PDF tiqme s surir coupv

GFK-0646

Buy GE Fanuc Series 90-30 NOW!

GE Fanuc Manual Series 90-30

C Programmers Toolkit for Series 90 PLCs

1-800-360-6802
sales@pdfsupply.com

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

FANUC

GE Fanuc Automation

Programmable Control Products

C Programmer’s Toolkit for
Series 90™ PLCs

User’'s Manual

GFK0646E August 1998

]] GFL-002
Warnings, Cautions, and Notes

as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions that
could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master GEnet Modelmaster Series One
CIMPLICITY Genius ProLoop SeriesSix
CIMPLICITY PowerTRAC Genius PowerTRAC PROMACRO Series Three
CIMPLICITY 90-ADS Helpmate SeriesFive VuMaster
CIMSTAR Logicmaster Series 90 Workmaster
Field Control

Copyright 1992-1998 GE Fanuc Automation North America, Inc.
All Rights Reserved

Preface

This manual contains essential information about the construction of C applications for
Series 90™ -70 and 90-30 programmable controllers. This manual is written for the
experienced programmer who is familiar with both the C programming language and
with the operation of Series 90 PLCs. Readers new to the C programming language or
to Series 90 PLCs may wish to familiarize themselves with those topics by first reading

publications listed at the end of this section.

Content of this Manual

GFK-0646E

Chapter 1. Introduction: describes the C Programmer’s Toolkit, the types of C applica-
tions that can be created, and how they can be appplied to control applications.

Chapter 2. Installation: explains how to install the C Programmer’s Toolkit and instal-
lation requirements for Microsoft® C compiler.

Chapter 3. Writing a C Application: describes the creation of a C application and some
important differences between the Series 90-70 and 90-30 applications.

Chapter 4. Example Series 90-70 C Application Development: describes the Series
90-70 examples provided in the C Programmer’s Toolkit and presents step-by-step de-
scriptions of how to build and debug a C application under MS-DOS® and how to build,
store, and debug a C application in the Series 90-70 PLC.

Chapter 5. Example Series 90-30 C Application Development: describes the Series
90-30 examples provided in the C Programmer’s Toolkit and presents step-by-step de-
scriptions of how to build, store, and debug a C application in the Series 90-30 PLC.

Chapter 6. C Application Development Using Multiple C Source Files: describes the
files in the MULTISRC example subdirectory and how to apply the concepts used in the
MULTISRC example in your C application development.

Chapter 7. C Application Debugger: describes the installation and operation of the C
Debugger in the Series 90-70 PLC environment.

Chapter 8. GE Fanuc Support Services and Consultation: describes the consultation
services provided by GE Fanuc to each purchaser of the C Programmer’s Toolkit.

Appendix A. Standard C Library Functions Supported in the Series 90 PLC: lists each
of the standard C library routines provided by Microsoft and the Series 90 PLC functions
provided in the C Programmer’s Toolkit that are available for use in C applications with-
in the Series 90 PLC.

Appendix B. C Programming Toolkit Files: lists each of the files (and associated MS-
DOS directory) created during the installation of the C Programmer’s Toolkit.

Appendix C. C Macros for PLC Access: lists the macros provided by the C Program-
mer’s Toolkit to ease accessing PLC reference and fault memory.

®Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 iii

Appendix D. Calculating PLC Memory Usage for a C Application: describes how to
compute the amount of PLC user program memory required for a given C application.

Appendix E. 90-70 CPU Execution Time for printf(): describes how executing a printf()
function impacts the PLC sweep of executing a printf() function.

Related Publications

For more information, refer to these publications:

Series 90 ™ -70 Programmable Controller Installation Manual (GFK-0262): This manual
describes the modules of a Series 90-70 PLC system and explains system setup.

Logicmaster” 90-70 Programming Software User’s Manual (GFK-0263): This manual de-
scribes how to use the Logicmaster 90-70 programming software to program, configure,
monitor, or control a Series 90-70 PLC and/or a remote drop.

Series 90 ™ -70 Programmable Controller Reference Manual (GFK-0265): This manual de-
scribes system operation of a Series 90-70 PLC system, fault explanation and correction,
and the Series 90-70 instruction set.

Series 90™ -30 Programmable Controller Installation Manual (GFK-0356): This manual
describes installation of a Series 90-30 PLC system.

Using CIMPLICITY Control (GFK-0263): This manual describes how to use the CIM-
PLICITY Control software to program, configure, monitor, or control a Series 90 PLC.

Series 90 ™ -30/20/Micro Programmable Controller Reference Manual (GFK-0467): This
manual describes system operation of a Series 90-30 PLC system, fault explanation and
correction, and the Series 90-30 instruction set.

The C Primer, Hancock, Les, and Morris Krieger. New York: McGraw-Hill Book Co., Inc.,
1982

C: A Reference Manual. Harbison, Samuel P and Steele, Greg L. Englewood Cliffs, New
Jersey: Prentice-Hall Software Series, 2nd Edition, 1987.

The C Programming Language. Kernighan, Brian W, and Ritchie, Dennis M. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 2nd Edition, 1987.

Programming in C. Kochan, Stephen. Hasbrouck Heights, New Jersey: Hayden Book
Company, Inc., 1983.

Learning to Program in C. Plum, Thomas. Cardiff, New Jersey: Plum Hall, Inc., 1983.

We Welcome Your Comments and Suggestions

At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader’s Comment Card located on the next page.

David Bruton
Sr. Technical Writer

iv C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Contents

Chapter 1 Introduction.............c.iiiiiiiiiiiiiiiiiiiiiiiinennn. 1-1

Chapter 2 Installation............. ... i i, 2-1

What You Will Need i 2-2

Section 1: Installing the C Programmer’s Toolkit

for Series 90-70 and 90-30 PLCs t 2-3

Installing a Toolkit i 2-3

Updating the AUTOEXEC.BAT (or AUTOEXEC.NT) File 2-4

Section 2: Installing the Microsoft Visual C Compiler 2-7

Updating the System Files 2-8

Chapter 3 Writinga C Application............. ... oottt 3-1

Section 1: Series 90-70 C Block and C FBK Structure 3-2

Variable Declarations i 3-3

Stack Checking 3-3

Parameter Declarations il 3-3

Parameter Pointer Validation 3-5

Section 2: Series 90-70 Standalone C Program Structure 3-6

Variable Declarations i 3-6

Standalone C Program Stack 3-6

Standalone C Program I/O Specifications 3-7
Section 3: C Subroutine Block and C Main Program Structure

(Series 90-30 Only)ovvviiiiiiiiiiii i 3-8

Variable Declarations for 90-30 PLCs 39

Stack Checking 3-9

EXE stack size 3-9

Section 4: PLC Reference Memory Access 3-10

Section 5: Standard Library Routines 3-22

printf() and sprintf() — Series 90-70Only 3-22

GEFanucFunctions i i 3-27

General PLC Functionsunno... 3-27

VME Functions (Series 90-70 Only) i 3-28

VMERD (BYTE, WORD)—Series 90-70 Only 3-28

VMEWRT (BYTE, WORD)—Series 90-70 Only 3-29

Return Status for VME Functions 3-30

Service Request Functions o o 3-32

Module Communications i, 3-47

Ladder FunctionBlocks o 3-47

VME Semaphore Handlers (Series 90-70 Only) 3-50

VME Read Modify Write (Series 90-70Only) 3-50

VME Test and Set (Series 90-70Only) 3-50

Return Status for VME Byte Functions (Series 90-70 Only) 3-51

GFK-0646E C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 v

Contents

Section 6: Application Considerations 3-53
Application FileNames 3-53
Floating Point Arithmetic 3-53
Available Reference DataRanges 3-54
Global Variable Initialization 3-55
Static Variables 3-55
Data Retentivenessiiiiiiiino... 3-56
Main() Parameter Declaration Errors for Blocks (Series 90-70 Only) 3-57
Local I/O Specification Errors (Series 90-70 Only) 3-61
Uninitialized Pointers 3-64
PLC Local Registers (%P and %L) — Series 90-70Only 3-65
Block OK Output (Applicable to Series 90-70 Only) 3-67
Standalone C Program Return Value (Series 90-70 Only) 3-67
Writes to %S Memory Using SB(X)cooiiiiiia.. 3-67
FST_EXE (Series 90-70 Only) and FST SCN Macros 3-67
LST_SCN Macro (Series 90-30 Only)o, 3-68
Runtime Error Handling o it 3-68
C Application Size Under MS-DOS, 3-70
C Application Impact on PLC Memoryc.ccovevieeoo... 3-70
Blocks as Timed or I/O Interrupt Blocks (Series 90-70 Only) 3-71
Standalone C Programs Scheduled as Timed or Triggered Interrupts
(Series 90-70 Only) ...t 3-73
Program Scheduling Mode (Series 90-70Only) 3-73
ScanImpact 3-74

Section 7: Testing C Applications in the MS-DOS Environment 3-76
Test Harnessesoinin i e 3-76
BLDVARSFile 3-77
Building for MS-DOS Execution (Series 90-70) 3-78
Debugging under MS-DOS 3-80
Building for MS-DOS Execution (Series 90-30) 3-82
Debugging Under MS-DOS 3-84

Section 8: C Applications in the Series 90 PLC Environment .. 3-86
BLDVARSHFile 3-86
Creating a Folder for a Standalone C Program (Series 90-70 Only) 3-87
Building for 90-70 PLC Execution 3-87
Building for 90-30 PLC Execution 3-88
Adding Blocks Through the Logicmaster 90 Librarian
(Series 90-70 Only)o 391
Scheduling Standalone C Programs through the
Logicmaster 90-70 Scheduler 3-96
Working with C Programs and Blocks in the Windows-based
Programming Software i il 3-97
Creating or Adding Blocks L. 3-98
Debugginginthe PLC i 3-101

vi C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Contents

Chapter 4 Example C Series 90-70 Application Development 4-1
Section 1: Installed Sample Blocks 4-1
Example 1: Interactive LIMIT 4-3
Example 2: BatchMode LIMIT i, 4-6
Section 2: Step-by-Step Example Session For Blocks 4-11
Building and Debugging LIMIT under MS-DOS 4-11
Building and Debugging LIMIT for the PLC 4-13
CBlocks Versus CFBKs 4-15
Section 3: Installed Sample CFBK, 4-17
Section 4: Installed Sample Standalone C Program 4-19
Section 5: Step-by-Step Example Session For
Standalone CProgramcoovnnnnn. 4-22
Building and Debugging BUBBLE under MS-DOS 4-22
Building and Debugging BUBBLE for the PLC 4-23
Chapter 5 Example C Series 90-30 Application Development 5-1
Section 1: Installed Sample Blockst 5-1
Example 1: Interactive LIMIT 5-3
Example 2: BatchMode LIMITo i, 5-6
Section 2: Step-by-Step Example Session For Blocks 5-11
Building and Debugging LIMIT under MS-DOS 5-11
Building and Debugging LIMIT for the PLC 5-13
Chapter 6 C Application Development
Using Multiple C Source Filest 6-1
OVerview 6-1
Creating a Multiple C Source Application SOURCES File 6-1
Invoking a Multiple C Source Application Build 6-2
I/O Specifications in Standalone C Programs (Series 90-70 Only) 6-2
Chapter 7 The C Application Debugger for
Series 90-70 PLCs . ..ot i i i i 7-1
Section 1: Installing the C Debugger 7-2
Installing the Toolkit i 7-2
Editing the AUTOEXEC.BAT file, 7-2
Editing the CONFIG.SYSfilecciiiiiiiiiiii.. 7-2
Editing the GEF_CFG.INIfile 7-3
Installing Soft-Scope 7-3

GFK-0646E C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 vii

Contents

Section 2: Starting a Debugging Session

Selectinga PLCl
Locating the DBGfile i,

Section 3: Controlling the Debugging Process

Optimizing Performance of the User Interface
Controlling Application Execution

PLC-related conditions

Functionality restrictions

Breakpoints
Accessing CPU Reference Memoriesoou..
Using the Printf() Function
Calculating Background Checksum
Patching Application Code,
Terminating a Debug Session L

Section 4: Special Considerations,

Notes on Soft-Scope Functionality
Specifying Memory Addressesccoiiiiiiiiiiiii...
Data Breakpoints
System Calls
Using Logicmaster 90 During a Debug Session
Application Outof Context

Section 5: Troubleshootingiaat.

PageFaults
Error Conditions

Section 6: A Sample Debug Session.........................

Appendix A Standard C Library Functions

Supported in the Series 90 PLCol

Appendix B C Programming Toolkit Files

Appendix C CMacros for PLC ACCESS vvvviiiin i iiiiiiniinnennnenn.

Appendix D Calculating PLC Memory Usage foraCBlock

viii

Series 90-70 Memory Usage Calculation
Smallest Possible Impact on PLC Memory
Impact of Global Data on PLC Memory Usage
Impact of Floating Point on PLC Memory Usage
Series 90-30 Memory Usage Calculation
Smallest Possible Impact on PLC Memory
Impact of Global Data on PLC Memory Usage
Impact of Floating Point on PLC Memory Usage

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

B-1

C-1

D-1
D-1
D-2
D-4
D-6

D-10

D-11

D-13

D-15

GFK-0646E

Contents

Appendix E Series 90-70 CPU Execution Time for printf() E-1
Appendix F Installing Earlier Compilerst F-1
Section 1: Installing the Microsoft C Compiler F-1

Installing Microsoft C Version 6.0, F-1

Installing Microsoft C Version 7.0 F-2

Installing Microsoft C Version 8.0

GFK-0646E C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 ix

Chapter

GFK-0646E

Introduction

Release 4.0 of the Series 90-70 C Programmer’s Toolkit and the Series 90-30 C
Programmer’s Toolkit contains libraries, utilities, and documentation required to create C
applications for the Series 90 PLC. C blocks, C function blocks (hereafter know as C
FBKSs), and standalone C programs are constructed using the ANSI C programming
language and standard tools on a personal computer. The C blocks and C FBKs are
imported into a 90-70 PLC application program through the use of the Logicmaster 90-70
Librarian functions, while standalone C programs are placed into a Logicmaster folder
by the C Programmer’s Toolkit. Using the Logicmaster 90-70 Librarian, C blocks and C
FBKSs can be called from ladder logic or invoked by an 1/0 or timed interrupt. In the
Windows-based programming software, use the New Block or New Program feature to
insert C subroutine blocks or C main programs. The standalone C programs operate
independent of the ladder logic and of each other.

There are five types of C applications:

® Series 90-70 C Blocks: C blocks are imported into a 90-70 PLC application through
the Logicmaster Librarian functions. C blocks may be called from ladder logic or
invoked by an 1/0 or timed interrupt.

® Series 90-70 C Function Blocks (C FBKSs): C FBKs are imported into a 90-70 PLC
application through the Logicmaster Librarian functions.

® Series 90-70 Standalone C Programs: Standalone C programs are imported into a
90-70 PLC application by the C Programmer’s Toolkit. Standalone C programs
operate independent of the ladder logic and of each other. Standalone C programs
may also be imported into an Logicmaster 90-70 folder via the standalone merge
utility available in Release 6 and later of Logicmaster 90.

® Series 90-30 C Main Programs: Using the C Programmer’s Toolkit and Release 2 of
the Windows-based programming software, beginning with Release 8 351 and 352
CPUs, the Main program can be a C program instead of the main program being LD
or SFC (for LD and SFC it is called_MAIN). When doing so, there can be no
subordinate blocks of any kind, and the C Main program must have the same name
as the Resource.

® Series 90-30 C Subroutine Blocks: Unlike the 90-70 C blocks, the 90-30 C subroutine
blocks cannot have parameters associated with them. You can have multiple 90-30 C
subroutine blocks.

In this document, the word blocks refers to C blocks, C FBKSs, and C subroutine blocks
unless otherwise specified.

C blocks and C function blocks are compatible with 90-70 CPUs Release 4.0 and greater
and are best suited to solving custom calculations not available in standard Series 90

instructions. C blocks are the same as the C applications built with previous versions of
the toolkit. The build procedure and functionality of C blocks match previous versions to
the C Programmer’s Toolkit. Beginning with Release 8, models 351 and 352 90-30 CPUs
can accommodate C subroutine blocks and a C main program.

A Series 90-70 C block may be up to 64,000 bytes in size, provided there is sufficient PLC
memory. Examples of calculations which might be performed in C blocks include:

e Ramp/soakprofiling
® | ead/lagcalculation
® Message generation
® Input selection

C FBKs (Series 90-70 only) are a faster type of C block. C FBKs do not support calls to
any of the Microsoft runtime library functions. This restriction reduces the startup code
size thereby improving execution time for C FBKs. C FBKSs are imported into an
Logicmaster 90 folder in the same manner as C blocks. C FBKs are compatible with
90-70 CPU Release 4.0 and later. The same C FBK may be called from the ladder logic
program AND used as an interrupt block. C FBKSs are better suited for simpler
calculations than C blocks because they do not support calls to runtime library functions.
C FBKs are suited for calculations including:

® Arithmetic operations
e PID
® Sorting, moving and copying data

Standalone C programs (Series 90-70 only) are also supported in Release 3.0 or later of
the C Programmer’s Toolkit. Standalone C programs run independently of the ladder
program and other standalone C programs. Standalone C programs require Release 6.0
or later 90-70 CPUs and can support programs of up to 512 kilobytes. Standalone C
programs are best suited for applications controlling an entire process or performing
long calculations including:

® Interpreters
e Complete control application
e Complete diagnostic applications

Release 4.0 of the 90-70 C Programmer’s Toolkit (Professional version), now supports
source level, full symbolic debugging of C applications executing in Release 6.0 (or later)
90-70 PLCs (please refer to Chapter 7, “C Application Debugger,” for more information).

Developing 90-70 C applications requires Version 6.0, Version 7.0, or Version 8.0 (Visual
C/C++ ™ Version 1.00, 1.50, and higher) of the Microsoft® C compiler and Version 6.0 or later
of the Microsoft assembler (MASM). (Please note that Microsoft C Version 6.0 requires
MASM Version 5.1 or later.) The 90-70 C Programmer’s Toolkit includes a utility that must be
used to create a version of the Microsoft standard libraries in which the CPUs data segment
(DS) and stack segment (SS) are not assumed to be the same.

™

Visual C/C++ is a trademark of Microsoft Corporation.
® Microsoft is a registered trademark of Microsoft Corporation.

C Programmer’s Toolkit for Series 90 ™ PLCs User’s Manual — August 1998 GFK-0646E

C main programs and C subroutine blocks (Series 90-30 only) are supported in Release
4.0 or later of the 90-30 C Programmer’s Toolkit. C subroutine blocks may be up to
81,920 bytes in size. Both C main programs and C Subroutine blocks require Release 8.0
90-30 (351 and 352) CPUs. C main programs and C subroutine blocks are suited for
calculationsincluding:

Ramp/soakprofiling
Lead/lagcalculation

Input selection

Arithmetic operations

PID

Sorting, moving and copying data

Developing 90-30 C applications requires Version 8.0 (Visual C/C++ Version 1.00, 1.50, and
higher) of the Microsoft C compiler which comes with the toolkit.

Maximum block length may be up to 81,920 bytes.

GFK-0646E Chapter 1 Introduction 1-3

Chapter

GFK-0646E

Installation

This chapter explains how to install the Series 90-70 or 90-30 C Programmer ‘s Toolkit

software on your personal computer and how to create a version of the standard C

libraries which is compatible with the Series 90-70 PLC.

This chapter is divided into three sections. The first two sections describe the two steps

required to prepare your computer for developing Series 90-70 C applications. The

necessary equipment and software packages required for the installation process are
described below. After that, each section describes one step of the installation process in
detail. The third section describes the steps for installing the Series 90-30 version of the
C Programmer ‘s Toolkit.

Section Title Description Page

1 Installing the C Describes how to install the C Programmer’s Toolkit 2-3
Programmer’s for Series 90-70 and 90-30 PLC on your personal com-
Toolkit for Series puter.
90-70and 90-30PLCs

2 Installing the Describes how to install the Release 8 Microsoft Visual 2-7
MicrosoftVisual C C compiler (MSVC) that comes with the Toolkitpack-
Compiler age. Forinformationaboutinstallingpriviously

released compilers, refer to Appendix F.
2-1

What You Will Need

Before you can begin the installation procedure, you must have the following equipment:

® An MS-DOS based computer with a hard disk and MS-DOS Version 3.0 or later. If
Microsoft C Version 8.0 (Microsoft Visual C/C++ v1.00 or later) is used, Microsoft
Windows v3.1 and MS-DOS 5.0 or later are required.

Note

® Microsoft C Version 6.0, Version 7.0, or Visual C++ software.

® Series 90 C Development Software: C Programmer’s Toolkit for Series 90-70 and
Series 90-30, Standard version (IC641SWP709) or C Programmer’s Toolkit for Series
90-70 and Series 90-30, Professional version (IC641SWP719).

Note

(Series 90-30 Only) The Series 90-30 Toolkit only supports Microsoft C
Version 8.00 (Microsoft Visual C/C++ version 1.0 or later), which is
supplied with the Toolkit.

C Programmer’s Toolkit for Series 90 ™ PLCs User’s Manual — August 1998 GFK-0646E

Section 1: Installing the C Programmer’s Toolkit
for Series 90-70 and 90-30 PLCs

This section describes how to install the C Programmer’s Toolkit software for Series 90-70
and 90-30 PLCs on your personal computer and how to set up your computer to use the
Toolkit.

Note

The C Programmer’s Toolkit (IC641SWP709E) includes the following
disks:

One (1) 3.5 inch disk (C Programmer’s Toolkit for Series 90-70 PLCs)
One (1) 3.5 inch disk (C Programmer’s Toolkit for Series 90-30 PLCs)
Four (4) 3.5 inch disks (Microsoft C Compiler disks)

The Professional Package (IC641SWP719B) includes all of the above
disks plus the purchased S/W package for the Softscope Debugger

Installing a Toolkit

From the MS-DOS Prompt

You will perform Step 1 differently from the Run command in Windows 95 or Windows
NT 4.0 than from the DOS prompt, but the other steps are the same.

1. Asnoted above, there are other diskettes in the package, but the C Programmer’s
Toolkit itself is on one 3.5-inch installation diskette (i.e., one for the 90-30 and a
separate one for the 90-70). Put your 3.5-inch installation diskette in your 3.5- inch
drive. Type a:install (or biinstall if b is the drive letter designating your
3.5-inch drive) and press the Enter key.

From the Start Menu in Windows 95 and Windows NT 4.0

1. Asnoted above, there are other diskettes in the package, but the C Programmer’s
Toolkit itself is on one 3.5-inch installation diskette (i.e., one for the 90-30 and a
separate one for the 90-70). Put your 3.5-inch installation diskette in your 3.5- inch
drive. Click the start button and select Run. If the Run dialog box does not default
to the A drive (or the B drive if your 3.5 disk drive is b), use the down arrow button
or the Browse button to select install.exe ; then press the OK button.

From the File Manager or Explorer

1. Asnoted above, there are other diskettes in the package, but the C Programmer’s
Toolkit itself is on one 3.5-inch installation diskette (i.e., one for the 90-30 and a
separate one for the 90-70). Put your 3.5-inch installation diskette in your 3.5- inch
drive. In File Manager, click the A button to open a window displaying the contents
of the A drive (or the B drive if your 3.5 disk drive is b). In Explorer, click the A drive

GFK-0646E Chapter 2 Installation 2-3

graphic (or the B drive if your 3.5 disk drive is b) under My computer. Then
double-clickinstall.exe

Note

The diskettes are write-protected and should be kept safe after
installation.

2. Inresponse to the prompt from the installation program, type the letter of your hard
drive.

3. The installation program creates the following directories on the specified hard
drive:

If installing the 90-30 toolkit:

\s9030c
\s9030c\examplel
\s9030c\example?2
\s9030c\multisrc

If installing the 90-70 toolkit:

\s9070c
\s9070c\examplel
\s9070c\example?2
\s9070c\multisrc
\s9070c\exfbk
\s9070c\exsap

The files listed in Appendix B are copied to these directories and the libraries are
registered.

Updatingthe AUTOEXEC.BAT (or AUTOEXEC.NT) File

The autoexec.bat file must be modified in order for the C Programmer’s Toolkit to
work. The PATHstatement must be updated to include the path to the toolkit, and an
environment variable must be defined for the C Programmer’s Toolkit macros.

Note

If you are installing both the 90-30 and the 90-70 toolkit, your
autoexec.bat file will need to include the directory path designators
shown below, e.g., both \s9070c and\s9030c. If you are using only
one of the two toolkits, you will only need to specify the path
appropriate for that toolkit.

The installation routine will modify your autoexec.bat file to include these changes
and place it in autoexec.bat under\s9070c and\s9030c (if both versions are being
installed). The installation routine will offer to put this path into the root

autoexec.bat file. If you decline this you must either have the changes in place
already or make the changes yourself, as described below.

Note

On a Windows NT® system, you can adjust your AUTOEXEC.NT file
instead. For either Windows NT, Windows 95, or Windows 3.x, you can
make these changes through a batch file that you run prior to running
the Toolkit.

C Programmer’s Toolkit for Series 90 ™ PLCs User’s Manual — August 1998 GFK-0646E

Updating the MS-DOS Search Path

The MS-DOS operating system in your computer uses the search path to find programs
that are not in the current directory. As noted above, the installation routine will modify
your autoexec.bat file to include a path to the toolkit directories, or you can modify
the file yourself. The <drive>:\s9070c directory or the <drive>:\s9030c

directory (or both), where <drive> is the name of the drive on which you installed the
C Programmer’s Toolkit, should be added to the search path so that the C development
software tools can be used without typing the name of the directory where they are
stored.

To determine what directories are currently in the search path, type path at the
MS-DOS prompt and press the Enter key. MS-DOS will display a list of the directories,
separated by semicolons, in the current search path on your computer’sdisplay. If no
search path has been defined, the words “No Path” are displayed on the screen. If the
<drive>:\s9030c directories and <drive>:\s9070c are not already included in the
search path, they should be added.

The search path is defined in the autoexec.bat file, located in the root directory of the
disk drive from which MS-DOS is started (the boot drive, which is usually drive C).
Using any text editor program, edit the autoexec.bat file. If the file does not contain
a PATHcommand similar to path=c:\dos , add:

path=<drive>:\s9070c;c:\s9030c as the first line of the file—see Note below.
(The <drive> means you should put the name of the drive here, usually Cor D.)

If there is already a PATHcommand, add: ;<drive>:\s9070c or ;<drive>:\s9070c
(or both) at the end of the path definition.

Note

If you have the 90-70 Toolkit in addition to the 90-30 Toolkit which you
are installing, the <drive>:\s9030c (e.g., c:\s9030c) part of your
path statement mustfollow the ¢:\s9070c path designation; for
example: path=c:\s9070c;c:\s9030c (in areal example, there
would be other parts to the path).

If there is no autoexec.bat file in the root directory of the boot drive, create one with
your text editor. Include only a PATHcommand, as above, which specifies the
<drive>:\s9030c or <drive>:\s9070c directory on the correct hard drive.

Note

The autoexec.bat file may begin with an ECHO OFF command on
the first line. If one is present, the PATHcommand should appear on the
second line.

GFK-0646E Chapter 2 Installation 2-5

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

Adding the Environment Variable

The C Programmer’s Toolkit requires an environment variable to access files it needs.
The C30_PATH and C70_PATH (or both) macros should be added to the autoexec.bat to
provide this path. Add the line:

set C30_PATH=<drive>:\s9030c

Or

set C70_PATH=<drive>: %9070c to your autoexec.bat file, where <drive> is the
name of the drive on which you installed the C Programmer’s Toolkit (e.g.,

set C70_PATH=c: %9070c). If you are installing both, you need to add both
environment variable statements to your autoexec.bat file.

GFK-0646E

Section 2: Installing the Microsoft Visual C Compiler

Release 4.0 of the C Programmer’s Toolkit comes with Release 8.0 of the MicrosoftVisual
C compiler (MSVC). If you are installing an earlier version of the MSVC, refer to Appendix K
“Installing Earlier Compilers.”

Note

If you are planning on using the C Programmer’s Toolkit for Series
90-30 PLCs, Release 8.0 of MSVC is the only compiler that is
compatible.

From the MS-DOS Prompt

You will perform Step 1 differently from the Run command in Windows 95 or Windows
NT 4.0 than from the DOS prompt, but the other steps are the same.

1. MSVC comes on four 3.5-inch installation diskettes. Select the first installation

diskette and place it in the drive. Type a:install and press the Enter key.
Note
If you have a monochrome LCD or plasma screen, enter ainstall
/nocolor

From the Start Menu in Windows 95 and Windows NT 4.0

1. MSVC comes on four 3.5-inch installation diskettes. Select the first installation
diskette and place it in the drive. Click the start button and select Run. If the Run
dialog box does not default to the A drive, use the down arrow button or the Browse
button to select install.exe ; then press the OK button.

From the File Manager or Explorer

1. MSVC comes on four 3.5-inch installation diskettes. Select the first installation
diskette and place it in the drive. In File Manager, click the A button to open a
window displaying the contents of the A drive. In Explorer, click the A drive graphic
under My computer. Then double-click install.exe

Note

The diskettes are write-protected and should be kept safe after
installation.

2. Inresponse to the prompt from the installation program, type the letter of your hard
drive.

GFK-0646E Chapter 2 Installation 2-7

3. The installation program creates the following directories on the specified hard
drive:

\MSVC
\MSVC\HELP
\MSVC\BIN
\MSVC\INCLUDE
\MSVC\LIB

Updating the System Files

AUTOEXEC.BA

Microsoft C command line tools use several of your PC’s environment variables. In
MS-DOS, Windows 3.1, Windows 3.11 and Windows 95 these environment variables can
be set conveniently from AUTOEXEC.BAT each time your PC starts. INSTALL modifies
the PATH statement in AUTOEXEC.BAT.

PATHC:\MSVC\BIN.:...
and adds these commands:

SetHELPFILES=C:\MSVC\HELP
set INCLUDE=C:\MSVC\INCUDE
setLIB=C:\MSVC\LIB

In order to use Microsoft C command line tools from inside a Windows 3.x or Windows
95 application (for example, a file editor that supports compilation from a menu or
button), you must define these environment variables from AUTOEXEC.BAT. In
Windows NT, they are assigned using the System tool in Control Panel.

If you run Microsoft C command line tools only from an MS-DOS prompt window, you
can assign the environment variables by running

>C:\MSVC\BIN\MSVCVARS.BAT
from the MS-DOS prompt in the same window.

If you elected NOT to let INSTALL change the working copy of AUTOEXEC.BAT and
you want to do so now, rename the existing version and copy the modified version to
the boot directory:

> C:

>CD\

> REN AUTOEXEC.BAT AUTOEXEC.MCO
>COPY CAMSVC\AUTOEXEC.BAT

If you installed the software at a different drive or directory, change the COPY
command accordingly.

C Programmer’s Toolkit for Series 90 ™ PLCs User’s Manual — August 1998 GFK-0646E

CONFIG.SYS
If your PC has a CONFIG.SYS file in the boot directory, INSTALL checks it for a FILES

command:

FILES=50

Microsoft C opens a lot of files. If the FILES value is less than 50, INSTALL modifies
CONFIG.SYS. This change must be made to avoid errors. If you elected not to let
INSTALL change the working copy of CONFIG.SYS, you must rename the existing
version and copy the modified version to the boot directory:

> C:
>CD\
> REN CONFIG.SYS CONFIG.MCO0

>COPY C:\MSVC\CONFIG.SYS

If you installed the software at a different drive or directory, change the COPY
command accordingly.

SYSTEM.INI

For Windows 3.1 only, INSTALL modifies the [386Enh] section of SYSTEM.INI in the
Windows directory (C:\WINDOWS by default) as follows:

[386Enh]
device=c:\msvc\bin\dosxnt.386

If you use Windows 3.1, this change must be made to avoid errors. If you elected not to
let INSTALL change the working copy of SYSTEM.INI, you must rename the existing
version and copy the modified version to the Windows directory. First, find the

Windows directory:
>DIR/SC:\SYSTEM.INI

The DIR command should find at least two copies of SYSTEM.INI: the working copy in
the Windows directory and the modified copy created by INSTALL. If your computer
has more than one Windows directory, find the directory for the working copy by using

the SET command:
>SET|FIND /1 ”"WINDIR”
followed by Enter. MS-DOS should print something like

windir=C\WINDOWS
to your screen. Use your actual Windows directory in the steps below:
> C:
> CD \WINDOWS

> REN SYSTEM.INI SYSTEM.MCO
>COPY C\MSVC\SYSTEM.INI

If you installed the software at a different drive or directory, change the COPY
command accordingly.

GFK-0646E Chapter 2 Installation

Setting Up Windows Help:

Note

There is no manual available for the MSVC compiler. These online
help files are the only documentation available for this software.

If you use this software on a PC running Microsoft Windows 3.1 or later, you can access
the online help files provided with this distribution.

Windows 3.1, Windows 3.11 or Windows NT 3.51

1. Select File/New. from the Program Manager tool bar.

2. In the New Program Obiject dialog, click the Program Group or Personal Program
Group button and then click OK.

3. In the Program Group Properties dialog, type ”Microsoft C version 8.00c” in the
Description box (Do not include the quote marks.) and click OK. A new program
group window will be created.

4. Open File Manager and arrange its window so that the new program group window
and File Manager are both visible on your desktop.

5. In File Manager,selectthe C:\MSVC\HELPfolder.

6. Hold the Ctrl key down and click on ERRORS.HLP, MSCXX.HLP, README.HLP and
TOOLS.HLP. With the Ctrl key still down, position the mouse cursor over one of the
highlighted files and then press and hold the left mouse button.

7. Drag the group of files to the new program group window and release the mouse
button and then the Ctrl key. The new window will have four Help icons.

8. Select the MSCXX icon and then select File/Roperties... from the Program Manager
tool bar. In the Program Item Properties dialog, change the Description from Mscxx
to Language Reference

Windows 95 or Windows NT 4.0
1. From the Start button, select Settings and Taskbar...

2. On the Taskbar Properties sheet, select the Start Menu Programs tab and click the
Add button.

3. In the Create Shortcut window, click the Browse button. In the Browse window,
double click the MSVC folder and then the Help folder. Click the scroll button in the
Files of type: window and then select All Files. Double click the Errors.hlp icon.

4. Back in the Create Shortcut window, click the Next button.

5. In the Select Program Folder window, click the New Folder button and type
Microsoft C version 8.00c ; then press the Enter key.

6. In the Select a Title for the Program window, change ”Errors.hlp” to ”Errors”, and
then click the Finish button.

2-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

7. Back on the Taskbar Properties sheet, click the Add button again.

8. Browse the MSVC\Help folder again from the Create Shortcut window and double
click Mscxx.hlp. Back on the Create Shortcut window click Next. This time do not
click New Folder in the Select Program Folder window. Instead, select the Microsoft
C version 8.00c folder and click Next.

9. Inthe Select a Title for the Program window, change Mscxx.hlp to Language
Reference , and then click the Finish button.

Repeat these steps for Readme.hlp and Tools.hlp.

GFK-0646E Chapter 2 Installation 2-11

Chapter

3

GFK-0646E

Writing a C Application

This chapter contains information needed to write C applications for the Series 90 PLC.
It includes details on declaring parameters, accessing CPU reference memory, and using
standard library routines.

Chapter 3 contains the following sections:

Section Title Page
1 Series 90-70 C Block and C FBK Structure 3-2
2 Series 90-70 Standalone C Program Structure 3-6
3 C Block and C Main Program Structure (Series 90-30 Only) 3-8
4 PLC Reference Memory Access 3-10
5 Standard Library Routines 3-22
6 Application Considerations 3-53
7 C Applications in the MS-DOS Environment 3-76
8 C Applications in the Series 90 PLC Environment 3-86

The C source code used to build C applications may be created using the editor of your
choice, provided that the output from your editor is compatible with the Microsoft C
compiler. (Word processors are not recommended for editing C source code.)

It is also recommended that each C application be developed in its own subdirectory.
One approach would be to create a \APPS subdirectory off the hard disk root directory.
As each application is developed, a new subdirectory under \APPS is created; for
example, \APPS\RAMP, \APPS\LIMIT ,\APPS\PRESS, ... etc.

Caution

C applications should not be developed in the root directory of a hard
disk. When building for execution in the MS-DOS environment, the C
development software will create, if necessary, and write files to the
DOS directory under the current default directory.

Note

Application names must conform to Logicmaster 90 naming
conventions (7 characters long, first character must be a letter).

3-1

Section 1: Series 90-70 C Block and C FBK Structure

A Cblock or C FBK can be invoked in one of three ways:

1. Asasubblock of main

2. Asan /O or timed interrupt block

3. Asasubblock of an interrupt block

Blocks invoked as a subblock of main or as a subblock of an interrupt block may have up
to seven input/output parameter pairs. Blocks invoked as an I/O or timed interrupt
cannot have parameters. C blocks may not be used in the same program as a subblock
of main and as an interrupt block; however, C FBKs may be used in both types of blocks
in the same program. Calls to blocks and block interrupt declarations are denoted with

the word external

, since the block is developed externally from Logicmaster 90

software and then imported into the application program folder. Shown below are two
ladder logic rungs containing external block calls with zero and three parameter pairs,

“Hoooz4

C)—

»“HOoeZ5

)—

respectively:
CALL RAMP
(EXTERNAL)
cALL LIMIT

(EXTERNAL)
#RO00O1— X1 ¥1 |-<POOOOL
—{x2 ¥2 |-#M00001
—{x3 ¥3 |-2100001

Figure 3-1. Ladder Logic Calls to 90-70 C Blocks

The OK output is present regardless of whether the block has
parameters and is set based on the function result (either OK or

ERROR). Appropriate definitions of OK and ERROR are given in the
PLCC9070.H file.

Each block is written as a separate application. The .EXE file produced by the build
process of a block must be added to the Logicmaster 90 Librarian and may be imported

into a program folder from the Librarian.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

The main function in each block must always be called main . Any legal C declaration
and code may be used in a C block. C FBKs, however, cannot have any declaration or
code references to library routines, since calls to library routines will generate

unresolved external reference errors during linking. If an unresolved external (either
explicit or implicit) cannot be eliminated, then the C FBK must be rebuilt as a C block.

The file PLCC9070.H, installed as part of the C Programmer’s Toolkit, should be
included in the block source file(s). PLCC9070.H contains declarations, definitions, and
macros used in writing blocks.

The following example shows the basic components of a block with no parameters:

#include “plcc9070.h” /* Series 90-70 interface file */
main ()

[* value of function block OK output determined by returned value */
return(OK) ;

Variable Declarations

Global and static variables may be used in a block. The space allocated for them is taken
from the 64,000 byte maximum space allowed for each block. Local, or automatic,
variables are allocated on the stack. The Series 90-70 PLC guarantees that a minimum of
1092 bytes is available on the stack prior to calling a block; therefore, the total stack space
used for local variables and for saving the return address when making calls to other
functions should not be allowed to exceed 1092 bytes for blocks.

Stack Checking

If the PLC ever detects that there is not enough space available on the stack when
executing a CALL to a block, an application fault will be logged in the PLC fault table
and the block will not be called. If you exceed the size for the stack in a C block by
making multiple or recursive calls, the stack checking for the C block will detect this and
exit without finishing. If you exceed the size for the stack in a C FBK, there is no stack
checking so a page fault may occur or the PLC may get invalid data.

Parameter Declarations

GFK-0646E

Up to seven input/output parameter pairs may be specified for a block (with the
exception of blocks invoked as an I/O or timed interrupt block, which cannot have
parameters). Any legal Logicmaster 90 reference type may be specified. However, data
flow, boolean flow, and indirect references cannot be used as parameters for blocks. In
the block source, parameters are declared as pointers to objects of the desired type. All
parameters, including constants, are passed as pointers.

Chapter 3 Writing a C Application 3-3

The order of the parameter declarations must match the CALL instruction parameter
order, with the input parameters followed by the output parameters. The declaration
code shown below could be used for a block that has two input/output parameter pairs:

#MOOOZS
CALL LIMITZ C)—
(EXTERNAL)
#RO0001—X1 Y1 |—<P0O0001
#RO0DOZ— X2 YZ -+RO0400

Figure 3-2. Matching Parameters Between Call and External Block

main(inl, in2, outl, out2)

/[* X1 - pointer to a single integer */
int *inl;

/* X2 - pointer to a 256 element array of integers */
int 1in2[256];

[* Y1 - pointer to a structure containing an integer */
* and a floating point variable */

struct {
int as;
float b;
} *outl;

/* Y2 - pointer to an unsigned integer */
word *out2;

It is not required that all of the CALL instruction parameters be used. If a CALL
instruction parameter is not used, a NULL pointer is passed as that parameter’s value.
The parameter must still be declared, so that subsequent parameters are lined up
correctly with their pointers. In the following example, a NULL pointer is passed in for
the second and third input parameters.

#MOOO25
CALL LIMIT)—
(EXTERNAL)
#ROO001— X1 Y1 |—~PO0001
—|X2 YZ |—=-M0o0o1
—X3 Y3 |—.Too001

Figure 3-3. Reserving Space For Unused Parameters to an External Block

3-4 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

main(xl, x2, x3, yl, y2, y3)
int *x1;
int *x2; /* placeholder for unused parameter */
int *x3; /* placeholder for unused parameter */
int *yl;
int *y2;
int *y3;
{
*yl = *xl; [* Copy value at xl to yl */
*y2 = *xl * 23 [* copy twice the value at x1 to y2 */
*y3 = *xl * 33 /[* Copy three times the value at x1 to y3 */
return(OK)
}

Parameter Pointer Validation

GFK-0646E

The ladder logic program provides the variables that are passed into the block’s
main() . Sincemain() cannot be guaranteed that all necessary parameters to main
were provided, main() must check for these parameters. If you modify the block

shown on the previous page to illustrate these checks, the modified block will appear as:

main(xl, x2, x3, yl, y2, y3)

int *x1;
int *x2; /* placeholder for unused parameter */
int *x3; /* placeholder for unused parameter */
int *yl;
int *y2;
int *y3;
{
[* Ensure that required parameters were provided by caller */
/* No need to check x2 and x3 since they are not used. *
if ((x1==NULL) | | (y1==NULL) | | (y2==NULL) | | (y3==NULL))
return(ERROR) ;
/* Required parameters are present. */
*yl = *x1; [* Copy value at x1 to yl */
*y2 = *x1 * 2; [* copy twice the value at xl to y2 */
*y3 = *x1 * 3; [* Copy three times the value at x1 to y3 */
return(OK)
}

Chapter 3 Writing a C Application

Section 2: Series 90-70 Standalone C Program Structure

Standalone C programs are scheduled to run in the PLC through Logicmaster 90-70
software’s Program Specification screen. This scheduling specifies when the program is
run, how the program is run, what the I/O specifications are for the program, how the
I/O specification copies are handled, and what the stack size is for the program. A
standalone C program may be scheduled only once in a folder. For additional
information, refer to the Logicmaster 90-70 Programming Software User’s Manual.

Each standalone C program is written as a separate application. The files produced by
the build process of a standalone C program are imported into a program folder. This

folder must be created before the standalone C program is built. The main function in
each standalone C program must always be called main . Any legal C declaration and
code may be used in a standalone C program.

The file PLCC9070.H, installed as part of the C Programmer’s Toolkit, should be
included in the source file(s). PLCC9070.H contains declarations, definitions, and
macros used in writing standalone C programs.

The following example shows the basic components for a standalone C program with no
I/O parameters:

#include “plcc9070.h” /* Series 90-70 interface file */
main ()
return(OK) ;

Note

If the return value from a standalone C program is not OK then the
output specifications will not be updated. This includes runtime error
exits and PLC error exits. PLCC9070.H provides definitions for OK and
error return values.

Variable Declarations

Global and static variables may be used in a standalone C program. Global and static
variables are allocated from program space. Local, or automatic, variables are allocated
on the stack. The Series 90-70 PLC guarantees that the stack space configured is
available; therefore, the total stack space used for local variables and for saving the
return address when making calls to other functions should not be allowed to exceed the
stack space configured.

Standalone C Program Stack

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

The stack size for a standalone C program can range between 1K and 64K and is
allocated in 1K increments (where 1K is 1024 bytes). If the standalone C program

GFK-0646E

exceeds the stack limit during execution the stack checking function inside the
standalone C program will detect this problem and exit with a runtime error.

Standalone C Program 1/0 Specifications

GFK-0646E

Up to eight input and eight output data areas can be declared for standalone C
programs. These are declared with the macros IN1_ type , IN2_ type , ..., etc. and
OUT1 type ,OUT2_type , etc. where type is B, WD, or F for byte, word, double word,
and float access respectively. The macro calls have two parameters:

IN1_B(arrayname , arraylength);

where arrayname is the name of the array to allocate and arraylength is the length
of the array in bytes, words, or Dwords, depending on which is used. The macros will
allocate an array of the type specified. For example, IN1_F(x1, 10) will cause an
array float x1[10] to be created. These arrays are included in the size of the
standalone C program. Unlike the parameter passing with blocks, the I/O specifications
can have a different number of inputs and outputs. The I/O specifications can even be
discontinuous, thatis, IN1_B, and IN3_W can be used without IN2_B or IN2_W The
following is an example using I/O specifications:

#define “plcc9070.h

INL B (xl, 10)
IN2W (x2, 20)
oUTT B (yl, 9)
OUT2 W (y2, 8)

main()

yl[5] = x1[0] + x2[5];
y2[7]1 = x2[19] * x1[9];
}

Note

AllT/O specification macros must appear in all uppercase letters because
C is a case-sensitive language, and the definition of the macro uses all
uppercase for the macro name.

The I/O specifications are also declared on the Logicmaster 90-70 Program Specification
screen or the the Windows-based programming software Header window. The I/O
specifications listed on the screen must match the 1/O specifications declared in the C
program if the program is to operate correctly. For example, if the program declares
IN1_W(x1, 3), IN8_B(x8, 255), and OUT5_W(y5, 12) then the screen must have a 6 byte
space declared at the first input specification area, a 255 byte space declared at the eighth
(or last) input specification area and a 24 byte specification area for the fifth output
specification area. The other I/O specification areas must be empty. The user must
ensure that the program’s declaration and those of the Windows-based programming
software or of Logicmaster match. Both programming packages will provide default
values for the 1/O specification areas the first time a standalone C program is imported.

Chapter 3 Writing a C Application 3-7

Section 3: C Subroutine Block and C Main Program Structure
(Series 90-30 Only)

For 90-30 PLCs, C blocks can be invoked in one of two ways:
1. Asthe main program
2. As asubblock of main

Calls to blocks and are denoted with EXT CALL since the block is developed externally
from the Windows-based programming software and then imported into the application
program folder. The following the Windows-based programming software screen
capture is of a 90-30 subroutine block:

* ”{} 55 LI
4 ALW_ON

.E‘ BI‘T' |] EXT

“=| oF CALL

i &

4 | CTRL

o'

@2 =

1 »

Figure 3-4. Ladder Logic Call to 90-30 C Block

Note

The ENO output of the CALL External block is always set to true.

Each block is written as a separate application. The .EXE file produced by the build
process of a block may be imported into an Equipment Folder from the Windows-based
programming software. (For information about adding C programs and blocks to your
Windows-based programming software Equipment Folder, refer to page 3-97 and
following.)

3-8 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

The main function in each block must always be called main . Any legal C declaration
and code may be used in a C block.

The file PLCC9030.H, installed as part of the C Programmer’s Toolkit, should be
included in the block source file(s). PLCC9030.H contains declarations, definitions, and
macros used in writing blocks.

The following example shows the basic components of a block:

#include “plcc9030.h” /* Series 90-30 interface file */
EXE_stack size=2048;
main ()

{
}

Note

The return value of a 90-30 C subroutine block is an unconditional
return: no value is passed and power flow/ENO is always passed.
Also note that the stack size must be explicitly stated though the
EXE_stack_size statement.

Variable Declarations for 90-30 PLCs

Global and static variables may be used in a block. The space allocated for them is taken
from the 81,920 byte maximum space allowed for each block. Local, or automatic,
variables are allocated on the stack.

Stack Checking

If the PLC ever detects that there is not enough space available on the stack when
executing a CALL to a block, an application fault will be logged in the PLC fault table
and the block will not be called. If you exceed the size for the stack in a C block by
making multiple or recursive calls, the stack checking for the C block will detect this and
exit without finishing.

EXE_stack_size

GFK-0646E

A required global variable that specifies the size of the stack for the block or Main
program. Stack size can be a maximum of 64 kilobytes; for most blocks the
recommended size is 2048.

Chapter 3 Writing a C Application 3-9

Section 4: PLC Reference Memory Access

Series 90 PLC reference address and diagnostic memory may be read and written
directly via macros defined in PLCC9070.H or PLCC9030.H. These macros consist of a
string of capitalized letters which indicate the Series 90 reference type (and in some
cases, the type of operation to be performed) followed by the reference offset in
parentheses. In general, PLC reference memories may be accessed using the macros in
PLCC9070.H or PLCC9030.H as bits, bytes (8 bit values), words (16 bit values), double
words (32 bit values), or single precision floating point numbers (32 bits).

The complete set of Series 90 reference type designators are as follows:

Reference Type Description
%1 Discrete input references
%Q Discrete output references
%M Discrete internal references
%'T Discrete temporary references
%G Discrete global data references
%GA - %GE (90-70 only) | Discrete global data references
%S Discrete system references
%SA Discrete maskable fault references
%SB Discrete non-maskable fault references
%SC Discrete fault summary references
%Al Analog input registers
%AQ Analog output registers
%R System register references
t%P (90-70 only) Program register references
1%L (90-70 only) Local register references

t not valid for standalone C programs

How to Format a PLC Reference Access Macro

The table shown below gives the modifiers used with the PLC reference macros (listed in
Appendix C). The format for usage of these macros is as follows:

The letter of reference type followed by one of the modifiers followed by a parenthetical
number for the address you wish to access; e.g.,

RI(1)=3; This assigns the integer value 3 to %R00001

RW(2)=0x55AA,; This assigns the word value 55AAh to %R00002

MB(1)=0xAB; This assigns the byte value AB to the 8 bits beginning with
%MO00001 (%MO00001 is the Least Significant Bit.)

The data type modifiers are as follows:

Modifier Description
B Unsigned byte reference (8 bits, 0 —> 255)
W Word reference (16 bits, 0 — > 65535)
I Integer reference (signed 16 bits, —32768 — > 32767)
D Double precision integer reference (signed 32 bits, —2147483648 — > 2147483647)
F Floating point reference (32 bit IEEE floating point format)

Certain combinations of reference type designators and data type modifiers are not
supported. Those combinations which are supported have macros defined in the

3-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

PLCC9070.H or PLCC9030.H file. Refer to Appendix C for the complete set of macros
provided in PLCC9070.H or PLCC9030.H.

Macros which permit access to reference memories as bits are slightly different from
those macros which access the same reference memories as bytes, words, double words,
and/or floating point numbers. Bit access macros, byte access macros, word/integer
access macros, word-memories-as-bytes access macros, and double word/floating point
access macros are described on the following pages of this chapter.

Note

When accessing PLC reference memory, be sure that macros are in all
uppercase letters as C is a case-sensitive language.

Restrictions on Macro Use (Series 90-70 Only)

Note

Restrictions on macro use do not apply if building standalone C
programs. Standalone C programs require Version 6.00 or later CPU
firmware. Version 6.00 is not available on the hardware platforms
described in this section.

Some older versions of Series 90-70 CPU hardware do not support accessing any of the
PLC bit memories (%1, %Q, %T, %M, %G, %GA-%GE, %S, %SA, %SB, %SC) as words,
integers, or double word values. Any attempt to access the bit-oriented memories as
words, integers, and/or double word values will result in incorrect data being read or
written.

Those versions of Series 90-70 CPU hardware which do support accessing bit-oriented
memory as words, integers, and/or double words have catalog numbers IC697CPU731P
and later, IC697CPU771M and later, and any IC697CPU732, IC697CPU772,
1C697CPU781, 1C697CPU782, IC697CPM9I14, IC697CPM9I15, IC697CPM924, or
1C697CPM925.

Caution

Although catalog numbers IC697CPU731P and later and
IC697CPU771M and later do support accessing the PLC bit-oriented
memories as words, integers, and/or double words, this capability
applies only to those 90-70 CPUs which have a single suffix letter in
the catalog number.

For example, the following catalog numbers all support accessing the
bit-oriented memories as words, integers, and/or double words:

IC697CPU731P
IC697CPU731R
IC697CPU731S
IC697CPU771M
IC697CPU771P
IC697CPU771S

Chapter 3 Writing a C Application 3-11

However, the following catalog numbers do not support accessing the
bit-oriented memories as anything other than bits or bytes.

IC697CPU731SU
IC697CPU731SX
IC697CPU771SU
IC697CPU771SX

The C Programmer’s Toolkit provides macros which access the bit-oriented memories as
words, integers, and/or double words. To prevent accidental use of these macros in a
program which may operate on an older Series 90-70 CPU platform (which does not
support word, integer, or double word reads/writes to the bit-oriented memories), these
C macros are not available as a standard, default condition.

If the target CPU platform for execution of your C application is known to be one which
supports accessing bit-memories as words/integers/double words, then use of these C
macros may be enabled by placing

#define HARDWARE_SUPPORTS_WORD_CACHE

as the first line of your C source module(s) (before the # include PLCC9070H line). If
the target platform supports accessing the bit-oriented memories as
words/integers/double words, then use of the provided C macros is encouraged to ease
programming effort.

If the target platform for execution of your C application is not known, please restrict
your C source code to using ONLY the bit and byte macros for accessing the bit-oriented
memories.

Caution

The restrictions on accessing the Series 90-70 PLC CPU bit-oriented
memories as anything but bits (using the macros provided in the
Toolkit) or as bytes (or chars) on certain CPU hardware platforms exist
not only for the C macros provided in the Series 90-70 C Programmer’s
Toolkit, but also for any access to these same PLC CPU memories. Do
not attempt to declare and use your own pointer or macros, which
access into the Series 90-70 PLC CPU bit-oriented memories as words,
integers, double words, or any other type or structure unless the CPU
platform is known to support that access.

Bit Macros

There are three bit macros defined for each reference memory type:

Macro Description

BIT TST X Tests the specified bit
BIT_SET_X | Sets the specified bit
BIT_CLR_X | Clears the specified bit

References in a C application to %I would use BIT_TST_I() ,BIT_CLR_I() ,or
BIT_SET_I() . The macro name indicates that %I reference memory is to be operated
on and the operation is either tested (TST), cleared (CLR), or set (SET). The value
contained in parentheses is the reference number of the item to be tested, cleared, or set

3-12 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

(for example, 120 for %I120). The bit set and bit clear macros are separate C application
source statements.

Note

The bit test macros return a boolean value contained in a byte. The
accessed bit is right justified (least significant bit) in the byte, that is,
each of the bit test macros will evaluate to 0 if the bit is OFF or 1 if the
bit is ON.

If a C application should set %Q137, %M29, and %T99 if %1120 is ON and should clear
%Q137, %M29, and %T99 if %1120 is OFF:

Series 90-70 Example:
#include “plcc9070.h”

main() {
if (BIT TST I(120)) {
BIT SET Q(137);
BIT SET M(29);
BIT SET T(99);
} else {
BIT CLR Q(137);

BIT CLR M(29);
BIT CLR_T(99);

}
return(OK) ;

Series 90-30 Example:
#include “plcc9030.h”

EXE stack size=2048;

main() {
if (BIT TST I(120)) {
BIT SET Q(137);
BIT SET M(29);
BIT SET T(99);
} else {
BIT CLR Q(137);

BIT CLR M(29);
BIT_CLR_T(99);

}
return(OK) ;

The bit macros for accessing word-oriented PLC memories (%R, %F, %L, %Al, and
%AQ) as bits are similar to the above description except that these macros require one
additional parameter, namely, the position within the word of the bit being accessed.
The three forms of bit macros for accessing word-oriented PLC memory are BIT_SET _,
BIT_CLR_, and BIT_TST_ (to specify the type of operation) followed by R, I L, AL, or AQ
(to specify the PLC reference memory to be used). There are two required parameters to
these macros:

1. The word in the reference memory to access (1 to highest reference available in the
specified PLC memory).

2. The bit in the selected word to use (bit numbers 1 to 16, with bit 1 being the least
significant or rightmost bit).

Chapter 3 Writing a C Application 3-13

To illustrate the bit macros for word-oriented memory, consider the following section of
a C application:

if (BIT TST R(135, 6))
BIT SET P(13, 4);
else ~— T
BIT CLR AI(2,1);

This portion of a C application checks the sixth bit in %R135. If the bit is on (1), then the
fourth bit in %P13 is to be set ON (1); otherwise, the first bit in % AI2 is to be set OFF (0).

Note

The %L and %P macros are not available to standalone C programs or
90-30 C programes.

As with the reference memory, there are three bit macros defined for
use with I/O specifications:

Macro Description

BIT TST(name, x) Tests the specified bit
BIT _SET(name, x) Sets the specified bit
BIT CLR(name, x Clears the specified bit

References in a Series 90-70 standalone C program would use BIT_TST() ,BIT_CLR() ,
or BIT_SET() . The macro name indicates that the operation is either test (TST), clear
(CLR), or set (SET). The first value contained in the parentheses is the name of the /O
specification. The second value contained in parentheses is the number to be tested,
cleared, or set (for example, 120 for the 120th bit in the array). The bit set and bit clear
macros are separate standalone C program source statements.

This standalone C program will set the 137th bit of the first output specification, the 29th
of the second, and the 99th of the third output specification if the 120th bit of the first
input specification is ON and will clear them if the input specification bit is OFE.

Series 90-70 Example:
#include “plcc9070.h”

INL B(inl,30);
OUT B(ot1,30);

main() {
if (BIT TST(inl,120)) {
BIT SET(otl,137);
BIT SET(0t2,29);
BIT SET(0t3,99);
} else {
BIT CLR(otl,137);

BIT CLR(0t2,29);
BIT_CLR(0t3,99);

}
return(OK) ;

3-14 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Note

The “BIT_” macros used to access bits in word-oriented memories use a
1 to 16 bit numbering scheme, with bit 1 being the least significant bit
and bit 16 being the most significant bit.

Byte Macros

Macros are provided to access the PLC bit memories as bytes. These macros are IB(x),
QB(x), MB(x), TB(x), GB(x), GAB(x), GBB(x), GCB(x), GDB(x),

GEB(x), SB(x), SAB(x), SBB(x), and SCB(x). The parameter x in each of these
macros should be replaced with the reference address of a bit which is contained in the
byte; for example, if the byte containing %M123 is needed, use MB(123). The byte access
macros may appear on either the left-hand or right-hand side of a C statement.

The example that follows will set the byte starting at % T9 and ending at %T16 equal to
the byte starting at % Q65 and ending at % Q72.

Series 90-70 Example:
#include “plcc9070.h”

main() {
TB(13) = QB(72);

return(OK) ;

Series 90-30 Example:
#include “plcc9030.h”
EXE_stack_size=2048;

main() {
TB(13) = QB(72);

return(OK) ;

Accessing bytes from word-oriented memories (%R, %P %L, %AQ, and %Al) requires an
additional parameter to indicate which byte is to be read or written. The symbols
HIBYTE and LOBYTEare defined in PLCC9070.H or PLCC9030.H for this purpose. For
example, your C application requires that the low byte of %R5 be read into a C
application local variable and then copied into the high byte of %R17:

GFK-0646E Chapter 3 Writing a C Application 3-15

3-16

Series 90-70 Example:
#include “plcc9070.h”

main() {
byte abytvar;
abytvar = RB(5,LOBYTE); [* read low byte of %R5 */
RB(17,HIBYTE) = abytvar; /* write high byte of %ZR17 */

return(OK) ;

Series 90-30 Example:
#include “plcc9030.h”

EXE stack size=2048;

main() {
byte abytvar;
abytvar = RB(5,LOBYTE); [* read low byte of %R5 */
RB(17,HIBYTE) = abytvar; /* write high byte of %ZR17 */
return(OK) ;

}

Note

The %L and %P macros are not available to standalone C programs nor
on 90-30 blocks and programs. Also, % GA—%GE memory types are not
supported on 90-30 PLCs.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Integer/Word Macros

All PLC reference memories may be accessed as 16-bit 2’s complement integers (ints) or
as 16-bit unsigned integers (words).¥ As an example, a C application needs to read
%R123 as an unsigned 16-bit integer and write %P13 as a 2’s complement 16-bit integer
and store the values in separate local C source variables:

Series 90-70 Example:
ffdefine HARDWARE SUPPORTS WORD CACHE
#include “plcc9070.h” - -

main() {
word word val;
int int_val = -133;
word val = RW(123);/* read %R123 as a word */
PI(13) = int val; * copy 2’s complement integer to 7ZP00013 */
return(OK) ;

Series 90-30 Example:
#include “plcc9030.h”

EXE stack size=2048;

main() {
word word _val;
int int_val = -133;

word val = RW(123);/* read %R123 as a word */
RI(13) = int _val; /* copy 2’s complement integer to %R0013 */

T There are certain restrictions on the use of the integer, word, and double word macros. See “Restrictions on
Macro Use.”

Note

The %L and %P macros are not available to standalone C programs or to
any 90-30 program or block.

GFK-0646E Chapter 3 Writing a C Application 3-17

3-18

Double Word/Floating Point Macros

All PLC reference memories may be accessed as 32-bit unsigned integers (dwords), but
only the word-oriented memories (%R, %D %L, %AQ, and %AI) may be accessed as
32-bit floating point numbers (float).¥ As an example, a C application needs to read

%R77 as a double word and write %P6 as a floating point value:

Series 90-70 Example
#define HARDWARE SUPPORTS_WORD_CACHE
#include “plcc9070.h”

main() {
dword dword val;
float fp val = 15.56;

dword val = RD(77); [* read 7R77 as a double word */
PF(6) = fp val; [*

return(OK) ;

*/

* write %P6 as single precision floating point

Series 90-30 Example
#include “plcc9030.h”

EXE_stack_size=2048;

main() {
dword dword val;
float fp_val = 15.56;
dword val = RD(77); [* read %R77 as a double word */
RF(6) = fp_val; /* write 7%R6 as single precision floating point */
}
Note

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

The %L and %P macros are not available to standalone C programs.
Also, %L and %P memory does not exist in the 90-30 CPU; therefore,
%L and %P macros are non-applicable to the 90-30 CPUs. In addition,
of the 90-30 CPUs, only CPU352 is capable of hardware-based floating
point operations.

There are certain restrictions on the use of the integer, word, and double word macros. See
“Restrictions on Macro Use.”

GFK-0646E

GFK-0646E

Reference Memory Size Macros

Macros are defined in PLCC9070.H or PLCC9030.H for determining the size of each
memory type. These macros are in the form X_SIZE, where X is the memory type letter
ILLQ, M, TG,S, R, Al AQ, B or L. Each of these size macros returns an unsigned integer
value equal to the highest reference available in the specified reference memory. If the
last available reference in the %I table is %11280, when a C application uses the I_SIZE
macro, the value 1280 will be returned.

Caution

The reference memory size macros should be used to determine the
size of the memory types written within a C application. Reads and
writes outside of the configured range can result in incorrect data or
PLC CPU failure.

For example, a C application is created that takes an index as a single input parameter
into the register table. The application is designed to index into the register table using
the input parameter and copy the located value to the single output location (MOVE

from source array registers [input parameter] to output parameter). This C application is

to be designed so that it may be run on any Series 90-70 PLC, regardless of differing
register memory table sizes:

Series 90-70 Example
#include “plcc9070.h”

main(word *X1, int *Y1l) {
if ((X1 != NULL)&&

(Y1 != NULL)) {

if (*X1 > R SIZE) {
/* Index into registers is too large! */
return(ERROR) ;

} else {
/* Index into registers and copy value to output parameter®/
*Y1l = RI(*X1);

}

return(OK) ;

}
else return (ERROR);

Note

The %L and %P macros are not available to standalone C programs.
The example shown above is a Series 90-70 example. The %L and %P
macros are not available on a Series 90-30 program or block.

Chapter 3 Writing a C Application

3-19

Transition, Alarm, and Fault Macros

Transition, alarm, and fault bits associated with reference memory can also be
referenced. In addition, the special system %S contacts FST_SCNT_10MS T_100MS,
T_SEC T_MIN, ALW_ONALW_OFFSY_FULL, IO_FULL, FST_EXE(see Note), and
LST_SCN(see Note) are supported for C blocks and FBKs. Series 90-70 standalone C
programs support FST_SCNALW_ONALW_OFFSY_FULL, and IO_FULL, although the
FST_SCNhere is high (1) on the first execution after a STOP—> RUN transition or a
RUN-MODE-STORE.

Note

FST_EXEis supported for Series 90-70 C blocks only. LST_SCNis
supported for Series 90-30 C main and C subroutine blocks only. All
others,ie., FST_SCNT_10MS T_100MS, T_SEC T_MIN, ALW_ON
ALW_OFFSY_FULL, and IO_FULL are supported for both target
databases.

The following macros are available for a Series 90-70 folder:

Macros (Series 90-70 Only)

[* Used with macros which access DIAGNOSTIC memory(s) */
#define H_ALARM_MSK 0x02

#define LO_ALARM_MSK 0x01

#define OVERRANGE_MSK (0x40 | 0x8)

#define UNDERRANGE_MSK 0x20

#define BIT_TST_I_DIAG(x) ((((*i_diag_mem)[(x—1)>>3])&(bit_mask
[(x-1)&7])) 1= 0)

#define BIT_TST_Q_DIAG(X) ((((*g_diag_mem)[(x—1)>>3])&(bit_mask
[(x-1)&7])) 1= 0)

#define IB_DIAG(X) ((*i_diag_mem)[(x—1)>>3])

#define QB_DIAG(x) ((*g_diag_mem)[(x—1)>>3])

#define AIB_DIAG(X) ((*ai_diag_mem)[x-1])

#define AQB_DIAG(x) ((*aq_diag_mem)[x—1])

#define AI_HIALRM(xX)((((*ai_diag_mem)[x—1])&(HI_ALARM_MSK))>>1)

#define AI_LOALRM(x)(((*ai_diag_mem)[x—1])&(LO_ALARM_MSK))

#define AIB_FAULT(X)(((*ai_diag_mem)[x—1])&(~(HI_ALARM_MSK
|[LO_ALARM_MSK)))

#define AQB_FAULT(X)(((*aq_diag_mem)[x—1])&(~(HI_ALARM_MSK
|[LO_ALARM_MSK)))

#define Al_OVERRANGE(x) ((((((*ai_diag_mem)[x—1])&(OVERRANGE_MSK))
>>3)|((((*ai_diag_mem)[x—1])&(OVERRANGE_MSK))>>6) & 1)

#define AI_UNDERRANGE(x) ((((*ai_diag_mem)[x—1])&(UNDERRANGE_MSK))
>>5)

[* DEFINEs and STRUCTURESs used by the PLC */
I* RACK/SLOT/BLOCK fault macros */
struct rack_slot_refs_rec {
unsigned rack_summary:1;
unsigned rack_failure:1;
unsigned slot_faults:14; [* Slots 0 through 9
are used */

3-20 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

#define NUM_BYTES_BUS_REFS 4 [* 2 buses per slot,
4 slots per byte */
#define NUM_BYTES_PER_MODULE_REFS 8 /* 32 modules per bus,
2 buses per slot */
#define NUM_BYTES_PER_FIP_DROP_REFS 32 /* 32 bytes per FIP drop */

#define MAX_VME_SLOTS 10 /*10 slots per VME
rack — max */
#define MAX_VME_RACKS 8 /*8 VME racks — max */

struct rack_reference_rec {
struct rack_slot_refs_rec rack_slot_refs;
unsigned char bus_refsINUM_BYTES_BUS_REFS];
unsigned char
mod_refsfMAX_VME_SLOTS][NUM_BYTES_PER_MODULE_REFS];

kh

struct fip_rack_reference_rec{
unsigned char
drop_refs]MAX_VME_SLOTS][NUM_BYTES_PER_FIP_DROP_REFS];

kh

struct rack_reference_with_fip_rec{
struct rack_reference_rec rs_rpt_refsflMAX_VME_RACKS];
struct fip_rack_reference_rec fip_drop_refsf]MAX_VME_RACKS];

¥

extern struct rack_reference_with_fip_rec (*rsb_mem);
#define rs_memory ((*rsb_mem).rs_rpt_refs)
#define fip_memory ((*rsb_mem).fip_drop_refs)

[* Macros for accessing RACK/SLOT/BLOCK fault information */

#define RACKX(r)

(rs_memory[r].rack_slot_refs.rack_summary)

#define SLOTX(r,s)

(((rs_memory[r].rack_slot_refs.slot_faults)&(bit_mask([s]))>>(s))

#define BLOCKX(r,s,b,sbha)

(((rs_memory[r].mod_refs[s][(sba>>3)+(4*(int)(b==2))])&(bit_mask
[sba&7]))>>(sba&7))

#define RSMB(x) (((unsigned int *)rs_memory)[X])

[* Macros for accessing FIP fault information */

/* NOTE: The FIPX macro is only valid for 90-70 CPUs */

[* with firmware release 6.00 and later */

#define FIPX(r,s,sha)
((((fip_memory[r].drop_refs[s][sba>>3])&(bit_mask[sha&7])))>>(sba&7))

Refer to Chapter 3, Section 1 of the Series 90-70 Programmable Controller Reference Manual
(GFK-0265) for more information on fault references.

GFK-0646E Chapter 3 Writing a C Application 3-21

Section 5: Standard Library Routines

Appendix A contains a complete list of the standard C library routines supported by C
blocks and standalone C programs (please note that C FBKs do not support any library
routines). The routines work as documented by the compiler manufacturer, with the
exception of the printf() and sprintf() routines. When executing under
MS-DOS, the code used to perform printf() and sprintf() is Microsoft’'s. When
executing in the Series 90 PLC, the code used to perform these two functions is in the
Series 90 CPU firmware.

printf() and sprintf() — Series 90-70 Only

The implementations of printf() and sprintf() available in the Series 90-70 PLC
support a subset of the ANSI-defined interface to these functions. In the Series 90-70
PLC, the following printf() / sprintf() formats are supported:

%][flags][width].[precision][{F|N|h|l|L}]type

Table 3-1. printf() Formats Supported in the PLC

Field Name Field Values / Description

flags - minus flag
+ plus flag
" blank flag
pound flag

width can be constant or asterisk (*) to indicate width is in argument list

precision can be constant or asterisk (*) to indicate precision is in argument list
FIN|h|I|L | only supportl

type ouxXdics-for all models

e f g E G - for models with a math coprocessor only

The printf() routine is used to queue messages in a character buffer to be
transmitted from the Series 90-70 CPU serial port. Multiple messages may be queued,
with a limit of 2048 characters pending at any one time. The printf() function
returns the number of characters placed into the character print queue. If printf()

is unable to queue an entire message because of character buffer overflow, the portion of
the message which will fit into the queue is inserted and the remaining trailing char-
acters are truncated. One of the built-in functions, PLCC_chars_in_printf_q() ,
may be used to determine the number of characters currently in the buffer.

Note

Although the transmission of a string out the CPUs serial port is
performed in the background of the PLC execution, the formatting of a
string by printf() before it is placed into the message queue is
performed in its entirety at the time printf() is called. On a Model
731 90-70 CPU, which has a default (200msec) watchdog timeout value,
formatting a string of 2048 characters will cause the watchdog timer to
expire and the PLC to go to STOP/HALTmode. Refer to appendix E,
Series 90-70 CPU Execution Time for printf(), for example timing for
printf()

3-22 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Message queuing is enabled when the CPU serial port is configured for message
generation mode. When this mode is selected, the SNP protocol is active on the serial
port only when the CPU is in STOPmode. In RUNmode, use of the serial port is
reserved for the printf() function.

When a printf() is attempted in the PLC and the CPU is not configured for
message generation mode, a fault will be logged in the PLC fault table. The fault
will be displayed as:

EXE block runtime error: <block name> attempted print

where <block name > is the name given the block when it was imported into the
Logicmaster 90 folder, or

Program runtime error: <prog name> attempted print

where <prog name > is the name of the standalone C program. All runtime errors
generated out of a standalone program will be prefixed with “Program runtime

”

error .

Note

When configured for message generation mode, the serial port will
be used for printf() output only when the PLC is in RUNmode. In
STOPmode, the PLC serial port will revert back to SNP
communications. On the transition from RUNto STOP the PLC will
complete transmitting any printf() output to the serial port prior to
reverting back to SNP on the serial port. On the transition from STOP
to RUNSNP communication is dropped immediately.

Changing the PLC Configuration to Enable printf() Output

In order to use printf() in the Series 90-70 PLC, the configuration stored to the CPU
must indicate that the serial port is to be used for printf() output rather than for
SNP To change the CPU’s configuration, use the Logicmaster 90 configuration software
package as follows:

1. Once in the configuration software, select I/O configuration.

2. While on the Rack 0 configuration display, cursor over to the CPU module and press
the Zoom softkey.

GFK-0646E Chapter 3 Writing a C Application 3-23

3-24

3.

Figure 3-5. Default 90-70 CPU Configuration Data

The following display should appear:

~

| |

SLOT
1

Catalog #: IC697CPUY31

SERIES 90-70 MODULE IN RACK J SLOT
SOFTWARE CONFIGURATION
731 CPU

| | | | | | | |
. B EF B OE E K E Eeonlt |

32 KB FIXED MEM

CPU 731

<

~

_

I10Scan—3top: HO
Passuords

If PLC Firmware version iz less than 4.0,

: ENABLED

Baud Rate
Parity

Stop Bits

Data Bits

Modem TT
Idle Time

Mode

Watchdg Tmr:
The parameters on next page are supported by PLC Rev 4.0 or higher.

: ODD

. 8

S

1-100 Second ~ Count

do not modify then.

More Config Data Exists: PygDn for Mext Page, PgUp for Previous Page >>
1

ONFIG VALID

~

/

4. Cursor down to the Mode field. The current mode selection is for SN Press the
Tab key to change the selection to MSG

//”

[IRACK
b pu

>

SLOT
1

CPU 731

Catalog #: IC6S?YCPU?31

SERIES 90-70 MODULE IN RacK g sLOT
SOFTWARE CONFIGURATION

| |
e E F E O Kk E Eoowall

731 CPU 32 KB FIXED MEM

N

<

<

I0Scan-5top: NO
Passwords : ENABLED

Baud Rate
Parity
Stop Bits
Data Bits
Modem TT
Idle Time
Mode

H1
Watchdg Tmr:

1,100 Second ~ Count

The parameters on next page are supported by PLC Rev 4.0 or higher.
If PLC Firmware version is less than 4.0, do not modify them.

More Config Data Exists: PgDn for Next Page, Pglp for Previous Page >>
[

ONFIG UALID

~

/

Figure 3-6. 90-70 CPU Configuration Modified for Message Generation Mode

5. Having modified the Mode field to MSGstore this configuration to the CPU to
output on the serial port.

enable printf()

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Differences in printf() and sprintf() — Series 90-70 Only

Printf() and sprintf() will both format an output string. The basic difference
between the two functions is that printf() typically prints the formatted string to the
standard output device and sprintf() typically prints the formatted string to a
user-specified buffer. Also, each of these functions returns the number of characters
written to either the output port printf() or to the output buffer sprintf()

These operations are the standard definitions of these two functions.

When executed in the PLC, both printf() and sprintf() use the same string
formatting code. Therefore, in general, the resulting format of a string from an
sprintf() to a buffer and a printf() to the serial port will be the same. Similarly,

the return status from each function, the number of characters written to the buffer (by
sprintf()) or to the serial port (by printf()), will generally be the same for the
same set of parameters.

However, there are two exceptions to this rule: 1) the handling of the \n’ character
and 2) filling the serial port print queue. When the \n’ character (newline character, or
0A hexadecimal) is encountered by the low-level printf() code,an’\r’ (carriage
return, or 0D hexadecimal) is inserted into the string immediately following the newline
character. This is done to mimic the printf() operation in the DOS environment.
Foreach'\r' character inserted into the output string as a result of encountering a

\n’" character, the total number of characters written by printf() is incremented by
1. In contrast, the function sprintf() does not add anything to the formatted string
as a result of encountering a '\n’ character. This difference in handling the \n" char-
acter can cause the returned number of characters printed value from an sprintf()

and a printf() to be different for the same input.

The filling of the serial port print queue is the second difference between printf()

and sprintf() is a result of the printf() output in the PLC being queued for
transmission out of the serial port. Since the serial port queue used by printf() is
limited to 2048 characters and characters are being removed from the queue a byte at a
time (exact rate of character removal from the queue is dependent upon the configured
baud rate for the CPU serial port), it is possible for printf() (and possibly multiple
printf() s from multiple blocks) to fill the queue faster than it can be emptied. The
function sprintf() has no queue associated with it; therefore, it is not limited by a
queue size. Itis only limited by the user-supplied destination buffer.

Example of printf() and sprintf() Returning the Same Value

The following C source code, when executed in the 90-70 PLC, will result in the same
value being returned from both printf() and sprintf()

main() {
int printf chars, sprintf chars;
char buffer(100]; -

printf chars

printf(“Hello world!”);
sprintf chars

sprintf(buffer, “Hello world!”);

return(OK) ;

After executing the above example, both sprintf_chars and printf_chars will be
equal to 12.

GFK-0646E Chapter 3 Writing a C Application 3-25

Example of printf() and sprintf() Returning Different Values

The following C source code, when executed in the Series 90-70 PLC, will result in

different values being returned from printf() and sprintf()
main() {
int printf chars, sprintf_chars;

char bufferT100];

printf(“Hello world!\n”);

printf chars
sprintf(buffer, “Hello world!\n”);

sprintf chars

return(OK) ;
}
After executing the above example, sprintf_chars is equal to 13, but printf_chars
is equal to 14. Again, the additional character printed by printf() is the '\’
(carriage return) character. Similarly, if the printf() and sprintf() lines are

printf(“Hello world!\n\n”);

printf chars
sprintf(buffer, “Hello world!\n\n”);

sprintf chars

After executing these two lines in the Series 90-70 PLC, sprintf_chars is equal to 14,
but printf_chars is now equal to 16. An additional \r' character is printed for each
\n’ character encountered.

Floating Point and printf() and sprintf()

Floating point numbers may only be formatted and printed using printf() and/or
sprintf() on those Series 90-70 CPUs which have a math coprocessor (CPU models
732,772,782,914, 915, 924, and 925). This restriction applies to the printf() and

sprintf() format specifiers e, f, g, E, and G.
Note
An attempt to format and print (using printf() or sprintf())a
floating point number on a Series 90-70 CPU which does not have a
math coprocessor will result in printf() returning a status of —1 and

no characters being printed.

3-26 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GE Fanuc Functions

Additional functions are provided by the C Programmer’s Toolkit in support of the Series
90 PLC CPU’s operations. These functions are defined in PLCC9070.H and
PLCC9030.H.

A description of the functions is provided in the sections that follow.

General PLC Functions

The following functions make PLC features available to C applications.

PLCC_read_elapsed_clock

int PLCC_read_elapsed_clock(struct elapsed_clock_rec
*elapsed_clock_value);

struct elapsed_clock_rec {
unsigned long seconds;
word hundred_usecs;

}

This function returns the current time from the PLC in elapsed_time_clock value
The return value is 0 if successful, —1 if unsuccessful.

PLCC_chars_in_printf_q (Series 90-70 Only)

int PLCC_chars_in_printf_g(void);

This function returns the number of characters in the PLC printf queue.

PLCC_gen_alarm (Series 90-70 Only)

int PLCC_gen_alarm(word error_code, char *fault_string);

This function puts the fault described by error_code and fault_string into the PLC
fault table. This function will return 0 if successful and —1 if unsuccessful.

PLCC_get_plc_version

int PLCC_get_plc_version(struct PLC_ver_info_rec *PLC_ver_info);

struct PLC_ver_info_rec {
word family; /* Host PLC product line */
word model; [* Specific Model of PLC */
byte sw_ver; /* Major Version of PLC firmware */
byte sw_rev; /* Minor Revision of PLC firmware */

h

This function returns the PLC information through the structure passed to the routine.
All the data returned from the PLC will be hexadecimal. For example, the PLC will
return hexadecimal 782 (1922 decimal) in the model field for a 782 PLC. The function
will return 0 if successful and —1 if unsuccessful.

GFK-0646E Chapter 3 Writing a C Application 3-27

VME Functions (Series 90-70 Only)

The following functions are based on the VME functions available in ladder logic.

PLCC_VME_config_read

word PLCC_VME_config_read(void *buffer, word length, byte rack,
byte slot, long offset);

This function will read from a VME module at the location specified by rack, slot and
offset using the VME module’s configuration data.

PLCC_VME_config_write

word PLCC_VME_config_write(void *buffer, word length, byte rack,
byte slot, long offset);

This function will write to a VME module at the location specified by rack, slot and offset
using the VME module’s configuration data.

PLCC_VME_set_amcode

byte PLCC_VME_set_amcode(byte amcode);

This function will set the address mode of the VME bus. This function must be called
before any of the VMERD or VMEWRT functions may be used.

This function returns the value passed in when it is successful. All other return values
indicate an invalid amcode input parameter.

VMERD (BYTE, WORD)—Series 90-70 Only
The VME Read (VMERD) function is used to read data from the VME bus.

Note

Using a VME function (VMERD, VMEWRT, VMERMW, or VMETST)
requires additional information on the correct way to address the VME
board. This information may be obtained from one of two sources. For
a qualified VME board, the VME board vendor may issue application
notes on the correct use of the board. Otherwise, refer to the Guidelines
for the Selection of Third-Party VME Modules, GFK-0448.

PLCC_VME_read_byte

byte PLCC_VME_read_byte(byte *value, unsigned long address);
This function will read a byte from the VME bus.

3-28 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_VME_read_word

byte PLCC_VME_read_word(word *value, unsigned long_address);

This function will read a word from the VME bus. The length parameter specifies the
number of bytes to be read.

PLCC_VME_read_block

byte PLCC_VME_read_block(void *buffer, word length, unsigned long
address);

This function will read a block of data from the VME bus. The length parameter
specifies the number of bytes to be read.

VMEWRT (BYTE, WORD)—Series 90-70 Only
The VME Write (VMEWRT) function is used to write data to the VME bus.

Note

Using a VME function (VMERD, VMEWRT, VMERMW, or VMETST)
requires additional information on the correct way to address the VME
board. This information may be obtained from one of two sources. For
a qualified VME board, the VME board vendor may issue application
notes on the correct use of the board. Otherwise, refer to the Guidelines
for the Selection of Third-Party VME Modules, GFK-0448.

PLCC_VME_write_byte
byte PLCC_VME_write_byte(byte value, unsigned long address);
This function will write a byte for data to the VME bus.

PLCC_VME_write_word

byte PLCC_VME_write_word(word value, unsigned long address);

This function will write a word to the VME bus.

PLCC_VME_write_block

byte PLCC_VME_write_block(void *buffer, word length, unsigned long
address);

This function will write a block of data to the VME bus. The length parameter specifies
the number of bytes to be written.

GFK-0646E Chapter 3 Writing a C Application 3-29

Return Status for VME Functions

3-30

Each of these VME functions:

extern byte _far PLCC_VME_read_byte(byte *value, unsigned long address);
extern byte _far PLCC_VME_read_word(word *value, unsigned long address);

extern byte _far PLCC_VME_read_block(void *buffer, word length, unsigned long address);

extern byte far PLCC_VME_write_byte(byte value, unsigned long address);
extern byte _far PLCC_VME_write_word(word value, unsigned long address);

extern byte _far PLCC_VME_write_block(void *buffer, word length, unsigned long address)

have the function return values shown in the following table:

Table 3-2. Return Status for VME Functions

Return Status
(in hexadecimal)

Meaning

OxFF

Operation successful

All other return values
have the following format:

TIxx xIxx Active bits (failures) are 0, inactive are 1.
bit 0 SYSFAIL* occurred during operation
bit 1 BERR* occurred during operation
bit 2 always 1
bit 3 Bus grant error occurred during operation
bit 4 Bus Hog occurred during operation
bit 5 Bus Interrupt Acknowledge failure
bit 6 always 1
bit7 always 1

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

Each of these two VME functions:

extern byte _far PLCC_VME_config_read (void *buffer, word length, byte rack,

and

byte slot, long offset)

extern byte _far PLCC_VME_config_write (void *buffer, word length, byte rack,

byte slot, long offset)

have the function return values shown in the following table:

Table 3-3. Return Status and Meaning from VME_config_read and write

Return Status

Meaning

0000 operation successful
1 Config Errors
Board at specified rack, slot is not configured as a foreign VME module.
Board at specified rack, slot is foreign VME but not configured for “Bus Inter-
face” mode.
2 Range Errors

slot < 2 or slot > 9 or rack > 7

slot address is in slot+subslot form for IRACK addressing and subslot is not A
orB

The most significant byte of the offset parameter is not 0. (The offset parameter,
OFE is a DWORD.)

The relative address (i.e., 1 based, ignoring configured dual port base address) of
the last data element to be read/written is > the configured dual port size.

The absolute address (i.e., including the dual port base address) of the last data
element is > 24 bits long for standard AM codes or > 16 bits long for short AM
codes.

The absolute address of the first data element is even and the configured Inter-
face Type is Odd Byte Only.

The absolute Address of the first data element is odd and the configured Inter-
face Type is Word Access or Single Word Access.

The specified AM code is unsupported.

All other return
status values:

T1xx xIxx

bit 0
bit1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

Interpret meaning by examining each bit of the return value using the following
guide:

Active bits (failures) are 0, inactive are 1

SYSFAIL* occurred during operation
BERR* occurred during operation

always 1

Bus grant error occurred during operation
Bus Hog occurred during operation

Bus Interrupt Acknowledge failure
always 1

always 1

Chapter 3 Writing a C Application 3-31

Service Request Functions

3-32

The following functions are patterned after the service request (SVC_REQ) in ladder
logic.

PLCC_const_sweep_timer

int PLCC_const_sweep_timer(struct const_sweep_timer_rec *x);

[* input structure */

struct const_sweep_input_rec {
word action;
word timer_value;

k

[* structure with return value */
struct const_sweep_output_rec {
word sweep mode;
word current_time_value;

3
struct const_sweep_timer_rec {
union {
struct const_sweep_input_rec input;
struct const_sweep_output_rec output;
b
3

[* sweep mode values — these determine which action is to be taken */
#define DISABLE_CONSTANT_SWEEP_MODE 0

#define ENABLE_CONSTANT_SWEEP_MODE 1

#define CHANGE_TIMER_VALUE 2

#define READ_TIMER_VALUE_AND_STATE 3

This function is the C interface to service request #1 (Change/Read Constant Sweep
Timer).

This function can be used to

® Disable constant sweep time mode

® Enable constant sweep time mode and use the old timer value
® Enable constant sweep time mode and use a new timer value
® Setanew timer value only

® Read constant sweep mode state timer and value

Setting sweep_mode to DISABLE_CONSTANT_SWEEP_MODE will disable the constant
sweep timer. Setting sweep_mode to ENABLE_CONSTANT_SWEEP_MODE will

enable the constant with the value in sweep_timer, or keep the current value if the
sweep_timer is 0. Setting the sweep_mode to CHANGE_TIMER_VALUE will change the
constant sweep timer to the value in timer_value. Setting sweep_mode to
READ_TIMER _VALUE_AND_STATE will set sweep_enabled to 1 if the constant sweep
timer is enabled, and will set the current constant sweep timer value to the
current_value. This function will return 1 if successful and 0 if unsuccessful, and —1 if
not supported.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_read_window_values

int PLCC_read_window_values(struct read_window_values_rec *x);

struct read_window_values_rec {
byte prog_win_time;
byte prog_win_mode;
byte sys_comm_win_time;
byte sys_comm_win_mode;
byte background_win_time;
byte background_win_mode;

h

/*

* window modes

*/

#define LIMITED_MODE 0
#define CONSTANT_MODE 1
#define RUN_TO_COMPLETION_MODE 2

This function is the C interface to service request #2 (Read Window Values). This
function will return the mode and time for the programmer communications window,
the system communications window, and the background task window in the structure.
The possible values for the mode fields are LIMITED MODE, CONSTANT _MODE, and
RUN_TO_COMPLETION_MODE. The time fields contain the time values in
milliseconds. This function will return 1 if successful and 0 if unsuccessful.

PLCC_change_prog_comm_window

int PLCC_change_prog_comm_window(struct change_prog_comm_window_rec
*X);

struct change_prog_comm_window_rec {
byte time;
byte mode;

3

/*

* window modes

*/

#define LIMITED_MODE 0

#define CONSTANT_MODE 1 (Not supported on Series 90-30)
#define RUN_TO_COMPLETION_MODE 2

This function is the C interface to service request #3 (Change Programmer
Communications Window State and Values). This function will change the programmer
communications window state and timer to the values specified in the structure. The
mode will be changed to one of the three states LIMITED_MODE, CONSTANT_MODE,
or RUN_TO_COMPLETION_MODE depending on the value in the mode field. The
timer value should be from 1 to 255 milliseconds. This function will return 1 if successful
and 0 if unsuccessful.

Note

Window time values cannot be changed on the Series 90-30.

GFK-0646E Chapter 3 Writing a C Application 3-33

PLCC_change_system_comm_window

int PLCC_change_system_comm_window(struct
change_system_comm_window_rec *x);

struct change_system_comm_window_rec {
byte time;
byte mode;
3
/*
* window modes
*/
#define LIMITED_MODE 0
#define CONSTANT_MODE 1 (Not supported on Series 90-30)
#define RUN_TO_COMPLETION_MODE 2

This function is the C interface to service request #4 (Change System Communications
Window State and Values). This function will change the system communications
window state and timer to the values specified in the structure. The mode will be
changed to one of the three states LIMITED MODE, CONSTANT_MODE, or
RUN_TO_COMPLETION_MODE depending on the value in the mode field. The timer
value should be from 1 to 255 milliseconds. This function will return 1 if successful and 0
if unsuccessful.

Note

Window time values cannot be changed on the Series 90-30.

PLCC_change_background_window (Series 90-70 Only)

int PLCC_change_background_window(struct change_background_window_rec
*X);

struct change_background_window_rec {
byte time;
byte mode;

3

/*

* window modes

*/

#define LIMITED_MODE 0
#define CONSTANT_MODE 1
#define RUN_TO_COMPLETION_MODE 2

This function is the C interface to service request #5 (Change Background Window
State and Values). This function will change the background window state and timer to
the values specified in the structure. The mode will be changed to one of the three states
LIMITED_MODE, CONSTANT_MODE, or RUN_TO_COMPLETION_MODE
depending on the value in the mode field. The timer value should be from 1 to 255
milliseconds. This function will return 1 if successful and 0 if unsuccessful.

3-34 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_number_of words_in_chksm

int PLCC_number_of_words_in_chksm(struct number_of_words_in_chksm_rec
*X);

struct number_word_of_words_in_chksm_rec {
word read_set;
word word_count;

kh

#define READ_CHECKSUM_WORDS 0
#define SET_CHECKSUM_WORDS 1

This function is the C interface to service request #6 (Change/Read Checksum Task State
and Number of Words to Checksum). This function will either read the current
checksum word count or set a new checksum word count depending on the value in
read_set. If read_setis READ CHECKSUM then the function will read the current
word count and return it in word_count. If the read_setis SET_CHECKSUM then the
function will set the current word count to word_count rounded to the nearest multiple
of 8. To disable the checksums set the word_count to 0. The function will fail if the
read_write field is set to a value other than 0 or 1. This function will return 1 if successful
and 0 if unsuccessful.

PLCC_tod_clock

int PLCC_tod_clock(struct tod_clock_rec *x);

struct num_tod_rec {
word year;
word month;
word day_of_month;
word hours;
word minutes;
word seconds;
word day_of_week;

I3
struct BCD_tod_rec {
byte year;
byte month;
byte day_of month;
byte hours;
byte minutes;
byte seconds;
byte day_of week;
byte null;
h

GFK-0646E Chapter 3 Writing a C Application 3-35

struct unpacked_BCD_rec {

byte yearlo;
byte yearhi;
byte monthlo;
byte monthhi;

byte day_of month_lo;
byte day_of month_hi;
byte hourslo;

byte hourshi;
byte minslo;
byte minshi;
byte secslo;
byte secshi;
word day_of week;
3
struct ASCII_tod_rec {
byte yearhi;
byte yearlo;
byte spacel;
byte monthhi;
byte monthlo;
byte spacez;
byte day_of month_hi;
byte day_of month_lo;
byte space3;
byte hourslo;
byte hourshi;
byte colonl;
byte minshi;
byte minslo;
byte colon2;
byte secshi;
byte secslo;
byte space4;
byte day_of week hi;
byte day_of week lo;
3

struct tod_clock_rec {
word read_write;
word format;

union {
struct num_tod_rec num_tod;
struct BCD_tod_rec BCD_tod;

struct unpacked_BCD_rec unpacked_BCD_tod;
struct ASCII_tod_rec ASCIl_tod

3-36 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

#define READ_CLOCK 0
#define WRITE_CLOCK 1

#define NUMERIC_DATA_FORMAT 0 (not supported on 9030)
#define BCD_FORMAT 1
#define UNPACKED_BCD_FORMAT 2 (not supported on 9030)
#define PACKED_ASCII_FORMAT 3

#define SUNDAY 1
#define MONDAY 2
#define TUESDAY 3

#define WEDNESDAY 4
#define THURSDAY 5
#define FRIDAY 6
#define SATURDAY 7

This function is the C interface to service request #7 (Change/Read Time-of-Day Clock
State and Values). If read_write is zero then the function will read the Time-of-Day
Clock into the structure passed. If read_write is one then the function will write the
values in the structure to the time_of day_clock. The format will be based on the format
field in the structure (NUMERIC_DATA FORMAT, BCD_FORMAT,

UNPACKED BCD_FORMAT, and PACKED_ASCII_ FORMAT). This function will return
1 if successful and 0 if unsuccessful. The function will fail in the following instances:

® Ifread write is some number other than 0 or 1
® If format is some number other than 0 - 3
® If data for a write does not match format

For all the formats the hours are 24 hour and the days of the week are defined as macros
in PLCC9070.H or PLCC9030.h . The packed BCD format needs the null field to be 0, as
shown in the following example:

Series 90-70 Example
#include “plcc9070.h”

int main()
{

struct tod _clock rec data;

data.read write = 1;
data.format = BCD_FORMAT;

/* set the time and date to 1:13:08pm Tuesday August 9, 1994 */
data.BCD_tod.year = 0x94;

data.BCD_tod.month = 8;

data.BCD_tod.day of month = 9;

data.BCD_tod.hours = 0x13;

data.BCD tod.minutes = 0x13;

data.BCD:tod.seconds = 8;

data.BCD tod.day of week = TUESDAY;

data.BCD tod.null = 0;

PLCC_tod:clock (& data)

GFK-0646E Chapter 3 Writing a C Application 3-37

int main()

{

data

data

data.
data.

Series 90-30 Example
#include “plcc9030.h”

EXE stack size=2048;

struct tod _clock rec data;

read write = 1;
format = BCD_FORMAT;

/* set the time and date to 1:13:08pm Tuesday August 9, 1994 */
data.
data. B
.BCD tod.day of month = 9;
data. B Ts =
data. B
.BCD tod.seconds = 8;
data. B
data.
PLCC_

BCD_tod.year = 0x94;
BCD tod.month = 8;

BCD_tod.hours = 0x13;
BCD tod.minutes = 0x13;

BCD_tod.day of week = TUESDAY;
BCD_tod.null = 0;
tod_clock (& data)

The unpacked format should have a digit in every byte (including the day of the week)
as shown in the following 90-70 example:

int main()

{

data
data
data

data

data

data.
data.

.unpacked BCD_tod.minslo
data.
data.
data.
PLCC_

This example is for the Series 90-70 Only.
#include “plcc9070.h”

struct tod _clock rec data;

read write = 1;
format = UNPACKED BCD FORMAT;

/* set the time and date to 1:13:08pm Tuesday August 9, 1994 *
.unpacked BCD tod.yearhi H
data. 3
.unpacked:BCD:tod.monthhi = 0;
.unpacked BCD tod.monthlo = 8;
data.
data. | BCD -~ of
.unpacked BCD tod.hourshi
data. BCD
data.

=9
unpacked BCD tod.yearlo = 4

unpacked BCD_tod.day of month hi
unpacked BCD tod.day of month lo
L;

unpacked BCD_ tod.hourslo =
unpacked BCD tod.minshi

unpacked BCD_tod.secshi
unpacked BCD tod.secslo
unpacked BCD_tod.day_of 1
tod_clock (& data)

D 00O WwH
R ee we we we (WO

TUESDAY;

£

e

3-38 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

The packed ASCII format should have an ASCII character in every byte as shown in the
following example:

Series 90-70 Example

#include “plcc9070.h”

int main()

{
struct tod clock rec data;
data.read write = 1j
data.format = PACKED ASCII FORMAT;
/* set the time and date to 1:13:08pm Tuesday August 9, 1994 */
data.ASCII_tod.yearhi = ’97;
data.ASCII_tod.yearlo = ’4’;
data.ASCII_tod.spacel =’ 7’
data.ASCII_tod.monthhi = ’0’;
data.ASCII_tod.monthlo = ’8’;
data.ASCII_tod.space2 =’ ’;
data.ASCII_tod.day of month hi = ’0’;
data.ASCII_tod.day_of month lo = ’9’;
data.ASCII_tod.space3 =’ ’;
data.ASCII tod.hourshi = ’1’;
data.ASCII tod.hourslo = ’3’;
data.ASCII.tod.colonl = ’:°;
data.ASCII_tod.minshi = ’17;
data.ASCII tod.minslo = ’37;
data.ASCII tod.colon2 = ’:’;
data.ASCII tod.secshi = ’07;
data.ASCII_tod.secslo = ’8°;
/* place 0 ASCII (30 hex) in the high byte for the number */
data.ASCII_date.day of weekhi = ’07;
/* place TUESDAY(3) plus 30 hex into the lo */
/* byte to make the number an ASCII character * [
data.ASCII_date.day of weeklo = TUESDAY+0x30;
PLCC_tod_clock_rec (& data)

}

PLCC_reset_watchdog_timer

int PLCC_reset_watchdog_timer(void);

This function is the C interface to service request #8 (Reset Watchdog Timer). This
function will reset the watchdog timer during the sweep. When the watchdog timer
expires, the PLC shuts down without warning. This function allows the timer to be
refreshed during a time-consuming task. This function will return 1 if successful and 0
unsuccessful.

Caution

Be careful resetting the watchdog timer. It may affect the process.

Chapter 3 Writing a C Application

if

3-39

PLCC_time_since_start_of sweep

int PLCC_time_since_start_of_sweep(struct
time_since_start_of_sweep_rec *x);

struct time_since_start_of _sweep_rec {
word time_since_start_of sweep;

h

This function is the C interface to service request #9 (Read Sweep Time from Beginning
of Sweep). The function will read the time in milliseconds from the beginning of the
sweep. The function will return 1 if successful and 0 if unsuccessful.

PLCC_read_folder_name

int PLCC_read_folder_name(struct read_folder_name_rec *x);

struct read_folder_name {
char folder_name[8];

h

This function is the C interface to service request #10 (Read Folder Name This
Application is In). This function will return the application folder name as a NULL
terminated string. The function will return 1 if successful and 0 if unsuccessful.

PLCC_read PLC_ID

int PLCC_read_PLC_ID(struct read_PLC_ID_rec *x);

struct read_PLC_ID_rec {
char PLC_ID[8];

h

This function is based on service request #11 (Read PLC ID). The function will return
the name of the Series 90 PLC (in ASCII). The function will return 1 if successful and 0 if
unsuccessful.

3-40 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_read PLC_state

int PLCC_read_PLC_state(struct read_PLC_state_rec *x);

struct read_PLC_state_rec {
word state;

k

#define RUN_DISABLED 1
#define RUN_ENABLED 2

This function is based on service request #12 (Read PLC Run State). This function will
return the PLC run state (RUN_DISABLED or RUN_ENABLED). The function will
return 1 if successful and 0 if unsuccessful.

PLCC_shut_down_plc

int PLCC_shut_down_plc(void);

This function is the C interface to service request #13 (Shut Down/Stop PLC). The
function will stop the PLC at the end of the current sweep. All outputs will go to their
values at the beginning of the next sweep and “STOPPED by SVC 13” information fault
will be logged in the PLC fault table. The function will return 1 if successful, and 0 if
unsuccessful.

PLCC_clear_fault_tables

int PLCC_clear_fault_tables(struct clear_fault_tables_rec *x);

struct clear_fault_tables_rec {

word table;
h
#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

This function is the C interface to service request #14 (Clear Fault Tables). The function
will clear the fault table according to the value (PLC_FAULT TABLE or
IO0_FAULT TABLE). The function will return 1 if successful and 0 if unsuccessful.

PLCC_read last_fault

int PLCC_read_last_fault(struct read_last_fault_rec *x);

struct PLC_entry_rec {
byte long_short;
byte reserved[3];
word PLC_fault_address[2];
word fault_group;
word error_code;
word fault_specific_data[12];
word time_stamp([3];

GFK-0646E Chapter 3 Writing a C Application 3-41

struct IO_entry_rec{
byte long_short;
byte reference_address[3];
word 10_fault_address[3];
word fault_group;
byte fault_category;
byte fault_type;
byte fault_description;
byte fault_specific_data[21];
word time_stampl[3];

h

struct read_last_fault_rec {
word table;
union {
struct PLC_entry_rec PLC_entry;
struct IO_entry_rec 10_entry_rec;

k

#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

This function is the C interface to service request #15 (Read Last-Logged Fault Table
Entry). The function will return the last fault table entry of the table specified in the
table field (PLC_FAULT TABLE, or IO_FAULT TABLE). The function returns a 1 if
successful and a 0 if unsuccessful.

In the return data, the long/short indicator defines the quantity of fault data present in
the fault entry. In the PLC fault table, a long/short value of 00 represents 8 bytes of fault
extra data present in the fault entry, and 01 represents 24 bytes of fault extra data. In the
I/O fault table, 02 represents 5 bytes of fault specific data, and 03 represents 21 bytes.

PLCC_mask 10 _interrupts (Series 90-70 Only)

int PLCC_mask_|O_interrupts(struct mask_|O_interrupts_rec *x);

struct mask_IO_interrupts_rec {
word mask;
word memory_type;
word memory_address;

h

#define MASK 1
#define UNMASK 0

/*

* memory types
*/

#define IBIT 70
#define AIMEM 10

This function is the C interface to service request #17 (Mask/Unmask I/O Interrupt).
The function will mask or unmask I/O interrupts according to the value in mask (MASK
or UNMASK). The memory type of the input to mask or unmask is in memory type.
The value for the memory_type can be %I (IBIT) or %Al (AIMEM). The address
specified must match a Series 90 input module with maskable channel and interrupts
enabled. This function will return 1 if successful and 0 if unsuccessful.

3-42 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_read_lO_override_status

int PLCC_read_lO_override_status(struct read_IO_override_status_rec *x);

struct read_|O_override_status_rec {
word override_status;

h
#define OVERRIDES_SET 1
#define NO_OVERRIDES_SET 0

This function is the C interface to service request #18 (Read I/O Override Status). The
function will return the override_status (OVERRIDES SET, or NO_OVERRIDES_SET).
The function will return 1 if successful and 0 if unsuccessful.

PLCC_set_run_enable (Series 90-70 Only)

int PLCC_set_run_enable(struct set_run_enable_rec *x);

struct set_run_enable_rec {
word enable;

h

#define RUN_ENABLED 1
#define RUN_DISABLED 2

This function is the C interface to service request #19 (Set Run Enable/Disable). The
function will set the PLC in either RUN_ENABLED or RUN_DISABLED depending on
what value was passed in the structure. The function will return 1 if successful and 0 if
unsuccessful.

Use SVCREQ function #19 to permit the ladder program to control the RUNmode of the
CPU.

PLCC_read_fault_tables (Series 90-70 Only)

int PLCC_read_fault_tables(struct read_fault_tables_rec *x);

struct PLC_entry_rec {
byte long_short;
byte reserved[3];
word PLC_fault_address[2];
word fault_group;
word error_code;
word fault_specific_data[12];
word time_stampl[3];

3

struct IO_entry_rec{
byte long_short;
byte reference_address[3];
word 10_fault_address|[3];
word fault_group;
byte fault_category;
byte fault_type;
byte fault_description;
byte fault_specific_data[21];
word time_stamp[3];

GFK-0646E Chapter 3 Writing a C Application 3-43

struct time_of_day_clock_rec{
byte seconds;
byte minutes;

byte hours;

byte day_of month;
byte month;

byte year;

}

struct read_fault_tables_rec {

word table;

word zero;

word reserved[13];

struct time_of _day_clk_rec time_since_clear;

word num_faults_since_clear;

word num_faults_in_queue;

word num_faults_read;

union {
struct PLC_entry_rec PLC_faults]NUM_PLC_FAULT_ENTRIES];
struct 10_entry rec 10_faultsf]NUM_IO_FAULT_ENTRIES];

k

#define PLC_FAULT_TABLEO
#define [IO_FAULT_TABLE 1

This function is the C interface to service request #20 (Read Fault Tables). The function
will read the fault table specified in the table field (PLC_FAULT TABLE or
I0_FAULT_TABLE). The function will return the table in an array of PLC_faults or

IO _faults. The zero field and the reserved fields do not hold fault data. The
time_since_clear fields are BCD numbers with seconds in the low order nibble and
tens of seconds in the high order nibble. The num_faults_since_clear field shows
the number of faults that have occurred since the table was last cleared. The
num_faults_read field shows the number of faults read into the arrays for I/O and
PLC faults; there is room for the entire table, but only the num_faults_read field
will have valid data. The function will return 1 if successful, and 0 if unsuccessful.

In the return data, the long/short indicator defines the quantity of fault data present in
the fault entry. In the PLC fault table, a long/short value of 00 represents 8 bytes of fault
extra data present in the fault entry, and 01 represents 24 bytes of fault extra data. In the
/O fault table, 02 represents 5 bytes of fault specific data, and 03 represents 21 bytes.

There are a maximum of 16 PLC fault table entries and 32 I/O fault table entries. If the
fault table read is empty, no data is returned.

3-44 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_mask_timed_interrupts (Series 90-70 Only)

int PLCC_mask_timed_interrupts(struct mask_timed_interrupts_rec *x);

struct mask_timed_interrupts_rec {
word mask_toggle;
word status;

h

#define READ_INTERRUPT_MASK 0
#define WRITE_INTERRUPT_MASK 1
#define MASK 1
#define UNMASK 0

This function is the C interface to service request #22 (Mask/Unmask Timed Interrupts).
This function returns 1 if successful 0 if unsuccessful. Use this function to mask or
unmasked timed interrupts and to read the current mask. When the interrupts are
masked, the PLC CPU will not execute any interrupt block that is associated with a
timed interrupt. Timed interrupts are masked/unmasked as a group. They cannot be
individually masked or unmasked.

To read current mask, set mask_toggle to 0.

To change current mask to unmask timed interrupts, set mask_toggle to1
and status to 0.

To change current mask to mask timed interrupts, set mask_toggle to1
and status to 1.

Successful execution will occur unless some number other than 0 or 1 is entered as the
requested operation or mask value.

PLCC_sus_res_HSC_interrupts (Series 90-70 Only)

int PLCC_sus_res_HSC_interrupts(struct sus_HSC_interrupts_rec *x);

struct sus_res_HSC _interrupts_rec {
word enable;
word memory_type;
word reference_address

h

/*

* memory types
*/

#define IBIT 70
#define AIMEM 10

#define ENABLE 0
#define DISABLE 1

This function is based on service request #32 (Suspend High Speed Counter Interrupts).
The function will enable or disable the high speed counter interrupts for a given address
and memory type.

GFK-0646E Chapter 3 Writing a C Application 3-45

PLCC_get_escm_status (Series 90-70 Only)

extern int _far PLCC_get_escm_status (struc escm_status_rec *);

struc escm_status_rec {
word port_number;
word port_status;

¥
#define port_1 1
#define port_ 2 2

If the function return value is zero (0), the function was not successful, usually indicating
that the PLC does not support ESCM ports (see Note below). If the function return
value is one (1), the function was successful.

This function also returns a status word for Ports 1 or 2 (word port_status). The bit
values for that word are shown in the following table:

Table 3-4. Port_Status for the PLCC_get_escm_status Function

Port Status

Meaning

bit 0

PORTN_OK: Requested port is ready. If value is 1,

the port is ready. If value is 0, the port is not usa

D

bit1

PORTN_ACTIVE: There is activity on this port. If

value is 1, the port is active. If value is 0, the porf

inactive.

S

bit 2

PORTN_DISABLED: Requested port is disabled.

If

value is 1, the port is disabled. If value is O, the port

is enabled.

bit 3

PORTN_FUSE_BLOWN: Requested port's fuse i
blown (for Port 2) or supply voltage is not within
range (for Port 1). If value is 1, the fuse is blown
voltage not within range). If value is 0, the fuse (
supply voltage) is okay.

D

=

Note

This function is supported only for Series 90-70 PLCs which support

Ports 1 and 2, specifically, CGR models beginning with Release 7.85 and

all CPX models.

3-46 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

e.

GFK-0646E

Module Communications

PLCC_comm_req

int PLCC_comm_req(struct comm_req_rec *x);

struct status_addr {
word seg_selector;
word offset;

h

struct comm_req_command_blk_rec {
word length;
word wait;
struct status_addr status;
word idle_timeourt;
word max_comm_time;
word data[128];

3

struct comm_req_rec {
struct comm_req_command_blk_rec *command_blk;
byte slot;
byte rack;
dword task_id;
3

This function is based on the COMM_RERdder logic block. The function returns 1 if
successful and 0 if unsuccessful.

Ladder Function Blocks

GFK-0646E

For PLCC_do_io, the Offset and Length for Word types is in units of Words. For Bit
types, the Offset and Length is in units of Bits. Offset and Length is 1-based.

PLCC_do _io
int PLCC_do_io(struct do_io_rec *x);

struct do_io_rec {
byte start_mem_type;
word start_mem_offset;
word length;
byte alt_mem_type;
word alt_mem_offset;

h
#define NULL_SEGSEL OxFF (Only valid for alt_mem_type)

/*

* memory types

*/

#define |_MEM 16

#define Q_MEM 18

#define R_MEM 8

#define AL MEM 10

#define AQ_MEM 12

#define WORD_CONSTANT 14 (Used for Enhanced DO_IO on 90-30)

Chapter 3 Writing a C Application

3-47

Note

Refer to the DO /O section of Chapter 4 or the Series 90-30/20/Micro
Programmable Controllers Reference Manual (GFK-0467) or the online help
in the Windows-based programming software for restrictions and
extentions of the 90-30 DO I/O—make sure you have a 90-30 open so
that you will receive 90-30 context sensitive help.

This function is used to update inputs or outputs for one scan while the program is
running. This function can be used in conjunction with a suspend I/O function , which
stops the normal I/O scan. (Suspend /O is a 90-70 only.) It can also be used to update
selected I/O during the program, in addition to the normal I/O scan.

If input references are specified, the function allows the most recent values of inputs to
be obtained for program logic. If output references are specified, PLCC_do_io updates
outputs based on the most current values stored in I/O memory. I/O points are serviced
in increments of entire I/O modules; the PLC adjusts the references, if necessary, while
the function executes. The PLCC_do_io function will not scan I/O modules that are not
configured.

Note

The PLCC_do_io function is supported for Series 90 I/O modules only.
It does not support Genius I/O modules or FIP I/O modules.

When this function executes, the input point specified by start_mem_type and
start_mem_offset and the bits included (as specified by length) are scanned. If
alternate_mem_type and alternate_mem_offset is defined, a copy of the data
is placed in alternate memory, and the real input points are not updated. If this function
references output data, data specified in start_mem_type and start_mem_offset

is written to the output modules. If alt locations are defined, the alternate data is written
to the output modules.

Execution of the function continues until either all inputs in the selected range have
reported or all outputs have been serviced on the I/O cards.

The function return a 1 unless one or more of the following is true (in which case it
returns a 0):

® Not all references of the type specified are present within the selected range

® The CPU is not able to properly handle the temporary list of I/O created by the
function

® The range specified includes I/O modules that are associated with a “Loss of I/O
Module” fault

Note

If the function is used with timed or I/O interrupts, transitional contacts
associated with scanned inputs may not operate as expected.

3-48 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Enhanced DO I/0 (Series 90-30 Only)

main ()

{

struct do_io_rec doio;

doio.start_ mem=l_MEM;
doio.start_mem_offset=1;

doio.length=16;
doio.alt_mem_type=WORD_CONSTANT,;
doio.alt_mem_offset=5;

PLCC_do_io(&doio);

}

This enhanced DO I/O function can only be used on a single discrete input or discrete
output 8-point, 16-point, or 32-point module. The enhanced DO I/O function is faster
than the standard DO I/O because the only checking it performs is to check the state of
the module in the slot specified to see if the module is okay. For more information about
the Enhanced DO I/O function, refer to the Enhanced DO I/O section of the Series
90-30/20/Micro Programmable Controllers Reference Manual (GFK-0467) or the online help
within the Windows-based programming software.

Note

To use the Enhanced DO /O, the alt_ mem_type must be set to
WORD_CONSTANT as shown above, and the alt_ mem_offset is always
the slot number.

PLCC_sus_io (Series 90-70 Only)
int PLCC_sus_io(void);

This function is used to stop normal I/O scans from occurring for one CPU sweep.
During the next output scan, all outputs are held at their current states. During the next
input scan, the input references are not updated with data from inputs. However,
during the input scan portion of the sweep the CPU will verify that Genius Bus
Controllers have completed their previous output updates.

Note

This function suspends all I/O, both analog and discrete, whether rack
I/O or Genius I/O.

The PLCC_sus_io function returns a 1 if successful, 0 if unsuccessful.

GFK-0646E Chapter 3 Writing a C Application 3-49

VME Semaphore Handlers (Series 90-70 Only)

The following functions are designed to enable semaphore handling on the VME bus.
As a result, the functions cannot be interrupted.

VME Read Modify Write (Series 90-70 Only)

The following functions are intended to handle masking semaphores on the VME bus.

PLCC_VME_RMW_byte

int PLCC_VME_RMW_byte (byte op_type, byte mask, unsigned long
address);

opt_type
#define VME_AND 0
#define VME_OR 1

This function will read the byte semaphore off the bus. If the semaphore is free then the
function will perform the indicated function (either an AND or an OR with the mask).
This function will return —1 if not supported. For a full explanation of all return values,
refer to page 3-51, Table 3-5.

PLCC_VME_RMW_word

int PLCC_VME_RMW_word (word op_type, word mask, unsigned long
address);

opt_type
#define VME_AND 0
#define VME_OR 1

This function will read the word semaphore off the bus. If the semaphore is free then
the function will perform the indicated function (either an AND or an OR with the
mask). This function will return —1 if not supported. For a full explanation of all return
values, refer to page 3-51, Table 3-5.

VME Test and Set (Series 90-70 Only)

The following functions are intended to handle simple on or off semaphores on the VME
bus.

PLCC_VME_TST byte

int PLCC_VME_TST_byte (byte *semaphore_output, unsigned long address);

This function reads a byte-sized semaphore from the VME bus address and tests the
least significant bit. The semaphore output will be 0 is the semaphore is not obtained, 1
if it is obtained. The user must release this semaphore when it is no longer needed. To
release a semaphore, write 0 to the semaphore. This function will return —1 if not
supported. For a full explanation of all return values, refer to page 3-51, Table 3-5.

3-50 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLCC_VME_TST word

int PLCC_VME_TST_word (word *semaphore_output, unsigned long address);

This function reads a word-sized semaphore from the VME bus address and tests the
least significant bit. The semaphore output will be 0 is the semaphore is not obtained, 1
if it is obtained. The user must free this semaphore when it is no longer needed. To
release a semaphore, write 0 to the semaphore. This function will return —1 if not
supported. The address must be word-aligned. For a full explanation of all return
values, refer to Table 3-5.

Return Status for VME Byte Functions (Series 90-70 Only)

GFK-0646E

Each of these VME functions:
PLCC_VME_ RMW _byte;
PLCC_VME__ RMW_word;
PLCC_VME_TST byte;
PLCC_VME__TST_word;

have the function return values shown in the following table:

Table 3-5. Return Status for PLCC_VME_RMW _byte Function

Return Status

(in hexadecimal) Meaning
-1 Not supported
0xO0FF Operation successful

All other return values
have the following format:

0000 0000 11xx xIxx Active bits (failures) are 0, inactive are 1.

bit 0 SYSFAIL* occurred during operation

bit 1 BERR* occurred during operation

bit 2 always 1

bit 3 Bus grant error occurred during operation
bit 4 Bus Hog occurred during operation
bit 5 Bus Interrupt Acknowledge failure

bit 6 always 1

bit 7 always 1

PLCC_SNP_ID

int PLCC_SNP_ID (byte request_type, char *id_str_ptr);

request_type
#define READ_ID 0
#define WRITE_ID 1

This function will read or write the SNP ID string passed in through id_str_ptr to the
PLC. The string should be an eight character buffer (space for seven letters and a NULL

Chapter 3 Writing a C Application 3-51

3-52

termination). This function returns 1 if successful, 0 if unsuccessful, and —1 if

unsupported.

PLCC_read_override

int PLCC_read_override (byte tbl_typ, word ref_num, word len,

byte *data);

tbl_typ

#define |_OVR
#define Q_OVR
#define M_OVR
#define G_OVR
#define GA_OVR
#define GB_OVR
#define GC_OVR
#define GD_OVR
#define GE_OVR

0

1
2
3
4
5
6
7
8

(Not supported on 90-30 CPUs)
(Not supported on 90-30 CPUs)
(Not supported on 90-30 CPUs)
(Not supported on 90-30 CPUs)
(Not supported on 90-30 CPUSs)

This function will read in the override table for the specified type. The read at the offset
must be byte-aligned, that is, ref_num must be set to a value from the following series 1,
9,17, 33,... The length is in bytes. The area pointed to by data must be large enough to
hold the amount being read. This function returns:

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

—0 if successful
—2bad_memory_type

—3 offset_not_byte aligned
—4reading_outside_ref mem

—5bad_data_pointer

GFK-0646E

Section 6: Application Considerations

When creating a C application, it is necessary to keep in mind a few items regarding the
target Series 90 PLC:

1. Wil floating point arithmetic be required? (Remember, in the 90-30 PLCs, only
CPU352 can perform floating point operations.)

2. How big is each of the target PLCs reference memories?
3. Willit become the MAIN program (Series 90-30 only)?

4. Will the block be called from the MAIN ladder block or from some other ladder
block?

5. How large is the C application likely to be?

6. What is the scheduling mode for the program (standalone C program or Ladder
Diagram program—Series 90-70 only)?

All of these questions must be kept in mind while developing C applications. The
following sections provide detail on each of these questions and other questions
regarding the creation of C applications.

Application File Names

Application file names are limited to 7 characters. The first character in the filename
must be alphabetic. Using file names of seven characters or less will avoid conflicts with
Logicmaster 90 when working on C applications.

Floating Point Arithmetic

The C Programmer’s Toolkit provides the capability to build C blocks or standalone C
programs which implement floating point math either through the use of a math
coprocessor (coprocessor required) or through software emulation (not available on
90-30 PLCs). Coprocessor- required C blocks and standalone C programs are created
using the rebuilt runtime library llibc7.far . Cblocks and standalone C programs
which use software emulation of floating point are created using the rebuilt runtime
library llibca.far . CFBKs may only use floating point if built for coprocessor model
CPUs.

The performance of individual floating point math operations is much better when
using the coprocessor. If, however, the target CPU is not guaranteed to have a math
coprocessor present, then software emulation of floating point math must be selected.

Note

With Series 90-30 PLCs, software emulation of floating point is not
supported. Of the 90-30 CPUs, only CPU352 has the floating point math
coprocessor; therefore, only the 352 CPUs can perform floating point
operations.

GFK-0646E Chapter 3 Writing a C Application 3-53

Available Reference Data Ranges

When a C application uses an index variable to select an element from PLC reference
memory, the value of the index variable should always be checked against the size of the
target PLCs reference memory. The size of any PLC reference memory can be
determined using the corresponding SIZE macro. As an example, consider the following
ladder logic rung and sample block, where the value in %P1 is to be used as an index
into %R memory and the value at %R[%P1] is to be copied to %P2:

#0001
CALL LOOK_UP)—
(EXTERNAL)
#POO0O1—X1 Y1 |—<PO000O2

The example shown and discussed above is for a 90-70 C block. The
90-30 block does not have parameters, and %P memory does not exist in
the 90-30 CPU.

Figure 3-7. Range Checking Indirect References Using the SIZE Macros

/* The value at xl will be used as an index into */
[* register memory. The value at %R(xl) will be */
/* copied to yl. %

main(word *xl, int *yl)

[* FIRST - check X1 & Yl != NULL */
/* SECOND - must range check value at x1 to ensure */
that we will stay within limits of PLC */
/“ %R reference memory. *
if ((xl != NULL) && yl != NULL)) {
if (*x1 > R STZE) return(ERROR);

/* Range check proved OK ==> go ahead and copy data */
:’:y]_ = RW(""Xl) B
return(OK) ;
}
else return (ERROR);
}

In the above example, the index *x1 is compared to R_SIZE. If the target PLC contains
1024 registers, then R_SIZE will evaluate to 1024. If *x1 is greater than 1024 (R_SIZE),
the program will return with the status ERROR which indicates that the OK output of
the CALL function block should be turned OFE With *x1 greater than R_SIZE, the C
block will return with ERROR status and no attempt is made to index into register
memory nor to copy any register memory value to *y1.

Note

The above example is not valid for Series 90-30 PLCs because the 90-30
PLC does not support parameter passing to the main function. Also
return values have no meaning for 90-30 PLCs.

3-54 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Global Variable Initialization

Global variables can be used by C applications running in a Series 90 PLC. Global
variables are those which are declared outside of a function, typically outside of and
before main() . Both initialized and uninitialized global variables may be used.

int XyZz; /* uninitialized global var */
int abc = 123; /* initialized global var */
main() {

xyz = RW(1);

RI(2) = ++abc;

return(OK) ;

When a C application is compiled and linked to form an executable (.EXE) file, all global
variables have a predefined location within the .EXE image. If the global variable is
declared in the C source to have an initial value, the location in the .EXE image for that
global variable will contain the initialized value. When a C application is incorporated
into a Logicmaster 90 folder and that folder is stored to a Series 90 PLC, the PLC receives
an image of the .EXE file with space pre-allocated for all global variables and with all
initialized global variables already containing their predefined values. Upon receiving
the .EXE image, the PLC will make a copy of the data portion.

Once the PLC is placed into RUNmode, the C application may operate upon any of its
global variables. Each of the C application’s global variables will retain its value from
one sweep to the next sweep and will continue to do so until the PLC goes to STOP
mode. On the transition from STOPmode to RUNmode, the PLC will re-initialize all of
the C application’s global data to those values in the saved copy of global data start
values. (Recall that the start values were saved when the folder was stored to the PLC.)

Static Variables

The keyword “static” may be used with either global variables or variables declared
inside a function (including main()). These variables will retain their value from
sweep to sweep like global data. If a static variable is declared with an initial value, the
variable will be initialized on the first execution from store or on transition from STOPto
RUNmode. If a static variable is declared without an initial value, the initial value is
undefined and must be initialized by the C application.

Note

If C blocks are used multiple times in a ladder, static or global variables
may not contain expected data from sweep to sweep. Multiple use
blocks must at least receive a unique ID for each call or a unique work
area to properly distinguish multiple calls.

GFK-0646E Chapter 3 Writing a C Application 3-55

Data Retentiveness

All global variables and static variables are either retentive or non-retentive. Values of
retentive data are preserved across both power-cycles (assuming a good battery is
attached) and stop-to-run transitions. Non-retentive data is reinitialized on each
stop-to-run transitions using values saved when the application was first stored.

All global and static variables, which are given an initial value, will be non-retentive. In
general, unitialized global data declared without the keyword “static” will be
non-retentive, global data with the keyword “static” will be retentive. Very large data
structures (that is, larger than 32 KB) without initialization values, however, will be
non-retentive, even though they have no defined initial values. Since non-retentive
data requires twice the memory space within the CPU (one for the working copy, and
one for the saved copy), large uninitialized data structures should be avoided if memory
usage is a concern.

The following examples were done using release 8.00 of the Microsoft C compiler.
Different compiler releases may cause different results. The retentive property of a
particular public variable (static variables are not listed) can be determined by examining
the .MAP file, which is made during the compile process. Data located within the BSS
section is retentive. Variables in other data sections (e.g., DATA, CONST, FAR_DATA, etc)
are non-retentive. Refer to Appendix D for a detailed description of determining the
CPU memory usage.

Examples :

int my_varl,; /* non-retentive */

int my_var2 = 20; /*n on-retentive, reset to 20 on stop-to-run transitions */
static int my_var3; [* retentive */

staticintmy_var4 =12; /*n on-retentive, reset to 12 on stop-to-run transitions */

static char big_array[32766]; /* retentive */

static char bigger_array[32767]; /* non-retentive due to large size */

3-56 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Main() Parameter Declaration Errors for Blocks (Series 90-70 Only)

GFK-0646E

When declaring the parameters to main() in a block, the type , order ,and number
of parameters must match the ladder logic call instruction exactly. Use the following
ladder logic segment and associated C block as an example:

[* This rung of ladder logic calls MATH2 to */
/* add the two integers X1 and X2 and place the sum in Y1l */
[* and subtract the integer X2 from the integer X1, placing */
[* the difference in Y2. */
#QO0001
CALL MATHZ C)—
(EXTERNAL)
#ROO001— X1 Y1 |—=PO0001
#ROO0OZ— X2 Y2 —=PO0002

Figure 3-8. Importance of Matching Parameter Type, Order, and Number

Note

The above example is from a Series 90-70 program. Series 90-30 C block
do not have parameters. In addition, %L and %P memory types are not
available on the 90-30 system.

/* MATH2 :

* This function has two input parameters and two output
* parameters.

* Y1l = X1 + X2;

*/ Y2 = X1 - X2;

main(int *x1, int *x2, int *yl, int *y2) ({
if (((x1 != NULL) && (yl != NULL)) &&
((x2 != NULL) && (y2 != NULL))) {
*yl = *x]l + *x2}
*y2 = *xl - *x2;
return(OK) ;

}
else return (ERROR);
}

As written above, the example is correct; the ladder logic call and the block declaration
match. The operation of the ladder logic and the block will proceed as designed.

Type Mismatch Errors (Series 90-70 Only)

If, however, the block declaration is changed to

main(float *x1, float *x2, float *yl, float *y2) {
if (((xl != NULL) && (yl != NULL)) &&
((x2 != NULL) && (y2 != NULL))) {

icyl = *x] + >'cX2;
*y2 = *x] - *x2;
return(OK) ;

}
else return (ERROR);

Chapter 3 Writing a C Application

3-57

execution errors will occur. The block will compile and link to an executable without
error. The .EXE file will add through the Logicmaster 90 Librarian and import to the
application folder without error. Similarly, the folder will store to the Series 90-70 PLC
without error. No error will appear until the ladder and block are executed. The ladder
logic will call MATHZ2passing pointers to two (2) input parameters and pointers to two (2)
output parameters. MATHZexpects two (2) input parameter pointers and two (2) output
parameter pointers. The error occurs because the ladder logic uses integer variables (16
bits each), but the block uses float variables (32 bits each). This results in the block using
the pointer x1 to read a 32 bit floating point value which starts at %R1 (the value used in
the ladder logic). The 32 bit floating point value starting at %R1 includes both %R1 and
%R2, but %R2 is the reference specified in ladder logic as x2. Since the input variables
overlap, unpredictable values will result from the execution of this block. Notice also
that the output parameters will have a similar problem.

Parameter Ordering Errors (Series 90-70 Only)

Execution errors can also occur due to differences in the order of the parameters when
calling a block and the order of the parameters in the block declaration of main()
Continuing with the same example, if the ladder logic is unchanged but main() is
declared as

main (int *x1, int *yl, int *x2, int *y2) {

X .

an execution error will occur. No error message will be generated, just unpredictable
output values. The execution error occurs because ladder logic always passes all of the
specified input parameters (X1 up to X7), in order, followed by all of the specified output
parameters (Y1 up to Y7), also in order. In this case, the ladder logic passes %R1, %R2,
%P1, and %P2, the two input parameters followed by the two output parameters. The
block associates the parameters from the ladder logic call with its own variable names, as
in the following example:

int *x1 refers to %Rl
int *yl refers to %R2
int *x2 refers to 7Pl
int *y2 refers to %P2

When the block executes the statement:

*yl = *x1 + *Xx2;

the resulting operation will to add the contents of %R1 (*x1) to the contents of %P1 (*x2)
and place the sum in %R2 (*y1), which is not what the ladder logic program expects.

Since the ladder logic call to a block always specifies the parameters in order X1..X7 and
Y1..Y7, the block declaration of main() must specify the parameters to main() in
the same order.

3-58 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Parameter Number Errors (Series 90-70 Only)

If the number of parameters associated with a block in ladder logic does not match the
number of parameters in the declaration of main() for the block, potentially severe
execution errors will occur.

Note

It is essential that the number of parameters in a call to a block and the
actual number of parameters required by the called block match;
otherwise, the block will use invalid pointer variables to perform reads
and writes.

Again, using our example with the ladder logic portion unchanged, the effect of a
difference in the number of parameters can be illustrated in the following example:

main (int *x1, int *yl) {
[* Add the contents of %Rl to the contents pointed to by x1 */
/* and then store the sum in the location pointed to by yl */

if ((x1 != NULL) && (yl != NULL)) {

*yl = *x1 + RI(l);
return(OK) ;
}
else return (ERROR);

In this scenario, the ladder logic call will pass four parameters, %R1, %R2, %P1, and
%P2. The block expects two parameters, x1 and y1, which it will associate with the
passed in parameters as follows:

int *x1 refers to 7Rl
int *yl refers to %R2
%P1 and %P2 are not referenced

The operation of this block with regard to parameter x1 is flawless. However, when y1 is
used as the pointer for storing the sum, the sum will be written to %R2, not to %P1. This
will cause incorrect operation of the application.

GFK-0646E Chapter 3 Writing a C Application 3-59

A more severe scenario is a block declared as follows:

main (int *x1, int *x2, int *x3, int *yl, int *y2, int *y3) {
[* Add the contents of %R, to the contents pointed to by x, *G

/* and then store the sum in the location pointed to by y, *

*yl = *x1 + RI(1l);
*y2 = *x2 + RI(2);
*y3 = *x3 + RI(3);
return(OK) ;

The above block can have catastrophic results if executed in conjunction with the
example ladder logic rung. Again, the ladder logic call is passing four parameters, a
pointer to %R1, a pointer to %R2, a pointer to %P1, and a pointer to %P2. The C
program expects six parameters, all pointers. The block will then associate each of the
declared parameters to main() with the pointers passed from the ladder logic call as

follows:
int *x1 refers to %Rl [* OK */
int *x2 refers to %R2 [* OK */
int *x3 refers to 7Pl [* error - wrong parameter */
int *yl refers to %P2 |* error - wrong parameter ¥/
int *y2 refers to an unknown value on the PLC stack
int *y3 refers to an unknown value on the PLC stack

The unknown values on the PLC stack will be used for y2 and y3 and will cause the C
program to write erroneously into PLC memory. The exact location of the write is
unpredictable.

Note

Always verify that the number of parameters expected by a block and
the number the ladder logic call will pass to that block are the same.
Always verify that the parameters are not NULL pointers before using.

3-60 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Local I/0 Specification Errors (Series 90-70 Only)

GFK-0646E

When declaring the 1/O specifications in the Logicmaster Program Specification Screen,

the size and type of each input and output specification must be compatible with the
specifications declared in the standalone C program. The following standalone I/O
specification is correct:

*

%

/* MATH2

This function has two input parameters and two output
parameters.

Y1l = X1 + X2;

Y2 = X1 - X2

IN1_F(x,2)
OUT1 F(y,2)

main() {
y[0] = x[0] + x[1];
y[1ll = x[0] - x[1];
return(OK) ;
}
/|SEL |TABLES [STATUS | [[LIE |SETUP |FOLDER |UTILTY [PRINT)

i EFE FE K E E E T

>
EXTERNAL FPROGRAM SPECIFICATION

Program MATHZ
Schedule Mode ORDERED (ORDERED, TRIGGERED, TIMED, PERIODIC)

Stack Size 00004 (k bytes)

INPUT SPECIFICATION OUTPUT SPECIFICATION
MEMORY START ~ LENGTH (bytes) MEMORY START ~ LENGTH (bytes)
#A10001 8 “#AQOOOL B |

<< Press ENTER key to Change Specification or press ESC Key to Exit >3
OFFL INE

:SMIKE~DEMO [PRG: DEMO [ELKE: _MAIN [ENTRY 0001
\\EEPLﬂCE : HE A//

The input array x will have valid data at the start of the program and %AQ0001will
have valid data after the program has finished executing.

Chapter 3 Writing a C Application

3-61

3-62

Header |
General | Input Parameters | Output Parameters I

Program Mame: hiath2
Swveep Mode: Marimal

Schedule Mode: Ordered

Task Mame: IS":.-'STSH? j
Stack [(KE: |1 =
=l

Ok Cancel | Apply Helgx

In the Windows-based programming software, you enter Program Specification through
the IEC Resource functionality. For more information, refer to the “Controlling Program
and Block Execution” section of Chapter 6, “Configuring Your Software” in GFK-1295.

I/0 Specification Missing in Logicmaster (Series 90-70 Only)

If the Program Specification is changed as follows,

>
EXTERNAL PROGRAM SPECIFICATION
Progran MATHZ
Schedule Mode ORDERED (ORDERED, TRIGGERED, TIMED, PERIODIC)

Stack Size 00004 (k bytes)

INPUT SPECIFICATION OUTPUT SPECIFICATION
MEMORY START LENGTH (bytes) MEMORY START ~ LENGTH (bytes)
“AQ0001 8
#A10001 B |

<{ Press ENTER key to Change Specification or press ESC Key to Exit >»
OFFL INE

/| ZEE |TABLES |STATUS | [[LIB |SETUP |FOLDER |UTILTY |PRINT
1 2 & K E R K Kk

:“\MIKE~DEMD PRG: DEMOD BLE: _MAIN [ENTRY 0001
EPLﬂCE : H

4

the input array x will have unknown data at the start of the program so there is no way

of knowing what %AQ0001will have after the program has finished executing.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Similarly, if the Program Specification appears as follows,

//]rnuenn | TABLES |STATUS | | |LIB |SETUP |FOLDER |UTILTY |PRINT N
1 =k E E K K K E U
>
EXTERNAL PROGRAM SPECIFICATION

Program MATHZ
Schedule Mode ORDERED (DRDERED, TRIGGERED, TIMED, PERIODIC)
Stack 3ize 00004 (k bytes)
INPUT SPECIFICATION OUTPUT SPECIFICATION
MEMORY START LENGTH (bytes) MEMORY START LENGTH (bytes)
ZA10001 il

760001 B |

<{ Press ENTER key to Change Specification or press ESC Key to Exit >>
OFFLINE|

:“MIKESDEMO [PRG: DEMO BLE: _MAIN [ENTRY 0001
\I' EPLACE : HE /

the input array x will have valid data at the start of the program but there is no way of
knowing what %AQ0001will have after the program has finished executing.

Incompatible Type

If the standalone C program is changed as follows,

/* MATH2
* This function has two input parameters and two output
parameters.

* Y1 = X1 + X2;
* Y2 = X1 - X2;
*

IN1 B(x,2)
OUT1 B(y,2)

main() {
y[0] = x[0] + x[1];
y[1l] = x[0] - x[1];
return(OK) ;

}

the input array x will have valid data at the start of the program with the rest of
%AI0001 being wasted, but there is no way of knowing what the upper word of
%AQ0001will have after the program has finished executing.

GFK-0646E Chapter 3 Writing a C Application 3-63

Uninitialized Pointers

3-64

Use of an uninitialized C pointer variable in your C application can cause catastrophic
effects on the PLC. It is essential that all pointer variables be correctly initialized prior to
use by a C application.

BAD PROGRAM - Uninitialized Pointer

main() {
byte *bad_ptr;
int loop;

[* Attempt to initialize data area through */
/* uninitialized pointer. *
for (loop = 0; loop < 10; loop++) {

*bad_ptr = 0;
}

return(OK) ;

Warning

All pointer variables in a C application, including those used by
Microsoft library functions, must be initialized before they are used, or
unpredictable results will occur. The use of an uninitialized pointer
may result in the Series 90-70 PLC logging one of the following fatal
faults in the PLC fault table and going to STOP/HALT mode: “EXE
block runtime error: PG_FLT: <block name>" or “STA prg runtime
error: PG_FLT: <program name>" where <block name> and
<program name> identify of the application that used the
uninitialized pointer.

Uninitialized pointers may also result from a C block or FBK user not
setting all required parameters. Check parameter pointers for NULL
before using.

For the 90-30 system, all pointer variables in a C application, including
those used by Microsoft library functions, must be initialized before
they are used, or unpredictable results will occur; however, there is no
fault message.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

PLC Local Registers (%P and %L) — Series 90-70 Only

C Blocks and C FBKs have access to %P and %L PLC reference memory through several
macros provided in the file PLCC9070.H in the C Programmer’s Toolkit. When
referencing %P and %L from a block, the following two reference memories appear as
two separate tables:

main() { /* no parameters to main * [
PW(1) = RW(1); [* Copy %Rl to %P1 */
LW(1l) = RW(2); /* Copy %R2 to 7Ll * [
return(OK) ;

}

The PLC memory location used as %L or %P is determined by the Series 90-70 PLC at
runtime, based on the context from which the block was called. If the block is called
from the MAINIadder logic block, then all %L references inside the block will reference
the %P table. The %P table and the %L table are the same when a block is called from
MAIN.

If, however, the same block is called from a ladder logic program block other than MAIN,
the %P and %L tables will be separate and unique in PLC memory. When the %P and
%L tables are separate, all references to %L will affect only the calling block’s %L table,
and all references to %P will affect only the main program block’s %P table.

When called from the MAIN ladder logic block, the following block will set %P1 equal to
%R1 and then set %L1 equal to %R2:

main() { * no parameters to main */
PW(l) = RW(1); [* Copy %Rl to %Pl */
LW(1) = RW(2); /* Copy %R2 to %L1 */
return(OK) ;

}

Since %L1 is actually %P1 in this case, this results in %P1 being set to the value
contained in %R2. Again, this is because %P and %L, when used in a block, refer to the
same memory table when called from MAIN ladder logic block. Conversely, when this
same block is called from any ladder sub-block, the result will be that %P1 equals %R1
and that %L1 equals %R2.

Note

Refer to “Blocks as Timed or I/O Interrupt Blocks,” for an explanation of
%P and %L in interrupt blocks.

Note

The %L and %P macros are not available to standalone C programs.

GFK-0646E Chapter 3 Writing a C Application 3-65

%P and %L in Ladder Logic (Series 90-70 Only)

The references %P and %L refer to two of the PLC’s internal memory tables. Each of
these types is word-oriented.

Table 3-6. Descriptions of %P and %L

Type

Description

%P | The prefix %P is used to assign program register references, which will store program
data from the main program block. This data can be accessed from all program blocks.
The size of the %P data block is based on the highest %P reference in all ladder logic
program blocks.

%L | The prefix %L is used to assign local register references, which will store data unique
to a ladder logic program block. The size of the %L data block is based upon the
highest %L reference in the associated ladder logic program block.

Both %P and %L user references have a scope associated with them. Each of these
references may be available throughout the logic program, or access to these references
may be limited to a single ladder logic program block.

Table 3-7. Data Scope of %P and %L

User Reference Range Scope
%P Program | Accessible from any program block.
%L Local Accessible from within a ladder logic block. Also accessible

from any external block called by the ladder logic block.

In a program block, %P should be used for program references which will be shared
with other program blocks. %L are local references which can be used to restrict the use
of register data to that ladder logic program block and any external block called by that
ladder logic block. These references are not available to any other parts of the program.

Note

The %L and %P macros are not available to standalone C programs.

3-66 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Block OK Output (Applicable to Series 90-70 Only)

In ladder logic, the function block CALL, when used with a block as the target, provides
a boolean OK output. This OK output (called ENO in the Windows-based programming
software) from the call is under the direct control of the block.

The OK output (ENO in the Windows-based programming software) is controlled by
the return value from main() . If main() returns a value of zero (0), the OK
output is turned ON (1). If, however, main() returns a value which is non-zero (any
value from 1 to 255), the CALL function block OK output is turned OFF (0). The OK
output is defined in this manner to mimic the handling of a return status from main()
for .EXE files running under MS-DOS. The key difference is that, under MS-DOS, the
exact value of the return status is accessible; and only the indication of OK or ERROR is
available. (The C symbols “OK” and “ERROR” are defined in the toolkit file
PLCC9070.H.)

Note

The 90-30 system always returns ENO (i.e., powerflow is always passed
after the call, even if the C subroutine block returns “ERROR”).

Standalone C Program Return Value (Series 90-70 Only)

If the return value from a standalone C program is anything but OK, then the local
output specification for the standalone C program does not get copied to the PLC CPU.
This occurs when the C code does not return OK, or when there is a problem and the
standalone C program exits with an error condition. The standalone C program will exit
with an error condition if there is a problem in the run-time library, or if the PLC detects
a problem during the execution of the program. In all error conditions a fault will be

logged.

Writes to %S Memory Using SB(x)

The %S table is for the PLC to provide status on its operation. This table is intended to
be written only by the CPU firmware; therefore, it is also intended to be read-only from
elsewhere in the system, specifically from the application program. Attempting to use
the SB(x) macro to write into %S memory will result in a compile error when compiling
the application C source file. Similarly, attempting to use the pointer variable sb_mem
(provided in PLCC9070.H or PLCC9030.H and the same pointer variable used by the
SB(x) macro) will result in the same compile error.

FST_EXE (Series 90-70 Only) and FST_SCN Macros

In the file PLCC9070.H (provided in the 90-70 C Programmer’s Toolkit), there are two
macros, FST_SCNand FST_EXE which provide blocks with direct access to %S0001
(system first scan indication) and with direct access to %S0121 (block first execution).
The FST_SCNmacro references %S0001 and acts exactly like the ladder logic reference
FST_SCN(%S0001). If a block is not called on the first PLC sweep, the macro FST_SCN
should not be used for initializing data in the block. In this case, FST_SCNwould never
be true. The standalone C program has a FST_SCNmacro but not a FST_EXEmacro.
For the standalone C program, FST_SCNis 1 for the first execution after a STOP—>
RUN transition or a RUN-MODE-STORE.

GFK-0646E Chapter 3 Writing a C Application 3-67

The FST_EXE macro operates differently than the FST_SCNmacro. There is no system
status bit associated with the first call to blocks. A block inherits FST_EXEfrom the block
which calls it. Therefore, if FST_EXEin the calling ladder logic program is true, when
the block is executed, the C macro FST_EXEwill also be true. The value of FST_EXEis
determined by the calling ladder logic block, not by the block. FST_EXEmay be TRUE
(1) if the block is called multiple times from one ladder logic block or is called from
multiple ladder logic blocks. If the call from the ladder logic to the block is conditional, it
is possible that the block may never see FST_EXEas true.

Note

You can find the FST _SCN macro for a 90-30 application in PLCC9030.H
(provided in the 90-30 C Programmer’s Toolkit), but the FST_EXE macro
is not supported for a 90-30 program.

LST_SCN Macro (Series 90-30 Only)

The LST_SCNmacro (located in the file PLCC9030.h) provides access to the %S50002
(system last scan indication) bit. The LST_SCNmacro behaves exactly like the ladder
logic reference LST_SCN This bit is a zero (0) on the final scan before the PLC enters
STOP/NO IO mode. Itis a one (1) all other times. If a C subroutine is not called on the
last scan before a PLC enters STOP/NO IO mode, the LST_SCNmacro should not be
used in that block to capture data or trigger events on the last scan. In such a case, the
data or events would never be triggered because the C subroutine was not called on the
last scan.

The LST_SCNmacro is only available on 90-30 PLCs. For more information, refer to the
Chapter 2 of the Series 90-30/20/Micro Reference Manual (GFK-0467) or Chapter 2 of the
Series 90-30 System Manual (GFK-1411).

Note

LST_SCN is not available for a power-down situation.

Runtime Error Handling

When a C application executes in a Series 90 PLC, if an error is generated from one of the
runtime library functions or from incorrect interaction between the C application and
the Series 90 CPU, the error will be detected and logged in the PLC fault table as an
application fault on the CPU (rack 0, slot 1). Examples of such errors include, but are not
limited to the following:

1. Integer divide by 0

2. Stack overflow

3. Floating point divide by 0

4. Printf() to serial port when serial port is not configured for MSGmode (90-70 Only)
5. Floating point overflow

6. Floating point underflow

When a runtime error is logged into the PLC fault table, the fault will contain the name
of the offending application and a text message describing the error. The descriptive text

3-68 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

message (for runtime library function errors) is the same text that would be displayed if
the error had occurred while the program was executing under MS-DOS; however, since
PLC fault table entries are limited in size, the text message in a C program fault may be
truncated.

An example of a runtime error and the resulting PLC fault is illustrated in the following
C application, DVO.C:

Series 90-70 Example
#include “plcc9070.h”

main() {
int x=3, y=0;

return(x/y);
}

Series 90-30 Example
#include “plcc9030.h”

EXE_stack_size=2048;

main() {
int x=3, y=0;

return(x/y);

When DVO0 (assume that the block name in the PLC is also DV0) executes in the PLC, an
integer divide by zero runtime error is generated (y=0). The message typically
displayed under DOS appears as follows:

run-time error R6003
- integer divide by 0
The faults logged in the Series 90 CPU and displayed by Logicmaster 90 or the
Windows-based programming software appears as follows:
EXE block runtime error:DV0:R6003-integer div
STA prg runtime error:DV0:R6003-integer div

Note

Attempting to execute a C application built to use the math coprocessor
on a Series 90 CPU which does not contain a coprocessor will cause the
following: a “No coprocessor” fault will be logged in the PLC fault
table, the C application will not execute, and an error status will be
returned to the calling ladder logic.

Note

Most floating point runtime errors (also known as floating point
exceptions) result in two faults being logged in the PLC fault table. Both
faults are the result of a single error. The text in the two faults is
different; the text in the second fault is a continuation of the text in the
first. For example, if a block named FNC7generated a floating point
divide by 0 exception, then the single error would cause the following
two faults:

EXE block runtime error:FNC7:M6103:MATH - float”
EXE block runtime error:FNC7:divide by 0

Chapter 3 Writing a C Application 3-69

C Application Size Under MS-DOS

Series 90-70 Size Limitations

C applications are based on a PLC-executable (.EXE) version of a user’s C application
source. For blocks, no PLC-executable .EXE file may be larger than 64,000 bytes, as
displayed by the MS-DOS directory (dir) command. For a 90-70 folder, C blocks cannot
be larger than 64,000 bytes to be added to the Logicmaster 90 library. In Logicmaster,
Standalone C programs have no .EXE file to inspect. Importing a standalone C program
will print the size of the executable file for examination. This size cannot exceed 512 KB.
When using the Windows-based programming software with a 90-70 folder, the same
size limitations remain. If the file has been built for debugging, the .EXE will have
symbol information which will not be loaded to the PLC (please see Chapter 7. “C
Application Debugger” for more details).

Note

A Series 90-70 PLC block with an .EXE file size of less than 64,000 bytes
may still be too large for the Logicmaster 90 Librarian to add the block to
its library. As part of the header information of every MS-DOS .EXE file
(.EXE files for MS-DOS Versions 2.0 and later) there is a field which
indicates the number of additional 16-byte memory areas, called
paragraphs, which are required by the block during execution. In this
manual, the field which indicates the number of additional paragraphs
required is referred to as the MINALLOCfield. When attempting to add
an .EXE file to the Logicmaster 90 library, the Librarian checks that the
MS-DOS directory size plus the additional area required during
execution is less than or equal to 64,000 bytes. This also applies to
standalone C programs when they are being inserted into folders
through Logicmaster or the Windows-based programming software.

Series 90-30 Size Limitations

C applications are based on a PLC-executable (.EXE) version of a user’s C application
source. For 90-30 folders, the total PLC memory available for C Main programs or C
subroutine blocks is 80 kilobytes.

C Application Impact on PLC Memory

As displayed under MS-DOS, the size of a PLC-executable file is the application base.
When the C application is stored to the CPU, the CPU must allocate more memory than
merely the MS-DOS size of the PLC-executable file. The additional space allocated by
the CPU is required for the following reasons:

1. To save the initial values of all C application global data

2. To maintain pertinent information regarding the C application (internal processing
overhead)

3. To create additional space for the execution of the C application (if the MINALLOC
field in the .EXE file header is not 0)

4. o create a stack from the C subroutine block (using EXE_stack_size)—Series 90-30
only

3-70 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

When using Logicmaster, the standalone C program has no .EXE file to view. Importing
a standalone C program will print the size of the executable file. To calculate the PLC
memory usage for a C application, refer to Appendix D, “Calculating PLC Memory
Usage for a C Application.”

Blocks as Timed or I/0 Interrupt Blocks (Series 90-70 Only)

Blocks may be used in the PLC as the target of a timed or I/O interrupt with the
following restrictions.

1. Ablock invoked as the result of a timed or I/O interrupt may not have parameters
associated with the call. The block must have 0 input parameters and 0 output
parameters. A block invoked as a subblock of a timed or I/O interrupt may have
parameters associated with the call.

2. A CFBK may be invoked as a subblock of main and be associated with a timed or
I/O interrupt (either an interrupt or a subblock of an interrupt). A C block invoked
as the result of a timed or I/O interrupt may not also be called from ladder logic.

3. Ablockinvoked as a timed or I/O interrupt is guaranteed to have 896 bytes of
available stack. A block invoked as a subblock of a timed or I/O interrupt has the
same stack as a block invoked as a subblock of main.

4. When a block is invoked as a timed or I/O interrupt, all references to %L memory
will reference the same location in the %P table. (This action is the same as when a
block is called directly from the MAINladder logic program.) When a block is
invoked as the subblock of a timed or I/O interrupt block, all references to %L
memory will be references to the %L of the block from which they were called.

5. Additional interrupts are not processed while a timed or I/O interrupt blocks and
associated subblocks are executing.

The following example and associated text covers the issues related to using C Blocks vs. C
FBKs when the same C application is going to be called during the normal execution of the
LD or SFC program AND from a possible timed or I/O interrupt.

GFK-0646E Chapter 3 Writing a C Application 3-71

3-72

Interrupt
i calls calls
Execution LD1 | LD2
some
C
T T T T T T T T T T T T T appJf
Normal
Execution calls calls

LD3 —» LD4

T “some C app” must be a Rel 6.00 or later C FBK. See text below for restrictions.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

Figure 3-9. Interrupt Block Calls and C Blocks/FBKs

In the example shown in Figure 3-9. two separate execution paths are depicted: normal
execution and interrupt execution. Normal execution is initiated through the standard
sweep mechanism of the operating system calling the . MAIN LD/SFC block. Then
through a series of calls to LD sub-blocks, the example eventually calls “some C app”.
Interrupt execution is initiated by either a timed event of by an interrupt event
(interrupt input) coming into the 90-70 PLC causing the operating system to invoke a
block. Beginning in Rel 6.00, calls can be made from an LD block to other blocks (LD, C
block, or C FBK). Note that calling a C block or C FBK terminates the call chain.

The example in Figure 3-8 shows that both the Normal Execution path AND the
Interrupt Execution path calling (through a chain of different LD blocks) the same block.
In order for this example to work correctly, this block MUST be a Rel 6.00 vintage C FBK.
Furthermore, a set of guidelines MUST be followed by the C FBK developer so that
execution of the block can be guaranteed.

All versions of 90-70 CPUs that support blocks (release 4 and later) and all versions of the
C Programmer’s Toolkit (IC641SWP709 and IC641SWP719) for Series 90-70 PLC have
clearly stated that the same C block cannot be invoked by way of normal and interrupt
execution paths. This restriction exists because the startup code in C blocks and code in
Microsoft runtime libraries is not re-entrant.

GFK-0646E

A C FBK should be used because a C FBK has re-entrant startup code and permits NO
CALLS to runtime library functions. This allows for a minimal amount of overhead and
code size. C FBKSs are also designed to allow the user to create re-entrant code if certain
guidelines are followed. These guidelines are described in the following section.

A C FBK developer should use the following guidelines to ensure the success of a
situation such as the one illustrated in Figure 3-9.

1. Only code written by the developer should be part of the C FBK (no PLCC_* calls
and no runtime library calls). This is the standard definition of a C FBK.

2. All variables used by the C FBK should be stack-based (automatic) variables.

3. If there is any portion of the C FBK which operates on PLC global memories
(%R, %P ...etc.), the C FBK must contain additional code to handle some sort of
hand-shaking between normal executions and interrupt executions to prevent
data incoherency. The hand-shaking could be accomplished by declaring a glob-
al flag (variable) in the C FBK (or using an application-reserved location in PLC
global memory) that the C FBK sets just prior to writing to the PLC global me-
mories and then clears when the update is complete. Execution of the block (re-
gardless of normal or interrupt) should read the global flag before changing the
PLC global memory. If the flag is set, the C FBK should not change the PLC
global memory.

Standalone C Programs Scheduled as Timed or Triggered Interrupts
(Series 90-70 Only)

Standalone C programs may be scheduled in the PLC as timed or triggered interrupts
with the following qualifications:

1. Astandalone C program scheduled as an interrupt may have 1/O specifications.
2. A standalone C program scheduled as an interrupt may be be assigned a priority.

3. Standalone C programs may be interrupted by programs of a higher priority and by
any timed or I/O interrupt block.

Program Scheduling Mode (Series 90-70 Only)

GFK-0646E

It is important to understand the scheduling mode for programs because the scheduling
mode of the program will affect the operation of the application. Please refer to
Chapter 2 of the Series 90-70 Reference Manual (GFK-0265G) or Chapter 2 of the Series
90-70 System Manual (GFK-1192) for further discussion.

Chapter 3 Writing a C Application 3-73

Scan Impact

3-74

The following table provides the scan impact of executing a single CALL external block
function block. The times listed are the sum of the entry overhead time and the exit

overhead time. The entry overhead time is measured from the start of the ladder logic
CALL function block to the first instruction to be executed in the C program main(). The
exit overhead time is measured from the first instruction after returning from the C

program main() to the next ladder logic instruction.

The first execution times reflect the scan impact the first time the block is called. The
normal execution times are for all calls except the first call.

Table 3-8. Scan Impact of Executing a Call to an External Block *

CALL External Block - Scan Impact
Entry Time + Exit Time
(microseconds)

CPU CPU Clock First Normal
Model Speed Floating Point Execution Execution
73x/77x 12 MHz None 318 289

Alternate Math 379 295

Coprocessor 2088 446

78x 16 MHz None 315 270
Alternate Math 447 377

Coprocessor 2328 453

91X 32 MHz None 97 86
Alternate Math 140 122

Coprocessor 618 133

92X 64 MHz None 67 51
Alternate Math 94 84

Coprocessor 339 82

90-30t 25 MHz None 366 312
351 Alternate Math Not Supported Not Supported
Coprocessor N/A N/A

90-30t 25 MHz None 366 312
352 Alternate Math Not Supported Not Supported
Coprocessor 2358 442

* The times given in this table are for C blocks that have no parameters. For those blocks which

do have parameters, add 14 microseconds/parameter pair for a 73x/77x CPU,
6 microseconds/parameter pair for a 78x CPU, 2 microseconds/parameter pair for a 914/915 CPU,

and 1 microsecond/parameter pair for a 924/925 CPU.
1t The times given for 90-30 CPUs are for C subroutine blocks. For C Main programs,
subtract 12 microseconds.

Note

The scan impact for calling an external (C) block on an IC697CPU731N or
earlier or an IC697CPU771L or earlier will be somewhat slower than those
listed in the previous table.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

The following table provides the overhead time for a standalone C program. The times
listed include the call overhead and overhead for each 1/O specification.

Table 3-9. Overhead Time for a Standalone C Program (Series 90-70 Only)

Sweep Impact
(all times in microseconds)
Item Impacting Sweep 781/782 | 914/915 | 924/925
(16MHz) | (32MHz) | (64MHz)
No Floating Point Math
Call overhead 317 116 74
Overhead for first local input spec (1 byte) 3 3 2
Overhead for each additional local input spec (1 byte) 6 2 2
Overhead for first local output spec (1 byte) 3 3 2
Overhead for each additional local output spec (1 byte) 6 2 2
Overhead for each additional byte in a local I/O spec 1 1 1
Floating Point Math
First scan call overhead for Alt FP 600 200 100
First scan call overhead for 80x87 coproc FP math 1900 500 300
Non-first scan call overhead for Alt FP 340 118 74
Non-first scan call overhead for 80x87 coproc FP math 345 182 125
Note
All local I/O specifications above use %1 as a local input specifications
and %Q as local output specifications. Using %M, %T, and %S will
result in the same execution times. Should %R, %Al, or %AQ be used,
the resulting sweep impact (per byte of local I/O spec) will be less than
listed. The use of %P and %L is not permitted with standalone
programs.
Chapter 3 Writing a C Application 3-75

Section 7: Testing C Applications in the MS-DOS Environment

It is highly recommended that all C applications be tested prior to execution in a Series
90 PLC. This is best accomplished by testing the application within the MS-DOS
environment.

If you compile and link a C application to form a DOS-executable .EXE file and if you
invoke the resulting .EXE file from the MS-DOS prompt, MS-DOS will execute the EXE
file once. When main() in the C application returns, MS-DOS will exit back to the
MS-DOS prompt. Since repeating these steps over and over in order to test different
input conditions to a C application is very cumbersome, the C Programmer’s Toolkit
provides three test harnesses to aid in debugging the C application.

Note

In order to facilitate debugging with printf() , runtime libraries have
been enabled for C FBKs. All runtime library calls (both explicitly placed
in the code by the user and implicitly placed by the compiler) are not
allowed for C FBKs under the PLC, but may not be detected during the
MS-DOS debugging.

Test Harnesses

Each test harness consists of one file that is compiled and linked with the user’s C
application. The harness provides the PLC sweep mechanism-a very basic PLC sweep-
while operating under MS-DOS. The harness may be copied and modified to suit each
C application that is to be tested.

The only requirements for modifying a harness are as follows:

1. The name of the test harness file must always be BLKHARN.C, FBKHARN.C, or
SAPHARN.C (for C blocks, C FBKs, or standalone C programs respectively).

2. The name of the function declared in the harness must be plc_sweep()

Each version of a block harness that is created may be tailored to send the correct type,
ordering, and number of parameters to the main() function in the block being tested.

The harness also provides for the allocation of all PLC reference memory tables. So
even though the C application is operating under MS-DOS and not in the Series 90-70
PLC, thereis still a %R table, %I table, % Q table, etc..., all of which can be referenced
from the harness or from the C application. The size of each reference table may also be
user-selected by modifying the #define statements at the top of the harness.

The versions of harnesses provided in the C Programmer’s Toolkit directory \s9070c
or\s9030c are generic test harnesses. The block versions call the function main()
passing seven input and seven output parameters. Also in these test harnesses is control
of FST_SCNand FST_EXE so that if the C application uses FST_EXEand/or FST_SCN
the values of the two %S5 references will be correct. The standalone C program version
copies the input specification (taken from the user), calls the function main() , and
then copies the output specification. The harness also control the FST_SCNfor the
standalone C program.

3-76 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Also provided as part of the C Programmer’s Toolkit are five example programs. Two of

these example programs have a modified version of BLKHARN.C The modifications to

each of the example BLKHARN.Cfiles are designed to enable testing of the target C

application in different ways. Example 1 is interactive in its receiving and displaying of
application information. Example 2 uses an input data file for values to pass to the C

application and places the results returned from the C application in an output data file.

The other three examples cover C FBKs, standalone C programs, and multiple sources.

BLDVARS File

GFK-0646E

The Toolkit uses the file BLDVARS to define the type of application being built and

whether debug is included. If this file does not exist in the directory with the source

files, the build procedure will copy the BLDVARSile from the \S9070C (Series 90-70) or

\S9030C (Series 90-30) directory. The default BLDVARSfile is shown below:

THHP B PR AR
BLDVARS
Copyright (c) 1994, GE Fanuc Automation North America, Inc.

All rights reserved.

This file defines build parameters.

HoHHF R H R

AR R R R R R R B R R R

debug information on or off

ON include debug information in the build

for the debugger

OFF do not include the debug information in

the build

DEBUG=0OFF

type of build (C exe block, C fbk, standalone C program)
BLOCK C exe block

FBK C fbk

STANDALONE standalone C program

TYPE=BLOCK

The default BLDVARSile designates a C block build with no debug information. To

allow for debug information (which is required for the debugger under the PLC), change

the line in BLDVARShat is currently DEBUG=0Ffo DEBUG=0Olhote that ON must be
in all capital letters). To change the application type that is built, change the type field

from TYPE=BLOCHKo either TYPE=FBKor TYPE=STANDALON@®nce again in all capital

letters). If you wish to change these variable strictly for the files in one directory make

the changes to the BLDVARSile in that directory.

Note

(Series 90-30 only) For the Series 90-30, DEBUG must always be set to
OFFE, TYPE must always be set to BLOCK. They are the only ones
supported for the 90-30.

Chapter 3 Writing a C Application

3-77

Building for MS-DOS Execution (Series 90-70)

Once the application is written, a copy of the appropriate harness has been customized
for the C application, and BLDVARShas been modified, it is time to build the executable
file (EXE). As part of the C Programmer’s Toolkit, several MS-DOS batch files (.BAT) are
installed in the \s9070c directory. The MKDOS.BATand MKDOS7.BAT files are used
to build a C application for execution under MS-DOS. Both of these .BAT files will
create an MS-DOS executable from a C application source file and harness. The
difference between MKDOSAnd MKDOSs in the implementation of floating point
arithmetic. If the MS-DOS machine that will be used to test this C application contains a
math coprocessor and the eventual target PLC for this C application will also contain a
math coprocessor, then MKDOS7.BATshould be used to build the executable. If either
the MS-DOS machine used for testing or the eventual target PLC will not contain a math
coprocessor, then use MKDOS.BATto build the executable.

Note

The harness file must reside in the same MS-DOS directory as your C
application program source file. If the harness is not in the same
directory as your C application source file, then an error message stating
that the harness could not be found will be displayed and no executable
will be created.

The MS-DOS syntax for using MKDOSs:

c:\apps> MKDOS <application filename>
Similarly, the syntax for MKDOSTs:

c:\apps> MKDOS?7 <application filename>

In the following example, assume the C source code is in the file MATH.C

[* MATH :
* This function has two input parameters and two output
* parameters.

* Y1 = X1 + X2;
A/ Y2 = X1 - X2;

main(int *x1, int *x2, int *yl, int *y2) ({
if (((xl != NULL) && (yl != NULL)) &&
((x2 != NULL) && (y2 != NULL))) {
*yl = *xl + *x2;
*y2 = *xl - *x2;
return(OK) ;
}
else return (ERROR);

3-78 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

To build an .EXE file, for execution under MS-DOS, invoke MKDOS.BATspecifying the
application filename MATH as a parameter:

c:\apps> MKDOS MATH

If the example file MATH.Ccontained source code which used C types like float or
double AND the target MS-DOS machine and target PLC both had a math coprocessor,
then MATH.C could be built using MKDOS¥?

c:\apps> MKDOS7 MATH

Invoking either MKDO®r MKDOSAnd specifying the application source code filename
will cause the following;:

1. The creation of a subdirectory named DOS under the current directory

2. The compilation of the application source file creating an output object file ((OBJ) in
the DOS subdirectory

3. The compilation of the harness creating an output object file ((OBJ) in the DOS
subdirectory

4. The linking of these two modules with the required runtime libraries to create an
MS-DOS-executable output file ((EXE) in the DOS subdirectory

The MS-DOS executable file will have the same name as the C application source file. In
the previous example, using MATH.G the MS-DOS executable would be MATH.EXE

Note

When the MS-DOS command file MKDOS7.BATis used to create the
MS-DOS executable file, a coprocessor is required at execution time.

The MS-DOS batch files MKDOS.BATand MKDOS7.BATand the makefile
(PLCC9070.MAK) invoked by each of these batch files are designed to support either a
single application source file or multiple sources files. To learn more about multiple
sources files refer to Chapter 6, “C Application Development Using Multiple C Source
Files.”

Note

The build procedures for the Toolkit are conditional builds. This means
that the application will be rebuilt only if the source files (.C) are newer
than the object files ((OBJ). Therefore, if you are switching from a build
that requires a coprocessor to one that doesn’t, the object files (.OBJ)
need to be deleted.

GFK-0646E Chapter 3 Writing a C Application 3-79

Debugging under MS-DOS

If MS-DOS testing of a C application uncovers bugs in the C application source file, use
one of the following approaches to debug the file:

1. printf() debugging
2. Microsoft CodeView debugging

printf() Debugging

Using printf() debugging involves inserting C printf() statements at key points
within the C application. As the application executes under MS-DOS, each of the
printf() statements encountered will cause its text string to be printed to the screen.
By following the printed text string, you can determine the path taken through the
software. The number or placement of any printf() statement is completely up to
the developer.

However, there are a few drawbacks to using printf()

1. If the C application is not a simple program, the number of printf() statements
required to follow the execution path may be quite large.

2. If there are a large number of printf() statements inserted into the C
application, the compile time and amount of generated code will be greatly
increased.

3. With a large number of printf() statements, the corresponding number of text
strings displayed to the screen may make following the program’s execution path
difficult.

4. Debugging using printf() is available to C FBKs when operating in the MS-DOS
environment.

Because of these drawbacks to using printf() debugging, Microsoft CodeView
debugging is preferred for all but the simplest C applications.

Microsoft CodeView Debugging

The .EXE file created when either MKDOS.BATor MKDOS7.BATis used contains the
symbol, line number, and debug information necessary for using the Microsoft
CodeView debugger. Within CodeView, variables may be examined, variables may be
modified, breakpoints can be set, input can be entered, and output can be observed — all
without adding numerous printf() statements.

3-80 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

While in CodeView, the MS-DOS versions of PLC reference memory tables (sized and
allocated through the harness) can be accessed using the names described in the
following table:

Table 3-10. MS-DOS Versions of 90-70 PLC Reference Memories

CodeView Symbol
Memory Type PLC Reference (case sensitive)
Registers %R R TBL
Analog Inputs % Al _AI TBL
Analog Outputs %AQ _AQ_TBL
Inputs %1 1 TBL
Outputs %Q _Q TBL
Local Registers t%L _L TBL
1%P _P TBL
Temporary Coils %T _T_TBL
Internal Coils %M _M_TBL
System Status %S _S TBL
%SA _SA TBL
%SB “SB_TBL
%SC "SC_TBL
Genius %G _G_TBL
%GA "GA_TBL
%GB _GB_TBL
% GC _GC_TBL
%GD “GD_TBL
%GE _GE_TBL
Transition Memory I TRANS TBL
"Q TRANS_TBL
_T TRANS_TBL
_M_TRANS_TBL
S TRANS TBL
_SA_TRANS_TBL
“SB_TRANS_TBL
“SC_TRANS_TBL
_G_TRANS_TBL
_GA_TRANS TBL
_GB_TRANS_TBL

~GC_TRANS_TBL
_GD_TRANS_TBL
_GE_TRANS_TBL

Diagnostic Memory

1 DIAG_TBL
"Q DIAG_TBL
“AI DIAG_TBL
“AQ_DIAG_TBL

Fault Memory

“RSB_TBL

t not available for standalone C programs

Using the symbol names in the previous table, any of the MS-DOS versions of the 90-70
PLC reference table may be initialized, viewed, or modified during execution.

For more information on Microsoft CodeView, please consult the documentation

provided with your Microsoft C Compiler.

Chapter 3 Writing a C Application

3-81

Building for MS-DOS Execution (Series 90-30)

Once the application is written, a copy of the appropriate harness has been customized
for the C application, and BLDVARShas been modified, it is time to build the executable
file (.EXE). As part of the C Programmer’s Toolkit, several MS-DOS batch files (.BAT) are
installed in the \s9030c directory. The MK3DOS.BATand MK3DOS7.BAT files are
used to build a C application for execution under MS-DOS. Both of these .BAT files will
create an MS-DOS executable from a C application source file and harness. The
difference between MK3DOSand MK3DOSs in the implementation of floating point
arithmetic. If the MS-DOS machine that will be used to test this C application contains a
math coprocessor and the eventual target PLC for this C application will also contain a
math coprocessor, then MK3DOS7.BATshould be used to build the executable. If either
the MS-DOS machine used for testing or the eventual target PLC will not contain a math
coprocessor, then use MK3DOS.BATto build the executable.

Note

The harness file must reside in the same MS-DOS directory as your C
application program source file. If the harness is not in the same
directory as your C application source file, then an error message stating
that the harness could not be found will be displayed and no executable
will be created.

The MS-DOS syntax for using MK3DOSs:

c:\apps> MK3DOS <application filename>
Similarly, the syntax for MK3DOSTs:

c:\apps> MK3DOS?7 <application filename>

In the following example, assume the C source code is in the file MATH.C

#include “plcc9030.h”
EXE_stack size = 2048;

[%* % MATH :

* This function has two input parameters and two ouput parameters.
* Input parameter one two will be located in %R0001 and 7%R0002
* respectfully. The output parameters will be located in

* %AQ0001 and” %AQ0002.
* 7AQ0001

= ZR0001 + 7R0002;
* %AQ0002 = ZR0001 - 7%ZR0002;
*[main()
{

AQI(l) = RI(1l) + RI(2);
AQI(2) = RI(1l) - RI(2);
return(OK) ;

}

3-82 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

To build an .EXE file, for execution under MS-DOS, invoke MK3DOS.BATspecifying the
application filename MATH as a parameter:

c:\apps> MK3DOS MATH

If the example file MATH.Ccontained source code which used C types like float or
double AND the target MS-DOS machine and target PLC both had a math coprocessor,
then MATH.C could be built using MK3DOSY7

c:\apps> MK3DOS7 MATH

Invoking either MK3DO®r MK3DOSAnd specifying the application source code
filename will cause the following;:

1. The creation of a subdirectory named DOS under the current directory

2. The compilation of the application source file creating an output object file ((OBJ) in
the DOS subdirectory

3. The compilation of the harness creating an output object file ((OBJ) in the DOS
subdirectory

4. The linking of these two modules with the required runtime libraries to create an
MS-DOS-executable output file ((EXE) in the DOS subdirectory

The MS-DOS executable file will have the same name as the C application source file. In
the previous example, using MATH.G the MS-DOS executable would be MATH.EXE

Note

When the MS-DOS command file MK3DOS7.BATis used to create the
MS-DOS executable file, a coprocessor is required at execution time.

The MS-DOS batch files MK3DOS.BATand MK3DOS7.BATand the makefile
(PLCC9030.MAK) invoked by each of these batch files are designed to support either a
single application source file or multiple sources files. To learn more about multiple
sources files refer to Chapter 6, “C Application Development Using Multiple C Source
Files.”

Note

The build procedures for the Toolkit are conditional builds. This means
that the application will be rebuilt only if the source files (.C) are newer
than the object files ((OBJ). Therefore, if you are switching from a build
that requires a coprocessor to one that doesn’t, the object files (.OBJ)
need to be deleted.

GFK-0646E Chapter 3 Writing a C Application 3-83

Debugging Under MS-DOS

If MS-DOS testing of a C application uncovers bugs in the C application source file, use
one of the following approaches to debug the file:

1. printf() debugging
2. Microsoft CodeView debugging

printf() Debugging

Using printf() debugging involves inserting printf() statements at key points
within the C application. As the application executes under MS-DOS, each of the
printf() statements encountered will cause its text string to be printed to the screen.
By following the printed text string, you can determine the path taken through the
software. The number or placement of any printf() statement is completely up to
the developer.

However, there are a few drawbacks to using printf()

1. If the C application is not a simple program, the number of printf() statements
required to follow the execution path may be quite large.

2. If there are a large number of printf() statements inserted into the C
application, the compile time and amount of generated code will be greatly
increased.

3. With a large number of printf() statements, the corresponding number of text
strings displayed to the screen may make following the program’s execution path
difficult.

4. Debugging using printf() is available to C FBKs when operating in the MS-DOS
environment.

Because of these drawbacks to using printf() debugging, Microsoft CodeView
debugging is preferred for all but the simplest C applications.

Microsoft CodeView Debugging

The .EXE file created when either MK3DOS.BATor MK3DOS7.BATis used contains the
symbol, line number, and debug information necessary for using the Microsoft
CodeView debugger. Within CodeView, variables may be examined, variables may be
modified, breakpoints can be set, input can be entered, and output can be observed — all
without adding numerous printf() statements.

3-84 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

While in CodeView, the MS-DOS versions of PLC reference memory tables (sized and
allocated through the harness) can be accessed using the names described in the
following table:

Table 3-11. MS-DOS Versions of 90-30 PLC Reference Memories

CodeView Symbol
Memory Type PLC Reference (case sensitive)
Registers %R __ R TBL
Analog Inputs % Al Al TBL
Analog Outputs % AQ ___AQ TBL
Inputs %1 I TBL
Outputs %Q _ Q TBL
Temporary Coils %'T _ T TBL
Internal Coils %M _ M TBL
System Status %S __ S TBL
%0SA __SA_TBL
%SB —_SB_TBL
%SC ~ SC_TBL
Genius %G _ G TBL
Transition Memory _ I TRANS_TBL
"~ Q TRANS_ TBL
__ T TRANS_TBL
" M_TRANS_TBL
~_ S TRANS TBL

~_SA_TRANS_TBL
—_SB_TRANS_TBL
~_SC_TRANS_TBL
—_ G _TRANS TBL

Chapter 3 Writing a C Application

Using the symbol names in the previous table, any of the MS-DOS versions of the 90-30
PLC reference table may be initialized, viewed, or modified during execution.

For more information on Microsoft CodeView, please consult the documentation
provided with your Microsoft C Compiler.

3-85

Section 8: C Applications in the Series 90 PLC Environment

Once the C application has been tested under MS-DOS and all execution errors have
been corrected, the next step is to rebuild the application for execution in the Series 90
PLC.

BLDVARS File

3-86

The Toolkit uses a file, BLDVARS, to define the type of application being built and
determine whether debug information is included. If this file does not exist in the
directory with the source files, the build procedure will copy the BLDVARSile from the
\S9070C or\S9030C directory. The default BLDVARSile is shown below:

SR R R R R R R R R R
BLDVARS
Copyright (c) 1994, GE Fanuc Automation North America, Inc.

All rights reserved.

This file defines build parameters.

HoHHHHHHR

B R T R R R R R B T B R R R R T T

debug information on or off

ON include debug information in the build

for the debugger

OFF do not include the debug information in

the build

DEBUG=0OFF

type of build (C exe block, C fbk, standalone C program)
BLOCK C exe block

FBK C fbk

STANDALONE standalone C program

TYPE=BLOCK

C application Import type

#LM90 compatible for LM90 import

CC90 compatible for import into the Windows-based programming software
Import=LM90

The default BLDVARSile designates a C block build with no debug information. To
allow for debug information (which is required for running the C Application Debugger
under the PLC), change the line in BLDVARShat is currently DEBUG=0OFFo DEBUG=0ON
(note that ON must be in all capital letters). To change the application type that is built,
change the type field from TYPE=BLOCHKo either TYPE=FBKor TYPE=STANDALONE
(once again in all capital letters). If you wish to change these variables strictly for the

files in one directory, make the changes to the BLDVARSile in that directory.

Note

The Series 90-30 PLC does not support DEBUG = ON. Also, TYPE must
be set to BLOCK.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Creating a Folder for a Standalone C Program (Series 90-70 Only)

When creating a standalone C program, a Logicmaster 90-70 folder MUST be created
BEFORE the build procedure is started. The build procedure will not create a folder.
Refer to Logicmaster 90-70 User’s Manual (GFK-0263) for information on how to create a
program folder.

Building for 90-70 PLC Execution

To build a PLC-executable .EXE file from a C application source file, use one of the two
DOS command files MKPLC.BATor MKPLC7.BAT (Both of these are provided in the
\s9070c directory as part of the C Programmer’s Toolkit.) The use of and differences
between MKPLCand MKPLC7are analogous to MKDOSnd MKDOSTor building DOS
executables. MKPLCwill build a PLC executable which does not require a coprocessor
and will not use a coprocessor, even if one is present. MKPLC7does the opposite: it will
build a PLC executable which requires a coprocessor and will not execute without a
COPTOCeSSOr.

If no floating point is required or if floating point is required but no coprocessor will be
available in the target PLC, use MKPLC.BAT

c:\apps> MKPLC <application filename>

If, however, floating point is required and the target PLC is guaranteed to have a math
coprocessor, use MKPLC7.BAT

c:\apps> MKPLC7 <application filename>

Note

When using MKPLC and the Microsoft C v7.0 or v8.0 compiler to create
a C application, the following messages will be displayed. This
messages are expected and no action is required:

Command line warning D4023 : option ‘/FPa’ forces use of optimizing compiler

LINK warning L4021 : no stack segment

Invoking either MKPLCor MKPLC7and specifying the application source code file name
will cause the following;:

1. The creation of a subdirectory named PLC under the current directory

2. The compilation of the application source file creating an output object file ((OBJ) in
the PLC subdirectory

3. The linking of the object module with the required runtime libraries to create an
output file (.PPP) in the PLC subdirectory

GFK-0646E Chapter 3 Writing a C Application 3-87

4. The processing of the linked file (.PPP) in the PLC subdirectory into a
PLC-executable file (.(EXE for C blocks and .STA for standalone C programs) in the
PLC subdirectory

5. In the case of a standalone C program build, the user will be prompted for a target
folder name, and the PLC executable file (.STA) will be imported into the folder and
deleted from the PLC subdirectory. For more detail see the section below Importing
Standalone C Programs into Folders.

The PLC-executable file as well as the standalone C program will have the same name
as the application C program source file. (If the C application source file is QWERTY.C
the PLC executable file to be added to the Logicmaster 90-70 Librarian would be
QWERTY.EXEand the standalone C program name would be QWERT)Y

Note

PLC-executable files may be invoked under MS-DOS without causing
the MS-DOS machine to crash. All PLC-executable files created with the
C Programmer’s Toolkit verify that the target hardware is a Series 90-70
PLC at execution startup. If any PLC executable detects that it is not
running in a Series 90-70 PLC, an error message is displayed and the
program immediately returns to MS-DOS.

The MS-DOS batch files MKPLC.BATand MKPLC7.BATand the makefiles invoked by
each of these batch files are designed to support a single application source file or
multiple sources files. Refer to Chapter 6, “C Application Development Using Multiple C
Source Files,” for more information about multiple source files.

Note

The build procedures for the Toolkit are conditional builds. This means
that the application will be rebuilt only if the source files (.C) are newer
than the object files (.OBJ). Therefore, if you are switching from a build
that requires a coprocessor to one that doesn’t, the object files (.OBJ)
need to be deleted.

Building for 90-30 PLC Execution

To build a PLC-executable .EXE file from a C application source file, use one of the two
DOS command files MK3PLC.BATor MK3PLC7.BAT (Both of these are provided in the
\s9030c directory as part of the C Programmer’s Toolkit.) The use of and differences
between MK3PLCand MK3PLC7are analogous to MK3DOSnd MK3DOSor building
DOS executables. MK3PLCwill build a PLC executable which does not require a
coprocessor and will not use a coprocessor, even if one is present. MK3PLC7does the
opposite: it will build a PLC executable which requires a coprocessor and will not execute
without a coprocessor.

If no floating point is required or if floating point is required, use MK3PLC.BAT
c:\apps> MK3PLC <application filename>

If, however, floating point is required and the target PLC is guaranteed to have a math
coprocessor, use MK3PLC7.BAT

c:\apps> MK3PLC7 <application filename>

3-88 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Note

When using MKPLC and the Microsoft C v8.0 compiler to create a C
application, the following messages will be displayed. This messages
are expected and no action is required:

Command line warning D4023 : option ‘/FPa’ forces use of optimizing compiler

LINK warning L4021 : no stack segment

Invoking either MK3PLCor MK3PLC7and specifying the application source code file
name will cause the following:

1. The creation of a subdirectory named PLC under the current directory

2. The compilation of the application source file creating an output object file ((OBJ) in
the PLC subdirectory

3. The linking of the object module with the required runtime libraries to create an
output file (.PPP) in the PLC subdirectory

4. The processing of the linked file (.PPP) in the PLC subdirectory into a
PLC-executable file (EXE for C blocks and .STA for standalone C programs) in the
PLC subdirectory

The PLC-executable file will have the same name as the application C program source
file.

Note

PLC-executable files may be invoked under MS-DOS without causing
the MS-DOS machine to crash. All PLC-executable files created with the
C Programmer’s Toolkit verify that the target hardware is a Series 90
PLC at execution startup. If any PLC executable detects that it is not
running in a Series 90 PLC, an error message is displayed and the
program immediately returns to MS-DOS.

The MS-DOS batch files MK3PLC.BATand MK3PLC7.BATand the makefiles invoked by
each of these batch files are designed to support a single application source file or
multiple sources files. Refer to Chapter 6, “C Application Development Using Multiple C
Source Files,” for more information about multiple source files.

Note

The build procedures for the Toolkit are conditional builds. This means
that the application will be rebuilt only if the source files (.C) are newer
than the object files (.OBJ). Therefore, if you are switching from a build
that requires a coprocessor to one that doesn’t, the object files (.OBJ)
need to be deleted.

GFK-0646E Chapter 3 Writing a C Application 3-89

Importing Standalone C Programs into Folders (Series 90-70 Only)

Importing C Programs with Logicmaster

During the MKPLC process, a list of subdirectories of the current working directory will
appear on the screen as follows:

Subdirectories:
PLC
Please Enter Folder Name:

If one of these subdirectories listed is the desired folder, then you can enter the name of
the subdirectory, and the build procedure will import the standalone C program. If you
know the path to the folder, you can also enter the path with the folder name, and the
build procedure will import the standalone C program. If you don’t know the location
of the folder, change directories by typing in the path and ending with a\ , (this will
change the current working directory to that path and show the subdirectories). For
example:

Subdirectories:
PLC
Please Enter Folder Name: \FOLDERS\

Subdirectories:

ARITH
Please Enter Folder Name:

3-90 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Adding Blocks Through the Logicmaster 90 Librarian (Series 90-70 Only)

Before importing the block into Logicmaster 90, the C application source file must be
compiled and linked to successfully create the PLC-executable version of the C
application.

Once the PLC-executable version of a C application source file is created, the executable
needs to be loaded into Logicmaster 90. Use the Logicmaster 90 Librarian to add a block
into the Logicmaster 90 library. From the main menu of the Logicmaster 90
programming software, press the Librarian (F6) softkey.

4 |PROGRH |TABLES |STATUS | | |[LIB |SETUP |FOLDER |UTILTY |PRINT h
frrogrnigiablesistatusi &1 dlib_Jgsetup Eefolderfentiltyiliprint |

>
SERIES J0-70 PROGRAMMING SOFTUWUARE

Version 4.00 Direct Serial - COM

F1 Program DisplaysEdit

Fz Reference Tables

F3 PLC Control and Status

Fe Program Block Librarian
F? Programmer Mode and Setup
FB Program Folder Functions
F9 Utility: Load/Storesetc.
Fio Print Functions

<< Press ALT-K at any time to see special key assignnents >>

OFFLINE|
D :“ARITH [PRG: ARITH
\\‘ [REPLACE ‘//

Note

In the Windows-based programming software, use the New Block
method of adding blocks (C or other types of blocks) to the Equipment
Folder. For directions on performing this task, refer to page 3-98 and
following. This information also exists in Chapter 6 in GFK-1295 and in
the online help that comes with the Windows-based programming
software.

GFK-0646E Chapter 3 Writing a C Application 3-91

3-92

After pressing F6, the following Librarian Functions menu is displayed:

|PROGRH | TABLES |smTus | ISETUP |FOLDER |UTILTY |PRIHT
 JElist [ejinportfivinprt] 56 [oifseths il

>

LIBRARIAN FUNCTIONS

FZ ... List Contents of Library

F3 ... Import Library Element To Folder

F4 ... Import Library Block To Folder and Redefine Variables
F5 ... Export Folder Element To Library

F&6 ... Add Element To Library

F? ... CreatesEdit Reference Off=set Templates

OFFLINE
D :“\ARITH [PRG: ARITH
\\\VPEPLHCE 4//

The two functions you will use to add a block to a folder are:
1. Add Element to Library (F6).
2. Import Library Element to Folder (F3).

An external block, such as a block, cannot be directly added to a Logicmaster 90 folder.
The block must first be added to the Logicmaster 90 library. Once in the library, it can
then be added to a folder.

To add an external block to the Logicmaster 90 library, press the F6 key (Add Element to
Library) from the Librarian Functions menu. The Add Element screen is displayed:

~

|PROGRH |TABLES |STATUS | | I [SETUP |FOLDER |UTILTY |PRINT
ilfornathd K J§ "I CHE SE o

>
ADD ELEMENT TO LIBRARY

NEU ELEMENT: I
ELEMENT TYPE: PROGRAM BLOCK (PRDGRAM BLOCK, EXTERNAL BLOCK, PROGRAM SEGMENT)
RENAME TO:

CURRENT LIBERARY: D:\LMI0NF70_LIB

LIMIT LIMITZ LOOK_UP RAMP

<{ Type full path for new element: Press Enter to add element to library. >>
<< Use PgUp-PgDn to =croll list of existing elemnts. >>

OFFLINE]
D:NARITH PRG: ARITH
\\» [REPLACE| 4//

The add element function requires the complete path name and file name of the element
to be added, and the type of element (program block, program segment, or external
block). An optional Rename To field may be used to rename a block as it is inserted
into the Logicmaster 90 library.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Note

New element file names are limited to seven (7) characters. Do not use
file names greater than seven characters in length.

To add a block to the library, enter the complete path name and file name in the New
Element field, then press the Down arrow key to move to the Element Type field. Use the
Tab key to select EXTERNAL BLOCK as the element type. When both the element type
and new element fields are correctly filled in, press the Enter key.

4 N

|PROGRH | TABLES |STATUS | |SETUP |FI]LDER JUTILTY |PRIHT
trornatied & K| 5- E S0

>
ADD ELEMENT TO LIBRARY

NEW ELEMENT: d:“\c_appssnath.exe

ELEMENT TYPE: ERIAABINWH(PROGRAM BLOCK, EXTERNAL BLOCK, PROGRAM SEGMENT)
RENAME TO:

CURRENT LIBRARY: D:\LMIONP?0_LIB

LIMIT LIMITZ LOOK_UFP RAMP

<< Type full path for new element: Press Enter to add element to library. >>
<< Use PgUp-PgDn to scroll list of existing elemnts. >>
OFFL INE|

D :\ARITH [PRG: ARITH
\ [REPLACE| J

After pressing the Enter key, the Logicmaster 90 software will prompt you for the
number of input/output parameter pairs. This is the number of input/output parameter
pairs specified in the block declaration of main() . At the prompt, enter a number from
0 to 7 corresponding to the number of parameter pairs the block expects to have passed
tomain() . The Logicmaster 90 software will ask you to confirm the name of the
element to be added and the number of parameter pairs after the prompt “Add element
NEWNAME (X pairs) to library? (Y/N).” Press Y (Yes) to proceed. When the add element
function is completed successfully, the message “NEWNAME added to library” is
displayed.

With the block added to the Logicmaster library, the next step is to import the library
element (the newly added block) from the library into a program folder. To perform the
import, first return to the Librarian Functions menu by pressing the Escape key. Then
press the F3 softkey (Import Library Element To Folder).

GFK-0646E Chapter 3 Writing a C Application 3-93

The following screen is displayed:

. N

|PROGRM | TABLES |sm'rus |“ |sETUP |Fl]LDER [UTILTY |PRINT

R e T E L R

>

IMPORT LIBRARY ELEMENT TO FOLDER

RENAME TO:
CURRENT LIBRARY: D:~\LMIONP?O_LIB

LIMIT LIMITZ LOOK UP GYCHEE ReaMP

CURRENT FOLDER: D:\ARITH

<{ Use cursor keys to select a library element. Press Enter to start Import. >>
<< Use PgUp-PgDn to =croll library. Use Ctrl-PgUpsCtrl-PgDn to scroll folder.>>

OFFLINE]
[D:NARITH [PRG: ARITH
\\‘ [REFLACE ,/)

The import element function will import the library element into the currently selected
program folder. The library element may be selected by using the cursor key to
highlight the desired element. Once the library element has been selected, press the
Enter key. Atimport time, the copy of the library element that will be copied into the
current program folder may be renamed by entering the new name into the Rename To
field before pressing the Enter key.

After pressing the Enter key, the Librarian will prompt you for confirmation to import
the selected (highlighted) library element to the current program folder. Press Y (Yes) to
confirm the prompt. The library element will be imported into the current program
folder.

After the library element is successfully imported to the current program folder, the
ladder program may be edited to insert ladder calls to the block by using the CALL
EXTERNAL function block. (A declaration for the imported block is automatically added
to the ladder logic program.) Recall that during the add element operation, the Librarian
prompted you for the number of input/output parameter pairs for the external block
being added. Since the Logicmaster 90 programmer knows how many parameter pairs
are required for each block in its library of program blocks, the Logicmaster 90 software
will provide the correct CALL function block format (number of parameters) when the
CALL and target block name are provided.

Note

Each time a change to the block occurs, the file must be re-compiled
using MKPLQor MKPLCY, re-added to the Logicmaster 90 library, and
then re-imported into the Logicmaster folder. Failure to perform these
steps will result in the software using a previous version of the block.

3-94 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Standalone C Program Merge Option

An alternate way of bringing a C program into your folder is to use the SA Merge option
(especially useful if you have a C program but do not have the Toolkit on your PC or if
you are putting the standalone program into more than one folder). To use this option,
first press (F6) from the main menu in Logicmaster.

The following screen will be displayed:

| | | | | | | | | |
oorktbcbusfesarersll — £ kK F L

Series 98 C DEVELOPMENT UTILITIES

F1 ... C Programmer’s Toolkit
F2 ... C Debugger
F3 ... Standalone Program Merge Utility

Use the function keys to start softuare package.

<< Use the Escape key to exit. >>

Press (F3) to begin the Standalone Program Merge process. The following screen will be
displayed:

STANDALONE MERGE UTILITY version 1.4

PLEASE ENTER THE NAME OF THE FILE YOU WISH TO COPY
NOTE: ending the string with \ will move to that directory

Current Subdirectories:

L.1 L..1 [C7BS] [P7BS]
[LESSONI LEM?71 LHSC] LFIP]
[C7a] [P78] [FIELDI LFLDCTRL1
[P78_LIB] [LESSON11 [SAINTS] [MULTI]
[C3851] [P3851] LTCPIP] [MICRO]
C[LESSON31 LTCPIPZ] C[LESSONZ1 [LUPGRADE]
[FIELD11] [NEUW] L[LESSON41 [NEUW11
[LESSON51 [FIPNEW] L[CTOOL1 [UME]
[BLKMUR] LR7CNUT] [X_PLCI [E_PLCI
[REAL] [LESSONG61] LLESSON71 [REALLY]
[DECZ_S61 [LABZ] [PROB_11 C[LESSON3]
[COFFEE] [SNPTEST] C[LESSON81

Standalone .STA files in the current directory:
BUBBLE. STA LIMIT.STA

File to copy: C:\LM3IBN\

GFK-0646E Chapter 3 Writing a C Application 3-95

Type the name of the standalone C program you wish to merge into the folder. If the
standalone C program is not located in the default directory, type the path and name of
the program.

Scheduling Standalone C Programs through the
Logicmaster 90-70 Scheduler
Perform the following steps to schedule a standalone C program:
1. Go to the Program Specification screen under Logicmaster 90-70 (F1).
2. Press (F1) and enter the name of the standalone C program.
3. If the ladder logic is still desired, press (F1) and enter the name of the folder.
4. Zoom into the programs (F9).

RI]GRH | TABLES |STATUS | I [LIB |SETUP |[FOLDER |UTILTY |PRINT)
1 : E _E E L K E _E U |
¥
EXTERNAL PROGRAM SPECIFICATION

Program MATHZ
Schedule Mode ORDERED (ORDERED, TRIGGERED, TIMED, PERIODIC)

Stack Size 00004 (k bytes)

INPUT SPECIFICATION OUTPUT SPECIFICATION
MEMORY START ~ LENGTH (bytes) MEMORY START LENGTH (bytes)
100001 10 ROOZ00 30
#A10001 4 “#AQOOOL 20
100009 8 #RO0100 8
“RO0014 200 “ROOO21 24
#Q00097

<{ Press ENTER key to Change Specification or press ESC Key to Exit >>
OFFLINE

:\MIKESDEMO [PRG: DEMO [BLK: _MAIN [ENTRY 0001
EPLﬁCE : HE /

5. Select the schedule mode for the program(s) (ordered, triggered, timed, or
periodic) and any other options desired or required (priority, disable bit, etc.).
Refer to Logicmaster 90-70 User’s Manual, GFK-0263, for more information.

6. Fill in the I/O specifications (make sure they match those in the program; these
will not be checked by Logicmaster).

Note

For directions on performing these tasks in the Windows-based
programming software, refer to the “Controlling Block and Program
Execution” section in Chapter 6 in GFK-1295. The same topic also exists
in the online help that comes with the Windows-based programming
software.

3-96 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Working with C Programs and Blocks in the Windows-based Programming Software

For Series 90-70 PLCs, the tasks performed in the Windows-based programming
software are very similar to the tasks performed in Logicmaster, but the interface is
different. For 90-30 PLCs, the Windows-based programming software is the only
programming interface that accommodates the 90-30 C (Main) programs and 90-30 C
subroutine blocks.

Adding C Programs to Your Equipment Folder (Series 90-70 Only)

Once your standalone C program is developed, follow these steps to incorporate the
program into the the Windows-based programming software Equipment Folder:

1. From the Equipment Folder Browser, click Resource. (If the Resource is not
displaying, click the plus (+) sign next to SW Config in the left side of the Equipment
Folder window—if SW Conlfig is not displaying, click the plus sign next to the folder
name.)

2. Click the right mouse button and choose Edit Resource. The Resource Window will
appear.

3. Select the Program menu and choose New Program.

4. In the New Program dialog box, set the type field to EXP for external C program.
Type the name you want to call this program within your Equipment Folder in the
Name field. This name does not need to match the name you already have given
your C program.

Mew Program E |

General | Input Parameters | Output Patameters |
Plamme: I |

Type: IE}-{P vI Langusge: IC vl
Description: I

File Mame: I Brovwse... |
(0], I Cancel Apmly | Helg |

5. Type the name and location of the C program or use the Browse button to locate the
C program. To specify any input or output parameters, click the appropriate tab
(click the Edit button to create or edit parameters):

GFK-0646E Chapter 3 Writing a C Application 3-97

Mew Program Ed |

General | Input Parameters | Output Parameters |

Formal Param I.-'J-.ctual Paratm IT':.fpe o
b
| b
Edlit | Clear |

Ok I Cancel Al | Helgp |

6. Click the OK button. If you are importing more than one program, click the Apply
button instead of OK. This allows you to add another program without closing the
dialog box.

Importing Revised C Programs

If you need to make changes to an external C program that has already been added to
an Equipment Folder, you must update the program using the C Programmer’s Toolkit
before importing the revised program into your Equipment Folder.

You can import the revised C external programs from the Equipment Folder Browser or
the Resource window. After editing and compiling your C program, perform the
following steps to import the program into your Equipment Folder:

1. Edit and compile your C program using the C Programmer’s Toolkit.

2. From the Equipment Folder Browser or the Resource, click the C program you want
to update.

3. Click the right mouse button and select Import.

4. In the dialog box, type the path and name of the revised C program and click the OK
button or click the Browse button to locate and specify the path and file name.

Creating or Adding Blocks

Follow these steps to add new blocks at the Program Level:

1. In the Equipment Folder Browser window, select Program (by clicking once on it).

3-98 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

2. Click the right mouse button and choose New Block. The New Block dialog box will
appear:

Hew Block E

General |

Iame: I |

Type: BLK - Language: (LD -

Deszcrigtian: I

Ok I Cancel Al Help

3. Inthe New dialog box, type the name of the block in the Name field and select the
block type from the drop-down list in the Type field and the language (that is, C)
from the drop-down list in the Language field.

4. Specify the file name and path in the File Name field, or locate the file using the
Browse button.

5. When adding a 90-70 C block, you probably need to fill in the information in the
Input Parameters and Output Parameters tabs (see below). This is not done with
90-30 C blocks because they do not have parameters.

6. Click OK. After doing the preceding steps for each block you plan to use, you can
call the block from within MAIN.
Specifying Parameters for 90-70 C Blocks

When you are adding a C block to your 90-70 Equipment Folder, you may also need to
specify input and output parameters. Use the following procedures to define these
parameters:

1. Once you have completed the necessary information in the General tab of the New
Block dialog box, click the Input Parameter or Output Parameter tab.

Mew Block E3

General | | Output Parameters |
Mame lType |Leng‘[h lDEj
1 a
12 a
|3 a
4 a
3]
— -
(= [n}
d | _>I_I
Elit | Clear |

Ok I Cancel | Apply | Help

GFK-0646E Chapter 3 Writing a C Application 3-99

3-100

2. Each Parameter tab contains a table. To add entries to the table, click the Edit button.
The Insert Parameter dialog box will appear:

Ingert Parameter
Marne: ak. I
Il Cancel
DataType: Length

| o -
Parameter Type:

IN ~

Description:

3. In the Insert Parameter dialog box, type the formal parameter name (which can then
be used in the block to reference the parameter), click the drop—down arrow to
choose the data type, click the up or down arrows to specify length, and type in a
description (optional).

4. After you have defined the necessary input and output parameters, click the OK
button.

Editing C Blocks

To edit an existing external C block, follow these steps:
1. Edit and compile the C block using the C Programmer’s Toolkit.

2. If the block is not displayed in the Equipment Folder Browser below the program,
select Program, click the right mouse button, and choose Refresh Node.

3. Click the C block, click the right mouse button, and select Import.

4. Inthe dialog box, type the path and name of the revised C block and press the OK
button or click the Browse button to locate and specify the path and file name.

Adding C Main Programs (Series 90-30 Only)

Series 90-30 CPUs do not allow standalone C programs with scheduling, event-triggered,
and other specifications; however, you can have a C program as the main program by
following these steps:

1. Create a new 90-30 Equipment Folder.

2. In the left side of the Equipment Folder window (the Browser), expand the
selections (by clicking on the plus signs) until the Resource (under SW Config) is
displaying.

Double-click Resource to open the Resource editor.
Select the default main program (by clicking once on it).
Press the Delete key on your keyboard to delete the default main program.

Select the Program menu and choose New Program.

N o oW

In the dialog box that appears, change the Type field to EXP and the language to C.
In the Name field, type in the name of the Resource (usually the same as the name

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

of the Equipment Folder). In the File Name field, type the path and name of the C
program or use the Browse button to navigate to the C program. Then press OK.

This information is also available in the online help and in GFK-1295. For related
information, refer to the “Adding C Programs to Your Equipment Folder” and
“Importing Revised C Programs” sections of Chapter 6 in GFK-1295 or read those same
topics in the online help.

Debugging in the PLC

GFK-0646E

There are several ways to debug the C application operating in the PLC, including
printf() debugging, reference table monitoring, single-sweep mode debugging,.
The C Debugger is also available for debugging applications. Refer to Chapter 7, “The C
Application Debugger for Series 90-70 PLCs,” for more information.

Note

The only way to view internal C application data without the C
Debugger is to copy the data from its C variable location to an unused
PLC reference table location.

Printf() Debugging (Series 90-70 Only)

The use of printf() to debug a C application running in a Series 90-70 PLC is very
similar to using printf() to debug the same C application under MS-DOS. The C
source code must be modified to contain printf() statements. The printf()
statements should be placed in the source code to provide a road map of the execution
path and to display the value of any key data items.

Note

In order for printf() to work, the CPU’s serial port must be
configured for message generation (MSG) mode. If the CPUs
serial port is not configured for MSGmode and printf() is called,
no characters are placed into the print queue, the return value from
printf() is -1, and an External Block Run Time error will be logged
in the PLC fault table.

Reference Table Monitoring

As with printf() debugging, the execution path and key data items may be
determined by modifying a C application to place this information into unused areas of
the global PLC reference tables (%R, %M, %T, %D... etc.) and then viewing the saved
execution road map and key data items through the Logicmaster 90 programmer’s
online reference display(s).

Chapter 3 Writing a C Application 3-101

Single-Sweep Debug (Series 90-70 Only)

Release 4.0 Series 90-70 CPUs, when used in conjunction with Release 4.0 Logicmaster
90-70 software, support a single-sweep program debug command. When this
command is issued, the PLC will execute one sweep. Use of single sweep debug may
prove helpful in debugging C applications in a Series 90-70 PLC. For details on using the
single-sweep debug with the debugger refer to Chapter 7, “The C Application Debugger
for Series 90-70 PLCs.”

In order for single sweep debug in the PLC to aid in the debugging of C applications, it is
necessary that the C application provide some information back to the user. This
information may be generated by printf() statements to the serial port or by
copying key data values into an unused portion of the PLC reference table(s).

3-102 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

To use single sweep debug, the Logicmaster 90 programmer must be online with the
PLC and the PLC must be in STOPmode. By pressing ALT-G, the CPU will be
commanded to execute a single sweep. You may specify a first scan sweep by entering
0 on the command line and then pressing ALT-G. Subsequent sweeps may be singly
executed by pressing ALT-G with no value on the command line. If another first scan
sweep is desired at any time, enter O on the command line again and press ALT-G.

The most convenient way to accomplish a single sweep debug is as follows:

1. Ensure that the C application is copying any key data into unused PLC reference
table areas (for example, %R memory) so that the Logicmaster 90 software
displays this data.

2. If all of the data to be viewed is in one PLC reference memory, select that
reference table for display using the Logicmaster 90 reference table display
function. If multiple reference tables are being used to store the C application
data which is to be viewed, a mixed reference table may be created and viewed
using the reference table display function.

3. While displaying the selected reference table(s), initialize any necessary
reference locations, such as those locations in which the C application will expect
data to be but which the ladder logic program will not initialize prior to calling
the C application.

4. While still viewing the selected reference table(s), enter O on the command line
and press ALT-G to command the PLC to execute a single, first scan sweep.

5. Check the data values in the displayed reference table(s) against desired C
application operation.

6. If there are no errors at this point, the debug process may be complete. If the
problem was related to first scan, no further action is required. If, however, the
problem is not a first scan problem, press ALT-G again for another sweep of PLC
ladder execution. Go to step 5.

7. If there are errors, inspect the C source code and the received data to isolate the
problem. If the problem can be isolated and corrected, rebuild and re-import
the C application. Go back to step 2.

8. If the problem cannot be isolated, it may be necessary to have the C application
copy more pieces of information into the reference table(s) it is using. Modify
the C source code to copy more information, then rebuild the C block, add it to
the Logicmaster 90 library, re-import the C application into the folder, and store
the updated folder to the CPU. Go back to step 2.

GFK-0646E Chapter 3 Writing a C Application 3-103

Chapter

<t

Example C Series 90-70 Application
Development

Section 1: Installed Sample Blocks

GFK-0646E

In the C development software directory, \s9070c , there are two subdirectories which
have examples of blocks: examplel and example2 . Each subdirectory contains the
block source file LIMIT.C . LIMIT.C provides an illustration of a function which could
be written in ladder logic, but is, instead, written in C.

LIMIT is an application program which range checks a current value against a low limit
and a high limit and returns, if necessary, a corrected value which is within the range. If
the current value is lower than the low limit or higher than the high limit, then LIMIT
will return low limit or high limit, respectively. LIMIT takes three input parameters
and returns two output parameters. The three input parameters correspond to a current
value, a low limit value, and a high limit value. The two output parameters are the
current value, corrected if necessary, and two alarm indication bits (low and high alarms
which are bits 2 and 1, respectively, in output reference number two). A ladder logic call
to this external block could look like the following:

|JEEE | TABLES |STATUS | | |L1B |SETUP |FOLDER |UTILTY |PRINT

linscrtfeedit [Enoditufsearcnls K Korptionfoto Jenore [zoon |
I

[START OF BLOCK LOGIC 1
#(00001
U {CALL LIMIT C1—
(EXTERNAL)
#R00001—X1 ¥1|-RO60OZ
#L00001—|X2 ¥2 |-»H06001
#L0000Z— X3 Y3
[END OF BLOCK LOGIC 1

OFFL INE]

D : \WUMHNEXAMPL 1 [PRG: EXAMPLIEBLK: SUBBLK RSIZE: Z6BRUNG 0063
\ [REPLACE : HH

/

Figure 4-1. Ladder Logic Call to Example Block

In the sample ladder logic rung above, %R00001 contains the current value, %L00001
contains the high limit value, and %L00002 contains the low limit value. LIMIT.C is
shown below:

#include “plcc9070.h”

#define HI ALM MSK 0x0l
#define LO_ALM MSK 0x02

main(short int *input value, /* parameter X1 */
short int *high Timit, [* parameter X2 */
short int *low Timit, [* parameter X3 */
short int *output value, [* parameter Y1 */
short int *alarm bits, [* parameter Y2 */
void *dummy) /* parameter Y3 */

check for error condition high limit < low limit
if error, set no power flow and return, don’t change any outputs

if (*high limit < *low limit)
/ return(ERROR) ; -

*
* check for in out range

* if in exceeds either limit

* use the exceeded limit value for the output

* else use the input value for the output

* always write both high and low alarm bits appropriately

if ((*input value) > (*high limit))({
*output value = *high limit; /* use high limit for output */
alarm bits |= HI ALM MSK; / turn high alarm bit on */
alarm bits &= ~“LO ALM MSK; / turn low alarm bit off */

} else if ((*input_vaTue) < (*low_limit)) {

*output_value = *low limit; /* use low limit for output */
alarm bits &= “HI_ALM MSK; [turn high alarm bit off */
alarm bits |= LO ALM MSK; / turn low alarm bit on */

} else { -~

1

*output_value = *input value; /* use in for output */

alarm bits &= “HI_ALM MSK; [turn high alarm bit off */

alarm bits &= “LO_ALM MSK; / turn low alarm bit off */
}

return(OK) ;

The return parameters from the sample ladder logic call to the external block LIMIT are
the range corrected current value in %R00002, an indication of the input current value
being over the high limit in %MO00001, and an indication of the input current value being

under the low limit in %M00002 (bit 2 of the 16 bit value starting with %M0001).

The following two sections will describe how to interactively test a block (example 1) and

how to batch test a block (example 2). The differences between the two methods

(interactive and batch) will be shown in the test harness file, BLKHARN.C

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Example 1: Interactive LIMIT

GFK-0646E

As stated at the beginning of this chapter, LIMIT.C is the same in both this example and
in example2 . The difference between the two examples is the manner in which testing
under MS-DOS may be accomplished. In this example, you will use interactive methods
to request user input and display data values.

The interactive commands which get user input to pass to the block and which display
data upon return of the block are all placed into the file BLKHARN.C if a C FBK is to be
built then the file needs to be renamed to FBKHARN.C Recall that BLKHARN.Cis the
MS-DOS test harness which is linked with the application (in this case, LIMIT) to create
an MS-DOS executable and which provides the basic PLC sweep mechanism. The intent
of BLKHARN.Cis not only to provide the basic sweep mechanism, but also to contain any
and all debugging code.

The code contained in BLKHARN.Cfor examplel is shown below:

#include <stdio.h>
#include “plcc9070.h”

* GE Fa -70 PLC Memory Size Declarations */
#define L MEM WORDS 1024
#define P MEM WORDS 1024
#define R"MEM WORDS 1024
#define AT MEM WORDS 64
#define AQ MEM WORDS 64
#define I MEM BYTES 256
#define Q MEM BYTES 256
#define T MEM BYTES 32
#define M MEM BYTES 512
#define SA MEM BYTES 16
#define SB MEM BYTES 16
#define SC"MEM BYTES 16
#define S MEM BYTES 16
#define G MEM BYTES 160
#define GA MEM BYTES 160
#define GB MEM BYTES 160
#define GC MEM BYTES 160
#define GD MEM BYTES 160
#define GE MEM BYTES 160
#define I DIAG BYTES 256
#define Q DIAG BYTES 256
#define 1 TRANS BYTES 256
#define Q TRANS BYTES 256
#define T TRANS BYTES 32
f#define M TRANS BYTES 512
#define SA TRANS BYTES 16
#define SB™ TRANS BYTES 16
#define SC TRANS BYTES 16
#define S TRANS BYTES 16
#define G TRANS BYTES 160
#define GA TRANS BYTES 160
#define GB TRANS BYTES 160
#define GC TRANS BYTES 160
f#define GD TRANS BYTES 160
#define GE TRANS BYTES 160
#define AI " DIAG BYTES 64
#define AQ DIAG BYTES 64
#define RSB_MEM BYTES 688

Chapter 4 Example C Series 90-70 Application Development 4-3

4-4

{

/7‘:
*

[*

*/

#include “tharndat.inc”

static short int X1 = 2;
static short int X2 = 3;
static short int X3 = 1;
static short int YI;
static short int Y23
static short int Y3;

int ok; /* used to store returned power flow —- the OK parameter */

setbuf (stdout, NULL);

special status bits.

(*sb_mem) [0] |= 0x01;
(*sb_mem) [15] |= 0x01;
(*sb_mem) [0] = 0x40
(*sb_mem) [0] &= "x80
/.A.

Loop forever

/7':
| *
/*
I
[*

* Modify stdout to use NON-buffered i/o

/-k

/~k

input 1 parameter */
input 2 parameter ¥/
input 3 parameter */
output 1 parameter */
output 2 parameter */
output 3 parameter */

void plc_sweep(int argc,char *argv, char *envp)

* To mimic PLC operation, initialize the FIRST EXE and FIRST SCAN

FST_SCN */
FST_EXE */
ALW ON */

 ALW_OFF */

Prompt user for IN, HIGH LIMIT, LOW_LIMIT.

Call main to execute block.
Print out results.
End loop

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

while (1) {

printf (“INPUT VALUE: ”);
scanf (“%d”,&X1);

printf (“HIGH _LIMIT: ”);
scanf (“%d”,&X2);

printf (“LOW_LIMIT: ”);
scanf (“%d”,&X3);

/* X1 - X3, Y1, & Y2 are all used. Y3 is unused by */

/* main() in LIMIT.C but is required to appear in */
/* the call to main() to preserve parameter location */
/* on the stack. * [

ok = main(&X1, &X2, &X3, &Y1, &Y2, &Y3);

/* From description of LIMIT in top of file LIMIT.C * [

/* the alarm bits returned from LIMIT are the 2 */

[* least significant bits in the Y2 reference. */

printf (“OK: 7%d, OUT: %d, HIGH ALARM: 7%d, LOW_ALARM: 7%d. \n\n”,
(int) (ok==0K), Y1, (Y2 & 0x01), ((Y2 & 0x02) >> 1))3

/7‘:

* To further mimic PLC operation, now
* clear the FIRST EXE and FIRST SCAN
* special status bits.

7‘:/

(*sb_mem) [0] &= OxFE;

(*sb_mem) [15] &= OxFE;

This version of BLKHARN.Callows for the interactive testing of the LIMIT application
program. The interactive nature of this version of BLKHARNSs seen in the prompting for
input values at the beginning of the while() loop (printf() and scanf() pairs)
and in the single printf() statement which appears inside the while() loop
immediately after the call to main() . The printf() and scanf() statementsin
this version of BLKHARN.Care written specifically for testing the example program
LIMIT.C . The user is prompted to provide values for the current input, the high limit,
and the low limit. Once each of these values is entered, main() is called passing in the
user-supplied values. Upon return from main() the range-corrected current value
and the alarm bits are displayed to the screen. By providing different combinations of
current value, high limit, and low limit, and by verifying the returned range-corrected
current value and the alarm bits, the application LIMIT may be verified to operate
correctly-all before it is ever placed into the Series 90-70 PLC.

Chapter 4 Example C Series 90-70 Application Development 4-5

Example 2: Batch Mode LIMIT

4-6

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

Example 2 uses batch methods for testing the application LIMIT. Rather than
interactively requesting the input data and then printing the returned output data to the
screen, this example will read all input values from an input data file. Likewise, example
2 will write all returned data to an output file. There is one additional difference to
example 2’s version of BLKHARN.C the operation of the section of ladder logic which
controls the enabling of the C block is duplicated. The duplicated ladder logic in
BLKHARN.Cmimics the enable on the CALL LIMIT function block. The source for this
version of BLKHARN.Cis shown below:

#include <stdio.h>
#include “plcc9070.h”
[% e s dede e s dede e s de e e s dede e dede e
* GE Fanuc 90-70 PLC Memory Size Declarations */
#define L MEM WORDS 1024
#define P MEM WORDS 1024
#define RMEM WORDS 1024
#define AT MEM WORDS 64
#define AQ MEM WORDS 64
#define I MEM BYTES 256
f#define Q MEM BYTES 256
f#define T MEM BYTES 32
f#define M MEM BYTES 512
f#define SA MEM BYTES 16
#define SB"MEM BYTES 16
#define SC MEM BYTES 16
#define S MEM BYTES 16
f#define G MEM BYTES 160
#define GA MEM BYTES 160
#define GB MEM BYTES 160
#define GC MEM BYTES 160
f#define GD MEM BYTES 160
#define GE MEM BYTES 160
#define I DIAG BYTES 256
#define Q DIAG BYTES 256
#define 1 TRANS BYTES 256
f#define Q TRANS BYTES 256
#define T TRANS BYTES 32
f#define M TRANS BYTES 512
#define SA TRANS BYTES 16
f#define SB TRANS BYTES 16
#define SC” TRANS BYTES 16
#define S TRANS BYTES 16
#define G_TRANS BYTES 160
#define GA TRANS BYTES 160
f#define GB TRANS BYTES 160
#define GC TRANS BYTES 160
#define GD TRANS BYTES 160
f#define GE TRANS BYTES 160
#define AT DIAG BYTES 64
f#define AQ DIAG BYTES 64
#define RSB_MEM_BYTES 688

GFK-0646E

GFK-0646E

#include “tharndat.inc”

static char *inname = “limit.dat”; [* data input file */

FILE *infile; * streamer for input file */
static char *outname = “limit.out”; /[* output file */

FILE *outfile; * streamer for output file */
static short int X1; /* input 1 parameter */

static short int X2; [* input 2 parameter */

static short int X33 * input 3 parameter */

static short int Y1, [* output 1l parameter */
static short int Y2; [* output 2 parameter */
static short int Y33 * output 3 parameter */

void plc_sweep(void)

* while not EOF

* read values to pass to limit function:

* HIGH_LIMIT, IN, LOW LIMIT

* call limit using that set of values

write input values, plus values returned from limit function:
* HIGH LIMIT, IN, LOW_LIMIT, OUT, ALARM BITS, power

end

LOW_ALARM OK\n\n”);
if (fgets(line, 132, infile) == NULL) return; /* skip the comment line */

{
int ok; /* used to store returned power flow —— the OK parameter */
int fstat; /[* returned status of file operations. */
int enabled; /* used to compute enable status of function. */
word temp[5]; /* used to temporarily hold input status information */
int loop; /* local loop counter */
char 1line[133]; /* used in skipping input data comment line */
/3’:
* open files:
* data input file
* log output file
7’:/
infile = fopen(inname, “r”); /* open input file */
if (infile == NULL) {
fprintf(stderr, “can’t open %s\n”,inname);
exit(l);
}
outfile = fopen(outname, “w”); * open output file */
if (outfile == NULL) {
fprintf(stderr, “can’t open %s\n”, outname);
exit(l);
}
/*.‘:

fprintf(outfile,*“ ENABLE HIGH_LIMIT IN LOW_LIMIT ouT HIGH _ALARM

Chapter 4 Example C Series 90-70 Application Development

4-7

/v‘:
* To mimic PLC operation, initialize the FIRST EXE, FIRST SCAN,
* ALW _ON, and ALW _OFF special status bits.

:‘:/
(*sb_mem) [0] |= 0x01; [* FST_SCN %/
(*sb_mem) [15] |= 0x01; [* FST EXE */
(*sb_mem) [0] |= 0x40; /* ALW ON */
(*sb mem) [0] &= ~0x80; [* ALW_OFF */

for(5;) {

fstat = fscanf(infile, ”%u %u %u %u %u ”, &temp[O], &temp([l], &temp[2],

&temp[3], &temp[4]);
if (fstat != 5) break;
fstat = fscanf(infile, ”%u %u %u\n”, &X2, &X1, &X3);
if (fstat != 3) break;
for (loop = 0; loop < 5; loop++) {
if (temp[loop] == 0)
BIT CLR I(loop+l);

else
BIT SET I(loop+l);

¥
| * %11 %12 %13 %15 + +
* = |- |-—] |- |-——- | CALL LIMIT I |
* | (EXTERNAL) |
* | %14 | | |
* =] |-+ | {parameters} |
* | |
- | |
* | |
*/

enabled = (BIT TST I(1l) & BIT_TST I(2) &
(BIT_TST I(3) | BIT TST I(4)) & BIT TST I(5));
if (enabled) {
ok = main(&X1, &X2, &X3, &Yl, &Y2, &Y¥3);
fprintf(outfile,”%4u %6d %6d %6d %6d
%6u\n”,

enabled, X2, X1, X3, Y1, (Y2 & 0x0l), ((Y2 & 0x02) >> 1),

(int) (ok==0K)) ;
} else {
fprintf (outfile,”%4u \n”, enabled);
}
/7‘:
* To further mimic PLC operation, now
* clear the FIRST EXE and FIRST SCAN
* special status bits.
*/
(*sb_mem) [0] &= OxFE;
(*sb_mem) [15] &= OxFE;

Z6u

%6u

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

The input file used in example2 , LIMIT.DAT , contains values for %11 —> %15, high

limit, low limit, and the current value. LIMIT.DAT is provided as part of example2 .

The contents of LIMIT.DAT are shown below:

%11 %12 %13 %14 %15 high limit input value low limit expected result
1 1 1 0 1 30 20 10
1 1 0 0 1 30 20 10
1 0 1 1 1 30 20 10
1 1 1 0o o0 30 20 10
1 1 0 1 1 30 20 10
0 1 1 0 1 30 20 10
1 1 0 1 1 30 5 10
1 1 1 1 1 30 35 10
1 1 1 1 1 30 30 10
1 1 1 1 1 30 10 10
1 1 1 1 1 10 20 30
1 1 1 1 1 0 0 0
1 1 1 1 1 -10 -20 -30
1 1 1 1 1 -10 -5 -30
1 1 1 1 1 -10 -35 -30
1 1 1 1 1 -10 -10 -30
1 1 1 1 1 -10 -30 -30
1 1 1 1 1 -30 -20 -10

The output file, LIMIT.OUT , is created when LIMIT.EXE is executed. When the
LIMIT.DAT file provided with example2 is used as the input file and LIMIT.EXE
created from example2 is executed, LIMIT.OUT will contain the following;:

ENABLE HIGH LIMIT IN LOW LIMIT OUT HIGH _ALARM LOW_ALARM OK
1 30 20 10 20 0 0 1
0
0
0
1 30 20 10 20 0 0 1
0
1 30 5 10 10 0 1 1
1 30 35 10 30 1 0 1
1 30 30 10 30 0 0 1
1 30 10 10 10 0 0 1
1 10 20 30 10 0 0 0
1 0 0 0 0 0 0 1
1 -10 -20 -30 =20 0 0 1
1 -10 -5 -30 -10 1 0 1
1 -10 -35 -30 -30 0 1 1
1 -10 -10 -30 -10 0 0 1
1 -10 -30 -30 -30 0 0 1
1 -30 -20 -10 -30 0 0 0

Chapter 4 Example C Series 90-70 Application Development

4-9

The batch file commands which get user input to pass to the block and which display
data upon return of the block are all placed into the file BLKHARN.C Because the code
contained in BLKHARN.Cwill never appear in the PLC, BLKHARN.C is not limited to the
list of PLC supported C functions, as listed in appendix A, Standard C Library Functions
Supported in the Series 90-70 PLC. Therefore, the use of fopen() ,fclose() ,

fscanf() ,and fprintf() in BLKHARN.C is allowed. Note that BLKHARN.C
makes use of the BIT_TST_I() macro when evaluating the simulated boolean ladder
logic which is the enable to LIMIT .

Batch file testing provides several advantages over interactive testing:

1. If the test/debug/fix cycle must be repeated several times, the use of an input data
file saves retyping all of the test cases. Also, the use of an input data file ensures that
the same data cases will be attempted from test session to test session.

2. The input data file may be reviewed at any time to examine what cases are/were
tested.

3. The output data file may also be viewed any time after the test has been run to
examine what data values were tested and the corresponding results.

4-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Section 2: Step-by-Step Example Session For Blocks

In this section, the process of building LIMIT.C and testing it (under MS-DOS), both
interactively and in BATCHmode, are described in detail. Also covered are building
LIMIT.C for execution in the PLC and testing LIMIT in the PLC. This section finishes
with a discussion of when to use C blocks and when to use C FBKs.

Building and Debugging LIMIT under MS-DOS

GFK-0646E

Interactive Limit

To build LIMIT asin examplel , make \s9070c\examplel the active MS-DOS
directory. To build a C block, invoke the C development software command file
MKDOS.BATspecifying the application filename to be built:

¢:\s9070c\examplel> mkdos limit

MKDOSvill invoke the Microsoft C compiler and linker to compile both LIMIT.C and
BLKHARN.Cand then link the two resulting object files into one DOS-executable file
LIMIT.EXE . LIMIT.C and BLKHARN.Care located in the examplel subdirectory.
When MKDOS&xecutes, it creates a subdirectory under examplel named DOS The
object files (*.OBJ) created from the C compiler are both placed in the directory
\s9070c\examplel\dos . When the linker creates the executable file LIMIT.EXE ,
this file is also placed in the \s9070c\examplel\dos subdirectory. The DOS
subdirectory under EXAMPLE1is used to group together all of the files specific to the
DOS-executable version of the LIMIT application.

To build a C FBK, copy BLDVARSrom \s9070c into \s9070c\examplel . Edit
BLDVARSnd change the line TYPE=BLOCKo TYPE=FBK Then follow the procedure
for C blocks. The same files exist in the same directories.

Once the executable LIMIT.EXE is created (all compiles and the link is complete
without error), change the active MS-DOS directory to s9070c\examplel\dos (for
both C blocks and C FBKs). To begin testing LIMIT , type limit ~ at the MS-DOS prompt:

¢:\s9070c\examplel\dos> limit

LIMIT.EXE will proceed to prompt for the current input value, high limit, and low limit.
After retrieving the input values, LIMIT.EXE will call main() to execute the
application and will then display the results from the call to main() . A sample of one
such session could be:

INPUT VALUE: 20

HIGH_LIMIT: 30

LOW_LIMIT: 10

OK: 1, OUT: 20, HIGH ALARM: 0, LOW ALARM: 0.

INPUT VALUE: _

The above sequence would be repeated until all required test cases had been attempted.
To stop LIMIT.EXE and return to MS-DOS, press CTRL-C.

Chapter 4 Example C Series 90-70 Application Development 4-11

Batch Mode Limit

The process for building LIMIT in example2 is the same as for examplel for both C
blocks and C FBKs. Recall that the difference between the two examples is actually in

the code contained in the file BLKHARN.C First, make \s9070c\example2

the active

MS-DOS directory. Next, alter the BLDVARSile as in example 1 if building a C FBK.
Then invoke the C development software command file MKDOS.BATspecifying the
application file name to be built:

¢:\s9070c\example2> mkdos limit

Once LIMIT.EXE is created (all compiles and the link complete without error), ensure

that the active MS-DOS directory is \s9070c\example2
at the MS-DOS prompt:

dos\limit

¢:\s9070c\example2> dos\limit

. To begin testing LIMIT type

Unlike examplel , LIMIT in example2 will not prompt the user for any information.

In example2 , LIMIT will open the input file LIMIT.DAT , open the output file

LIMIT.OUT , and then repeatedly read a line from the input file, pass the read values to

main()

to execute the application, and then write the results from the call to main()

to the output file. No messages are displayed to the screen unless a file operation error
occurs. The contents of LIMIT.OUT after processing are shown below:

30

bt et et et ot e et et et e e = O = O O O
w
o

20

10

20

0

OO0 OHHOOO0OO0OO+—O O

0

o

OO0+ OOOOOOO-

ENABLE HIGH LIMIT IN LOW LIMIT OUT HIGH ALARM LOW_ALARM OK

1

-

OO

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Building and Debugging LIMIT for the PLC

When an application C block or C FBK is built for execution in the Series 90-70 PLC, the
harness file is not included as part of the link process. The harness is not required
because the actual target PLC will provide the PLC reference table allocations and will
also provide the PLC sweep mechanism.

To illustrate building the example application program LIMIT.C , make
\s9070c\examplel the active MS-DOS directory.

Note

Since the file LIMIT.C is the same for both examplel and for
example2 and the file BLKHARN.Cis not needed, either the examplel
or example2 subdirectories may be used to build the example program
for execution in the Series 90-70 PLC.

To build the sample program LIMIT.C for execution in the Series 90-70 PLC, use the
following procedures:

1.

Invoke the MS-DOS batch file MKPLC.BATlocated in the \s9070c directory.
MKPLGrequires the name of the application as a parameter:

¢:\s9070c\examplel> mkplc limit

MKPLGwill invoke a Microsoft NMAKEnakefile to compile LIMIT.C and then, in the
case of the C block, link the compiled LIMIT with the PLC-specific runtime libraries.
If the compile and subsequent link operations complete successfully (no error
messages displayed on the screen), the file LIMIT.EXE will reside in the
\s9070c\examplel\plc subdirectory. The LIMIT.OBJ (the compiler output file),
LIMIT.PPP (the linker output), and LIMIT.MAP (the linker output file) files
produced in the build process will also reside in that subdirectory.

In the Logicmaster 90-70 software, create a new program folder. (Make sure to use
a name other than LIMIT as the program folder name.)

Using the Logicmaster 90 librarian, add \s9070c\examplel\plc\limit.exe to
the library.

When adding to the library, you will be prompted for the number of input/output
pairs LIMIT has. Respond with 3.

With LIMIT.EXE in the library, proceed to import LIMIT.EXE into your newly
created folder. With LIMIT.EXE successfully imported into your folder, you are
now ready to create a ladder logic program to exercise LIMIT .

Within the Logicmaster 90-70 software, leave the librarian and enter the program
editor. Since this is a new program folder, there will be nothing in the ladder logic
program.

GFK-0646E Chapter 4 Example C Series 90-70 Application Development 4-13

8.

Insert the following rungs of ladder logic:

~

o

|ZIEE | TABLES |STATUS | |
Hlinscrtfedit [Enodifyulcearchlle [Koptionfioto [Ehore |

®

|LIB

| SETUE

|FOLDER

|UTILTY |PRINT
102

#Q00001
')_

»#MO001
')_

#MO000oZ

.
CALL LIMIT
(EXTERNAL)
“RO0BO1—|X1 ¥1|-~R00002
#PO0OO1—|X2 ¥2 |-#M00001
#PO0OOZ—|X3 va-

H00001
I
#H00002
1
I

()—

\

Figure 4-2. Ladder Logic for Testing Example Block LIMIT

9.

10.

11.

Store the folder to the PLC using the Logicmaster 90 store function.

Once the program folder is successfully stored to the PLC, return to the program
editor display.

With the Logicmaster 90 programmer online and equal to the PLC, place the PLC in
RUNmode.

The execution of the C block LIMIT can be tested by placing different values into
%R00001, %P00001, and %IP00002. Recall that %R00001 is the current value, %1700001 is
the high limit, and %P00002 is the low limit. As changes are made to %R00001,
%1P00001, and/or %P00002 watch as the values for %R00002, %M00001, and %M00002
change. Try entering different values for %R00001, %P00001, and %P00002.

Table 4-1. Test Values for LIMIT.EXE in the Series 90-70 PLC

Input Parameters Output Parameters
Case %R00001 | %P00001 | %P00002 | %R00002 | %M00001 | %MO00002
1 5 10 0 5 0 0
2 15 10 0 10 1 0
3 -1 10 0 0 0 1
4 0 10 0 0 0 0
C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

C Blocks Versus C FBKs

GFK-0646E

The examples in this section could be built as either a C block and C FBK. There is no
advantage to having a C block if the source can be built into a C FBK. The example,
LIMIT, would be best built as a C FBK. However, if the source code parameters were
changed to floating point, the compiler would insert library calls as shown in the

following examples:

main(float *input value, [* parameter X1 */
float *high Timit, [* parameter X2 */
float *low Timit, [* parameter X3 */
float *output value, [* parameter Y1 */
short int *alarm bits, [* parameter Y2 */
void *dummy) /* parameter Y3 */

#include “plcc9070.h”

#define HI ALM MSK 0x0l
#define LO_ALM MSK 0x02

check that all parameters have been provided

if ((input value == NULL)
(high Timit == NULL)
(low Timit == NULL)
(output value == NULL)
(alarm bits == NULL))
return(ERROR) ;

check for error condition high limit < low limit
if error, set no power flow and return, don’t change any outputs

if (*high limit < *low_limit)
return(ERROR) ;

check for in out range
if in exceeds either limit
* use the exceeded limit value for the output
* else use the input value for the output
always write both high and low alarm bits appropriately
if ((*input value) > (*high limit))({
*output value = *high limit; /* use high limit for output */
alarm bits |= HI ALM MSK; / turn high alarm bit on */
alarm bits &= ~“LO ALM MSK; / turn low alarm bit off */
} else if ((*input value) < (*low limit)) {
*output value = *low limit; ~/* use low limit for output */
alarm bits &= “HI ALM MSK; [turn high alarm bit off */
alarm bits |= LO ALM MSK; / turn low alarm bit on */
} else { -
*output value = *input value; /[* use in for output */
alarm bits &= “HI ALM MSK; [turn high alarm bit off */
alarm _bits &= “LO_ALM MSK; / turn low alarm bit off */
}

return(OK) ;

The compiler inserts runtime library calls to handle the floating point variables. This is
not a problem for C FBKs under MS-DOS, because the runtime libraries are allowed. In
the PLC build, however, these calls show up as unresolved externals. In this case the
runtime library call cannot be eliminated and LIMIT should be built into a C block.

Chapter 4 Example C Series 90-70 Application Development

4-15

Eliminating Runtime Library Calls

It may be possible to eliminate runtime library calls. To find the calls, edit the
plcco070.mkd file in the \s9070c directory as follows:

1. Inplcc9070.mkd there is a comment: “to provide a combined source and assembly
file, uncomment the following line.” The next line looks like this:

#CFLAGS=-Fc
Remove the # from the start of the file.
2. Delete limit.obj in the plc subdirectory, and rebuild limit

3. There should be a file, limit.cod , in the same directory as limit.c . Edit this file
and look for the unresolved external function calls. A function call will be a line with
the word “call” followed by the function name.

4. Once this line is located, the line of code from the source file above the call is the
most likely source of the runtime library call. Try to rewrite the line to not invoke
the runtime library call.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Section 3: Installed Sample C FBK

GFK-0646E

An example for C FBK development is in the \s9070c\exfbk subdirectory. The harness
developed for this example is a simple interactive interface. A batch mode version can
be made using example2 as a guideline. The harness FBKHARN.C is shown below:

#define _TESTHARN_
#include <stdio.h>
#include “plcc9070.h”

/ * * *

* * * * *

*

* GEFanuc 90-70 PLC Memory Size Declarations
#define L_MEM_WORDS 1024
#define P_MEM_WORDS 1024
#define R_MEM_WORDS 1024
#define Al_MEM_WORDS 64
#define AQ_MEM_WORDS 64
#define I_MEM_BYTES 256
#define Q_MEM_BYTES 256
#define T_MEM_BYTES 32
#define M_MEM_BYTES 512
#define SA_MEM_BYTES 16
#define SB_MEM_BYTES 16
#define SC_MEM_BYTES 16
#define S_MEM_BYTES 16
#define G_MEM_BYTES 160
#define GA_MEM_BYTES 160
#define GB_MEM_BYTES 160
#define GC_MEM_BYTES 160
#define GD_MEM_BYTES 160
#define GE_MEM_BYTES 160
#define I_DIAG_BYTES 256
#define Q_DIAG_BYTES 256
#define I_TRANS_BYTES 256
#define Q_TRANS_BYTES 256
#define T_TRANS_BYTES 32
#define M_TRANS_BYTES 512
#define SA_TRANS_BYTES 16
#define SB_TRANS_BYTES 16
#define SC_TRANS_BYTES 16
#define S_TRANS_BYTES 16
#define G_TRANS_BYTES 160
#define GA_TRANS_BYTES 160
#define GB_TRANS_BYTES 160
#define GC_TRANS_BYTES 160
#define GD_TRANS_BYTES 160
#define GE_TRANS_BYTES 160
#define Al_DIAG_BYTES 64
#define AQ_DIAG_BYTES 64
#define RSB_MEM_BYTES 688

Chapter 4 Example C Series 90-70 Application Development

/

4-17

4-18

#include “tharndat.inc”

static short int X1;/* input 1 parameter */
static short int Y1;/* output 1 parameter */
void plc_sweep(void)
{

for(;;) {

printf(“Enter number : 7);
scanf(“%ud”,&X1);
main(&X1, &Y1);
printf(“%u!: %u\n”,X1,Y1);
}

The program the harness tests is FACT.C, shown below:

/*

* This will calculate the factorial of a number X! where:
*

*0l=1

* X1 = (X=1)1*X

*/

#include “plcc9070.h”

int main(short int *X1,short int *Y1) {

int1,J;

short int xy;

/*

*0l=1

*/

(*Y1) =1;

for(1=1;1<=(*X1);1++){
/*
= (1I-1) * |
*/
Xy =0;

for(J=0;J<I;J++) xy += (*Y1);
(Y1) =xy;

return OK;

}

The example has a BLDVARS file included that defines this directory as a C FBK build
directory. To build and debug this application follow the instructions for examplel.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Section 4: Installed Sample Standalone C Program

GFK-0646E

An example for standalone C program development is in the \s9070c\exsap subdirectory.

The harness developed for this example is a simple interactive interface. A batch mode

version can be made using example2 as a guideline. The harness SAPHARN.C is shown

below:

#define

TESTHARN

#include <stdio.h>
#include “plcc9070.h”

/
*

* * * *

GEFanuc 90-70 PLC Memory Size Declarations

*

*

* *%

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Chapter 4 Example C Series 90-70 Application Development

* * *kkkkkkkk * *% *kkkkk

L_MEM_WORDS
P_MEM_WORDS
R_MEM_WORDS
Al_MEM_WORDS
AQ_MEM_WORDS
|_MEM_BYTES
Q_MEM_BYTES
T_MEM_BYTES
M_MEM_BYTES
SA_MEM_BYTES
SB_MEM_BYTES
SC_MEM_BYTES
S_MEM_BYTES
G_MEM_BYTES
GA_MEM_BYTES
GB_MEM_BYTES
GC_MEM_BYTES
GD_MEM_BYTES
GE_MEM_BYTES
|_DIAG_BYTES
Q_DIAG_BYTES
|_TRANS_BYTES
Q_TRANS_BYTES
T_TRANS_BYTES
M_TRANS_BYTES
SA_TRANS_BYTES
SB_TRANS_BYTES
SC_TRANS_BYTES
S _TRANS_BYTES
G_TRANS_BYTES
GA_TRANS_BYTES
GB_TRANS_BYTES
GC_TRANS_BYTES
GD_TRANS_BYTES
GE_TRANS_BYTES
Al_DIAG_BYTES
AQ _DIAG_BYTES
RSB_MEM_BYTES

Fkkkkk

1024
1024
1024
64
64
256
256
32
512
16
16
16
16
160
160
160
160
160
160
256
256
256
256
32
512
16
16
16
16
160
160
160
160
160
160
64
64
688

/

4-19

4-20

#include “tharndat.inc”
typedef struct _io_spec_rec *_io_spec_rec_ptrs;
extern _io_spec_rec_ptrs spec_data_ptrs[16];

void plc_sweep(int argc,char *argv, char *envp)
{

int 1,J;

unsigned int input;

word *word_array;

byte *byte_array;

/*

* Loop forever

* Prompt user for input spec values.
* Call main to execute block.

* Print out results.

* End loop
*
while (1) {
1
* Get input specs
*

for(1=0;1<8;1++) {

[* IF current input spec exists */
if(spec_data_ptrs[l]->data != NULL) {

printf(“INPUT SPEC %d *,1+1);

/* This will get the input spec in bytes or words */
/* depending on the type. */
if(spec_data_ptrs[l]->spec_type == BYTE_IO_SPEC_TYPE)

printf(“(in bytes): ");
byte_array = spec_data_ptrs[/]->data;
for(J=0;J<(spec_data_ptrs[I]->byte_len);J++) {
scanf(“%d”,&input);
byte_array[J] = (byte)input;

else {
printf(“(in words): ”);
word_array = (word *)(spec_data_ptrs[l]->data);
for(J=0;J<(spec_data_ptrs[I]|->byte_len/2);J++) {
scanf(“%d”,&input);
word_array[J] = input;

}
}* end IF current input spec exists */
}
/*
* End of Get input specs
*
/*inl is bubble sorted to out2 *
main();
/*
* Print output specs
*

for(1=0;1<8;1++) {

/* IF current output spec exists */
if(spec_data_ptrs[l+8]—>data = NULL) {

printf(“OUTPUT SPEC %d *,1+1);

/* This will get the input spec in bytes or words */
/* depending on the type. */
if(spec_data_ptrs[l+8]—>spec_type == BYTE_IO_SPEC_TYPE) {
printf(“(in bytes): ”);
byte_array = spec_data_ptrs[l+8]->data;
for(J=0;J<spec_data_ptrs[I+8]—>byte_len;J++) {
printf(“%d ",byte_array[J]);
}

else {
printf(“(in words): ");
word_array = (word *)(spec_data_ptrs[l+8]->data);
for(J=0;J<(spec_data_ptrs[I+8]—>byte_len/2);J++)
printf(“%d ",word_array[J]);

}* end IF current input spec exists */

printf(“\n”);

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

/*

* End of Print output specs

*

5

* To further mimic PLC operation, now

* clear the FIRST SCAN status bit.

*
_ fst_sen=0;

}
}

The program the harness tests is BUBBLE.C shown below:

#include “plcc9070.h”
IN1_B(batch,10);
OUT2_B(queue,10);

int main() {
int 1,J,LOWVALUE;
inti;
byte temp;

for (I=0;1 < 9;1++) {
LOWVALUE =,
for(J=1+1;J < 10;J++) {

if(batch[LOWVALUE] > batch[J]) LOWVALUE = J;

if (I '= LOWVALUE) {
[* Swap the values */

temp = batch[LOWVALUE];
batch[LOWVALUE] = batch[l];
batch[l] = temp;

}

for (1=0;1 < 10;1++) {
queue[l] = batch[l];

}
}/* end bubble_sort */

The example has a BLDVARS file included that defines this directory as a standalone C

program build directory. To build this application follow the instructions in the next
section.

GFK-0646E Chapter 4 Example C Series 90-70 Application Development

4-21

Section 5: Step-by-Step Example Session For
Standalone C Program

Building and Debugging BUBBLE under MS-DOS

To build BUBBLE, make EXSAP the active directory. Once in the example directory,
invoke the C development software command file MKDOS.BAT specifying the
application to be built:

¢:\s9070c\exsap> mkdos bubble

MKDOSvill invoke the Microsoft C compiler and linker to compile both BUBBLE.Cand
SAPHARN.Cand then link the two resulting object files into one DOS-executable file
BUBBLE.EXE BUBBLE.Cand SAPHARN.Care located in the exsap subdirectory. When
MKDOS executes, it creates a subdirectory under EXSAPnamed DOS The object files
(*.OBJ) created from the C compile are both placed in the directory

\s9070c\exsap\dos . When the linker created the executable file BUBBLE.EXE this
file is also placed in the \s9070c\exsap\dos subdirectory. The DOS subdirectory
under EXSAPIs used to group together all of the files specific to the DOS-executable
version of the BUBBLE application.

Once the executable BUBBLE.EXEis created (all compiles and the link complete without
error) C blocks and standalone C programs work the same way, change the active
MS-DOS directory to \s9070c\exsap\dos . To begin testing BUBBLE type bubble at
the MS-DOS prompt:

¢:\s9070c\exsap\dos> bubble

BUBBLE.EXEwill proceed to prompt for the size of the list and the elements of that list.
After getting the input values, BUBBLE.EXEwill call main() to execute the application
and will then display the results from the call to main(). A sample of such a session
could be:

INPUT SPEC 1 (in bytes): 4

QO ~NO U, DNW

9

OUTPUT SPEC 2 (in bytes):
0123456789

INPUT SPEC 1 (in bytes): _

The above sequence would be repeated until all required test cases had been attempted.
To stop BUBBLE.EXEand return to MS-DOS, press CTRL-C (press the Control key and
C at the same time).

4-22 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Building and Debugging BUBBLE for the PLC

GFK-0646E

When a standalone C program is built for execution in the Series 90-70 PLC, the file
SAPHARN.Cis not included as part of the link process. SAPHARNSs not required because
the actual target PLC will provide the PLC reference table allocations and will also
provide the PLC sweep mechanism.

To illustrate building the example application program BUBBLE.C, make
\s9070c\exsap the active MS-DOS directory.

To build the sample program BUBBLE.C for execution in the Series 90-70 PLC, create a
folder in the Logicmaster 90-70 software (make sure to use a name other than BUBBLEas
the folder name). Once the folder has been created, invoke the MS-DOS batch file
MKPLC.BATlocated in the \s9070c directory. MKPLCrequires the name of the
application as a parameter:

¢:\s9070c\exsap> mkplc bubble

MKPLGwill invoke a Microsoft NMAKHEnakefile to compile BUBBLE.Cand then link the
compiled BUBBLEwith the PLC-specific runtime libraries. If the compile and
subsequent link operations complete successfully (no error messages displayed on the
screen), the build process will prompt for a folder name. Enter the folder name (use the
full MS-DOS path if the folder is not a subdirectory of \s9070c\exsap). This will
import the standalone C program into the folder created by Logicmaster. In the PLC
subdirectory will be BUBBLE.OBJ(the compiler output file), BUBBLE.PPP(the linker
output file), and BUBBLE.MAP(the linker mapfile). In the \s9070c\exsap directory
there will be BUBBLE.DBG In the folder there will be BUBBLE.STA using this file the
standalone C program can be moved to other folders using Logicmaster (from
Logicmaster Main Menu F6 C utilities, F3 standalone merge). Do not try doing a DOS

copy.

In the Logicmaster 90-70 Programming software, enter the Program Declaration Screen
(press F1). Next, hit F1 to insert the standalone C program into the Program Declaration
Screen. Then hit ESC to accept the program name. The highlight should remain on the
standalone C program. Go to the control screen (press F9) to specify the program
options. Go to the input specifications. On the first line there should already be a size
of 10, enter %R1 for the memory start (since our parameter is an array of ten bytes).
There should already be a size of 10 for the second output specification. Enter %R6. Hit
ESC to accept the data.

Next, store the folder to the PLC using the Logicmaster 90 store function. Once the
program folder is successfully stored to the PLC, return to the program editor display.
With the Logicmaster 90 programmer online and equal to the PLC, place the PLC in RUN
mode.

The execution of the standalone C program BUBBLEcan be tested by placing different
values into %R00001—%R00005. Recall that the ten bytes in %R00001—%R00005 is the
batch list, and the ten bytes in %R00006— %R00010 is the sorted list. Try entering the
different values for %R00001— %R00005.

Chapter 4 Example C Series 90-70 Application Development 4-23

4-24

Table 4-2. Test Values

Case

Input List

Output List

0,1,23,4,56,7,8,9

0,1,23,4,56,7,8,9

98,7,6,5,4,3,21,0

0,1,273,4,5,6,7,89

543,21,06,7,8,9

0,1,273,456,7,89

98,7,6,501,23,4

0,1,23,4,56,7,8,9

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Chapter

9]

Example C Series 90-30 Application
Development

Section 1: Installed Sample Blocks

GFK-0646E

In the C development software directory, \s9030c , there are two subdirectories which

have examples of simple blocks: examplel and example2 . Each subdirectory contains

the block source file LIMIT.C . LIMIT.C provides an illustration of a function which

could be written in ladder logic, but is, instead, written in C.

LIMIT is an application program which range checks a current value against a low limit
and a high limit and returns, if necessary, a corrected value which is within the range. If

the current value is lower than the low limit or higher than the high limit, then LIMIT
will return low limit or high limit, respectively. A ladder logic call to this external block

could look like the following;:

Yanable Declaration Editor - _MAIN

Al

Local Scope All ¥isible Scopes

[ALLTypes =] [ALLRefs = Syil

MName Type | Len | Address I Description | Stored Val |Scupe|
200001 GINT 1 2%6R00001 Input value [intege: Config
|__[%sR00002 WORD 1 %R00002 High Limit Value [ir Config
|__[%R00003 INT 1 %R00003 |Low Limit Value [In Config
‘ llfi'lﬂﬂﬂﬂl 1T 4 NATANNNN 4 B0 Al e FhZad & [g Sy gy ’ vI
[Limit, Lirmit || 53¢ D [LacaL [_MaIN [Mot Saved 7

Figure 5-1. Ladder Logic Call to Example Block

The C block LIMIT is shown below:

#include ”plcc9030.h”

#define HI ALM MSK 0x01
fdefine LO_ALM MSK 0x02

EXE stack size = 2048;

main(void)

(short int *) ri mem;
(short int *) ri mem+l;
(short int *) ri mem+2;
(short int *) ri mem+3;
(unsigned cha?_*):_mb_mem;

short int *input value
short int *high Timit
short int *low Timit
short int *output value
unsigned char *alarm bits

/* check that all parameters have been provided

if ((input value == NULL)
(high Timit == NULL)
(low Timit == NULL)
(output value == NULL)
(alarm bits == NULL))
return(ERROR) ;

/* check for error condition high limit < low_ limit
* if error, set no power flow and return, don’t change any outputs
:'c/

if (*high limit < *low limit)
return(ERROR) ; -

sk

%ok o ok ok

check for in out range
if in exceeds either limit
use the exceeded limit value for the output
else use the input value for the output
always write both high and low alarm bits appropriately

if ((*input_value) > (*high limit))({

*output value = *high limit; [* use high limit for output */
alarm bits |= HI ALM MSK; [turn high alarm bit on */
alarm bits &= “LO ALM MSK; / turn low alarm bit off */

} else if ((*input vaTue) < (*low limit)) {
*output value = *low limit; ~ /* use low limit for output */
alarm bits &= “HI ALM MSK; / turn high alarm bit off */
alarm bits |= LO ALM MSK; [turn low alarm bit on */

} else { — -~
*output value = *input value; /* use in for output */
alarm bits &= “HI ALM MSK; [turn high alarm bit off */
alarm_bits &= “LO_ALM MSK; / turn low alarm bit off */

}

return(OK) ;

In the C subroutine block LIMIT above, %R00001 contains the current value, %R00002
containg the high limit value, and %R00003 contains the low limit value. The return
parameters from the C subroutine block LIMIT above are the range corrected current
value in %R00004, an indication of the input current value being over the high limit in
%MO00001, and an indication of the input current value being under the low limit in
%MO00002 (bit 2 of the 16 bit value starting with %MO00001).

The following two sections will describe how to interactively test a block (example 1) and
how to batch test a block (example 2). The differences between the two methods
(interactive and batch) will be shown in the test harness file, BLKHARN.C

5-2 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Example 1: Interactive LIMIT

GFK-0646E

As stated at the beginning of this chapter, LIMIT.C is the same in both this example and
in example2 . The difference between the two examples is the manner in which testing
under MS-DOS may be accomplished. In this example, you will use interactive methods
to request user input and display data values.

The interactive commands which get user input to pass to the block and which display
data upon return of the block are all placed into the file BLKHARN.C Recall that
BLKHARN.Cis the MS-DOS test harness which is linked with the application (in this
case, LIMIT) to create an MS-DOS executable and which provides the basic PLC sweep
mechanism. The intent of BLKHARN.Cis not only to provide the basic sweep
mechanism, but also to contain any and all debugging code.

The code contained in BLKHARN.Cfor examplel is shown below:

f#define TESTHARN
#include <stdio.h>
#include ”plcc9030.h”
[Fdex dededededek dededededek edededededed Jede de de dedede
* GEFanuc 90-30 PLC Memory Size Declarations */
#define R MEM WORDS 9999
#define AT MEM WORDS 2048
f#define AQ MEM WORDS 512
#define I MEM BYTES 256
#define Q MEM BYTES 256
#define T MEM BYTES 32
#define M MEM BYTES 512
#define SA MEM BYTES 16
#define SB MEM BYTES 16
#define SC MEM BYTES 16
#define S MEM BYTES 16
f#define G MEM BYTES 160
#define I TRANS BYTES 256
#define Q TRANS BYTES 256
#define T TRANS BYTES 32
#define M TRANS BYTES 512
f#define SA TRANS BYTES 16
#define SB™ TRANS BYTES 16
#define SC_ TRANS BYTES 16
f#define S TRANS BYTES 16
#define G_TRANS_BYTES 160
Chapter 5 Example C Series 90-30 Application 5-3

Development

#include "tharndat.inc”

void plc_sweep(int argc,char *argv, char *envp)

{
int ok; /* used to store returned power flow —— the OK parameter */
/*
* Modify stdout to use NON-buffered i/o
%
setbuf (stdout, NULL);
/7’:

* To mimic PLC operation, initialize the FIRST SCAN, LAST SCAN,
* ALW ON, and ALW OFF special status bits.

x|
SB(l) |= 0x01; /* FST_SCN */
SB(l) |= 0x02; /* LST_SCN */
SB(l) |= 0x40; [* ALW ON */
SB(1l) &= ~0x80; [* ALW_OFF */

5

* Loop forever

* Prompt user for IN (%R0001), HIGH LIMIT (%R0002), LOW_LIMIT (%R0003).

* Call main to execute block.

* Print out results.

* End loop

%

while (1) {

printf (”INPUT VALUE: ”);

scanf (”%d”, (short int *)_ ri mem); [* %R0O001 */
printf (”HIGH LIMIT: ”);

scanf (”%d”, (short int *) ri mem+l); /* ZR0002 */
printf (”LOW_LIMIT: ”);

scanf (”%d”, (short int *) ri mem+2); /* ZR0003 */

ok = main();

/* From description of LIMIT in top of file LIMIT.C * [
/* the alarm bits returned from LIMIT are in %ZMO001l */
/* and %M0002 reference. x|
printf(”OK: 7%d, OUT: 7%d, HIGH ALARM: 7%d, LOW_ALARM: Z%d.\n\n”,
(int) (ok==0K),
RW(4),
(MB(1) & 0x01),
((MB(1l) & 0x02) >> 1));

[*

* To further mimic PLC operation, now

* clear the FIRST SCAN special status bits.
*/
SB(l) &= OxFE;

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

This version of BLKHARN.Callows for the interactive testing of the LIMIT application
program. The interactive nature of this version of BLKHARNSs seen in the prompting for
input values at the beginning of the while() loop (printf() and scanf() pairs)
and in the single printf() statement which appears inside the while() loop
immediately after the call to main() . The printf() and scanf() statementsin
this version of BLKHARN.Care written specifically for testing the example program
LIMIT.C . The user is prompted to provide values for the current input, the high limit,
and the low limit. Once each of these values is entered, main() is called passing in the
user-supplied values. Upon return from main() the range-corrected current value
and the alarm bits are displayed to the screen. By providing different combinations of
current value, high limit, and low limit, and by verifying the returned range-corrected
current value and the alarm bits, the application LIMIT may be verified to operate
correctly-all before it is ever placed into the Series 90-30 PLC.

Chapter 5 Example C Series 90-30 Application 5-5
Development

Example 2: Batch Mode LIMIT

Example 2 uses batch methods for testing the application LIMIT. Rather than
interactively requesting the input data and then printing the returned output data to the
screen, this example will read all input values from an input data file. Likewise, example
2 will write all returned data to an output file. There is one additional difference to
example 2’s version of BLKHARN.C the operation of the section of ladder logic which
controls the enabling of the C block is duplicated. The duplicated ladder logic in
BLKHARN.Cmimics the enable on the CALL LIMIT function block. The source for this
version of BLKHARN.Cis shown below:

#define TESTHARN
#include <stdio.h> "~
#include ”plcc9030.h”

[Fededededededede ded e dedededededede e dede e dede e ded e dedededede e dededededededede dededededededede e dede e dedededede dedede e de
GEFanuc 90-30 PLC Memory Size Declarations /
#define R MEM WORDS 9999
#define AT MEM WORDS 2048
#define AQ MEM WORDS 512
f#define I MEM BYTES 256
#define Q MEM BYTES 256
#define T MEM BYTES 32
f#define M MEM BYTES 512
f#define SA MEM BYTES 16
#define SB MEM BYTES 16
#define SC"MEM BYTES 16
#define S MEM BYTES 16
#define G MEM BYTES 160
#define I TRANS BYTES 256
#define Q TRANS BYTES 256
#define T TRANS BYTES 32
#define M TRANS BYTES 512
f#define SA TRANS BYTES 16
#define SB” TRANS BYTES 16
#define SC” TRANS BYTES 16
#define S TRANS BYTES 16
#define G_TRANS_BYTES 160

#include ”tharndat.inc”

static char *inname = ”limit.dat”; /* data input file */
FILE *infile; |* streamer for input file */
static char *outname = ”limit.out”; [* output file *
FILE *outfile; [* streamer for output file */
/:':

* ZR0001 (ri mem) = Input value (integer)

* ZR0002 (T ri mem+l) = High limit value (integer)

* ZR0003 (T ri mem+2) = Low limit value (integer)

* ZR0004 (T ri mem+3) = Output value (integer)

* 7M0001 (T mb mem) = High alarm (bitl of reference)

* 7M0002 (__mb mem) = Low alarm (bit2 of reference)

5-6 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

#include ”tharndat.inc”

static char *inname = ”limit.dat”; /* data input file */
FILE *infile; /* streamer for input file */
static char *outname = ”limit.out”; [* output file */
FILE *outfile; [* streamer for output file */
/ *
* ZR0001 (ri mem) = Input value (integer)
* ZR0002 (C ri mem+l) = High limit value (integer)
* ZR0003 (T ri mem+2) = Low limit value (integer)
* ZR0004 (T ri mem+3) = Output value (integer)
* 7ZM0001 (T mb mem) = High alarm (bitl of reference)
* 7M0002 (__mb mem) = Low alarm (bit2 of reference)
*
* /
void plc_sweep(void)
int ok; /* used to store returned power flow -- the OK parameter */
int fstat; /* returned status of file operations. *
int enabled; [* used to compute enable status of function. */
word temp[5]; [* used to temporarily hold input status information */
int loop; /* local loop counter */
char 1line[133]; /* used in skipping input data comment line */
[*
* open files:
* data input file
*/ log output file

infile = fopen(inname, ”r”); /* open input file */
if (infile == NULL) {
fprintf(stderr, ”can’t open %s\n”,inname);
exit(l);

outfile = fopen(outname, ”w”); [* open output file */
if (outfile == NULL) {
fprintf(stderr, ”can’t open %s\n”, outname);
exit(l);
}

* while not EOF

read values to pass to limit function:

* HIGH LIMIT, IN, LOW LIMIT

* call 1limit using that set of values

write input values, plus values returned from limit function:
* HIGH LIMIT, IN, LOW LIMIT, OUT, ALARM BITS, power

end - - -

Chapter 5 Example C Series 90-30 Application
Development

5-7

7':/
fprintf(outfile,” ENABLE HIGH_LIMIT IN LOW_LIMIT ouT HIGH_ALARM LOW_ALARM OK\n\n”);
if (fgets(line, 132, infile) == NULL) return; /* skip the comment line */

/v‘:
* To mimic PLC operation, initialize the FIRST EXE, FIRST SCAN,
* ALW ON, and ALW OFF special status bits.

*/
SB(1) |= 0x01; [* FST_SCN * [
SB(l) |= 0x02; [* LST SCN * [
SB(1) |= 0x40; [* ALW_ON %[
SB(1l) &= ~0x80; [* ALW OFF */
for(s;) |

fstat = fscanf(infile, ”%u %u %Zu %u %u ”, &temp[O], &temp([l], &temp[2],
&temp[3], &temp[4]);
if (fstat != 5) break;

fstat = fscanf(infile, ”%u %u %u\n”,
(short int *) ri mem+l /* %R0002 */,
(short int *) ri mem /* %RO001 */,
(short int *)_ ri mem+2 /* ZR0003 */);
if (fstat != 3) break;

for (loop = 0; loop < 5; loop++) {
if (temp[loop] == 0)
BIT CLR I(loop+l);
else
BIT SET I(loop+l);
}

enabled = (BIT TST I(l) & BIT TST I(2) &
(BIT_TST_I(3) | BIT_TST I(4)) & BIT_TST I(5));

if (enabled) {
ok = main();

fprintf(outfile,”%4u %6d %6d %6d %6d %ou %6u %6u\n”,
enabled, RI(2), RI(1l), RI(3), RI(4), (MB(l) & 0x0l), ((MB(l) & 0x02) >> 1),
(int) (ok==0K)) ;

} else {

fprintf(outfile,”%4u \n”, enabled);

}
[*

* To further mimic PLC operation, now
* clear the FIRST SCAN special status bits. */
SB(1) &= OxFE;

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

The input file used in example2 , LIMIT.DAT , contains values for %11 —> %I5, high

limit, low limit, and the current value. LIMIT.DAT is provided as part of example2 .

The contents of LIMIT.DAT are shown below:

%11 %12 %13 %14 %15 high limit input value low limit expected result
1 1 1 0 1 30 20 10
1 1 0 0 1 30 20 10
1 0 1 1 1 30 20 10
1 1 1 0o o0 30 20 10
1 1 0 1 1 30 20 10
0 1 1 0 1 30 20 10
1 1 0 1 1 30 5 10
1 1 1 1 1 30 35 10
1 1 1 1 1 30 30 10
1 1 1 1 1 30 10 10
1 1 1 1 1 10 20 30
1 1 1 1 1 0 0 0
1 1 1 1 1 -10 -20 -30
1 1 1 1 1 -10 -5 -30
1 1 1 1 1 -10 -35 -30
1 1 1 1 1 -10 -10 -30
1 1 1 1 1 -10 -30 -30
1 1 1 1 1 -30 -20 -10

The output file, LIMIT.OUT , is created when LIMIT.EXE is executed. When the
LIMIT.DAT file provided with example2 is used as the input file and LIMIT.EXE
created from example2 is executed, LIMIT.OUT will contain the following;:

ENABLE HIGH LIMIT IN LOW LIMIT OUT HIGH _ALARM LOW_ALARM OK
1 30 20 10 20 0 0 1
0
0
0
1 30 20 10 20 0 0 1
0
1 30 5 10 10 0 1 1
1 30 35 10 30 1 0 1
1 30 30 10 30 0 0 1
1 30 10 10 10 0 0 1
1 10 20 30 10 0 0 0
1 0 0 0 0 0 0 1
1 -10 -20 -30 =20 0 0 1
1 -10 -5 -30 -10 1 0 1
1 -10 -35 -30 -30 0 1 1
1 -10 -10 -30 -10 0 0 1
1 -10 -30 -30 -30 0 0 1
1 -30 -20 -10 -30 0 0 0

Chapter 5 Example C Series 90-30 Application
Development

5-9

The batch file commands which get user input to pass to the block and which display
data upon return of the block are all placed into the file BLKHARN.C Because the code
contained in BLKHARN.Cwill never appear in the PLC, BLKHARN.C is not limited to the
list of PLC supported C functions, as listed in Appendix A, “Standard C Library
Functions Supported in the Series 90 PLC.” Therefore, the use of fopen() , fclose(

), fscanf() ,and fprintf() in BLKHARN.C is allowed. Note that BLKHARN.C
makes use of the BIT_TST_I() macro when evaluating the simulated boolean ladder
logic which is the enable to LIMIT .

Batch file testing provides several advantages over interactive testing:

1. If the test/debug/fix cycle must be repeated several times, the use of an input data
file saves retyping all of the test cases. Also, the use of an input data file ensures that
the same data cases will be attempted from test session to test session.

2. The input data file may be reviewed at any time to examine what cases are/were
tested.

3. The output data file may also be viewed any time after the test has been run to
examine what data values were tested and the corresponding results.

5-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Section 2: Step-by-Step Example Session For Blocks

In this section, the process of building LIMIT.C and testing it (under MS-DOS), both
interactively and in BATCHmode, are described in detail. Also covered are building
LIMIT.C for execution in the PLC and testing LIMIT in the PLC.

Building and Debugging LIMIT under MS-DOS

GFK-0646E

Interactive Limit

To build LIMIT asin examplel , make \s9030c\examplel the active MS-DOS
directory. To build a C block, invoke the C development software command file
MK3DOS.BATspecifying the application filename to be built:

¢:\s9030c\examplel> mk3Dos limit

MK3DOSvill invoke the Microsoft C compiler and linker to compile both LIMIT.C and
BLKHARN.Cand then link the two resulting object files into one DOS-executable file
LIMIT.EXE . LIMIT.C and BLKHARN.Care located in the examplel subdirectory.
When MK3DO®xecutes, it creates a subdirectory under examplel named DOS The
object files (*.OBJ) created from the C compiler are both placed in the directory
\s9030c\examplel\dos . When the linker creates the executable file LIMIT.EXE ,
this file is also placed in the \s9030c\examplel\dos subdirectory. The DOS
subdirectory under EXAMPLE1s used to group together all of the files specific to the
DOS-executable version of the LIMIT application.

Once the executable LIMIT.EXE is created (all compiles and the link is complete
without error), change the active MS-DOS directory to s9030c\examplel\dos (for
both C blocks). To begin testing LIMIT , type limit at the MS-DOS prompt:

¢:\s9030c\examplel\dos> limit

LIMIT.EXE will proceed to prompt for the current input value, high limit, and low limit.
After retrieving the input values, LIMIT.EXE will call main() to execute the
application and will then display the results from the call to main() . A sample of one
such session could be:

INPUT VALUE: 20

HIGH_LIMIT: 30

LOW_LIMIT: 10

OK: 1, OUT: 20, HIGH ALARM: 0, LOW ALARM: 0.

INPUT VALUE: _

The above sequence would be repeated until all required test cases had been attempted.
To stop LIMIT.EXE and return to MS-DOS, press CTRL-C.

Chapter 5 Example C Series 90-30 Application 5-11
Development

Batch Mode Limit

The process for building LIMIT in example2 is the same as for examplel . Recall that
the difference between the two examples is actually in the code contained in the file

BLKHARN.C First, make \s9030c\example2
invoke the C development software command file MK3DOS.BATspecifying the

application file name to be built:

¢:\s9030c\example2> mk3Dos limit

the active MS-DOS directory. Then

Once LIMIT.EXE is created (all compiles and the link complete without error), ensure

that the active MS-DOS directory is \s9030c\example2
at the MS-DOS prompt:

dos\limit

¢:\s9030c\example2> dos\limit

. To begin testing LIMIT type

Unlike examplel , LIMIT in example2 will not prompt the user for any information.

In example2 , LIMIT will open the input file LIMIT.DAT , open the output file

LIMIT.OUT , and then repeatedly read a line from the input file, pass the read values to

main()

to execute the application, and then write the results from the call to main()

to the output file. No messages are displayed to the screen unless a file operation error
occurs. The contents of LIMIT.OUT after processing are shown below:

30

=t e et et et ot e et et et e = O = O O O =
w
o

20

10

20

0

OO0 O0O+HOO0OO0OOO~O O

0

o

OCOOHOOOO0OOOOH

ENABLE HIGH LIMIT IN LOW _LIMIT OUT HIGH ALARM LOW_ALARM OK

1

—

OO

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Building and Debugging LIMIT for the PLC

GFK-0646E

When an application C subroutine block is built for execution in the Series 90-30 PLC, the
harness file is not included as part of the link process. The harness is not required
because the actual target PLC will provide the PLC reference table allocations and will
also provide the PLC sweep mechanism.

To illustrate building the example application program LIMIT.C , make
\s9030c\examplel the active MS-DOS directory.

Note

Since the file LIMIT.C is the same for both examplel and for
example2 and the file BLKHARN.Cis not needed, either the examplel
or example2 subdirectories may be used to build the example program
for execution in the Series 90-30 PLC.

To build the sample program LIMIT.C for execution in the Series 90-30 PLC, use the
following procedures:

1. Invoke the MS-DOS batch file MK3PLC.BATlocated in the \s9030c directory.
MK3PLCrequires the name of the application as a parameter:

¢:\s9030c\examplel> mk3plc limit

2. MK3PLCwill invoke a Microsoft NMAKEnakefile to compile LIMIT.C and then, in
the case of the C block, link the compiled LIMIT with the PLC-specific runtime
libraries. If the compile and subsequent link operations complete successfully (no
error messages displayed on the screen), the file LIMIT.EXE will reside in the
\s9030c\examplel\plc subdirectory. The LIMIT.OBJ (the compiler output file),
LIMIT.PPP (the linker output), LIMIT.LST (the compiler source listing) and
LIMIT.MAP (the linker output file) files produced in the build process will also
reside in that subdirectory.

3. Use the Windows-based programming software to insert the C block or C Main
program. (Refer to the “Working with C Programs and Blocks in the
Windows-based Programming Software” section on page 3-97 and following for
detailed instructions on placing C blocks and C MAIN programs in your the
Windows-based programming software Equipment Folder. Also, refer to online help
if you do not know how to use the Call function shown below.)

Variable Declaration Editor - _MAIN =] E3
® ”{} Limit 3‘
) ALw_ON
- BIT I | EnT
“=|or CALL
i |
4, | CTRL
2's
SN _>I_I
Local Scope All ¥isible Scopes IALL Types j IALL Refs j r Syﬂ
Name Type I Len | Address I Description I Stored Val IScupeI
2000001 GINT 1 2%6R00001 Input value [intege: Config
__[%R00002 WORD 1 2%R00002 High Limit Value [ir Config
|__(%R00003 INT 1 %R00003 |Low Limit Value [In Config
‘ nli—lﬂﬂﬂﬂ a 1T 4 NATANNNN 4 L AN Fhfad X [g RS ' vI
Chapter 5 Example C Series 90-30 Application 5-13

Development

4. Store the folder to the PLC using the the Windows-based programming software
store function.

5. Once the program folder is successfully stored to the PLC, return to the program
editor display.

6. With the Windows-based programming software online and equal to the PLC, place
the PLC in RUNmode.

The execution of the C block LIMIT can be tested by placing different values into
%R0001, %R0002, and %R0003. Recall that %R0001 is the current value, %R0002 is the
high limit, and %R0003 is the low limit. As changes are made to %R0001, %R0002,
and/or %R0003 watch as the values for %R0004, %M00001, and %MO00002 change. Try
entering different values for %R0001, %R0002, and %R0003.

Table 5-1. Test Values for LIMIT.EXE in the Series 90-30 PLC

Input Parameters Output Parameters
Case %R0001 %R0002 %R0003 %R0004 | %MO00001 | %M00002
1 5 10 0 5 0 0
2 15 10 0 10 1 0
3 -1 10 0 0 0 1
4 0 10 0 0 0 0
C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Chapter

6

Overview

C Application Development
Using Multiple C Source Files

The C Programmer’s Toolkit is organized to create C applications from a single C source
file or multiple C source files. For most applications, a single C source file is sufficient to
contain all required logic. However, some applications may require the use of multiple C
source files. This may be especially true if more than one software developer is creating
the C application source code. To aid in the development of C applications which are
made from multiple C source files, an option for multiple source files has been added to
this version of the toolkit. The subdirectory \s9070c\multisrc (for a 90-70
application) or \s9030c\multisrc (for a 90-30 application) and the files contained
therein are provided as part of the C Programmer’s Toolkit to demonstrate this new
feature.

The sources file is used by the build procedure to compile and link multiple source files
into one C application. The sources file specifies the files required to build the
application, and identifies the source file that contains main(). The names and numbers
of files can be expanded or reduced by editing the sources file.

Once the sources file is edited to reflect the structure of your multi-source application,
the application is built by running MKPLC.BAT(90-70), MK3PLC.BAT(90-30),
MKPLC7.BAT(90-70), MK3PLC7.BAT (90-30), MKDOS.BAT90-70), MK3DOS.BAT(90-30),
or MKDOS7.BAT(90-70), MK3DOS7.BAT(90-30) depending on your application.
MKPLC.BAT and MKDOS.BATcreate C blocks and standalone C programs that do not
require a floating point coprocessor. MKPLC7.BATand MKDOS7.BATare used for
applications that take advantage of the math coprocessor.

The BLDVARSile specifies the type of application that will be built: C block, C FBK, or
standalone C program. To change the application type that is built, change the type field
from TYPE=BLOCK to either TYPE=FBK or TYPE=STANDALONE (note all capital
letters are used).

Creating a Multiple C Source Application SOURCES File

GFK-0646E

The build procedure will need to know the names of files used by the application and
the name of the file that contains the main function. This information is contained in the
sources file in the application directory. An example of the sources file is shown
below. The MAINFILE line identifies the file that contains the main function (main.c) in
the example. The FILENAMESIine lists the files required for the application (main.c,

SRC1.C, SRC2.C, SRC3.C, SRC4.C, SRC5.C) in the example. The .C endings are
necessary for the build procedure to manipulate the filename during the procedure. The
harness filenames do not need to be in the FILENAMESIist; the build procedure will
include the appropriate harness file automatically on an MS-DOS build. If the filenames
are too long to fit on one line, add the continuation character at the end of the line as
shown in the example below.

MAINFILE=main.c
FILENAMES=main.c srcl.c src2.c sr3.c srck.c\
srcS.c

The continuation character is a backslash followed by a carriage return, no spaces.

Note

All source files must be in the same directory. Do not designate a path
for some of them.

Invoking a Multiple C Source Application Build

To invoke the multiple C source application build, use the MKDOS.BAT90-70),
MK3DOS.BAT(90-30), or MKDOS7.BAT(90-70), MK3DOS7.BAT(90-30), MKPLC.BAT
(90-70), MK3PLC.BAT(90-30), MKPLC7.BAT(90-70), or MK3PLC7.BAT (90-30) programs,
but do not specify a source filename on the command line.

I/0 Specifications in Standalone C Programs (Series 90-70 Only)

/O specifications may be used in any of the source files. The specification macro for
declaring a particular I/O specification must be used in only one source file. If an I/O
specification is to be used in multiple source files, the I/O specification macro should be
used in one source file and the 1/O specification array should be referenced as an
extern in the other source files.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

To illustrate, a Series 90-70 example of an external reference to an I/O specification is
shown in error.c: (Note that the files shown below are not part of the MULTISRC
example on the disk.)

/>'¢
* limit.c

*

#include “plcc9070.h”

IN1 W(input value,l);
IN2 W(high Timit,1);
IN3 W(low Timit,1);
OUTT W(output value,l);
OUT2 B(alarm bits,1);

int check _error;
main()

{

/* check for error condition high limit < low limit
* if error, don’t change any outputs

*/
if (check error() == ERROR) return(ERROR);
{
/7 check that all parameters have been provided
if ((input value == NULL)
(high Timit == NULL)
(low Timit == NULL) ||
(output value == NULL) ||
(alarm bits == NULL)) ||
return (ERROR);
* check for in out range
* 1if in exceeds either limit
* use the exceeded limit value for the output
* else use the input value for the output
* always write both high and low alarm bits appropriately
if ((*input value) > (*high limit)){
*output value = *high limit; /* use high limit for output */
BIT SET(alarm bits,1)3 /* turn high alarm bit on */
BIT CLR(alarm bits,2); /* turn low alarm bit off */
} else if ((*input value) < (*low limit)) {
*output value = *low limit; ~/* use low limit for output */
BIT CLR(alarm bits,1); [* turn high alarm bit off */
BIT SET(alarm bits,2); * turn low alarm bit on */
} else { -
*output value = *input value; /[* use in for output */
BIT CLR(alarm bits,l); [* turn high alarm bit off */
BIT CLR(alarm bits,2); /* turn low alarm bit off */
}
return(OK) ;
}
B

*

* error.c
%

#include “plcc9070.h”

extern word high limit[];
extern word low Timit[];

int check error()
if(high limit < low_limit) return(ERROR);

return(OK) ;

Chapter 6 C Application Development
Using Multiple C Source Files

Chapter

7/

GFK-0646E

The C Application Debugger for

Series 90-70 PLCs

The C Application Debugger is available with the PLC C Toolkit Professional

(IC641SWP719). The PLC C Toolkit Professional includes an enhanced version of the C

Programmer’s Toolkit, the C Application Debugger, and the Soft-Scope® user interface (a
product of Concurrent Sciences, Inc.).

The C Application Debugger for the Series 90-70 PLC offers programmers advanced
debugging capabilities. This chapter contains information on installing the Debugger,
starting a debugging session, and controlling and troubleshooting the debugging

process.

Chapter 7 contains the following sections:

Section Title Page
1 Installing the C Debugger 7-2
2 Starting a Debugging Session 7-4
3 Controlling the Debugging Process 7-10
4 Special Considerations 7-15
5 Troubleshooting 7-20
6 A Sample Debug Session 7-22

The C Application Debugger is a powerful tool that allows

Caution

programmers to modify application code and data within the PLC CPU
and significantly alter the behavior of the application being debugged.
Care should be exercised in using the Debugger; indiscriminate use of

its functionality may cause the application to malfunction.

7-1

Section 1: Installing the C Debugger

Installing the Toolkit

The first step in installing the C Debugger is to install the C Programmer’s Toolkit
software. See chapter 2 for a detailed description of this procedure.

Note

In addition to the directories described in chapter 2, the installation
program will create the following subdirectory on the specified hard
drive if it does not already exist:

<drive>:\s9070c\cdbs

This directory contains support files for the C debugger. See appendix B
for a list of files copied to this subdirectory.

Editing the AUTOEXEC.BAT file

You must make two additional changes to the autoexec.bat file:

1. Add the\s9070c\cdbs directory to the PATH definition immediately
following the \s9070c directory.

2. Add the command LH <drive>:\s9070c\cdbs\snp.exe to the end of the
autoexec.bat file. This command installs the SNP serial driver at boot time to
allow communication with the Debugger.

Note

If using a serial mouse on comm port 1 or 2 (not a dedicated mouse
port), then the snp.exe line must appear before the line that installs
the mouse driver.

Editing the CONFIG.SYS file

Add the command DEVICEHIGH=<drive>:\s9070c\cdbs\ssrs232c.exe to the
end of the config.sys file. This command installs the GE Fanuc Debugger driver into
high memory at boot time.

Note

The ssrs232c.exe driver included with the C Programmer’s Toolkit is
a replacement for an identically named driver included with CSI's
Soft-Scope. The C Debugger will not function properly with CSI's
version of this driver. After installing Soft-Scope (see below) you should
verify that the config.sys file contains only the command to load the
GE Fanuc driver as described above. A command installing CSI’s
version should not be added to config.sys.

7-2 C Programmer’s Toolkit for Series 90® PLCs User’s Manual — August 1998 GFK-0646E

Editing the GEF_CFG.INI file

You will need to edit the gef_cfg.ini file only in the following instances:

If you need to change any of the default serial port settings (port number, baud
rate—19200, parity—odd, stop bits—1, modem turnaround time—0)

If you have a multidrop configuration and need to be able to communicate with
different PLCs.

The GEF_CFG.INI file is located in \S9070C\CDBS and will have the same or very
similar information as the following printout of a sample GEF_CFG.INI file:

3 GEF_CFG.INI file for Series 9070 C debugger

3 COPYRIGHT (c) 1995 GE FANUC AUTOMATION NORTH AMERICA INC.

; Published in only a limited, copyright sense and all rights, including
; trade secret rights, are reserved. Unauthorized use of the information
; or program is strictly prohibited.

; The following line specifies the name of the PLC as it will appear
; on the debugger host software’s PLC select screen.

[PLC1]

; The following lines describe the serial port parameters.

; They must appear under the port name ”DEFAULT” for proper operation.
; The line ”TYPE = SNP_SERIAL” is required to specify SNP serial

;s communications.

; The line ”PORT = COML” specifies the comm port; the allowable values
; are COMl and COM2.

[DEFAULT]
TYPE = SNP_SERIAL
PORT = COM1

Installing Soft-Scope

GFK-0646E

The next step in the installation process is to install CSI's Soft-Scope debugger user
interface and its associated support utilities as described in the Soft-Scope
documentation. Note that this installation procedure also requires updating the PATH
in the autoexec.bat file. Consult the Soft-Scope manual for more details.

Note

In addition to installing the Soft-Scope user interface and its associated
support utilities, CSI's installation procedure will also install the CSiMon
debug monitor sources and example files. These files are not necessary
to run the C Debugger.

Note

Remember to reboot your PC before attempting to use the Debugger so
that the changes to the autoexec.bat , config.sys , and if applicable,
gef_cfg.ini , files will take effect.

Chapter 7 The C Application Debugger for 7-3
Series 90-70 PLCs

Section 2: Starting a Debugging Session

7-4

To access the C Debugger, choose the C Development Utilities menu (F6) on the
Logicmaster Main Menu (Release 6.0 or later of Logicmaster 90 is required):

d

[so-70

LOGICMASTER 90 SOFTWARE

FOR SERIES 90 (c) PROGRAMMABLE CONTROLLERS

| | | | | | | L)
ilProgrofCont iglel Pcn [AP K 01 ECToolsJ Util EEConcnufesctup MO Exit |

Shift-F5 ...

Series 90-70 Programmable Controller

F1 ...
F2 ...
F3 ...
. fxis Positioning Module Package
.. Operator Interface Utilities

.. C Developnent Utilities

. Logicmaster 90 Utilities

.. U=er Command Menu

.. Logicmaster 90 Setup Package

. Exit to DOS

Logicmaster 90 Programmer Package
Logicmaster 90 Configuration Package
PCH Development Package (PCOP)

Use the Shift-function keys to select PLC type.
Uze the function keys to start software package.

NG \INSET ./

C Programmer’s Toolkit for Series 90® PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

Choose C Debugger (F2) on the the Series 90 C Development Utilities menu screen:

/

| | | | |
ook cfbebugrfEmnergll —— 0 — 0 — E F-

Series 90 C DEVELOPMENT UTILITIES

F1 ...
FZ ..
F3 ...

C Programmer’s Toolkit
. C Debugger
Standalone Program Merge Utility

Use the function keys to start software package.

<{ Use the Escape key to exit. >>

\

/

-
The following table describes useful keystrokes and their functions for use within the C
Debugger:
Keystroke Function
F9 Return to the previous menu
ESC Return to the previous menu
ALT-A Abort current action
ALT-C Clear the current active edit field
ALT-H Help
ALT-K Key help
ALT-L List directory files

Chapter 7 The C Application Debugger for

Series 90-70 PLCs

7-5

On the Series 90 C Development Utilities screen, select C Debugger (F2) to initiate the
Select PLC Connection screen:

/T : : : i : : ! : ; N\
| N S R S R R R SO

Select PLC Conmection

Available PLC Commections:

Use the cursor keys or PgUp-PgDn to highlight a PLC.

Press ENTER to commect to highlighted FLC.

- /
The Select PLC Connection screen provides a list of CPUs able to communicate with the
Debugger.
Selecting a PLC

Use the PgUp/PgDn keys to view the next/previous page of available PLCs and the
arrow keys to highlight the desired PLC.

Press the ENTER key to begin communicating with the highlighted PLC.

You will be prompted to confirm the selection with the message “Connect to PLC
<plc name> (Y/N)?”

An “N” answer (or any non-"Y” answer) will reactivate the Select PLC
Connection screen.

7-6 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

A"Y” answer will activate the Debug Application Select screen:

T E F E [E E [EEict
Series 90 C Debugger — Debug Application Select
Debug PLC Application: [l Ture: PROGRAM in PLC: PLC1
Standalone DEMO
Programs: C Blocks:

LOop READCLK
INCRS LIMIT

Jelect C Application and Press ENTER to Continue.

- _/
Specify the C application to be debugged using one of the following methods:

Using the arrow keys, move the cursor through the list of Standalone Programs or C
Blocks to highlight the desired application. Press ENTER to activate the highlighted
selection.

OR

Type the name of the C application into the “Debug PLC Application” field, use the
TAB/SHIFT-TAB to select the application type (Program or Block) in the “Type”
field. Press ENTER to activate the selection.

GFK-0646E Chapter 7 The C Application Debugger for 7-7
Series 90-70 PLCs

The Application Pathname Entry screen will appear:

(i)

i i i i i i i i
T E OB OEOE E OE Eiacly
Series 90 C Debugger - Application Pathname Entry

Debug PLC Application: READCLK Type: BLOCK in PLC: PLC1

'\39070CNDEMO

Enter Path of Application Debug (.dbg) File

Press ENTER to Begin Debugging.

- /
The Application Pathname Entry screen is used to inform the Debugger software of
the application’s .DBG file location. This .DBG file was created by the Toolkit.
Accessing the .DBG file allows the Debugger software to debug at the source code
level and access all available debugging symbols.

Locating the .DBG file

The Debugger software searches the current directory for a .DBG file matching the
name of the selected C application. If the file is found in the current directory, the
pathname of the current directory will be displayed as default text in the pathname
entry field.

If the file is not found, the Debugger software will try to determine the
pathname of the last application built by the Toolkit and, if successful, will
display the pathname as default text in the pathname entry field; otherwise,
the root directory of the current drive will be displayed.

Note

If the application is a C Block, then it may have been renamed during
export to/import from the LM90 library. In such a case, the name of the
.DBG file on the disk will not agree with the name of the C block within
the PLC. To debug the block you will need to specify in the application
pathname entry field the name of the .DBG file together with the path
to the subdirectory containing the .DBG file. Under all other circum-
stances, specification of the .DBG filename in the pathname entry field
is optional.

Edit the default pathname as needed and press ENTER.

If the software cannot locate the .DBG file you specified, the message
“<appname>.DBG not found” will appear and the pathname entry field will
reactivate.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

Note

If the .DBG file does not exist and the Toolkit is Version 3.0 or later,
rebuild the project with DEBUG=0OMh the BLDVARSle.

You must have Version 3.0 or later of the Toolkit installed to generate the
.DBG file.

The software will prompt the user for final confirmation by displaying “Debug PLC
Application: <application name> Type: <type> in PLC <PLC name> (Y/N)?”

An “N” answer (or any non-"Y” answer) will reactivate the Application
Pathname Entry Field.

A”Y” answer will activate the Debugger on the selected application.

Chapter 7 The C Application Debugger for
Series 90-70 PLCs

Section 3: Controlling the Debugging Process

This section outlines specific features or ways of controlling the debugging process:
Optimizing performance of the user interface
Controlling application execution
Accessing CPU reference memories
Printf() function
Calculating background checksum
Patching application code

Terminating a debug session

For more detailed information about the debugging process and Concurrent Science’s
Soft-Scope user interface, consult the Soft-Scope manual.

Optimizing Performance of the User Interface

Soft-Scope communicates with the C Debugger through sequences of commands known
as debugger primitives. A single operation performed with Soft-Scope may require that
a sequence of many primitives be carried out. Since the C Debugger firmware processes
each primitive at a rate of one primitive per sweep, CPU sweep time should be reduced
as much as possible to achieve optimal performance of the Debugger user interface.

To reduce sweep time, try to eliminate all sources of unnecessary sweep overhead while
debugging. For example, if the application consists of multiple programs within the
CPU, try to run and debug each component individually whenever possible in order to
reduce total logic execution time.

Note

Soft-Scope refreshes the contents of any open Execution, Register,
Dump, and Watch window each time an application break occurs.
Closing these windows when they are not needed will improve
Soft-Scope’s response time in reporting application breaks.

Controlling Application Execution

The Debugger allows you to start and stop the execution of your application with
breakpoint, step, and other execution control features. These features affect whether
the Debugger believes your application is running or stopped.

7-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

PLC-related conditions

In addition, certain PLC-related conditions independent of the Debugger must be
satisfied in order for the application to run:

The PLC must be in RUN mode

If the application is a standalone program, its disable reference (if specified) must be
clear

If the application is a C block, then any enabling logic must pass power to the
associated CALL function block

The Debugger interface has no knowledge of these PLC-related conditions and may
report the application status as running even if one or more of the necessary conditions
is not met. However, the application will execute only when all these conditions are met
AND the application is running from the Debugger’s point of view.

Note

If the PLC state transitions from RUN to STOP to RUN, the current
execution point of the application is reset to a startup value outside of
the user code within the CPU’s operating system. (See “Application Out
of Context” below.) This reset takes place during the STOP to RUN
transition of the PLC state. However, if such a transition of the PLC
state occurs while the application is stopped from the Debugger’s point
of view, then the change in execution point will not be reflected in the
Code window.

Note

Timed and event-triggered standalone programs may be debugged with
the C Application Debugger. If the timer or I/O interrupt event
associated with the program triggers while the program’s execution is
stopped by the Debugger, then that trigger will be ignored by the PLC
(that is, the trigger event will not cause the program to rerun while an
outstanding invocation of the program is under the control of the
Debugger.)

Debugging timed or I/O interrupt-driven C blocks (or C blocks called
directly or indirectly from other timed or interrupt blocks) is NOT
supported. If a breakpoint is encountered within a such a C block, an
informational “Breakpoint Encountered in Interrupt Block” fault will be
logged in the PLC fault table. In this case, the breakpoint will be
removed and the application will continue executing,.

Functionality restrictions

Certain aspects of the Debugger’s functionality are restricted while the application is
running;:

Soft-Scope’s Register window is not updated during the execution of the application

The application’s current execution point as indicated in the Code window is
updated only when the application transitions from running to stopped from the

Chapter 7 The C Application Debugger for 7-11
Series 90-70 PLCs

Debugger’s point of view. Since the Code window is not updated while the
application is running, the current execution point indicated in this window is valid
only while the application is stopped. This information becomes “stale” when the
application starts running, and it will be updated again when the application stops
executing.

The Data, Watch, and Dump windows will not be updated during this period unless
the configuration option exec.refresh has been set to a non-zero value. (See the
Soft-Scope documentation for more information about exec.refresh.)

Breakpoints

Although a new breakpoint can be created with Soft-Scope at any time, breakpoints take
effect only after the application has transitioned from the stopped state to the executing
state. Thus, a breakpoint entered while the application is running will not become active
until the application has transitioned from executing to stopped and back to executing
again. The existence of such a breakpoint will be reflected in Soft-Scope’s Code and
Breakpoint windows immediately upon entry to indicate that the breakpoint was
successfully created in the Debugger’s internal database. Breakpoints entered while the
application is stopped will become active immediately upon the application’s next
transition to the running state.

Accessing CPU Reference Memories

The Debugger has the ability to access the CPU’s reference memories. A set of macros is
provided to allow convenient access to these areas from Soft-Scope. The appropriate
macro file is <drive>:\S9070C\CDBS\ACCESS.MAC where <drive> is the letter
associated with the disk drive where the Toolkit has been installed. After this file has
been loaded into Soft-Scope with the Macro/Load command, the macros are available for
execution with the Macro/Display command.

The macros available from ACCESS.MAGre direct counterparts to the C macros
available from the header file REFMEM.HFor example, invoking the ri macro with a
parameter equal to 5 will display the contents of %R5 as a signed integer. As written, all
the macros display their output in the Watch window.

Note

These macros rely on an internal table of data pointers to execute
correctly. This table is initialized during a STOP to RUN transition by
the CPU. Therefore, these macros will not return meaningful results
until the first STOP to RUN transition occurs. Such a transition is
necessary after every STOP mode store of logic in order to initialize the
table properly.

Using the Printf() Function

Application programs may use the C language’s standard I/O library function printf() to
output data through the CPU’s serial port with the following restrictions:

The serial port must be configured for message generation mode (MSG) instead of
the default SNP mode in order to support the printf() function

Because the Debugger communicates via the serial port, sending printf() data
through this port is not supported while an application is being debugged. No

7-12 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

output is performed by a call to printf() in this case; however, the return value of the
printf() call (typically the number of characters generated) will be the same as if no
debugging session were currently active.

Note

If the CPU’s serial port is configured for MSG mode, it is necessary to
place the PLC in STOP mode in order to establish communication
between Soft-Scope and the CPU. However, once a debugging session
has been established, Debugger communication will be maintained
regardless of any STOP to RUN or RUN to STOP transitions by the CPU
during the course of the session.

If the CPU's serial port is configured for SNP mode, then it is not
necessary to place the PLC in STOP mode to start the Debugger.

Calculating Background Checksum

The CPU firmware ordinarily performs a periodic checksum calculation over all
applications currently stored in memory in order to detect memory corruption.
However, because the Debugger may modify the application’s code image during the
course of a debug session (while setting a software breakpoint, for example), this
background checksum calculation will be disabled for the application being debugged.
Background checksums continue as normal for all applications which are not being
debugged, and checksums for an application being debugged are reenabled
automatically when the debug session is terminated.

Patching Application Code

Using the Debugger’s memory modification capabilities, it is possible to modify the code
image, or “patch,” an application being debugged. However, the expected checksum
value for an application is not recomputed as a result of a patch. If the Debugger is used
to patch an application, the checksum calculated over the modified code image will
probably disagree with the expected value for the checksum (as calculated at program
download time). However, this mismatch will not be detected until the current debug
session is terminated and background checksums are reenabled for the application.
When this condition is detected, a fatal User Patch Detected Fault will be logged in the
PLC fault table.

Note

Patching application code with the Debugger is not recommended.
Problems in application code should be corrected by rebuilding the
application source code and downloading the modified application to
the PLC.

Terminating a Debug Session

Under normal circumstances, a debug session is terminated using the Soft-Scope
File/Quit menu selection. Upon exiting Soft-Scope, the PLC Select screen will be

GFK-0646E Chapter 7 The C Application Debugger for 7-13
Series 90-70 PLCs

redisplayed to allow the user to select a new PLC with which to establish
communication. At this time the CPU firmware will clean up the current debug session
in preparation for a new one. Several actions occur as a result of this cleanup process:

All current hardware and software breakpoints will be removed

Background checksum calculations will be reenabled for the application (see
“Calculating Background Checksum and “Patching Application Code”)

If application execution was halted by the Debugger, it will be restarted

Under certain special circumstances, the CPU firmware will automatically terminate the
current debug session. These circumstances include:

loss of the Debugger’s communication link

loss of CPU power (termination of debug session occurs during subsequent
power up)

If the CPU firmware terminates a debug session, the normal cleanup actions outlined
above will take place. However, Soft-Scope will be unaware that the debug session has
been terminated and will continue to attempt to communicate with the CPU firmware.
This will result in a communication timeout or an error in communicating with the
SSDEV device driver (ssrs232c.exe).

If a communication timeout occurs, press ENTER to remove the dialog box then exit
Soft-Scope using the File/Exit menu selection

If a read or write fault error occurs on device SSDEV, press the A key to abort the
current operation, then exit Soft-Scope using the File/Exit menu selection.

An additional “System Timed Out Waiting for PLC to Respond” message may
also appear on the screen. Press ENTER to acknowledge the message, then exit
the Debugger software.

Note

It may take up to 65 seconds for the software to indicate a loss of
communications after the physical link has been broken.

7-14 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Section 4: Special Considerations

This section expands on information provided in the Soft-Scope user manual by
describing special considerations to take into account involving the following;:

Notes on Soft-Scope Functionality
Specifying memory addresses

Data breakpoints

System calls

Using Logicmaster during a debug session

Application out of context

Notes on Soft-Scope Functionality

This section outlines additional aspects of the Debugger’s functionality which differ
from the functionality described in the Soft-Scope documentation:

The Monitor Application Programming Interface functions described in the
Soft-Scope documentation are not supported.

The Load and Symbol Load options within the File menu are not supported. The
Load command is unnecessary since applications are downloaded to the PLC
through the LogicMaster software independent of the Soft-Scope debugger. The
Symbol Load command is also unnecessary since the application’s symbol
information is automatically downloaded whenever a debugging session initiates.

Performing port I/O operations with Soft-Scope’s port() function is not supported.
Any attempt to access a port with this function will generate an error message.

The TERMINAL command allows direct access to the Debugger at the monitor
command level; however, using this interface is not recommended.

Caution

Indiscriminate use of the TERMINAL command may cause the PLC to
malfunction.

Specifying Memory Addresses

GFK-0646E

Any program executing in the CPU (LD program, SFC program, or Standalone C
Program) can access an address space one megabyte in length spanning the address
range 00000 to FFFFF hexadecimal. These 20 bit addresses are specified in the
microprocessor via 16 bit segment values in conjunction with a 16 bit offset value. The
microprocessor resolves these two 16 bit values into a 20 bit address by shifting the
segment value to the left by 4 bits and then adding the offset value. For example,

Segment 1234, Offset 5678 is resolved to address 12340 + 5678 = 179B8.

Chapter 7 The C Application Debugger for 7-15

Series 90-70 PLCs

The Soft-Scope documentation mentions three alternative methods for directly
specifying a memory address:

A “logical” address is specified in segment:offset form, for example, 1234:5678
A “linear” address is specified as a 20 bit number followed by L, for example, 179BSL

A “physical” address is specified as a 20 bit number followed by P, for example,
179B8P

From the Debugger’s point of view, these three methods are equivalent. All three of the
examples above specify the same address. The CPU’s operating system and the
microprocessor are responsible for managing the individual address spaces seen by each
program and mapping them onto the “real” physical addresses used by the memory
address decoding hardware. The C Debugger is unaware that this mapping takes place
and therefore treats linear and physical addresses as equivalent. Addresses entered with
either the L or P suffix will be displayed in Soft-Scope with the P suffix. Addresses
entered in segment:offset form will be displayed in that form.

Note

Memory addresses corresponding to variables in a C program may be
specified with a symbol name. Consult the Soft-Scope documentation
for more information concerning the syntax of symbol names.

Data Breakpoints

The Debugger supports the use of the microprocessor’s debug registers to monitor
accesses to program variables. As explained in the Soft-Scope manual, two types of data
breakpoints are available: access breakpoints and write breakpoints. An access
breakpoint will trigger whenever the microprocessor reads or writes at the specified
memory address, while a write breakpoint will trigger only when writes occur. Note
that a single line of C code may read and/or write a particular variable multiple times, so
a data breakpoint may trigger more than once on a single line of C code. When a data
breakpoint triggers, execution stops on the assembly language instruction immediately
following the instruction which performed the access.

Note

Care should be taken when using data breakpoints with stack-based
variables (that is, variables which are local to a single routine or passed
as parameters). Due to a limitation with Soft-Scope, data breakpoints on
these variables may trigger unexpectedly. Because these variables are
stack-based, their locations on the stack may be reused for other
purposes as the application executes. A data breakpoint associated with
a stack-based variable will trigger on any access of the associated
memory address, even if the access is a reuse of memory not related to
the variable. Such “false triggers” can be distinguished by noting the
routine in which the current execution point is located at the time of the
trigger. If this routine is not the same as the routine associated with the
stack based variable, then the trigger is invalid.

System Calls

A system call is a special type of subroutine call used by a C application to request a
service from the CPU’s operating system. The support functions defined in the plcfnc.h

7-16 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

header file (PLCC_read_elapsed_clock(), PLCC_get_plc_version(), etc.) are system calls.
They are implemented via assembly language software interrupt instructions (for
example, INT 61h and INT 21h).

The Debugger treats certain execution control scenarios involving system calls as special
cases. When stepping at the assembly language level, the Debugger will not step into
the code invoked by a system call. Instead, execution will occur at full speed through the
system call, and the Debugger will stop application program execution at the return
point of the INT instruction. This holds true regardless of the type of step performed
(step INTO or step OVER the called procedure). Similarly, a memory access which
would ordinarily trigger a data breakpoint will not do so if the access occurs within a
system call. Instead, the Debugger postpones reporting the breakpoint trigger until the
system call is complete. Once again, the Debugger will stop executing the application at
the return point of the INT instruction associated with the system call.

Note

Invocation of system calls is implemented by library routines which are
linked with the application. GE Fanuc does not provide the source code
for these routines or for internal initialization and cleanup routines
which are also linked with the application. If application execution stops
within any of these areas (as a result of a data breakpoint triggering
within a system call, for example), Soft-Scope will be unable to locate the
corresponding source file and will instead display a dialog box
prompting the user to input its location. Press ENTER to allow
Soft-Scope to continue without source code; the execution point will
then be displayed in assembly language.

Using Logicmaster 90 During a Debug Session

GFK-0646E

The following operations are unavailable in Logicmaster 90 while a debug session is
active:

clearing logic from the LM90 Clear Memory screen

implicitly clearing memory as a result of storing of logic while the PLC is in STOP
mode

any store of logic in RUN mode, including updates to LD/SFC via ALT-S

Attempting to perform any of these operations will cause LM90 to display an
“Insufficient Privilege” message. If any of the above operations are currently in progress
while an attempt is made to activate a debug session, then the activation of the debug
session will be refused.

Modifying PLC reference memories on any of LM90’s reference memory screens or on
the logic execution screen is permitted.

Note

The scenarios described in this section require communication with
LMO90 during an active debug session. This is only possible if LM90 is
communicating through some means other than the CPU’s serial port.

Chapter 7 The C Application Debugger for 7-17
Series 90-70 PLCs

Application Out of Context

7-18

The Soft-Scope user interface automatically displays the code at the current execution
point whenever the application is stopped from the Debugger’s point of view. However,
if the current execution point is within the CPU’s operating system (rather than within
the user application code), then it cannot be displayed meaningfully to the user. When
the application is in this state, it is said to be “out of context.” This state occurs most
commonly when the application is stopped between invocations, that is, after the code
in the C block or program has completed execution for a particular sweep but before
main() has been called for its next execution.

The Debugger automatically stops application execution at the start of a

Note

debug session. Under most circumstances this stoppage will occur
between invocations of the application. Thus, it is normal for the
application to be out of context immediately after starting a debug

session. The application will also typically be out of context whenever it

is stopped manually with Soft-Scope’s Code/Stop command.

When the application is out of context, Soft-Scope’s Code window will appear as shown

below:

1-Meszage
Concurrent Sciences, inc. (C) 1989-1993 All rights reserved.
DDS 6.22 Host, Remote Target.
Serial No.
[Commected to:
[Attaching "C:\MBKNDEMONREADCLE .BUG” to DOS segment 1938

//%ilc Code Data Break Macro Window Optioms Help

(2581

"C3iMON-386DXR-387 — Rommed V3.0 (9070PLC)™ 1

1

Of 509
0f 09
0f 509
Of 509
Of 809

0f 509

==3

moy
mov
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

Z—Unknoun module - Application load
1000a
10004
10010
10011
10012
0f8§09:
0f509:
0f509:
0f809:
0f8§09:
0f509:
0f809:
0fg09:
:001b

(4 Locate)=(Into)=(0VER)=(Break)=(Tenp)=(goCur)=(Go)=(Return)=(Mode)=(7)
\\%nad applications and szelect system functions

ax,0badH
ax,cO0deH

; Imm
H L

2989
-16162 or 49374

Figure 7-1. Application Out of Context

C Programmer’s Toolkit for Series 90® PLCs User’s Manual — August 1998

GFK-0646E

The displayed execution point is within a representative “dummy” code stream which
indicates that the application is out of context (this is not the actual execution point,
which is within the CPU’s operating system). While the application is out of context,
certain capabilities normally available with the Debugger are restricted. For example, all
register values displayed in the Register window will be OXFFFF or OXFFFFFFFE as
appropriate, except for the CS and EIP registers, which will point to the dummy code
stream. Attempts to modify any of the registers will be disallowed. However, memory
addresses may be read or written as normal. Attempts to step execution will have no
effect while the application is out of context. However, the GO command (in all of its
variations) and the debugger’s breakpointing functions will be available in this state.

The out of context state may be exited by issuing any form of the Soft-Scope GO
command to restart application execution. The next time the application’s execution is
stopped, the execution point at the time of the stoppage will be reevaluated. If it is
within the bounds of application code, it will be displayed as normal. Otherwise, it is
within the CPU’s operating system, and the application will again be out of context.

Note

A simple way to ensure that execution stops within the bounds of
application code is to use the Code/Goto command to break at the
beginning of main() or any other convenient point. Alternatively, any of
the Debugger’s breakpointing functions can be used in conjunction with
the GO command. (Note that Code/Display command can be helpful in
selecting breakpoints and is available even when the application is out
of context.)

GFK-0646E Chapter 7 The C Application Debugger for 7-19
Series 90-70 PLCs

Section 5: Troubleshooting

This section describes page faults and error conditions that might be reported by the
host Debugger software.

Page Faults

As explained earlier, the CPU’s operating system and the microprocessor are responsible
for mapping the addresses seen by an application program onto the physical addresses
used by the memory hardware. The mechanism used to accomplish this mapping is
known as paging. It is important to understand that not every byte in the program’s
one megabyte address space is necessarily mapped onto a physical memory address.
Many addresses may be “unmapped” and therefore effectively inaccessible to the
program. Any attempt to access one of these unmapped addresses will cause the
microprocessor to signal a special error condition known as a page fault. The most
common cause of page faults in a C application program is an attempt to dereference a
NULL or uninitialized pointer.

The CPU’s method of handling application page faults varies. If the application is not
currently being debugged, a fatal exe block runtime error or standalone runtime error
fault will be logged as appropriate in the PLC fault table. If the application is executing
in a debug session when the page fault occurs, the Debugger will stop application
execution at the assembly instruction which caused the page fault and will display “INT
xx — Page Fault” in the Code window. Note that the execution point will occur before
the instruction which attempted the illegal access. Thus, it may be possible to take
corrective action (such as modifying an appropriate register or memory value) to allow
program execution to continue with the GO command. If no such corrective action is
taken, then restarting program execution will cause another page fault to occur. When a
page fault occurs in an application being debugged, no runtime error fault is logged.

If a page fault occurs due to an illegal memory access by the Debugger itself (as opposed
to an illegal access by the application program being debugged) then the fault will be
signalled by Soft-Scope. The wording of the error depends on the particular operation
attempted. For example, the NULL pointer is represented by memory address
0000:0000. Attempting to perform a memory dump at this address with the Data/Dump
command will result in the error message “Bad Memory Read.”

7-20 C Programmer’s Toolkit for Series 90® PLCs User’s Manual — August 1998 GFK-0646E

Error Conditions

Under some circumstances, an error condition may be reported by the host Debugger
software. Error messages reported by Soft-Scope are detailed in the Soft-Scope
documentation. The most common error conditions reported by the Debugger software
are described below:

supported in selected PLC

ERROR MESSAGE CORRECTIVE
EXPLANATION ACTION
Debugging not The PLC selected for debugging contains | The CPU must be upgraded. Call

pre-release 6 firmware, which does not
support the C Debugger.

your distributor for an upgrade kit.
Note: Not all CPUs can be upgraded
to Release 6.

Application
Checksum Mismatch

The .DBG file containing the application’s
symbol information does not match the ap-
plication code downloaded to the PLC.

Choose the correct path to the ap-
propriate .DBG file.

Insufficient Privilege Level

The Debugger software cannot access the
selected PLC to initiate a debugging ses-
sion. The most common cause of this error
is the presence of password or OEM key
protection within the PLC.

Remove the PLC’s password or OEM
key protection.

Allocation Error

PLC Memory An error occurred when attempting to dy- | Call PLC Technical Support
Allocation Error namically allocate memory within the PLC.
Host PC Memory An error occurred when attempting to dy- | Remove unnecessary TSRs or device

namically allocate memory within the De-
bugger host PC.

drivers currently installed on the host
PC then reboot the system. If the
error continues, call PLC Technical
Support.

Could not spawn ss.exe
OR
Could not spawn ssbug.exe

The host Debugger software could not
spawn the Soft-Scope user interface or the
ssbug symbol extraction utility.

Make sure that these executable files
are present on the host PC and that
the subdirectory where they reside is
included in the DOS PATH environ-
ment variable. These errors can also
indicate a lack of sufficient free
memory on the host PC.

System Timed Out Waiting

A timeout or other communications error

Check the serial cable connection.

system files in
<drive:\pathname>

for PLC to Respond occurred while the host Debugger software | This error may occur if the CPU firm-
OR was attempting to communicate with the | ware detected an error condition and
Host Not Connected or selected PLC. terminated the debug session. See
Sending “Terminating a Debug Session.”
Unable to Connect to PLC An error occurred while the host Debugger | Check the serial cable connection.
OR software was attempting to establish com- | Also check the autoexec.bat and con-
Could not attach to munication with the selected PLC. fig.sys files for the appropriate initial-
specified PLC ization of the snpdrv.exe and
ssrs232c.exe communication drivers
and the C70_PATH environment vari-
able. Check the location and contents
of the GEF_CFG.INI file. For more
information, see “Section 1: Installing
the Debugger.”
Unable to find The host Debugger software could not lo- | Check the autoexec.bat file for the ap-

cate one of its internal system files in the
indicated subdirectory.

propriate definition of the C70_PATH
environment variable.

Internal System Error
<error_number>

An internal error has occurred in the host
Debugger software.

Call PLC Technical Support.

GFK-0646E

Chapter 7 The C Application Debugger for

Series 90-70 PLCs

7-21

Section 6: A Sample Debug Session

7-22

This section walks you through a simple debug session using the limit C block. This
example assumes the following:

that limit.c has been built as a C block with debug information and downloaded
into the PLC

that the PLC is in RUN mode and that all enabling logic to the call to this block is
active

1. To activate a debug session, press F6 (C Development Ultilities) on the Release 6
Logicmaster 90 Main Menu screen, and press F2 (C Debugger) on the Series 90
Development Utilities screen.

2. On the Select PLC Connection screen, select the PLC you wish to debug.
3. On the Debug Application Select screen, select the C Block LIMIT.

4. After the Debugger has finished its initialization, you should see the initial
Soft-Scope screen. Note that the current execution point is at the dummy code
stream indicating that the application is out of context, that is, suspended in between
invocations.

5. This example will use the PLC reference memory macros to set up the parameters to
the limit block from the Debugger. (This example assumes that the block’s three
input parameters] the input value, the high limit, and the low limit[] are tied to
%R700, %R701, and %R702 respectively.) Press ALT-M, L to load the macro file
<drive>:\s9070c\cdbs\access.mac, where <drive> is the drive where the C Toolkit
was installed.

6. After Soft-Scope finishes processing the file, select the ri macro to access %R memory
in integer format. Type 700 as the macro parameter and press ENTER.

7. Note that a new entry is placed in the watch window corresponding to the current
value of %R700. Place the cursor on this entry and press ENTER to modify the
current value of %R700; set it equal to 2 and press ENTER.

8. Inasimilar manner, set %R701 equal to 3 and %R702 equal to 1.

9. Execute the application until the routine main() is reached. Press ALT-C then type G
then type MAIN to command the Debugger to execute to main().

10. The application stops at this routine, and Soft-Scope displays the current execution
point.

11. Note that the input value (2) falls between the high limit (3) and the low limit (1).
Therefore, main() should set the output value of the C block equal to the input value
on line 79. Verify this value with a write data breakpoint on the output value. Press
ALT-B, W and type *output_value to set up the data breakpoint. Don’t forget the
leading *, since output_value is a pointer to an integer, and you want to break
when the value pointed to (i.e., *output_value) is written.

12. Return to the execution window by pressing ALT-1, and type Gto restart
application execution. Note that application execution stops on the instruction

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

immediately following the write to *output_value , in this case on line 80 as
expected.

13. The next operation main() will perform is updating the alarm bits. Let’s step
through the C code to observe this process:

First, add the expression *alarm_bits to the Watch window by pressing
ALT-D, W and typing *alarm_bits

If the lower two bits of this value are not currently set, set them now by
changing the value of this variable to 3.

Press ALT-2 to return to the Execution window.

Press O to step over the next line of C code. Note that the value of
*alarm_bits is now 2.

Press O to step again and note that the value is now O.

14. This concludes the sample debug session. Press Alt-F9 to exit

GFK-0646E Chapter 7 The C Application Debugger for 7-23
Series 90-70 PLCs

Appendix| Standard C Library Functions
A Supported in the Series 90 PLC

The following Microsoft C runtime library functions are supported in the Series PLC.
These functions are not valid for C FBKs

0 p203%PCl@&C P Cl@C
Input/Output printf (Series 90-70 only)
sprintf (Series 90-70 only)
Internationalization strcoll
strftime
Math acos, acosl

asin, asinl
atan, atanl
_cabst, _cabslt
ceil, ceill

cos, cosl
cosh, coshl
div

exp, expl
fabs, fabsl
floor, floorl
fmod, fmodl
frexp, frexpl
_hypotf, hypotl T
Idexp, Idexpl
Idiv

log, logl
log10, log101
_Irotl, _Irotr
max, min
modf, modfl
pow, powl
rand

_rotl, rotr
sin, sinl
sinh, sinhl
sqrt, sqrtl
srand

tan, tanl
tanh, tanhl

Search and Sort bsearch
findt
_Isearcht
gsort

T These functions are available in the Microsoft C Version 6.0 compiler
without the preceding underscore.

GFK-0646E

0 p203%PCl@&C

%P C1@C

String Manipulation

strcat, fstrcat
strchr, _fstrchr
stremp, _fstremp
strcpy, _fstrepy
strcspn, _fstrespn
strerror, strerror
_stricmp¥, _fstricmp
strlen, fstrlen
_strlwrf, _fstrlwr
strncat, _fstrncat
strnemp, _fstrnemp
strnepy, _fstrncpy
_strnicmpt, _fstrnicmp
_strnsetf, fstrnset
strpbrk, _fstrpbrk
strrchr, fstrrchr
_strrevf, fstrrev
_strsett, _fstrset
strspn, _fstrspn
strstr, _fstrstr
strtok, fstrtok
_struprt, _fstrupr

Time

asctime

difftime
_strdate
strftime
_strtime

Buffer Manipulation

_memccpy¥, _fmemccpy
memchr, _fmemchr
memcmp, _fmememp
memcpy, _fmemcpy
_memicmpT, fmemicmp
memmove, fmemmove
memset, fmemset
_swabt

Character Classification and
Conversion

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toascii
tolower
_tolower
toupper
_toupper

Data Conversion

abs
atof
atoi
atol
_itoa¥t
Iabs
_ltoat
strtol
strtoul
_ultoa¥t

T These functions are available in the Microsoft C Version 6.0 compiler

without the preceding underscore.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Appendix

GFK-0646E

B

C Programming Toolkit Files

Series 90-70 Programming Toolkit Files

When the C development software installation is complete, the following list of files and

the corresponding directories should appear on the target hard disk.

0 301 %POO

2341 C1

\s9070c

AAREADME
BLDVARS
CCOPY.BAT
PLCC9070.H
PLCFNC.H
PLCFLTH
PLCVME.H
REFMEM.H
STAND.H
PLCC9070.MKD
PLC.MAK
PLC7.MAK
DOS.MAK
DOS7. MAK
TESTHARN.C
STUB .C
MKPLC.BAT
MKDOS .BAT
MKPLC7.BAT
MKDOS7.BAT
MKEXE.BAT
PLCINC.MKD
DOSINC.MKD
THARNDATINC
RMFIXUPOB]J
MSCVER.BAT
SAPDOS.LIB
BLKDOS.LIB
FBKDOS.LIB
DOS2.LIB
SAPPLC.LIB
BLKPLC.LIB
FBKPLC.LIB
PLC2.LIB

B-1

B-2

0 301 %POO

2341 C1

\s9070c (cont'd)

“SAPDOS.LIB
“BLKDOS.LIB
“FBKDOS.LIB
“DOS2.LIB
“SAPPLC.LIB
“BLKPLC.LIB
_FBKPLC.LIB
“PLC2.LIB
GEFLIB.FAR
GEFLIB7.FAR
EXISTDIR.EXE
POSTPROC.EXE
AUTOEXEC.BAT
CONFIG.SYS
LLIBCA.FAR
LLIBC7.FAR

\s9070c\multisrc

MAIN.C
MULTISRC.DOC
BLKHARN.C
BLDVARS
SRC1.C
SRC2.C
SRC3.C
SRC4.C
SRC5.C
SRCS.H
SOURCES

\s9070c\examplel

LIMIT.C
BLKHARN.C
BLDVARS

\s9070c\example2

LIMIT.C
BLKHARN.C
LIMITDAT
BLDVARS

\s9070c\exfbk

FBKHARN.C
FACT.C
BLDVARS

\s9070c\exsap

SAPHARN.C
BUBBLE.C
BLDVARS

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

0 301 %POO

2341

C1

\s9070c\cdbs

Note:
Additional files for
C Toolkit Professional

PLCDEBUG.EXE

SCREEN0.SCR
SCREEN1.SCR
SCREEN2.SCR
SCREEN3.SCR
SCREEN4.SCR
SCREEN5.SCR
SCREEN6.SCR
SCREEN7.SCR
SCREENS.SCR
SCREEN9.SCR
GEF_CFG.INI
MULTIDRPINI
FILE000.MSG
ACCESS.MAC
SSRS232C.EXE
SNPEXE

Appendix B C Programming Toolkit Files

B-3

B-4

Series 90-30 Programming Toolkit Files

When the C development software installation is complete, the following list of files and

the corresponding directories should appear on the target hard disk.

0 301 %POO

2341 C1

\s9030c

AAREADME
BLDVARS
CCOPY.BAT
PLCC9030.H
PLCENC.H
PLCFLTH
REFMEM.H
PLCC9030.MKD
PLC.MAK
PLC7.MAK
DOS.MAK
DOS7.MAK
TESTHARN.C
STUB.C
MK3PLC.BAT
MK3DOS .BAT
MK3PLC7.BAT
MK3DOS7.BAT
MKEXE.BAT
PLCINC.MKD
DOSINC.MKD
THARNDATINC
RMFIXUPOBJ
MSCVER BAT

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

0 301 %POO

2341 C1

\s9030c (cont'd)

_BLKDOS.LIB
“DOS2.LIB
“BLKPLC.LIB
“PLC2.LIB
GEFLIB.FAR
GEFLIB7.FAR
EXISTDIR.EXE
POSTPROC.EXE
AUTOEXEC.BAT
CONFIG.SYS
LLIBCA.FAR
LLIBC7.FAR

\s9030c\multisrc

MAIN.C
MULTISRC.DOC
BLKHARN.C
BLDVARS
SRC1.C
SRC2.C
SRC3.C
SRC4.C
SRC5.C
SRCS.H
SOURCES

\s9030c\examplel

LIMIT.C
BLKHARN.C
BLDVARS

\s9030c\example2

LIMIT.C
BLKHARN.C
LIMITDAT
BLDVARS

Appendix B C Programming Toolkit Files

B-5

Appendix

C

C Macros for PLC Access

C Macros for the Series 90-70 PLC

The following C macros are provided as part of the C Programmer’s Toolkit to ease
accessing PLC reference memory from inside the C block.

[* Macros for accessing %I, %Q, %M, %T, %G, %GA-%GE, %SA-%SC, * [
[* %R, %AI, %AQ, %P, and %L as bits. There are separate macros */

GFK-0646E

/[* for setting, clearing, and testing each memory type.

BIT TST I(x)
BIT TST Q(x)
BIT TST M(x)
BIT TST T(x)
BIT TST G(x)
BIT TST GA(x)
BIT TST GB(x)
BIT TST GC(x)
BIT TST GD(x)
BIT TST GE(x)
BIT TST SA(x)
BIT TST SB(x)
BIT TST SC(x)
BIT TST R(x,y)

BIT TST AI(X,y)
BIT TST AQ(x,Y)

BIT TST P(x,y)
BIT TST L(x,y)

BIT SET I(x)
BIT SET Q(x)
BIT SET M(x)
BIT SET T(x)
BIT SET G(x)
BIT SET GA(x)
BIT SET GB(x)
BIT SET GC(x)
BIT SET GD(x)
BIT SET GE(x)
BIT SET SA(x)
BIT SET SB(x)
BIT SET SC(x)
BIT SET R(x,y)

BIT SET_AI(x,y)
BIT SET_AQ(x,Yy)

BIT SET P(x,y)
BIT SET L(x,y)

BIT CLR I(x)
BIT CLR Q(x)
BIT CLR M(x)
BIT CLR T(x)
BIT CLR G(x)
BIT CLR GA(x)
BIT CLR GB(x)
BIT CLR_GC(x)
BIT CLR GD(x)
BIT CLR GE(x)
BIT CLR SA(x)
BIT CLR_SB(x)
BIT CLR_SC(x)
BIT CLR R(x,y

BIT CLR_AI(x,y)
BIT CLR_AQ(x,y)

BIT CLR P(x,y)
BIT CLR L(x,y)

[* Macros for accessing the special %S bits */
/[* These macros are READ-ONLY! *

BIT TST S(x)
T_100MS™
ATW ON

10 FULL

FST_SCN
T_SEC

ATW_OFF
FST_EXE

T_10MS
T MIN
SY FULL

/* Macros for accessing %I, %Q, %M, %T, %G, %GA - %GE, 7S,
[* %SA - 7%SC, %R, %AI, %AQ, %P, and %L as bytes.

IB(x)
TB(x)
GBB (x)
GEB (x)
SBB(x)
AIB(x,y)
LB(x,y)

QB(x)
GB(x)
GCB (x)
SB(x)
SCB(x)
AQB(x,y)

MB(x)

GAB (x)
GDB (x)
SAB (x)
RB(x,y)
PB(x,y)

*/
*/

*/

C-1

C-2

[* Macros for accessing %I, %Q, %M, %T, %G, */
[* %GA - %GE, %S, and %SA - %SC as words. */
/* NOTE: * [
[* THESE MACROS ARE CONDITIONALLY AVAILABLE */
[* IF THE TARGET PLC CPU IS KNOWN TO SUPPORT */
/* WORD ACCESSES INTO BIT-ORIENTED MEMORY. */
/* SEE “RESTRICTIONS ON MACRO USE”. */
IW(x) QW(x) MW (x)
TW(X) GW(x) GAW(x)
GBW(x) GCW(x) GDW(x)
GEW(x) SW(x) SAW(x)
SBW(x) SCW(x)

/|* Macros for accessing %R, %AI, %AQ, %P, and %L as words. */

RW(x) ATW(x) AQW(x)

PW(x) LW(x)

[* Macros for accessing %I, %Q, %M, %T, %G, *
[* %GA - %GE, %S, and %SA - %SC as integers.*
/% NOTE: *

[* THESE MACROS ARE CONDITIONALLY AVAILABLE *
[* IF THE TARGET PLC CPU IS KNOWN TO SUPPORT *
[* INTEGER ACCESSES INTO BIT-ORIENTED MEMORY. *
/* SEE “RESTRICTIONS ON MACRO USE”. *

—~———————

II(x) QI (x) MI(x)
TI(x) GI(x) GAI(x)
GBI (x) GCI(x) GDI(x)
GEI (x) SI(x) SAI(x)
SBI(x) SCI(x)

/* Macros for accessing %R, %AI, %AQ, %P, and %L as integers. */
RI(x) ATI(x) AQI(x)
PI(x) LI(x)

[* Macros for accessing %I, %Q, %M, %T, %G, %GA - */
/% %GE, %S, and %SA - %SC as doublewords. %/
/* NOTE: *f
[* THESE MACROS ARE CONDITIONALLY AVAILABLE * [
[* IF THE TARGET PLC CPU IS KNOWN TO SUPPORT * [
/% INTEGER ACCESSES INTO BIT-ORIENTED MEMORY. %/

[* SEE “RESTRICTIONS ON MACRO USE”. */
ID(x) QD (x) MD (x)

TD(x) GD(x) GAD(x)

GBD(x) GCD(x) GDD(x)

GED(x) SD(x) SAD (x)

SBD (x) SCD (x)

/* Macros for accessing %R, %AI, %AQ, %P, and %L as doublewords.*/

RD(x) AID(x) AQD (x)

PD(x) LD(x)

[* Macros for accessing %R, %AI, %AQ, %P, x|
/* and %L as floating point values. */

RF (x ATF(x) AQF (x)

PF (%) LF(x)

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

/* %GE, %S, and %SA -
BIT TST I TRANS(x)
BIT_TST M _TRANS (x)
BIT TST G_TRANS (x)
BIT TST GB_TRANS (x)
BIT TST GD_TRANS (x)
BIT TST_S_TRANS (x)
BIT_TST SB_TRANS (x)

IB TRANS(x)
TB™ TRANS (x)
GBB_TRANS (x)
GEB__TRANS (x)
SBB_TRANS (x)

BIT TST I DIAG(x)
QB_DIAGT(X)
AT_HIALRM(x)
AQB_FAULT (x)

RACKX(r)
RSMB (x)

L SIZE
AQ SIZE
M SIZE
GC_SIZE
SB_SIZE
Q DIAGS_SIZE

[* Macros for accessing the %I, %Q, %M, %T, %G, %GA - */

%SC transition bits. */
BIT TST Q TRANS(x)

BIT TST T TRANS(x)

BIT TST GA TRANS(x)

BIT TST GC TRANS(x)

BIT TST GE TRANS(x)

BIT TST SA TRANS(x)

BIT TST_SC_TRANS (x)

QB _TRANS (x) MB TRANS (x)
GB™ TRANS (x) GAB TRANS (x)
GCB TRANS(x) GDB__TRANS (x)
SB TRANS (x) SAB_TRANS (x)

SCB_TRANS (x)

/* Macros for accessing diagnostic memory */

BIT TST Q DIAG(x) IB DIAG(x)

AIB DIAG(X) AQB DIAG(x)

AT TOALRM(x) ATIB FAULT(x)
AI_OVERRANGE (X) AT UNDERRANGE (X)

SLOTX(r,s)
FIPX(r,s,sba)

P SIZE R SIZE
I SIZE Q SIZE
G SIZE GA SIZE
GD _SIZE GE SIZE
SC SIZE S SIZE

AI_DIAGS_SIZE AQ_DIAGS_SIZE

[* Macros for accessing the %I, %Q, %M, %T, %G, %GA - %GE,*/
/[* %S, and %SA - 7%SC transition bits as bytes.

*

/* Macros for accessing RACK/SLOT/BLOCK fault information */
BLOCKX(r,s,b,sba)

/* Use the following to access the size of each PLC memory table */

AI SIZE
T SIZE
GB_SIZE
SATSIZE
I DIAGS_SIZE

Appendix C C Macros for PLC Access

C-3

C Macros for the Series 90-30 PLC

The following C macros are provided as part of the C Programmer’s Toolkit to ease
accessing 90-30 PLC reference memory from inside the C block.

[* Macros for accessing %I, %Q, %M, %T, %G, %SA-%SC, */
/[* %R, %AI, and %AQ as bits. There are separate macros */

/[* for setting, clearing, and testing each memory type. * [
BIT TST I(x) BIT SET I(x) BIT CLR I(x)

BIT TST Q(x) BIT SET Q(x) BIT CLR Q(x)

BIT TST M(x) BIT SET M(x) BIT CLR M(x)

BIT TST T(x) BIT SET T(x) BIT CLR T(x)

BIT TST G(x) BIT SET G(x) BIT CLR G(x)

BIT TST SA(x) BIT SET SA(x) BIT CLR SA(x)

BIT TST SB(x) BIT SET SB(x) BIT CLR SB(x)

BIT TST SC(x) BIT SET SC(x) BIT CLR SC(x)

BIT TST R(x,7) BIT SET R(x,y) BIT CLR R(x,y

BIT TST AI(X,y) BIT SET AI(X,y) BIT CLRAI(X,y)

BIT TST_AQ(x,¥) BIT SET_AQ(x,¥) BIT CLR_AQ(xX,y)

[* Macros for accessing the special %S bits */
/* These macros are READ-ONLY! */

BIT TST S(x) FST_SCN T_10MS
T_100MS™ T SEC T MIN
ATW_ON ATW_OFF SY FULL
10 FULL LST_SCN -

/[* Macros for accessing %I, %Q, %M, %T, %G, %S, %SA - %SC, */

/* %R, %AI, and %AQ as bytes. %/
IB(x) QB(x) MB(x)

TB(x) GB(x) SB(x)

SAB (x) SBB (x) SCB(x)

RB(x,y) AIB(x,y) AQB(x,y)

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

[* Macros for accessing %I, %Q, %M, %T, %G, */
/* %S, and %SA - %SC as words. */
IW(x) QW(x) MW (x)
TW(x) GW(x) SW(x)
SAW(X) SBW(x) SCW(x)

/* Macros for accessing %R, %AI, and %AQ as words. */

RW(x) AIW(x) AQW(x)
[* Macros for accessing %I, %Q, %M, %T, 7G, */
[* %S, and %SA - 7%SC as integers. * [
II(x) QI(x) MI(x)
TI(x) GI(x) SI(x)
SAT (x) SBI(x) SCI(x)

/* Macros for accessing %R, %AIL, and %AQ, as integers. */
RI(x) ATT (x) AQI(x)

/* Macros for accessing %I, %Q, %M, %T, %G, %S, */
/* and %SA - %SC as doublewords. x|

D(x) QD (x) MD (x)
TD(x) GD(x) SD(x)
SAD (x) SBD (x) SCD (x)

/* Macros for accessing %R, %AI, and %AQ, as doublewords.

RD(x) ATID(x) AQD(x)

/* Macros for accessing %R, 7ZAI, 7AQ, */
as floating point values. *

RF(x) ATF (x) AQF (x)

%

Appendix C C Macros for PLC Access

C-6

/* Macros for accessing the %I, %Q, %M, %T, %G, */
/* %S, and %SA - 7%SC transition bits. */
BIT TST I TRANS(X) BIT TST Q TRANS(x)
BIT TST M TRANS(x) BIT TST T TRANS(x)
BIT TST G TRANS(x) BIT TST S TRANS(x)

BIT TST SA TRANS(x) BIT_TST_SB_TRANS(x)
BIT_TST_SC_TRANS (x) - T -

[* Macros for accessing the %I, %Q, %M, %T, 7%G, */
/* %S, and %SA - %SC transition bits as bytes. */
IB TRANS(x) QB TRANS(x) MB TRANS(x)

TB™ TRANS (x) GB TRANS (x) SB™ TRANS (x)
SAB_TRANS (x) SBB_TRANS (x) SCB_TRANS (x)

/* Use the following to access the size of each PLC memory table */

R_SIZE AI SIZE AQ_SIZE I SIZE
Q_SIZE T SIZE M SIZE G_SIZE
SA_SIZE SB_SIZE SC_SIZE S_SIZE

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Appendix

D

Calculating PLC Memory Usage for a C Block

Series 90-70 Memory Usage Calculation

For any C block, the impact on PLC memory usage may be determined by the following
equation:

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD

where:

GFK-0646E

GBLDATSIZ is determined from the .MAP file created during the building of the
of the PLC-executable version of the C program. The .MAP file can be found in the
same directory as the built PLC-executable version of the C program. The amount of
data space treated as global data is:

GBLDATSIZ = (the start address of the first segment in the class BSS) —
(the start address of the MEM_DATAsegment).

MINALLOC is determined by executing EXEHDR.EXE (provided with Microsoft C
compiler) on the PLC-executable .EXE file. EXEHDRwill display information
about the .EXE file, the value displayed for Extra paragraphs needed is the value
to use for MINALLOC

EXEIMAGSIZ is the size of the PLC-executable .EXE file as determined by the
MS-DOS directory command.

OVRHEAGDS the value 530 bytes. T

Note

GBLDATSIZ and EXEIMAGSIZ should be rounded up to the nearest
16-bit boundary.

The examples provided in this appendix are based upon a version of the
toolkit which was registered to GE Fanuc Automation N.A., Inc., and
uses a Microsoft Version 8.0 compiler. You can expect to get slightly
different file sizes if you attempt these same examples using the C
Programmer’s Toolkit which is registered to you and your company, or if
you use a different version of the compiler. The examples are provided
to illustrate the process of computing the amount of PLC memory
required for a specific C block.

OVRHEAD is 530 bytes for Release 4.02 and Release 5.0 of the Series 90-70 CPU firmware.
This value may increase or decrease in future CPU firmware releases.

Smallest Possible Impact on PLC Memory

The C block with the smallest impact on PLC memory would be built from the following

source (NULL.C):

#include ”plcc9070.h”

main() {
return(OK) ;
}

When NULL.C is built for PLC execution using MKPLC.BAT the resulting .EXE file

is 1,559 bytes in size (as displayed by the MS-DOS directory command).

Volume in drive C is 9070_CBLKS
Directory of C:\APPS\NULL\PLC

NULL EXE 1559 2-07-94 11:39a
1 File(s) 2074624 bytes free

D-2 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

The .MAP file for NULL.EXE contains the following;:

Start

00000H
00022H
001EOH
00390H
003A0H
003D6H
003D6H
004A0H
004A0H
004ECH
004FAH
00502H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00520H
00520H
00528H
00594H
00596H
00598H
00598H
0059BH
00598H
00598H
00598H
00598H

Stack Allocation = 2 bytes

Stop

00020H
001DFH
00388H
00391H
003D4H
003D6H
00497H
004AOH
004EBH
004F9H
00500H
00505H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
00506H
0051FH
00520H
00527H
00593H
00595H
00596H
00598H
00598H
00598H
00598H
00598H
00598H
00598H

Length
00021H
001BEH
001A9H
00002H
00035H
00000H
000C2H
00000H
0004CH
0000EH
00007H
00004H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
0001AH
00000H
00008H
0006CH
00002H
00001H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

Name
NULL TEXT
TEXT
STARTUP
EMULATOR TEXT
WRT2ERR TEXT
C ETEXT
MEM DATA
EMULATOR DATA
DATA -
CDATA
P DATA
DBDATA
XIQC
XIFB
XIF
XIFE
XIB
XI
XIE
XPB
XP
XPE
XCB
XC
XCE
XCFB
XCFCRT
XCF
XCFE
XIFCB
XIFU
XIFL
XIFM
XIFCE
WRT2
CONST
HDR
MSG
PAD
EPAD
BSS
X0B
X0
XOE
XOFB
XOF
XOFE

Class
CODE
CODE
CODE
CODE
CODE
ENDCODE
FAR DATA
FAR DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CONST
MSG
MSG
MSG
MSG
BSS
BSS
BSS
BSS
BSS
BSS
BSS

To determine the amount of PLC memory required when NULL.EXE is stored to a
Series 90-70 CPU, you can replace the variables in the plc_mem_req

the specific values known/calculated for NULL.EXE.

plc_mem_req

GBLDATSIZ
MINALLOC
EXEIMAGSIZ
OVRHEAD

plc_mem_req

equation with

= GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD

1
1,559 to 16-bit boundary 1,568
= 530

464 + (1*16) + 1,568 + 530 = 2,578

Appendix D Calculating PLC Memory Usage for a C Block

598H — 3D6H = 1,432 — 982 = 450 to 16-bit boundary 464

D-3

D

Impact of Global Data on PLC Memory Usage

Another example of C block impact on PLC memory usage can be seen with the
program NULLDATA.C

#include ”plcc9070.h”
word wrd_array[512];
main() {

return(OK) ;
}

The only difference between NULLDATA.C and the previous example NULL.C is that
NULLDATA.C contains the declaration of the global variable wrd_array . The size of
wrd_array in NULLDATA.C is 512 words or 1024 bytes. This delta is reflected in the
MS-DOS sizes of the two PLC executable files: NULL.EXE is 1,559 bytes and
NULLDATA.EXE is 2,583 bytes. The impact on PLC memory will be more than the 1024
byte difference in files sizes. Using the CPU memory required equation and the .MAP
file for NULLDATA

D-4 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Stack Allocation = 2 bytes

Start Stop Length Name Class
00000H 00020H 00021H NULLDATA TEXT CODE
00022H 001DFH 001BEH TEXT - CODE
001EOH 00388H 001A9H STARTUP CODE
00390H 00391H 00002H EMULATOR TEXT CODE
003A0H 003D4H 00035H WRT2ERR TEXT CODE
003D6H 003D6H 00000H C ETEXT ENDCODE
003D6H 00497H 000C2H MEM DATA FAR DATA
004A0H 004A0H 00000H EMULATOR DATA FAR DATA
004AOH 0089FH 00400H FAR BSS — FAR BSS
008AOH 008EBH 0004CH DATA DATA
008ECH 008F9H 0000EH CDATA DATA
008FAH 00900H 00007H P DATA DATA
00902H 00905H 00004H DBDATA DATA
00906H 00906H 00000H XI1QC DATA
00906H 00906H 00000H XIFB DATA
00906H 00906H 00000H XIF DATA
00906H 00906H 00000H XIFE DATA
00906H 00906H 00000H XIB DATA
00906H 00906H 00000H XI DATA
00906H 00906H 00000H XIE DATA
00906H 00906H 00000H XPB DATA
00906H 00906H 00000H XP DATA
00906H 00906H 00000H XPE DATA
00906H 00906H 00000H XCB DATA
00906H 00906H 00000H XC DATA
00906H 00906H 00000H XCE DATA
00906H 00906H 00000H XCFB DATA
00906H 00906H 00000H XCF DATA
00906H 00906H 00000H XCFCRT DATA
00906H 00906H 00000H XCFE DATA
00906H 00906H 00000H XIFCB DATA
00906H 00906H 00000H XIFU DATA
00906H 00906H 00000H XIFL DATA
00906H 00906H 00000H XIFM DATA
00906H 00906H 00000H XIFCE DATA
00906H 0091FH 0001AH WRT2 DATA
00920H 00920H 00000H CONST CONST
00920H 00927H 00008H HDR MSG
00928H 00993H 0006CH MSG MSG
00994H 00995H 00002H PAD MSG
00996H 00996H 00001H EPAD MSG
00998H 00998H 00000H _BSS BSS
00998H 00998H 00000H X0B BSS
00998H 00998H 00000H X0 BSS
00998H 00998H 00000H XOE BSS
00998H 00998H 00000H XOFB BSS
00998H 00998H 00000H XOF BSS
00998H 00998H 00000H XOFE BSS
009A0H 009A0H 00000H c_common BSS

plc_mem_req

GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD

GBLDATSIZ = 0998H — 3D6H = 2,456 — 982 = 1,474 to 16-bit boundary 1,488
MINALLOC =1

EXEIMAGSIZ = 2,583 to 16-bit boundary 2,592

OVRHEAD = 530

plc_mem_req

1,488 + (1*16) + 2,592 + 530 = 4,626

Thus, in the Series 90-70 CPU, NULLDATA.EXE will require 4,626 bytes of memory:.
Again, the difference in memory usage between NULL.C and NULLDATA.C is due to
the use of global variables in NULLDATA

GFK-0646E Appendix D Calculating PLC Memory Usage for a C Block

D

Impact of Floating Point on PLC Memory Usage

The final two examples of C block impact on PLC memory usage both use the same C
source file NULLFP.C.

#include ”plcc9070.h”

main() {
float x;

x = 1.3456;

return(OK) ;

The difference in these last two examples will be in how NULLFP.C is built.

NULLFP.C can be built using MKPLC.BAT which will generate a PLC-executable file
based upon the ALTERNATEmath library (LLIBCA) and which will execute on any

Series 90-70 CPU that supports C blocks. In addition, NULLFP.C can also be built using
MKPLC7.BAT which will generate a PLC-executable file based upon the COPROCESSOR
(8087) library and which will 0% 1 execute on a Series 90-70 CPU that contains a math
coprocessor. The .EXE and .MAP file for NULLFP.C, when built using MKPLC will
be called NULLFPA.EXE and NULLFPA.MAP Similarly, the same two files, when
NULLFP.C is built using MKPLCY will be called NULLFP7.EXE and NULLFP7.MAP

D-6 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Alternate Library Floating Point
The MS-DOS size of NULLFPA.EXE is 12,129 bytes. NULLFPA.MAP contains:

Stack Allocation = 2 bytes

Start Stop Length Name Class
00000H 0002DH 0002EH NULLFPA TEXT CODE
0002EH 025EEH 025C1H _TEXT CODE
025F0H 02798H 001A9H STARTUP CODE
027A0H 027A1H 00002H EMULATOR TEXT CODE
027BOH 027E4H 00035H WRT2ERR _TEXT CODE
027E6H 027E6H 00000H C_ETEXT ENDCODE
027E6H 028A7H 000C2H MEM DATA FAR DATA
028BOH 028BOH 00000H EMULATOR DATA FAR_DATA
028BOH 02DODH 0045EH _DATA DATA
02DOEH 02D1BH 0000EH CDATA DATA
02D1CH 02D22H 00007H P_DATA DATA
02D24H 02D27H 00004H DBDATA DATA
02D28H 02D28H 00000H XIQC DATA
02D28H 02D28H 00000H XIFB DATA
02D28H 02D28H 00000H XIF DATA
02D28H 02D28H 00000H XIFE DATA
02D28H 02D28H 00000H XIB DATA
02D28H 02D2BH 00004H XI DATA
02D2CH 02D2CH 00000H XIE DATA
02D2CH 02D2CH 00000H XPB DATA
02D2CH 02D2CH 00000H XP DATA
02D2CH 02D2CH 00000H XPE DATA
02D2CH 02D2CH 00000H XCB DATA
02D2CH 02D2CH 00000H XC DATA
02D2CH 02D2CH 00000H XCE DATA
02D2CH 02D2CH 00000H XCFB DATA
02D2CH 02D2CH 00000H XCFCRT DATA
02D2CH 02D2CH 00000H XCF DATA
02D2CH 02D2CH 00000H XCFE DATA
02D2CH 02D2CH 00000H XIFCB DATA
02D2CH 02D2CH 00000H XIFU DATA
02D2CH 02D2CH 00000H XIFL DATA
02D2CH 02D2CH 00000H XIFM DATA
02D2CH 02D2CH 00000H XIFCE DATA
02D2CH 02D45H 0001AH WRT2 DATA
02D46H 02D51H 0000CH CONST CONST
02D52H 02D59H 00008H HDR MSG
02D5AH 02E3DH 000E4H MSG MSG
02E3EH 02E3FH 00002H PAD MSG
02E40H 02E40H 00001H EPAD MSG
02E42H 02E45H 00004H _BSS BSS
02E46H 02E46H 00000H X0B BSS
02E46H 02E46H 00000H X0 BSS
02E46H 02E46H 00000H XOE BSS
02E46H 02E46H 00000H XOFB BSS
02E46H 02E46H 00000H XOF BSS
02E46H 02E46H 00000H XOFE BSS
02350H 02E57H 00008H c_common BSS

GFK-0646E Appendix D Calculating PLC Memory Usage for a C Block

D-8

The amount of Series 90-70 CPU memory used when NULLFPA.EXE is stored to the
PLCis:

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD
GBLDATSIZ = 2E42H — 27E6H = 11,842 — 10,214 = 1,628 to 16-bit boundary 1,632
MINALLOC = 2

EXEIMAGSIZ = 12,129 to 16-bit boundary 12,144

OVERHEAD =530

plc_mem_req = 1,632 + (2*16) + 12,144 + 530 = 14,338

Therefore, NULLFPA.EXE, when stored to the Series 90-70 CPU, will occupy 14,338
bytes of user program memory.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

Coprocessor (8087) Library Floating Point

The size of NULLFP7.EXE under MS-DOS is 10,294 bytes. The .MAP file for NULLFP

built with the 8087 library contains:

Length
0002AH
017BOH
001A9H
00779H
00035H
00000H
000C2H
00136H
0022AH
0000EH
00007H
00004H
00000H
00000H
00000H
00000H
00000H
00004H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
0001AH
00010H
00008H
00143H
00002H
00001H
00014H
00000H
00000H
00000H
00000H
00000H
00000H
00008H

Stack Allocation = 2 bytes
Start Stop
00000H 00029H
0002AH 017D9H
017EOH 01988H
01990H 02108H
02110H 02144H
02146H 02146H
02146H 02207H
02210H 02345H
02346H 0256FH
02570H 0257DH
0257EH 02584H
02586H 02589H
0258AH 0258AH
0258AH 0258AH
0258AH 0258AH
0258AH 0258AH
0258AH 0258AH
0258AH 0258DH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 0258EH
0258EH 02547H
025A8H 025B7H
025B8H 025BFH
025COH 02702H
02703H 02704H
02705H 02705H
02706H 02719H
0271AH 0271AH
0271AH 0271AH
0271AH 0271AH
0271AH 0271AH
0271AH 0271AH
0271AH 0271AH
02720H 02727H

Name
NULLFP7 TEXT
TEXT
STARTUP
EMULATOR TEXT
WRT2ERR TEXT
C ETEXT
MEM DATA
EMULATOR DATA
DATA -
CDATA
P DATA
DBDATA
XIQC
XIFB
XIF
XIFE
XIB
XI
XIE
XPB
XP
XPE
XCB
XC
XCE
XCFB
XCFCRT
XCF
XCFE
XIFCB
XIFU
XIFL
XIFM
XIFCE
WRT2
CONST
HDR
MSG
PAD
EPAD
BSS
X0B
X0
XOE
XOFB
XOF
XOFE
c_common

Class
CODE
CODE
CODE
CODE
CODE
ENDCODE
FAR DATA
FAR DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CONST
MSG
MSG
MSG
MSG
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD

GBLDATSIZ =2706H — 2146H = 9,990 — 8,518 = 1,472 to 16-bit boundary 1,472

MINALLOC = 3

EXEIMAGSIZ = 10,294 to 16-bit boundary 10,304

OVRHEAD =530

plc_mem_req = 1,472 + (3*16) + 10,304 + 530 = 12,354

Appendix D Calculating PLC Memory Usage for a C Block

D-9

D

Series 90-30 Memory Usage Calculation

For any C block, the impact on PLC memory usage may be determined by the following
equation:

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD +
EXE_stack_size

where:

® GBLDATSIZ is determined from the .MAP file created during the building of the
of the PLC-executable version of the C program. The .MAP file can be found in the
same directory as the built PLC-executable version of the C program. The amount of
data space treated as global data is:

GBLDATSIZ = (the start address of the first segment in the class BSS) —
(the start address of the MEM_DATAsegment).

® MINALLOC is determined by executing EXEHDR.EXE (provided with Microsoft C
compiler) on the PLC-executable .EXE file. EXEHDRwill display information
about the .EXE file, the value displayed for Extra paragraphs needed is the value
to use for MINALLOC

o EXEIMAGSIZ is the size of the PLC-executable .EXE file as determined by the
MS-DOS directory command.

® OVRHEAUDSs the value 474 bytes.+

® EXE_stack_size is the global variable declared within the program and indicates
the size of the C subroutine block’s stack.

T OVRHEAD is 474 bytes for Release 8.0 of the Series 90-30 CPU firmware.
This value may increase or decrease in future CPU firmware releases.

D-10 C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Smallest Possible Impact on PLC Memory

The C block with the smallest impact on PLC memory would be built from the following
source (NULL.C):

#include “plcc9030.h”

EXE stack size = 2048;

main() { —
return(OK) ;

When NULL.C is built for PLC execution using MK3PLC.BAT the resulting .EXE file
is 1,803 bytes in size (as displayed by the MS-DOS directory command).

Volume in drive C is 9030_CBLKS
Directory of C:\APPS\NULL\PLC

NULL EXE 1803 2-07-97 11:39a
1 File(s) 2074624 bytes free

GFK-0646E Appendix D Calculating PLC Memory Usage for a C Block D-11

The .MAP file for NULL.EXE contains the following:

Start

00000H
00020H
00210H
00470H
00480H
004B6H
004B6H
004B6H
004B6H
00580H
00580H
005CEH
005DCH
005E6H
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
00604H
00604H
0060CH
00678H
0067AH
0067CH
0067CH
0067CH
0067CH
0067CH
0067CH
0067CH

Stop

00017H
00200H
00462H
00471H
004B4H
004B6H
004B6H
004B6H
00577H
00580H
005CDH
005DBH
005E5H
005E9H
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
005EAH
00603H
00604H
0060BH
00677H
00679H
0067AH
0067CH
0067CH
0067CH
0067CH
0067CH
0067CH
0067CH

LINK : warning L4021: no stack segment

Length
00018H
001E1H
00253H
00002H
00035H
00000H
00000H
00000H
000C2H
00000H
0004EH
0000EH
0000AH
00004H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
0001AH
00000H
00008H
0006CH
00002H
00001H
00000H
00000H
00000H
00000H
00000H
00000H
00000H

Name

NULL TEXT
TEXT

STARTUP
EMULATOR TEXT

WRT2ERR TEXT
IRDATA SEG START
C ETEXT -
IRDATA

MEM DATA
EMULATOR DATA
DATA -

CDATA

P DATA
DBDATA

XIQC

XIFB

XIF

XIFE

XIB

X1

XIE

XPB

XP

XPE

XCB
XC
XCE
XCFB
XCFCRT
XCF
XCFE
XIFCB
XIFU
XIFL
XIFM
XIFCE
WRT?2
CONST
HDR
MSG
PAD
EPAD
BSS
X0B
X0
XOE
XOFB
XOF
XOFE

Class
CODE
CODE
CODE
CODE
CODE
ENDCODE
ENDCODE
FAR DATA
FAR DATA
FAR DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CONST
MSG
MSG
MSG
MSG
BSS

BSS

BSS

BSS

BSS

BSS

BSS

To determine the amount of PLC memory required when NULL.EXE is stored to a
equation with

Series 90-30 CPU, you can replace the variables in the plc_mem_req

the specific values known/calculated for NULL.EXE.

plc_mem_req
EXE_stack_size

= GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD +

GBLDATSIZ = 67CH—-4B6H = 1,660 — 1,206 = 454
MINALLOC =1

EXEIMAGSIZ = 1,803

OVRHEAD = 474

EXE_stack size=2048

plc_mem_req = 454 + (1*16) + 1,803 + 474 + 2,048 = 4,795

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Impact of Global Data on PLC Memory Usage

GFK-0646E

Another example of C block impact on PLC memory usage can be seen with the
program NULLDATA.C

#include ”plcc9030.h”
EXE_stack size = 2048;

word wrd_array([512];
main() {

return(OK) ;
}

The only difference between NULLDATA.C and the previous example NULL.C is that
NULLDATA.C contains the declaration of the global variable wrd_array . The size of
wrd_array in NULLDATA.C is 512 words or 1024 bytes. This delta is reflected in the
MS-DOS sizes of the two PLC executable files: NULL.EXE is 1,803 bytes and
NULLDATA.EXE is 2,827 bytes. The impact on PLC memory will be more than the 1024
byte difference in files sizes. Using the CPU memory required equation and the .MAP
file for NULLDATA

Appendix D Calculating PLC Memory Usage for a C Block

D-13

LINK : warning L4021: no stack segment

Start Stop Length Name Class
00000H 00017H 00018H NULLDATA TEXT CODE
00020H 00200H 001E1H TEXT CODE
00210H 00462H 00253H STARTUP CODE
00470H 00471H 00002H EMULATOR TEXT CODE
00480H 004B4H 00035H WRT2ERR TEXT CODE
004B6H 004B6H 00000H IRDATA SEG START ENDCODE
004B6H 004B6H 00000H C ETEXT ENDCODE
004B6H 004B6H 00000H IRDATA FAR DATA
004B6H 00577H 000C2H MEM DATA FAR_ DATA
00580H 00580H 00000H EMULATOR DATA FAR DATA
00580H 0097FH 00400H FAR BSS — FAR BSS
00980H 009CDH 0004EH DATA DATA
009CEH 009DBH 0000EH CDATA DATA
009DCH 009E5H 0000AH P DATA DATA
009E6H 009E9H 00004H DBDATA DATA
009EAH 009EAH 00000H XIQC DATA
009EAH 009EAH 00000H XIFB DATA
009EAH 009EAH 00000H XIF DATA
009EAH 009EAH 00000H XIFE DATA
009EAH 009EAH 00000H XIB DATA
009EAH 009EAH 00000H XI DATA
009EAH 009EAH 00000H XIE DATA
009EAH 009EAH 00000H XPB DATA
009EAH 009EAH 00000H XP DATA
009EAH 009EAH 00000H XPE DATA
009EAH 009EAH 00000H XCB DATA
009EAH 009EAH 00000H XC DATA
009EAH 009EAH 00000H XCE DATA
009EAH 009EAH 00000H XCFB DATA
009EAH 009EAH 00000H XCFCRT DATA
009EAH 009EAH 00000H XCF DATA
009EAH 009EAH 00000H XCFE DATA
009EAH 009EAH 00000H XIFCB DATA
009EAH 009EAH 00000H XIFU DATA
009EAH 009EAH 00000H XIFL DATA
009EAH 009EAH 00000H XIFM DATA
009EAH 009EAH 00000H XIFCE DATA
009EAH 00AO03H 0001AH WRT2 DATA
00AO4H 00AO4H 00000H CONST CONST
00AO4H 00AOBH 00008H HDR MSG
00AOCH 00A77H 0006CH MSG MSG
00A78H 00A79H 00002H PAD MSG
00A7AH 00A7AH 00001H EPAD MSG
00A7CH 00A7CH 00000H BSS BSS
00A7CH 00A7CH 00000H X0B BSS
00A7CH 00A7CH 00000H X0 BSS
00A7CH 00A7CH 00000H XOE BSS
00A7CH 00A7CH 00000H XOFB BSS
00A7CH 00A7CH 00000H XOF BSS
00A7CH 00A7CH 00000H XOFE BSS
00A80H 00A80H 00000H c_common BSS

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD

GBLDATSIZ = A7CH-4B6H =2,684 - 1,206 = 1,478
MINALLOC =1

EXEIMAGSIZ = 2,827

OVRHEAD = 474

EXE_stack size =2048
plc_mem_req = 1,478 + (1*16) + 2,827 + 474 + 2,048 = 6,843

Thus, in the Series 90-30 CPU, NULLDATA.EXE will require 6,843 bytes of memory.
Again, the difference in memory usage between NULL.C and NULLDATA.C is due to
the use of global variables in NULLDATA

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Impact of Floating Point on PLC Memory Usage

The final two examples of C block impact on PLC memory usage both use the same C
source file NULLFP.C.

#include ”plcc9030.h”
EXE_stack size = 2048;

main() {
float x;

x = 1.3456;

return(OK) ;

The difference in these last two examples will be in how NULLFP.C is built.

NULLFP.C can be built using MK3PLC.BAT which will generate a PLC-executable file
based upon the ALTERNATEmath library (LLIBCA) and which will execute on any
Series 90-30 CPU that supports C blocks. In addition, NULLFP.C can also be built using
MK3PLC7.BAT which will generate a PLC-executable file based upon the
COPROCESSO@087) library and which will 0%1 execute on a Series 90-30 CPU that
contains a math coprocessor. The .EXE and .MAP file for NULLFP.C, when built
using MK3PLC will be called NULLFPA.EXE and NULLFPA.MAP Similarly, the same
two files, when NULLFP.C is built using MK3PLC7 will be called NULLFP7.EXE and
NULLFP7.MAP

GFK-0646E Appendix D Calculating PLC Memory Usage for a C Block D-15

D-16

Alternate Library Floating Point

The MS-DOS size of NULLFPA.EXE is 12,357 bytes. NULLFPA.MAP contains:

LINK :
Start

00000H
00020H
02610H
02870H
02880H
028B6H
028B6H
028B6H
028B6H
02980H
02980H
02DEOH
02DEEH
02DF8H
02DFCH
02DFCH
02DFCH
02DFCH
02DFCH
02DFCH
02E0OH
02E0OH
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E0OH
02E00H
02E00H
02E0OH
02E1AH
02E26H
02E2EH
02F12H
02F14H
02F16H
02F1AH
02F1AH
02F1AH
02F1AH
02F1AH
02F1AH
02F20H

warning L4021:

Stop

00019H
02600H
02862H
02871H
028B4H
028B6H
028B6H
028B6H
02977H
02980H
02DDFH
02DEDH
02DF7H
02DFBH
02DFCH
02DFCH
02DFCH
02DFCH
02DFCH
02DFFH
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E00H
02EO00H
02E00H
02E00H
02E00H
02E00H
02E00H
02E19H
02E25H
02E2DH
02F11H
02F13H
02F14H
02F19H
02F1AH
02F1AH
02F1AH
02F1AH
02F1AH
02F1AH
02F27H

no stack segment
Length
0001AH
025E1H
00253H
00002H
00035H
00000H
00000H
00000H
000C2H
00000H
00460H
0000EH
0000AH
00004H
00000H
00000H
00000H
00000H
00000H
00004H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
0001AH
0000CH
00008H
000E4H
00002H
00001H
00004H
00000H
00000H
00000H
00000H
00000H
00000H
00008H

Name
NULLFP_TEXT
_TEXT
STARTUP
EMULATOR _TEXT
WRT2ERR_TEXT
IRDATA SEG_START
C_ETEXT
IRDATA
MEM DATA
EMULATOR DATA
_DATA
CDATA
P_DATA
DBDATA
XIQC
XIFB

XIF

XIFE

XIB

XI

XIE

XPB

XP

XPE

XCB

XC

XCE

XCFB
XCFCRT
XCF

XCFE
XIFCB
XIFU
XIFL
XIFM
XIFCE
WRT2
CONST
HDR

MSG

PAD

EPAD
_BSS

XO0B

X0

XOE

XOFB

XOF

XOFE
c_common

Class
CODE
CODE
CODE
CODE
CODE
ENDCODE
ENDCODE
FAR DATA
FAR_DATA
FAR _DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CONST
MSG
MSG
MSG
MSG
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

GFK-0646E

The amount of Series 90-30 CPU memory used when NULLFPA.EXE is stored to the
PLCis:

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD +
EXE_stack_size

GBLDATSIZ = 2F16H — 28b6H = 12,054 — 10,422 = 1,632
MINALLOC =2

EXEIMAGSIZ = 12,375

OVERHEAD =474

EXE_stack size = 2048

plc_mem_req = 1,632 + (2*16) + 12,357 + 474 + 2,048 = 16,543

Therefore, NULLFPA.EXE, when stored to the Series 90-30 CPU, will occupy 16,543
bytes of user program memory.

Appendix D Calculating PLC Memory Usage for a C Block

D-17

D-18

Coprocessor (8087) Library Floating Point

The size of NULLFP7.EXE under MS-DOS is 10,620 bytes. The .MAP file for NULLFP
built with the 8087 library contains:

LINK :
Start

00000H
0001AH
01860H
01ACOH
02240H
02276H
02276H
02276H
02276H
02340H
02476H
026A4H
026B2H
026BCH
026COH
026COH
026COH
026COH
026COH
026COH
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026E2H
026EEH
026F6H
02839H
0283BH
0283CH
02850H
02850H
02850H
02850H
02850H
02850H
02850H

warning L4021:

Stop

00019H
01859H
01AB2H
02238H
02274H
02276H
02276H
02276H
02337H
02475H
026A3H
026B1H
026BBH
026BFH
026COH
026COH
026COH
026COH
026COH
026C7H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026C8H
026E1H
026EDH
026F5H
02838H
0283AH
0283BH
0284FH
02850H
02850H
02850H
02850H
02850H
02850H
02857H

no stack segment
Length
0001AH
01840H
00253H
00779H
00035H
00000H
00000H
00000H
000C2H
00136H
0022EH
0000EH
0000AH
00004H
00000H
00000H
00000H
00000H
00000H
00008H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
00000H
0001AH
0000CH
00008H
00143H
00002H
00001H
00014H
00000H
00000H
00000H
00000H
00000H
00000H
00008H

Name

NULLFP TEXT
TEXT ~—

STARTUP

EMULATOR TEXT

WRT2ERR TEXT
IRDATA SEG START
C ETEXT -
IRDATA

MEM DATA
EMULATOR DATA
DATA -

CDATA

P DATA
DBDATA

XIQC

XIFB

XIF

XIFE

XIB

X1

XIE

XPB

XP

XPE

XCB

XC

XCE

XCFB
XCFCRT

XCF

XCFE

XIFCB

XIFU

XIFL

XIFM

XIFCE

WRT2

CONST

HDR

MSG

PAD

EPAD
BSS

XO0B

X0

XOE

XOFB

XOF

XOFE
c_common

Class
CODE
CODE
CODE
CODE
CODE
ENDCODE
ENDCODE
FAR DATA
FAR DATA
FAR DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
CONST
MSG
MSG
MSG
MSG
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS

plc_mem_req = GBLDATSIZ + (MINALLOC*16) + EXEIMAGSIZ + OVRHEAD +
EXE_stack_size

GBLDATSIZ = 283CH — 2276H = 10,300 — 8,822 = 1,478
MINALLOC =2
EXEIMAGSIZ = 10,620
OVRHEAD =474
EXE_stack size =2048

plc_mem_req = 1,478 + (2*16) + 10,620 + 474 + 2,048 = 14,652

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998

GFK-0646E

Appendix

E

Series 90-70 CPU Execution Time for printf()

This appendix illustrates the impact on the PLC sweep of executing a printf() function.
Execution times are provided for the Series 90-70 CPU models 731, 732, 771, 772, 781, 782,
914, and 924. The measured times include the time required to format the string, the time
required to program the DMA controller to transmit each string, and the overhead time for
DMA activity to transmit each of the characters out the CPU serial port.

The times for executing a similarly formatted sprintf()
the same (slightly less since no DMA activity is required).

would be approximately

Table E-1. Typical Series 90-70 CPU Execution Times for printf()

GFK-0646E

n t9 P nse s% sp ro0
a u m s 74 177 7 QC aGC
ASCII = 1.01 ms for the 0.92 ms for the 0.092 ms for the 0.069 ms for the
characters | “—a” first character + first character + first character + first character +
“—ab” 0.05 ms for each 0.02 ms for each 0.009 ms for 0.002 ms for each
...etc additional additional charac- | each additional additional
character. ter. character. character.
integers 0 2.11 ms to 0.99 ms to 0.13 ms to 0.10 ms to
“Pou” +32767 3.32 ms 1.54 ms 0.31 ms 0.17 ms
“%d” 4294967295
“%lu” 2147483647
“q1d”
floating 0 731/771 | 732/772 781 782 0.24 ms to 0.17 ms to
point 987654.321 0.37 ms 0.23 ms
“Iot” etc. N/A N/A | 1.53 ms to
“%6.3g" 2.11 ms
long 2048 charac- | 105.37 ms 44.09 ms 8.92 ms 4.50 ms
string tersina C
“%s” string (null
terminated)
Note

The 73x/77x execution times listed in this table are for the IC697CPU731,
1C697CPU732,1C697CPU771, and IC697CPU772 CPU. The execution
format flags or

times do ___include time for processing printf()

preceding fill characters.

Note

Formatting of floating point valuesis ___ supported on Series 90-70 CPU
models 731, 771, or 781.

E-1

Appendix

F

Section 1:

Installing Earlier Compilers

Installing the Microsoft C Compiler

Microsoft Visual C, Version 8.0, comes with the purchase of the C Programmer’s Toolkit.
If, however, you are using the C Programmer’s Toolkit with a 90-70 PLC and have an
earlier version of the compiler that you prefer to use, the 90-70 PLCs and toolkit are
compatible with the earlier version discussed in this chapter. For installation of the
Version 8 Microsoft Visual C compiler, refer to the last section of Chapter 2.

Note

If you are creating programs for a 90-30 PLC, Version 8.0 of the
Microsoft Visual C compiler is required.

Installing Microsoft C Version 6.0

GFK-0646E

Microsoft C Version 6.0 is installed using the SETUPprogram supplied on the Microsoft
C diskettes. When this program is run, you are led through a series of options presented
on three screens. There are three selections that are of importance when installing this
software for use with the C Programmer’s Toolkit: math option, memory model, and
the question of whether to copy the C startup sources.

Math Options

The math option selection appears on the first screen of the SETUP program. Either
Alternate or 8087 must be selected for the math options. Both options may be
selected, if desired.

® Programs linked with the alternate library will run on any Series 90-70 CPU
model. The alternate library will not use a math coprocessor even if one is
present.

® If you know that you will be using a CPU model which has a math coprocessor
(CPU732, CPU772, CPU782, CPU914, CPU915, CPU924, or CPU925), you should
choose the 8087 option. The 8087 library only runs with the coprocessor present
and provides better performance of the C application than the alternate library.

Memory Models

Select Large for the memory model, since Series 90-70 C applications are limited to
using the large memory model.

® If you choose the alternate library and the large memory model, a library called
llibca.lib is installed on your hard disk.

® If you choose the 8087 library and the large memory model, a library called
llibc7.lib is installed on your hard disk. Make sure sure LLIBCE.LIB is not
present or if present temorarily rename it before installation of the toolkit.

Copy C Startup Sources Option

The second screen of the SETUPprogram asks a number of questions concerning the
installation of additional files. You must answer Y (Yes) to the question “Copy C startup
sources [N].” This will obtain the files which are needed to build copies of the installed
libraries that are compatible with Series 90-70 PLC CPUs.

If you are installing the Microsoft C software for the first time, make the choices
indicated above to obtain the files needed to build Series 90-70 PLC CPU compatible
libraries. If you have already installed the Microsoft C software and did not select the
large memory model or did not copy the startup code, you can run SETUPagain, this
time making the required choices.

After the installation is complete, make sure that the Microsoft C bin directory is in front
of the DOS directory in the MS-DOS path. If the Microsoft C bin directory is not in the
path or the DOS directory is in front of the Microsoft C bin directory, the toolkit will not
work properly.

Installing Microsoft C Version 7.0

Like Microsoft C Version 6.0, Microsoft’s Version 7.0 C compiler is installed using the
SETUPprogram supplied on the Microsoft C diskettes. The main menu of the SETUP
utility provides a list of all of the numerous options available through the SETUP
program. To use the Version 7.0 C compiler to create Series 90-70 C applications, you
should select: “ Custom Installation of MS C/C++ compiler ". There are two
selections on the Custom Installation menu that are of importance when installing this
software for use with the C Programmer’s Toolkit: math options ~ and memory
models .

Note

If you are creating programs for a 90-30 PLC, Version 8.0 of the
Microsoft Visual C compiler is required.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

GFK-0646E

Math Options

If this is a first-time installation, you must select the following items on the Custom
Installation menu:

Install Microsoft C/C++ compiler components.
Install C/C++ run-time library components.

Math options: 80x87 chip math, Alternate math.

Either Alternate math , 80x87 chip math , or both must be selected for the math
options.

® Programs linked with the alternate library will run on any Series 90-70 CPU
model. The alternate library will not use a math coprocessor even if one is
present.

e If you know that you will be using a CPU model which has a math coprocessor
(CPU732, CPU772, CPU782, CPU914, CPU915, CPU924, or CPU925), you should
choose the 80x87 chip math ~ option. The 80x87 library only runs with the
coprocessor present and provides better performance of the C application than the
alternate library.

Appendix F Installing Earlier Compilers

Memory models

Large must be selected for the memory model, as Series 90-70 C applications are limited
to using the large memory model.

® If you choose the alternate library and the large memory model, a library called
llibca.lib is installed on your hard disk. If you choose the 80x87 library and the
large memory model, a library called llibc7.lib is installed on your hard disk.

® If you choose both the 80x87 chip math and the alternate math , then both
llibca.lib and llibc7.lib will be created on your hard disk during
installation of the Microsoft C compiler. Make sure sure LLIBCE.LIB is not present or
if present temorarily rename it before installation of the toolkit.

Other Selections

In addition to the above list of “MUST” selects, you may also want to select:

Copy CodeView debugger files.
Copy Online Help Files.

The remaining available selections are not required for operation with the C
Programmer’s Toolkit.

If you are installing the Microsoft C software for the first time, make the choices
indicated above to obtain the files needed to build Series 90-70 PLC CPU compatible
libraries. If you have already installed the Microsoft C software and did not select the
large memory model or did not select the correct math option, you can run SETUP
again, this time making the required choices.

After the installation is complete, make sure that the Microsoft C bin directory is in front
of the DOS directory in the MS-DOS path. If the Microsoft C bin directory is not in the
path, or the DOS directory is in front of the Microsoft C bin directory, the toolkit will
not work properly.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Installing Microsoft C Version 8.0

GFK-0646E

Version 8.0 of the Microsoft Visual C compiler comes with the purchase of the C
Programmer’s Toolkit; however, if you purchased Version 8.0 previously and wish to
install it instead of the slightly limited version that comes with the Toolkit, refer to the
installation instructions the came with your Microsoft Visual C compiler or follow the
directions shown below.

Like Microsoft Version 6.0 and Version 7.0, Microsoft Version 8.0 is installed using the
SETUPprogram supplied on the Microsoft C diskettes. However, the SETUPprogram
must be run under Microsoft Windows, Windows 95, or Windows NT in order to install
Version 8.0.

1. If you are using Windows 95 or Windows NT, skip to the next step. If you are using
Windows rather than Windows 95 or Windows NT, verify that buffers=30 (or
higher) is in your config.sys file. If it is not set to at least 30, edit your
config.sys file to read buffers=30 . Then reboot your PC.

2. Insert the CD-ROM or installation diskettes from Microsoft into the appropriate
drive.

3. Using Explorer, File Manager, Startup or My Computer functions, access the
SETUP.EXE file and double-click it.

4. Follow the prompts, e.g., in the Welcome window, choose CONTINUEunless you
wish to abort the installation.

5. In the Visual C+ + Setup window, select OK

6. In the Installation Options window:

A. Verify that Microsoft C/C++ Compiler is selected (indicated by an X in
the box).
Verify that Run-Time Libraries is selected.

C. Clickon Libraries to display the Library Options windows.
1) Verify that Large/Huge is selected.
2) Verify that 80x87 and/or Alternate is selected but not Emulator.
3) Click on OK
7. Click on CONTINUE

8. Follow the remaining installation instructions.

In addition to this list of “MUST” selects, you may also want to select:

® Copy CodeView debugger files.
® Copy Online Help files.

The remaining available selections are not required for operation with the C
Programmer’s Toolkit.

If you are installing the Microsoft C software for the first time, make the choices
indicated above to obtain the files needed to build Series 90-70 PLC CPU-compatible

Appendix F Installing Earlier Compilers F-5

libraries. If you have already installed the Microsoft C software but did not select the
Large/Huge memory module or did not select the correct math option, you can run
SETUPagain to make the required choices.

After the installation is complete, make sure that the Microsoft C bin directory is in front
of the DOS directory in the MS-DOS path. If the Microsoft C bin directory is not in the
path, or the DOS directory is in front of the Microsoft C bin directory, the toolkit will
not work properly.

C Programmer’s Toolkit for Series 90™ PLCs User’s Manual — August 1998 GFK-0646E

Index

A

Adding Blocks, 3-98

Adding C blocks through the Logicmaster
90 Librarian, 3-91

Adding C programs to your equipment
folder, 3-97

Arrays, using PLC reference memory as,
3-54

AUTOEXEC.BAT File, editing for the C
Debugger, 7-2

B

Background checksum, 7-13
Blocks, adding, 3-98
Breakpoints, 7-12

C

C _MAIN programs, for 90-30 PLCs, 3-8

C block
as I/O interrupt block, 3-71, 3-73
as Timed interrupt block, 3-2, 3-8, 3-71,
3-73
available stack space, 3-3, 3-6, 3-9
building for DOS execution, 3-78, 3-82
building for PLC execution, 3-87, 3-88
called from ladder logic, 3-2
common errors
changing the source and rebuilding,
3-94
mismatch in parameters to main(),
3-57
uninitialized pointer, 3-64
contents, 3-3, 3-6, 3-9
ladder logic OK output, 3-67
parameters to
declaration, 3-3
declaration errors, 3-57
number of mismatch, 3-59
order mismatch, 3-58
type mismatch, 3-57
number of, 3-2
unused parameters, 3-4
PLC scan impact of calling, 3-74, 3-75
size
in PLC, 3-70
under DOS, 3-70

C Programmer’s Toolkit for Series 90™-70 PLCs User’s Manual — August 1998

testing
in the PLC, 3-86, 3-101
using printf(), 3-101
using reference table monitoring,
3-101
using single sweep debug. See
Single sweep debug
under DOS, 3-76, 3-80, 3-84
PLC reference memory. See PLC ref-
erence memory,under DOS
using Microsoft Codeview, 3-80,
3-84
using printf(), 3-80, 3-84

C Blocks, 3-100
parameters, 3-99

C Debugger, 7-1, 7-3

background checksum, 7-13
breakpoints, 7-12
controlling, 7-10
controlling application execution, 7-10
CPU reference memories, 7-12
data breakpoints, 7-16
functionality restrictions, 7-11
installing, 7-2
memory addresses, 7-15
patching application code, 7-13
printf() function, 7-12
sample debug session, 7-22
starting a debug session, 7-4
system calls, 7-16
terminating a debug session, 7-13
troubleshooting, 7-20

application out of context message,

7-18

error conditions, 7-21

page faults, 7-20
using with Logicmaster 90, 7-17

C Development Software, installed files,
B-1,B-4
C FBKs
defined, 1-2
structure, 3-72
when to use, 3-72

C function blocks
defined, 1-2
structure, 3-72
when to use, 3-72

C Macros
accessing I/O transition bits, 3-20
accessing PLC fault bits, 3-20
cpu reference memory sizes, 3-19
general, 3-6, 3-10
list of, C-1, C-4

Index-1

Index

Index-2

PLC memory as bits, 3-12

PLC memory as bytes, 3-15

PLC memory as double words, 3-18

PLC memory as floating point, 3-18

PLC memory as words, 3-17
warning, 3-11

PLC memory sizes, 3-54

Restrictions on Usage, 3-11

special system contacts, 3-20, 3-67

C program block
building for DOS execution, example
session, 4-11, 5-11
building for PLC execution, example
session, 4-13-4-16, 4-22-4-26,
5-13-5-16
C functions supported. See Runtime li-
brary,C functions supported in PLC
example programs, interactive opera-
tion example, 4-3, 5-3
testing
in the PLC, example session,
4-13-4-16, 4-22-4-26, 5-13-5-16
under DOS, example session, 4-11,
5-11

C program block (90-30), size. See PLC,C
program block impact on memory

C program block (90-70), size. See PLC,C
program block impact on memory

C Programs
adding, 3-97
input/output parameters, 3-97

C programs, importing revised, 3-98

C subroutine blocks, for 90-30 PLCs. See C
Macros

Codeview, debugging under DOS. See C
program block, debugging,under
DOS

Compiler Installation, Procedure, 2-7

CONFIG.SYS File, editing for the C De-
bugger, 7-2

CPU Configuration, enabling CPU serial
port for printf(), 3-23

CPU Reference Memories, 7-12

D

Data breakpoints, 7-16

C Programmer’s Toolkit for Series 90™ -70 PLCs User’s Manual — August 1998

Data initialization, 3-55

Data move functions
VMERD, 3-28
VMEWRT 3-29

Data retentiveness for C blocks, 3-56
.DBG File, 7-8
Debug
C programs, 7-1, 7-3
in the PLC. See C program block,test-
ing,in the PLC
under DOS. See C program block,test-

ing,under DOS
using the C Debugger, 7-1, 7-3

Directory structure, 3-1

E

ENO output, 3-8

Errors
See also C program block, common er-
rors
C Debugger, 7-21

External program block. See C program
blocks

F

Filenames, 3-53, 3-93

Floating point arithmetic, 3-53
performance, 3-53
using math coprocessor, 3-53
using software emulation, 3-53

FST_EXE. See C Macros, special system
contacts

FST_SCN. See C Macros, special system
contacts

G

GEF_CFG.INI File, editing for the C De-
bugger, 7-3

Global variable initialization, 3-55

Global variables, 3-55
PLC handling, 3-55
PLC STOP to RUN re-initialization, 3-55

GFK-0646E

Index

Importing a library element to a folder,
3-93

Importing revised C programs, 3-98
Interrupt Blocks. See C program block

L

LIMIT.C, contents of, 4-2, 5-2

Logicmaster 90 Librarian, 3-91
adding C program block to library, 3-92
importing a library element to a folder,
3-93

M

Macros, for referencing PLC memory. See
C Macros

Memory addresses, 7-15

Microsoft C Installation
math option, F-1
memory model, F-2
startup sources, F-2

Microsoft C v6.0 Installation, F-1

Microsoft C v7.0 Installation, F-2, F-5
math option, F-3
memory model, F-4

Microsoft C v8.0 Installation, F-5

O

OK output, 3-2
See also C program block, ladder logic
OK output

P

Page faults, 3-64
Parameters, defining for C blocks, 3-99
PG_FLT, 3-64

C Programmer’s Toolkit for Series 90™-70 PLCs User’s Manual — August 1998

PLC
C program block (90-70) impact on
memory, examples, smallest impact,
D-2
C program block impact on memory,
3-70
examples
effect of C global data, D-4, D-13
effect of using floating point,
D-6-D-9, D-15-D-18
floating point coprocessor, D-9,
D-18
floating point emulation, D-7,
D-16
C subroutine block (90-30) impact on
memory, examples, smallest impact,
D-11
data types, 3-10
fault table, C program block runtime er-
rors. See Runtime errors
memory sizes, determining from C pro-
gram. See C Macros
reference types, 3-10
%L, 3-65
%1, 3-65
%S, 3-67
bit memories as words, warning, 3-11
under DOS, 3-81, 3-85
scan
impact of calling C program block,
3-74
impact of printf(), 3-22

PLC (90-30)
C program block impact on memory,
calculating impact, D-10
C subroutine block impact on memory,
D-10-D-16

PLC (90-70), C program block impact on
memory, D-1-D-7
calculating impact, D-1

PLCC_change background_window, 3-34
PLCC_change_prog_comm_window;, 3-33

PLCC_change_system_comm_window,
3-34

PLCC chars_in_printf q, 3-27
PLCC clear fault tables, 3-41
PLCC_comm_req, 3-47
PLCC_const_sweep_timer, 3-32

PLCC_do io, 3-47
(Enhanced Do 1/O), 3-49

PLCC_gen_alarm, 3-27

Index-3

Index

Index-4

PLCC_get_escm_status, 3-46
PLCC_get_plc_version, 3-27
PLCC_mask_IO_interrupts, 3-42
PLCC_mask_timed_interrupts, 3-45
PLCC_number of words_in chksm, 3-35
PLCC _read_elapsed_clock, 3-27
PLCC read_fault tables, 3-43

PLCC read folder name, 3-40
PLCC read IO_override_status, 3-43
PLCC read last_fault, 3-41
PLCC_read_override, 3-52
PLCC_read_PLC_ID, 3-40

PLCC read PLC_state, 3-41
PLCC_read window_values, 3-33
PLCC_reset_watchdog_timer, 3-39
PLCC _set_run_enable, 3-43
PLCC_shut_down_plc, 3-41
PLCC_SNP_ID, 3-51

PLCC _sus io, 3-49
PLCC_sus_res_HSC_interrupts, 3-45
PLCC_time_since_start of sweep, 3-40
PLCC_tod_clock, 3-35
PLCC_VME_config_read, 3-28
PLCC_VME_ config write, 3-28
PLCC_VME read block, 3-29
PLCC_VME read_byte, 3-28
PLCC_VME read word, 3-29
PLCC_VME_RMW _byte, 3-50
PLCC_VME_RMW_word, 3-50
PLCC_VME set amcode, 3-28
PLCC_VME_TST byte, 3-50
PLCC_VME_TST word, 3-51
PLCC_VME_write_block, 3-29
PLCC_VME_write_byte, 3-29
PLCC_VME_ write word, 3-29

printf()
access to serial port, 3-23
C Debugger use, 7-12

changing CPU serial port configuration.

See CPU Configuration

debugging with, under DOS, 3-80, 3-84

differences with sprintf(), 3-25
example of return value, 3-25
floating point support in CPU, 3-26
formats in the PLC, 3-22

logging PLC fault, 3-23

number of chars in queue, 3-22
PLC internal queue, 3-22

PLC scan impact, 3-22

queue overflow, 3-22

return value, 3-22

PSBs, parameters, 3-99

R

Retentive data for C blocks, 3-56

Runtime errors
PLC support, 3-68
printf() in PLC, 3-23
floating point, 3-26

Runtime library

C functions supported in PLC, A-1-A-4

errors. See Runtime errors
supported libraries, 3-53

S

SA Merge, 3-95
Single sweep debug, 3-102

Soft Scope
functionality, 7-15
installing, 7-3
optimizing, 7-10

sprintf()
differences with printf(), 3-25
example of return value, 3-25
floating point support in CPU, 3-26
formats in the PLC, 3-22

Stack space. See C block,available stack

space; C program block,available
stack space

System calls, 7-16

T

TESTHARN.C, 3-76,4-2, 5-2

batch operation example program, 4-6,

5-6

C Programmer’s Toolkit for Series 90™ -70 PLCs User’s Manual — August 1998

GFK-0646E

Index

GFK-0646E

interactive operation example program,
4-3,5-3

Toolkit Installation, Requirements, 2-2
Toolkit Installation (90-30), Procedure, 2-3

V

Variable initialization, 3-55

Variables
C global, 3-3, 3-6, 3-9
Clocal, 3-3, 3-6, 3-9
C static, 3-3, 3-6, 3-9

VME read function, 3-28
VME write function, 3-29
VMERD, 3-28

VMEWRT, 3-29

C Programmer’s Toolkit for Series 90™-70 PLCs User’s Manual — August 1998 Index-5

	gfk0646e.pdf
	Chapter 1 Introduction
	Chapter 2 Installation
	What You Will Need
	Section 1: Installing the C Programmer s Toolkit for Series 90-70 and 90-30 PLCs
	Installing a Toolkit
	Updating the AUTOEXEC.BAT (or AUTOEXEC.NT) File

	Section 2: Installing the Microsoft Visual C Compiler
	Updating the System Files

	Chapter 3 Writing a C Application
	Section 1: Series 90-70 C Block and C FBK Structure
	Variable Declarations
	Stack Checking
	Parameter Declarations
	Parameter Pointer Validation

	Section 2: Series 90-70 Standalone C Program Structure
	Standalone C Program I/O Specifications

	Section 3: C Subroutine Block and C Main Program Structure (Series 90-30 Only)
	Variable Declarations for 90-30 PLCs
	Stack Checking
	EXE_stack_size

	Section 4: PLC Reference Memory Access
	Section 5: Standard Library Routines
	printf() and sprintf() - Series 90-70 Only
	GE Fanuc Functions
	General PLC Functions
	VME Functions (Series 90-70 Only)
	VMERD (BYTE, WORD)-Series 90-70 Only
	VMEWRT (BYTE, WORD)-Series 90-70 Only
	Return Status for VME Functions
	Service Request Functions
	Module Communications
	Ladder Function Blocks
	VME Semaphore Handlers (Series 90-70 Only)
	VME Read Modify Write (Series 90-70 Only)
	VME Test and Set (Series 90-70 Only)
	Return Status for VME Byte Functions (Series 90-70 Only)

	Section 6: Application Considerations
	Application File Names
	Floating Point Arithmetic
	Available Reference Data Ranges
	Global Variable Initialization
	Static Variables
	Data Retentiveness
	Main() Parameter Declaration Errors for Blocks (Series 90-70 Only)
	Local I/O Specification Errors (Series 90-70 Only)
	Uninitialized Pointers
	PLC Local Registers (%P and %L) - Series 90-70 Only
	Block OK Output (Applicable to Series 90-70 Only)
	Standalone C Program Return Value (Series 90-70 Only)
	Writes to %S Memory Using SB(x)
	FST_EXE (Series 90-70 Only) and FST_SCN Macros
	LDST_SCN Macro (Series 90-30 Only)
	Runtime Error Handling
	C Application Size Under MS-DOS
	C Application Impact on PLC Memory
	Blocks as Timed or I/O Interrupt Blocks (Series 90-70 Only)
	Standalone C Programs Scheduled as Timed or Triggered Interrupts (Series 90-70 Only)
	Program Scheduling Mode (Series 90-70 Only)
	Scan Impact

	Section 7: Testing C Applications in the MS-DOS Environment
	Test Harnesses
	BLDVARS File
	Building for MS-DOS Execution (Series 90-70)
	Debugging under MS-DOS
	Building for MS-DOS Execution (Series 90-30)
	Debugging Under MS-DOS

	Section 8: C Applications in the Series 90 PLC Environment
	BLDVARS File
	Creating a Folder for a Standalone C Program (Series 90-70 Only)
	Building for 90-70 PLC Execution
	Building for 90-30 PLC Execution
	Adding Blocks Through the Logicmaster 90 Librarian (Series 90-70 Only)
	Scheduling Standalone C Programs through the Logicmaster 90-70 Scheduler
	Working with C Programs and Blocks in the Windows-based Programming Software
	Debugging in the PLC

	Chapter 4 Example C Series 90-70 Application Development
	Section 1: Installed Sample Blocks
	Example 1: Interactive LIMIT
	Example 2: Batch Mode LIMIT

	Section 2: Step-by-Step Example Session For Blocks
	Building and Debugging LIMIT under MS-DOS
	Building and Debugging LIMIT for the PLC
	C Blocks Versus C FBKs

	Section 3: Installed Sample C FBK
	Section 4: Installed Sample Standalone C Program
	Section 5: Step-by-Step Example Session For Standalone C Program
	Building and Debugging BUBBLE under Ms-DOS
	Building and Debugging BUBBLE for the PLC

	Chapter 5 Example C Series 90-30 Application Development
	Section 1: Installed Sample Blocks
	Example 1: Interactive LIMIT
	Example 2: Batch Mode LIMIT

	Section 2: Step-by-Step Example Session For Blocks
	Building and Debugging LIMIT under MS-DOS
	Building and Debugging LIMIT for the PLC

	Chapter 6 C Application Development Using Multiple C Source Files
	Overview
	Creating a Multiple C Source Application SOURCES File
	Invoking a Multiple C Source Application Build
	I/O Specifications in Standalone C Programs (Series 90-70 Only)

	Chapter 7 The C Application Debugger for Series 90-70 PLCs
	Section 1: Installing the C Debugger
	Installing the Toolkit
	Editing the AUTOEXEC.BAT file
	Editing the CONFIG.SYS file
	Editing the GEF_CFG.INI file
	Installing Soft-Scope

	Section 2: Starting a Debugging Session
	Section 3: Controlling the Debugging Process
	Optimizing Performance of the User Interface
	Controlling Application Execution
	Accessing CPU Reference Memories
	Using the Printf() Functions
	Calculating Background Checksum
	Patching Application Code
	Terminating a Debug Session

	Section 4: Special Considerations
	Notes on Soft-Scope Functionality
	Specifying Memory Addresses
	Data Breakpoints
	System Calls
	Using Logimaster 90 During a Debug Session
	Application Out of Context

	Section 5: Troubleshooting
	Page Faults
	Error Conditions

	Section 6: A Sample Debug Session

	Appendix A Standard C Library Functions Supported in the Series 90 PLC
	Appendix B C Programming Toolkit Files
	Appendix C C Macos for PLC Access
	Appendix D Calculating PLC Memory Usage for a C Block
	Series 90-70 Memory Usage Calculation
	Smallest Possible Impact on PLC Memory
	Impact of Global Data on PLC Memory Usage
	Impact of Floating Point on PLC Memory Usage
	Series 90-30 Memory Usage Calculation
	Smallest Possible Impact on PLC Memory
	Impact of Global Data on PLC Memory Usage
	Impact of Floating Point on PLC Memory Usage

	Appendix E Series 90-70 CPU Execution time for printf()
	Appendix F Installing Earlier Compilers
	Section 1: Installing the Microsoft C Compiler
	Installing Microsoft C Version 6.0
	Installing Microsoft C Version 7.0
	Installing Microsoft C Version 8.0

	Index

