|ST |
 —————
 Location
 (P04) —————— %R0001

9

9-217GFK-0402G Chapter 9 Statement List Programming Language

 Statement List Representation:

#0001: LD %I0001
#0002: LD %I0002
#0003: LD %I0003

 #0004: FUNC 47 SEQB
P1: 12
P2: %Q0017
P3: 14
P4: %R0001

 #0005: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1A I
I

A

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 LD I 2_

Press the key sequence

:LD 2A I
I

A

#0003 INS <S
_

Press the key:ENT

9

9-218 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0003 INS <S
 LD I 3_

Press the key sequence

:LD 3A I
I

A

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
 FUNC 47_ SEQB

Press the key sequence

74 :FUNC

#0004 SEQB <S
P01 _

Press the key:ENT

#0004 SEQB <S
 P01 I2_

Press the key sequence 21 :

#0004 SEQB <S
P02 _

Press the key:ENT

#0004 SEQB <S
P02 Q 17_

Press the key sequence

71 :
AQ
Q

B

#0004 SEQB <S
P03 _

Press the key:ENT

9

9-219GFK-0402G Chapter 9 Statement List Programming Language

#0003 SRQB <S
 P03 14

Press the key sequence

4 :1

#0004 SEQB <S
 P04 _

Press the key:ENT

#0003 SEQB <S
 P04 R 1_

Press the key sequence 1 :R

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

9

9-220 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Communications Request (COMMREQ) Function 88

The communications request function (COMMREQ) is a conditionally executed function
which allows the program to communicate with an intelligent module, such as a
Programmable Coprocessor Module, in the system. The information presented here
shows the format of a COMMREQ function. Additional information is required in order
to program the COMMREQ for each type of device. This information can be found with
the documentation for each intelligent module.

 | |
 (enable) —| COMM|—
 | REQ |
 | |
 (P01) —|IN FT|— function faulted (logic)
 | |
 | |
 (P02) —|SYSID|
 | |
 | |
 (P03) —|TASK |
 |_____|

—| COMM|

When the COMMREQ function receives power flow to the enable input, a command
block of data is sent to the communications TASK as specified in parameter P3. The
command block begins at the reference specified by the parameter IN (P1). The device
to be communicated with is indicated by entering its rack and slot number for SYSID as
specified in parameter P2. (For additional information on command blocks, please refer
to the documentation supplied with your intelligent module).

The communications request may either send a message and wait for a reply, or send a
message and continue without waiting for a reply. If a reply is requested, a timeout
period is used to resume program execution if the requested device does not respond.

If the command block specifies that the program will not wait for a reply, the command
block contents are sent to the receiving device and the program execution resumes
immediately. The timeout value is ignored. The FT output is set to 0 (false).

If the command block specifies that the program will wait for a reply, the command
block contents are sent to the receiving device and the CPU waits for a reply. The
maximum length of time the PLC will wait for the device to respond is specified in the
command block. If the device does not respond in that time, program execution
resumes. The FT output is set to 1 (true).

9

9-221GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies which memory types are valid for each of the COMMRQ
function parameters:

Allowable Memory Types for COMMREQ (Function 88)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Command CMD (P01) • • •

SYSID (P02) • • • • • • • •

TASK (P03) • • • •

Programming Example for COMMREQ Function

In the following example, when enabling input %I0020 is closed, a command block
located starting at %R00016 is sent to communications task 1 in the device located at rack
1, slot 2 of the PLC. If an error occurs, %Q00100 is set.

Ladder Diagram Representation

 | _____
%I0020			
———		—————————	COMM
	REQ		
 | | %Q0100
 %R0016 ——(P01)—|IN FT|———()—
 | |
 | |
 CONST ———(P02)—|SYSID|
 +0012 | |
 | |
 CONST————(P03)—|TASK |
 +00001 | |
 |_____|

Statement List Representation

#0001: LD %I0020
#0002: FUNC 88 COMMREQ

P1: %R0016
P2: 12
P3: 1

 #0003: OUT %Q0100

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

9

9-222 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0001 INS <S
 LD I 20_

Press the key sequence

:LD 0
A I
IA

2

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 FUNC 88_ COMRQ

Press the key sequence

88 :FUNC

#0002 COMRQ <S
P01 _

Press the key:ENT

#0002 COMRQ <S
 P01 R 16_

Press the key sequence

61 :R

#0002 COMRQ <S
 P02 _

Press the key:ENT

#0002 COMRQ <S
 P02 12_

Press the key sequence 2 :1

#0002 COMRQ <S
 P03 _

Press the key:ENT

9

9-223GFK-0402G Chapter 9 Statement List Programming Language

#0002 COMRQ <S
 P03 1_

Press the key sequence :1

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 100_

Press the key sequence

1 :OUTM
OUT

AQ
QB

0 0

#0004 INS <S
_

Press the key:ENT

9

9-224 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 6: Conversion Functions

Conversion functions are used to convert a data item from one number type to another.
The conversion functions for the Series 90-30/90-20 PLCs are listed in the following table.

Abbreviation Function Description

Integer to BCD BCD Convert an integer value to a 4-digit BCD value.

BCD to Integer INT Convert a 4-digit BCD value to an integer value.

Descriptions of each of these functions are included in this section.

9

9-225GFK-0402G Chapter 9 Statement List Programming Language

Integer to BCD Conversion (BCD) Function 80

The integer to BCD conversion function (BCD) is a conditionally executed function
which converts an integer value to a 4-digit BCD value. This function is typically used to
prepare CPU data for display on external BCD-compatible devices.

When the logic controlling the enable input to this function passes power flow to the
functions enable input the function is executed by the CPU and a new integer to BCD
conversion function will take place. During the execution of an integer to BCD
conversion, the decimal equivalent of the 16 bits stored in the memory location specified
by parameter P1 that are in the decimal range of 0000 through 9999 are split into four
single digit decimal numbers. Each of these single digit decimal numbers is converted
into its equivalent four bit BCD (binary coded decimal) number. The four bits of each of
the BCD numbers equal to each of the single decimal digits is stored in the memory
location specified by parameter P2. The BCD digit representing the LSD (Least
Significant Digit) of the decimal digits is stored in the lowest four memory locations
specified by parameter P2.

When the decimal numbers to be converted are in the range of positive decimal
numbers from 0000 to 9999 and the enable input to this function is receiving power flow,
power flow will pass through this function to another function or a coil. If the decimal
numbers to be converted are not in the range of decimal numbers 0000 to 9999 and the
number is positive the decimal representation of the bits that will be stored in the
memory location specified by parameter P2 will be –26215 which is also 9999
Hexadecimal. The value stored in the memory location specified by parameter P2 will
be Zero if the decimal number to be converted is negative.

 | |
 Logic controlling (enable) —| INT |— Power flow output to
 power flow to the | | another function or coil
 enable input | TO_ |
 | BCD |
 | |
 Memory address location | |
 where decimal integer (P01)—|IN Q|— (P02) Memory address location where
 to be converted is stored |_____| BCD number will be stored

—| INT |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Function type: Function 80.

3. Parameter P1 (IN): the memory location where the decimal number to be converted
is stored.

4. Parameter P2 (Q): the memory location where the BCD results of the conversion are
stored.

9

9-226 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies which memory types are valid for each of the BCD function
parameters:

Allowable Memory Types for BCD (Function 80)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

IN (P01) • • • • • • • •

Q (P02) • • • • • • • •

Programming Example for INT to BCD Function

In this example the decimal equivalent of the 16 bits stored in memory address location
%R0001 specified by P1 is converted to its BCD equivalent bits which are stored in
memory address location %R0002 as specified by P2.

Assume that the following binary representation of the decimal number 4826 is stored in
register %R0001:

0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0

Then the following bits will be in register %R0002 after execution of this function.

0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 4826 Hexadecimal

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [——()——
 |
 |%M0001 ————— %Q0001
 |——] [———————————| INT |——()——
 | | TO_ |
 | BCD |
 | |
 | |
 %R0001 ——(P01)——|IN Q|—(P02) —— %R0002
 —————

Statement List Representation

 #0001 LD %I0001
#0002 OUT+ %M0001
#0003 LD %M0001
#0004 FUNC 80 BCD

P1: %R0001
 P2: %R0002

#0005 OUT %Q0001

9

9-227GFK-0402G Chapter 9 Statement List Programming Language

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

OUTM

OUT – +
T

C M
:1

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C M

#0004 INS <S
 _

Press the key:ENT

9

9-228 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 INS <S
 FUNC 80_ BCD

Press the key sequence

08 :FUNC

#0004 BCD <S
 P01 _

Press the key:ENT

#0004 BCD <S
 P01 R 1_

Press the key sequence

1 :R

#0004 BCD <S
 P02 _

Press the key:ENT

#0004 BCD <S
 P02 R 2_

Press the key sequence 2 :R

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
 _

Press the key:ENT

9

9-229GFK-0402G Chapter 9 Statement List Programming Language

BCD to Integer Conversion (INT) Function 81

The BCD to integer conversion function (INT) is a conditionally executed function which
converts a 4-digit BCD value to an integer value. This function is typically used to read
data from a BCD format device, such as a thumbwheel, and make the data usable by the
CPU.

When the logic controlling the enable input to this function passes power flow to the
function’s enable input the function is executed and a new BCD to integer conversion
function will take place. During the execution of a BCD to Integer conversion the 16 bits
stored in the memory location specified by parameter P1 are split into four groups. Each
group contains four bits which represent one BCD (binary coded decimal) number. The
LSB (Least Significant Bit) being the lowest discrete memory location or the first bit of a
16 bit memory location specified by parameter P1. Each of the four bit BCD numbers
will be converted into a single digit decimal number from 0 through 9. The total 16 bit
word is thus converted into a decimal number four digits long. The binary
representation (not BCD) of this decimal number is stored in the memory location
specified by parameter P2.

When each of the four BCD numbers converts to a single decimal number from 0
through 9 and the enable input to this function is receiving power flow, power flow will
pass through this function to another function or a coil. If any of the BCD numbers
converts to a decimal value from 10 through 15 the value stored in the location specified
by parameter P2 will be the binary representation of the decimal number –32768 which
is also 8000 Hexadecimal.

 | |
 Logic controlling (enable) —| BCD4|— Power flow output to another
 power flow to the | | function or coil.
 enable input | TO_ |
 | INT |
 | |
 Memory location of (P01) —|IN Q|— (P02) Memory location of binary
 the BCD Bits to be |_____| representation of the decimal
 converted integers.

—| BCD4|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Function type: Function 81.

3. Parameter P1 (IN): the memory location where the BCD number to be converted is
stored.

4. Parameter P2 (Q): the memory location where the binary representation of the
decimal integers are to be stored.

9

9-230 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

The following table specifies which memory types are valid for each of the INT function
parameters:

Allowable Memory Types for INT (Function 81)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

IN (P01) • • • • • • • •

Q (P02) • • • • • • • •

Programming Example for BCD to INT Function

In this example the 16 bits stored in register %R0001 specified by parameter P1 are split
into four BCD digits that will each be converted to a decimal number whose binary
representation will be stored in register %R0002 specified by parameter P2.

If the following Binary Bits are in Register %R0001:

0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 = 4826 Hexadecimal

Then the following Binary bits will be stored in %R0002 after the conversion

0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 Binary representation of decimal number 4826
 which is hexadecimal 12DA.

Ladder Diagram Representation

 |%I0001 %M0001
 |——] [———()——
 |
 |%M0001 ————— %Q0001
 |——] [———————————| BCD |——()——
 | | TO_ |
 | INT |
 | |
 | |
 %R0001 (P01) —|IN Q|—(P02)— %R0002
 —————

Statement List Representation

#0001 LD %I0001
#0002 OUT+ %M0001

 #0003 LD %M0001
#0004 FUNC 81 INT

 P1: %R0001
P2: %R0002

#0005 OUT %Q0001

9

9-231GFK-0402G Chapter 9 Statement List Programming Language

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 1_

Press the key sequence

OUTM

OUT – +
T

C
M :1

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 1_

Press the key sequence

:LD 1
T

C
M

#0004 INS <S
 _

Press the key:ENT

9

9-232 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0004 INS <S
 FUNC 81_ INT

Press the key sequence

18 :FUNC

#0004 INT <S
 P01 _

Press the key:ENT

#0004 INT <S
 P01 R 1_

Press the key sequence

1 :R

#0004 INT <S
 P02 _

Press the key:ENT

#0004 INT <S
 P02 R 2_

Press the key sequence 2 :R

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
 _

Press the key:ENT

9

9-233GFK-0402G Chapter 9 Statement List Programming Language

Section 7: Control Functions

Control functions may be used to limit program execution and alter the way the CPU
executes the application program:

Abbreviation Function Description

Do I/O DOI/O Services for one sweep a specified range of inputs or outputs
immediately.

Nested Jump JUMP Causes program execution to jump to a specified location in the
logic.

Nested Master Control Relay MCR Programs a master control relay. An MCR causes all rungs be
tween the MCR and the next END MCR function to be executed
with negative power flow.

End MCR END MCR Terminates a control range extending to the closest preceding/
succeeding JUMP or preceding MCR function.

Label LABEL Provides a target destination for a jump.

No Operation NOOP Supports rung comment functionality, by performing no opera-
tion.

End Sweep ENDSW Acts as a temporary end to executing program logic.

System Service Request SVCRQ Requests a special PLC service.

PID ISA
 PIDIND

PIDISA/PIDIND Implement standard ISA PID (proportional/integral/derivative)
ISA and independent term PID IND algorithms.

Subroutine call CALL Causes program execution to go to a specified subroutine decla-
ration.

Descriptions of each of these functions are included in this section.

9

9-234 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Do I/O Snapshot (DOI/O) Function 85
The do I/O snapshot function (DOI/O) is a conditionally executed function which
performs an immediate I/O snapshot of a designated range of discrete or analog inputs
or outputs.

When the logic controlling the enable input to this function passes power flow to the
functions enable input the function is executed by the CPU and a new Do I/O function
will take place. During the execution of a Do I/O function the logic solving portion of the
CPU scan is suspended (placed on hold) and a specified group of real world inputs or
output are serviced (updated). That is; the on/off condition of the specified inputs are
placed into memory or the data from the CPU memory is sent out to update the
specified hardware outputs. This takes place when the step containing this Do I/O is
solved during the logic solution portion of the CPU scan, and does not wait for the
normal output scan which takes place at the end of the logic solution or the input scan
which takes place just before the logic solution portion of the CPU scan. The normal
input and output scans will still take place at their regular time during the CPU’s total
scan.

Only one type of real world inputs or outputs may be updated during a single execution
of a Do I/O function and only those inputs or outputs that are in the range specified by
parameters P1 (ST) and P2 (END). Parameter P1 (ST) is the starting address of the group
of real world inputs or outputs to be serviced. The reference associated with the starting
and ending address must have the same prefix (%I, %Q, %AI, or %AQ).

The update of the inputs and outputs during this Do I/O function is performed in
groups of eight (8) points at a time when discrete inputs or outputs (%I or %Q) are
specified, therefore the minimum number of points in the group of points specified by
parameter P1 and P2 is 8, and the maximum is restricted by the number of real inputs or
outputs points supported by the system. Note that Do I/O scans occur on I/O module
boundaries and I/O scans of part of the module’s I/O are not supported. For example, if
8 points are specified in a Do I/O function for a 16 point Input module, the entire
module’s 16 points will be scanned. This also means that when discrete inputs or
outputs are specified by parameters P1, P2 or P3 the parameter number specified must
be on an 8 point boundary (if an 8 point discrete module is used), except when
parameter P3 (ALT) specifies a register (%R) location then the number specified by
parameter P1 and P2 must be on a 16 point boundary.

When analog inputs or analog outputs (%AI or %AQ) are specified by parameter P1, P2,
or P3 the minimum number of points specified is 16 or one analog channel, and the
maximum is restricted by the number of real analog channels supported by the system.
This also means that if discrete memory points are used for parameter P3 the number
specified by parameter P3 must be on a 16 point boundary.

Execution of the function continues until all inputs or outputs in the selected range
specified by parameters P1 and P2 are serviced. Then the program logic execution will
return to execute the logic located in the next step following the step containing this Do
I/O function.

If the specified references include a smart I/O module, such as a High Speed Counter or
Axis Positioning Module, the ALT parameter (P1) will be ignored for the references
assigned to that module. That is, the real world input will be put into or outputs taken
from the references configured for that module, as if no ALT parameter had been
programmed. All of the inputs or outputs of a smart I/O module are scanned. That is, if
either %I or %AI are specified by P1 and P2, then BOTH %I and %AI (if present) will be
scanned from the smart module. If EITHER %Q or %AQ are specified by P1 and P2,
both %Q and %AQ will be scanned to the smart module. Note that the Do I/O function
is not allowed with the Enhanced GCM (GCM+) and GCM modules.

9

9-235GFK-0402G Chapter 9 Statement List Programming Language

If parameter P3 is programmed as a –1 (minus 1), then the function will be executed as
if P3 were not programmed.

P1: %I or %AI Condition of these inputs will be stored in the table memory locations spe-
cified by parameter P3.

P2: %I or %AI

P3: %I or %AI
 %Q or %AQ

P1: %I or %AI Condition of these real world inputs are stored in the memory table in the
CPU with the same memory address as P1 and P2.

P2: %I or %AI

P3: –1

P1: %Q or %AQ The data located in the memory location specified by P3 is used as the
source to update these real world outputs.

P2: %Q or %AQ

P3: %Q or %AQ
 %I or %AI

P1: %Q or %AQ The data located in the CPU memory locations specified by P1 and P2 is used
to update the real world outputs whose address is given by P1 and P2.

P2: %Q or %AQ

P3: –1

Power flow through this function will take place when the input or output update is
complete and this functions enable input has power flow, unless:

� Not all references of the type specified are present within the selected range.

� The CPU is not able to properly handle the temporary list of I/O created by the
function.

� The range specified includes I/O modules that are associated with a Loss of I/O fault.

As many Do I/O Functions may be programmed into the CPU as necessary. Note that
each Do I/O function will increase the scan time and the watch dog timer may time out.

To prevent multiple Do I/O functions from taking place it is advisable to have the power
flow to the enable input be controlled by a contact off of a one shot element (OUT+ or
OUT–).

9

9-236 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 | |
 | USER PROGRAM | _________________ _________________
 |___________________| | | | |
 | | 1 | | 2 | |
 | DO I/O |———————>| I/O |—————>| I/O |
 |___________________| | SERVICE | | MODULES |
 | |<———————| |<—————| |
 | NEXT FUNCTION | 5 |_________________| 3 |_________________|
 |___________________| |
 | | | 4
 ________|________
 | |
 | I/O |
 | MEMORY |
 |_________________|

 Logic controlling power | |
 flow to the enable input(enable) —|DO_IO|— Power flow through this
 | | function to control another
 Starting address of input (P01) —|ST | function or coil
 or outputs to be serviced | |
 | |
 Ending address of inputs (P02) —|END |
 or outputs to be serviced | |
 | |
 Alternate CPU location (P03) —|ALT |
 for storage or source |_____|
 data for inputs or outputs.

—|DO_IO|—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Function type: Function 85.

3. Parameter P1 (ST): starting address of real world inputs (%I or %AI) or outputs (%Q
or %AQ) to be serviced.

4. Parameter P2 (END): ending address of real world inputs (%I or %AI) or outputs
(%Q or %AQ) to be serviced.

5. Parameter P3 (ALT): alternate CPU memory location for storage or source data for
inputs or outputs.

Allowable Memory Types for DOI/O (Function 85)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

ST (P01) • • • •

END (P02) • • • •

ALT (P03) • • • • • • • •

9

9-237GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for DOI/O Function

In this example a contact from a one shot (OUT+) is used as the controlling element for
the power flow to the enable input of the Do I/O function. When input %I0001 closes
(passes power flow), %M0067 will pass power flow to the enable input of the Do I/O
function for only one sweep of the CPU scan. Therefore, the Do I/O will only occur once
each time input 1 is closed. When the enabling input %M0067 is true, references %I0001
through %I0064 are scanned and %Q0001 is turned on. A copy of the scanned inputs is
placed in internal memory from reference %M0001 through %M0064. The real input
points are not updated. This form of the function can be used to compare the current
values of input points with the values of input points at the beginning of the scan.

Ladder Diagram Representation

 | %I0001 %M0067
 |———] [——()—
 |
 | _____
 | %M0067 | | %Q0001
 |———] [————————|DO_IO|———()—
 | | |
 | |
 %I0001 —(P01)—|ST |
 | |
 %I0064 —(P02)—|END |
 | |
 %M0001 —(P03)—|ALT |
 |_____|

Statement List Representation

#0001: LD %I0001
#0002: OUT+ %M0067
#0003: LD %M0067
#0004: FUNC 85 DOIO

P1: %I0001
P2: %I0064
P3: %M0001

#0005 OUT %Q0001

9

9-238 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 OUT+ M 67_

Press the key sequence

OUTM

OUT – +
T

C M
:76

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
 LD M 67_

Press the key sequence

:LD 7
T

C M 6

9

9-239GFK-0402G Chapter 9 Statement List Programming Language

#0004 INS <S
 _

Press the key:ENT

#0004 INS <S
 FUNC 85_ DOIO

Press the key sequence

58 :FUNC

#0004 DOIO <S
 P01 _

Press the key:ENT

#0004 DOIO <S
 P01 I 1_

Press the key sequence

1 :
A I
IA

#0004 DOIO <S
 P02 _

Press the key:ENT

#0004 DOIO <S
 P02 I 64_

Press the key sequence

:A I
IA

46

#0004 DOIO <S
 P03 _

Press the key:ENT

#0004 DOIO <S
 P02 M 1_

Press the key sequence 1 :
T

C
M

9

9-240 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0005 INS <S
 _

Press the key:ENT

#0005 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
 _

Press the key:ENT

Enhanced DO I/O Function for Model 331 and Higher

Caution

If the Enhanced DO I/O function is used in a program, the program
should not be loaded by a version of Logicmaster 90-30/20 software
earlier than 4.01.

An enhanced version of the DO I/O (DOIO) function is available for Release 4.20, or
later, of all models except the Model 211 CPU. This enhanced version of the DOIO
function can only be used on a single discrete input or discrete output 8-point, 16-point,
or 32-point module.

The ALT parameter identifies the slot in the main (CPU) rack that the module is located
in. For example, a constant value of 2 in this parameter indicates to the CPU that it is to
execute the enhanced version of the DOIO function block for the module in slot 2.

Note
The only checking done by the enhanced DOIO function block is to check
the state of the module in the slot specified to see if the module is okay.

The enhanced DOIO function only applies to modules located in the main (CPU) rack.
Therefore, the ALT parameter must be between 2 and 5 for a 5-slot rack or 2 and 10 for a
10-slot rack.

The start and end references must be either %I or %Q. These references specify the first
and last reference the module is configured for. For example, if a 16-point input module
is configured at %I0001 through %I0016 in slot 10 of a 10-slot main rack, the ST
parameter must be %I0001, the END parameter must be %I0016, and the ALT parameter
must be 10, as shown below:

9

9-241GFK-0402G Chapter 9 Statement List Programming Language

|
| _____
|%I0001 | | %Q0001
|——| |———|DO_IO|———()—
%I0001 —	ST
%I0016 —	END
10 —	ALT

The following table compares the execution times of a normal DOIO function block for
an 8-point, 16-point, or 32-point discrete input/output module with those of an
enhanced DOIO function block.

Module
Normal DOIO
Execution Time

Enhanced DOIO
Execution Time

8-Pt Discrete Input Module 224 microseconds 67 microseconds
8-Pt Discrete Output Module 208 microseconds 48 microseconds
16-Pt Discrete Input Module 224 microseconds 68 microseconds
16-Pt Discrete Output Module 211 microseconds 47 microseconds
32-Pt Discrete Input Module 247 microseconds 91 microseconds
32-Pt Discrete Output Module 226 microseconds 50 microseconds

Terminate Program Logic Execution (ENDSW) Function 0

The terminate program logic execution function (ENDSW) is an unconditionally
executed function which acts as a (temporary) program logic execution stream
terminator. It is normally used during system debug.

ENDSW is an unconditionally executed function which terminates the execution of
program logic instructions. This function is normally not used in a program, but may be
used as a temporary end of program while debugging program logic. Programming of
this function does not prevent you from viewing succeeding instructions.

No Operation (NOOP) Function 1

The no operation function (NOOP) is an unconditionally executed function which
performs no operation. It is used only in support of the Logicmaster 90-30/20 software
package. NOOPs may appear in a statement list program after Logicmaster 90-30/20
software has downloaded a program.

This function can be only be viewed and deleted by the Hand-Held Programmer. It
cannot be entered using the Hand-Held Programmer.

9

9-242 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Nested Jump (JUMP) Function 3

The nested JUMP function is an unconditionally executed function which is used to
cause a specified portion of the program logic to be bypassed. Normal program
execution will continue at the portion of the program specified by the LABEL function.
The nested JUMP function is enabled when power flows to the enable input. When the
function executes, the program will jump to the LABEL specified by the JUMP function.
If this jump is in the forward direction, the instructions between the JUMP function and
the LABEL function will be skipped. If the jump is in the backward direction, the
instructions between the LABEL and the JUMP functions will be repeated.

A forward jump sequence has the following form:

 [...JUMP TO N...LABEL N...]

A backwards jump sequence has the following form:

 [...LABEL N...JUMP TO N...]

Warning

You must ensure that the logic solution repetition caused by a
backward jump is terminated with the maximum allowable sweep
time (200 ms). If the repetition is allowed to continue beyond the
maximum sweep time, the PLC watchdog timer will time out. This
will cause the PLC to come to a complete shut down with the OK and
RUN LEDs off and with the outputs placed in their default states. This
could create a situation which could damage equipment or cause
personal injury. For Model 311, 313, and 331 CPUs, the only way to get
the PLC out of this state is to power off the PLC and then power it back
on with the Hand-Held Programmer connected and simultaneously
pressing the RUN and NOT keys. CPU Models 340, 341, 351, and 211
will reset themselves, generate a watchdog timer fault, and resume
operation in STOP mode.

The following programming rules apply to the JUMP function:

� JUMP instructions and their associated labels can be nested in any order.

� Multiple JUMPs to the same label are allowed.

� The JUMP nesting levels are restricted only by the maximum number of 256
specified by LABEL plus the END MCR limit.

� Backwards jumps are allowed.

� New JUMP instructions cannot be within the scope of the format of (release 1) of
MCRs and JUMPs. In addition, the previous format of MCRs and JUMPs cannot be
programmed within the scope of new MCR instructions.

� The new (release 2 and later) of JUMP instructions can be nested within the scope of
the new (release 2 and later) MCR instructions.

9

9-243GFK-0402G Chapter 9 Statement List Programming Language

The following table specifies valid memory types for the P1 parameter of the nested
JUMP function.

Allowable Memory Types for nested JUMP (Function 3)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

LABEL (P01) •

Programming Example for JUMP Function

The following example logic is a nested JUMP function having a single input to enable
the function. The logic, when enabled will cause a jump to LABEL number 12.

Ladder Diagram Representation

 | %I0001
 |———]/[———————————>>LA012
 |

Statement List Representation

#0001 LD NOT %I0001
#0002 FUNC 03 JMP

P1: 12

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:LD
A I
IA

1F
 NOT

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 FUNC 03_ JMP

Press the key sequence 3 :FUNC

9

9-244 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 JMP <S
 P01 _

Press the key:ENT

#0002 JMP <S
 P01 12_

Press the key sequence 2 :1

#0003 JMP <S
 _

Press the key:ENT

Programming Example for LABEL Function

The following example shows how a LABEL function is provided for the previous JUMP
function.

Ladder Diagram Representation

 |
 |—LA012
 |

 Statement List Representation

#0021 FUNC 07 LABEL
P1: 12

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0021 INS <S
 _

Initial display:

9

9-245GFK-0402G Chapter 9 Statement List Programming Language

#0021 INS <S
 FUNC 07_ LABEL

Press the key sequence 7 :FUNC

#0021 LABEL <S
 P01 _

Press the key:ENT

#0021 LABEL <S
 P01 12_

Press the key sequence 2 :1

#0022 INS <S
 _

Press the key:ENT

9

9-246 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Nested Master Control Relay (MCR) Function 4

The nested MCR function is an unconditionally executed function used to control
execution of portions of logic. When power flows to the MCR function through the
enable input all coils (except Latch and Reset Latch coils, which are not affected)
between the Master Control Relay (MCR) and the next End MCR function with a
matching label number will be turned off.

The nested MCR has one parameter, which is a number assigned to LABEL between 0
and 255. This number and the matching LABEL number of an END MCR function
identify the scope of the nested MCR function.

The following rules apply to programming the MCR function:

� MCRs and END MCRs must be properly nested. That is, the scope of an MCR must
be either completely within the scope of another MCR or completely out of the
scope of another MCR.

� You can program multiple MCRs for the same END MCR (not applicable to CPU351).

� The maximum MCR nesting level is the maximum number (256) which can be
assigned to LABEL plus the END MCR limit.

� The MCR function must be located in the program prior to its matching END MCR
function.

� New MCR instructions cannot be within the scope of the previous format (release 1)
MCRs and JUMPs (previous format not available in CPU351). In addition, the previous
format of MCRs and JUMPs can not be programmed within the scope of new MCR
instructions.

The following table specifies which memory types are valid for the P1 parameter of the
nested MCR function.

Allowable Memory Types for Nested Master Control Relay (Function 4)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

LABEL (P01) •

END MCR Function 8

The END MCR is an unconditionally executed function is used to resume normal
program execution after a nested MCR function. The END MCR has one parameter,
which is a number assigned to LABEL between 0 and 255. This number and the
matching LABEL number of a prior nested MCR function identify the scope of the
nested MCR function. A maximum of 256 LABELS, END MCRs, and CEND (CEND
available with release 1 only) instructions are allowed in a program.

The following table specifies which memory types are valid for the P1 parameter of the
END MCR function.

Allowable Memory Types for End MCR (Function 8)

Parameter %I %Q %M %T %G %S %SA %SB %SC %R %AI %AQ Constant

LABEL (P01) •

9

9-247GFK-0402G Chapter 9 Statement List Programming Language

Programming Example for MCR Function

The following example shows a nested MCR function assigned a LABEL number of 14
that is to be paired with an END MCR assigned the same number.

Ladder Diagram Representation

 | %I0001 MC014
 |———]/[———————————[MCR]——
 |

Statement List Representation

#0001 LD NOT %I0001
#0002 FUNC 04 MCR

P1: 14

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:LD
A I
IA

1F
 NOT

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 FUNC 04_ MCR

Press the key sequence 4 :FUNC

9

9-248 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 MCR <S
 P01 _

Press the key:ENT

#0002 MCR <S
 P01 14_

Press the key sequence 4 :1

#0003 INS <S
 _

Press the key:ENT

Programming Example for END MCR Function

The following example shows an END MCR function assigned a LABEL number of 14
that is to be paired with the above nested MCR function assigned the same label
number.

Ladder Diagram Representation

 | MC014
 |—[END MCR]—
 |

 Statement List Representation

#0021 FUNC 08 ENDMCR
P1: 14

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0021 INS <S
 _

Initial display:

9

9-249GFK-0402G Chapter 9 Statement List Programming Language

#0021 INS <S
 FUNC 08_ ENDMC

Press the key sequence 8 :FUNC

#0021 ENDMC <S
 P01 _

Press the key:ENT

#0021 ENDMC <S
 P01 14_

Press the key sequence 4 :1

#0022 INS <S
 _

Press the key:ENT

9

9-250 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

LABEL Function 7

The LABEL function is an unconditionally executed function which provides the
destination of a JUMP TO (nested JUMP) function with a matching LABEL number. A
maximum of 256 LABELS, END MCRs, and CEND (CEND available with release 1 only)
instructions are allowed in a program.

The following table lists valid memory types for the P1 parameter of the END MCR
function.

Allowable Memory Types for LABEL (Function 7)

Parameter %I %Q %M %T %S %SA %SB %SC %G %R %AI %AQ Constant

LABEL (P01) •

9

9-251GFK-0402G Chapter 9 Statement List Programming Language

System Service Request (SVCRQ) Function 89

The system service request function (SVCRQ) is a conditionally executed function which
is used to request one of the PLC’s special services. These special services are listed in
the following table.

Table 9-7. Service Request Functions

Function Description

 6 Change/Read Checksum Task State and Number of Words to Checksum.
 7 Change/Read Time of Day Clock (only formats 1 and 3 are supported).

13 Shut Down (stop) the PLC.

14 Clear PLC Fault Tables.

15 Read Last Fault Table Entry.

16 Read Elapsed Time Clock.

18 Read I/O Override Status.

The SVCRQ function has three inputs and one output. When the SVCRQ function
receives power flow, the PLC is requested to perform the function (FNC) indicated.
Parameters for the function begin at the reference given for PARM. The SVCRQ
function passes power flow unless an incorrect function number, incorrect parameters,
or out of range references are specified. The OK output is set to a one (true) if a system
service request is activated and is successful; otherwise, it is set to a 0 (false).

 | |
 (enable) —|SVC_ |— (OK)
 | |
 | REQ |
 ?????? (P01) —|FNC |
 | |
 ?????? (P02) —|PARM |
 |_____|

—|SVC_ |—

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Function type: Function 89.

3. Parameter P1 (FNC): this is a number corresponding to the available special service
requests (see table above). This can be a constant number or the memory location of
a register containing the value.

4. Parameter P2 (PARAM): memory location of parameters for the requested function.
This is a register memory location that contains a block of parameters for the
selected function.

9

9-252 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 The following table specifies which memory types are valid for each of the SVCRQ
function parameters:

Allowable Memory Types for SVCRQ (Function 89)

Parameter %I %Q %M %T %G %S %R %AI %AQ Constant

Request FNC (P01) • •

Output PARAM (P02) •

Programming Example for SVCRQ Function

In the following example, when the enabling input %I0001 is closed, it passes power
flow to the enable input and a new SVCRQ function number 7 (specified in parameter
P1) is called with the parameter block located starting at %R0001 as specified in
parameter P2. Output coil %Q0001 is set true if the operation succeeds.

Ladder Diagram Representation

 | _____
 | %I0001 | | %Q0001
 |———| |———|SVC_ |——()—
 | | REQ |
 CONST | |
 0007—|FNC |
 | |
 | |
 %R0001—|PARM |
 |_____|

 Statement List Representation

#0001: LD %I0001
#0002: FUNC 89 SVCRQ

 P1: 7
P2: %R0001

#0003: OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD
A I
IA

1

9

9-253GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
 FUNC 89_ SVCRQ

Press the key sequence

98 :FUNC

#0002 SVCRQ <S
 P01 _

Press the key:ENT

#0002 SVCRQ <S
 P01 7_

Press the key sequence 7 :

#0002 SVCRQ <S
 P02 _

Press the key:ENT

#0002 SVCRQ <S
 P02 R 1_

Press the key sequence :1R

#0003 INS <S
 _

Press the key:ENT

#0003 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0004 INS <S
 _

Press the key:ENT

9

9-254 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

PID ISA (PIDISA) Function 86
PID IND (PIDIND) Function 87

The PID ISA (PIDISA) and PID IND (PIDIND) functions are conditionally executed
functions which, when executed, will implement the ISA standard algorithm (PID ISA) or
the independent term algorithm (PID IND), respectively. Boolean outputs, parameters, and
memory type restrictions are identical for both algorithms. PID is an acronym for
proportional/integral/derivative.

The PID function is designed to solve one loop equation in one execution. The function
block data uses 40 registers in a loop data table. The first 35 registers are reserved for the
function and should not be used by any application program. The last 5 registers are
reserved for external use.

Registers cannot be shared. If there are multiple occurrences of the same PID function
controlling multiple loops, each occurrence requires a separate block of 40 registers.

The PIDISA and PIDIND functions provide two PID (proportional/integral/derivative)
closed-loop control algorithms.

The PID function has seven input parameters: a Boolean enable, a process set point (SP), a
process variable (PV), a manual/auto Boolean switch (MAN), a manual mode up adjustment
input (UP), and a manual mode down adjustment (DN). It also has an address, which
specifies the location of a block of parameters associated with the function. It has two
output parameters, a successful Boolean output (ok) and the control variable result (CV).

When there is power flow at the enable input and no power flow at MAN, the PID
algorithm is applied to SP and PV, with the result placed in CV. OK is set to a one (true) if
the PID function executes successfully; or if the elapsed time was less then10 ms and the
algorithm was set to run every sweep otherwise, it is set to a 0 (false).

When there is power flow at the enable input and MAN, the PID block is placed into
manual mode. Output CV maintains its current value and can be adjusted with the UP and
DN inputs. While the PID block is in manual mode, the PID algorithm is executed so that
the calculated result tracks with the manually controlled CV value. This prevents the PID
function from building up an integral component while in manual mode, and provides
bumpless transfer when the block is placed back into automatic mode.

 | |
 Logic controlling power (enable) —|PID_ISA|— or —|PID_IND|—
 flow to enable input | |
 | OK|— Logic 1 when input data valid
 | | Logic 0 — CV is not changed
 | |
 | CV|— P04—Location of control variable
 | |
 Location of set point —P01—|SP |
 | |
 Location of process variable —P02—|PV |
 | |
 Manual/auto mode toggle |MAN |
 | |
 Manual mode up adjustment |UP |
 | |
 Manual mode down adjustment |DN |
 | |
 | LOC |— P03—Location of parameter block
 |_______| containing data structure
 for this PID algorithm

—|PID_ISA|—

9

9-255GFK-0402G Chapter 9 Statement List Programming Language

Parameters for PID Function

Parameter Description

enable When enabled, the PID function is performed.

SP (P01) SP is the control loop set point.

PV (P02) PV is the control loop process variable.

MAN When energized, the PID function is in manual mode.

UP When energized, if in manual mode, the CV output is adjusted up.

DN When energized, if in manual mode, the CV output is adjusted down.

LOC (P03) This is the address of the memory location of the PID control block information.

OK The ok output is energized when the function is performed without error.

CV (P04) CV is the control variable output.

Programming Elements and Sequential Order of Programming

1. Logic controlling the enable input from the left bus. This logic must start with an LD
element.

2. Function type: Function 86 (PIDISA) or Function 87 (PIDIND).

3. Parameter P1 (SP): the control loop set point. This is a signed word value which can
be a constant number or the address of a memory location containing the value.

4. Parameter P2 (PV): the control loop process variable. This is a signed word value
which is stored in a specified memory location.

5. Parameter P3 (LOC): address location of PID control block information. The starting
register number for 40 consecutive registers containing the data table for one PID
function.

6. Parameter P4 (CV): an output which is the location of the control variable result.
This is the memory address for the location of the reference which will contain the
control variable result.

The following table specifies which memory types are valid for each of the PIDISA and
PIDIND function parameters:

Allowable Memory Types for PIDISA/PIDIND (Functions 86/87)

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

SP • • • • • • • • •

PV • • • • • • • •

MAN •

UP •

DN •

LOC •

OK • •

CV • • • • • • • •

• = Valid reference or place where power may flow through the function.

9

9-256 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

PID Data Structure

The parameter block associated with each PID function block contains the data items as
shown below. The location of this parameter must be a register specified by the entry
for the LOC (P03) parameter.

%Ref+0000 Loop Number *

%Ref+0001 Algorithm **

%Ref+0002 Sample Period *

%Ref+0003 Dead Band + *

%Ref+0004 Dead Band – *

%Ref+0005 Proportional Gain *

%Ref+0006 Derivative *

%Ref+0007 Integral Rate *

%Ref+0008 Bias *

%Ref+0009 Upper Clamp *

%Ref+0010 Lower Clamp *

%Ref+0011 Minimum Slew Time *

%Ref+0012 Config Word *

%Ref+0013 Manual Command *

%Ref+0014 Control Word **

%Ref+0015 Internal SP **

%Ref+0016 Internal CV **

%Ref+0017 Internal PV **

%Ref+0018 Output **

%Ref+0019 Diff Term Storage **

%Ref+0020 Int Term Storage **

%Ref+0021 Int Term Storage **

%Ref+0022 Slew Term Storage **

%Ref+0023 Clock **

%Ref+0024

%Ref+0025 (time last executed)

%Ref+0026 Y Remainder Storage **

%Ref+0027 Lower Range for SP, PV *

%Ref+0028 Upper Range for SP, PV *

%Ref+0029

• Reserved for internal use

%Ref+0034

%Ref+0035

• Reserved for external use

%Ref+0039

* = May be set by the user.
 ** = Set and maintained by the

PLC.

9

9-257GFK-0402G Chapter 9 Statement List Programming Language

The loop number, execution interval, deadband +/– , proportional gain, differential gain,
integral rate, bias, upper/lower clamp, minimum slew time, and config word values must be
set by the application program. The other values are maintained by the PID function block.

There is an important restriction on the use of the PID function. The PID will not execute
more often than once every 10 msec. This could change your expected results if you set it
up to execute every sweep and the sweep is less than 10 msec. In such a case, the PID
function will not run until enough sweeps have occurred to accumulate an elapsed time of
10 msec; e.g., if the sweep time is 9 msec, the PID function will execute every other sweep
with an elapsed time of 18 msec for every time it executes.

Table 9-8. PID Function Block Data

Data Item Description

Loop Number An unsigned integer that provides a common identification in the PLC with the loop
number defined by an operator interface device. The loop number is displayed under
 the block address when logic is monitored from the Logicmaster 90-30 software. Use of
the loop number is optional.

Algorithm An unsigned integer that is set by the PLC to identify what algorithm is being used by
the function block. The ISA algorithm is defined as algorithm 1, and the interactive
 algorithm is identified as algorithm 2.

Sample Period The time in increments of 0.01 seconds between executions of the function block. The
 PID function is calculated at this interval. The function compensates for the actual
 time elapsed since the last execution, within 100 microseconds. If this value is set to
 0, the function is executed each time it is enabled; however, it is restricted to a minimum
of 10 milliseconds as noted above.

Dead Band (+/–) Signed word values defining the upper (+) and lower (–) limits of the dead band inter-
val, in counts. If no dead band is required, these terms should be set to 0.
If the error is between the dead band (+) and (–) values, the function is solved with the
error term set to 0. In other words, the error must grow beyond these limits before the
PID block begins to adjust the CV output in response.

Proportional Gain A signed word value that sets the proportional gain, in hundreds of seconds.
Derivative A signed word value that sets the derivative, in hundreds of seconds.
Integral Rate An unsigned word value that sets the integral rate, in units of repeats per 1000 seconds.
Bias A signed word value that sets the bias term, in units of counts. Feed-forward control

can be implemented by adjusting this value.
Upper and Lower
Clamps

Signed word values that define the upper and lower limits on the CV output, in units of
counts. Anti-reset windup is applied to the PID integral term when a clamp limit is reached.
The integral term is adjusted to a value that holds the output at the clamped value.

Minimum Slew Time An unsigned word value that defines the output minimum slew time. This term limits
how quickly the output is allowed to change from 0 to 100%. This has the effect of limit-
ing how quickly the integral term is allowed to change, preventing windup. If no slew
rate limit is desired, this term should be set to 0. The slew rate limit is given in seconds
 for full travel.

Config Word A word value with the following format:
0 = Error Term. When this bit is set to 0, the error term is SP - PV. When this bit is
set to 1, the error term is PV - SP.
1 = Output Polarity. When this bit is set to 0, the CV output represents the output of
the PID calculation. When it is set to 1, the CV output represents the negative of the
output of the PID calculation.
2 = Derivative action on PV. When this bit is set to 0, the derivative action is applied to
the error term. When it is set to 1, the derivative action is applied to PV. All remaining
bits should be zero.

Manual Command A signed word value that defines the output when in Manual mode.

9

9-258 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 8-8. PID Function Block Data (continued)

Data Item Description

Control Word A discrete data structure with the following format:

0 = Override.

1 = Auto/Manual.

2 = Enable.

3 = Raise.

4 = Lower.

Override: When the override bit is set to 1, the function block is executed based upon
 the current values of up, down, and manual; these values will not be written
 with the discrete inputs into the function block. When the override bit is set
 to 0, the up, down, and manual values are set to the values, as defined by
 the function block discrete inputs.

 Override also affects the values used for SP. If override is set, the function
 block will not update the value of SP and will execute based upon the SP
 value in the data structure.

 The purpose of the override bit is to allow the operator interface device to
 take control of the Boolean inputs into the function block so that they may
 be controlled by the operator interface device. In addition, since SP is not
 updated, the operator interface unit can also set override and take control
 of the set point.

Enable: The enable bit will track the enable input into the function block.

Manual/Raise/Lower: These three bits represent the state of the three Boolean inputs
 into the function block when the override bit is 0. Otherwise, they can be
 manipulated by an outside source.

SP This is a signed word value representing the set point input to the function block.

CV This is a signed word value representing the CV output of the function block.

PV This is a signed word value representing the process variable input to the function
 block.

Output This is a signed word value representing the output of the function block before the
application of the optional inversion. If no output inversion is configured and the
output polarity bit in the control word is set to 0, this value will equal the CV output.
If inversion is selected and the output polarity bit is set to 1, this value will equal the
negative of the CV output.

Diff Term Storage Used internally for storage of intermediate values. Do not write to this location.

Int Term Storage Used internally for storage of intermediate values. Do not write to this location.

Slew Term Storage Used internally for storage of intermediate values. Do not write to this location.

Clock Internal elapsed time storage (time last executed). Do not write to these locations.

Lower Range Lower range for SP, PV for faceplate display.

Upper Range Upper range for SP, PV for faceplate display.

Reserved Reserved for GE Fanuc use. Cannot be used for other purposes.

9

9-259GFK-0402G Chapter 9 Statement List Programming Language

Initialization Values

The following table lists typical initialization values for the PID function block.

Register Purpose FB Units Suggested Default Range

%Ref+0 Loop Number 1

%Ref+2 Sample Period 10 ms 100 ms (10) 0 to 10.9 min

%Ref+3 Dead Band Selection + Counts 320 0 to 100% of error

%Ref+4 Dead Band Selection – Counts 320 0 to –100% of error

%Ref+5 Proportional Gain 0.01 seconds User Tuned 0 to 327.67 seconds

%Ref+6 Derivative 0.01 seconds User Tuned 0 to 327.67 seconds

%Ref+7 Integral Rate Repeats per 1000 sec User Tuned 0 to 32.767 repeats/sec

%Ref+8 Bias Counts 50% (16000) –100% to +100%

%Ref+9 Upper Output Clamp Counts 100% (32000) –100% to +100%

%Ref+10 Lower Output Clamp Counts 0% (0) –100% to +100%

%Ref+11 Minimum Slew Time Seconds per full travel 0 0 to 32767

Description Of Operation

When the PID function block is enabled, the configured execution interval (%Ref+2) is
compared to the time since the last execution of the function block. If enough time has
elapsed, the function block is executed. The PID loop equation is solved, based upon the
actual elapsed time since the last complete execution rather then the programmed
execution interval.

If the calculated control variable is beyond a configured clamp limit (%Ref+9 or
%Ref+10) or has changed at a rate greater then the slew rate limit (%Ref + 11), the
control variable is held to the appropriate limit and the integral storage is adjusted
accordingly. This is referred to as anti-reset windup.

After the control variable is calculated, it is placed in the manual register (%Ref +13) and
in the control variable storage register (%Ref +16) when the control is in auto mode.
When the function block is placed in manual mode (power flow is passed to the manual
input), the control variable output is held to the value in the manual register; and the
manual register can be incremented or decremented by the up or down inputs to the
function block. The manual register can also be loaded under program control in
manual mode.

Bumpless operation is provided between manual and automatic modes because the
integral storage term is adjusted while in manual mode, much as it is when a clamp or
limit is reached. In manual mode, the control variable output is still restricted by the
configured clamps and the slew rate limit. The slew rate limit can be used to prevent an
operator from trying to adjust the control variable too quickly while in manual mode.

9

9-260 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Difference between the PIDISA and PIDIND Functions

The standard ISA PID algorithm (PIDISA) applies the proportional gain to each of the
proportional, differential, and integral terms, as shown in the block diagram below.

DIFFERENTIAL
TERM

PROPORTIONAL
TERM

INTEGRAL
TERM

DEAD
BAND

P

BIAS

SLEW
LIMIT

CLAMP POLARITY CV

+

SP

PV

a43858

Figure 9-1. Standard ISA PID Algorithm (PIDISA)

The independent term algorithm (PIDIND) applies the proportional gain only to the
proportional gain term, as shown in the block diagram below. Otherwise, the
algorithms are identical.

DIFFERENTIAL
TERM

PROPORTIONAL
TERM

INTEGRAL
TERM

DEAD
BAND

P

BIAS

SLEW
LIMIT

CLAMP POLARITY CV

+

SP

PV

a43859

Figure 9-2. Independent Term Algorithm (PIDIND)

9

9-261GFK-0402G Chapter 9 Statement List Programming Language

Ziegler and Nichols Tuning Approach

Changes to the proportional gain and the integral gain will affect the output
immediately. They should be adjusted slowly and in small increments to allow the
system to respond to their adjustments. Loop tuning should be done according to any
established method used for process control loop tuning. One such method explained
below is the Ziegler and Nichols Tuning Approach.

1. Determine the process gain; apply a unit step to the control variable output and
measure the process variable response after it has stabilized. This response is K, the
process gain.

2. Determine the process lag time. The process lag time t can be estimated as the time
it takes the process variable to begin to react to a step change in the control variable.
It is typically the point at which the process variable has reached its maximum rate
of change.

3. Determine the equivalent system time constant. The equivalent system time
constant T can be determined by the time it takes the process variable to reach 63%
of its steady state value, from a step applied to the control variable minus the
process lag time t.

4. Calculate the reaction rate R:

R = K
T

5. For proportional control only, calculate the Proportional Gain P:

P= 1
(R * T)

6. For proportional and integral control, calculate Proportional Gain P and Integral
Gain I:

P= 0.9
(R * T)

I =
t

0.3 * P

These should only be used as starting values for the tuning process. These values may
vary with operating points in the process, if the process is time variant or non-linear. To
assure that the tuning parameters are valid, all final adjustments should be made
manually and the process monitored over all operating conditions and points.

9

9-262 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Example for PID Function

In this example, register %R1 contains the set point and register %R2 contains the
process variable. %R100 is the first register in the parameter block. Whenever %I1 is
closed (a “1”) and %I2 is open (a “0”), the PID algorithm is applied to the function’s
inputs and the result is placed in register %R3. Whenever both %I1 and %I2 are closed
(both “1”), the result placed in CV is adjusted by the states of inputs %I3 and %I4.

Ladder Diagram Representation

 | %I0001 | |
 |———] [———————————————————————|PID_ISA| %Q0001
 | | OK|——————————————————————————()——
 | | |
 | | CV|— (P04)— %R0003
 | | |
 | %R0001 —(P01)—|SP |
 | | |
 | %R0002 —(P02)—|PV |
 | %I0002 | |
 |———] [———————————————————————|MAN |
 | %I0003 | |
 |———] [———————————————————————|UP |
 | %I0004 | |
 |———] [———————————————————————|DN |
 | | |
 | LOC |— (P03)— %R0100
 |_______|

 Statement List Representation

#0001 LD %I0001
#0002 LD %I0002

 #0003 LD %I0003
#0004 LD %I0004
#0005 FUNC 86 PIDISA

(or FUNC 87 PIDIND)
P1: %R0001
P2: %R0002
P3: %R0100

 P4: %R0003
#0006 OUT %Q0001

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

9

9-263GFK-0402G Chapter 9 Statement List Programming Language

#0001 INS <S
LD I 1_

Press the key sequence

:LD
A I
IA

1

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
LD I 2_

Press the key sequence

:LD
A I
IA

2

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
LD I 3_

Press the key sequence

:LD
A I
IA

3

#0004 INS <S
_

Press the key:ENT

#0004 INS <S
LD I 4_

Press the key sequence

:LD
A I
IA

4

#0005 INS <S
_

Press the key:ENT

9

9-264 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0005 INS <S
FUNC 86_ PIDISA

Press the key sequence

68 :FUNC

#0005 PIDISA <S
P01 _

Press the key:ENT

#0002 PIDISA <S
P01 R1_

Press the key sequence 1 :R

#0005 PIDISA <S
P02 _

Press the key:ENT

#0005 PIDISA <S
P02 R2_

Press the key sequence :2R

#0005 PIDISA <S
 _

Press the key:ENT

#0005 PIDISA <S
P03 R100_

Press the key sequence

:1R 0 0

#0005 PIDISA <S
P04 _

Press the key:ENT

9

9-265GFK-0402G Chapter 9 Statement List Programming Language

#0005 PIDISA <S
P04 R3_

Press the key sequence :3R

#0006 INS <S
 _

Press the key:ENT

#0006 INS <S
 OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0007 INS <S
 _

Press the key:ENT

9

9-266 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Subroutine Call (CALLSUB) Function 90

Entering a Subroutine Call (Function 90)

When a Subroutine Call Function is entered (see “Entering Subroutines”, page 9-7), that
subroutine will be automatically declared, although it will be a null program (no logic)
until you define it. To define the subroutine, zoom into it through the CALLSUB
instruction or from the Subroutine Declaration List and enter the desired logic. The
Subroutine Call function has one parameter, P1, which is the number of the subroutine
you want to call. The following example shows how to enter a Subroutine Call function.
Assume that you want to implement the following logic:

 | ————————
 |%I0001 | Call 1 |
 |——]/[—————| sub |
 | |________|
 |

Programming Example for CALLSUB Function

The statement list instructions that you will enter to call subroutine 1 are as follows:

 #0001: LD NOT %I0001
#0002: FUNC 90 CALL SUB

P1: 1

Enter the statement list program with the following key sequence:

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
 _

Initial display:

#0001 INS <S
 LD NOT I 1_

Press the key sequence

:LD
A I
IA

1F
 NOT

#0002 INS <S
_

Press the key:ENT

9

9-267GFK-0402G Chapter 9 Statement List Programming Language

#0002 INS <S
FUNC 90_ CALLSUB

Press the key sequence

9 :FUNC 0

#0002 CALLSUB <S
 P01 _

Press the key:ENT

#0002 CALLSUB <S
 P01 1 _

Press the key sequence :1

#0002 INS <S
 _

Press the key:ENT

9

9-268 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Section 8: Table Functions

Table functions are used to perform Array Search functions and Array Move functions.
There are seven different functions in this group with each function able to operate on
multiple data types as shown in the Data Type table below; thereby providing a total of
29 Table functions. Each of these functions are described in the following table.

Abbreviation Function Description

SRCH_EQ Search Equal Search for all array values equal to a specified value.

SRCH_NE Search Not Equal Search for all array values not equal to a specified value.

SRCH_LT Search Less Than Search for all array values less than a specified value.

SRCH_LE Search Less Than or Equal Search for all array values less than or equal to a specified
value.

SRCH_GT Search Greater Than Search for all array values greater than a specified value.

SRCH_GE Search Greater Than or Equal Search for all array values greater than or equal to a specified
value.

ARRAY_MOVE Array Move Copy a specified number of data elements from a source
array to a destination array.

The maximum length allowed for these functions is 32,767. Each of the Table functions
can operate on the types of data shown in the following table:

Data Type Description

INT Signed integer.

DINT Double-precision integer.

BIT * Bit data type.

BYTE Byte data type.

WORD Word data type.

* Only available for ARRAY_MOVE.

9

9-269GFK-0402G Chapter 9 Statement List Programming Language

Array Search Functions

The Array Search Functions can each operate on byte, word, integer, or double precision
integer data types. Each of these functions and their function numbers are listed in the
following table.

Table 9-9. Array Search Functions

Array Search type Array data Type Abbreviation Function Number

Byte SREQB 101

Word SREQW 102

Equal To Integer SREQI 103

Double Precision SREQDI 104

Byte SRNEB 105

Word SRNEW 106

Not Equal To Integer SRNEI 107

Double Precision Integer SRNEDI 108

Byte SRLTB 109

Word SRLTW 110

Less Than Integer SRLTI 111

Double Precision Integer SRLTDI 112

Byte SRLEB 113

Word SRLEW 114

Less Than or Equal To Integer SRLEI 115

Double Precision Integer SRLEDI 116

Byte SRGTB 117

Word SRGTW 118

Greater Than Integer SRGTI 119

Double Precision Integer SRGTDI 120

Byte SRGEB 121

Word SRGEW 122

Greater Than or Equal To Integer SRGEI 123

Double Precision Integer SRGEDI 124

The following pages contain a description of each of the Array Search functions listed in
the above table. Programming examples can be found at the end of the descriptions of
all of the Array Search functions.

Note

Please note the following: Because of the similarity of the Array Search
instructions, only one group of programming examples is provided. The
previous table (Array Search Functions) lists all of the Array Search
instructions along with their corresponding abbreviations and function
numbers.

9

9-270 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Equal To, Byte (SREQB) Function 101
Search Equal To, Word (SREQW) Function 102
Search Equal To, INT (SREQI) Function 103
Search Equal To, DINT (SREQDI) Function 104

The Search Equal To functions are conditionally executed functions which are used to
search for all array values equal to a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is equal to the search object
(IN) is found or until the end of the array is reached. If an array element is found, the
output parameter (FD) is set to true and output parameter (output NX) is set to the
relative position of this element within the array. If no element is found with a value
equal (or not equal) to IN before the end of the array is reached, then output parameter
(FD) is set to false and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Equal To functions are shown in the following
illustration. The form of the function is the same for all Search Equal To functions; the
only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |EQ_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

—|SRCH_|

9

9-271GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Equal To Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P011) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is equal to IN has been found and the function was
successful.

Allowable Memory Types for Search Equal To Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n � o • • •

NX in • • • • • • • • •

IN o o o o n � o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT.
� = %SA, %SB, %SC only; %S cannot be used.

9

9-272 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Not Equal To, Byte (SRNEB) Function 105
Search Not Equal To, Word (SRNEW) Function 106
Search Not Equal To, INT (SRNEI) Function 107
Search Not Equal To, DINT (SRNEDI) Function 108

The Search Not Equal To functions are conditionally executed functions which are used
to search for all array values not equal to a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is not equal to the search
object (IN) is found or until the end of the array is reached. If an array element is found,
the output parameter (FD) is set to true and output parameter (output NX) is set to the
relative position of this element within the array. If no element is found with a value not
equal to IN before the end of the array is reached, then output parameter (FD) is set to
false and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Not Equal To functions are shown in the
following illustration. The form of the function is the same for all Search Not Equal To
functions; the only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |NE_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

–|SRCH_| |

9

9-273GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Not Equal To Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P01) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is not equal to IN has been found and the function
was successful.

Allowable Memory Types for Search Not Equal To Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n � o • • •

NX in • • • • • • • • •

IN o o o o n � o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT.
� = %SA, %SB, %SC only; %S cannot be used.

9

9-274 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Less Than, Byte (SRLTB) Function 109
Search Less Than, Word (SRLTW) Function 110
Search Less Than, INT (SRLTI) Function 111
Search Less Than, DINT (SRLTDI) Function 112

The Search Less Than functions are conditionally executed functions which are used to
search for all array values less than a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is less than the search object
(IN) is found or until the end of the array is reached. If an array element is found, the
output parameter (FD) is set to true and output parameter (output NX) is set to the
relative position of this element within the array. If no element is found with a value less
than IN before the end of the array is reached, then output parameter (FD) is set to false
and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Less Than functions are shown in the following
illustration. The form of the function is the same for all Search Less Than functions; the
only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |LT_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

–|SRCH_| |

9

9-275GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Less Than Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P01) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is less than IN has been found and the function was
successful.

Allowable Memory Types for Search Less Than Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n † o • • •

NX in • • • • • • • •

IN o o o o n † o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT.
† = %SA, %SB, %SC only; %S cannot be used.

9

9-276 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Less Than or Equal To, Byte (SRLEB) Function 113
Search Less Than or Equal To, Word (SRLEW) Function 114
Search Less Than or Equal To, INT (SRLEI) Function 115
Search Less Than or Equal To, DINT (SRLEDI) Function 116

The Search Less Than or Equal To functions are conditionally executed functions which
are used to search for all array values less than or equal to a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is less than or equal to the
search object (IN) is found or until the end of the array is reached. If an array element is
found, the output parameter (FD) is set to true and output parameter (output NX) is set
to the relative position of this element within the array. If no element is found with a
value less than or equal to IN before the end of the array is reached, then output
parameter (FD) is set to false and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Less Than or Equal To functions are shown in the
following illustration. The form of the function is the same for all Search Less Than or
Equal To functions; the only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |LE_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

–|SRCH_| |

9

9-277GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Less Than or Equal To Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P01) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is less than or equal to IN has been found and the
function was successful.

Allowable Memory Types for Search Less Than or Equal To Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n � o • • •

NX in • • • • • • • • •

IN o o o o n � o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT
� = %SA, %SB, %SC only; %S cannot be used..

9

9-278 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Greater Than, Byte (SRGTB) Function 117
Search Greater Than, Word (SRGTW) Function 118
Search Greater Than, INT (SRGTI) Function 119
Search Greater Than, DINT (SRGTDI) Function 120

The Search Greater Than functions are conditionally executed functions which are used
to search for all array values greater than a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is greater than the search
object (IN) is found or until the end of the array is reached. If an array element is found,
the output parameter (FD) is set to true and output parameter (output NX) is set to the
relative position of this element within the array. If no element is found with a value less
then IN before the end of the array is reached, then output parameter (FD) is set to false
and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Greater Than functions are shown in the
following illustration. The form of the function is the same for all Search Greater Than
functions; the only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |GT_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

–|SRCH_| |

9

9-279GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Greater Than Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P01) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is greater than IN has been found and the function
was successful.

Allowable Memory Types for Search Greater Than Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n � o • • •

NX in • • • • • • • • •

IN o o o o n � o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT.
� = %SA, %SB, %SC only; %S cannot be used.

9

9-280 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Search Greater Than or Equal To, Byte (SRGEB) Function 121
Search Greater Than or Equal To, Word (SRGEW) Function 122
Search Greater Than or Equal To, INT (SRGEI) Function 123
Search Greater Than or Equal To, DINT (SRGEDI) Function 124

The Search Greater Than or Equal To functions are conditionally executed functions
which are used to search for all array values greater than or equal to a specified value.

Each function has four input parameters and two output parameters. When the function
receives power, the array is searched starting at (AR + input NX). This is the starting
address of the array (AR) plus the index into this array (input NX).

The search continues until the array element whose value is greater than or equal to the
search object (IN) is found or until the end of the array is reached. If an array element is
found, the output parameter (FD) is set to true and output parameter (output NX) is set
to the relative position of this element within the array. If no element is found with a
value less then IN before the end of the array is reached, then output parameter (FD) is
set to false and output parameter (output NX) is set to zero.

The valid values for the input NX are 0 to LEN – 1. This value increments by one at the
time of execution. Therefore, the values of the output NX are 1 to LEN. If the value of
the input NX is out-of-range, (< 0 or w LEN), its value is set to the default value of zero.

The function parameters for the Search Greater Than or Equal To functions are shown in
the following illustration. The form of the function is the same for all Search Greater
Than or Equal To functions; the only difference being the data type.

 | |
 (Logic for controlling (enable) —|SRCH_|
 power flow) | |
 |GE_ |
 | |
 (Starting address of array) (P1)—|AR FD|— (Set to 1 if element found, 0 if
 | | not found)
 | LEN |— (P4) (Length of array)
 | |
 (Index into array) (P2)—|NX NX|— (P5) (Set to position in array of
 | | element)
 | |
 (Object of search) (P3)—|IN |
 |_____|

–|SRCH_| |

9

9-281GFK-0402G Chapter 9 Statement List Programming Language

Description of Parameters for Search Greater Than or Equal To Functions

Parameter Description

enable When the function is enabled, the operation is performed.

AR (P01) AR contains the starting address of the array to be searched.

Input NX (P02) Input NX contains the index into the array.

IN (P03) IN contains the object of the search.

LEN (P04) LEN specifies the number of elements starting at AR that make up the array to be searched.

Output NX (P05) Output NX holds the position within the array of the search target.

FD FD indicates that an element whose value is greater than or equal to IN has been found and the
function was successful.

Allowable Memory Types for Search Greater Than or Equal To Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

AR o o o o n † o • • •

NX in • • • • • • • • •

IN o o o o n † o • • • •

LEN •

NX out • • • • • • • •

FD • •

• = Valid reference or place where power may flow through the function.
o = Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
n = Valid reference for BYTE or WORD data only; not valid for INT or DINT.
† = %SA, %SB, %SC only; %S cannot be used.

9

9-282 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Examples for Array Search Functions

The following programming examples illustrate how to enter the Search Equal To Byte
(SREQB) and Search Equal To Integer (SREQI) functions on the HHP. The ladder
diagram representation of the example is shown, followed by the equivalent HHP
statement list and the key sequences required to enter the statement list.

Example 1: Byte Array Search Equal To

In this example, the array AR is defined as memory addresses %I1 to %I40. When %I99
closes (passes power flow to the enable input), the portion of the array between %I17
and %I40 will be searched for an element whose value is equal to IN. If %I1 to %I8 = 1,
%I9 to %I16 = 9, %I17 to %I24 = 11, %I25 to %I32 = 19, %I33 to %I40 = 21, and %M5 =
19 then the search will begin at %I17 to %I24 and conclude at %I25 to %I32 when FD
will be set to true and a 4 (the array index) will be written to %Q41 to %Q48.

Ladder Diagram Representation

 |%I0099 —————
 |——] [————————————|SRCH_|
 | |EQ_ |
 |BYTE | %Q0001
 %I0001——(P01) —|AR FD|———()
 | LEN |—(P04)
 | 005 |
 CONST ——(P02) —|NX NX|—(P05)— %Q0041
 0002 | |
 | |
 %M0005——(P03) —|IN |
 —————

Statement List Representation

#0001: LD %I0099
#0002 FUNC 101 SREQB

P01: %I0001
P02 2
P03: %M0005
P04: 5
P05: %Q0041

#0003: OUT %Q0001

9

9-283GFK-0402G Chapter 9 Statement List Programming Language

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 99_

Press the key sequence

:LD 9
A I
IA

9

#0002 INS <S
_

Press the key:ENT

Press the key sequence

:FUNC 101

#0002 INS <S
FUNC 101_SREQB

#0002 SREQB <S
P01 _

Press the key:ENT

#0002 SREQB <S
P01 I 1_Press the key :1

A I
IA

sequence

#0002 SREQB <S
P02 _

Press the key:ENT

9

9-284 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 SREQB <S
P02 2_

Press the key:2

#0002 SREQB <S
P03 _

Press the key:ENT

#0002 SREQB <S
P03 M 5_

Press the key :5 sequence
T

C
M

#0002 SREQB <S
P04 _

Press the key:ENT

#0002 SREQB <S
P04 5_

Press the key:5

#0002 SREQB <S
P05 _

Press the key:ENT

#0002 SREQB <S
P05 Q 41_

Press the key sequence

 :1
AQ
QB

4

#0003 INS <S
_

Press the key:ENT

9

9-285GFK-0402G Chapter 9 Statement List Programming Language

#0005 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
QB

#0006 INS <S
_

Press the key:ENT

Example 2: Integer Array Search Equal To

In this example, the array AR is defined as memory addresses %R1 to %R5. When %I1
closes (passes power flow to the enable input), the portion of the array between %R3
and %R5 will be searched for an element whose value is equal to IN. If %R1 = 7, %R2 =
9, %R3 = 6, %R4 = 7, %R5 = 7, and %R100 = 7, then the search will begin at %R3 and
conclude at %R4 when FD will be set to true and a 4 (the array index) will be written to
%R101.

Ladder Diagram Representation

 | %I0001 —————
 |——] [————————————|SRCH_|
 | |EQ_ |

 |INT | %Q0001
 %R0001——(P01) —|AR FD|——()
 | LEN |
 | 0005|— (P04)
 | |
 CONST——(P02) —|NX NX|— (P05)— %R0101
 0002 | |
 | |
 %R0100——(P03) —|IN |
 —————

Statement List Representation

#0001: LD %I0001
#0002 FUNC 103 SREQI

P01: %R0001
P02: 2
P03: %R0100
P04: 5
P05: %R0101

#0003: OUT %Q0001

9

9-286 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing the: Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

 LD A1

1A
1 :

#0002 INS <S
 LD I 1_ Press the key:ENT

 #0002 INS <S
 FUNC 103_SREQI

Press the key sequence

FUNC 1 0 3 :

#0002 SREQI <S
P01 _Press the key:ENT

#0002 SREQB <S
P01 R 1_

Press the key sequence

R 1 :

#0002 SREQI <S
P02 _Press the key:ENT

9

9-287GFK-0402G Chapter 9 Statement List Programming Language

#0002 SREQI <S
P02 2_Press the key:2

#0002 SREQI <S
P03 _Press the key:ENT

#0002 SREQI <S
P03 R 100_

Press the key sequence

R 1 :0 0

#0002 SREQI <S
P04 _Press the key:ENT

 #0002 SREQI <S
 P04 5_

Press the key:5

 #0002 SREQI <S
 P05 _Press the key:ENT

 #0002 SREQI <S
 P05 R 101_

Press the key sequence

R 1 :0 1

 #0003 INS <S
 _Press the key:ENT

9

9-288 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

 #0003 INS <S
 OUT Q 1_

Press the key sequence

:1
OUTM

OUT

AQ

QB

 #0004 INS <S
 _Press the key:ENT

9

9-289GFK-0402G Chapter 9 Statement List Programming Language

Array Move Functions

The Array Move functions are used to copy a specified number of data elements from a
source array to a destination array. The Array Move functions can each operate on bit,
byte, word, integer, or double precision data types. Each of the Array Move functions
and their respective function numbers are listed in the following table.

Array Move Functions

Array Move Data Type Abbreviation Function Number

Bit MOVABI 130

Byte MOVABY 131

Word MOVAW 132

Integer (INT) MOVAI 133

Double Precision Integer (DINT) MOVADI 134

9

9-290 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Array Move, Bit (MOVABI) Function 130
Array Move, Byte (MOVABY) Function 131
Array Move, Word (MOVAW) Function 132
Array Move, INT (MOVAI) Function 133
Array Move, DINT (MOVADI) Function 134

The Array Move function has six input parameters and two output parameters. When
the function receives power flow to the enable input, the function is executed by the
CPU and the number of data elements in the count indicator (N) is extracted from the
input array starting with the indexed location (SR + SNX – 1). The data elements are
then written to the output array starting with the indexed location (DS + DNX – 1).
The LEN operand specifies the number of elements that make up each array.

For the Bit Array Move function, when word-oriented memory is selected for the
parameters of the source array and/or destination array starting address, the least
significant bit of the specified word is the first bit of the array. The value displayed
contains 16 bits, regardless of the length of the array.

The ok output will receive power flow unless one of the following conditions occurs:

� Enable is false.

� (N + SNX) is greater than (SR + LEN).

� (N + DNX) is greater than (DS + LEN).

The function parameters for the Array Move functions are shown in the following
illustration. The form of the function is the same for all Array Move functions; the only
difference being the data type.

 | |
 (Logic for controlling (enable) —|ARRAY|— (ok)
 | |
 power flow) |_MOVE|
 | |
 (Starting Address of source (P1) —|SR DS|—(P6) (Starting address of
 array) | | destination array)
 | LEN |—(P5) (Number of elements starting
 | | at SR and DS in the array)
 (Index into source array) (P2) —|SNX |
 | |
 (Index into destination (P3) —|DNX |
 array) | |
 | |
 (Number of elements to be (P4) —|N |
 moved) |_____|

—|ARRAY|—

9

9-291GFK-0402G Chapter 9 Statement List Programming Language

Parameters for Array Move Functions

Parameter Description

enable When the function is enabled, the operation is performed.

SR (P01) SR contains the starting address of the source array. For Bit Array Move, any dis-
crete reference may be used; it does not need to be byte aligned. However, 16 bits,
beginning with the reference address specified, are displayed online.

SNX (P02) SNX contains the index of the source array.

DNX (P03) DNX contains the index of the destination array.

N (P04) N provides a count indicator of number of elements to be moved.

LEN (P05) LEN specifies the number of elements starting at SR and DS that make up each
array.

DS (P06) DS contains the starting address of the destination array. For Bit Array Move, any
discrete reference may be used; it does not need to be byte aligned. However, 16
bits, beginning with the reference address specified, are displayed online.

ok The ok output is energized whenever the function is enabled.

Allowable Memory Types for Array Move Functions

Parameter flow %I %Q %M %T %S %G %R %AI %AQ const none

enable •

SR o o o o ∆� o • • •

SNX • • • • • • • • •

DNX • • • • • • • • •

N • • • • • • • • •

LEN •

DS o o o o � o • • •

ok • •

• = Valid reference or place where power may flow through the function. For Bit Array Move,
discrete user references %I, %Q, %M, and %T need not be byte aligned.
o = Valid reference for INT, BIT, BYTE, or WORD data only; not valid for DINT.
∆ = Valid data type for BIT, BYTE, or WORD data only; not valid for INT or DINT.
� = %SA, %SB, %SC only; %S cannot be used.

9

9-292 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Programming Examples for Array Move Functions

The following examples illustrate how to enter the Bit, Byte, and Word Array Move
Functions on the HHP. The ladder diagram representation of the example is shown,
followed by the equivalent HHP statement list and the key sequence required to enter
the statement list.

Example 1: Bit Array Move

In this example, when input %I0001 is closed (passes power flow to the enable input),
the function is executed. Bit memory is used for the SR and DS inputs; %M0011 to
%M0017 of the array %M0009 to %M0024 is read and then written to the destination
%Q0026 to %Q0032 of the array %Q0022 to %Q0037.

Ladder Diagram Representation

 |%I0001 ————— %Q0001
 |——] [————————————|ARRAY|———()
 | |_MOVE|
 |_BIT |
 %M0009——(P01) —|SR DS|—(P06)— %Q0022
 | LEN |—(P05)—
 | 0016|
 CONST ——(P02) —|SNX |
 0003 | |
 | |
 CONST ——(P03) —|DNX |
 0005 | |
 | |
 CONST ——(P04) —|N |
 0007 | |
 —————

Statement List Representation

#0001: LD %I0001
#0002 FUNC 103 MOVABI

P01: %M0009
P02: 3
P03: 5
P04: 7
P05: 16
P06: %Q0022

#0003: OUT %Q0001

9

9-293GFK-0402G Chapter 9 Statement List Programming Language

After pressing the: Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

 #0001 INS <S
 LD I 1_

Press the key sequence

LD A1
1A

1 :

Press the key:ENT
 #0002 INS <S
 _

 #0002 INS <S
 FUNC 130_MOVABI

Press the key sequence

FUNC 1 3 0 :

Press the key:ENT
 #0002 MOVABI <S
 P01 _

Press the key sequence

:
T
MC

9
 #0002 MOVABI <S
 P01 M 9_

Press the key:ENT #0002 MOVABI <S
 P02 _

9

9-294 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Press the key:3
 #0002 MOVABI <S
 P02 3_

Press the key:ENT #0002 MOVABI <S
 P03 _

Press the key:5
 #0002 MOVABI <S
 P03 5_

Press the key:ENT
 #0002 MOVABI <S
 P04 _

Press the key:7
 #0002 MOVABI <S
 P04 7_

Press the key:ENT #0002 MOVABI <S
 P05 _

Press the key sequence:

1
 #0002 MOVABI <S
 P05 16_6

Press the key:ENT #0002 MOVABI <S
 P06 _

9

9-295GFK-0402G Chapter 9 Statement List Programming Language

Press the key sequence

:2
AQ
QB

2

 #0002 MOVABI <S
 P06 Q 22_

Press the key:ENT
 #0003 INS <S
 _

Press the key sequence

:1
OUTM

OUT

AQ
QB

 #0003 INS <S
 OUT Q 1_

Press the key:ENT
 #0004 INS <S
 _

9

9-296 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Example 2: Byte Array Move

In this example, when input %I0001 is closed (passes power flow to the enable input),
the function is executed. Bit memory is used for the SR and DS inputs; %I0017 to %I32
of the array %I0001 to %I0040 is read and then written into the destination %Q0041 to
%Q0056 of the array %Q0041 through %Q0080.

Ladder Diagram Representation

 | %I0001 ————— %Q0001
 |——] [————————————|ARRAY|——()
 | |_MOVE|
 |_BYTE|
 %I0001 ——(P01) —|SR DS|—(P06)— %Q0041
 | LEN |—(P05)—
 |00005|
 CONST ——(P02) —|SNX |
 0003 | |
 | |
 CONST ——(P03) —|DNX |
 0001 | |
 | |
 CONST ——(P04) —|N |
 0002 | |
 —————

Statement List Representation

#0001: LD %I0001
#0002 FUNC 131 MOVABY

P01: %I0001
P02: 3
P03: 1
P04: 2
P05: 5
P06: %Q0041

#0003: OUT %Q0001

After pressing the: Key: Programming sequenceINS

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

 #0001 INS <S
 LD I 1_

Press the key sequence

LD
A1
1A

1 :

9

9-297GFK-0402G Chapter 9 Statement List Programming Language

Press the key:ENT
 #0002 INS <S
 _

 #0002 INS <S
 FUNC 131_MOVABY

Press the key sequence

FUNC 1 3 1 :

Press the key:ENT
 #0002 MOVABY <S
 P01 _

Press the key sequence

:
A1
1A

1
 #0002 MOVABY <S
 P01 I 1_

Press the key:ENT #0002 MOVABY <S
 P02 _

Press the key:3
 #0002 MOVABY <S
 P02 3_

Press the key:ENT #0002 MOVABY <S
 P03 _

Press the key:1
 #0002 MOVABY <S
 P03 1_

9

9-298 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Press the key:ENT
 #0002 MOVABY <S
 P04 _

Press the key:2
 #0002 MOVABY <S
 P04 2_

Press the key:ENT #0002 MOVABY <S
 P05 _

Press the key:5
 #0002 MOVABY <S
 P05 5_

Press the key:ENT #0002 MOVABY <S
 P06 _

Press the key sequence

:1
AQ
QB

4

 #0002 MOVABY <S
 P06 Q 41_

Press the key:ENT
 #0003 INS <S
 _

Press the key sequence

:1
OUTM

OUT

AQ
QB

 #0003 INS <S
 OUT Q 1_

Press the key:ENT
 #0004 INS <S
 _

9

9-299GFK-0402G Chapter 9 Statement List Programming Language

Example 3: Word Array Move

In this example, when input %I0001 is closed (passes power flow to the enable input),
the function is executed. Word memory is used for the SR and DS inputs; %R0003
through %R0007 of the array %R0001 through %R0016 is read and then written to the
destination %R0104 through %R0108 of the array %R0100 through %R0115.

Ladder Diagram Representation

 | %I0001 ————— %Q0001
 |——] [————————————|ARRAY|———()
 | |_MOVE|
 |_WORD|
 %R0001——(P01) —|SR DS|——(P06)— %R0100
 | LEN |——(P05)—
 | 0016|
 CONST ——(P02) —|SNX |
 0003 | |
 | |
 CONST ——(P03) —|DNX |
 0005 | |
 | |
 CONST ——(P04) —|N |
 0005 | |
 —————

 Statement List Representation

#0001: LD %I0001
#0002 FUNC 132 MOVAW

P01: %M0001
P02: 3
P03: 5
P04: 5

 P05: 16
P06: %R0100

#0003: OUT %Q0001

9

9-300 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

After pressing INS key: Programming sequence

Key Strokes HHP Display

#0001 INS <S
_

Initial display:

#0001 INS <S
 LD I 1_

Press the key sequence

:LD 1
A I
IA

#0002 INS <S
_

Press the key:ENT

#0002 INS <S
FUNC 132_MOVAW

Press the key sequence

31 :FUNC 2

#0002 MOVAW <S
P01 _

Press the key:ENT

#0002 MOVAW <S
P01 R 1_

Press the key sequence 1 :R

#0002 MOVAW <S
P02 _

Press the key:ENT

9

9-301GFK-0402G Chapter 9 Statement List Programming Language

#0002 MOVAW <S
P02 _ 3_

Press the key:3

#0002 MOVAW <S
P03 _

Press the key:ENT

#0002 MOVAW <S
P03 5_

Press the key:5

#0002 MOVAW <S
P04 _

Press the key:ENT

#0002 MOVAW <S
P04 5_

Press the key:5

#0002 MOVAW <S
P05 _

Press the key:ENT

#0002 MOVAW <S
P05 16_

Press the key sequence 6 :1

#0002 MOVAW <S
P06 _

Press the key:ENT

9

9-302 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

#0002 MOVAW <S
P06 R 100_

Press the key sequence

01 :0R

#0003 INS <S
_

Press the key:ENT

#0003 INS <S
OUT Q 1_

Press the key sequence

1 :OUTM
OUT

AQ
 QB

#0004 INS <S
_

Press the key:ENT

10 section level 1 1
figure bi level 1
table_big level 1

10-1GFK-0402G

Chapter 10 Error Messages

This chapter does not apply to the CPU 351.

This chapter summarizes the non-system error messages and/or displays which may
occur during the operation of the Hand-Held Programmer. Non-system errors are those
errors that the system detects in user-provided data. They may be caused by an illegal
sequence of otherwise valid individual instructions. Typical examples of these errors
include:

� JUMP, MCR, or CEND nesting errors.

� The use of more then 256 total JUMP and MCR functions.

� The placement of an ENDSW function within a JUMP or MCR range.

� Incorrect instruction sequences.

� The dual use of %Q or %M references. (This prompts a warning only.)

� Corrupted memory (unknown instructions).

These errors are scanned for when the program check function is initiated. This function
is automatically performed whenever the operating state of the PLC is changed from
stopped to running.

To manually check a logic program for non-system errors, enter the following key
sequence, in the order shown:

SRCH – + 1 ENT#

When initiated, the program check function always begins at the start of the program
and stops with the first error found. If no errors are found, the current instruction step
remains displayed and no message is displayed. The following table lists non-system
errors and the corrective action required for each error.

Table 10-1. Non-System Errors

Error Description Corrective Action

CEND ER Improper nesting of JUMP, MCR, and/or CEND func-
tions. The instruction step shown is where the error
was detected.

Correct the program logic to eliminate the improper
nesting.

I/O ERR Overlap of I or AI references between two slot con-
figurations.

Eliminate the input address overlap from the config-
uration.

DATA ERR Specification of a constant, reference address, or
function number which is out of the range of accept-
able values.

Change the constant, reference address, or function
number to an acceptable value.

10

10-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Table 10-1. Non-System Errors - continued

Error Description Corrective Action

NOT FND Specification of a search target which was not found
within the existing program logic.

No action is required.

REF ADJ Specification of a reference address which was not
on an acceptable boundary for a particular function
parameter.

The system automatically adjusted the reference
address to an acceptable boundary. No further ac-
tion is required.

MEM OVR Attempted to accept additional program logic
instruction steps without sufficient user program
memory remaining.

Abort the current instruction step insert or edit op-
eration.

Attempted to exceed the 16K bytes available per
subroutine block.

Examine logic and redo as necessary.

PROTECT Attempted an operation without the proper privi-
lege level, or attempted to program a write-pro-
tected Memory Card

Use protection mode to change the privilege level to
the proper setting, or remove the write protect from
the Memory Card.

Attempt made to view or edit a locked subroutine. Remove locked status using Logicmaster 90-30 (can-
not be removed with the HHP).

RUNNING Attempted an operation which is not valid when
the PLC is running.

Stop the PLC; then perform the operation again.

INS ER Attempted to accept an incomplete or invalid
instruction.

Complete or correct the instruction; then, press the
ENT key again.

REPLC ER Attempted to make an illegal on-line substitution
change.

Make a correct substitution change, or cancel the
substitution change request.

STK OVR Created an instruction sequence whose stack depth
usage exceeds 9.

Change the instruction sequence so that the stack
depth usage is less then or equal to eight.

SEQ ERR Created an invalid instruction sequence. Correct the instruction sequence to make it valid.

USE WRN Dual use of a %Q or %M reference as an output
exists in the program.

This message is a warning only; you must decide if
it is an error. Use the program check function to
verify that there are multiple coil usages.

USE ERR Attempt to reuse a %Q or %M reference as an out-
put with dual use checking enabled.

Choose a different reference address which has not
been used previously, or disable dual use checking
and program the instruction step again.

PSW ERR Specifying a password or OEM key which is incor-
rect for the indicated access level.

Specify the correct password or OEM key.

IOM ER Specification of an invalid module type for the con-
figuration of a slot.

Specify the valid module type.

ID ERR Specification of an invalid board or module ID for
generic configuration.

Specify a valid board or module ID.

ROM ERR Failure attempting to read or write EEPROM. This failure typically occurs when the EEPROM
chip is either not installed or not installed properly.
Install the chip (or a new one), and try again.

VRFY ER Verification of RAM contents against either EE-
PROM or the MEM CARD contents failed due to
miscompares.

You must decide if the verification failure is ex-
pected or not.

10

10-3GFK-0402G Chapter 10 Error Messages

Table 10-1. Non-System Errors - continued

Error Description Corrective Action

NO CARD Attempted a read, write, or verify operation with the
MEM CARD when it was not inserted in the HHP
slot.

Insert the MEM CARD into the Hand-Held Pro-
grammer slot, and perform the operation again.

COMM ER Communications error during a read, write, or
verify operation with the MEM CARD.

Make sure that the MEM CARD is inserted properly
into the HHP slot, and perform the operation again.

RETN WRN The last instruction entered changed the retentive
nature of its operand.

This message is a warning only. The user must de-
cide whether it is an error or is OK.

FROZEN Intelligent module’s previous configuration being
used.

Press WRITE and ENT keys to complete editing of
new parameters.

REF ER Invalid reference type entered Refer to the appropriate section of this manual to
determine the valid reference type for the instruc-
tion you are entering and choose one.

PRG ERR Read or Verify of the program from/with EEPROM/
Mem Card

Correct invalid logic; ensure that program is consis-
tent with the model of PLC.

NEST ERR Exceeded CALLSUB nesting level limitation of 8. Remove CALLSUB instruction(s) which caused the
illegal nesting sequence.

This error is displayed when you try to zoom into
the ninth (illegally nested) subroutine in the CALL-
SUB sequence. If no zoom is attempted, the error
will be logged as a fault at runtime.

CFG ERR Read or Verify of the Config from/with EEPROM/
Mem Card

Ensure that Config matches the Config in the PLC;
verify that the PLC model is correct.

ZOOM ER Attempted to zoom into an instruction that is not a
CALLSUB.

Locate the CALLSUB instruction you wish to zoom-
into and retry the # → key sequence.

CALL OVR Exceeded the 64 CALLSUB instruction per logic
block limit.

Abort the current instruction step insert or edit op-
eration.

A
section level 1 1
figure_ap level 1
table_ap level 1

A-1GFK-0402G

Appendix A Glossary

This Appendix is a Glossary of Terms for the Hand-Held Programmer and the Series
90-30, Series 90-20, and Series 90 Micro PLCs.

Glossary of Terms for the Series 90-30/20/Micro PLCs

Address

A number following a reference type which together refer to a specific user reference,
that is, for %Innnn; %I is the reference type and nnnn is the address.

Alarm Processor

A software function that time-stamps and logs I/O and system faults in two tables that
can be displayed by the programmer or uploaded to a host computer or other
coprocessor.

Analog

An electrical signal activated by physical variables representing force, pressure,
temperature, flow, etc.

AND (Logical)

A mathematical operation between bits. All bits must be 1 for the result to be 1.

Application Program

The program written by the user for control of a machine or process, that is the
application.

ASCII

American Standard Code for Information Interchange. An eight-bit (7 bits plus 1 parity
bit) code used for data.

Backplane

A group of connectors physically mounted on a board at the back of a rack into which
modules are inserted. The connectors are wired together by a printed circuit board.

A

A-2 GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996

Baseplate

A frame containing the backplane for the system bus and connectors into which
modules are inserted. In the Series 90-30 PLC Model 311 and Model 313, the baseplate
also contains the CPU.

Battery Connector

A connector wired to a Lithium battery which connects the battery to the CMOS RAM
memory devices by being plugged into a receptacle accessed via a door on the power
supply faceplate.

Baud

A unit of data transmission. Baud rate is the number of bits per second transmitted.

Bit

The smallest unit of memory. Can be used to store only one piece of information that
has two states (for example One/Zero, On/Off, Good/Bad, Yes/No). Data that requires
more then two states (for example numerical values 000 to 999) requires multiple bits
(see Word).

Bus

An electrical path for transmitting and receiving data.

Byte

A group of binary digits operated on as a single unit. In the Series 90-30 and Series 90-20
PLCs, a byte is eight bits.

Circuit Wiring Diagram

Field wiring information that provides a guide to users for connecting field devices to
input and output modules. Each I/O module has a circuit wiring diagram printed on the
inside surface of an insert in the module’s hinged door.

CONFIG.SYS File

A file that describes the system requirements for the software. The CONFIG.SYS file
must be custom-tailored to fit the specific hardware configuration of your system and
Logicmaster 90 requirements.

Constant

A fixed value or an item of data that does not vary. Can be stored in a register.

Counter

A function block which can be programmed to control other devices according to a
preset number of on/off transitions.

CPU (Central Processing Unit)

The central device or controller that interprets user instructions, makes decisions, and
executes the functions based on a stored application program.

A

A-3GFK-0402G Appendix A Glossary

Data Memory

User references within the Series 90-30 and 90-20 PLC CPU which are accessible by the
application program for storage of discrete or register data.

Data Table

A consecutive group of user references of the same size accessed with table read/write
functions.

Discrete

The term ”discrete” includes both real and internal I/O that are one-bit user references.

Expansion Baseplate

A 5-slot or 10-slot baseplate added to a Series 90-30 PLC Model 331, Model 340, Model 341,
or Model 351 system when the application calls for more modules then the main baseplate
can contain. A Series 90-30 PLC Model 331, Model 340, Model 341, or Model 351 system can
have up to 4 expansion baseplates.

Expansion Cable

A cable which propagates the parallel I/O bus signals between expansion baseplates.
The total length of all expansion cables, from the main baseplate to the last expansion
baseplate in a system, can be no more then 50 feet (15 meters) in a local expansion
system or 700 feet (213 meters) in a remote expansion system.

Firmware

A series of instructions contained in ROM (Read Only Memory) which are used for
internal processing functions. These instructions are transparent to the user.

Grounding Terminal

A terminal on each power supply which must be connected to earth ground (through
the AC power source) to ensure that the rack is properly and safely grounded.

Hardware

All of the mechanical, electrical, and electronic devices that comprise the Series 90-30
PLC and its applications.

Hexadecimal

A numbering system, having 16 as a base, represented by the digits 0 through 9, then A
through F.

Hinged Door

A plastic door on the front of a module which, when open, allows access to certain
module hardware features.

Input Module

An I/O module that converts signals from user devices to logic levels that can be used by
the CPU.

A

A-4 GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996

Input Scan Time

The time required for the CPU to scan all I/O controllers for new input values. When
model 30 I/O is present, this includes the time to actually read each module.

I/O (Input/Output)

That portion of the PLC to which field devices are connected and which isolates the CPU
from electrical noise.

I/O Electrical Isolation

A method of separating field wiring from logic level circuitry. Typically, this is
accomplished through use of solid-state optical isolation devices.

I/O Fault Table

A fault table listing I/O faults. These faults are identified by time, date, and location.

I/O Module

A printed circuit assembly that interfaces between user devices and the Series 90-30 PLC.

K

An abbreviation for kilo or exactly 1024 in the language of computers.

Ladder Diagram

A graphic representation of combinational logic.

LED Status Display

A display consisting of a group of LEDs with two rows of eight LEDs at the top of each
discrete I/O module. Each LED in the two groups of eight indicates the state of the
respective input or output point on the board.

Link

Horizontal and vertical links are used to carry power around an element in a ladder logic
program, or to place elements in parallel or series with one another.

List

A group of consecutive storage locations in memory, used for data manipulation. The
beginning address and length of the list are set up in the user program. Data is accessed
from either the top or the bottom of the list.

Logic Solution Time

The time required to execute all active instructions in the application program.

Main Baseplate

The baseplate in a Series 90-30 PLC system in which the CPU is installed. This rack must
always be included in a system and is always rack number ”0”.

A

A-5GFK-0402G Appendix A Glossary

Memor y Card

A memory cartridge containing EEPROM memory which is inserted into a slot in the
Hand-Held Programmer. This memory cartridge, provides the Hand-Held Programmer
with a means for off-line storage and retrieval of the application program and system
configuration data.

Microsecond (ms)

One millionth of a second. 1 x 10– 6 or 0.000001 second.

Millisecond

One thousandth of a second. 1 x 10– 3 or 0.001 second. May be abbreviated as ms.

Mnemonic

An abbreviation given to an instruction; usually an acronym formed by combining initial
letters or parts of words.

Model 30 I/O

The Series 90-30 I/O subsystem consisting of discrete, analog, and intelligent input and
output modules.

Module

A replaceable electronic subassembly usually plugged into connectors on a backplane
and secured in place, but easily removed in case of a failure or system redesign. In the
Series 90-30 PLC, a combination of a printed circuit board and its associated faceplate
(and removable terminal connector, on I/O modules) which, when combined, form a
complete assembly.

Molded Hinge

A hinge at the top rear of each Model 30 I/O module type which, when the module is
installed, latches onto the top of the baseplate. This hinge helps to keep the module
securely in place.

Noise

Undesirable electrical disturbances to normal signals, generally of high frequency
content.

Non-Retentive Coil

A coil that will turn off upon removal of applied power to the CPU.

Non-Volatile Memory

A memory (for example PROM) capable of retaining its stored information under
no-power conditions (power removed or turned off).

OR (Logical)

A logical operation between bits, whereby if any bit is a 1, the result will be a 1.

A

A-6 GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996

Output

Data transferred from the CPU, through a module for level conversion to be used for
controlling an external device or process.

Output Devices

Physical devices such as motor starters, solenoids, etc. that are switched by the PLC.

Output Module

An I/O module that converts logic level signals within the CPU to usable output signals
for controlling a machine or process.

Output Scan Time

The time required for the CPU to update all I/O controllers with new output values.
When Model 30 I/O is present, this includes the time to actually write to each module.

Panel Mounting Flange

Flanges, with mounting holes, on the sides of a baseplate used to mount the baseplate
on an electrical panel or wall.

Parallel Communication

A method of data transfer whereby data is transferred on several wires simultaneously.

Parity

The anticipated state, either odd or even, of a set of binary digits.

Parity Bit

A bit added to a memory word to make the sum of the bits in a word always even (even
parity) or always odd (odd parity).

Parity Error

A condition that occurs when a computed parity check (checksum) does not agree with
the parity bit.

Peripheral Equipment

External devices that can communicate with a PLC; for example, programmers, printers,
etc.

PLC Fault Table

A fault table listing PLC faults. These faults are identified by time, date, and location.

Power Flow

In a ladder diagram, the symbolic flow of power represents the logical execution of
program functions. For each function, it is important to know what happens when
power is received and under what conditions power flow is output.

A

A-7GFK-0402G Appendix A Glossary

Preset Value

A numerical value specified in a function which establishes a limit for a counter or timer.

Program Block

A unit of an application program. It contains the control logic and certain overhead data.
This program block can have up to 8K words, including logic and overhead.

Program Sweep Time

The time from the start of one cycle of the application program to the next. The program
sweep is composed of the following: perform start of sweep system tasks, read the
inputs, execute the user’s program, write the outputs, recover faulted boards, complete
minimal checksum calculation, schedule the next sweep, communicate with the
programmer and other intelligent option modules, and execute background tasks.

Programmable Logic Controller (PLC)

A solid-state industrial control device which receives signals from user supplied control
devices such as switches and sensors, implements them in a precise pattern determined
by ladder diagram based application programs stored in user memory, and provides
outputs for control of processes or user supplied devices such as relays or motor starters.
It is usually programmed in relay ladder logic and is designed to operate in an industrial
environment.

Programmer

The hardware device required to run Logicmaster 90 software. A Workstation Interface
board must be installed in the programmer to communicate with the Series 90-30 PLC.

Programmer Port

The serial port on the power supply module, accessible through a 15-pin connector, to
which the programmer must be connected in order to communicate with the PLC. Both
the Logicmaster 90 programmer and the Hand-Held Programmer connect to this port.

PROM

An acronym for Programmable Read Only Memory, which is a retentive digital device
programmed at the factory and not easily changed by the user. Usually contains
programs for internal system use.

Rack

A Series 90-30 baseplate when it has modules installed in it.

Rack Number

A unique number, from 0 to 4, assigned to a Series 90-30 Model 331, Model 340, Model
341, or Model 351 baseplate for rack identification purposes. The main baseplate is
always rack 0.

Rack Number DIP Switch

A DIP three-position DIP switch located on the backplane directly behind the power
supply which must be configured to select a unique rack number from 1 to 4 for Series

A

A-8 GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996

90-30 PLC Model 331, Model 340, Model 341, or Model 351 expansion racks. Rack
numbers cannot be duplicated in a system.

RAM

An acronym for Random Access Memory, which is a solid-state memory that allows
individual bits to be stored and accessed at random. This memory stores the
Logicmaster software, program files, and related data while power is applied to the
system. This type of memory, however, is volatile. Because data stored in RAM is lost
under no-power conditions, a backup battery is required to retain the contents under
those conditions. The Series 90-30 PLC uses a long-life Lithium battery mounted on the
Power Supply and PCM modules.

Read

To have data entered or to extract data from a storage device.

Release Lever

A molded lever on the bottom of each Model 30 I/O module, which when depressed
upwards, releases the module in its slot to allow removal of the module.

Reference Type

A specific group of memory types in the Series 90-30 and Series 90-20 PLC, for example,
%I references discrete inputs and %Q references discrete outputs. The % symbol is used
to distinguish machine references from nicknames.

Register

A group of 16 consecutive bits in register memory, referenced as %R. Each register is
numbered, beginning at 0001. Register memory is used for temporary storage of
numerical values, and for bit manipulation.

Removable Terminal Connector

The removable assembly which attaches to the front of a printed wire board, and
contains the screw terminals to which field wiring is connected.

Restart Pushbutton

A pushbutton on the front of the PCM used to reinitialize the PCM or to initiate a hard
or soft reset.

Retentive Coil

A coil that will remain in its last state, even though power has been removed.

RUN Mode

A condition or state of the PLC where the CPU executes the application program. RUN
mode executes in the RUN/OUTPUTS ENABLED mode only. In RUN/OUTPUTS
ENABLED, all portions of the program sweep are executed.

A

A-9GFK-0402G Appendix A Glossary

Rung

A unit of ladder logic. One rung may have up to eight parallel lines of logic connected to
the left rail, but these must be combined so that there is just one connection to the right
rail.

Serial Communication

A method of data transfer whereby the bits are handled sequentially rather then
simultaneously as in parallel data transmission.

Serial Port

The port on the power supply module, accessible through a 15-pin connector, to which
the programmer must be connected in order to communicate with the PLC. Both the
Logicmaster 90 programmer and the Hand-Held Programmer connect to this port.

Significant Bit

A bit that contributes to the precision of a number. The number of significant bits is
counted beginning with the bit contributing the most value, referred to as the Most
Significant Bit (MSB), and ending with the bit contributing the least value, referred to as
the Least Significant Bit (LSB).

STOP Mode

A condition or state of the Series 90-30 PLC where the CPU no longer executes the
application program. STOP mode can either be STOP/OUTPUTS DISABLED or
STOP/OUTPUTS ENABLED. In STOP/OUTPUTS DISABLED mode, the PLC only
communicates with the programmer and other devices (GBC, PCM, etc.), recovers
faulted boards, reconfigures boards and executes background tasks. All other portions of
the sweep are skipped. In STOP/OUTPUTS ENABLED mode, the PLC CPU can monitor
I/O. This feature provides a way to monitor and debug I/O without actually executing
the application program.

Storage

Used synonymous with memory.

Sweep

The CPU’s repeated execution of all program logic, I/O service, peripheral service, and
self-testing. This occurs automatically, many times each second.

Termination Resistor Pack

A resistor pack used to properly terminate the I/O bus signals; physically installed inside
of the terminator plug.

Terminator Plug

A plug containing a resistor pack which must be installed at the end of the I/O bus chain
to properly terminate the I/O bus signals. In a Series 90-30 Model 331, Model 340, and

A

A-10 GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996

Model 341 PLC system, this plug must be installed on the unused connector on the last
I/O expansion cable in the I/O bus chain.

Timer

A function block that can be used to control the operating cycle of other devices by a
preset and accumulated time interval.

User Memory

The portion of system memory in which the application program and data is stored.
This memory is battery-backed CMOS RAM.

User Reference Type

A reference assigned to data which indicates the memory in which it is stored in the
PLC. References can be either bit-oriented (discrete) or word-oriented (register).

Verify

A function used to compare program configuration and reference data between the CPU
and memory card or EEPROM.

Volatile Memory

A type of memory that will lose the information stored in it if power is removed from
the memory devices. Requires a backup battery for retention of contents of memory. In
the Series 90-30 PLC a Lithium battery is used for this purpose.

Watchdog Timer

A timer in the CPU used to ensure that certain hardware conditions are met within a
predetermined time. The watchdog timer value in the Series 90-30 PLC is 200
milliseconds.

Word

A measurement of memory length, usually 4, 8, or 16-bits long; in the Series 90 PLCs, a
word is 16-bits in length.

Write

To transfer, record, or copy data from one storage device to another, for example, from
CPU to memory card or EEPROM.

A

A-11GFK-0402G Appendix A Glossary

Glossary of Basic Instructions and Reference Types for
Logicmaster 90-30/20/Micro Software Developed Programs

Basic Instruction Specific Term Generic Term

--] [-- normally open contact contact

--] / [-- normally closed contact contact

--()-- coil coil

--(/)-- negated coil coil

--(SET)-- SET coil coil

--(R)-- RESET coil coil

--(↑)-- positive transition coil coil

--(↓)-- negative transition coil coil

--(M)-- retentive coil coil

--(/M)-- negated retentive coil coil

--(SM)-- retentive SET coil coil

--(RM)-- retentive RESET coil coil

------- horizontal link link

| vertical link link

Reference Type Specific Term Generic Term

%I input discrete

%Q output discrete

%M internal discrete

%T temporary discrete

%G global discrete

%S system discrete

%SA system discrete

%SB system discrete

%SC system discrete

%R register register

%AI analog input register register

%AQ analog output register register

%Rnnnn nnnn is the address

B
section level 1 1
figure_ap level 1
table_ap level 1

B-1GFK-0402G

Appendix B Special Contact References

In the Series 90-30 and 90-20 programmable logic controllers, 128 bits of discrete storage
are reserved for special contact references. These references are addressed in four
groups:

1. %S0001 - %S0032.
2. %SA001 - %SA032.
3. %SB001 - %SB032.
4. %SC001 - %SC032.
The meaning for each of the 128 system references is listed in the following tables.

Special Contact References Special Contact References
Reference
Address Reference Description

Reference
Address Reference Description

%S0001 Current sweep is the first sweep. %SA001 Program checksum failure
%S0002 Current sweep is the last sweep. %SA002 Exceeded constant sweep time
%S0003 0.01 second timer contact %SA003 Application fault occurred
%S0004 0.1 second timer contact %SA004 Reserved
%S0005 1.0 second timer contact %SA005 Reserved
%S0006 1.0 minute timer contact %SA006 Reserved
%S0007 Always ON %SA007 Reserved
%S0008 Always OFF %SA008 Reserved
%S0009 System table is full %SA009 System configuration mismatch
%S0010 I/O fault table is full %SA010 PLC CPU hardware failure
%S0011 Override exists in %I,%Q,%M,%G

Memory
%SA011 Battery voltage is low

%S0012 Reserved %SA012 Reserved
%S0013 Background program check active %SA013 Loss of IOC
%S0014 Reserved %SA014 Loss of I/O module
%S0015 Reserved %SA015 Loss of special I/O module
%S0016 Reserved %SA016 Reserved
%S0017 Reserved %SA017 Reserved
%S0018 Reserved %SA018 Addition of I/O controller
%S0019 Reserved %SA019 Addition of I/O module
%S0020 Reserved %SA020 Addition of special I/O module
%S0021 Reserved %SA021 Reserved
%S0022 Reserved %SA022 I/O controller fault
%S0023 Reserved %SA023 I/O module fault
%S0024 Reserved %SA024 Reserved
%S0025 Reserved %SA025 Reserved
%S0026 Reserved %SA026 Reserved
%S0027 Reserved %SA027 Hardware failure in special module
%S0028 Reserved %SA028 Reserved
%S0029 Reserved %SA029 Software fault in IOC
%S0030 Reserved %SA030 Reserved
%S0031 Reserved %SA031 Software fault in special module
%S0032 Reserved %SA032 Reserved

B

B-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996 GFK-0402G

Special Contact References Special Contact References

Reference
Address Reference Description

Reference
Address Reference Description

%SB001 Reserved %SC001 Reserved
%SB002 Reserved %SC002 Reserved
%SB003 Reserved %SC003 Reserved
%SB004 Reserved %SC004 Reserved
%SB005 Reserved %SC005 Reserved
%SB006 Reserved %SC006 Reserved
%SB007 Reserved %SC008 Reserved
%SB009 No user program %SC009 Some fault has occurred
%SB010 Corrupted user RAM %SC010 System fault has occurred
%SB011 Password access failure %SC011 I/O fault has occurred
%SB012 Null system configuration %SC012 System fault table entry present
%SB013 PLC CPU software failure %SC013 I/O fault table entry present
%SB014 PLC store failure %SC014 Hardware fault occurred
%SB015 Reserved %SC015 Software fault occurred
%SB016 Reserved %SC016 Reserved
%SB017 Reserved %SC017 Reserved
%SB018 Reserved %SC018 Reserved
%SB019 Reserved %SC019 Reserved
%SB020 Reserved %SC020 Reserved
%SB021 Reserved %SC021 Reserved
%SB022 Reserved %SC022 Reserved
%SB023 Reserved %SC023 Reserved
%SB024 Reserved %SC024 Reserved
%SB025 Reserved %SC025 Reserved
%SB026 Reserved %SC026 Reserved
%SB027 Reserved %SC027 Reserved
%SB028 Reserved %SC028 Reserved
%SB029 Reserved %SC029 Reserved
%SB030 Reserved %SC030 Reserved
%SB031 Reserved %SC031 Reserved
%SB032 Reserved %SC032 Reserved

Note

These references may be viewed in data mode by repeatedly pressing
the SR key to toggle through the selections.

Table B-1. Special System Registers

Reference Display Format Description

%SR001 Hexadecimal Type of PLC.

%SR002 Hexadecimal Revision code of the PLC’s firmware.

%SR003 - %SR006 Hexadecimal Encoded form of level 2 password.

%SR007 - %SR010 Hexadecimal Encoded form of level 3 password.

%SR011 - %SR014 Hexadecimal Encoded form of level 4 password.

%SR015 Signed decimal User program memory still available.

%SR016 Signed decimal Current scan time of the PLC in milliseconds.

C
section level 1 1
figure_ap level 1
table_ap level 1

C-1GFK-0402G

Appendix C List of Functions

The following table lists the functions available for the Series 90-30 Hand-Held
Programmer. A brief description of each function is included.

Table C-1. List of Functions

Function
Number

Function
Mnemonic Description

00 ENDSW Terminate program logic execution.

01 NOOP Perform no operation.

03 JUMP Nested Jump. Jump to prior/next LABEL function.

04 MCR Nested MCR. Exert master control relay to next END MCR function.

07 LABEL Provides destination for JUMP with matching label number.

08 ENDMCR Terminate MCR function range.

10 TMR Simple on-delay timing.

13 ONDTR Stopwatch on-delay timing.

14 OFDTR Off-delay timer..

15 UPCTR Up counter.

16 DNCTR Down counter.

22 BITSET Sets a particular bit in a string of bits to 1.

23 AND Logically and one 16-bit word to another.

24 BITCLR Sets a particular bit in a string of bits to 0.

25 OR Logically or one 16-bit word to another.

26 BITTST Determines if a particular bit in a string of bits is set to a 1 or 0.

27 XOR Logically exclusive or one 16-bit word to another.

28 BITPOS Determines which bit in a string of bits is set to a 1.

29 NOT Logically negate one 16-bit word to its complement.

30 SHL Logically shift left a word array by N bits.

31 SHR Logically shift right a word array by N bits.

32 ROL Logically rotate left a word array by N bits.

33 ROR Logically rotate right a word array by N bits.

37 MOVIN Move an array of 16-bit words from one location to another.

38 BMOVI Move seven 16-bit constants to a destination.

C

C-2 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996GFK-0402G

Table C-1. List of Functions - continued

Function
Number

Function
Mnemonic Description

40 MOVBN Move one or more bits from one reference to another reference.

42 MOVWN Move an array of 16-bit words from one location to another.

43 BMOVW Move seven 16-bit constants to a destination.

44 BLKCL Zero-fill an array of 16-bit words.

45 SHFRW N stage shift register of 16-bit words.

46 SHFRB Implements a shift register to shift a bit.

47 SEQB N state bit sequencer.

52 EQ Test for one signed integer equal to another.

53 NE Test for one signed integer not equal to another.

54 LE test for one signed integer less than or equal to another.

55 GE Test for one signed integer greater than or equal to another.

56 LT Test for one signed integer less than another.

57 GT Test for one signed integer greater than another.

60 ADD Add one signed integer to another.

61 DPADD Add one signed double precision integer to another.

62 SUB Subtract one signed integer from another.

63 DPSUB Subtract one signed double precision integer from another.

64 MUL Multiply two signed integers together.

65 DPMUL Multiply two signed double precision integers together.

66 DIV Divide one signed integer by another.

67 DPDIV Divide one signed double precision integer by another.

68 MOD Modulo divide one signed integer by another.

69 DPMOD Modulo divide one signed double precision integer by another.

70 SQRT Find the square root of one signed integer.

71 DPSQRT Find the square root of one double precision integer.

72 DPEQ Test for one signed double precision integer equal to another.

73 DPNE Test for one signed double precision integer not equal to another.

74 DPLE Test for one signed double precision integer less than or equal to another.

75 DPGE Test for one signed double precision integer greater than or equal to another.

76 DPLT Test for one signed double precision integer less than another.

77 DPGT Test for one signed double precision integer greater than another.

80 BCD Convert a signed integer value to BCD.

81 INT Convert a BCD value to signed integer.

85 DOI/O Perform immediate I/O snapshot.

86 PIDISA Implements an ISA standard PID ISA algorithm.

87 PIDIND Implements an ISA standard PID IND algorithm.

C

C-3GFK-0402G Appendix C List of Functions

Table C-1. List of Functions - continued

Function
Number

Function
Mnemonic Description

88 COMRQ Communications request.

89 SVCRQ System service request.

90 CALLSUB Call a subroutine

101 SREQB Search for all array values equal to a specified byte value.

102 SREQW Search for all array values equal to a specified word value.

103 SREQI Search for all array values equal to a specified integer value.

104 SREQDI Search for all array values equal to a specified double precision integer value.

105 SRNEB Search for all array values not equal to a specified byte value.

106 SRNEW Search for all array values not equal to a specified word value.

107 SRNEI Search for all array values not equal to a specified integer value.

108 SRNEDI Search for all array values not equal to a specified double precision integer value.

109 SRLTB Search for all array values less than a specified byte value.

110 SRLTW Search for all array values less than a specified word value.

111 SRLTI Search for all array values less than a specified integer value.

112 SRLTDI Search for all array values less than a specified double precision integer value.

113 SRLEB Search for all array values less than or equal to a specified byte value.

114 SRLEW Search for all array values less than or equal to a specified word value.

115 SRLEI Search for all array values less than or equal to a specified integer value.

116 SRLEDI Search for all array values less than or equal to a specified double precision integer value.

117 SRGTB Search for all array values greater than a specified byte value.

118 SRGTW Search for all array values greater than a specified word value.

119 SRGTI Search for all array values greater than a specified integer value.

120 SRGTDI Search for all array values greater than a specified double precision integer value.

121 SRGEB Search for all array values greater than or equal to a specified byte value.

122 SRGEW Search for all array values greater than or equal to a specified word value.

123 SRGEI Search for all array values greater than or equal to a specified integer value.

124 SRGEDI Search for all array values greater than or equal to a specified double precision integer
 value.

130 MOVABI Copy a specified number of elements from a bit source array to a bit destination array.

131 MOVABY Copy a specified number of elements from a byte source array to a byte destination array.

132 MOVAW Copy a specified number of elements from a word source array to a word destination array.

133 MOVAI Copy a specified number of elements from an integer source array to an integer des-
tination array.

C

C-4 Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996GFK-0402G

Table C-1. List of Functions - continued

Function
Number

Function
Mnemonic Description

134 MOVADI Copy a specified number of elements from a double precision integer source array to a
double precision integer destination array.

140 RANGI Determine if a value is within the range of two signed integer values.

141 RANGDI Determine if a value is within the range of two double precision signed integer values.

142 RANGW Determine if a value is within the range of two word values.

143 MSKCMPW Compare contents of two bit strings (16-bit words) with the ability to mask selected bits.

144 MSKCMPD Compare contents of two bit strings (32-bit words) with the ability to mask selected bits.

D
section level 1 1
figure_ap level 1
table_ap level 1

D-1GFK-0402G

Appendix D Function Parameters

The following table lists the parameters for each function and their default display format.

Table D-1. Function Parameters

Function Parameter
Logicmaster
Abbreviation

Default
Display Format

On-Delay Timer: TMR
(Function 10)

P1: Timer Accuracy
P2: Preset Time

signed decimal
signed decimal(Function 10) P2: Preset Time

P3: Timer Location
signed decimal
signed decimal

On-Delay Timer: ONDTR
(Function 13)

P1: Timer Accuracy
P2: Preset Time

signed decimal
signed decimal

On-Delay Timer: ONDTR
(Function 13)

P1: Timer Accuracy
P2: Preset Time
P3: Timer Location

signed decimal
signed decimal
signed decimal

(Function 13) P2: Preset Time
P3: Timer Location

signed decimal
signed decimal

Off-Delay Timer: OFDTR
(Function 14)

P1: Timer Accuracy
P2: Preset Time

signed decimal
signed decimal

Off-Delay Timer: OFDTR
(Function 14)

P1: Timer Accuracy
P2: Preset Time
P3: Timer Location

signed decimal
signed decimal
signed decimal

(Function 14) P2: Preset Time
P3: Timer Location

signed decimal
signed decimal

Up Counter: UPCTR
(Function 15)

P1: Preset Value
P2: Counter Location

signed decimal
signed decimal

Up Counter: UPCTR
(Function 15)

P1: Preset Value
P2: Counter Location

signed decimal
signed decimal

Down Counter: DNCTR
(Function 16)

P1: Preset Value
P2: Counter Location

signed decimal
signed decimal

Down Counter: DNCTR
(Function 16)

P1: Preset Value
P2: Counter Location

signed decimal
signed decimal

Bit Set: BITSET
(Function 22)

P1: Begin string
P2: Bit to Set

IN
BIT

signed decimal
signed decimal

Bit Set: BITSET
(Function 22)

P1: Begin string
P2: Bit to Set
P3: String Length

IN
BIT
LEN

signed decimal
signed decimal
signed decimal

(Function 22) P2: Bit to Set
P3: String Length

BIT
LEN

signed decimal
signed decimal

Logical AND: AND
(Function 23)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Logical AND: AND
(Function 23)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 23) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Bit Clear: BITCLR
(Function 24)

P1: Begin String
P2: Bit to Set

IN
BIT

signed decimal
signed decimal

Bit Clear: BITCLR
(Function 24)

P1: Begin String
P2: Bit to Set
P3: String Length

IN
BIT
LEN

signed decimal
signed decimal
signed decimal

(Function 24) P2: Bit to Set
P3: String Length

BIT
LEN

signed decimal
signed decimal

Logical OR: OR
(Function 25)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Logical OR: OR
(Function 25)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 25) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Bit Test: BITTST
(Function 26)

P1: Begin String
P2: Bit to Test

IN
BIT

signed decimal
signed decimal

Bit Test: BITTST
(Function 26)

P1: Begin String
P2: Bit to Test
P3: String Length

IN
BIT
LEN

signed decimal
signed decimal
signed decimal

(Function 26) P2: Bit to Test
P3: String Length

BIT
LEN

signed decimal
signed decimal

Logical XOR: XOR
(Function 27)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Logical XOR: XOR
(Function 27)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 27) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Bit Position: BITPOS
(Function 28)

P1: Begin String
P2: String Length

IN
LEN

signed decimal
signed decimal

Bit Position: BITPOS
(Function 28)

P1: Begin String
P2: String Length
P3: Destination

IN
LEN
POS

signed decimal
signed decimal
signed decimal

(Function 28) P2: String Length
P3: Destination

LEN
POS

signed decimal
signed decimal

D

D-2 Hand-Held Programmer Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996 GFK-0402G

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Logical NOT: NOT
(Function 29)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

Logical NOT: NOT
(Function 29)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

Bit Shift Left: SHL
(Function 30)

P1: Input Array
P2: Shift Distance

IN
N

signed decimal
signed decimal

Bit Shift Left: SHL
(Function 30)

P1: Input Array
P2: Shift Distance
P3: Length

IN
N

LEN

signed decimal
signed decimal
signed decimal

(Function 30) P2: Shift Distance
P3: Length
P4: Output Array

N
LEN

Q

signed decimal
signed decimal
signed decimal

P3: Length
P4: Output Array

LEN
Q

signed decimal
signed decimal

Bit Shift Right: SHR
(Function 31)

P1: Input Array
P2: Shift Distance
P3: Length
P4: Output Array

IN
N

LEN
Q

signed decimal
signed decimal
signed decimal
signed decimal

Bit Rotate Left: ROL
(Function 32)

P1: Input Array
P2: Shift Distance
P3: Length
P4: Output Array

IN
N

LEN
Q

signed decimal
signed decimal
signed decimal
signed decimal

Bit Rotate Right: ROR
(Function 33)

P1: Input Array
P2: Shift Distance

IN
N

signed decimal
signed decimal

Bit Rotate Right: ROR
(Function 33)

P1: Input Array
P2: Shift Distance
P3: Length

IN
N

LEN

signed decimal
signed decimal
signed decimal

(Function 33) P2: Shift Distance
P3: Length
P4: Output Array

N
LEN

Q

signed decimal
signed decimal
signed decimal

P3: Length
P4: Output Array

LEN
Q

signed decimal
signed decimal

Multiple Word Move: MOVIN
(Function 37)

P1: Input
P2: Length

IN
LEN

signed decimal
signed decimal

Multiple Word Move: MOVIN
(Function 37)

P1: Input
P2: Length
P3: Output

IN
LEN

Q

signed decimal
signed decimal
signed decimal

(Function 37) P2: Length
P3: Output

LEN
Q

signed decimal
signed decimal

Constant Block Move: BMOVI
(Function 38)

P1: Constant
P2: Constant

IN1
IN2

signed decimal
signed decimal

Constant Block Move: BMOVI
(Function 38)

P1: Constant
P2: Constant
P3: Constant

IN1
IN2
IN3

signed decimal
signed decimal
signed decimal

(Function 38) P2: Constant
P3: Constant
P4: Constant

IN2
IN3
IN4

signed decimal
signed decimal
signed decimal

P3: Constant
P4: Constant
P5: Constant

IN3
IN4
IN5

signed decimal
signed decimal
signed decimal

P4: Constant
P5: Constant
P6: Constant

IN4
IN5
IN6

signed decimal
signed decimal
signed decimal

P5: Constant
P6: Constant
P7: Constant

IN5
IN6
IN7

signed decimal
signed decimal
signed decimal

P6: Constant
P7: Constant
P8: Output

IN6
IN7
Q

signed decimal
signed decimal
signed decimal

P7: Constant
P8: Output

IN7
Q

signed decimal
signed decimal

Move Bits: MOVBN
(Function 40)

P1: Begin String
P2: String Length

IN
LEN

signed decimal
signed decimal

Move Bits: MOVBN
(Function 40)

P1: Begin String
P2: String Length
P3: Destination

IN
LEN

Q

signed decimal
signed decimal
signed decimal

(Function 40) P2: String Length
P3: Destination

LEN
Q

signed decimal
signed decimal

Multiple Word Move: MOVWN
(Function 42)

P1: Input
P2: Length
P3: Output

IN
LEN

Q

signed decimal
signed decimal
signed decimal

Constant Block Move: BMOVW
(Function 43)

P1: Constant
P2: Constant

IN1
IN2

signed decimal
signed decimal

Constant Block Move: BMOVW
(Function 43)

P1: Constant
P2: Constant
P3: Constant

IN1
IN2
IN3

signed decimal
signed decimal
signed decimal

(Function 43) P2: Constant
P3: Constant
P4: Constant

IN2
IN3
IN4

signed decimal
signed decimal
signed decimal

P3: Constant
P4: Constant
P5: Constant

IN3
IN4
IN5

signed decimal
signed decimal
signed decimal

P4: Constant
P5: Constant
P6: Constant

IN4
IN5
IN6

signed decimal
signed decimal
signed decimal

P5: Constant
P6: Constant
P7: Constant

IN5
IN6
IN7

signed decimal
signed decimal
signed decimal

P6: Constant
P7: Constant
P8: Output

IN6
IN7
Q

signed decimal
signed decimal
signed decimal

P7: Constant
P8: Output

IN7
Q

signed decimal
signed decimal

Block Clear: BLKCL
(Function 44)

P1: Start Reference
P2: Length

IN
LEN

signed decimal
signed decimal

Block Clear: BLKCL
(Function 44)

P1: Start Reference
P2: Length

IN
LEN

signed decimal
signed decimal

Shift Register: SHFRW
(Function 45)

P1: Input
P2: Location

IN
ST

signed decimal
signed decimal

Shift Register: SHFRW
(Function 45)

P1: Input
P2: Location
P3: Length

IN
ST

LEN

signed decimal
signed decimal
signed decimal

(Function 45) P2: Location
P3: Length
P4: Output

ST
LEN

Q

signed decimal
signed decimal
signed decimal

P3: Length
P4: Output

LEN
Q

signed decimal
signed decimal

D

D-3GFK-0402G Appendix D Function Parameters

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Shift Register Bit: SHFRB
(Function 46)

P1: Bit to Shift
P2: Start Address

IN
ST

signed decimal
signed decimal

Shift Register Bit: SHFRB
(Function 46)

P1: Bit to Shift
P2: Start Address
P3: Register Length

IN
ST

LEN

signed decimal
signed decimal
signed decimal

(Function 46) P2: Start Address
P3: Register Length
P4: Bit Destination

ST
LEN

Q

signed decimal
signed decimal
signed decimal

P3: Register Length
P4: Bit Destination

LEN
Q

signed decimal
signed decimal

Bit Sequencer: SEQB
(Function 47)

P1: Length
P2: Start Address

STEP
STRT

signed decimal
signed decimal

Bit Sequencer: SEQB
(Function 47)

P1: Length
P2: Start Address
P3: Sequencer Location

STEP
STRT
LEN

signed decimal
signed decimal
signed decimal

(Function 47) P2: Start Address
P3: Sequencer Location
P4: Sequencer Location

STRT
LEN
LEN

signed decimal
signed decimal
signed decimal

P3: Sequencer Location
P4: Sequencer Location

LEN
LEN

signed decimal
signed decimal

Equal: EQ
(Function 52)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Equal: EQ
(Function 52)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Not Equal: NE
(Function 53)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Not Equal: NE
(Function 53)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Less Than or Equal: LE
(Function 54)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Less Than or Equal: LE
(Function 54)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Greater Than or Equal: GE
(Function 55)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Greater Than or Equal: GE
(Function 55)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Less Than: LT
(Function 56)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Less Than: LT
(Function 56)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Greater Than: GT
(Function 57)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Greater Than: GT
(Function 57)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Addition: ADD
(Function 60)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Addition: ADD
(Function 60)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 60) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Double Precision Addition: DPADD
(Function 61)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Addition: DPADD
(Function 61)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 61) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Subtraction: SUB
(Function 62)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Subtraction: SUB
(Function 62)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 62) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Double Precision Subtraction: DPSUB
(Function 63)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Subtraction: DPSUB
(Function 63)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 63) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Multiplication: MUL
(Function 64)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Multiplication: MUL
(Function 64)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 64) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Double Precision Multiplication: DPMUL
(Function 65)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Multiplication: DPMUL
(Function 65)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 65) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Division: DIV
(Function 66)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Division: DIV
(Function 66)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 66) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Double Precision Division: DPDIV
(Function 67)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Division: DPDIV
(Function 67)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 67) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

D

D-4 Hand-Held Programmer Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996 GFK-0402G

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Modulo: MOD
(Function 68)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Modulo: MOD
(Function 68)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 68) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Double Precision Modulo: DPMOD
(Function 69)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Modulo: DPMOD
(Function 69)

P1: Input
P2: Input
P3: Output

I1
I2
Q

signed decimal
signed decimal
signed decimal

(Function 69) P2: Input
P3: Output

I2
Q

signed decimal
signed decimal

Square Root: SQRT
(Function 70)

P1: Input Value
P2: Output Value

IN
Q

signed decimal
signed decimal

Square Root: SQRT
(Function 70)

P1: Input Value
P2: Output Value

IN
Q

signed decimal
signed decimal

Double Precision Square Root: DPSQRT
(Function 71)

P1: Input Value
P2: Output Value

IN
Q

signed decimal
signed decimal

Double Precision Square Root: DPSQRT
(Function 71)

P1: Input Value
P2: Output Value

IN
Q

signed decimal
signed decimal

Double Precision Equal: DPEQ
(Function 72)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Equal: DPEQ
(Function 72)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Not Equal: DPNE
(Function 73)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Not Equal: DPNE
(Function 73)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

DP Less Than or Equal: DPLE
(Function 74)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

DP Less Than or Equal: DPLE
(Function 74)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

DP Greater Than or Equal: DPGE
(Function 75)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

DP Greater Than or Equal: DPGE
(Function 75)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Less Than: DPLT
(Function 76)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Less Than: DPLT
(Function 76)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Greater Than: DPGT
(Function 77)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

Double Precision Greater Than: DPGT
(Function 77)

P1: Input
P2: Input

I1
I2

signed decimal
signed decimal

INT to BCD Conversion: BCD
(Function 80)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

INT to BCD Conversion: BCD
(Function 80)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

BCD to INT Conversion: INT
(Function 81)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

BCD to INT Conversion: INT
(Function 81)

P1: Input
P2: Output

I1
Q

signed decimal
signed decimal

Do I/O: DOI/O
(Function 85)

P1: Start
P2: End

ST
END

signed decimal
signed decimal

Do I/O: DOI/O
(Function 85)

P1: Start
P2: End
P3: Destination

ST
END
ALT

signed decimal
signed decimal
signed decimal

(Function 85) P2: End
P3: Destination

END
ALT

signed decimal
signed decimal

PID ISA: PIDISA
(Function 86)

P1: Desired Set Point
P2: Process Variable

SP
PV

signed decimal
signed decimal

PID ISA: PIDISA
(Function 86)

P1: Desired Set Point
P2: Process Variable
P3: Data Structure Location

SP
PV

LOC

signed decimal
signed decimal
signed decimal

(Function 86) P2: Process Variable
P3: Data Structure Location
P4: Control Variable

PV
LOC
CV

signed decimal
signed decimal
signed decimal

P3: Data Structure Location
P4: Control Variable

LOC
CV

signed decimal
signed decimal

PID IND: PIDIND
(Function 87)

P1: Desired Set Point
P2: Process Variable

SP
PV

signed decimal
signed decimal

PID IND: PIDIND
(Function 87)

P1: Desired Set Point
P2: Process Variable
P3: Data Structure Location

SP
PV

LOC

signed decimal
signed decimal
signed decimal

(Function 87) P2: Process Variable
P3: Data Structure Location
P4: Control Variable

PV
LOC
CV

signed decimal
signed decimal
signed decimal

P3: Data Structure Location
P4: Control Variable

LOC
CV

signed decimal
signed decimal

Communications Request: COMRQ
(Function 88)

P1: Command
P2: SYSID

CMD
SYSID

signed decimal
signed decimal

Communications Request: COMRQ
(Function 88)

P1: Command
P2: SYSID
P3: TASK

CMD
SYSID
TASK

signed decimal
signed decimal
signed decimal

(Function 88) P2: SYSID
P3: TASK

SYSID
TASK

signed decimal
signed decimal

Service Request: SVCRQ
(Function 89)

P1: Request Number
P2: Output

FNC
PARAM

signed decimal
signed decimal

Service Request: SVCRQ
(Function 89)

P1: Request Number
P2: Output

FNC
PARAM

signed decimal
signed decimal

D

D-5GFK-0402G Appendix D Function Parameters

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Subroutine Call: CALLSUB
(Function 90)

P1: Subroutine Number none signed decimalSubroutine Call: CALLSUB
(Function 90)

P1: Subroutine Number none signed decimal

Search Equal To (Byte): SREQB
(Function 101)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Equal To (Byte): SREQB
(Function 101)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 101) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Equal To (Word): SREQW
(Function 102)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Equal To (Word): SREQW
(Function 102)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 102) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Equal To (INT): SREQI
(Function 103)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Equal To (INT): SREQI
(Function 103)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 103) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Equal To (DINT): SREQDI
(Function 104)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Equal To (DINT): SREQDI
(Function 104)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 104) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Not Equal To (Byte): SRNEB
(Function 105)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Not Equal To (Byte): SRNEB
(Function 105)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 105) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Not Equal To (Word): SRNEW
(Function 106)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Not Equal To (Word): SRNEW
(Function 106)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 106) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Not Equal To (INT): SRNEI
(Function 107)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Not Equal To (INT): SRNEI
(Function 107)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 107) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Not Equal To (DINT): SRNEDI
(Function 108)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Not Equal To (DINT): SRNEDI
(Function 108)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 108) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than (Byte): SRLTB
(Function 109)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than (Byte): SRLTB
(Function 109)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 109) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

D

D-6 Hand-Held Programmer Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996 GFK-0402G

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Search Less Than (Word): SRLTW
(Function 110)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than (Word): SRLTW
(Function 110)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 110) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than (INT): SRLTI
(Function 111)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than (INT): SRLTI
(Function 111)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 111) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than (DINT): SRLTDI
(Function 112)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than (DINT): SRLTDI
(Function 112)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 112) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than or Equal To (Byte): SRLEB
(Function 113)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than or Equal To (Byte): SRLEB
(Function 113)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 113) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than or Equal To (Word): SRLEW
(Function 114)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than or Equal To (Word): SRLEW
(Function 114)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 114) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than or Equal To (INT): SRLEI
(Function 115)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than or Equal To (INT): SRLEI
(Function 115)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 115) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Less Than or Equal To (DINT): SRLEDI
(Function 116)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Less Than or Equal To (DINT): SRLEDI
(Function 116)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 116) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than (Byte): SRGTB
(Function 117)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than (Byte): SRGTB
(Function 117)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 117) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than (Word): SRGTW
(Function 118)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than (Word): SRGTW
(Function 118)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 118) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than (INT): SRGTI
(Function 119)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than (INT): SRGTI
(Function 119)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 119) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

D

D-7GFK-0402G Appendix D Function Parameters

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Search Greater Than (DINT): SRGTDI
(Function 120)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than (DINT): SRGTDI
(Function 120)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 120) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than or Equal To (Byte): SRGEB
(Function 121)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than or Equal To (Byte): SRGEB
(Function 121)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 121) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than or Equal To (Word): SRGEW
(Function 122)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than or Equal To (Word): SRGEW
(Function 122)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 122) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than or Equal To (INT): SRGEI
(Function 123)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than or Equal To (INT): SRGEI
(Function 123)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 123) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Search Greater Than or Equal To (DINT): SRGEDI
(Function 124)

P1: Array Start Address
P2: Index Into Array

AR
NX IN

signed decimal
signed decimal

Search Greater Than or Equal To (DINT): SRGEDI
(Function 124)

P1: Array Start Address
P2: Index Into Array
P3: Object of Search

AR
NX IN

IN

signed decimal
signed decimal
signed decimal

(Function 124) P2: Index Into Array
P3: Object of Search
P4: Length

NX IN
IN

LEN

signed decimal
signed decimal
signed decimal

P3: Object of Search
P4: Length
P5: Target Location

IN
LEN

NX OUT

signed decimal
signed decimal
signed decimalP5: Target Location NX OUT signed decimal

Array Move (Bit): MOVABI
(Function 130)

P1: Source Start
P2: Index Into Source

SR
SNX

signed decimal
signed decimal

Array Move (Bit): MOVABI
(Function 130)

P1: Source Start
P2: Index Into Source
P3: Index into Destination

SR
SNX
DNX

signed decimal
signed decimal
signed decimal

(Function 130) P2: Index Into Source
P3: Index into Destination
P4: # Elements to Move

SNX
DNX

N

signed decimal
signed decimal
signed decimal

P3: Index into Destination
P4: # Elements to Move
P5: # Elements in Array

DNX
N

LEN

signed decimal
signed decimal
signed decimalP5: # Elements in Array

P6: Destination Start
LEN
DS

signed decimal
signed decimalP6: Destination Start DS signed decimal

Array Move (Byte): MOVABY
(Function 131)

P1: Source Start
P2: Index Into Source

SR
SNX

signed decimal
signed decimal

Array Move (Byte): MOVABY
(Function 131)

P1: Source Start
P2: Index Into Source
P3: Index into Destination

SR
SNX
DNX

signed decimal
signed decimal
signed decimal

(Function 131) P2: Index Into Source
P3: Index into Destination
P4: # Elements to Move

SNX
DNX

N

signed decimal
signed decimal
signed decimal

P3: Index into Destination
P4: # Elements to Move
P5: # Elements in Array

DNX
N

LEN

signed decimal
signed decimal
signed decimalP5: # Elements in Array

P6: Destination Start
LEN
DS

signed decimal
signed decimalP6: Destination Start DS signed decimal

Array Move (Word): MOVAW
(Function 132)

P1: Source Start
P2: Index Into Source

SR
SNX

signed decimal
signed decimal

Array Move (Word): MOVAW
(Function 132)

P1: Source Start
P2: Index Into Source
P3: Index into Destination

SR
SNX
DNX

signed decimal
signed decimal
signed decimal

(Function 132) P2: Index Into Source
P3: Index into Destination
P4: # Elements to Move

SNX
DNX

N

signed decimal
signed decimal
signed decimal

P3: Index into Destination
P4: # Elements to Move
P5: # Elements in Array

DNX
N

LEN

signed decimal
signed decimal
signed decimalP5: # Elements in Array

P6: Destination Start
LEN
DS

signed decimal
signed decimalP6: Destination Start DS signed decimal

Array Move (INT): MOVAI
(Function 133)

P1: Source Start
P2: Index Into Source

SR
SNX

signed decimal
signed decimal

Array Move (INT): MOVAI
(Function 133)

P1: Source Start
P2: Index Into Source
P3: Index into Destination

SR
SNX
DNX

signed decimal
signed decimal
signed decimal

(Function 133) P2: Index Into Source
P3: Index into Destination
P4: # Elements to Move

SNX
DNX

N

signed decimal
signed decimal
signed decimal

P3: Index into Destination
P4: # Elements to Move
P5: # Elements in Array

DNX
N

LEN

signed decimal
signed decimal
signed decimalP5: # Elements in Array

P6: Destination Start
LEN
DS

signed decimal
signed decimalP6: Destination Start DS signed decimal

D

D-8 Hand-Held Programmer Series 90-30/20/Micro Programmable Controllers User’s Manual - February 1996 GFK-0402G

Table D-1. Function Parameters - continued

���	��� �����
�
�
���	����
�
����
�����

�
�����
������ ������

Array Move (DINT): MOVADI P1: Source Start
P2: Index Into Source

SR
SNX

signed decimal
signed decimal

Array Move (DINT): MOVADI
(Function 134)

P1: Source Start
P2: Index Into Source
P3: Index into Destination

SR
SNX
DNX

signed decimal
signed decimal
signed decimal

(Function 134) P2: Index Into Source
P3: Index into Destination
P4: # Elements to Move

SNX
DNX

N

signed decimal
signed decimal
signed decimal

P3: Index into Destination
P4: # Elements to Move
P5: # Elements in Array

DNX
N

LEN

signed decimal
signed decimal
signed decimal

P4: # Elements to Move
P5: # Elements in Array
P6: Destination Start

N
LEN
DS

signed decimal
signed decimal
signed decimal

P5: # Elements in Array
P6: Destination Start

LEN
DS

signed decimal
signed decimal

Range (INT) RANGI
(Function 140)

P1: Lower limit value
P2: Upper limit value
P3: Value to be compared

L1
L2
IN

signed decimal
signed decimal
signed decimal

Range (DINT) RANGDI
(Function 141)

P1: Lower limit value
P2: Upper limit value
P3: Value to be compared

L1
L2
IN

signed decimal
signed decimal
signed decimal

Range (WORD) RANGW
(Function 142)

P1: Lower limit value
P2: Upper limit value
P3: Value to be compared

L1
L2
IN

signed decimal
signed decimal
signed decimal

Masked Compare (Word): MSKCMPW
(Function 143)

P1: First bit string
P2: Second bit string
P3: Bit string mask
P4: Start of next compare
P5: # words in string
P6: Copy of M bit string
P7: # of last compare bit

I1
I2
M

BIT
LEN

Q
BN

signed decimal
signed decimal
signed decimal
signed decimal
signed decimal
signed decimal
signed decimal

Masked Compare (DWord): MSKCMPD
(Function 144)

P1: First bit string
P2: Second bit string
P3: Bit string mask
P4: Start of next compare
P5: # words in string
P6: Copy of M bit string
P7: # of last compare bit

I1
I2
M

BIT
LEN

Q
BN

signed decimal
signed decimal
signed decimal
signed decimal
signed decimal
signed decimal
signed decimal

Index

Index-1GFK-0402G

A
Abbreviations, hand-held programmer,

Micro plc
common, 4-7
counter Type A, 4-7 , 4-8
counter Type B, 4-10

Access levels, protection mode, 8-5

Active constant sweep mode parameter,
3-6

Active constant sweep setting parameter,
3-7

Analog I/O modules, configuration, 5-27
16-channel current input, 5-32
16-channel voltage input, 5-27
8-channel voltage/current input, 5-37
current/voltage input/output combo,

5-42

Appendix
A - glossary of terms, A-1
B - special contact references, B-1
C - list of functions, C-1
D - function parameters, D-1

Arithmetic Functions, 9-61
addition (func 60), 9-62
description of, 9-61
division (func 66), 9-77
double precision addition (func 61),

9-62
double precision division (func 67), 9-77
double precision modulo division (func

69), 9-82
double precision multiplication (func

65), 9-72
double precision subtraction (func 63),

9-67
modulo division (func 68), 9-82
multiplication (func 64), 9-72
square root, double precision integer,

(func 71), 9-87
square root, integer, (func 70), 9-87
subtraction (func 62), 9-67

Array move functions, 9-290

Automatic I/O configuration, 5-7

B
Basic instructions and reference types,

A-11

Baud rate parameter, 3-9

Bit clear (BITCLR) function 24, 9-165

Bit Operation Functions
bit clear, BITCLR (func 24), 9-165
bit position, BITPOS (func 28), 9-172
bit rotate left, ROL (func 32), 9-149
bit rotate right, ROR (func 33), 9-155
bit set, BITSET (func 22), 9-161
bit shift left, SHL (func 30), 9-137
bit shift right, SHR (func 31), 9-143
bit test, BITTST (func 26), 9-169
bitwise AND (func 23), 9-122
bitwise exclusive or, XOR (func 27),

9-130
bitwise NOT (func 29), 9-134
bitwise OR (func 25), 9-126
description of, 9-121

Bit position (BITPOS) function 28, 9-172

Bit rotate left (ROL) function 32, 9-149

Bit rotate right (ROR) function 33, 9-155

Bit set (BITSET) function 22, 9-161

Bit shift left (SHL) function 30, 9-137

Bit shift right (SHR) function 31, 9-143

Bit test (BITTST) function 26, 9-169

Bitwise and (AND) function 23, 9-122

Bitwise exclusive or (XOR) function 27,
9-130

Bitwise not (NOT) function 29, 9-134

Bitwise or (OR) function 25, 9-126

Block clear (BLKCL) function 44, 9-198

Block move BMOVE (BMOVI and
BMOVW) function 38 and 43, 9-192

C
Cable for HHP, 2-1

Cancel configuration operation, 3-13

Cancel OEM key change, 8-11

Canceling a configuration operation, 5-13

Canceling a data value change operation,
7-8

Canceling a mode change, 2-11

Catalog numbers, EEPROM/EPROM,
2-12

Clearing all overrides, 7-11

Clearing memory, 2-7

Communications, 1-2

Index

Index-2 GFK-0402G

Communications module, enhanced ge-
nius, 5-18

Communications module, genius, 5-18

Communications request (COMMREQ)
function 88, 9-220

Configuration
analog I/O modules, 5-27

16-channel current input, 5-32
16-channel voltage input, 5-27
8-channel voltage/current input, 5-37
current/voltage input/output combo,

5-42
cancel current operation, 5-13
continuous counting, 4-17
count output enable, 4-16
counter direction, 4-17
counter edge, 4-16 , 4-17
counter enable, 4-16
counter mode, 4-17
counter strobe/preload selection, 4-17
deleting, 5-12
discrete module, 5-10
generic module, 5-20
genius communications module, 5-18
high limit, 4-18
high speed counter

Micro plc, 4-7
Series 90-30, 5-21

I/O, 5-1
I/O link interface module, 5-15
low limit, 4-18
Micro plc high speed counter, 4-7
Micro plc hsc configuration

count limits, 4-12
counter direction, 4-11
counter mode, 4-11
counter timebase, 4-12
counter type, 4-11
location of preset points, 4-14
output failure mode, 4-11
output preset positions, 4-13
preload value, 4-14
strobe sdge, 4-12

off preset value, 4-18
on preset value, 4-18
one-shot counting, 4-17
PLC, 3-1
preload value, 4-18
programmable coprocessor module,

5-22
pulse output, 4-19
PWM output, 4-19

reading a, 5-11 , 5-17 , 5-18
remote I/O rack, 5-5
replacing a, 5-12
saved, 5-7
strobe edge, 4-16 , 4-17
time base value, 4-17

Configuration features, continuous count-
ing, 4-11

Configuration Mode
cancel, 3-13
enter, 3-2
exit, 3-13
go to operation, 3-4
I/O configuration, 5-1
keypad summary, 3-3
locate slot/rack, 3-4
screen display, 3-4

Configuration screens
analog modules

16-channel current input, 5-32
16-channel voltage input, 5-27
8-channel current/voltage input, 5-37
current/voltage combination input/

output, 5-42
discrete module, 5-10
Genius communications module, 5-18
I/O link interface module, 5-15
Micro plc

common, all counter types, 4-15
type A counter, 4-16
type B counter, 4-20

programmable coprocessor module,
5-22

Configuration, automatic, 5-7

Configuration/program portability, 2-17

Configured constant sweep mode param-
eter, 3-7

configured constant sweep setting param-
eter, 3-7

Connection to Series 90 Micro plc, 2-1

Connection to Series 90-20, 2-1

Connection to Series 90-30, 2-1

Contact references, special, B-1

Control Functions
description of, 9-254
DO I/O enhanced (model 331, 340, 341,

351), 9-240
DO I/O snapshot (func 85), 9-234
END MCR (func 8), 9-246
LABEL (func 7), 9-250

Index

Index-3GFK-0402G

nested jump, JUMP (func 3), 9-242
nested master control relay, MCR (func

3), 9-246
no operation, NOOP (func 1), 9-241
pid, 9-254
PID IND (func 87), 9-254
PID ISA (func 86), 9-254
subroutine CALLSUB (func 90), 9-266
system service request, SVCRQ (func

89), 9-251
terminate program execution, ENDSW

(func 0), 9-241

Conversion Functions
BCD To integer conversion, INT (func

81), 9-229
integer to BCD conversion, BCD (func

80), 9-225

CPU 351 operating note, 9-1

CPU ID parameters, 3-10

D
Data bits parameter, 3-9

Data Mode
entering, 7-1
exit, 7-12
keypad summary, 7-2
plc control and status, 8-1
screen display, 7-3

Data Move Functions, 9-183
block clear, BLKCL (func 44), 9-198
block move, hex, BMOVW (func 43),

9-192
block move, integer, BMOVI (func 38),

9-192
communications request, COMMREQ

(func 88), 9-220
move bits, MOVBN (func 40), 9-188
move word, hex, MOVWN (func 42),

9-184
move word, integer, MOVIN (func 37),

9-184
shift register, bit, SHFRB (func 46),

9-208
shift register, word, SHFR (func 45),

9-201
stage bit sequencer, SEQB (func 47),

9-212

Data retentiveness, 1-5

Data table, clearing, 7-9

Data types
BCD–4, 9-30
BIT, 9-30
BYTE, 9-30
DINT, 9-30
INT, 9-30
WORD, 9-30

Data value, canceling change, 7-8

Default I/O parameter, 3-11

Default system configuration, 90–30,
5-14

Delete a configuration, 5-12

Deleting a locked subroutine, 8-14

Deleting subroutines, 9-9

Discrete module, configuring, 5-10

Discrete reference tables, 7-3

Discrete references
description of, 1-4
discrete inputs, 1-4
discrete internal, 1-4
discrete outputs, 1-4
discrete temporary, 1-4
global data, 1-4
system status, 1-4

Discrete tables, 7-3

Display format for configuration, 3-4

Display formats, 7-3

Display, changing format of, 7-5

Display, error messages, 7-5

DO I/O function, 9-234
description of, 9-234
enhanced for model 331, 340, 341, and

351 CPUs, 9-240

Double precision
addition (DPADD) function 61, 9-62
division (DPDIV) function 67, 9-77
equal (DPEQ) function 72, 9-91
greater than comparison (DPGT) func-

tion, 9-99
greater than or equal comparison

(DPGE) function 75, 9-103
less than comparison (DPLT) function

76, 9-107
less than or equal to comparison (DPLE)

function 74, 9-111
module division (DPMOD) function 69,

9-82
multiplication (DPMUL) function 65,

9-72

Index

Index-4 GFK-0402G

not equal comparison (DPNE) function
73, 9-95

signed integer, 9-30
square root (DPSQRT) function 71, 9-87
subtraction (DPSUB) function 63, 9-67

Down counter (DNCTR) function 16, 9-57

Dual use checking parameter, 3-8

E
Edit-locked subroutine, 8-14

EEPROM source at power-up, 2-21

EEPROM/EPROM catalog numbers, 2-12

Enhanced DO I/O function for model 331,
340, 341, and 351 CPUs, 9-240

Enhanced genius communications mod-
ule, 5-18

Entering a logic element, 9-11

Entering data mode, 7-1

Entering programs, guidelines, 9-6

Entering subroutines, 9-7

Equal function, 9-90

Error messages
display options, 7-5
EEPROM/MEM card operation, 2-16
non-system, 10-1

Exit data mode, 7-12

Exiting configuration mode, 3-13

F
Flash memory, Micro plc, saving the user

program in, 4-6

Formats, display, 7-3

Function numbers, list of, C-1

Function parameters, D-1

Functions
arithmetic, 9-61
bit operation, 9-121
control, 9-233
control functions, 9-233
conversion, 9-224
data move, 9-183
relational, 9-90
table, 9-268

timers and counters, 9-37

Functions for statement list programming,
9-31

functions, list of, C-1

G
Generic module configuration, 5-20

Genius communications module, 5-18

Genius communications module, en-
hanced, 5-18

Global data references, 1-4

Glossary of terms, A-1

Glossary, basic instructions and reference
Types, A-11

Greater than comparison (GT) function
57, 9-99

Greater than function, 9-90

Greater than or equal comparison (GE),
function 55, 9-103

Greater than or equal function, 9-90

Guidelines for entering programs, 9-6

H
Hand–Held Programmer

cable, 2-1
communications with PLC, 1-2
configuration screens, for Micro plc, 4-3
connection to Series 90 Micro plc, 2-1
connection to Series 90–20 PLC, 2-1
connection to Series 90–30 PLC, 2-1
disconnecting, 2-2
discrete references, 1-3
features of, 1-1
how to use, 1-7
illustration of, 1-8
illustration of keypad, 2-3
installation and setup, 2-1
keypad, 2-2
keypad, description of, 1-1
LCD screen, 1-2
memory card, 1-2
memory card insertion, 2-13
operating modes, 1-2
operation of HHP, 2-1
power-up sequence, 2-2
subroutine display, 8-12

Index

Index-5GFK-0402G

subroutine protection status, display of,
8-12

Hand–Held Programmer abbreviations
Type A counter, Micro PLC, 4-8
Type B counter, Micro plc, 4-10

HHP installation, 2-1

High speed counter configuration
Micro plc, 4-7
Series 90-30, 5-21

I
I/O Configuration

analog I/O modules
16-channel current input, 5-32
16-channel voltage input, 5-27
8-channel current/voltage input, 5-37
current/voltage combination input/

output, 5-42
auto configuration, 5-5
automatic configuration, 5-7
Genius communications module, 5-18
high-speed counter, Series 90-30, 5-21
I/O link interface module, 5-15
I/O slots, 5-5
intelligent I/O module, 5-17
intelligent I/O modules, 5-17
keypad functionality, 5-8
non-intelligent I/O module, 5-9
non-intelligent I/O modules, 5-9
programmable coprocessor module,

5-22
reading a saved configuration, 5-7
remote I/O rack, 5-5
selecting rack size, 5-3
selecting slots in rack, 5-4
slots for I/O modules, 5-5
system configuration, default, 90-30,

5-14

I/O link interface, configuration, 5-15

I/O scan in sweep mode parameter, 3-8

I/O slots, configuration of, 5-5

IC693CBL303, cable for HHP, 2-1

Input references, discrete, 1-4

Input register references, analog, 1-3

Installation, HHP, 2-1

INT, 9-30

Integer to BCD Conversion (BCD) Func-
tion 80, 9-225

Intelligent I/O modules, 5-17

Internal references, discrete, 1-4

J
Jumper, user PROM option, 2-11

K
Key change, OEM, cancel, 8-11

Key click parameter, 3-5

Key sequences, special, 2-8

Key, OEM, 8-9

Keypad functionality, 6-2
data mode, 7-2
in I/O configuration mode, 5-8

Keys
edit/display, 2-4
ladder logic, 2-5
numeric, 2-6
program transfer, 2-6

L
Less than comparison (LT) function 56,

9-107

Less than function, 9-90

Less than or equal function, 9-90

Less than or equal to comparison (LE)
function 54, 9-111

Locate slot in rack, 5-10

Logic element, entering, 9-11

M
Manual configuration, 5-5

Masked compare
MSKCMPI, function 144, 9-176
MSKCMPW, function 143, 9-176

Memory card, 2-13 , 4-3
load RAM, 2-14
store RAM, 2-15

Index

Index-6 GFK-0402G

verify RAM, 2-16

Memory card, plc configuration, 3-1

Memory types for basic elements, 9-6

Memory, clearing, 2-7

Messages, error, 7-5

Micro plc
abbreviations for all Type A counter

configuration, 4-8
common parameter definitions, 4-7
compatibility with Series 90-30, 4-7
configuration, 4-2
hsc configuration, 4-7

count direction, 4-11
count limits, 4-12
counter mode, 4-11
counter timebase, 4-12
counter type, 4-11
location of preset points, 4-14
output failure mode, 4-11
output preset positions, 4-13
preload value, 4-14
strobe edge, 4-12

parameters, list of, 4-2
storing user program, 4-6

Mode change, canceling, 2-11

Mode exit, data, 7-12

Mode, data, 7-1

Mode, program, 6-2

Modem turnaround time parameter, 3-9

Modes, operating, 1-2

Module, genius communications, 5-18

Modulo division (MOD) function 68, 9-82

Move bits (MOVBN) function 40, 9-188

Move functions, array, 9-289

Multiple word move MOVEN (MOVIN
and MOVWN) function 37 and 42,
9-184

N
Non-discrete tables, 7-4

Not equal comparison (NE) function 53,
9-95

Not equal function, 9-90

O
OEM key, 8-9

OEM Protection, 8-1
cancel, 8-9
cancel key change, 8-11
display/modify, 8-9
levels of, 8-2
lock/release, 8-8
reading EEPROM or memory card,

8-11
remove, 8-11

Off delay (OFDTR) function 14, 9-48

On delay (ONDTR) function 13, 9-43

On-line changes
boolean instruction, 6-8
reference address, 6-8
valid, 6-19

On-line substitution groups, 6-19

Operating modes, 1-2
config, 2-8
configuration mode, 1-2
data, 2-8
data mode, 1-2
program, 2-8
program edit, 6-1
program mode, 1-2
protect, 2-8
protection mode, 1-2
selection of, 2-8

Option, user PROM, 2-11

Output references, discrete, 1-4

Output register references, analog, 1-3

Overrides, 1-4

Overrides, clearing all, 7-11

Overriding, discrete reference, 7-9

P
Parameter definitions

for Micro plc, 4-7
for Micro plc HSC configuration, 4-7

Parameters for Micro plc, 4-2

Parameters, function, D-1

Parameters, rack, 3-4

Parity parameter, 3-9

Password parameter, 3-10

Index

Index-7GFK-0402G

Password protection, 8-1

Password protection levels, 8-1

Passwords
cancel change, 8-8
display/modify, 8-7
OEM protection, 8-8

PID data structure, 9-256

PID function, ziegler and nichols tuning
approach, 9-261

PID function block data, 9-257

PID functions, differences, 9-260

PID IND, function 87, 9-254

PID, initialization values, 9-259

PIDIND block diagram, 9-260

PIDISA block diagram, 9-260

PLC Configuration
accessing parameters for configuration,

3-4
active constant sweep mode parameter,

3-6
active constant sweep setting parame-

ter, 3-7
baud rate parameter, 3-9
cancel, 3-13
clock parameter, 3-1 , 3-5
configuration mode, 3-2
constant sweep mode parameter, 3-1 ,

3-7
constant sweep setting parameter, 3-1 ,

3-7
cpu id parameters, 3-10
data bits parameter, 3-9
default I/O, 3-11
dual use checking parameter, 3-1 , 3-8
I/O scan parameter, 3-1 , 3-8
key click parameter, 3-1 , 3-5
modem turnaround time parameter,

3-9
parameter listing, 3-1
parity parameter, 3-9
password (enable/disable), 3-10
port idle time parameter, 3-1 , 3-9
power-up mode parameter, 3-1 , 3-6
program source parameter, 3-1 , 3-6
register source parameter, 3-1 , 3-6
stop bits parameter, 3-9

PLC control and status, 8-1

PLC parameters, Micro, 4-2

Port idle time parameter, 3-9

Portability, program/configuration, 2-17

Power-up
disconnect, 2-2
EEPROM source, 2-21
key sequences, 2-8
mode, 2-7
operating modes, 2-8
options, 2-7
sequences, 2-7

Power-up mode parameter, 3-6

Program check, 8-14

Program Edit
abort insert/edit, 6-20
complete insert/replace, 6-21
delete program, 6-11
delete step, 6-10
description of, 6-1
display step/parameter, 6-3
enter instruction type, 6-5
enter operand, 6-6
insert step, 4-6 , 6-5
monitor program, 6-17
on-line changes, 6-18
program syntax errors, 6-20
replace step, 6-6
search, 6-12

Program entry, guidelines, 9-6

Program Mode
enter, 6-2
exit, 6-21
keypad summary, 6-2

Program organization and user refer-
ences/data

retentiveness of data, 1-5
transitions and overrides, 1-4

Program protection, 8-1

Program source parameter, 3-6

Program, entering, 9-5

Program/configuration portability, 2-17

Programmable coprocessor module
configuration, 5-22
editing parameters, 5-22
freezing configuration, 5-22

Programming Examples
addition, 9-64
AND (logical AND), 9-123
array move, bit, 9-292
array move, byte, 9-296
array move, word, 9-299

Index

Index-8 GFK-0402G

array search, byte, 9-282
array search, integer, 9-285
BCD to integer conversion, 9-230
bit clear, 9-166
bit position, 9-173
bit set, 9-162
bit test, 9-170
block clear (BLKCL), 9-199
block move (BMOVE), 9-193
communications request, 9-221
compare value to be within a range of

values, 9-116
data move, 9-183
division, 9-79
DO I/O, 9-237
down counter (DNCTR), 9-58
end master control relay, 9-248
equal to comparison, 9-93
greater than comparison, 9-101
greater than or equal comparison, 9-105
integer to BCD conversion, 9-226
label, 9-244
less than comparison, 9-109
less than or equal to comparison, 9-112
master control relay, 9-247
modulo division, 9-84
move bits (MOVBN), 9-189
multiple word move (MOVIN), 9-185
multiplication, 9-74
nested jump, 9-243
NOT (logic invert), 9-135
not equal comparison, 9-97
OR (logical OR), 9-127
pid, 9-262
pid isa, function 86, 9-254
rotate left, 9-151
rotate right, 9-157
service request, 9-252
Shift left, 9-139
shift register, bit (SHFRB), 9-209
shift register, word (SHFR), 9-203
shift right, 9-145
square root, 9-88
stage bit sequencer (SEQB), 9-215
subroutine call, 9-266
subtraction, 9-69
table functions, 9-268
timer, off delay (OFDTR), 9-50
timer, on–delay (ONDTR), 9-44
timer, stop–watch (TMR), 9-40
up counter (UPCTR), 9-54
XOR (logical exclusive OR), 9-131

PROM option, jumper, 2-11

PROM option, user, 2-11

Protection Mode, 8-2
changing levels, 8-5
displaying passwords, 8-7
enter, 8-2
keypad summary, 8-4
modifying passwords, 8-7
password enable and disable configura-

tion, 8-3
passwords, 8-7
subroutine protection levels, 8-12

Protection, levels of, 8-1

Protection, OEM, 8-1 , 8-2

Protection, program, 8-1

R
Rack parameters, 3-4

Rack size, selecting, 5-3

Rack, manual configuration, 5-5

Rack, remote I/O, 5-5

Range, count limits, 4-12

Range function
double precision, 9-90
double precision signed integer, 9-115
integer, 9-90
signed integer, 9-115
word, 9-90 , 9-115

Read configuration, 5-17

Read function, 2-9

Reading a configuration, 5-11 , 5-18

Reading a saved configuration, 5-7

Reconfiguration, 5-13

Reference table function, 7-1

Reference table, changing format
discrete, 7-5
register, 7-6

Reference Tables, 7-1
change display format, 7-5
changing data, 7-7
clear data table, 7-9
discrete, 7-3 , 7-5
list of functions, C-1
non-discrete, 7-6
register, 7-4
registers, special system, 7-11
special registers, 7-11 , B-1

Index

Index-9GFK-0402G

Reference tables, B-1

Reference, discrete, overriding, 7-9

Reference, top, selecting, 7-7

References, special contact, B-1

Register reference tables, 7-4

Register references
analog inputs, 1-3
analog outputs, 1-3
description of, 1-3
system registers, 1-3

Register source parameter, 3-6

Registers, special system, 7-11

Relation Functions, 9-90

Relational Functions
description of, 9-90
double precision equal (func 72), 9-91
double precision greater than compari-

son (func 77), 9-99
double precision greater than or equal

Comparison (func 75), 9-103
double precision less than comparison

(func 76), 9-107
double precision less than or equal to

comparison (func 74), 9-111
double precision not equal comparison

(func 73), 9-95
double precision signed integer range

(function 141), 9-115
equal (func 52), 9-91
greater than comparison (func 57), 9-99
greater than or equal comparison (func

55), 9-103
less than comparison (func 56), 9-107
less than or equal to comparison (func

54), 9-111
not equal comparison (func 53), 9-95
signed integer range (function 140),

9-115
word range (function 142), 9-115

Relational functions
EQ, DPEQ, 9-90
GE, DPGE, 9-90
GT, DPGT, 9-90
LE, DPLE, 9-90
LT, DPLT, 9-90
NE, DPNE, 9-90
RANGI, RANGDI, RANGW, 9-90

Remote I/O rack, configuration of, 5-5

Removing OEM protection, 8-11

Replacing a configuration, 5-12

S
Screens, configuration, Micro plc

Type A counter, 4-16
type B counter, 4-20

Search Functions
list of, 9-269
search equal to, 9-270
search greater than, 9-278
search greater than or equal to, 9-280
search less than, 9-274
search less than or equal to, 9-276
search not equal to, 9-272

Selecting a different top reference, 7-7

Selecting rack size, 5-3

Selecting slots in a rack, 5-4

Series 90 Micro plc, connection to, 2-1

Series 90-20, connection to, 2-1

Series 90-30 PLC, compatibility with, 4-4 ,
4-5

Series 90-30, connection to, 2-1

Service request, programming example,
9-252

Shift register bit (SHFRB) function 46,
9-208

Shift register SHFR (SHFRW) function 45,
9-201

Signed integer, 9-30

Slot assignments
automatic configuration, 5-7
default configuration, 5-14
manual configuration, 5-5
Micro PLC functions, 4-4
remote I/O rack, 5-5
Series 90-20, 3-4
Series 90-20 plc, 5-3
Series 90-30, 3-4

Slot selection in rack, 5-4

Slot/rack, locating, 5-10

Special contact references, B-1

Square root, double precision integer,
function 71, 9-87

Square root, integer, function 70, 9-87

Stage bit sequencer (SEQB) function 47,
9-212

Index

Index-10 GFK-0402G

Start/stop PLC, 2-9

Statement List Language
arithmetic functions, 9-61
basic elements, 9-2
bit operation functions, 9-121
control functions, 9-233
conversion functions, 9-224
data move functions, 9-183
editing, 9-35
editing functions and function blocks,

9-35
entering a program, 9-5
function blocks, 9-31
relational functions, 9-90
relay ladder logic, 9-1
standard functions, 9-31
timers and counters, 9-37

Statement list Language, table functions,
9-268

Status references, system, 1-4

Stop bits parameter, 3-9

Stop-watch timer (TMR) function 10, 9-39

Subroutine
call function, zoom, 8-13
declaration mode, 9-7
edit locked, 8-14
protection levels, 8-12
view-locked, 8-12

Subroutine call, function 90, 9-266

Subroutines
defining, 9-8
deleting, 9-9
entering, 9-7
viewing, 9-8

Substitution groups, on-line, 6-19

System configuration, default, 5-14

System register references, 1-3

System registers, special, 7-11

System status references, 1-4

T
Table Data

cancel change, 7-8
change, 7-7
clear table, 7-9

Table data override, discrete reference,
7-9

Table Functions
array move, 9-289 , 9-290
list of, 9-268
programming examples, array move,

9-292
programming examples, search func-

tions, 9-282
search equal to, 9-270
search greater than, 9-278
search greater than or equal to, 9-280
search less than, 9-274
search less than or equal to, 9-276
search not equal to, 9-272
search, array, 9-269

Tables, reference, 7-1
Temporary references, discrete, 1-4
Terms, glossary of, A-1
Timers and Counters

down counter (DNCTR), 9-57
off-delay timer (OFDTR), 9-48
on-delay timer (ONDTR), 9-43
stop-watch timer (TMR), 9-39
up counter (UPCTR), 9-53

Top reference, selecting, 7-7
Transferring, Micro PLC program to a Se-

ries 90-30 PLC, 4-4
Type A counter specific screens, for Micro

plc, 4-16
Type B counter specific screens, for Micro

plc, 4-20

U
Up counter (UPCTR) function 15, 9-53
User PROM option, 2-11
User reference, discrete internal, 1-4
User references

analog inputs, 1-3
analog outputs, 1-3
discrete inputs, 1-4
discrete outputs, 1-4
discrete references, 1-3
discrete temporary, 1-4
global data, 1-4
system registers, 1-3
system status, 1-4
transitions, 1-4

Using the HHP, 1-7

V
Valid on-line changes, 6-19

Index

Index-11GFK-0402G

Verify function, 2-9

Viewing subroutines, 9-8

View-locked subroutine, 8-12

W
Write function, 2-9

iii GFK-0402G

Preface

The Hand-Held Programmer User’s manual for the Series 90�-30, 90-20, and Micro
Programmable Controllers describes how to install and use this compact device to create
ladder logic user programs for the Series 90-30, 90-20, and Micro Programmable Logic
Controllers (PLC).

Revisions to This Manual
Following is a list of the revisions and corrections to this version of the Hand-Held
Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual as
compared to the previous version (GFK-0402F).

� Page 3-12, added three paragraphs at bottom of page regarding default I/O
configuration.

� Page 3-8, added Note in center of page stating that the dual use checking parameter
is not used with the model 351 CPU.

� Pages 5-1 and 5-2, illustrations updated to show Standard power supply.

� Page 5-10, separate heading added, Assigning Reference Addresses to I/O Modules to
make this discussion a separate area that can easily be referenced for other modules
as needed. Also added new second paragraph beginning with, When the CPU

� Pages 5-15, 5-28, 5-33, 5-38, and 5-43, added paragraph pointing to Assigning
Reference Addresses to I/O Modules located on page 5-10.

� Page 9-50, corrected description of function in paragraph at top of page, and
corrected function block in Ladder Diagram Representation to correctly read .1
seconds.

� Page 9-137, Added paragraph beginning with If the number of bits to be shifted

� Page 9-143, Added paragraph beginning with If the number of bits to be shifted

Preface

iv Hand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996 GFK-0402G

Using This Manual
The information in this manual is arranged as chapters that correspond to the main
features or operating modes of the programmer.

Chapter 1. Introduction: This chapter presents an overview of the Hand-Held
Programmer.

Chapter 2. Operation: Explains what you will need to know to install and start up the
programmer. It also explains the use of the keyboard, operating modes, and
Read/Write/Verify functions.

Chapter 3. PLC Configuration: Many PLC parameters are user-configurable. This
chapter describes each parameter, its default value, and how it is configured.

Chapter 4. Series 90 Micro PLC Configuration: This chapter describes each parameter
for the Micro PLC and describes how it is configured.

Chapter 5. I/O Configuration: Contains information on the configuration of intelligent
and non-intelligent I/O modules.

Chapter 6. Program Edit: Describes how to use program mode to create, alter, monitor,
and debug Statement List logic programs entered by the user.

Chapter 7. Reference Tables: This chapter describes the Reference Tables function (data
mode) which enables you to view and change the contents of data tables within the
programmable controller.

Chapter 8. PLC Control and Status: This chapter describes how to use protection mode
to control access to various functions of the programmable controller. An additional
feature, OEM protection, is also supported. OEM protection supercedes user-specified
protection. Information on starting and stopping the PLC is also included in this chapter.

Chapter 9. Statement List Programming Language: This chapter describes the basic
elements, functions, and function blocks contained in the Statement List (SL)
programming language.

Chapter 10. Error Messages: Summarizes the non-system error messages and/or
displays which may occur during the operation of the Hand-Held Programmer.

Appendix A. Glossary: This is a glossary of terms for the Series 90-30 and 90-20
programmable controllers.

Appendix B. Special Contact References: This appendix lists the special contact
references which are located in four segments of %S memory, as %S, %SA, %SB, and
%SC.

Appendix C. List of Functions: This appendix lists the Series 90-30/20 functions that can
be programmed using the Hand-Held Programmer. A description of each function is
included.

Appendix D. Function Parameters: This appendix lists the default display formats for
each function parameter.

Preface

vGFK-0402G Preface

Related Publications:
For more information on Series 90-30, Series 90-20, and Micro PLC products, refer to these
publications:

GFK-0255 - Series 90 PCM and Support Software User’s Manual

GFK-0256 - MegaBasic Programming Reference Manual

GFK-0293 - Series 90 -30 High Speed Counter User’s Manual

GFK-0401 - Workmaster II PLC Programming Unit Guide to Operation

GFK-0402 - Series 90 -30 and 90-20 PLC Hand-Held Programmer User’s Manual

GFK-0412 - Genius Communications Module User’s Manual

GFK-0466 - Logicmaster 90 Series 90 -30/20/Micro Programming Software User’s Manual

GFK-0467 - Series 90 -30/20/Micro Programmable Controllers Reference Manual

GFK-0487 - Series 90 PCM Development Software (PCOP) User’s Manual

GFK-0499 - CIMPLICITY 90-ADS Alphanumeric Display System User’s Manual

GFK-0582 - Series 90 PLC Serial Communications Driver User’s Manual

GFK-0631 - Series 90 -30 I/O Link Interface User’s Manual

GFK-0641 - CIMPLICITY 90-ADS Alphanumeric Display System Reference Manual

GFK-0664 - Series 90 -30 PLC Axis Positioning Module Programmer’s Manual

GFK-0685 - Series 90 Programmable Controllers Flow Computer User’s Manual

GFK-0695 - Series 90 -30 Enhanced Genius Communications Module User’s Manual

GFK-0726 - Series 90 -30 PLC State Logic Processor User’s Guide

GFK-0732 - Series 90 -30 PLC ECLiPS User’s Manual

GFK-0750 - OnTOP for Series 90 -30 Online Troubleshooting and Operator Program User’s Manual

GFK-0781 - Series 90 -30 Axis Positioning Module Follower Mode User’s Manual

GFK-0823 - Series 90 -30 I/O Link Master Module User’s Manual

GFK-0828 - Series 90 -30 Diagnostic System User’s Manual

GFK-0840 - Series 90 -30 Axis Positioning Module Standard Mode User’s Manual

GFK-0898 - Series 90 -30 PLC I/O Module Specifications

GFK-1028 - Series 90 -30 I/O Processor Module User’s Manual

GFK-1034 - Series 90 -30 Genius Bus Controller User’s Manual

GFK-1037 - Series 90 -30 FIP Remote I/O Scanner User’s Manual

GFK-1056 - Series 90 -30 State Logic Control System User’s Manual

GFK-1065 - Series 90 Micro PLC User’s Manual

GFK-1084 - Series 90 -30 TCP/IP Ethernet Communications User’s Manual

GFK-1186- TCP/IP Ethernet Communications for the Series 90-30 PLC Station Manager Manual

GFK-1179 - Series 90 PLC Installation Requirements for Conformance to Standards

We Welcome Your Comments and Suggestions
At GE Fanuc automation, we strive to produce quality technical documentation. After you
have used this manual, please take a few moments to complete and return the Reader’s
Comment Card located on the next page.

Henry A. Konat
Senior Technical Writer

Contents

vi GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996

Chapter 1 Introduction to the Hand-Held Programmer 1-1

Keypad 1-1 .

LCD Screen 1-2 .

PLC Communications 1-2 .

Memory Card Interface 1-2 .

Operating Modes 1-2 .

References 1-3 .

Transitions and Overrides 1-4 .

Retentiveness of Data 1-5 .

Using the Hand-Held Programmer 1-7 .

Chapter 2 Operation 2-1 .

Powering up the Hand-Held Programmer 2-2 .

Disconnecting the Hand-Held Programmer 2-2 .

Keypad 2-2 .

Selecting an Operating Mode 2-8 .

Read/Write/Verify Functions 2-9 .

Starting/Stopping the PLC 2-9 .

Canceling a Mode Change 2-11 .

User PROM Option 2-11 .

Series 90 Memory Card 2-13 .

Program/Configuration Portability 2-17 .

Chapter 3 Series 90-30/20 PLC Configuration 3-1 .

Entering Configuration Mode 3-2 .

Keypad Functionality 3-3 .

Display Format 3-4 .

Locating a Slot or Rack and PLC Parameters 3-4 .

Key Click Parameter 3-5 .

Clock Parameter 3-5 .

Program Source Parameter 3-6 .

Register Source Parameter 3-6 .

Power-Up Mode Parameter 3-6 .

Active Constant Sweep Mode Parameter 3-6 .

Active Constant Sweep Setting Parameter 3-7 .

Configured Constant Sweep Mode Parameter 3-7 .

Configured Constant Sweep Setting Parameter 3-7 .

I/O Scan in Stop Mode Parameter 3-8 .

Contents

Table of Contents viiGFK-0402G

Dual Use Checking Parameter 3-8 .
Port Idle Time Parameter 3-9 .
Baud Rate Parameter 3-9 .
Data Bits Parameter 3-9 .
Stop Bits Parameter 3-9 .
Parity Parameter 3-9 .
Modem Turnaround Time Parameter 3-9 .
Password (ENABLE/DISABLE) Parameter 3-10 .
CPU ID Parameters ID1, ID2, and ID3 3-10 .
Default I/O 3-11 .
Checksum Words Per Sweep 3-13 .
Canceling a Configuration Operation 3-13 .
Exiting Configuration Mode 3-13 .

Chapter 4 Series 90 Micro PLC Configuration 4-1 .

Section 1: Micro PLC Configuration 4-2 .
HHP Configuration Screens 4-3 .
Storing the User Program Using the HHP 4-6 .

Section 2: High Speed Counter Configuration 4-7
Parameter Definitions 4-7 .
Configuration Screens Common to both Counter Types
 (ALL A and B1-3, A4) 4-15 .
A4 Counter Specific Screens 4-16 .
Type B Counter Specific Screens 4-20 .

Chapter 5 I/O Configuration 5-1 .
Selecting Rack Size 5-3 .
Selecting Slots in a Rack 5-4 .
I/O Slots 5-5 .
Remote I/O Rack Configuration 5-5 .
Manual Rack Configuration 5-5 .
Automatic Rack Configuration 5-7 .
Reading a Saved Configuration 5-7 .
Keypad Functionality 5-8 .

Section 1: Non-Intelligent I/O Modules 5-9 .
Assigning Reference Addresses to I/O Modules 5-10 .
Locating a Slot or Rack 5-10 .
Configuring a Discrete Module 5-10 .
Reading a Configuration 5-11 .
Deleting an Existing Configuration 5-12 .
Replacing a Configuration 5-12 .
Canceling a Configuration Operation 5-13 .
Reconfiguration 5-13 .
I/O Link Interface Module Configuration 5-15 .

Contents

viii GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996

Section 2: Intelligent I/O Modules 5-17 .
Reading a Configuration 5-17 .

Section 3: Genius Communications Module 5-18
Reading a Configuration 5-18 .
Creating a Generic Module Configuration 5-20 .

Section 4: High Speed Counter 5-21 .

Section 5: Programmable Coprocessor Module 5-22
Editing PCM Parameters 5-22 .

Section 6: Analog I/O Modules 5-27 .
Configuring the 16-Channel Voltage Input Module 5-27 .

Voltage Ranges and Input Modes 5-27 .
Module Present 5-28 .
Selecting %AI Reference 5-29 .
Removing Module From Configuration 5-29 .
Selecting Module Mode 5-30 .
Saved Configurations 5-31 .

Configuring the 16-Channel Current Input Module 5-32
Current Ranges 5-32 .
Module Present 5-32 .
Selecting %AI Reference 5-34 .
Removing Module From Configuration 5-34 .
Saved Configurations 5-36 .

Configuring the 8-Channel Current/Voltage Input Module 5-37
Module Present 5-37 .
Selecting %I Reference 5-38 .
Selecting %AQ Reference 5-39 .
Removing Module From Configuration 5-39 .
Selecting Module Default Mode 5-40 .
Saved Configurations 5-41 .

Configuring the Current/Voltage Combination Input/Output Module 5-42
Module Present 5-43 .
Selecting %AQ Reference 5-43 .
Selecting %AI Reference 5-44 .
Selecting %I Reference 5-45 .
Default Configuration 5-45 .
Removing Module From Configuration 5-46 .
Selecting Module Default Mode 5-46 .
Selecting Input Channel Ranges 5-48 .
Selecting Low and High Alarm limits 5-48 .
Freeze Mode 5-49 .
Saved Configurations 5-50 .

Contents

Table of Contents ixGFK-0402G

Chapter 6 Program Edit 6-1 .
Entering Program Mode 6-2 .
Keypad Functionality 6-2 .
Displaying a Step or Parameter 6-3 .
Inserting an Instruction Step 6-5 .
Replacing an Instruction Step 6-6 .
Deleting an Instruction Step 6-10 .
Deleting a Program 6-11 .
Searching for an Instruction Element 6-12 .
Monitoring Program Execution 6-17 .
Making On-Line Changes 6-18 .
Program Syntax Errors 6-20 .
Aborting the Insert/Edit Operation 6-20 .
Completing the Insert/Replace Operation 6-21 .
Exiting Program Mode 6-21 .

Chapter 7 Reference Tables 7-1 .
Entering Data Mode 7-1 .
Keypad Functionality 7-2 .
Display Format 7-3 .
Changing the Format of a Display 7-5 .
Selecting a Different Top Reference 7-7 .
Changing Table Data 7-7 .
Overriding a Discrete Reference 7-9 .
Clearing a Data Table 7-9 .
Clearing all Overrides 7-11 .
Viewing Special System Registers 7-11 .
Exiting Data Mode 7-12 .

Chapter 8 PLC Control and Status 8-1 .
Protection Levels 8-1 .
Entering Protection Mode 8-2 .
Password Enable and Disable Configuration 8-3 .
Keypad Functionality 8-4 .
Moving to another level of access 8-5 .
Displaying and Modifying Passwords 8-7 .
Canceling a Password Change 8-8 .
Locking and Releasing OEM Protection 8-8 .
Canceling an OEM Protection Operation 8-9 .
Displaying and Modifying the OEM Key 8-9 .
Removing OEM Protection 8-11 .
Canceling an OEM Key Change 8-11 .
Reading EEPROM, Memory Card, or Flash Memory With an OEM Key 8-11
Subroutine Protection Levels 8-12 .

Contents

x GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996

Chapter 9 Statement List Programming Language 9-1 .

Relay Ladder Logic 9-1 .

Entering a Program 9-5 .
Guidelines for Entering Programs 9-6 .
Entering Subroutines 9-7 .

How to Enter a Logic Element Using the HHP 9-11 .
Data Types 9-30 .
Standard Functions and Function Blocks 9-31 .

Section 1: Timers and Counters 9-37 .

Stop-Watch Timer (TMR) Function 10 9-39 .
On Delay (ONDTR) Function 13 9-43 .
Off Delay (OFDTR) Function 14 9-48 .

Up Counter (UPCTR) Function 15 9-53 .
Down Counter (DNCTR) Function 16 9-57 .

Section 2: Arithmetic Functions 9-61 .

Addition (ADD) Function 60
Double Precision Addition (DPADD) Function 61 9-62 .

Subtraction (SUB) Function 62
Double Precision Subtraction (DPSUB) Function 63 9-67

Multiplication (MUL) Function 64
Double Precision Multiplication (DPMUL) Function 65 9-72

Division (DIV) Function 66
Double Precision Division (DPDIV) Function 67 9-77 .
Modulo Division (MOD) Function 68
Double Precision Modulo Division (DPMOD) Function 69 9-82
Square Root, INT (SQRT) Function 70
Square Root, DINT (DPSQRT) Function 71 9-87 .

Section 3: Relational Functions 9-90 .

Equal (EQ) Function 52
Double Precision Equal (DPEQ) Function 72 9-91 .
Not Equal Comparison (NE) Function 53
Double Precision Not Equal Comparison (DPNE) Function 73 9-95
Greater Than Comparison (GT) Function 57
Double Precision Greater Than Comparison (DPGT) Function 77 9-99
Greater Than or Equal Comparison (GE) Function 55
Double Precision Greater Than or Equal Comparison (DPGE) Function 75 9-103
Less Than Comparison (LT) Function 56
Double Precision Less Than Comparison (DPLT) Function 76 9-107

Less Than or Equal To Comparison (LE) Function 54
Double Precision Less Than or Equal To Comparison (DPLE) Function 74 9-111

Integer Range (RANGI) Function 140
Double Precision Range (RANGDI) Function 141
Word Range (RANGW) Function 142 9-115 .

Contents

Table of Contents xiGFK-0402G

Section 4: Bit Operation Functions 9-121 .

Bitwise and (AND) Function 23 9-122 .
Bitwise or (OR) Function 25 9-126 .
Bitwise Exclusive or (XOR) Function 27 9-130 .
Bitwise NOT (NOT) Function 29 9-134 .
Bit Shift Left (SHL) Function 30 9-137 .
Bit Shift Right (SHR) Function 31 9-143 .
Bit Rotate Left (ROL) Function 32 9-149 .
Bit Rotate Right (ROR) Function 33 9-155 .
Bit Set (BITSET) Function 22 9-161 .
Bit Clear (BITCLR) Function 24 9-165 .
Bit Test (BITTST) Function 26 9-169 .
Bit Position (BITPOS) Function 28 9-172 .
Masked Compare Word (MSKCMPW) Function 143
Masked Compare Dword (MSKCMPD) Function 144 9-176

Section 5: Data Move Functions 9-183 .

Multiple Word Move MOVEN (MOVIN and MOVWN)
Functions 37 and 42 9-184 .
Move Bits (MOVBN) Function 40 9-188 .
Block Move BMOVE (BMOVI and BMOVW) Functions 38 and 43 9-192
Block Clear (BLKCL) Function 44 9-198 .
Shift Register SHFR (SHFRW) Function 45 9-201 .
Shift Register Bit (SHFRB) Function 46 9-208 .
Stage Bit Sequencer (SEQB) Function 47 9-212 .
Communications Request (COMMREQ) Function 88 9-220

Section 6: Conversion Functions 9-224 .

Integer to BCD Conversion (BCD) Function 80 9-225 .
BCD to Integer Conversion (INT) Function 81 9-229 .

Section 7: Control Functions 9-233 .

Do I/O Snapshot (DOI/O) Function 85 9-234 .
Enhanced DO I/O Function for Model 331 and Higher 9-240.
Terminate Program Logic Execution (ENDSW) Function 0 9-241
No Operation (NOOP) Function 1 9-241 .
Nested Jump (JUMP) Function 3 9-242 .
Nested Master Control Relay (MCR) Function 4 9-246 .
END MCR Function 8 9-246 .
LABEL Function 7 9-250 .
System Service Request (SVCRQ) Function 89 9-251 .
PID ISA (PIDISA) Function 86
PID IND (PIDIND) Function 87 9-254 .
Subroutine Call (CALLSUB) Function 90 9-266 .

Contents

xii GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996

Section 8: Table Functions 9-268 .

Array Search Functions 9-269 .

Search Equal To, Byte (SREQB) Function 101
Search Equal To, Word (SREQW) Function 102
Search Equal To, INT (SREQI) Function 103
Search Equal To, DINT (SREQDI) Function 104 9-270 .

Search Not Equal To, Byte (SRNEB) Function 105
Search Not Equal To, Word (SRNEW) Function 106
Search Not Equal To, INT (SRNEI) Function 107
Search Not Equal To, DINT (SRNEDI) Function 108 9-272

Search Less Than, Byte (SRLTB) Function 109
Search Less Than, Word (SRLTW) Function 110
Search Less Than, INT (SRLTI) Function 111
Search Less Than, DINT (SRLTDI) Function 112 9-274 .

Search Less Than or Equal To, Byte (SRLEB) Function 113
Search Less Than or Equal To, Word (SRLEW) Function 114
Search Less Than or Equal To, INT (SRLEI) Function 115
Search Less Than or Equal To, DINT (SRLEDI) Function 116 9-276

Search Greater Than, Byte (SRGTB) Function 117
Search Greater Than, Word (SRGTW) Function 118
Search Greater Than, INT (SRGTI) Function 119
Search Greater Than, DINT (SRGTDI) Function 120 9-278

Search Greater Than or Equal To, Byte (SRGEB) Function 121
Search Greater Than or Equal To, Word (SRGEW) Function 122
Search Greater Than or Equal To, INT (SRGEI) Function 123
Search Greater Than or Equal To, DINT (SRGEDI) Function 124 9-280

Array Move Functions 9-289 .

Array Move, Bit (MOVABI) Function 130
Array Move, Byte (MOVABY) Function 131
Array Move, Word (MOVAW) Function 132
Array Move, INT (MOVAI) Function 133
Array Move, DINT (MOVADI) Function 134 9-290 .

Chapter 10 Error Messages 10-1 .

Appendix A Glossary A-1 .

Glossary of Terms for the Series 90-30/20/Micro PLCs A-1

Glossary of Basic Instructions and Reference Types for
Logicmaster 90-30/20/Micro Software Developed Programs A-11

Appendix B Special Contact References B-1 .

Appendix C List of Functions C-1 .

Appendix D Function Parameters D-1 .

Contents

Table of Contents xiiiGFK-0402G

Figure 1-1. Series 90-30/20/Micro Hand-Held Programmer 1-8 .

Figure 2-1. Hand-Held Programmer Connection to a Series 90-30 PLC 2-1 .

Figure 2-2. Hand-Held Programmer Connection to a Series 90-20 PLC 2-1 .

Figure 2-3. Hand-Held Programmer Cable Connection to a Series 90 Micro PLC 2-1

Figure 2-4. Hand-Held Programmer Keypad 2-3 .

Figure 2-5. EEPROM Memory Card (Catalog Number IC693ACC303) 2-15 .

Figure 4-1. Series 90 Micro Programmable Logic Controller 4-1 .

Figure 5-1. Series 90-30, Model 311 or Model 313 Programmable Logic Controller 5-1

Figure 5-2. Series 90-30, Model 331, Model 340, Model 341, or Model 351
Programmable Logic Controller 5-2 .

Figure 5-3. Series 90-20 Programmable Logic Controller 5-3 .

Figure 9-1. Standard ISA PID Algorithm (PIDISA) 9-260 .

Figure 9-2. Independent Term Algorithm (PIDIND) 9-260 .

Contents

xiv GFK-0402GHand-Held Programmer for Series 90-30/20/Micro Programmable Controllers User’s Manual – February 1996

Table 1-1. Register References 1-3 .

Table 1-2. Discrete References 1-4 .

Table 1-3. Range and Size of User References for the Series 90-30 PLC
Models 311/313/331/340/341 CPUs 1-5 .

Table 1-4. Range and Size of User References for the Series 90-30 PLC
Model 351 CPU 1-6 .

Table 1-5. Range and Size of User References for the Series 90-20 PLC 1-6 .

Table 1-6. Range and Size of User References for the Series 90 Micro PLC 1-7 .

Table 2-1. Edit and Display Control Keys 2-4 .

Table 2-2. Ladder Logic Keys 2-5 .

Table 2-3. Numeric Keys 2-6 .

Table 2-4. Program Transfer Keys 2-6 .

Table 2-5. Power-Up Options 2-7 .

Table 2-6. Special Key Sequences 2-8 .

Table 2-7. EEPROM and EPROM Memory Catalog Numbers 2-12 .

Table 2-8. Read/Write/Verify Series 90 Memory Card or EEPROM 2-13 .

Table 3-1. User-Configurable PLC Parameters 3-1 .

Table 3-2. Keypad Functionality in PLC Configuration Mode 3-3 .

Table 3-3. Configuration Screen Format 3-4 .

Table 4-1. Micro PLC Parameters 4-2 .

Table 4-2. Common Parameter Abbreviations 4-7 .

Table 4-3. Abbreviations for All Type A Counter Configuration 4-8 .

Table 4-4. Abbreviations for Type B1–3/A4 Counter Configuration 4-10 .

Table 5-1. Keypad Functionality in I/O Configuration Mode 5-8 .

Table 5-2. Configuration of a Non-Intelligent I/O Module 5-9 .

Table 5-3. Default I/O Configuration 5-14 .

Table 5-4. Configuration of an Intelligent I/O Module (Installed) 5-17 .

Table 5-5. Configuration of an Intelligent I/O Module (Not Installed) 5-17 .

Table 6-1. Keypad Functionality in Program Mode 6-2 .

Table 6-2. On-Line Substitution Groups 6-19 .

Table 7-1. Keypad Functionality in Data Mode 7-2 .

Table 7-2. Screen Format of a Discrete Reference Table in Binary Format 7-3 .

Table 7-3. Screen Format of a Discrete Reference Table in Signed Decimal Format 7-3

Table 7-4. Screen Format of a Discrete Reference Table in Hexadecimal Format 7-3

Table 7-5. Screen Format of a Register Table in Binary Format 7-4 .

Table 7-6. Screen Format for Viewing a %R Table in Timer/Counter Format 7-4 .

Table 7-7. Screen Format for Displaying Messages in Binary Format 7-5 .

Table 7-8. Screen Format for Displaying Messages in Signed Decimal and Hexadecimal Format 7-5 . . .

Contents

Table of Contents xvGFK-0402G

Table 7-9. Screen Format for Displaying Messages in Timer/Counter Format 7-5 .

Table 7-10. Special System Registers 7-11 .

Table 8-1. Password Protection* 8-1 .

Table 8-2. OEM Protection 8-2 .

Table 8-3. Keypad Functionality in Protection Mode 8-4 .

Table 8-4. Current Access Level 8-5 .

Table 8-5. Higher Access Level 8-5 .

Table 8-6. Specify/Change Password for Specified Level 8-7 .

Table 8-7. Lock and Release OEM Protection 8-8 .

Table 8-8. Specify/Change OEM Key 8-10 .

Table 9-1. Statement List Language Basic Elements 9-3 .

Table 9-2. Allowable Memory Types for Basic Elements 9-6 .

Table 9-3. Data Types 9-30 .

Table 9-4. Statement List Language Standard Functions and Function Blocks 9-31

Table 9-5. Operating Registers and Register Locations 9-37 .

Table 9-6. Operating Registers and Register Locations 9-214 .

Table 9-7. Service Request Functions 9-251 .

Table 9-8. PID Function Block Data 9-257 .

Table 9-9. Array Search Functions 9-269 .

Table 10-1. Non-System Errors 10-1 .

Table B-1. Special System Registers B-2 .

Table C-1. List of Functions C-1 .

Table D-1. Function Parameters D-1 .

	Chapter 1 Introduction to the Hand-Held Programmer
	Keypad
	LCD Screen
	PLC Communications
	Memory Card Interface
	Operating Modes
	References
	Transitions and Overrides
	Retentiveness of Data
	Using the Hand-Held Programmer

	Chapter 2 Operation
	Powering up the Hand-Held Programmer
	Disconnecting the Hand-Held Programmer
	Keypad
	Edit and Display Control Keys
	Ladder Logic Keys
	Numeric Keys
	Program Transfer Keys
	Power-Up Key Sequences
	Special Key Sequences
	Selecting an Operating Mode
	Read/Write/Verify Functions
	Starting/Stopping the PLC
	Canceling a Mode Change
	User PROM Option
	Installing a Blank EEPROM/EPROM
	Series 90 Memory Card
	Loading RAM from the Memory Card or EEPROM
	Storing RAM to the Memory Card or EEPROM
	Verifying RAM with the Memory Card or EEPROM
	Error Messages During EEPROM/MEM Card Operation
	Program/Configuration Portability

	Chapter 3 Series 90-30/20 PLC Configuration
	Entering Configuration Mode
	Keypad Functionality
	Display Format
	Locating a Slot or Rack and PLC Parameters
	Key Click Parameter
	Clock Parameter
	Program Source Parameter
	Register Source Parameter
	Power-Up Mode Parameter
	Active Constant Sweep Mode Parameter
	Active Constant Sweep Setting Parameter
	Configured Constant Sweep Mode Parameter
	Configured Constant Sweep Setting Parameter
	I/O Scan in Stop Mode Parameter
	Dual Use Checking Parameter
	Port Idle Time Parameter
	Baud Rate Parameter
	Data Bits Parameter
	Stop Bits Parameter
	Parity Parameter
	Modem Turnaround Time Parameter
	Password (ENABLE/DISABLE) Parameter
	CPU ID Parameters ID1, ID2, and ID3
	Default I/O
	Checksum Words Per Sweep
	Canceling a Configuration Operation
	Exiting Configuration Mode

	Chapter 4 Series 90 Micro PLC Configuration
	HHP Configuration Screens
	Storing the User Program Using the HHP
	Parameter Definitions
	Counter Type
	Output Failure Mode
	Counter Direction
	Counter Mode
	Strobe Edge
	Counter Timebase
	Count Limits
	Output Preset Positions
	Preload Value
	Configuration Screens Common to both Counter Types (ALL A and B1-3, A4)
	A4 Counter Specific Screens
	Type B Counter Specific Screens

	Chapter 5 I/O Configuration
	Selecting Rack Size
	Selecting Slots in a Rack
	I/O Slots
	Remote I/O Rack Configuration
	Manual Rack Configuration
	Automatic Rack Configuration
	Reading a Saved Configuration
	Keypad Functionality
	Assigning Reference Addresses to I/O Modules
	Locating a Slot or Rack
	Configuring a Discrete Module
	Reading a Configuration
	Deleting an Existing Configuration
	Replacing a Configuration
	Canceling a Configuration Operation
	Reconfiguration
	System Configuration - Default
	I/O Link Interface Module Configuration
	Reading a Configuration
	Reading a Configuration
	Creating a Generic Module Configuration
	Editing PCM Parameters
	Freezing configuration
	Voltage Ranges and Input Modes
	Module Present
	Selecting %AI Reference
	Removing Module From Configuration
	Selecting Module Mode
	Selecting Input Channel Ranges
	Alarm Limits Display
	Saved Configurations
	Current Ranges
	Module Present
	Selecting %I Reference
	Selecting %AI Reference
	Removing Module From Configuration
	Selecting Input Channel Ranges
	Alarm Limits Display
	Saved Configurations
	Module Present
	Selecting %I Reference
	Selecting %AQ Reference
	Removing Module From Configuration
	Selecting Module Default Mode
	Selecting Output Channel Ranges
	Saved Configurations
	Module Present
	Selecting %AQ Reference
	Selecting %AI Reference
	Selecting %I Reference
	Default Configuration
	Removing Module From Configuration
	Selecting Module Default Mode
	Selecting Output Channel Ranges
	Selecting Input Channel Ranges
	Selecting Low and High Alarm limits
	Freeze Mode
	Saved Configurations

	Chapter 6 Program Edit
	Entering Program Mode
	Keypad Functionality
	Displaying a Step or Parameter
	Inserting an Instruction Step
	Entering an Instruction Type
	Entering an Operand for a Basic Element
	Entering an Operand for a Function
	Replacing an Instruction Step
	Boolean Instruction Change
	Reference Address Change
	Boolean Instruction and Reference Address Change
	Reference Address to Constant Change
	Replacing Functions and Function Block Parameters
	Function Parameter Change
	Function Substitution Change
	Deleting an Instruction Step
	Deleting a Program
	Searching for an Instruction Element
	Wildcard Coil Search
	Monitoring Program Execution
	Making On-Line Changes
	Program Syntax Errors
	Aborting the Insert/Edit Operation
	Completing the Insert/Replace Operation
	Exiting Program Mode

	Chapter 7 Reference Tables
	Entering Data Mode
	Keypad Functionality
	Display Format
	Discrete Reference Tables
	Register Reference Tables
	Error Messages
	Changing the Format of a Display
	Changing the Format of a Discrete Reference Table
	Changing the Format of a Register Reference Table
	Selecting a Different Top Reference
	Changing Table Data
	Canceling a Data Value Change Operation
	Overriding a Discrete Reference
	Clearing a Data Table
	Clearing all Overrides
	Viewing Special System Registers
	Exiting Data Mode

	Chapter 8 PLC Control and Status
	Protection Levels
	Entering Protection Mode
	Password Enable and Disable Configuration
	Keypad Functionality
	Moving to another level of access
	Displaying and Modifying Passwords
	Canceling a Password Change
	Locking and Releasing OEM Protection
	Canceling an OEM Protection Operation
	Displaying and Modifying the OEM Key
	Removing OEM Protection
	Canceling an OEM Key Change
	Reading EEPROM, Memory Card, or Flash Memory With an OEM Key
	Subroutine Protection Levels

	Chapter 9 Statement List Programming Language
	Relay Ladder Logic
	Entering a Program
	Guidelines for Entering Programs
	Entering Subroutines
	Subroutine Deletion
	Subroutine Zoom
	Error Display
	How to Enter a Logic Element Using the HHP
	Enter the Insert Mode of Operation
	Data Types
	Standard Functions and Function Blocks
	Editing Functions and Function Blocks
	Stop-Watch Timer (TMR) Function 10
	On Delay (ONDTR) Function 13
	Off Delay (OFDTR) Function 14
	Up Counter (UPCTR) Function 15
	Down Counter (DNCTR) Function 16
	Addition (ADD) Function 60 Double Precision Addition (DPADD) Function 61
	Subtraction (SUB) Function 62 Double Precision Subtraction (DPSUB) Function 63
	Multiplication (MUL) Function 64 Double Precision Multiplication (DPMUL) Function 65
	Division (DIV) Function 66 Double Precision Division (DPDIV) Function 67
	Modulo Division (MOD) Function 68 Double Precision Modulo Division (DPMOD) Function 69
	Square Root, INT (SQRT) Function 70 Square Root, DINT (DPSQRT) Function 71
	Equal (EQ) Function 52 Double Precision Equal (DPEQ) Function 72
	Not Equal Comparison (NE) Function 53 Double Precision Not Equal Comparison (DPNE) Function 73
	Greater Than Comparison (GT) Function 57 Double Precision Greater Than Comparison (DPGT) Function 77
	Greater Than or Equal Comparison (GE) Function 55 Double Precision Greater Than or Equal Comparison
	Less Than Comparison (LT) Function 56 Double Precision Less Than Comparison (DPLT) Function 76
	Less Than or Equal To Comparison (LE) Function 54 Double Precision Less Than or Equal To Comparison
	Integer Range (RANGI) Function 140 Double Precision Range (RANGDI) Function 141 Word Range (RANGW) F
	Bitwise and (AND) Function 23
	Bitwise or (OR) Function 25
	Bitwise Exclusive or (XOR) Function 27
	Bitwise NOT (NOT) Function 29
	Bit Shift Left (SHL) Function 30
	Bit Shift Right (SHR) Function 31
	Bit Rotate Left (ROL) Function 32
	Bit Rotate Right (ROR) Function 33
	Bit Set (BITSET) Function 22
	Bit Clear (BITCLR) Function 24
	Bit Test (BITTST) Function 26
	Bit Position (BITPOS) Function 28
	Masked Compare Word (MSKCMPW) Function 143 Masked Compare Dword (MSKCMPD) Function 144
	Multiple Word Move MOVEN (MOVIN and MOVWN) Functions 37 and 42
	Move Bits (MOVBN) Function 40
	Block Move BMOVE (BMOVI and BMOVW) Functions 38 and 43
	Block Clear (BLKCL) Function 44
	Shift Register SHFR (SHFRW) Function 45
	Shift Register Bit (SHFRB) Function 46
	Stage Bit Sequencer (SEQB) Function 47
	Communications Request (COMMREQ) Function 88
	Integer to BCD Conversion (BCD) Function 80
	BCD to Integer Conversion (INT) Function 81
	Do I/O Snapshot (DOI/O) Function 85
	Enhanced DO I/O Function for Model 331 and Higher
	Terminate Program Logic Execution (ENDSW) Function 0
	No Operation (NOOP) Function 1
	Nested Jump (JUMP) Function 3
	Nested Master Control Relay (MCR) Function 4
	END MCR Function 8
	LABEL Function 7
	System Service Request (SVCRQ) Function 89
	PID ISA (PIDISA) Function 86 PID IND (PIDIND) Function 87
	Subroutine Call (CALLSUB) Function 90
	Search Equal To, Byte (SREQB) Function 101 Search Equal To, Word (SREQW) Function 102 Search Equal T
	Search Not Equal To, Byte (SRNEB) Function 105 Search Not Equal To, Word (SRNEW) Function 106 Search
	Search Less Than, Byte (SRLTB) Function 109 Search Less Than, Word (SRLTW) Function 110 Search Less
	Search Less Than or Equal To, Byte (SRLEB) Function 113 Search Less Than or Equal To, Word (SRLEW) F
	Search Greater Than, Byte (SRGTB) Function 117 Search Greater Than, Word (SRGTW) Function 118 Search
	Search Greater Than or Equal To, Byte (SRGEB) Function 121 Search Greater Than or Equal To, Word (SR
	Array Move, Bit (MOVABI) Function 130 Array Move, Byte (MOVABY) Function 131 Array Move, Word (MOVAW

	Chapter 10 Error Messages
	Appendix A Glossary
	Appendix B Special Contact References
	Appendix C List of Functions
	Appendix D Function Parameters
	Index

