
GE Fanuc Automation

Programmable Control Products

Generation D
Real-Time Operating System

Programming Manual

GFK-2205 August 2002

GFL-002

Warnings, Cautions, and Notes

as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,

currents, temperatures, or other conditions that could cause personal injury exist in this

equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to

equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and
operating the equipment.

This document is based on information available at the time of its publication. While efforts
have been made to be accurate, the information contained herein does not purport to cover all
details or variations in hardware or software, nor to provide for every possible contingency in
connection with installation, operation, or maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Fanuc Automation assumes no
obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory
with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or
usefulness of the information contained herein. No warranties of merchantability or fitness for
purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master Genius PROMACRO Series Six
CIMPLICITY Helpmate PowerMotion Series Three
CIMPLICITY 90–ADS Logicmaster PowerTRAC VersaMax
CIMSTAR Modelmaster Series 90 VersaPro
Field Control Motion Mate Series Five VuMaster
GEnet ProLoop Series One Workmaster

©Copyright 2002 GE Fanuc Automation North America, Inc.

All Rights Reserved.

Preface

GFK-2205 iii

Introduction

Purpose of This Programming Manual

The Generation D Real-Time Operating System (RTOS) Programming Manual is your guide to the

basic application program design and maintenance of the DspMotion® products. The computer

screen examples in the text were created in CCS 5.1.1 for Windows. All examples assume that the

you are using CCS version 5.1.1 or later.

CIMPLICITY® Motion Developer Users

If you are using CIMPLICITY Motion Developer software to communicate with IMC or IMJ

motion controllers, note that the screen captures and procedures described in this revision were

developed using CCS for Windows software. Your CIMPLICITY Motion Developer menus and

screens will be different. Please use CIMPLICITY’s online help or refer to the S2K Series

Standalone Motion Controller User's Manual, GFK-1848 for software-specific examples and

information. Use this Generation D RTOS manual for your system setup, application program

development principles, and operating system resources.

Conventions

Symbol Codes

The commands and registers in Appendix A of this manual are used with IMCs, IMJs, or the

Target® automation rack system. In some cases, a particular register, command, or feature may

apply only to a specific product—those distinctions are noted with the following symbols:

jr Applies to IMJ

I Applies to IMC
Applies to Target® ARS

Preface

iv Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

Registers and Commands

Appendix A contains specifics (e.g., syntax, parameters, range) about each register and command

in the Generation D RTOS. Appendix I provides quick reference lists of those registers and

commands by class (i.e., System Registers, Motion Commands, etc.).

Related Publications

The following publications are available at

http://www.gefanuc.com/support/plc/m-MotionSolutions.htm.

Generation D RTOS Programming Manual, GFK-2205

IMC Hardware Manual, GFK-2201

Target® ARS Hardware Manual, GFK-2200

DeviceNet Reference Guide, GFK-2208

S2K Series Standalone Motion Controller User's Manual, GFK-1848

IMCjr Hardware Manual, Pub 330

DeviceNet Reference Guide (for Early Firmware Revisions), Pub 305

For an in-depth DeviceNet resource, please consult the DeviceNet Specification, release 2.0,

Errata 3, published by the Open DeviceNet Vendor Association (www.odva.org).

www.gefanuc.com/support/plc/m-MotionSolutions.htm
http://www.odva.org/

Contents

GFK-2205 v

Chapter 1 DspMotion Overview ..1-1

DspMotion System Resources and Capabilities ... 1-1

Generation D Real-Time Operating System for Machine Control 1-2

Modes of Operation .. 1-4

Related Publications.. 1-5

What’s Next? .. 1-5

Chapter 2 Getting Started...2-1

What You Will Need .. 2-1

The Process for Basic Set-up .. 2-2

Start CCS Version 5.1.1 or Later .. 2-4

Connect and Configure Operator Interface (OIP)—Optional ... 2-5

DspMotion Controller Type? .. 2-7

Note to IMJ Users ... 2-7

Configure IMJ... 2-7

Note to IMC Users .. 2-13

Configure IMC(s).. 2-13

IMC-1000 Series... 2-16

IMC-2000 Series... 2-20

IMC-3000 Series... 2-24

Note to Target Users ... 2-29

Target .. 2-29

Chapter 3 Creating Application Programs in CCS..3-1

Program Development Tools Overview ... 3-1

Using The ASCII File Editor .. 3-3

Send An Application Program To Your DspMotion Controller 3-6

Run An Application Program ... 3-7

Change An Application Program Using The ASCII File Editor....................................... 3-8

Fix An Error That Occurs During a File Send .. 3-9

Create End User Application .. 3-11

Chapter 4 Application Programming Resources..4-1

Program Maps... 4-2

Motion Blocks... 4-2

Flow Control ... 4-4

Math Functions ... 4-6

Variables ... 4-7

Timing Devices... 4-10

Set Point Outputs .. 4-11

OIP (Optional) .. 4-11

Contents

vi Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

Chapter 5 Developing an Application Program ...5-1

Structure of the Generation D RTOS.. 5-1

Multitasking .. 5-2

Step 1: Set System Constants... 5-5

Step 2: Assess Task Interaction ... 5-17

Step 3: Structure a Fault Handling Program .. 5-18

Step 4: Structure Program 1 and Additional Tasks.. 5-21

Step 5: Manage Your Application Program... 5-22

Chapter 6 Application Program Diagnostics and Debugging Tools.................................6-1

Embed and Enable Diagnostics in an Application Program ... 6-1

Runtime Debugging Tools .. 6-4

About the Line Editor ... 6-5

Find a Bug with the FAULT Command ... 6-6

Fix a Bug... 6-7

Monitor Real-time Machine Parameters with Query/Start (Q, ?) 6-8

Query Registers for Moment-in-Time Data (Q, ?).. 6-8

Run an Application Program in Single-Step Mode... 6-9

Run an Application Program in Trace Mode .. 6-10

Capture an Online Terminal Session .. 6-11

Chapter 7 Receiving Data from a DspMotion Controller to Your PC7-1

Overview... 7-1

Receive Variables ... 7-2

Receive All.. 7-3

Chapter 8 Troubleshooting...8-1

My Controller Doesn’t Communicate... 8-1

Operator Interface Panel Displays Meaningless Information ... 8-2

When I Enable the Servo Drive, My Motor Jumps and Then Faults 8-2

Where are My (* Delimited Comments? .. 8-3

I Forgot/Lost the Password!.. 8-3

My Controller Is Not Faulted, But the Motor Will Not Move!... 8-3

Appendix A Registers and Commands ..A-1

Appendix B Operators... B-1

>, >=, =, <>, <=, < Relational Operators .. B-3

NOT, AND, OR, XOR Logical Operators.. B-4

ROL, ROR Rotate Operators .. B-5

SHL, SHR Arithmetic Shift Operators.. B-6

+, -, *, /, ** Arithmetic Operators ... B-7

Contents

GFK-2205 Contents vii

ABS Absolute Value Operator .. B-8

CRC Cyclical Redundancy Check Calculation Operator B-9

EXP Exponential Operator .. B-10

LGN Natural Log Operator.. B-11

SQR Square Root Operator ... B-12

SIN, COS, TAN, ATN Trigonometric Function Operators................................. B-13

+ Concatenation Operator.. B-14

LEN Length Of String Operator .. B-15

LFT, MID, RGT Select Characters Of String Operators B-16

FIN Find String In String Operator ... B-17

INS, DEL Edit String Operators .. B-18

LWR, UPR Case Conversion Operators ... B-19

ASC Convert from Character to ASCII Operator.. B-20

CHR Convert from ASCII Code to Character Operator B-21

ITF Convert Integer to Floating Point Operator B-22

STF Convert String to Floating Point Operator.. B-23

DTI, TTI Convert Time/Date to Integer Operators ... B-24

FTI, TRC Convert Floating Point to Integer Operators B-25

STI Convert String to Integer Operator .. B-26

FTS Convert Floating Point to String Operator.. B-27

ITB, ITH, ITS Convert Integer to String Operators ... B-28

ITD, ITT Convert Integer to Time/Date Operators ... B-29

Appendix C Operands ...C-1

Appendix D IMC and Target Command Fault and Status Messages.................................D-1

Appendix E IMC Fault and Status Register Messages .. E-1

Appendix F Target Fault and Status Register Messages ... F-1

Appendix G Motion Templates...G-1

Homing Routines ... G-2

Velocity-Based Moves... G-14

Timed-Based Moves .. G-26

Pulse-Based Moves.. G-40

Torque-Limited Moves .. G-59

Synchronized Moves.. G-63

Trajectory Moves ... G-85

Appendix H Utility Templates ..H-1

First-In First-Out Buffer .. H-2

Contents

viii Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

Display and Edit Time/Date on OIP I.. H-4

Jog Using Analog Input ... H-9

Jog Using Electronic Handwheel I.. H-11

Jog Using Single-Pole, Double-Throw Switch .. H-12

Jog Using Operator Interface (OIP) ... H-14

Solve PID Algorithm ... H-23

GFK-2205 1-1

DspMotion Overview

In This Chapter

 DspMotion system resources and capabilities

 Features of the Generation D Real-Time Operating System (RTOS)

 Modes of operation.

DspMotion System Resources and Capabilities

The DspMotion family provides all of the resources required for state-of-the-art automation

machinery.

Computing Power

The DspMotion design uses a two-processor approach. This dual processing power allows the

control system to provide response rates that can measurably improve machine accuracy and

throughput. A 32-bit CISC microprocessor supervises the user application program, while a Digital

Signal Processor (DSP) supervises the motion loop. The Target ARS has a DSP on each optional

Analog and Digital Input/Output Module.

Each axis gets
its own DSP to

give you the
best multi-axis

performance

Figure 1.1: DspMotion Processing Diagram

1
Chapter

1-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

1

Generation D Real-Time Operating System for Machine Control

The Generation D Real-Time Operating System (RTOS) provides the DspMotion product family

with a platform that ensures that all tasks are serviced when required to meet machine timing

demands. Generation D RTOS includes several features for maximum flexibility in control system

architecture and machine design:

• Multitasking programs

• Motion blocks

• Labels for GOTO and GOSUB statements

• Conditional and Wait statements

• Custom, complex infix mathematical expressions

• Timers

• Built-in and custom fault handling

• Immediate mode command execution.

DspMotion Capabilities

Figure 1.2: DspMotion Capabilities

Motions IMC & IMJ Target

Standard trapezoidal and triangular position moves √ √
Complex, multiple-speed position moves √ √
Torque-limited moves √ √
Electronic gearing and line shafting √ √
Index synchronization √ √
Phase synchronization √ √
Electronic camming √ √
Secondary position feedback √ √
Multi-axis event-synchronized moves √ √
Multi-axis time-synchronized moves √
Two- to eight-axis linear interpolation √
Two- and three-axis circular interpolation √
Jerk-limited acceleration and deceleration (S-curve) √ √

Programming Environment

The Generation D RTOS has been designed specifically for motion and machine control. The

language uses common constructs for the IMC, the IMJ, and the Target Automated Rack System

(ARS) so that applications developed for one product can be easily transferred to the other.

GFK-2205 Chapter 1 DspMotion Overview 1-3

1

Registers, Commands, and Operators

Registers, commands, and operators/operands are the basic tools that you will need to create your

motion control application programs. Detailed information on each is provided in Appendices A, B,

and C.

Typical Syntax

A typical command line would adhere to the following syntax structure, for example:

command line: Wait IP When Not DI3 Joto 310

action: wait until axis is in position or if digital input 3 is not true, then go to

label 310.

Registers can be loaded directly with a data value or indirectly with the contents of a variable, for

example:

register: MPI=1000

MPI=VF100

action: the Incremental Move Position (MPI) register can be loaded with either

the value 1,000 or the contents of floating point variable 100.

Math and Logical Operations

The Generation D RTOS supports
full floating point math and operators
for complex mathematical and logical
operations (see figure 1.3).

Multifunction, single-line math
operations use standard infix notation
to simplify program readability and
flow, for example:

Figure 1.3: Operators in the Generation D RTOS

mathematical equation: VF1=SQR(VF2**2.+VF3**2.)

calculation:

result stored in floating point variable 1 equals the
square root of the sum of the squares of floating point
variables 2 and 3.

1-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

1

Modes of Operation

The Generation D RTOS supports two modes of operation: preprogrammed task execution and

immediate mode.

Figure 1.4: Preprogrammed Task Execution

In immediate mode, the communications port functions as your control port, allowing you to send

commands or load registers online and in real-time from an external source. Immediate mode is

useful for applications in which motion register values and/or commands are not known in advance

and may be a function of operations performed elsewhere on the machine.

Figure 1.5: Immediate Mode Operation

Immediate mode allows the following real-time operations:

1. Send/receive variables

2. Send immediate mode commands (e.g., AUTOTUNE, CLM)

3. Load/send new register values

4. Query system status and register values

5. Send motion commands.

GFK-2205 Chapter 1 DspMotion Overview 1-5

1

Related Publications

Publications dedicated to DspMotion controller set-up, configuration, and programming include:

IMC Hardware Manual, GFK-2201

Target ARS Field Service Manual, GFK-2200

IMCjr Hardware Manual, Pub 330

DeviceNet Reference Guide, GFK-2208

What’s Next?

DspMotion lets you incorporate leading-edge motion control technology into a wide variety of
automation machinery. Turn to the remaining chapters and appendices in this manual for the
instructions, information, and examples that will maximize the potential of the Generation D RTOS
in your system design process.

GFK-2205 2-1

Getting Started

In This Chapter

What you will need to:

 Complete a basic set-up

 Install CCS 5.1.1 or later for Windows operating system

 Communicate with your DspMotion controller

 Autotune your servo motor

 Make the motor move forward and reverse

 Stop the motor.

What You Will Need

Supplied Components

DspMotion controller

Motor (except IMC-2000 series)

CCS for Windows version 5.1.1 or later

Cables

DC power to digital I/O (provided by IMC output 20; IMJ output 19; Target Digital I/O Module

output 19)

User-Supplied Components

AC power (to controller and PC)

AC power connection

16-gauge wire to jumper I/O connector(s)

Computer

Drive and motor (required only for IMC-2000 series)

2
Chapter

2-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Figure 2-1: A DspMotion Control System

The Process for Basic Set-up

The flowchart in figure 2.2 documents the process for completing a basic setup for an IMC, IMJ, or

a Target system. The remainder of this chapter expands upon each action in figure 2.2 with

step-by-step instructions and illustrations for each part of the procedure. Once you have completed

this basic set-up, you will be ready to start programming your DspMotion control system.

GFK-2205 Chapter 2 Getting Started 2-3

2

Start CCS

DspMotion®

type?

Set DIP switches

Install modules in rack

Insert PCMCIA card

Jumper dedicated I/O lines

Connect serial cable

Internal or

external

power

electronics?

Is set-up

correct?

Connect analog output to

external power amplifier

Connect motor power cable

Connect

feedback cable

Connect and apply power

Begin basic set-up

End basic set-up

Target®

IMC

External

Internal

Servo

Stepping

Configure system for

appropriate electronics

Servo or

stepping

motor?

Yes--system runs

forward and reverse

No

Go to

Chapter 3

Establish communication

Using Operator

Interface

Panel?

Yes

No

Connect and configure OIP

Figure 2-2: The Process for Basic Set-up

2-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Start CCS Version 5.1.1 or Later

Figure 2.3

Minimum System Requirements for CCS for Windows

Microprocessor 486 and faster recommended

Operating System v. 5.1.1 -- Windows 3.1, 95, or NT

v. 6.0 or later -- Windows 95, 98, or NT 4.0

Disk Space Required v. 5.1.1 -- 4 MB; v. 6.0 or later -- 8 MB

Serial Port RS-232 or RS-422 communicating at 1,200; 9,600;

19,200; and 38,400 baud

Install CCS on Your PC

1. Close all Windows applications.

2. Insert the CCS disk or CD into your PC drive.

3. Windows 3.1—Click Program Manager/Run. Then type a:\Setup
Windows 95, 98, or NT—From Windows Explorer, view the contents of the CD and

click Setup.exe. Follow the on-screen prompts to install CCS.

Run CCS

Double-click on the CCS icon; or, from the Start menu, select Programs/CCS for Windows. CCS

will open the Terminal window.

Leaving CCS open, continue through the basic set-up process to wire and apply power to the

controller. If you are using an Operator Interface Panel (OIP), complete the OIP connection

described on the following page. If you are not using an OIP, please skip to page 2-7 for IMJ

set-up; page 2-13 for IMC set-up; or page 2-29 for Target set-up.

Terminal Window

The Terminal window in CCS allows you to communicate directly with your DspMotion controller

over its serial port. Here are a few tips for talking to your controller:

1. DspMotion controllers accept new commands and registers on a line-by-line basis.

After you load a register or enter a command, press the <Enter> key on your

computer keyboard.

GFK-2205 Chapter 2 Getting Started 2-5

2

2. The DspMotion controller will tell you if it accepts the command or register with one

of the following responses on the next line in the Terminal window:

accepted “*” followed by no response or by a requested answer means

that your last entry was okay and the controller is waiting for

the next entry.

not accepted “?” followed by a message, e.g., INVALID COMMAND,
indicates that the last entry was not accepted. Additional

messages are contained in Appendix D.

3. Registers are loaded using the assignment command =. For example, to load a

velocity value of 100 axis units per second into an IMC, you would enter MVL=100.

4. You can interrogate the DspMotion controller to find the contents of registers using

either the Q or ? command. For example, to learn the value of the velocity register,

type MVLQ <Enter> or MVL? <Enter>. These are equivalent statements. The

controller will return the contents of the velocity register on the next line, for

example: *100 .

5. You can ask the controller its status by interrogating the status and fault registers. To

learn more about these registers, turn to Chapter 5 of this manual. For now, you

can try this by typing SRSQ <Enter> to query the system status register.

Connect and Configure Operator Interface (OIP)—Optional

Set DIP Switches

Set the DIP switches on the bottom of the OIP to match the baud rate of the controller.

Figure 2.4: Baud Rate Settings

Baud Rate 1 2

1.200 U U

9.600 D U

19,200 U D

38,400 D D

U = up; D = down Figure 2.5: DIP Switches on OIP

IMC and IMJ Users

1. Hardwire the COM and VDC pins on the bottom of the OIP.

2. Connect the opposite end of the COM wire to the following pins on the front of the

controller:

IMC: 12 V/Analog Common (pin 21)

IMJ: 12VCom (pin 20).

2-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

3. Connect the opposite end of the VDC wire to the following pins on the front of the

controller:

IMC: +12 VDC (pin 20)

IMJ: +12 VDC (pin 19).

4. Connect OIP Cable (IMC: CBL-HSLK-6;

IMJ: CBL-OIJR-6)

a. IMC: Connect one end to the Host port on the front of the IMC.

IMJ: Connect one end to the Serial port (figure 2.6b) on the front of the

IMJ. Tighten the screws to fasten the connector.

b. Connect the other end to its port on the OIP. Tighten the screws to fasten the

connector.

Figure 2.6: Detail of COM and VDC

Wiring between OIP and Controller

Figure 2.7: Location of Serial Port

on IMJ

Figure 2.8: OIP Cable Connected

to OIP and Controller

Target Users

1. Hardwire the COM and VDC pins on the bottom of the OIP.

2. Open the door to the System Module and remove terminal connector J6.

3. Connect the opposite end of the COM wire to J6 pin 12.

4. Connect the opposite end of the VDC wire to J6 pin 11.

5. Connect OIP Cable (CBL-HSLK-6)

a. Connect one end to System Program Port J3 (the top receptacle) in the

System Module. Tighten the screws to fasten the connector.

b. Connect the other end to its port on the OIP. Tighten the screws to fasten the

connector.

Figure 2.9: Detail of COM Wiring to Terminal

Connector J6
Figure 2.10: System Program Port J3

GFK-2205 Chapter 2 Getting Started 2-7

2

DspMotion Controller Type?

Information on basic IMJ set-up begins with Step 1: Jumper Dedicated I/O Lines. For the IMC

set-up procedure, refer to page 2-13. Target users please refer to page 2-29.

Note to IMJ Users

The IMJ configurations in this section illustrate how to set up IMJ controllers with internal power

electronics and with servo and stepping motors.

The concepts described by the steps outlined in this chapter can be applied to larger and more

complex systems, but the steps themselves are not sufficient to configure a complete system. To

configure a complete system, consult the IMCjr Hardware Manual, pub 330; then follow the

initialization procedure outlined in Chapter 5 of this manual. The remainder of this chapter will

guide you through a basic set-up and allow you to run your motor.

Configure IMJ

Step 1: Jumper Dedicated I/O Lines

The IMJ controller has several inputs that must be connected before the controller will run the
motor. Use the guidelines provided below to wire your controller in either a sinking or sourcing
configuration. These I/O configurations will allow you to use your controller in a most basic
manner. See the IMCjr Hardware Manual, pub 330 for information on setting up the user I/O for
your specific application.

For Sinking (i.e., Low-True) Connections

IMJ-_ _ _E and IMJ-_ _ _D: Jumper connections 15 & 18; 18 & 20; and 17 & 19 (on TB2 for

IMJ-_ _ _E and IMJ-_ _ _D; on TB3 for IMJ-31_D).

For Sourcing (i.e., High-True) Connections

IMJ-_ _ _E, IMJ-_ _ _D, and IMJ-31_D: Jumper connections 15 & 18; 18 & 19; and 17 & 20 (on

TB2 for IMJ-_ _ _E and IMJ-_ _ _D; on TB3 for IMJ-31_D).

Figure 2.11: Location of TB2 and TB3 connectors on the IMCjr

Note: If outputs are low true, or sinking, then inputs must also be low true. If
outputs are high true, or sourcing, then inputs must also be high true.

2-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Step 2: Connect Motor Power Cable (CBL-13-MP-10, CBL-14-MP-10)

1. For IMJ-313_-X-D and IMJ-31_D Servo Motor Controllers: Connect the flying leads

labeled R, S, T, and ground to the appropriately labeled slots on the bottom of the IMJ.

2. For IMJ-105_-1-D Stepping Motor Controllers: Connect the flying leads labeled Ground,

B+, A/B-, and A+ to the appropriately labeled slots on the bottom of the IMJ.

3. Connect the MS connector to its mate on the motor. Push the connector into place. Twist the

locking mechanism into place.

Figure 2.12: Location of Motor Power and AC Power Connections on the IMJ

Step 3: Connect Position Feedback Cable (Servo only)

1. Connect the D-shell connector to its mate, labeled position feedback on the front of

the IMJ. Tighten the screws to fasten the connector.

2. Connect the MS connector to its mate on the motor. Push the connector into place.

Twist the locking mechanism to secure.

Step 4: Connect and Apply AC Power

Single-Phase AC Input

IMJ-105_-1-D and IMJ-313: Connect power wires to the L1, L2, and ground connections on the

bottom of the controller (see figure 2.12).

IMJ-317: Connect power wires to the 1L1, 1L2, and ground connections on the bottom of the

controller (see figure 2.12). To supply power to the logic circuit, jumper the 1L2 to the 2L2

connection; then jumper the 1L1 to the 2L1 connection.

CAUTION! DO NOT jumper the 1L3 connection.

GFK-2205 Chapter 2 Getting Started 2-9

2

Three-Phase AC Input

IMJ-313: Connect power wires to the L1, L2, L3, and ground connections on the bottom of the

controller (see figure 2.12).

IMJ-317, IMJ-31GD, and IMJ-31TD: Connect power wires to the 1L1, 1L2, 1L3, and ground

connections on the bottom of the controller (see figure 2.12). To supply power to the logic circuit,

jumper the 1L2 to the 2L2 connection; then jumper the 1L1 to the 2L1 connection.

Apply Power to the IMCjr

Apply the proper AC voltage to the controller (see the table in figure 2.13 below):

Figure 2.13: AC Input Power Requirements

Model Rating VAC Input Frequency

IMJ-105_-1-D 5 Amps Continuous 90-130 VAC, single-phase @
10.0 Amps

50 – 440 Hz

IMJ-313_-X-D 3 Amps Continuous 90-250 VAC single-phase @
7 Amps or three-phase @
4 Amps

50 – 440 Hz

IMJ-317_-X-D 7.2 Amps Continuous 90-250 VAC single-phase @
17 Amps or three-phase @
9 Amps

50 – 440 Hz

IMJ-31GD-2-D 16 Amps Continuous 180-250 VAC three-phase @
19 Amps

50 – 440 Hz

IMJ-31TD-2-D 28 Amps Continuous 180-250 VAC three-phase @
34 Amps

50 – 440 Hz

If You Have a Motor with a Brake ...

Apply the proper DC voltage to the brake to release it. See figure 2.14:

Figure 2.14

DC Voltage to Release Brake

Brake TypeMotor Type

B 9

3N20, 3N30,
3S20, 3S30,
3S40

24 VDC 100 VDC

3S60, 3S80 24 VDC 90 VDC

2-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Step 5: Establish Communication using CCS for Windows

Connect Serial Communication Cable (CBL-H1IC-10)

CCS allow users to communicate serially to their DspMotion controllers. Getting connected is

easy!

1. Connect the end labeled “IMC or OIP” to the Serial port on the front of the IMJ.

Tighten the screws to fasten the connector.

2. Connect the end labeled “RS232 Port” into the RS-232 serial communication port on

your computer. Tighten the screws to fasten the connector.

Establish Communication

1. From the CCS Terminal window, click Options/Communication Setup.

2. Check Serial communication.

3. Select a COM Port for the IMJ.

4. Select 9600 as the Baud Rate and click OK.

5. Click Options/Controller Settings.

6. Select Serial as the Communication Type.

7. Select IMJ as the Controller Type and click OK.

Press the <Enter> key several times until the IMJ signs on.

Note: Turn to page 2-4 for tips on working in the CCS Terminal window.

Step 6: Configure the System

This setup procedure presumes that the IMJ retains its factory default configuration. If your IMJ

has been previously configured, you must clear the memory by typing KLALL <Enter>, then CLM

<Enter> in the CCS Terminal window.

Configure the Drive

1. Set the continuous current output in the CURC register. See motor and drive product

labels for continuous current ratings. Use the following equation to calculate CURC:

CURC = motor continuous current rating/drive continuous current rating, e.g.,

100% x 2.8 Amps/3.0 Amps = 93%

Type CURC=93 <Enter> in the Terminal window.

GFK-2205 Chapter 2 Getting Started 2-11

2

Use the tables in figures 2.15 and 2.16 to determine the correct CURC value for your

servo or stepper system.

2. Servo motor users: set the motor inductance in the KL register. Use the table in

figure 2.15 to determine the correct KL value for your system.

3. Stepping motor users: set the power save current output in the CURS register, e.g.,

Type CURS=50 <Enter> in the Terminal window.

This sets the power save current (current produced when the motor is at rest) to 50%

of the continuous current rating of the drive.

4. Stepping motor users: set the motor number register, KM, to the KM number on your

stepping motor label; or use the values provided in figure 2.16.

Configure Servo Motor

The servo motor must not be connected to a load. Type MOTORSET <Enter> in the Terminal

window.

Tune Servo Motor

The servo motor must be connected to the load. Type AUTOTUNE <Enter> in the CCS Terminal

window.

Figure 2.15: Servo Motor CURC and KL Values

Servo

Motor

CURC

3 Amps

CURC

7.2 Amps

CURC

16 Amps

CURC

28 Amps

Servo

KL

3N21-H 100 42 n/a n/a 4

3N22-H 100 42 n/a n/a 6

3N24-G 87 36 n/a n/a 9

3N31-H 100 46 21 n/a 10

3N32-G 100 42 n/a n/a 18

3N32-H 100 86 39 22 4

3N33-G 93 39 n/a n/a 25

3N33-H 100 79 36 20 6

3S22-G 50 21 n/a n/a 21

3S32-G 100 42 n/a n/a 23

3S33-G 100 44 20 n/a 22

3S33-H 100 88 40 23 6

3S34-G 100 42 n/a n/a 30

3S35-G 100 42 n/a n/a 42

3S43-G 97 40 n/a n/a 53

3S43-H 100 79 36 20 13

3S45-G 100 76 34 20 20

3S45-H 100 100 69 39 5

3S46-G 100 76 34 20 25

2-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Servo

Motor

CURC

3 Amps

CURC

7.2 Amps

CURC

16 Amps

CURC

28 Amps

Servo

KL

3S46-H 100 100 69 40 6

3S63-G 100 100 69 40 9

3S63-H 100 100 100 79 2

3S65-G 100 100 68 39 14

3S65-H 100 100 100 77 3

3S67-G 100 100 71 40 18

3S67-H 100 100 100 81 5

3S84-G 100 100 100 100 3

3S86-G 100 100 100 100 4

3S88-G 100 100 100 100 4

3S8A-G 100 100 100 88 7

Figure 2.16: Stepping Motor CURC and KM Values

Stepping

Motor

Stepper

CURC

Stepper

KM

1221-_-A-E-_ 70 TBD

1231-_-A-E-_ 62 TBD

1324-_-D-E-_ 54 6

1337-_-D-E-_ 82 3

1350-_-A-E-_ 100 1

1350-_-D-E-_ 80 4

See your stepper motor label for KM for motors not on this list.

Step 7: Verify that Set-up is Correct

Verify Feedback Connection (Servo Only)

1. Query the position register PSA to learn the motor position. Type PSAQ <Enter> or

PSA? <Enter> at the Terminal window.

2. Manually turn the motor shaft to a new position. Query the position register once

again. A new value should be displayed; if not, check your cable connections.

Enable the Drive

1. Type RSF <Enter> to clear the Fault condition. The digital LED on the front of the

controller should now read OK to indicate that the drive is enabled and that the CPU

and operating system are functional.

Note: To set the controller to the faulted state, type STF <Enter>—this will

change the digital LED to SF (software fault) status.

2. The motor will now have holding torque. Try to turn the motor shaft manually—it

should resist your efforts to turn it. The Fwd/Rev LED on the front of the controller

will turn green for a clockwise turn or yellow for a counterclockwise turn.

GFK-2205 Chapter 2 Getting Started 2-13

2

Know How to Stop or Halt the Motor

To Stop the Motor: Type ST <Enter> in the Terminal window—the motor will decelerate to a

stop.

To Halt the Motor: Type HT <Enter> in the Terminal window—the motor will immediately

hard-stop all motion.

Run the Motor

Type MVL=50000 <Enter> to change the default velocity value.

Type MAC=50000 <Enter> to change the default acceleration value.

Type RVF <Enter> to run the motor forward.

Type RVR <Enter> to run the motor in reverse.

Type ST <Enter> to stop either motion.

If your motor runs forward and reverse, congratulations! You have successfully completed a basic

system set-up.

If your IMJ set-up is incorrect, return to step 1 to check your settings and connections.

Note to IMC Users

The IMC configurations in this section illustrate how to set up IMCs with internal and external

power electronics and with servo and stepping motors.

The concepts described by the steps outlined in this chapter can be applied to larger and more

complex systems, but the steps themselves are not sufficient to configure a complete system. To

configure a complete system, consult GFK-2201, the IMC Hardware Manual, for installation and

wiring information; then follow the initialization procedure outlined in Chapter 5 of this manual.

Configure IMC(s)

Step 1: Set DIP Switches for Serial Port Configuration

Unit Address. Ensure that IMC power is off. Use the DIP switches, located on the bottom of the

IMC, to set the IMC address. Switch positions 1 through 5 let you set addresses from 0 through 31.

The table shown in figure 2.17 indicates the DIP switch setting you must use for each address. The

letters A through V are used as the address characters for addresses 10 through 31.

Figure 2.17

2-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Baud Rate. Using switches 6 and 7, set the baud rate to 1,200; 9,600; 19,200; or 38,400. Switch

position 8 must be set to the right for serial port setting. Figure 2.18 maps DIP switch settings to

their appropriate baud rates.

Figure 2.18

Step 2: Jumper Dedicated I/O Lines

The IMC controller has several inputs that must be connected before the controller will run the

motor. The I/O configuration shown here will allow you to use your controller in a most basic

GFK-2205 Chapter 2 Getting Started 2-15

2

manner—see the IMC-D Hardware Manual (GFK-2201) for information on setting up the user I/O

for your specific application.

For Sinking (i.e., Low-True) Connections

Jumper connections 14, 15, 16 & 19

Jumper connections 19 & 21

Jumper connections 18 & 20

Figure 2.19: Sinking Connections

For Sourcing (i.e., High-True) Connections

Jumper connections 14, 15, 16 & 19

Jumper connections 19 & 20

Jumper connections 18 & 21

Figure 2.20: Sourcing Connections

Note: If outputs are low true, or sinking, then inputs must also be low true. If

outputs are high true, or sourcing, then inputs must also be high true.

Go to DspMotion Controller Model-Specific Instructions

The remaining getting started instructions are specific to the IMC model that you have purchased.

Please turn to the page that is appropriate for your model, and then complete step 3 through the

end:

IMC-1000 Series Page 2-16

IMC-2000 Series Page 2-20

IMC-3000 Series Page 2-24

2-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

IMC-1000 Series

Step 3: Connect Motor Power Cable (CBL-13-MP-10, CBL-14-MP-10)

1. Connect the flying leads labeled A+, A-, B+, B-, SH, and ground (G) into the

appropriately labeled slots on the bottom of the controller. Connect the SH (shield)

wire to the second (lower) ground pin labeled G.

2. Connect the MS connector to its mate on the motor. Push the connector into place.

Twist the “locking mechanism” into place.

Figure 2.21: Detail of Motor

Power Lead Wires to IMC

Figure 2.22: CBL-13-MP-10 Stepping

Motor Power Cable for Standard

Construction Motor

Figure 2.23: CBL-14-MP-10

Stepping Motor Power Cable for

Splashproof Construction Motor

Step 5: Connect and Apply AC Power

Connect Single-Phase AC Input

Connect power wires to the L, N, and ground (G) connections on the bottom of the controller.

Apply Power to the IMC

Apply the proper AC voltage to the controller. The IMC-1000 Series is rated for 90-130 VAC

single-phase input at 50-440 Hz.

GFK-2205 Chapter 2 Getting Started 2-17

2

Figure 2.24: Detail of Input Power Lead Wires to IMC

Step 6: Establish Communication

Connect Serial Communication Cable (CBL-H1IC-10)

CCS allow users to communicate serially to their DspMotion controllers. Getting connected is

easy!

1. Connect the end labeled “IMC or OIP” to the Host port on the front of the IMC.

Tighten the screws to fasten the connector.

Note: If you are using a OIP, connect the end labeled “IMC or OIP” to its mate

on the OIP.

2. Connect the end labeled “RS232 Port” into the RS-232 serial communication port on

your computer. Tighten the screws to fasten the connector.

Figure 2.25: CBL-H1IC-10 Serial Communication Cable

Establish Communication

1. Click Options/Communication Setup from CCS.

3. Check Serial communication.

4. Select a COM Port for your Motion controller.

5. Select the appropriate Baud Rate (must match DIP switch settings on IMC) and click

OK.

6. Click Options/Controller Settings.

7. Select Serial as the Communication Type.

8. Select IMC as the Controller Type.

9. Select the Controller Address (0 through V) that matches your IMC DIP switch

settings and click OK.

10. Press the <Enter> key several times until the IMC signs on.

2-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Step 7: Configure the System

This setup procedure presumes that the IMC retains its factory default configuration. If your IMC

has been previously configured, you must clear the memory by typing KLALL <Enter>, then CLM
<Enter> in the Terminal window.

Configure the Drive

1. Set the continuous current output in the CURC register. See motor and drive product

labels for continuous current ratings. Use the following equation to calculate CURC:

CURC = motor continuous current rating/drive continuous current rating, e.g.,

100% x 2.7 Amps/5.0 Amps = 54%

Type CURC=93 <Enter> in the Terminal window.

Use the table in figure 2.26 to determine the correct CURC value for your system.

Figure 2.26: Motor CURC Values IMC Stepper Unit

Motor CURC

1221-_-A-E-_ 70

1231-_-A-E-_ 62

1324-_-A-E-_ 100

1324-_-D-E-_ 54

1337-_-A-E-_ 100

1337-_-D-E-_ 82

1350-_-A-E-_ 100

1350-_-D-E-_ 80

1362-_-A-E-_ 100

1454-_-A-E-_ 100

1480-_-A-E-S 100

2. Set the power save current output in the CURS register, e.g.,

Type CURS=50 <Enter> in the Terminal window.

This sets the power save current (current produced when the motor is at rest) to 50%

of the continuous current rating of the drive.

Step 8: Verify that Set-up is Correct

Enable the Drive

1. Type RSF <Enter> to clear the Fault condition. The Status LED on the front of the

controller will change from red to green.

Note: To set the controller to the faulted state, type STF <Enter>—this will

change the Status LED to red.

2. The motor will now have holding torque. Try to turn the motor shaft manually—it

should resist your efforts to turn it.

GFK-2205 Chapter 2 Getting Started 2-19

2

Figure 2.27: Front Panel LEDs

Know How to Stop or Halt the Motor

To Stop the Motor: Type ST <Enter> in the Terminal window—the motor will decelerate to a

stop.

To Halt the Motor: Type HT <Enter> in the Terminal window—the motor will immediately

hard-stop all motion.

Run the Motor

Type MVL=50000 <Enter> to change the default velocity value.

Type MAC=50000 <Enter> to change the default acceleration value.

Type RVF <Enter> to run the motor forward.

Type RVR <Enter> to run the motor in reverse.

Type ST <Enter> to stop either motion.

If your motor runs forward and reverse, congratulations! You have successfully completed a basic

system set-up.

If your set-up is incorrect, return to step 1 to check your settings and connections.

2-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

IMC-2000 Series

Step 3: Connect Analog Output Cable (CBL-20-AT-10)

1. Connect the flying lead labeled ALG COM to pin 21 and the lead labeled ALG to pin

22 on the front of the IMC.

2. Connect the ends labeled +IN, –IN, and COM to their appropriate pins on your

external power electronics.

Figure 2.28: Detail of Analog Connection to IMC

Step 4: Connect Motor Power Cable

Use the connection procedure that is appropriate for your external power electronics.

Step 5: Connect Encoder Feedback Cable (CBL-20-ED-10)

1. Insert the D-Shell connector into the Position Feedback port on the front of the IMC. Tighten

the screws to fasten the connector.

2. Connect the leads labeled A+, A-, B+, B-, I+, I-, and ground (G) to your external power

electronics.

Figure 2.29: Encoder Feedback Connection to IMC

GFK-2205 Chapter 2 Getting Started 2-21

2

Step 6: Connect and Apply AC Power

Connect Single-Phase AC Input

Connect power wires to the L1, L2, and ground (G) connections on the bottom of the controller.

Apply Power to the IMC

Apply the proper AC voltage to the controller. The IMC-2000 Series is rated for 90-250 VAC
single-phase input at 50-440 Hz.

Figure 2.30: Detail of AC Power Connections to IMC

Step 7: Establish Communication

Connect Serial Communication Cable (CBL-H1IC-10)

1. Connect the end labeled “IMC or OIP” to the Host port on the front of the IMC.

Tighten the screws to fasten the connector.

Note: If you are using an OIP, connect the end labeled “IMC or OIP” to its

mate on the OIP.

2. Connect the end labeled “RS232 Port” into the RS-232 serial communication port on

your computer. Tighten the screws to fasten the connector.

Establish Communication

1. Click Options/Communication Setup from CCS.

3. Check Serial communication.

4. Select a COM Port for your Motion controller.

5. Select the appropriate Baud Rate (must match DIP switch settings on IMC) and click

OK.

6. Click Options/Controller Settings.

7. Select Serial as the Communication Type.

8. Select IMC as the Controller Type.

2-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

9. Select the Controller Address (0 through V) that matches your IMC DIP switch

settings and click OK.

10. Press the <Enter> key several times until the IMC signs on.

Note: Turn to page 1-4 for tips on working in the CCS Terminal window.

Step 8: Configure the System

This setup procedure presumes that the IMC retains its factory default configuration. If your IMC

has been previously configured, you must clear the memory by typing KLALL <Enter>, then CLM
<Enter> in the Terminal window.

Tune the Motor Using Autotune

Type FR=n <Enter> (n is the appropriate value for your system. See Appendix A for the FR

register description.)

Type AUTOTUNE <Enter>

AUTOTUNE will execute correctly only if the IMC-2000 is connected to a drive whose output

current is proportional to the IMC output voltage (+/-10 V) and the drive produces full continuous

current when the IMC output voltage is 5.0 volts. Drives that operate as described above are often

referred to as torque mode drives.

Tune the Motor Manually

If your drive doesn’t meet the above requirements for AUTOTUNING, consult factory for a

manual tuning procedure.

Step 9: Verify that Set-up is Correct

Verify Feedback Connection

1. Query the position register PSA to learn the motor position. Type PSAQ <Enter> or

PSA? <Enter> at the Terminal window.

2. Manually turn the motor shaft to a new position. Query the position register again. A

new value should be displayed; if not, check your cable connections.

Enable the Drive

1. Type RSF <Enter> to clear the Fault condition. The Status LED on the front of the

controller will change from red to green.

Note: To set the controller to the faulted state, type STF <Enter>—this will

change the Status LED to red.

GFK-2205 Chapter 2 Getting Started 2-23

2

2. The motor will now have holding torque. Try to turn the motor shaft manually—it

should resist your efforts to turn it.

Figure 2.31: Front Panel LEDs

Know How to Stop or Halt the Motor

To Stop the Motor: Type ST <Enter> in the Terminal window—the motor will decelerate to a

stop.

To Halt the Motor: Type HT <Enter> in the Terminal window—the motor will immediately

hard-stop all motion.

Run the Motor

Type MVL=10000 <Enter> to change the default velocity value.

Type MAC=10000 <Enter> to change the default acceleration value.

Type RVF <Enter> to run the motor forward.

Type RVR <Enter> to run the motor in reverse.

Type ST <Enter> to stop either motion.

If your motor runs forward and reverse, congratulations! You have successfully completed a basic

system set-up.

If your set-up is incorrect, return to step 1 to check your settings and connections.

2-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

IMC-3000 Series

Step 3: Connect Motor Power Cable (CBL-34-MP-10, CBL-3C-MP-10, CBL-3P-MP-10,
CBL-38-MP-10)

1. Connect the flying leads labeled R, S, T, and ground into the screw terminal located at

the bottom of the controller. Match the label from each lead to the appropriately

labeled terminal slot.

2. Connect the MS connector to its mate on the motor. Push the connector into place.

Twist the locking mechanism into place.

Figure 2.32: CBL-34-MP-10 Motor Power Cable

Step 4: Connect Feedback Cable (CBL-3C-RD-10, CBL-34-ED-10)

The IMC-3100 uses a resolver feedback cable (CBL-3C-RD-10). The IMC-3000 uses an encoder

feedback cable (CBL-34-ED-10).

1. Connect the D-shell connector to its mate, labeled “position feedback,” on the front,

lower-left side of the controller. Tighten screws to fasten connector.

2. Connect the MS connector to its mate on the motor. Push the connector into place. Twist

the locking mechanism into place.

Figure 2.33: CBL-3C-RD-10 Resolver Feedback Cable

GFK-2205 Chapter 2 Getting Started 2-25

2

Step 5: Connect and Apply AC Power

Single-Phase AC Input

1. Connect power wires to the 1L1, 1L2, and ground connections on the bottom of the controller.

2. To supply power to the logic circuit, jumper the 1L2 connection to the 2L2, and jumper the

1L1 connection to the 2L1.

CAUTION! DO NOT jumper the 1L3 connection.

Figure 2.34: Detail of Single-Phase AC Input

Three-Phase AC Input

1. Connect power wires to the 1L1, 1L2, 1L3, and ground connections on the bottom of the

controller.

2. To supply power to the logic circuit, jumper the 1L2 connection to the 2L2. Then jumper the

1L1 connection to the 2L1.

Figure 2.35: Detail of Three-Phase AC Input

2-26 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Apply Power to the IMC

Apply the proper AC voltage to the controller. The IMC-3000 Series is rated as follows:

3 and 6 Amp Units: 90-250 VAC single- or three-phase input at 50-440 Hz.

12 and 24 Amp Units: 180-250 VAC three-phase input at 50-440 Hz.

If You Have a Motor with a Brake…

Apply the proper DC voltage to the brake to release it. See figure 2.36:

Figure 2.36

DC Voltage to Release Brake

Brake Type

Motor Type
B 9

3N20, 3N30, 3S20,
3S30, 3S40

24 VDC 100 VDC

3S60, 3S80 24 VDC 90 VDC

Step 6: Establish Communication

Connect Serial Communication Cable (CBL-H1IC-10)

1. Connect the end labeled “IMC or OIP” to the Host port on the front of the IMC.

Tighten the screws to fasten the connector.

Note: If you are using an OIP, connect the end labeled “IMC or OIP” to its

mate on the OIP.

2. Connect the end labeled “RS232 Port” into the RS-232 serial communication port on

your computer. Tighten the screws to fasten the connector.

Establish Communication

1. Click Options/Communication Setup from CCS.

3. Check Serial communication.

4. Select a COM Port for your Motion controller.

5. Select the appropriate Baud Rate (must match DIP switch settings on IMC) and click

OK.

6. Click Options/Controller Settings.

7. Select Serial as the Communication Type.

8. Select IMC as the Controller Type.

GFK-2205 Chapter 2 Getting Started 2-27

2

9. Select the Controller Address (0 through V) that matches your IMC DIP switch

settings and click OK.

10. Press the <Enter> key several times until the IMC signs on.

Note: Go to page 1-4 for tips on working in the CCS Terminal window.

Step 7: Configure the System

This setup procedure presumes that the IMC retains its factory default configuration. If your IMC

has been previously configured, you must clear the memory by typing KLALL <Enter>, then CLM
<Enter> in the Terminal window.

Configure the Drive

1. Set the continuous current output in the CURC register. Use the following equation to

calculate CURC:

CURC = motor continuous current rating/drive continuous current rating, e.g.,

100% x 5.6 Amps/6.0 Amps = 93%

Type CURC=93 <Enter> in the Terminal window.

Use the table in figure 2.37 to determine the correct CURC value for your system.

Figure 2.37: Motor CURC Values

Motor
CURC-3

Amp Drive

CURC-6

Amp Drive

CURC-12

Amp Drive

CURC-24

Amp Drive

3S22-G 46 23 n/a n/a

3S32-G 96 48 24 n/a

3S33-G 100 53 26 n/a

3S33-H 100 100 53 26

3S34-G 100 50 25 n/a

3S35-G 96 48 24 n/a

3S43-G 96 48 24 n/a

3S43-H 100 93 46 23

3S45-G 100 91 45 22

3S45-H 100 100 91 45

3S46-G 100 91 45 22

3S46-H 100 100 91 45

3S63-G 100 100 91 45

3S65-G 100 100 89 44

3S67-G 100 100 94 47

3S88-G 100 100 100 100

3S8A-G 100 100 100 100

2. Set the peak current output in the CURP register, e.g.,

Type CURP=100 <Enter> in the Terminal window.

This sets the peak current output of the controller to 100% of maximum. The

maximum peak current is two times the drive’s continuous rating.

2-28 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Configure the Motor

The motor must not be connected to a load. Type MOTORSET <Enter> in the Terminal window.

Tune the Motor

The motor must be connected to the load. Type AUTOTUNE <Enter> in the CCS Terminal

window.

Step 8: Verify that Set-up is Correct

Verify Feedback Connection

1. Query the position register PSA to learn the motor position. Type PSAQ <Enter> or

PSA? <Enter> at the Terminal window.

2. Manually turn the motor shaft to a new position. Query the position register once

again. A new value should be displayed; if not, check your cable connections.

Enable the Drive

1. Type RSF <Enter> to clear the Fault condition. The Status LED on the front of the

controller will change from red to green.

Note: To set the controller to the faulted state, type STF <Enter>—this will

change the Status LED to red.

2. The motor will now have holding torque. Try to turn the motor shaft manually—it

should resist your efforts to turn it.

Figure 2.38: Front Panel LEDs

Know How to Stop or Halt the Motor

To Stop the Motor: Type ST <Enter> in the Terminal window—the motor will decelerate to a

stop.

To Halt the Motor: Type HT <Enter> in the Terminal window—the motor will immediately

hard-stop all motion.

GFK-2205 Chapter 2 Getting Started 2-29

2

Run the Motor

Figure 2.39: To Run Your Motor with an IMC-3000 or IMC-3100

IMC-3000 Series IMC-3100 Series Action

Type MVL=50000 <Enter> Type MVL=10000 <Enter> Changes the default velocity value

Type MAC=50000 <Enter> Type MAC=10000 <Enter> Changes the default acceleration/deceleration value

Then complete the following steps:

Type RVF <Enter> to run the motor forward.

Type RVR <Enter> to run the motor in reverse.

Type ST <Enter> to stop either motion.

If your motor runs forward and reverse, congratulations! You have successfully completed a basic

system set-up.

If your set-up is incorrect, return to step 1 and check your settings and connections.

Note to Target Users

The Target Automation Rack System (ARS) configuration in this section describes a single axis in

a single rack. Power modules, if used, are not paralleled.

A single Target system, when fully configured, can comprise up to eight axes and as many as three

racks. The concepts described by the steps outlined in this chapter for the single-axis case can be

applied to larger and more complex systems, but the steps themselves are not sufficient to

configure a complete system. To configure a complete system, consult the Target ARS Hardware

Manual, GFK-2200 for installation and wiring information; then follow the initialization procedure

outlined in Chapter 5 of this manual.

Target

Step 1: Install Modules in Rack

A Target rack can hold up to nine Target modules. The System Module should be placed in the
right-most slot of the rack. For easy I/O jumpering, install the Axis Module next to the System
Module. The Power Module must be placed in the left-most slot. Then install the Servo Module
next to the Power Module. To install any Target module:

1. Align the bottom edges of the module with the slot.

2. Gently push the module into the rack (do not force the module in—it should slide

easily if the edges are properly aligned).

3. Click the module into place.

2-30 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Figure 2.40: Target Rack with Required Modules Installed

Step 2: Insert PCMCIA Card

The PCMCIA card belongs in the upper slot on the front of the System Module. To insert the card:

1. Open the cover on the front of the System Module.

2. Align pins on the PCMCIA card with their receptacles in the slot.

3. Push the card completely into the slot.

Figure 2.41: Installing the Flash Memory PCMCIA Card

GFK-2205 Chapter 2 Getting Started 2-31

2

Step 3: Jumper Dedicated I/O Lines

Axis Module

Jumper connections 6, 7, 8, 12, 13, 14, and 17

Connect Axis Module pin 17 to System Module pin 11

Connect Axis Module pin 4 to System Module pin 12

System Module

Jumper connections 1 and 12

Jumper connections 4, 6, and 11

Step 5: If Your Power Electronics are Internal…(if not, go to step 6)

Connect Motor Power Cable (CBL-34-MP-10, CBL-3C-MP-10,
CBL-3P-MP-10, CBL-38-MP-10)

1. Connect the flying leads labeled R, S, T, and ground to the appropriately labeled

Servo Module slots.

2. Connect the MS connector to its mate on the motor. Push the connector into place.

Twist the locking mechanism into place.

Figure 2.42: CBL-34-MP-10 Motor Power Cable

to Target ARS

Figure 2.43: Detail of Motor Power

Cable Connections

Connect Resolver Feedback Cable (CBL-3C-RD-10)

1. Connect the D-shell connector to its mate, the upper-most receptacle, on the Axis

Module. The Axis 1 Feedback Location is labeled on the module door. Tighten

screws to fasten the connector.

2. Connect the MS connector to its mate on the motor. Push the connector into place.

Twist the locking mechanism into place.

2-32 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Figure 2.44: CBL-34-RD-10 Resolver Feedback Cable to Target ARS

Step 6: If Your Power Electronics are External…(if not, go to step 7)

Connect Analog Output Cable (CBL-20-AT-10)

1. Axis Module terminal strip: connect the flying lead labeled ALG COM to connector

pin 3 and ALG to connector pin 1.

2. Connect the ends labeled +IN, -IN, and COM to their appropriate pins on your

external power electronics.

Figure 2.45: CBL-20-AT-10 Analog Output Cable to Target ARS

Connect Encoder Feedback (CBL-20-ED-10)

1. Axis Module terminal strip: connect flying leads labeled A+, A-, B+, B-, and ground

to the auxiliary encoder connections as labeled on the door of the Axis Module.

Tighten screws to fasten the connector.

2. Connect the opposite ends to their appropriate pins on your external power

electronics.

GFK-2205 Chapter 2 Getting Started 2-33

2

Figure 2.46: CBL-20-ED-10 Encoder Feedback Cable to Target ARS

Step 7: Connect and Apply AC Power

Connect Three-Phase AC Input

Internal power electronics:

1. Connect the power wires labeled L1-M, L2-M, L3-M, and ground to the

corresponding labeled pins on the right side of the Power Module in the left-most slot

of the Target rack.

2. Jumper L1-M to L1-R, and jumper L2-M to L2-R.

External power electronics:

Connect the power wires labeled L1-R, L2-R, and ground to the corresponding labeled

pins on the right side of the Power Module in the left-most slot of the Target rack.

Figure 2.47: Detail AC Power Input to Target ARS

Apply Power to the Target

Apply the proper AC voltage to the controller. The Target ARS is rated as follows:

Rack input: 180-250 VAC single-phase logic power input at 50-440 Hz.

Drive input: 180-250 VAC single- or three-phase motor power input at 50-440 Hz.

2-34 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

If You Have a Motor with a Brake…

Apply the proper DC voltage to the brake to release it.

Figure 2.48

DC Voltage to Release Brake

Brake TypeMotor

Type B 9

3N20, 3N30,
3S20, 3S30,

3S40

24 VDC 100 VDC

3S60, 3S80 24 VDC 90 VDC

Step 8: Establish Communication

Connect Serial Communication Cable (CBL-H1IC-10)

1. Connect the end labeled “IMC or OIP” to the Host port on the Target’s System

Module. The host port is the top-most communication port in the System Module—

labeled System Program Port. Tighten the screws to fasten the connector.

Note: If you are using an OIP, connect the end labeled “IMC or OIP” to its

mate on the OIP.

2. Connect the end labeled “RS232 Port” into the RS-232 serial communication port on

your computer. Tighten the screws to fasten the connector.

Figure 2.49: CBL-H1IC-10 Serial Communication Cable

Establish Communication

1. Click Options/Communication Setup from CCS.

3. Check Serial communication.

4. Select a COM Port for the Target and click OK.

5. Click Options/Controller Settings.

6. Select Serial as the Communication Type.

7. Select Target as the Controller Type and click OK.

GFK-2205 Chapter 2 Getting Started 2-35

2

The Target is now ready to receive communication from your PC. Press the <Enter> key until the

controller signs on.

Step 9: Configure System for Appropriate Electronics

This setup procedure presumes that the Target retains its factory default configuration. If your

Target has been previously configured, you must clear the memory by typing KLALL <Enter>,

then CLM <Enter> in the Terminal window.

Configure the Drive

1. Assign Axis and Servo Module parameters

Internal power electronics:

a. Type AXIS1=SERVO <Enter>.

b. Type SM1=11 <Enter> to assign Servo Module for axis 1 to rack one, slot 1.

c. The Servo Module’s green “OK” LED will turn on.

External power electronics with encoder feedback:

a. Type AXIS1=EXTERNAL <Enter>.

b. Type QTX1=Q4 <Enter>.

c. Type FR1=n <Enter> where n is the appropriate value for your system.

See Appendix A for a description of the FR register.

d. Type PFE1=1 <Enter>.

External power electronics with resolver feedback:

Type AXIS1=EXTERNAL <Enter>

2. Set the continuous current output in the CURC register. Use the following equation to

calculate CURC:

CURC = motor continuous current rating/drive continuous current rating, i.e.,

100% x 5.6 Amps/6.0 Amps = 93%

Type CURC1=93 <Enter> in the Terminal window.

Use the table in figure 2.50 on the following page to determine the correct CURC

value for your system.

2-36 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

2

Figure 2.50: Motor CURC Values

Motor
1 Servo

Module

2 Servo

Modules

3 Servo

Modules

4 Servo

Modules

3S22-G 23 n/a n/a n/a

3S32-G 48 24 n/a n/a

3S33-G 53 26 n/a n/a

3S33-H 100 53 35 26

3S34-G 50 25 n/a n/a

3S35-G 48 24 n/a n/a

3S43-G 48 24 n/a n/a

3S43-H 93 46 31 23

3S45-G 91 45 30 22

3S45-H 100 91 61 45

3S46-G 91 45 30 22

3S46-H 100 91 61 45

3S63-G 100 91 61 45

3S65-G 100 89 59 44

3S67-G 100 94 63 47

3S88-G 100 100 100 100

3S8A-G 100 100 100 100

3. Set the peak current output in the CURP register, i.e.,

Type CURP1=50 <Enter> in the Terminal window.

This sets the peak current output of the controller to 50% of maximum. The

maximum peak current is two times the drive’s continuous rating.

Configure the Motor—Internal Drive Electronics Only

The motor must not be connected to a load. Type MOTORSET1 <Enter> in the Terminal window.

Tune the Motor

The motor must be connected to the load. Type AUTOTUNE1 <Enter> in the CCS Terminal

window.

Step 10: Verify that Set-up is Correct

Verify Feedback Connection

1. Query the position register PSA to learn the motor position. Type PSA1Q <Enter> or

PSA1? <Enter> at the Terminal window (where 1=axis number).

2. Manually turn the motor shaft to a new position—it should turn freely. Query the

position register once again. A new value should be displayed; if not, check your

cable connections.

GFK-2205 Chapter 2 Getting Started 2-37

2

Enable the Drive

1. Type RSFALL <Enter> to clear the Fault condition. The “OK” LED on the front of

the System & Axis Modules will turn green.

Note: To set the controller to the faulted state, type STFALL <Enter>—this will

turn off the “OK” LEDs.

2. The motor will now have holding torque. Try to turn the motor shaft manually—it

should resist your efforts to turn it.

Know How to Stop or Halt the Motor

To Stop the Motor: Type ST1 <Enter> in the Terminal window—the motor will decelerate to a

stop.

To Halt the Motor: Type HT1 <Enter> in the Terminal window—the motor will immediately

hard-stop all motion.

Run the Motor

Type MVL1=10000 <Enter> to change the default velocity value.

Type MAC1=10000 <Enter> to change the default acceleration/deceleration value.

Type RVF1 <Enter> to run the motor forward.

Type RVR1 <Enter> to run the motor in reverse.

Type ST1 <Enter> to stop either motion.

If your system runs forward and reverse, congratulations! You have successfully completed a basic

system set-up.

If your set-up is incorrect, return to step 1 and check your settings and connections.

GFK-2205 3-1

Creating Application Programs in CCS

In This Chapter

 Program development tools overview

 Use the CCS ASCII file editor to create an application program

 Rules of the basic application program structure

 Send an application program to your DspMotion controller

 Run an application program

 Fix an error that occurs during a file send

 Create end user application with the free pack and go utility DspComm.

Program Development Tools Overview

CCS is a Windows-based development tool exclusively for use with DspMotion controllers. CCS

for Windows provides several utilities to support your program development. Those utilities are

introduced below and are described in greater detail where indicated:

Terminal Window: Gives direct communication to DspMotion controller via its serial port. The

Terminal window in figure 3.1 shows communication established with a DspMotion controller. See

“Terminal Windows” in chapter 2 to learn how to communicate with your controller through the

Terminal window.

Figure 3.1: Terminal Window

ASCII File Editor: Lets user create ASCII .txt files containing user application programs.

Instructions for using the ASCII file editor begin on page 3-3.

Send Files (figure 3.2): Lets the user send ASCII files containing application programs to the

controller’s memory. Instructions for sending files begin on page 3-6.

3
Chapter

3-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

Figure 3.2: The CCS Tools Menu

ScreenView™: Gives the user an easy, graphical way to configure the display of the Operator

Interface (OIP-DSP1-C). See “Creating Custom Screens” in chapter 4 to learn how to create

standard and custom display screens.

Real-time Diagnostics: Query window lets the user monitor system parameters in real time. Turn

to Chapter 6 to learn how to query real-time values in CCS.

Open Capture File: Captures and saves any data in a Terminal window session. Use capture to

create a record of your online work. See Chapter 6 for instructions on creating a capture file in

CCS.

Receive Data: Allows user to receive all or portions of the controller’s memory contents. The user

can then modify and/or save the memory contents in a new ASCII file. See Chapter 7 for

instructions.

Online Help (figure 3.3): Gives quick access to the data provided in the appendices of this

manual, along with how-to tips. Use the search engine to find registers, commands, and

information by topic.

Figure 3.3: CCS Online Help

Motion Templates: Open CCS Help and cut and paste from the templates given for each motion

type to build your own application program. Motion templates are also included in printed form in

Appendix G.

Utility Templates: Provides a guide for creating your own FIFO buffers, PID algorithm solutions,

OIP reporting, and jog and teach routines.

Excel™ Template: Lets the user create a customized function key legend insert for the OIP (figure

3.4). This template installs with CCS for Windows. Click Start/CCS for Windows/OIPLegend to

open Excel™ and create your legend.

Figure 3.4: Operator Interface Panel (OIP)

GFK-2205 Chapter 3 Creating Application Programs in CCS 3-3

3

Create End User Application: Bundles your application program file with the free executable for

end users called DspComm. DspComm allows end users to send and receive application programs

to and from controllers on systems where CCS is not installed.

Using The ASCII File Editor

DspMotion products allow you to create an application program as an ASCII file and send it to the

controller using CCS. CCS includes a resident ASCII file editor that you can use to create files

labeled with a .txt file extension. Whenever you open an existing text file or create a new text file,

CCS automatically enables the ASCII file editor.

Rules for Creating .txt Files in CCS

Place your system constants in the same file in which you maintain your application program.

When you send the .txt file to the controller, you will simultaneously initialize the controller with

the proper parameters.

Use the ASCII file comment delimiter, (*, to document your program in your .txt file. When you

send your application program to the controller’s memory, the controller will ignore and not store

any characters that follow the (* delimiter. Comments are optional, but highly recommended for

program documentation. Use the REM command to embed and store critical program flow

comments directly in programs or motion blocks.

The Target is a multiaxis

controller—note how axis numbers are

included as part of the syntax for most

registers and commands (e.g., PSA1,

RPA1).

Set system

constants

outside

programs.

Spaces and blank

lines are optional.

Code is case-

insensitive.

Place program notes, revision

dates, use, etc. in header.

(* is the

comment

delimiter.

Figure 3.5: Example Application Programs for the IMC/IMJ (left) and Target (right)

3-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

Create an Application Program

With CCS for Windows open, complete the following steps:

1. Click File/New to open the following screen:

Figure 3.6: Choosing a New File Type

2. Click Text Document

3. Click OK to open the CCS ASCII file editor window.

Figure 3.7 shows simple example application programs for the IMC/IMJ and the Target. Both

programs will execute a simple motion, i.e., set the axis position register to 0 and run a single axis

12 units in the forward direction.

Figure 3.7: ASCII File Editor Windows Displaying Example Application Programs for the IMC/IMJ (left)

and Target (right)

You may want to copy either of the application program example from figure 3.7—or create your

own simple example that you can send to the controller and run later in this chapter as those

sections are introduced. Click to place your cursor in the ASCII file editor window and use the

following procedure to create an application program .txt file.

1. Type any (* delimited header text that you want to save in your .txt file, e.g.,

(* Example programs 1 and 4 for the IMC
<Enter> <Enter>

GFK-2205 Chapter 3 Creating Application Programs in CCS 3-5

3

2. Type your system constants, e.g.,

URA=4096 <Tab> (* set axis unit ratio <Enter>

Note: For brevity’s sake, the application program examples in this manual

include only the minimum system constants required to make each example work.

The application program that you design will require several other system

constants. Turn to chapter 5 for the complete procedure for setting system

constants.

3. If you are using an IMC or IMJ, type PROGRAM4 as your first program line. If you are

using a Target, type PROGRAM 17 as your first program line. <Tab>

4. Type a (* delimited comment for your first program line, e.g.,

PROGRAM4 <Tab> (* start program 4 <Enter>

Note: Comments are optional but highly recommended for program

documentation.

5. Type your remaining program 4 or program 17 text, one command or register per line.

6. Type END <Enter> <Enter> to mark the end of your program 4 or 17.

7. Enter program 1 text, one command or register per line, e.g.,

PROGRAM1 <Tab> (* start program 1 <Enter>

8. Type END <Enter> to mark the end of your program 1.

9. Save your application program as a .txt file.

When you have completed your application program, continue to the next section to learn how to

send a .txt file to your DspMotion controller.

Note: Turn to Chapter 5 to learn more about

setting system constants

how programs, or tasks, interact

how to develop a complete application program.

3-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

Send An Application Program To Your DspMotion Controller

Before you send a program to the IMC, IMJ, or the Target, you must ensure that the controller is

faulted and that it is not executing any programs. Use the following procedure to send any

application program from your computer to the controller. Note that

(* delimited comments are not sent to the controller.

Click Options/Controller Settings
to set controller address. IMC,
address must match DIP switch
setting. Target address must be

set to Target.

Figure 3.8: CCS Terminal Window

1. From the Terminal window type STF (i.e., for the IMC/IMJ) or STFALL (i.e., for the

Target) <Enter>

2. Type KLALL <Enter>

Note: The order of execution of these commands is critical. If STF is executed

after KLALL, then the Fault program will re-execute and you will not be able to

send your program.

3. Type UPS=0 (UPS must be set to its default value of zero before the CLM command will

work).

4. Type CLM <Enter>

Note: CLM clears your axis initialization settings! You’ll have to reset them if

you have not included them with the .txt file that you’re about to send to the

controller.

5. Click Tools/Send Files

Figure 3.9: Selecting Tools/Send Files

GFK-2205 Chapter 3 Creating Application Programs in CCS 3-7

3

6. Select the file you wish to send

7. Click OK

8. Wait for the file to transmit.

Figure 3.10: Selecting a File to Send

If no error occurs, continue to the next section and run your program. If an error occurs during the

file send, turn to 3-9 for instructions on how to fix the problem.

Run An Application Program

You’ve enjoyed an error-free file send. Now it’s time to test your application program on the

DspMotion controller and make sure that it performs as expected.

Using the example application program from figure 3.7, we’ll run the application program from the

CCS Terminal window:

1. If you are connected to an IMC or IMJ, type EXP4 <Enter> to execute your application

program. If you are connected to a Target, Type EXP17 <Enter>.

Figure 3.11: IMC Example Application Program Executed from CCS Terminal Window

2. Evaluate the system results.

Let’s say that you want to change the absolute move position from 12 to 24. You can use the CCS
ASCII file editor to change your application program.

3-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

Change An Application Program Using The ASCII File Editor

The ASCII file editor makes it easy to view your entire application program with comments and

make changes to the text. In the following examples, we will change our absolute move position in

the IMC program 1.

1. Click File/Open

2. Select the name of the application program’s .txt file (this example uses the imcexp1.txt

example from figure 3.7)

Figure 3.12: Opening a .txt File

3. Click OK to open the ASCII file editor and display the application program.

4. Edit your text file—just click and type!

5. Save your changes.

6. Click File/Close to exit the ASCII file editor.

When you have made your change, you must send your updated .txt file to the controller before

you can run it to your new absolute move position. Repeat the file send procedure found on

page 3-6.

MPA

changed

from 12 to

24 units.

Figure 3.13: Editing a .txt File in the CCS ASCII File Editor

GFK-2205 Chapter 3 Creating Application Programs in CCS 3-9

3

Fix An Error That Occurs During a File Send

You have already learned how to send a .txt file to your controller and seen how a successful send

works. In the following example, the program author mistakenly set the axis position register to

letter O instead of numeric 0. (For further information on errors, see Appendix D, Command Fault

and Status Messages).

PSA set to

alphabetic o

instead of

zero.

Figure 3.14: Example IMC Applications Program with Syntax Error that Will Cause File Send to Fail

Let’s try to send the program to the controller:

1. Type STF (STFALL for the Target)

2. Type KLALL

3. Type UPS=0 (UPS must be set to its default value of zero before the CLM command will

work)

4. Type CLM (CLM will clear your axis initialization settings! You’ll have to reset them if

you have not included them in your .txt file.)

5. Click Tools/Send Files

6. Click on file name (in this example, IMCEXP1.TXT)

7. Click OK

The controller detects the error and does not accept the file. CCS takes you directly into the ASCII

file editor (see figure 3.15) and opens the original .txt application program file on the line

containing the first error (keep in mind that a program could have more than one bug).

3-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

Figure 3.15: When an Error Occurs During the Tools/Send Files Process

1. Correct the bug (just click and type)

2. Click File/Save

3. Click File/Close to exit the ASCII file editor and return to the Terminal window

Send the updated file to the controller:

1. Type STF (i.e., for IMC/IMJ) or STFALL (i.e., for Target)

2. Type KLALL

3. Type UPS=0 (UPS must be set to its default value of zero before the CLM command will

work)

4. Type CLM (CLM will clear your axis initialization settings! You’ll have to reset them if

you have not included them in your .txt file.)

5. Click Tools/Send Files

6. Click on your application program’s .txt file name (IMCEXP1.TXT in this example)

7. Click OK

The file send completes successfully!

GFK-2205 Chapter 3 Creating Application Programs in CCS 3-11

3

Create End User Application

CCS version 6.0 and later features a pack-and-go utility called DspComm, which allows you to

create application program executables that function on end user systems where CCS is not

installed. DspComm is an interface that allows end users to communicate with their DspMotion

controller (e.g., send application program files, receive the contents of the controller memory).

DspComm is freely distributable to users of Motion controllers and may be used on any PC running

Windows 95, 98, or NT.

To package and distribute your end user's application program with the free DspComm utility, The

Create End User Application selection under the Tools menu in CCS allows you to .

Use the following procedure to package and distribute your end user's application program with

DspComm:

1. From CCS, select Tools > Create End User Application Program

2. Locate and select the text file containing your application program on the Select

Controller File to Send screen

Figure 3.16: CCS Select Controller File to Send Screen

3. Click Open

4. Select Destination Path (you must open a directory that is different from the one that

contains the "Send" file you selected in step 2 above.)

5. Click Open

6. Click OK. The application program file and DspComm are now located in your selected

destination and are ready to be sent to your end user. The end user needs only to load the

files you send, double click on DspComm.exe to launch the application, and send / receive

files to and from the Motion controller.

Figure 3.17: CCS Confirms End User Application Program has been Successfully Packed with

DspComm

3-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

3

End User’s Memory Options in DspComm

When you distribute DspComm to your end users, you give them the ability to send and receive

application program files to and from their DspMotion controllers. DspComm requires only that the

user select a COM port, serial baud rate, controller type, and controller address from the pick lists

provided on the main DspComm screen. Once the correct settings have been selected, files can be

sent and received over the serial port.

Figure 3.18: End User Screen in DspComm

Note: DspComm requires a serial connection to a Motion controller. Those who have

both CCS and DspComm running on the same system are reminded to close CCS before

attempting to communicate with the controller via DspComm.

User memory safeguards are enabled by default in DspComm to protect application programs. For

maximum system flexibility, however, the Edit Memory Options button in DspComm will permit

the end user to disable those memory safeguards prior to a file send. The user memory options are:

Figure 3.19: End User Memory Options in DspComm

Clear Memory before Sending New Application: equivalent to issuing the CLM command,

which clears user memory.

Auto Retrieve Program from Memory at PowerUp: equivalent to issuing the AUTORET

command, which enables the controller to automatically retrieve user memory on

controller power-up

Save New Application to Memory after Send: equivalent to issuing the SAVE command,

which saves user memory.

When the user clicks DspComm’s Send File button, he or she is warned that any currently

executing programs will halt and controller memory will be cleared. The user also gets a reminder

to upload their controller memory to a text file prior to sending a new file to the controller. This file

upload stores the old program.

GFK-2205 4-1

Application Programming Resources

In This Chapter

DspMotion system resources let you manage application programs from the simple to the complex.

Figure 4.1: DspMotion System Resources

IMC IMJ Target

Motion blocks 100 100 400

Flow control

Labels per program 999 999 999

Nested GOSUBS per
program

32 32 32

Variables

Boolean variables 256 256 256

Floating point variables(a, b) 14,336 2,048
2,048 standard
131,072 optional(c)

Integer variables(a) 28,672 4,096
4,096 standard
262,144 optional(c)

String variables 144 144
144 standard
272 optional(c)

Timing devices

Countdown timers 8 8 16

Counters/pulse timers n/a n/a
4 per digital I/O module;
32 maximum

Real-time clock 1 n/a 1

(a) Integer and floating point variable memory space is shared; numbers are maximum for each but not for
both concurrently. Floating point variables require twice as much memory as integer variables. Thus, for
example, in the IMC case, if 2,048 floating point variables are used, 24,556 integer variables are possible.

(b) Floating point variables use a 32-bit mantissa and are precise to 9 decimal digits.

(c) Optional variables require 1 Megabyte optional variable memory.

This chapter will educate you about these resources in the Generation D RTOS, along with math

functions, set point outputs, and the OIP; so that when you start to develop your own application,

you can take full advantage of the computing power in the DspMotion products.

4
Chapter

4-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Program Maps

DspMotion controllers handle multiple multitasking programs:

Figure 4.2: Program Maps for the IMC/IMJ and the Target

Motion Blocks

Motion blocks allow you to define motions that can be called and used by any program or executed

in immediate mode from an external control device. You can create, send, receive, and edit motion

blocks in the same way that you do programs, except motion blocks begin with the MOTION

command instead of the PROGRAM command. The IMC and IMJ support up to 100 motion

blocks. The Target ARS supports up to 400 motion blocks.

Figure 4.3

Rules of Motion Block Execution

1. Motion blocks
complete executing one
line of code before
proceeding to the next
line of code.

2. You can concurrently
execute only one
motion block per axis
with the executing
program(s).

3. Once a motion block
is executed, it overrides
the currently executing
motion block or motion.

4. No labels
allowed!

GFK-2205 Chapter 4 Application Programming Resources 4-3

4

Example of a Motion Block for the IMC

Motion blocks allow the user to create complex motions such as blended moves without a series of

conditional and wait statements. For example, for a spindle infeed on a machine tool, you may

want to define a move like the one shown in the following diagram:

Figure 4.4: A Complex, Blended Move Defined by a Motion Block

Use the ASCII file editor to create a motion block that will execute this motion:

Once executed, this motion
block moves forward 10 units

at a velocity of 20 units/sec

Decelerate to 5 units/sec

Move 10 more units

DO7 turns off once the motor
stops at a position of 20

units.

While the motor is moving
at 5 units/sec, digital

output 7 (DO7) turns on

Stop and wait for 1/2 second,
and then move in reverse 20

units at 20 units/sec.

4-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Assigning Target Axes to Motion Blocks (MBA)

The Target ARS gives you eight axes to use in an application program. When you create motion

blocks for your Target application program, you must designate which axis each motion block will

use, e.g.,

Motion20 (* start motion block 20
MBA14 (* assign axes 1 and 4 to motion block 20

You could assign all motion blocks to a single axis—keep in mind that only one motion block per

axis can execute at one time.

Flow Control

Labels and Subroutines (LABEL, GOTO, GOSUB, IF…GOTO, IF…GOSUB)

A label is an integer number from 1 to 999 that immediately precedes a program statement and

serves as a reference point. Assign labels to delineate program sections or to identify starting points

for GOSUB and GOTO routines.

A subroutine is a section of a program containing an encapsulated routine that the GOSUB

command can access multiple times from any point within the program. A program may contain up

to 32 nested GOSUBS, (a nested GOSUB is simply a subroutine within a subroutine).

Use the commands GOTO, GOSUB, IF…GOTO, IF…GOSUB, RETURN, RSTSTK, and POP to

get to and from the subroutines in your programs.

Figure 4.6: Program 1 with GOSUBS

GFK-2205 Chapter 4 Application Programming Resources 4-5

4

Flow Control Commands

Figure 4.7: Flow Control Commands

4-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Math Functions

The Generation D RTOS supports full floating point math and operators for complex mathematical

and logical operations:

Figure 4.8: Operators in the Generation D RTOS

Multifunction, single-line math operations use standard infix notation to simplify program

readability and flow, e.g.,

Mathematical equation: VF1=SQR(VF2**2.+VF3**2.)

Calculation: result stored in floating point variable 1 equals the square root

of the sum of the squares of the floating point variables 2 and 3.

Data Typing

The Generation D RTOS enforces data typing in register and variable assignments and in all math

operations, including comparisons. Data typing rules are listed in the following table:

Figure 4.9

Data Type Load with

Floating point register

Floating point variable

real or integer number

Integer register integer number

Integer variable integer number, Boolean variable, or register

Data typing is enforced in all register-to-register, register-to-variable, variable-to-register, and

variable-to-variable assignments.

Note: Boolean variables are treated like integer variables in math operations.

GFK-2205 Chapter 4 Application Programming Resources 4-7

4

Variables

Types of Variables (VBn, VIn, VFn, VSn)

In some of the commands that you use, the parameter (e.g., p1, p2, etc.) that is part of the

command’s syntax can be a variable expression. You can also set most of the registers to a variable

expression.

Variables can also be used in mathematical operations. DspMotion controllers support the variable

types shown in figure 4.10.

Figure 4.10: Variable Types in the Generation D RTOS

Boolean Variables (VB)

Boolean variables (VBn) can have a value of 0 or 1 and are used mainly in conditional statements
such as IF...GOTO and WAIT. They can also be used to change the value of Boolean registers
(e.g., GRE, CIE, POE). Boolean variables are treated like integer variables in math expressions.

Floating Point Variables (VF, VFA, VFEA)

Floating point variables, VFn, can store any floating point value between 1.5 x 10-39 (absolute

value) to 1.7 x 1038 (absolute value) with up to nine digits precision. Use floating point variables in

expressions and to store parameters. Load floating point variables with either real or integer

numbers.

Integer Variables (VI)

Integer variables, VIn, can store any integer value between -2,147,483,648 and 2,147,483,647.

They are used mainly in expressions and to store parameters. Integer variables are as precise as

floating point variables and can represent fractional values with appropriate scaling factors. Load

integer variables with integers, Boolean variables, or registers.

4-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

String Variables (VS)

String variables, VSn, can be loaded with a message up to 127 characters long. String variables are

used in I/O commands (e.g., GET, IN, and OUT) and in I/O registers that store information for

display screens (e.g., SCRL and SCRD).

For example, you could use the OUT command to send a message stored in string variable 1 to the

serial port or user serial port:

KLALL (* kill any executing programs
VS1=“This is a test.$N”
OUT VS1 (* output This is a test to serial port

You could also store commands within string variables and then use the EXVS command to

execute them:

VS1= “MPA=10” (* set string variable 1
EXVS1 (* execute command stored in string var. 1

Variable Pointers

Integer variables can point to other variables, allowing you to construct many different kinds of

data structures including the following:

• Linear array

• Push down stack

• Circular buffer.

A pointer contains the number of the variable to which you want to point. If you want to have a

pointer access floating point variable 53, you can set any integer variable, such as integer variable

10, to 53. For example:

VI10 = 53 (* load pointer
VF100 = VFVI10 (* load VF100 with value of floating point

(* var. pointed to by VI10 [i.e., VF53]

is equivalent to: VF100 = VF53 .

You can also use pointers to shorten programs. For example, you can send to the display a long list

of characters whose ASCII values are stored in integer variables. Suppose you have ASCII codes

stored in integer variables 100 through 200. You could send them to a OIP or display device using

the PUT command one hundred times:

PUT CHR(VI100)
PUT CHR(VI101)
...
PUT CHR(VI200)

GFK-2205 Chapter 4 Application Programming Resources 4-9

4

Or you could make the process quicker and far less tedious with variable pointers:

VI1=100 (* load the pointer 100
1 PUT CHR(VIVI1) (* send ASCII characters stored in

(* VIVI1 to display
VI1=VI1+1 (* increment VI1 by 1
IF VI1<=200 GOTO 1 (* continue to increment by 1 if

(* VI1 <= 200

When VI1 is less than or equal to 200, the program loops, sending all ASCII codes stored in

variables 100 through 200 in the process. When VI1 is greater than 200, it fails the check and goes

to the next program line.

4-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Timing Devices

Countdown Timers (STM, TM)

The IMC and IMJ have 8 countdown timers; the Target ARS has 16 countdown timers. Use the

STMn = xx.xxx (i.e., xx.xxx is a time in seconds) command to set these timers. Once set, a timer

counts from the starting value down to zero. The timer automatically resets to the initial value and

continues counting each time it reaches zero.

The timer flag, TMn, is set each time the timer reaches zero and reset each time the flag is read.

You can use TMn in conjunction with the WAIT command for conditional program flow. For

example:

STM10 = 0.333 (* start timer 10 with a period of 333 ms
WAIT TM10 (* wait until timer 10 reaches zero

Counters/Pulse Timers (CTR, TMI, TMP)

In Target systems, digital inputs 1 through 4 on a Digital I/O Module can be used as counters

and/or pulse timers. Counters tally inputs to the system from the first four inputs of a Digital I/O

Module. Use the CTR register to reset a counter to zero or to query a counter’s value:

CTR1.3=0 (* set counter 3 of digital module 1 to zero

TMI and TMP are read-only registers. Query TMI for the time between two successive activations

of a digital input. Query TMP for the time during which a digital input remains active:

TMI5.3? (* report interval timer 3 of digital module
(* five

TMP5.4? (* report pulse timer 4 of digital module five

Note: Counters and pulse timers are not available on the IMC.

Real-time Clock (TIME, DAY, DATE, MONTH)

The IMC and the Target ARS each have a clock that you can set and query with the TIME register:

TIME=“20:40:15” (* set time to 8:40 p.m., 15 seconds
TIME? (* report time

Note: The IMJ does not feature a real-time clock.

GFK-2205 Chapter 4 Application Programming Resources 4-11

4

Set Point Outputs

Set point outputs are position-based outputs that turn on automatically for a specified position

range. Set point outputs are defined with a beginning and an end and thus are direction-sensitive.

Set point outputs provide high-speed response, turning on within 50 microseconds of reaching the

beginning position. The Target contains one dedicated set point output per axis. The IMC has six

set point outputs, A through F, that are assigned to the following digital outputs:

A = DO11 C = DO7 E = DO9

B = DO12 D = DO8 F = DO10

Note: Set point outputs are not available in the IMJ

OIP (Optional)

The Generation D RTOS includes built-in utilities to support an optional Operator Interface Panel

(OIP). Unlike third-party, human-machine interfaces, you do not have to program the OIP

separately. Instead, you can control the OIP from within your DspMotion application program. The

OIP is an ASCII I/O device and is ideal for replacing discrete operators, adding machine

diagnostics, and setting up your system.

The Liquid Crystal Display (LCD)

The OIP includes a 4-line by 40-character, back-lit LCD. Several options exist for creating and

using display screens in a DspMotion control system.

Creating Standard Screens

You can create up to 50 standard screens for use in programs in DspMotion controllers. Each line

in standard screens may have one data field anywhere in the line. Choose one of the following two

methods to create standard screens.

Method 1: Use ScreenView™ in CCS for Windows. CCS for Windows contains a utility called

ScreenView that allows you to configure the display in an easy-to-use, graphical format. To create

a new screen using ScreenView, follow these simple steps:

1. Click File/New/Screen

2. Click OK to create a new screen in ScreenView

3. Enter text directly on the screen graphic (see figure 4.12)

4-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Figure 4.11: Creating a New Screen

Click to position the cursor and type what you want to appear on the screen,

e.g., Axis Position:

Data fields 1 through 4 are mapped to their corresponding lines 1 through 4 on the display

Figure 4.12: Using ScreenView

4. Click Edit/Data Field 1 to enter a data field on line one of the screen. Then complete

steps a through e in figure 4.13.

a. Click to select a Data Type

b. Enter a Placement value to determine a horizontal location for the data field

c. Enter an Expression, or register to be displayed in the data field

d. Enter a Field width (for integer and floating point variables only) to specify the field

width in characters

e. Enter the number of Decimal Places (for floating point variables only).

Figure 4.13: Entering Data Field 1

GFK-2205 Chapter 4 Application Programming Resources 4-13

4

5. Click OK to see the new data field on the screen graphic (figure 4.14)

Figure 4.14: Using ScreenView

CCS lets you save any screen in an ASCII file with an .oip extension (e.g., Screen1.oip). You can

then send the .oip file to the DspMotion controller using the same Tools/File Send procedure that

you would use to send .txt files (see Chapter 3).

Method 2: Use the Generation D RTOS Screen Registers to Create Screens. You may elect to

create screens using the screen registers, SCRD, SCRL and SCRP, with the ASCII file editor

provided in CCS for Windows. These registers let you directly specify string data, strings, and

cursor position for a specific screen line within a screen file. These registers can be used in your

application program.

Using Standard Screens in Programs

In a program, you can use two screen control functions to output screens and update data fields as

shown in figure 4.15:

Figure 4.15: Screen Control Functions

OUTS Output all string data for a given screen to the OIP.

UPS Automatically update the data fields every 250 milliseconds for the screen assigned to

this register (e.g., UPS=1 automatically updates the data field in screen 1 every 250

milliseconds)

Creating Custom Screens

To create more elaborate display screens, such as those with multiple data fields per line, use the

character control commands provided in the Generation D RTOS. Using these commands, you can

control the output to the display on a character-by-character basis. These commands will be an

integral part of the programs contained in your DspMotion controller and stored as a part of the .txt

files that you create with the ASCII file editor. The character control commands are shown in

figure 4.16:

4-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Figure 4.16: Character Control Commands1

Using Custom Screens in Programs

Program loops must be written to update display strings and data fields created using the character

control commands. The CCS utility template, Solve PID Algorithm, contains an example of a

display loop update routine (see Appendix H).

The Keypad

The OIP includes a membrane keypad with 12 function keys as well as standard numeric keys.

Each key, when pressed, outputs a distinct string of ASCII characters2. Each key, when released,

outputs a different string of ASCII characters2. This allows these function keys to replace

momentary push buttons for applications like jogging the motor. The ASCII Character Map is

shown in figure 4.17.

GFK-2205 Chapter 4 Application Programming Resources 4-15

4

Figure 4.17: OIP ASCII Character Map of Key Outputs2

The DspMotion controller receives these ASCII characters as inputs over its serial port. Use these

inputs to cause actions and direct program flow.

Using Key Input in Programs

Using the key control commands in figure 4.18, write program loops to monitor the state of the

keys. Use the flow control commands (see figure 4.7) to direct program flow as a function of the

key input state:

Figure 4.18: Key Control Commands

4-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

4

Labeling the Function Keys

CCS for Windows installs with a Microsoft Excel™ template that makes it easy to create a

customized function key legend insert to place behind the keypad membrane on your OIP. To open

the template, click Start/CCS for Windows/OIP Legend.

Follow the instructions included in the Excel file to create and insert your function key label.

Figure 4.19: Opening the OIP Excel Template File

LEDs

The OIP has three green LEDs (i.e., LED 1, LED 2, and LED 3) located respectively on function

keys A, B, and C. These LEDs can be turned on and off under program control and are useful to

indicate functions such as Active Mode status.

Using LEDs in Programs

Use the LED register to set and reset LEDs at any time in a program—just set the desired LED to

the appropriate state, for example:

LED1=1 (LED1=on)
LED1=0 (LED1=off).

You can also use Boolean variables to change the state of the LEDs by setting the LED equal to

one of the Boolean variables, for example:

VB1=1 (* sets Boolean variable equal to 1/on
LED1=VB1 (* sets state of LED1 equal to state of

(* Boolean variable 1

Setting an LED equal to a Boolean variable allows the state of the LED to be monitored in a

program.

GFK-2205 5-1

Developing an Application Program

In This Chapter

� The structure of the Generation D Real-time Operating System (RTOS)

� What is multitasking?

� How to develop a complete application program, including the following steps:

1. Set system constants

2. Assess task interaction

3. Structure a fault handling program

4. Structure program 1 and additional tasks

5. Manage your completed application program.

Structure of the Generation D RTOS

The Generation D RTOS allows you to create a control system for complex motion applications

with real-time machine control and human-machine interface functions. The Generation D RTOS is

multitasking and has global resources (shown in figure 5.1) that are shared by all tasks.

5
Chapter

5-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.1: Structure of the Generation D RTOS

Multitasking

Multitasking provides a convenient and reliable technique for adding versatility and performance to

real-time control systems. The IMC supports up to 6 concurrent tasks, including up to 4 programs,

1 motion block, and 1 communication port. The Target ARS supports up to 26 concurrent tasks,

including up to 17 programs, 8 motion blocks, and 1 communication port. Your communication

port allows you to receive registers or commands while you are executing other tasks.

How Multitasking Works (EXP, KLP, EXM, KLALL)

The Generation D RTOS resources are shared among all executing tasks. The arrows in figure 5.2

illustrate how those tasks are executed on a round-robin basis—one line of code is executed from a

given task before the processor continues to the next task. Tasks run independently of each other

except as designed by the programmer. Each program has equal priority and the same access to

system resources.

GFK-2205 Chapter 5 Developing an Application Program 5-3

5

Figure 5.2: Multitasking in the Generation D RTOS

Multitasking Commands

Use EXPn and KLPn to start and stop individual programs; use EXMn to start a motion block.

The KLALL command will stop all programs. Figure 5.3 tells you more about the multitasking

commands:

5-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.3: Multitasking Commands

Now that you understand how multitasking works in the Generation D RTOS, you are ready to

create your own application program. This process begins with Step 1: Set System Constants on

the following page.

GFK-2205 Chapter 5 Developing an Application Program 5-5

5

Step 1: Set System Constants

You will need to configure several registers when first using your DspMotion controller. The

flowcharts that follow (figures 5.5 and 5.6) will take you through the necessary steps to set IMC

and Target system constants. Place all system constants in your .txt application program file. When

you send the file to the controller, you will simultaneously initialize the IMC or Target ARS with

the proper parameters. Registers shown with an underscore are restricted and cannot be set to new

values from within a program or motion block—they can, however, be included in your .txt

application program file.

If you are using an IMC, your procedure begins on page 5-6. If you are using a Target ARS, please

turn to page 5-11.

Once you have set system constants, proceed to step 2 of your application program development:

Assess Task Interaction on page 5-17.

5-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Setting IMC System Constants

Figure 5.4: Procedure for Setting IMC System Constants

GFK-2205 Chapter 5 Developing an Application Program 5-7

5

Figure 5.4: Procedure for Setting IMC System Constants (continued)

5-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.4: Procedure for Setting IMC System Constants (continued)

GFK-2205 Chapter 5 Developing an Application Program 5-9

5

Figure 5.4: Procedure for Setting IMC System Constants (continued)

5-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.4: Procedure for Setting IMC System Constants (continued)

GFK-2205 Chapter 5 Developing an Application Program 5-11

5

Setting Target System Constants

Figure 5.5: Procedure for Setting Target System Constants

5-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.5: Procedure for Setting Target System Constants (continued)

GFK-2205 Chapter 5 Developing an Application Program 5-13

5

Figure 5.5: Procedure for Setting Target System Constants (continued)

5-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.5: Procedure for Setting Target System Constants (continued)

GFK-2205 Chapter 5 Developing an Application Program 5-15

5

Figure 5.5: Procedure for Setting Target System Constants (continued)

5-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Figure 5.5: Procedure for Setting Target System Constants (continued)

GFK-2205 Chapter 5 Developing an Application Program 5-17

5

Step 2: Assess Task Interaction

After determining your system constants, assess how the tasks within your application program

should interact with each other and with your DspMotion firmware. All Generation D RTOS

application programs are inherently multitasking and must comprise a minimum of three parts:

� Program 1 for main machine control functions

� Program 4 or 17 for fault handling

� The system constants that you set in step 1.

The use of additional programs will be application-dependent.

Figure 5.6 illustrates how the tasks, or individual programs and motion blocks, interact within your

total application program once you have set your system constants:

Figure 5.6: Task Interaction

The basics of task interaction are simple yet critical elements of your application program design.

As figure 5.6 shows, the fault handling program should execute program 1; program 1 should RSF

(clear any detected faults) and execute any optional, secondary tasks. With these task interaction

basics in mind, proceed to Step 3: Structure a Fault Handling Program.

5-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Step 3: Structure a Fault Handling Program

What Happens When a Fault Occurs?

When the DspMotion control system detects one or more fault conditions, the DspMotion

Controller automatically indicates that one or more fault conditions exist. The flowcharts in

figures 5.7 and 5.8 document fault behaviors for the IMC and the Target ARS.

Figure 5.7: IMC Fault Behavior

GFK-2205 Chapter 5 Developing an Application Program 5-19

5

Figure 5.8: Target Fault Behavior

5-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

What Causes a Fault?

Many events can cause a fault—the two most common causes are power loss and enable loss. One

or both of these conditions occur in the course of normal machine operation, for example, on power

cycles or in an e-stop condition. Your fault handling program must diagnose the cause of the fault

and determine the appropriate system behavior.

Any event causing a controller fault will start the fault program (i.e., program 4 for the IMC, or

program 17 for the Target ARS). The following fault code registers contain the condition(s) that

caused the fault:

Figure 5.9

Fault Code Registers

(See Appendices E and F)

FC Fault Code Register

FCA Axis Fault Code Register

FCS System Fault Code Register

The IMC and the Target ARS also include status registers that provide additional information about

the state of the controller and the dedicated I/O:

Figure 5.10

Status Registers

(See Appendices E and F)

SRA Axis Status Register

SRAM Analog Module Status Register

SRC Communication Status Register

SRDM Digital Module Status Register

SRP Program Status Register

SRS System Status Register

SRSM Servo Module Status Register

SRT Tertiary Port Status Register

Clearing Faults

Include either the RSF (for the IMC) or RSFALL (for the Target ARS) command in program 1 to

clear fault conditions—these commands will work only when all of the conditions that caused the

fault(s) have been corrected. If either RSF or RSFALL does not clear the fault(s), further

diagnostics are required.

Recommended Fault Handling

Write your fault program so that the DspMotion Controller will efficiently analyze the fault

conditions and direct program flow appropriately. The flowchart shown in figure 5.11 provides a

recommended operation sequence for fault handling.

Incorporate the items included in figure 5.11 into your fault handling program. Be sure to

document your program for future reference using the comment delimiter (*.

GFK-2205 Chapter 5 Developing an Application Program 5-21

5

Use the REM command to embed critical program flow comments directly in programs or motion

blocks.

Figure 5.11: Structure of the Fault Handling Program

Step 4: Structure Program 1 and Additional Tasks

Begin with a thorough assessment of your system needs, keeping in mind that the Generation D

RTOS is a flexible operating system. Some good questions to ask include the following:

1. What tasks do I want to perform through programs?

2. What motions do I need to cause through motion blocks?

3. How can I divide my motion control tasks to get the maximum multitasking

efficiency?

Document your answers to these questions and then use the following guidelines to determine how

the tasks within your complete application program will interact:

� Use only as many tasks as are required to perform your application. Tasks include

program 1 and any additional programs and motion blocks. Total execution efficiency is

proportional to the number of total tasks executing.

� When using additional programs (program 2 and 3 in the IMC and programs 2-16 in the

Target ARS), allocate specific functions to separate programs. Figure 5.12 shows an

example in which one program runs the motor, a second program handles operator

interface functions, and a third program outputs motor torque and sets position feedrate.

� Discipline yourself to use global resources (see figure 5.1 on page 5-2) in blocks that are

unique to individual programs or motion blocks. This practice avoids interactions between

programs or motion blocks that could load a variable or register with a value that is

nonconforming in another program. An example of this practice would be to use integer

variables 1-49 in program 1, 50-99 in program 2, and so forth.

5-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

� Document your ASCII file for future reference using the comment delimiter (*.

� Embed critical program flow comments directly in programs or motion blocks with the

REM command.

Figure 5.12: Example of Application Program Structure and Task Division

Moving Forward…

When you have planned the tasks and motions that you want to perform and have decided how best

to design your program 1 and additional tasks, use the Generation D RTOS registers, commands,

operators, and operands (see appendices) to write your programs.

When you are ready to download your application program, run it, and diagnose any problems, turn

to Chapters 3 and 6 for instructions.

Step 5: Manage Your Application Program

Archiving Your Program

When you complete your application program, we recommend that you adhere to the following

discipline:

1. Incorporate all of the files (if there are more than one) into a single ASCII file. This

file should include all programs, motion blocks, operator interface screens, and

system constants.

2. Use the comment delimiter (* to fully document all programs within your ASCII file.

3. Practice good file management: store the ASCII file with any other project files.

GFK-2205 Chapter 5 Developing an Application Program 5-23

5

We do not recommend that you use the controller itself as the archival device. Although CCS

includes a Tools/Receive… utility for uploading the controller’s application program, this utility is

a diagnostic tool and not a means of program maintenance. Process information can change while a

program is running, so uploaded programs may not be exactly the same as properly archived,

original, and fully documented ASCII files.

The screen in figure 5.13 shows an archived application program file comprising system constants,

Program 1, and a fault handling program (i.e., Program 4):

Figure 5.13 Archived IMC Application Program

Using SECURE to Block User Access to Programs (Optional)

Use the SECURE command to protect your intellectual property—it will prevent programs and

motions blocks from being received from the controller. This command also blocks use of the

FAULT command. To enable the secure feature, first send the application program file to the

controller, and then, from the Terminal window in CCS, type SECURE. To disable the SECURE

feature, type CLM to clear the memory and start over.

5-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

5

Using PASSWORD Protection (Optional)

The PASSWORD command is intended to prohibit program modification in the field. To

password-protect your DspMotion controller program:

� Type PASSWORDfrom the terminal window in CCS

� At the Enter Password prompt, type the four- to ten-character password of your choice.

Caution! Do NOT forget your password. After you set the password, you will

have to enter the password before accessing the program. If you do not enter the

correct password, you will be able to use only diagnostic commands—you will

not be able to clear the memory (i.e., use the CLM command) to start over. To

start over, you must return the controller to the factory. There is no back door!

To change the password, type CHANGEPWin the CCS Terminal window and follow the prompts.

Storing Your Program in Flash EPROM (Optional)

The DspMotion controller contains two types of user memory: BBRAM and EPROM. BBRAM

stores and preserves data through power cycles. Flash EPROM is nonvolatile memory for

permanent data storage that is not battery-dependent.

Figure 5.14: Memory in the DspMotion Controller

SAVE Command

Use the SAVE command to write your programs, motion blocks, registers, and screens from

BBRAM to Flash EPROM. To execute the SAVE function:

1. Set faults

a. For the IMC, type STF
b. For the Target ARS, type STFALL

2. Type KLALL

3. Type SAVE

GFK-2205 Chapter 5 Developing an Application Program 5-25

5

RETRIEVE Command

Use the RETRIEVE command to write your data from Flash EPROM to BBRAM. To execute this

function:

1. Set faults

a. For the IMC, type STF
b. For the Target ARS, type STFALL

2. Type KLALL

3. Type SAVE

AUTORET Command

Use the AUTORET command to retrieve your data from Flash EPROM automatically upon each

power-up of the DspMotion controller. This function is useful when your program is complete and

the controller is installed in the application.

Note: Be sure to SAVE any desired program changes before power-down.

Complete the following steps to autoretrieve:

1. Set faults

a. For the IMC, type STF
b. For the Target ARS, type STFALL

2. Type KLALL

3. Type AUTORET

4. Type SAVE

Disable AUTORET Command

To disable the AUTORET function, you must clear the Flash EPROM memory.

Note: Be sure you have a copy of the program file before clearing the memory.

To disable autoretrieve:

1. Set faults

a. For the IMC, type STF
b. For the Target, type STFALL

2. Type KLALL

3. Type UPS=0 (UPS must be set to its default value of zero before the CLM command

will work.)

4. Type CLM

5. Type SAVE

GFK-2205 6-1

Application Program Diagnostics and

Debugging Tools

In This Chapter

 Embed and enable diagnostics in an application program

 Runtime debugging tools

 About the line editor

 Find a bug with the FAULT command

 Fix a bug

 Monitor real-time machine parameters with Query/Start (Q, ?)

 Query registers for moment-in-time data (Q, ?)

 Run an application program in single-step mode

 Run an application program in trace mode

 Capture an online Terminal session.

Embed and Enable Diagnostics in an Application Program

DGP and DGO Commands

The Generation D RTOS includes several diagnostic commands that you can use with CCS for

Windows to debug your application programs. You can integrate the diagnostic commands DGP

and DGO into an application program to check register values or report other conditions during

program execution without affecting program performance. The DGE command enables

diagnostics—the controller ignores any diagnostic commands in an application program until you

set DGE=1.

In the following example, we have clicked File/New and entered a Target application programs,

including some diagnostics, in the CCS ASCII file editor:

6
Chapter

6-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

Figure 6.1: Example of Diagnostics in a Target Application Program (DIAEXP1R.txt)

When we set DGE=1 and then execute the application program with the EXP17 command, we

receive the following diagnostic information in the Terminal window:

Figure 6.2: Diagnostic Output Produced from Target Example Application Program DIAEXP1R.txt

DGC, DGI, and DGL Commands

The previous example showed you how to write diagnostics into your application program. Other

diagnostics, such as the commands DGC and DGI, are not allowed within programs but are useful

to assign diagnostic conditions or items to your system.

In the following Target example, we have assigned diagnostic items 1 and 2, established a

diagnostic condition, and then created an application program that uses the DGL command.

GFK-2205 Chapter 6 Application Program Diagnostics and Debugging Tools 6-3

6

Figure 6.3: Example of Target Application Program DIAEXP2.txt and Diagnostic Output after Program

Execution in Terminal Window

You can use the DGC command to assign up to 4 IMC diagnostic conditions and up to eight Target

diagnostic conditions that tell the system to print a diagnostic line of items to the Terminal window

any time the condition is satisfied. Diagnostic conditions can be any Boolean expression, for

example, program n executing (PROGn), timer n timed out (TMn) or motion generator enabled

(SRA0).

You can define up to eight diagnostic items using the DGI command. A diagnostic item is any

system register that can be queried using ? or Q, such as axis position (PSA), axis velocity (VLA),

or variable values (VBn, VIn, VFn, VSn).

To unassign a diagnostic item or condition, set it to OFF (e.g., DGC1 = OFF).

Note: Remember to set DGE=1 to enable your diagnostics—otherwise, your

controller will ignore them!

6-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

Runtime Debugging Tools

It’s probably no surprise—sometimes you’ll send a program to the controller without a hitch, and

then it won’t run. For demonstration purposes, there is a bug into the following IMC program that

is sent to the controller:

Figure 6.4: Faulty Example IMC Application Program That Will Load into Controller but Will Not Run

When we type EXP1 to run the program in which the error occurs (see figure 6.5):

Figure 6.5: Terminal Window Displaying Results of a Program that Caused a Fault

To find the source of the error, type FC? to query the fault code register. As expected, the

controller reports Mathematical Data Error because of our divide-by-zero operation. The following

page tells you how to use the FAULT command to help pinpoint the exact location of the problem

within the program.

GFK-2205 Chapter 6 Application Program Diagnostics and Debugging Tools 6-5

6

About the Line Editor

Each DspMotion Controller has a resident line editor that gives you the means to scroll through the

program that resides in your controller’s memory. The line editor and the ASCII file editor are two

different tools: the ASCII file editor is your tool for writing programs and saving them as .txt files;

the line editor is your tool for finding bugs on-the-fly, while you are connected in real-time with

your controller. The line editor scrolls through only one line of code at a time at your command—

the ASCII file editor displays the entire .txt file on your screen. Any changes that you make in the

line editor will not affect your master application program .txt file; but they will change the

controller’s program and affect the behavior of the controller.

To use the line editor to identify specific lines of defective code:

• Type FAULT when your program does not execute properly due to a bug.

• Type PROGRAMn, where n is the number of the program through which you wish to

scroll.

• Type MOTIONn, where n is the number of the motion block through which you wish

to scroll.

Then use the commands in figure 6.6:

Figure 6.6: Line Editor Commands

X Step forward

L Step backward

DEL Delete entire line of code

! Exit line editor

Note: The line editor will try to insert any
keyboard input into the program or motion block

6-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

Find a Bug with the FAULT Command

The FAULT command is a diagnostic tool used to find faults in the program structure. If a program

operation causes a fault, FAULT gives you an online connection to the line editor. Use the

following procedure, shown in figure 6.7, to diagnose a fault in an application program:

1. Type KLALL

2. Type FAULT—this opens the line editor at the faulty program line.

3. Type ! to exit the line editor

Figure 6.7: Terminal Window Showing Use of FAULT Command to Open Line Editor at Faulty Line

Most application programs will not be as short as our example. If your program has a hundred

lines, it’s possible that you will issue the FAULT command, get the faulty program line displayed

on your screen, and not know exactly where to find that program line to fix it.

The line editor lets you step backward and forward through your program, displaying one line at a

time, until you pinpoint the location of the fault.

Figure 6.8: Scrolling through a Program in the Line Editor

Scroll until you have found a familiar reference point—when you know exactly where that fault

exists in your application program, it’s time to exit the DspMotion Controller’s line editor and fix

the bug using the CCS ASCII file editor.

GFK-2205 Chapter 6 Application Program Diagnostics and Debugging Tools 6-7

6

Fix a Bug

To correct the fault in your program, you must open the original, master .txt file in the CCS ASCII

file editor. Complete the following steps:

1. Click File/Open

2. Click on your application program’s .txt file name

3. Click OK

4. Click to place your cursor at the faulty program line

5. Correct your text

Figure 6.9: Correcting a Program Bug in the ASCII File Editor

6. Click File/Save

7. Click File/Close to exit the ASCII file editor and return to the Terminal window

From the Terminal window, send the corrected .txt file to the controller:

1. Type STF (i.e., for the IMC) or STFALL (i.e., for the Target ARS)

2. Type KLALL

3. Type UPS=0 (UPS must be set to its default value of zero before the CLM command

will work.)

4. Type CLM (remember that CLM will clear your system constants! You’ll have to

reset them if you have not included them in your .txt file.)

5. Click Tools/Send Files

6. Click on your application program’s .txt file name

7. Click OK

Run the program with your correction:

1. Type EXPn (n is the number of your program)

6-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

Monitor Real-time Machine Parameters with Query/Start (Q, ?)

Use query to monitor almost any machine parameter while your system is executing an application

program. Query/Start provides you with a constant update of changing speeds, positions, and

almost any other condition that you might want to track and evaluate.

1. Click Query/Start.

2. Enter the registers you wish to query, followed by a ? or Q—one register per field.

You can query up to five registers simultaneously. You may also change the speed of

the query update (e.g., 50 ms).

Figure 6.10: Query Screen with Four IMC Register Queries Entered

3. Click OK—real-time values for the registers you have chosen will report on-screen

(see figure 6.11).

Figure 6.11: Results of IMC Register Queries

To stop the query, click Query/End; to pause, click Query/Pause and Query/Resume.

Query Registers for Moment-in-Time Data (Q, ?)

You can also use the ? and Q commands in Terminal window to query and report a register value at

a moment in time. The ? and Q commands report a one-time register value, rather than give you a

continuous update like the Query/Start function does. In the following example, the user has

queried several registers:

GFK-2205 Chapter 6 Application Program Diagnostics and Debugging Tools 6-9

6

Figure 6.12: Results of Register Queries in the Terminal Window

Run an Application Program in Single-Step Mode

Single-step mode is another tool for diagnosing program conditions. With single-step mode

enabled, you execute one line of a program at a time using the X command. You may use a number

n with the X command (i.e., Xn), to step through n lines of the program.

Note: You can place only one program at a time in single-step mode.

6-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

To enable single-step mode from the CCS Terminal window:

1. Type KLALL

2. Type DGE=1

3. Type DGS= p1 , where p1 is the program number

4. Type EXPn to execute program (in this example, we’ll use program 1)

Single-step through the program until you execute line END.

Figure 6.13: Executing a Program in Single-Step Mode from the Terminal Window

Run an Application Program in Trace Mode

Trace mode outputs one program line at a time to the Terminal window as the program is

executing. No X command input is required.

Note: Only one program at a time can be in trace mode.

To enable trace mode:

1. Type KLALL

2. Type DGE=OFF

3. Type DGS=0

4. Type DGT=p1 , where p1 is the program number

5. Type DGE=1

6. Type EXPp1 , where p1 is the program number

GFK-2205 Chapter 6 Application Program Diagnostics and Debugging Tools 6-11

6

Figure 6.14: Executing a Program in Trace Mode from the Terminal Window

Capture an Online Terminal Session

You can capture any data from your CCS Terminal window and save it as a .txt file. Use the

capture feature to record any register queries, line editor activity, or diagnostic output that you want

to review.

The following example opens a capture file to document program-debugging activity. Use this

procedure to capture any Terminal window activity:

1. Click Tools/Open Capture File

2. Name the file (e.g., capt1.txt)

3. Click OK.

Figure 6.15: Opening a Capture File

Activity in the Terminal window will now be recorded in the capture file until you close the capture

session. In figure 6.16, we have determined the location of a bug in relation to the rest of the

program.

To close the capture session and review the captured data:

1. Click Tools/Close Capture File

2. Click File/Open, select the file name, and click OK

6-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

6

Figure 6.16: Scrolling Through Program Lines in the Line Editor

The ASCII file editor opens and displays the selected file. Compare the original Terminal window

in figure 6.17 (below-right) with the .txt file (below-left) created from the capture session—the .txt

file shows all Terminal window activity between the time we opened and closed the capture file.

Figure 6.17: Reviewing Data in a Capture File

GFK-2205 7-1

Receiving Data from a DspMotion Controller to

Your PC

In This Chapter

 Overview

 Receive variables

 Receive all.

Overview

CCS lets you receive data from your DspMotion Controller to your PC using the Tools menu. This

function provides a quick and easy way to sift out a particular set of data from your application

program and then review and make changes to it in the ASCII file editor. You can then use the

Tools/Send Files option to send your revised data to your controller.

Figure 7.1: Sending and Receiving Data between Your DspMotion Controller and Your PC

7
Chapter

7-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

7

Receive Variables

In the following example, we will receive a range of variables from our controller. Receiving

variables may take several minutes—to make the process as efficient as possible, select only the

range of variables that you really need.

1. Click Tools/Receive Variables to open the screen in figure 7.2.

Figure 7.2: CCS Receive All Variables Screen

2. Click the checked Receive All box to deselect it.

3. Select the variables that you want to receive (in this example, we have selected

Booleans, Integers, and Floating Points).

4. Edit the range of variables that you want to receive in the From: and To: fields (just

click in those fields and type). Use these fields to eliminate any values that you don’t

need to minimize file receive time.

Figure 7.3: CCS Receive Select Variables Screen

5. Click OK

6. Wait for your PC to receive the variables.

When the receive process is complete, CCS opens your ASCII file editor and displays the values in

an untitled file. You can add tab-delimited comments, edit the data, and save your changes under a

new file name in .txt format.

GFK-2205 Chapter 7 Receiving Data from a DspMotion Controller to Your PC 7-3

7

Figure 7.4: Received Data Displayed in the ASCII File Editor

The process for receiving variables also works for receiving registers, programs, motion blocks, or

screens. Just click the appropriate option under the Tools menu.

Receive All

From the Tools menu, you can click Receive All and then deselect any file types that you don’t

want. Receiving All may take several minutes—to make the process as efficient as possible, select

only those options that you really need. In the following example, we have chosen to receive all

registers and programs. Note that you cannot select particular registers—you get all or none. You

can, however, select particular variables, programs, motion blocks, and screens when you Receive

All. Use the following procedure to customize the Receive All options:

1. Click Tools/Receive All

2. Click to select the options you want (in this example, we’ll receive Registers and

Programs)

3. Click Programs to select particular programs (we have selected Program 1 and

Program 4)

Figure 7.5: CCS Tools/Receive All Screens

4. Click OK.

7-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

7

Note: If you have enabled the SECURE feature, you must type CLM before your

controller will receive any programs or motion blocks.

When the receive process is complete, CCS opens your ASCII file editor and displays the values in

an untitled file (see figure 7.6). You can add tab-delimited comments, edit the data, and save your

changes under a new file name in the .txt format.

Figure 7.6: ASCII File Editor Windows Displaying Registers and Programs Received

GFK-2205 8-1

Troubleshooting

My Controller Doesn’t Communicate

Probable Fix for the IMC: Check Communication Configuration

Check the software and controller communication configuration. CCS has three communication

settings that must match the controller hardware settings: controller address, communication baud

rate, and computer communication port address. To change these settings in CCS:

1. Click Options/Communication Settings.

Figure 8.1: Communication Settings in CCS for Windows

2. Check the controller address and communication baud rate set on the controller:

a. Locate the DIP switches on the bottom of the controller.

b. The factory default settings are 9600 baud communication rate and controller

address 1. (See the ADDS and BAUD registers in Appendix A for applicable DIP

switch settings.)

c. To change the DIP switches, turn off the power to the controller. Change the

switches and restore controller power.

3. Check the comms port setting.

a. Check your computer to determine which port you are using.

b. Make sure the software setting is the same.

8
Chapter

8-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

8

4. Examine the cable orientation—one end of the cable is labeled IMC/OIP, while the

other end is labeled PC. Verify that the cable ends are connected to the proper

equipment.

5. When settings match, press <Enter> twice to verify communication.

Probable Fix for the Target

Check cable connections. The Target ARS autoconfigures your controller address, baud rate, and

communications port—those settings should be correct unless you have altered them.

Operator Interface Panel Displays Meaningless Information

If you send characters faster than the buffer can receive them, the receive buffer will overflow—

hence, junk on the display. Turn on the UPS input/output register to refresh the screen data

automatically every ¼ second.

Before you enter any new text, turn off UPS by setting UPS=0.

When I Enable the Servo Drive, My Motor Jumps and Then Faults

Your motor could jump and then fault if your motor constants aren’t set correctly. Make sure the

motor is not connected to a load, and then use MOTORSET to set up motor constants automatically

for CMO, CMR, and/or AR.

You can also manually set CMO and CMR to the following values:

For N-Series motors: CMO = 90

CMR = 3

For S-Series motors: CMO = -90

CMR = 2

Another possible fix is to use the AUTOTUNE system command to reset the control constants KA,

KD, KI, KP, and KT automatically. Before you issue the AUTOTUNE command, verify that the

following conditions exist:

• The system and axis are faulted.

• No programs are executing.

• Motor constants are set.

• The motor is connected to the load.

• The axis is free to move ½ revolution in the forward direction.

GFK-2205 Chapter 8 Troubleshooting 8-3

8

Where are My (* Delimited Comments?

DspMotion controllers ignore and do not store any (* delimited comments contained within an

application program, so when you send a program to or receive a program from your controller, the

comments do not go along for the ride. If you want to embed comments within a program and have

them stored in controller memory, use the REM command (see Appendix A).

I Forgot/Lost the Password!

If you lose or forget your password, contact GE Fanuc Customer Care at 1-800-433-2682 to get a

return merchandise authorization (RMA) number.

My Controller Is Not Faulted, But the Motor Will Not Move!

Your system is looking for normally closed contacts on +/- overtravels. Put in normally closed

contacts or hardwire overtravels on.

GFK-2205 A-1

Registers and Commands

The registers and commands in Appendix A are alphabetized and formatted according to the

template shown below. Note that not all of the fields (i.e., Type, Restrictions, etc.) apply to every

register and command.

A
Appendix

I = applies to IMC only

 = applies to Target only

Parameter specifics for

the Target

Range of values for

registers (not applicable
to commands)

Limits on use

What it is; how it

is used

Examples show how the

register or
d iused with the IMC and/

or the Target

i i

AI Analog Input

Class: Input/Output register

Type: Floating point

Syntax:

I AI

AIp1.p2 (e.g.,AI1.4 AI1.VI1 AIVI1.3 AIVI1.VI2)

Parameters: allowed values description

p1 1 through 4 or VIn analog I/O module number

p2 1 through 4 or VIn analog input number

Range:

units volts

minimum -10.000

maximum 10.000

Restrictions: Extended command set;
d l

Use: The analog input is a general purpose input used for
process control.

Example: IMC Target

AI? AI1.VI1? (report value of analog input)

Related AO

Mnemonic

Mnemonics apply to all

DspMotion controller products
unless otherwise indicated. Here,

the symbol codes indicate that AI
applies only to IMC and Target®.

I

Parameters

A-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

! Exits Line Editor

Class: Program Command

Syntax: !

Restrictions: Allowed only in programs or motion blocks.

Use: This command exits the line editor.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* edit program 1)

* PSA=0 * PSA1=0

X X (* step through program)

* MAC=10 * MAC1=10

! ! (* exit line editor)

* *

Related Commands: PROGRAM, END, MOTION

GFK-2205 Appendix A Registers and Commands A-3

A

? Reports Value of Register

Class: Diagnostic Command

Syntax: p1? (e.g., CURC? SRS? PSAVI1? MPA2?)

Parameters: allowed values description

p1 any register register

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to report the value of any register. It is

identical to the Q command.

Related Commands: DGO, Q

A-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

ADDR Address of RTU Port I jr

Class: System Register

Type: Integer

Syntax: ADDR

Range:

default 1

minimum 1

maximum 247

Restrictions: Cannot be assigned in motion blocks. Available in IMJ

firmware 2.2 and higher; IMC firmware 3.2 and higher.

Use: The address of the RTU port is a number used to identify the

RTU port.

Related Registers: RTU

GFK-2205 Appendix A Registers and Commands A-5

A

ADDS Address of Serial Port I

Class: System Register

Type: Integer

Syntax: ADDS

Range:

default set by DIP switch

minimum 0

maximum 31

Restrictions: Cannot be assigned in programs or motion blocks.

Use: The address of the serial port is a number used to identify the

serial port.

Remarks: If DIP switch 8 is set to the left, the ADDS register value

defaults to 1 on power-up. If, however, DIP switch 8 is set to

the right, DIP switches 1–5 determine the serial port address

from 0 through 31. The table below shows which DIP switch

setting is to be used for a specific address.

A-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AI Analog Input I

Class: Input/Output Register

Type: Floating point

Syntax:

I AI

AIp1.p2 (e.g., AI1.4 AI1.VI1 AIVI1.3 AIVI1.VI2)

Parameters: allowed values description

 p1 1 through 4 or VIn analog module number

 p2 1 through 4 or VIn analog input number

Range:

 units volts

 minimum -10.000

 maximum 10.000

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: The analog input is a general purpose input used for process

control. AI defines the value in volts of the hardware analog

inputs.

Examples: IMC Target ARS

AI? AI1.VI1? (* report value of analog input)

Related Registers: AO

GFK-2205 Appendix A Registers and Commands A-7

A

AIp1 Analog Input jr

Type: Floating Point

Syntax: AIp1

Parameters allowed values

p1 1 or 2 (analog input number)

Range:

units volts

minimum -10.000

maximum 10.000

Restrictions: Read only.

Use: The analog input is a general purpose input used for process

control. AI defines the value in volts of one of the two

hardware analog inputs.

Examples:

AI1? (* report value of analog input one)

AI2? (* report value of analog input two)

Related Registers: AO

A-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AIB Analog Input Deadband I

Class: Input/Output Register

Type: Floating point

Syntax:

I AIB

AIBp1.p2 (e.g., AIB1.4 AIB1.VI1 AIBVI1.3 AIBVI1.VI2)

Parameters: allowed values description

 p1 1 through 4 or VIn analog module number

 p2 1 through 4 or VIn analog input number

Range:

 units volts

 default 0

 minimum 0

 maximum 10.000

Restrictions: For IMCs, this function available only with the extended

command set; cannot be assigned in motion blocks.

Use: The analog input deadband defines a range over which the

analog input remains constant at 0 volts. When the analog

input, AI, is less than or equal to AIB, the analog input is set to

0.

Examples: IMC Target ARS

AIB=1.5AIB1.2=1.5 (* set analog input deadband equal

to 1.5 V)

AIB? AIB1.VI1? (* report value of analog input

deadband)

Related Registers: AI

GFK-2205 Appendix A Registers and Commands A-9

A

AIBp1 Analog Input Deadband jr

Type: Floating Point

Syntax: AIBp1 (e.g., AIB1 AIB2)

Parameters allowed values

p1 1 or 2 (analog input number)

Range:

units volts

default 0

minimum 0

maximum 10.000

Restrictions: Cannot be assigned in motion blocks.

Use: The analog input deadband defines a range over which the

analog input remains constant at 0 volts. When the analog input

AI1 is less than or equal to AIB1, the analog input is set to 0.

When the analog input AI2 is less than or equal to AIB2, the

analog input is set to 0.

Examples:

AIB2=1.5 (* set analog input deadband equal to 1.5 V)

AIB2? (* report value of analog input deadband)

Related Registers: AIp1

A-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AIF Analog Input Filter Frequency

Class: Input/Output Register

Type: Floating point

Syntax: AIFp1.p2 (e.g., AIF1.4 AIF1.VI1 AIFVI1.3 AIFVI1.VI2)

Parameters: allowed values description

p1 1 through 4 or VIn analog module number

p2 1 through 4 or VIn analog input number

Range:

units Hertz

default 1,000

allowed values 10; 20; 50; 100; 200; 500; 1,000

Restrictions: Cannot be assigned in motion blocks.

Use: The analog input filter frequency is the cutoff frequency of the

lowpass filter of the analog input. Basically, any frequencies

above the cutoff frequency defined by AIF are filtered out.

Example:

AIF1.2=200 (* set analog input filter frequency for input two of analog

module one equal to 200 Hertz)

AIF1.VI1? (* report value of analog input filter frequency of analog input

VI1 of analog module one)

Related Registers: AI

GFK-2205 Appendix A Registers and Commands A-11

A

AIO Analog Input Offset I

Class: Input/Output Register

Type: Floating point

Syntax:

I AIO

AIO p1.p2 (e.g., AIO1.4 AIO1.VI1 AIOVI1.3 AIOVI1.VI2)

Parameters: allowed values description

 p1 1 through 4 or VIn analog module number

 p2 1 through 4 or VIn analog input number

Range:

 units volts

 default 0

 minimum -10.000

 maximum 10.000

Restrictions: For IMCs, this function available only with the extended

command set; cannot be assigned in motion blocks.

Use: The analog input offset is used to add a voltage offset to the

analog input.

Examples: IMC Target ARS

AIO=2.5 AIO1.2=2.5 (* set analog input offset equal to

2.5 V)

AIO? AIO1.VI1? (* report value of analog input

offset)

Related Registers: AI

A-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AIOp1 Analog Input Offset jr

Class: Input/Output Register

Type: Floating point

Syntax: AIOp1 (e.g., AIO1 AIO2)

Parameters allowed values description

p1 1 or 2 analog input number

Range:

units volts

default 0

minimum -10.000

maximum 10.000

Restrictions: Cannot be assigned in motion blocks.

Use: The analog input offset one, AIO1, is used to add a voltage

offset to the analog input one, AI1. Analog input offset two,

AIO2, is used to add a voltage offset to the analog input two,

AI2.

Examples:

AIO1=2.5 (* set analog input offset equal to 2.5 V)

AIO1? (* report value of analog input offset)

Related Registers: AIp1

GFK-2205 Appendix A Registers and Commands A-13

A

AM Analog Module Rack Slot Assignment

Class: System Register

Syntax: AMp1 (e.g., AM2 AM3)

Parameters: allowed values description

p1 1 through 4 analog module number

Range:

default 0

allowed values 0; 11 through 18; 21 through 28; 31 through 38

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: The analog module rack slot assignment is used to define in

which slot an analog module resides. The analog module rack

slot assignment consists of two digits. The first digit is the rack

number, and the second digit is the slot number. If AMp1 is

equal to 0, it means that analog module p1 is not used in the

system.

Remarks: To assign the analog expansion card installed in an analog

module, set AMp1 for the expansion card to the next higher

slot number from the slot in which the module is installed.

Example:

AM1=17 (* set analog module rack slot assignment of analog module

one to rack one, slot seven)

AM3? (* report analog module rack slot assignment of analog

module 3)

Related Registers: DM, SM, AME

A-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AME Analog Module Assignment Error

Class: System Register

Type: Integer, Boolean

Syntax: AMEp1 (e.g., AME AME8 AMEVI2)

Parameters: allowed values description

p1 none or 0 through 23 analog module assignment

or VIn error register bit number

Range:

allowed values 0 through FFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The analog module assignment error register is used to

determine if any of the analog modules are not properly

assigned by the system.

Remarks: 1. When the AME? command is executed, the module

assignment error register value will be given as an English

statement. If all analog module assignments are correct, the

message given is All module assignments are correct.

2. If the computer interface format is enabled, and the AME?

command is executed, the module assignment error register

value will be given as an integer number. If all analog module

assignments are correct, the module assignment error register is

set to 0. The possibilities are listed below:

bit message

0 Module in rack one, slot one did not respond to assignment

1 Module in rack one, slot two did not respond to assignment

2 Module in rack one, slot three did not respond to assignment

3 Module in rack one, slot four did not respond to assignment

4 Module in rack one, slot five did not respond to assignment

5 Module in rack one, slot six did not respond to assignment

6 Module in rack one, slot seven did not respond to assignment

7 Module in rack one, slot eight did not respond to assignment

8 Module in rack two, slot one did not respond to assignment

... ...

... ...

22 Module in rack three, slot seven did not respond to assignment

23 Module in rack three, slot eight did not respond to assignment

GFK-2205 Appendix A Registers and Commands A-15

A

AO Analog Output

Class: Input/Output Register

Type: Floating point

Syntax:

I, jr AO

AOp1.p2 (* e.g., AO1.4 AO1.VI1 AOVI1.3 AOVI1.VI2)

Parameters: allowed values description

 p1 1 through 4 or VIn analog module number

 p2 1 through 4 or VIn analog output number

Range:

I, jr units volts

 default 0

 allowed values -10.000 through 10.000

VLA (velocity of axis)

CMD (control output)

FE (following error)

 units volts

 default 0

 minimum -10.000

 maximum 10.000

Restrictions: Brushless servo and stepper only.

Use: The analog output is a general purpose output used for process

control.

Remarks: Setting the analog output to VLA, CMD, or FE enables the

analog output to assume a value based on the following: VLA

(10 Volts = 20 Krpm); CMD (10 Volts = maximum peak rating

of drive);

I, FE (10 Volts = 2,048 pulses of following error);

jr FE (10 Volts = 128 pulses of following error).

Examples: IMC/IMJ Target ARS

AO=1.5 AO1.2=1.5 (* set analog output equal to 1.5 V)

AO=CMD (* set analog output equal to control

output)

AO? AO1.VI1? (* report value of analog output)

Related Registers: AI, AIp1, AOP

A-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AOP Power-Up State of Analog Output

Class: Input/Output Register

Type: Floating point

Syntax:

I, jr AOP

AOPp1.p2 (e.g., AOP1.4 AOP1.VI1 AOPVI1.3

AOPVI1.VI2)

Parameters: allowed values description

 p1 1 through 4 or VIn analog module number

 p2 1 through 4 or VIn analog output number

Range:

I, jr units volts

 default 0

 allowed values -10.000 through 10.000

VLA (velocity of axis, 10 V = 20 Krpm)

CMD (control output, 10 V = maximum peak rating of drive)

I, FE (following error, 10 V = 2,048 pulses of following

error)

jr FE (10 Volts = 128 pulses of following error).

 units volts

 default 0

 minimum -10.000

 maximum 10.000

Restrictions: Brushless servo and stepper only; not allowed in motion

blocks.

Use: The power-up state of the analog output is the voltage that the

analog output takes on upon system power-up.

Examples: IMC/IMJ Target ARS

AOP=5 AOP1.2=5 (* set power-up state of analog output

to 5 V)

AOP=FE (* set AOP to equal following error)

AOP? AOP1.VI1? (* report value of power-up state of

analog output)

Related Registers: AO

GFK-2205 Appendix A Registers and Commands A-17

A

AR Amplitude of Resolver Excitation I

Class: Axis Register

Type: Integer

Syntax:

I AR

ARp1 (e.g., AR1 ARVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

I default 1

 minimum 1

 maximum 4

 default 120

 minimum 1

 maximum 250

Restrictions: Resolver feedback brushless servo only.

Use: The amplitude of the signal needed for resolver excitation is

one of the motor constants needed to operate a resolver

feedback servo motor. The value of AR is determined by the

transformation ratio of the resolver. In a Target system, this

value can be set automatically by the MOTORSET command.

In an IMC, AR=1 corresponds to a resolver transformation of

½ and AR=2 corresponds to 1. AR values 3 and 4 are reserved.

Related Registers: CMO, CMR

Related Commands: MOTORSET

A-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AUTORET Enables Auto Retrieving of User Memory

Class: System Command

Syntax: Autoret

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to enable auto retrieving of user memory

from nonvolatile memory on power-up. This command must be

included in the configuration data for the controller or the

contents of the nonvolatile memory will not be restored when

controller power is cycled.

Related Commands: RETRIEVE, SAVE

GFK-2205 Appendix A Registers and Commands A-19

A

AUTOTUNE Automatically Sets Up Control Constants

Class: System Command

Syntax:

I, jr AUTOTUNE

AUTOTUNEp1 (e.g., AUTOTUNE3)

Parameters: allowed values description

 p1 1 through 8 axis number

Restrictions: Servo only; not allowed in programs or motion blocks.

Use: This command automatically sets up the control constants,

which are KA, KD, KI, KP, and KT.

Remarks: This command will execute only when the controller or system

and axis are faulted, the axis Enable input is true, and no

programs or motion blocks are executing. The motor should be

connected to the load when you use this command. When

executed, it causes the axis to move half a revolution in the

forward direction. Be sure that the axis is free to move this far

before executing this command. This command takes about

two seconds to execute; and, when finished, the controller will

return either an asterisk (*) indicating successful completion or

a question mark (?) followed by the appropriate error message.

The possible error messages are as follows:

1. TORQUE TO INERTIA RATIO TOO LOW — the torque

to inertia ratio of the axis is less than 125 radians/sec2.

2. TORQUE TO INERTIA RATIO TOO HIGH — the torque

to inertia ratio of the axis is greater than 125,000 radians/sec2.

3. TORQUE RESPONSE NON-LINEAR — autotuning won’t

work.

This command will execute correctly in an ampless servo

controller only if the servo controller is connected to a drive

whose output current is proportional to the servo controller

output voltage (+/- 10 V) and the drive produces full

continuous current when the servo controller output voltage is

5.0 volts.

Related Commands: MOTORSET

Registers Used: KA, KD, KI, KP, KT, FR, CURC

A-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

AXE Axis Assignment Error

Class: System Register

Type: Integer, Boolean

Syntax: AXEp1 (e.g., AXE AXE8 AXEVI2)

Parameters: allowed values description

p1 none or 0 through 7 axis assignment error register

or VIn bit number

Range:

allowed values 0 through FF16 or 0 and 1

Restrictions: Read only.

Use: The axis assignment error register is used to determine if any of

the axes are not properly assigned by the system.

Remarks: 1. When the AXE? command is executed, the axis assignment

error register value will be given as an English statement. If all

axes are assigned correctly, the controller returns an All axis

assignments are correct message.

2. If the computer interface format is enabled, and the AXE?

command is executed, the axis assignment error register value

will be given as an integer number. This number is the result

of adding together all the powers of two associated with each

axis status register bit equal to 1. If all axes are assigned

correctly, the axis assignment error register will be set to 0.

The possibilities are listed below:

bit message

0 Axis one did not respond to assignment

1 Axis two did not respond to assignment

2 Axis three did not respond to assignment

3 Axis four did not respond to assignment

4 Axis five did not respond to assignment

5 Axis six did not respond to assignment

6 Axis seven did not respond to assignment

7 Axis eight did not respond to assignment

GFK-2205 Appendix A Registers and Commands A-21

A

AXIS Axis Assignment

Class: System Register

Syntax: AXISp1 (e.g., AXIS1)

Parameters: allowed values description

p1 1 through 8 axis number

Range:

default NA not assigned

allowed values NA not assigned

SERVO servo

EXTERNAL external drive

IO using I/O of axis only

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: The axis assignment register is used to define the type of drive

to which an axis is assigned.

Related Registers: AXE

A-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

BAUD Baud Rate of Serial Port I jr

Class: System Register

Type: Integer

Syntax: BAUD

Range:

I default set by DIP switch

jr default 9,600

I, jr allowed values 1,200; 9,600; 19,200; 38,400

Restrictions: Cannot be assigned in motion blocks.

Use: The baud rate of the serial port is the rate at which bit transfer

takes place to and from the serial port.

Remarks:

I If DIP switch 8 is set to the left, the BAUD register value will

default to 9,600 on power-up. If, however, DIP switch 8 is set

to the right, DIP switches 6 and 7 determine the serial port

baud rate as indicated in the table below.

jr The IMCjr sets the baud rate to 9,600 on power up. To make

the baud rate a different value, put the BAUD = n command in

a program that is executed on power up.

Related Registers: BIT, PAR

DIP Switch Setting for

 Baud Rate of Controller

Switch Locations

Baud Rate 6 7 8

1,200 R R R

9,600 L R R

19,200 R L R

38,400 L L R

GFK-2205 Appendix A Registers and Commands A-23

A

BAUDP Baud Rate of Program Port

Class: System Register

Type: Integer

Syntax: BAUDP

Range:

default automatically set

allowed values 1,200; 2,400; 4,800; 9,600; 19,200; 38,400

Restrictions: Cannot be assigned in motion blocks.

Use: The baud rate of the program port is the rate at which bit

transfer takes place to and from the program port.

Related Registers: BAUDU, BITU, PARU, PARP, BITP

A-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

BAUDU Baud Rate of User Serial Port

Class: System Register

Type: Integer

Syntax: BAUDU

Range:

default 9,600

allowed values 1,200; 2,400; 4,800; 9,600; 19,200

Restrictions: Cannot be assigned in motion blocks.

Use: The baud rate of the user serial port is the rate at which bit

transfer takes place to and from the serial port.

Related Registers: PARU, BITU, BAUDP, PARP, BITP

GFK-2205 Appendix A Registers and Commands A-25

A

BIT Databits of Serial Port I jr

Class: System Register

Type: Integer

Syntax: BIT

Range:

default 7

allowed values 7, 8

Restrictions: Cannot be assigned in motion blocks.

Use: The databits of the serial port are the number of databits used to

transfer characters to and from the serial port.

Remarks: Setting PAR to NONE and BIT to 7 at the same time is not

allowed. This register defaults to 7 on power-up.

Related Registers: BAUD, PAR

A-26 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

BITP Databits of Program Port

Class: System Register

Type: Integer

Syntax: BITP

Range:

default 7

allowed values 7, 8

Restrictions: Cannot be assigned in motion blocks.

Use: The databits of the program port are the number of databits

used to transfer characters to and from the program port.

Remarks: Setting PARP to NONE and BITP to 7 at the same time is not

allowed.

Related Registers: PARP, BITU, PARU, BAUDU, BAUDP

GFK-2205 Appendix A Registers and Commands A-27

A

BITU Databits of User Serial Port

Class: System Register

Type: Integer

Syntax: BITU

Range:

default 7

allowed values 7, 8

Restrictions: Cannot be assigned in motion blocks.

Use: The databits of the user serial port is the number of databits

used to transfer characters to and from the user serial port.

Remarks: Setting PARU to NONE and BITU to 7 at the same time is not

allowed.

Related Registers: PARP, BITP, PARU, BAUDU, BAUDP

A-28 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

BS Backspaces Cursor

Class: Input/Output Command

Syntax: BS

Use: This command backspaces the cursor on the display.

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: CR, CRH, CRP

Related Registers: DSE

ASCII Code: $08

GFK-2205 Appendix A Registers and Commands A-29

A

BSC Ballscrew Compensation

Class: Axis Register

Syntax: BSCp1.p2 (e.g., BSC3.5)

Parameters: allowed values description

p1 1 through 8 axis number

p2 1 through 8 compensation pair number

Range:

units seconds

default 0,0

minimum -2,000,000,000 pulses, -10,000 pulses

maximum 2,000,000,000 pulses, 10,000 pulses

Use: Use this register to define a compensation position at up to

eight different positions along the length of a ballscrew. The

axis will linearly interpolate between the entered compensation

points.

Remarks: 1. The compensation pairs must be loaded in numerical order

with the smallest position loaded into pair one and the largest

position loaded into pair eight.

2. All of the pairs must be loaded with appropriate data for the

compensation to work properly.

3. If the axis is moved past the smallest or largest

compensation pair position, then the compensation value is

maintained at the last compensation value entered.

4. The numerical values for the default, minimum, and

maximum of this register are assuming that the axis unit ratio,

URA, is set at its default value of 1. If URA is set to a value

other than 1, the default, minimum, and maximum values will

change appropriately (see URA).

Example:

BSC1.1=5.5,.15 (* set compensation of 0.15 axis units at position 5.5 units)

Related Registers: BSE

A-30 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

BSE Ballscrew Compensation Enable

Class: Axis Register

Syntax: BSEp1 (e.g., BSE2)

Parameters: allowed values description

p1 1 through 8 axis number

Range:

default 0

allowed values 0, 1

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: Use to enable/disable ballscrew compensation. If BSEp1 is set

to 1, ballscrew compensation is enabled; and if BSEp1 is set to

0, ballscrew compensation is disabled.

Registers Used: BSC

GFK-2205 Appendix A Registers and Commands A-31

A

CAE Cam Enable

Class: Motion Register

Type: Boolean

Syntax:

I, jr CAE

CAEp1 (e.g., CAE1 CAE245 CAEVI3)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers

1 through 8 or VIn

Range:

 default 0

 allowed values 0, 1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The cam enable is used to enable cam motion. If CAE is set to

1, then cam motion is enabled; and if CAE is set to 0, it is

disabled.

Remarks: When the cam is initially enabled (CAE=1) the controller reads

the current cam master position in register CAP and generates

an absolute move on the axis to its position that corresponds to

that master position in the cam table. Current accel

(MAC/MAP), decel (MDC/MDP) and velocity (MVL)

constraints are used for this move. CAE is reset to zero when a

fault occurs or the cam table is zeroed using the CAZ

command.

Registers Used: CAM, CAO, CAP, CAS, CAF, CAI, CAR, CAT, CAZ

Motion Templates:

I, jr, Single-axis electronic camming

Multi-axis synchronized electronic camming

A-32 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CAF Cam Filter Constant

Class: Motion Register

Type: Integer

Syntax: CAF

Range:

default 0

minimum 0

maximum 3

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The cam filter constant is used to smooth the motion of the axis

when using cam following. A moving average filter of 1, 4, 8,

or 16 past values of the cam master input is selected by the

corresponding values of 0, 1, 2, or 3 for the cam filter constant.

Remarks: As the length of the moving average filter increases, the axis

will increasingly lag the correct cam position. Use as little

filtering as the application will allow.

GFK-2205 Appendix A Registers and Commands A-33

A

CAI Cam Position Register Increment

Class: Motion Register

Type: Integer

Syntax: CAI

Range:

units degrees/sec

default 0

minimum -10,000

maximum 10,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the rate at which to increment the

cam position register, CAR.

Related Registers: CAR, CAT

A-34 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CAM Cam Point

Class: Motion Register

Type: Floating point

Syntax:

I, jr CAMp1 (e.g., CAM1 CAM32.4 CAMVI4)

CAMp1.p2 (e.g., CAM2.36.5 CAMVI4.25 CAM1.VI4)

Parameters: allowed values description

I, jr p1 0.0 through 359.9 cam position in degrees

or VIn cam position in degrees times ten

 p1 1 through 8 or VIn axis number

 p2 0.0 through 359.9 cam position in degrees

or VIn cam position in degrees times ten

Range:

 units axis units

 default 0 pulses

I, jr minimum -2,000,000,000 pulses

I, jr maximum 2,000,000,000 pulses

 minimum -8,000,000 pulses

 maximum 8,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the axis absolute position at the

specified cam master position for each point in a cam table.

Remarks: 1. The cam table comprises 3,600 cam points that are always

equally spaced at 0.1 degree increments. The user may not need

to enter every point in the table since the controller fills in any

missing cam points by linearly interpolating between the points

entered by the user.

2. The zero cam table, CAZ, command should be executed

before a new set of cam points is entered. This command clears

the cam table of all previous data points and disables the cam

function (CAE=0).

3. The controller can only store one cam table at a time. If

multiple tables are required, subsequent tables must be loaded

after the current table execution is completed. The controller

variables can be used to store additional tables.

4. The numerical values for the default, minimum, and

maximum of this register are assuming that the axis unit ratio,

URA, is set at its default value of 1. If URA is set to a value

other than 1, the default values will be changed according to:

GFK-2205 Appendix A Registers and Commands A-35

A

Minimum = -2,000,000,000 pulses/URA

Maximum = 2,000,000,000 pulses/URA

5. The axis will make an absolute move to the axis position that

corresponds to the current cam master position (CAP) at the

instant the cam is enabled (CAE=1 is executed).

6. The cam scale factor (CAS) command is used to scale the

magnitude of every axis position value in the cam table. The

programmer must ensure that all cam points multiplied by the

cam scale factor (CAS) are within the settings for the software

overtravel limits (OTR and OTF) as follows:

OTR <= CAM*CAS <= OTF

7. The cam table positions wrap at either end of the table. The

cam profile executes continuously until camming is disabled.

Examples: IMC/IMJ Target ARS

CAZ CAZ3 (* zero cam table)

CAM0=0 CAM3.0=0 (* set axis position at 0 degrees to 0 units)

CAM180=10 CAM3.180=10 (* set axis 1 position at 180 degrees to 10 units)

CAM0=0 CAM3.0=0 (* fill rest of table from 180 degrees to 0)

CAE=1 CAE3=1 (* enable cam following)

 What Will Happen: The cam table is cleared and the three CAM data points

construct an absolute move on the axis from zero to absolute

position 10 and then back to zero. When the cam is enabled the

controller reads the current master position (CAP which was

initialized to zero) and moves the axis to its corresponding

position from the cam table (in this case 0). The axis executes

the 0-10-0 profile continuously until camming is disabled.

Related Commands: CAE, CAO, CAS, CAT, CAZ

A-36 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CAO Cam Offset

Class: Motion Register

Type: Floating point

Syntax:

I, jr CAO

CAOp1 (e.g., CAO1 CAOVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units degrees

 default 0

 minimum -180.0

 maximum 180.0

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The cam offset register is used to define an offset on the cam

master position. This has the effect of shifting all points on the

cam table by the offset value and is often used to set phasing or

timing of the cam relative to other motion on the machine.

Remarks: The value of the CAO register does not change the value stored

in the PSX, CAR or CAP position registers. The value of CAO

is summed with the value in the CAP register to offset the

position of the cam master.

GFK-2205 Appendix A Registers and Commands A-37

A

CAP Cam Shaft Position

Class: Motion Register

Type: Floating point

Syntax: CAP

Range:

units degrees

minimum 0.000

maximum 359.999

Restrictions: Read only; For IMCs, this function available only with the

extended command set.

Use: This register is used to determine the cam shaft (master)

position within the defined 0–359,999 degree master cycle.

Remarks: The defining input for this register is selected by the cam shaft

position type, CAT, register. If CAT is set to CAR , then the

CAP command will report the cam master position based on

the value of the internal time-based cam position register

(CAR). If CAT is set to PSX, then the CAP command will

report the cam master position based on the value of the

auxiliary (encoder) position register (PSX). This register

cannot be set directly.

When CAT=PSX, the auxiliary position length (PLX) register

is used to set the range of auxiliary encoder travel required to

generate one complete cam cycle. For example, if the auxiliary

encoder is a 1,000 line device (4,000 pulses) and the desired

scaling is one auxiliary encoder revolution for one cam cycle

(0–360 degrees span on CAP register), the PLX register must

be set to 2,000 pulses (since PLX sets the aux. encoder position

rollover to +/- PLX, one half the number of pulses for an

encoder revolution are used). This configuration will cause

CAP to count from 0–180 degrees as PSX counts from

0–1,999 pulses. PSX then rolls over to -2,000 pulses and counts

back to zero as CAP completes the cycle from

181-359.999 degrees.

Related Registers: CAT, CAR, PSR, PSX

A-38 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CAR Cam Position Register

Class: Motion Register

Type: Floating point

Syntax: CAR

Range:

units degrees

default 0

minimum 0.000

maximum 359.999

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define an internal time-base as a virtual

master for cam following.

Remarks: The cam shaft position, CAP, is set to the value of this register

when the cam shaft position type, CAT, is set to CAR. In this

case the index rate for this register is defined by the cam

position register increment (CAI) command in degrees/second.

The CAR register increments at the rate defined by CAI while

the cam function is enabled (CAE=1) and stops incrementing

when camming is disabled (CAE=0). Camming can be

enabled/disabled by a program and is automatically disabled

when a controller fault occurs or the cam table is cleared (CAZ

command is executed).

Related Registers: CAT

GFK-2205 Appendix A Registers and Commands A-39

A

CAS Cam Scale Factor

Class: Motion Register

Type: Floating point

Syntax:

I, jr CAS

CASp1 (e.g., CAS2 CASVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 1

 minimum .010000

 maximum 100.000000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define a scale factor to be applied to the

magnitude of every axis position entered in the cam point table.

Remarks: CAS allows the user to create normalized cam tables that can

then be rescaled for different parts.

Related Registers: CAM

A-40 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CAT Cam Shaft Position Type

Class: Motion Register

Syntax: CAT

Range:

I, jr allowed values PSX (auxiliary position)

CAR (cam position)

 allowed values CAR (cam position)

PSRa (resolver position of selected axis)

Restrictions: For IMCs, this function available only with the extended

command set; cannot be used in expressions.

Use: This register selects the position register to use for cam

following. For normal cam following, CAT should be set to

PSX or PSRa. This makes the axis track the auxiliary encoder

or axis resolver on the cam shaft. To make the axis move

without the physical cam shaft turning, set CAT to CAR and

set CAI to increment CAR at the desired rate.

Example:

CAT=CAR (* set cam type to cam position register)

CAI=100 (* set increment to 100 degrees/sec)

Related Registers: PSX, CAR, CAP, CAI, PSR, PLX, PLA

GFK-2205 Appendix A Registers and Commands A-41

A

CAZ Zeros Cam Table

Class: Motion Command

Syntax:

I, jr CAZ

CAZp1 (e.g., CAZ5 CAZ234 CAZVI2)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8

or VIn

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This command zeros the cam table. This must be done before a

new set of cam points is entered.

Registers Used: CAM

Motion Templates:

I, jr, Single-axis electronic camming

Multi-axis synchronized electronic camming

A-42 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CCB Cam Compile Begin Point

Class: Motion Register

Type: Floating point

Syntax: CCB

Range:

units degrees

default 0

minimum 0.0

maximum 359.9

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the beginning point for compiling

the cam motion.

Related Registers: CCE

Related Commands: CCM

GFK-2205 Appendix A Registers and Commands A-43

A

CCE Cam Compile End Point

Class: Motion Register

Type: Floating point

Syntax: CCE

Range:

units degrees

default 0

minimum 0.0

maximum 359.9

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the ending point for compiling

the cam motion.

Related Registers: CCB

Related Commands: CCM

A-44 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CCM Compile Cam Motion

Class: Motion Command

Syntax:

I, jr CCM

CCMp1 (e.g., CCM3 CCM125 CCMVI6)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8

or VIn

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This command compiles motion into the cam table. Axis

motion starts at cam compile start position, CCP, and ends at

the value specified for the axis absolute move, MPA. The axis

position data is put in the cam table starting at the cam master

position specified by the cam compile begin point, CCB, and

ending at the cam compile end point, CCE. The axis motion is

also defined by the usual parameters MAP, MDP, and MJK.

Remarks: The cam table can be populated with known master/slave

position point pairs using simply the cam point (CAM)

command; however, the cam compile (CCM) command allows

the user to break the cam cycle into segments (specific range of

cam master motion) and define an axis absolute motion profile

for each segment. The compile command computes the cam

points in the required 0.1 degree increments and populates the

cam table accordingly. It is necessary to define segments that

encompass the entire 360 degree cam cycle.

Examples:

IMC/IMJ Target ARS

CCB=60 CCB=60 (* set cam compile beginning point to 60 degrees)

CCE=250 CCE=250 (* set cam compile ending point to 250 degrees)

CCP=0 CCP1=0 (* set starting axis position to 0)

MPA=10 MPA1=10 (* set ending axis position to 10)

MAP=30 MAP1=30 (* set acceleration/deceleration percent to 30)

MJK=100 MJK1=100 (* set jerk percent to 100)

CCM CCM1 (* compile axis motion into the cam table)

Registers Used: CCB, CCE, CCP, MPA, MAP, MDP, MJK

Motion Templates:

I, jr, Single-axis electronic camming

Multi-axis electronic camming

GFK-2205 Appendix A Registers and Commands A-45

A

CCP Cam Compile Start Position

Class: Motion Register

Type: Floating point

Syntax:

I, jr CCP

CCPp1 (e.g., CCP2 CCPVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

I, jr units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

 units axis units

 default 0 pulses

 minimum -8,000,000 pulses

 maximum 8,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the starting position of the axis

for compiling the cam motion.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values will

change appropriately (see URA).

Related Registers: MPA

Related Commands: CCM

A-46 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CE Conversion Error

Class: System Register

Type: Boolean

Syntax: CEp1 (e.g., CE1 CEVI4)

Parameters: allowed values description

I, jr p1 1 through 4 or VIn program number

 p1 1 through 17 or VIn program number

Range:

allowed values 0 or 1

Restrictions: Read only.

Use: The conversion error operand is used to determine whether a

conversion operation in one of the programs worked correctly.

A conversion error occurs when one data type (e.g. string) is

converted to another type (e.g. floating point) and results in

invalid data. If a conversion in program p1 resulted in a

conversion error, CEp1 is set to 1; and if no error has occurred,

CEp1 is set to 0. Note that CEp1 is updated after every

conversion in program p1.

Example:

CEVI1? (* report conversion error for program VI1)

Related Registers: SRP, ASC, CHR, ITF, STF, FTI, STI, FTS, ITB, ITH, ITS,

ITD, ITT

GFK-2205 Appendix A Registers and Commands A-47

A

CHANGEPW Prompts for Password Change

Class: System Command

Syntax: CHANGEPW

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to prompt the user for an initial

password or a password change.

Remarks: If there is no existing password the CHANGEPW command

will prompt for a new password. After the new password has

been entered, the controller will prompt for the new password

again for verification. If a password already exists the

controller will prompt for the old password. After the old

password has been entered, the controller will then prompt for

the new password. The password can be from four to ten

characters long. After the new password has been entered, the

controller will prompt for the new password again for

verification. Once this has been entered, the password will be

changed to the new value. By entering no characters when

prompted for the new password, the password function will be

disabled.

WARNING: Once set there is no way to recover normal use

of the controller without a valid password. Be sure to

record the password and store in a safe location.

Related Commands: PASSWORD

A-48 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CIE Computer Interface Format Enable

Class: System Register

Type: Boolean

Syntax: CIE

Range:

default 0

allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks.

Use: The computer interface format enable register is used to define

whether the computer interface format on the serial/program

port is enabled. If CIE is set to 1, computer interface format is

enabled, and if set to 0, computer interface format is disabled.

See Appendix D for fault and status register details.

Remarks: When the computer interface format is enabled, queries to fault

and status registers return numerical values instead of message

strings.

Related Registers: HSE, FC, FI, IO, SRA, SRP, SRS

GFK-2205 Appendix A Registers and Commands A-49

A

CLL Clears Line and Positions Cursor at Beginning of Line

Class: Input/Output Command

Syntax: CLL

Use: This command clears the current line and positions the cursor

at the beginning of the line on the display.

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: CLS

Related Registers: DSE

ASCII Codes: $1B$49

A-50 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CLM Clears User Memory; Resets Registers to Defaults

Class: System Command

Syntax: CLM

Restrictions: Not allowed in programs or motion blocks.

Use: This command removes all programs and motion blocks and

resets all registers to default values.

Remarks: 1. This command is irreversible; you cannot retrieve any

programs, motion blocks, or registers that you have previously

set after you execute this command.

2. This command will execute only when the controller or

system and all axes are faulted, the UPS register is set to zero,

and no programs or motion blocks are executing.

GFK-2205 Appendix A Registers and Commands A-51

A

CLS Clears Display and Positions Cursor at Home

Class: Input/Output Command

Syntax: CLS

Use: This command clears the display and positions the cursor at

home (i.e., the first column of the first line of the display).

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: CLL

Related Registers: DSE

ASCII Codes: $1B$4A

A-52 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CLX Clears Extended Memory Card

Class: System Command

Syntax: CLX

Restrictions: Not allowed in programs or motion blocks.

Use: This command sets all extended variables to default values.

Remarks: 1. This command is irreversible; you cannot retrieve any

extended variables that you have previously set after you

execute this command.

2. This command will execute only when the system and all

axes are faulted and no programs or motion blocks are

executing.

GFK-2205 Appendix A Registers and Commands A-53

A

CMA Commutation Angle Advance I

Class: Axis Register

Type: Floating point

Syntax:

I CMA

CMAp1 (e.g., CMA2 CMAVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units degrees per 75,000 pulses/sec

default 0

minimum -90.0

maximum 90.0

Restrictions: Brushless servo only.

Use: The commutation angle advance is used to compensate for the

lag in the commutation angle at high speed introduced by the

inductance of the motor.

Examples: IMC Target ARS

CMA=5 CMA1=5 (* set commutation angle advance)

CMA? CMAVI2? (* report commutation angle advance)

Related Registers: CMO

A-54 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CMD Position Controller Command Output

Class: Axis Register

Type: Floating point

Syntax:

I, jr CMD

CMDp1 (e.g., CMD2 CMDVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units %

minimum -20,000.0

maximum 20,000.0

Restrictions: Read only.

Use: The position controller command output is used to control the

position of the axis. It is a percentage of the controller

continuous current setting, CURC.

Example: IMC/IMJ Target ARS

CMD? CMDVI2? (* report position controller command

output)

Related Registers: CURC

GFK-2205 Appendix A Registers and Commands A-55

A

CMO Commutation Angle Offset

Class: Axis Register

Type: Floating point

Syntax:

I, jr CMO

CMOp1 (e.g., CMO2 CMOVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units degrees

I default -90.0

jr default 90.0

 minimum -180.0

 maximum 180.0

Restrictions: Brushless servo only.

Use: The commutation angle offset of the motor is set by the motor

manufacturer. If necessary, this value, along with the value of

CMR, can be set automatically by the MOTORSET command.

Related Registers: CMA, CMR, AR

Related Commands: MOTORSET

A-56 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CMR Motor Poles to Resolver Poles Commutation Ratio

Class: Axis Register

Type: Integer

Syntax:

I, jr CMR

CMRp1 (e.g., CMR1 CMFVI8)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

I, default 2

jr default 3

 minimum 1

 maximum 16

Restrictions: Brushless servo only

Use: The motor poles to resolver poles commutation ratio is one of

the motor constants needed to operate a resolver feedback

servo motor. This value, along with the value of CMO, can be

set automatically by the MOTORSET command.

Related Registers: CMO, AR

Related Commands: MOTORSET

GFK-2205 Appendix A Registers and Commands A-57

A

COPYFLASH Copies Extended Memory Card

Class: System Command

Syntax: COPYFLASH

Restrictions: Not allowed in programs or motion blocks.

Use: This command copies the contents of the extended memory

card into the flash memory card in the firmware slot.

Remark: This command will execute only when the system and all axes

are faulted and no programs or motion blocks are executing.

A-58 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

COPYRAM Copies Extended Memory Card

Class: System Command

Syntax: COPYRAM

Restrictions: Not allowed in programs or motion blocks.

Use: This command copies the contents of the extended memory

card into the RAM memory card in the firmware slot.

Remark: This command will execute only when the system and all axes

are faulted and no programs or motion blocks are executing.

GFK-2205 Appendix A Registers and Commands A-59

A

CR Positions Cursor at Beginning of Next Line Down

Class: Input/Output Command

Syntax: CR

Use: This command positions the cursor at the beginning of the next

line down on the display. It sends the ASCII codes for a

carriage return ($0D) followed by a line feed ($0A) to the serial

port. This command is typically used to positions the cursor at

the beginning of the next line on an ASCII compliant operator

display connected to the controller serial port.

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: BS, CRH, CRP

Related Registers: DSE

ASCII Codes: $0D$0A

A-60 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CRH Positions Cursor at Home

Class: Input/Output Command

Syntax: CRH

Use: This command positions the cursor at home (i.e., the first

column of the first line of the display).

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: BS, CR, CRP

Related Registers: DSE

ASCII Codes: $1B$48

GFK-2205 Appendix A Registers and Commands A-61

A

CRM Remembers Cursor Position

Class: Input/Output Command

Syntax: CRM

Use: This command is used to remember the current position of the

cursor.

Remarks: CRM is used in conjunction with the display when DSE is set

to 1.

Related Commands: CRR

ASCII Codes: $1B$3F

A-62 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CRP Positions Cursor

Class: Input/Output Command

Syntax: CRPp1.p2 (e.g, CRP1.3 CRPVI2.3 CRP2.VI1 CRPVI1.VI2)

Parameters: allowed values description

p1 1 to 4 or VIn line position

p2 1 to 40 or VIn column position

Use: This command positions the cursor on line p1, column p2 of

the display.

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Example:

CRP1.2 (* position cursor at line 1, column 2 of the display)

CRP1.VI1 (* position cursor at line 1, column VI1 of the display)

Related Commands: BS, CR, CRH

Related Registers: DSE

ASCII Codes: $1B$46 $(p2+20h) $(p1+20h)

GFK-2205 Appendix A Registers and Commands A-63

A

CRR Positions Cursor at Remembered Position

Class: Input/Output Command

Syntax: CRR

Use: This command is used to place the cursor at the position

remembered by the CRM command.

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Related Commands: CRM

Related Registers: DSE

ASCII Codes: $1B$40

A-64 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CTR Counter

Class: Input/Output Register

Type: Integer

Syntax: CTRp1.p2 (e.g., CTR1.3 CTR5.VI1 CTRVI2.1 CTRVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 through 4 or VIn counter number

Range:

default 0

minimum 0

maximum 2,000,000,000

Use: Counters are used to count inputs to the system. These inputs

are taken from the first four inputs of a digital I/O module. For

example, counter one takes its count from digital input one,

counter two from digital input two, etc. Counters can be reset

(i.e., set to zero), but they cannot be set to any other value.

Example:

CTR1.3=0 (* set counter three of digital module one to zero)

CTR5.VI1? (* report counter VI1 of digital module five)

Related Registers: TMI, TMP

GFK-2205 Appendix A Registers and Commands A-65

A

CURC Continuous Current

Class: Axis Register

Type: Floating point

Syntax:

I, jr CURC

CURCp1 (e.g., CURC1 CURCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units %

default 60.0 (stepper) and 100.0 (brushless servo)

minimum 1.0

maximum 100.0

Restrictions: Stepper and brushless servo only.

Use: The continuous current setting limits the current that the drive

will continuously supply to the motor. It is a percentage of the

maximum continuous current rating of the drive.

Remarks: The equation for CURC = motor continuous current rating /

drive continuous current rating x 100%. Continuous current

ratings are listed on the drive and motor product labels. Use the

following values for CURC:

IMC/IMJ Stepper Unit IMC Servo Unit CURC Values

Motor 5 Amps Motor 3 Amps 6 Amps 12 Amps 24 Amps

1221-_-A-E-_ 70 3S22-G 46 23 n/a n/a

1231-_-A-E-_ 62 3S32-G 96 48 24 n/a

1324-_-A-E-_ 100 3S33-G 100 53 26 n/a

1324-_-D-E-_ 54 3S33-H 100 100 53 26

1337-_-A-E-_ 100 3S34-G 100 50 25 n/a

1337-_-D-E-_ 82 3S35-G 96 48 24 n/a

1350-_-A-E-_ 100 3S43-G 96 48 24 n/a

1350-_-D-E-_ 80 3S43-H 100 93 46 23

1362-_-A-E-_ 100 3S45-G 100 91 45 22

1454-_-A-E-_ 100 3S45-H 100 100 91 45

1480-_-A-E-S 100 3S46-G 100 91 45 22

3S46-H 100 100 91 45

3S63-G 100 100 91 45

3S65-G 100 100 89 44

3S67-G 100 100 94 47

3S88-G 100 100 100 100

3S8A-G 100 100 100 100

Related Registers: CURP, CURS, TLC

A-66 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

 IMJ Servo Unit CURC Values

Motor 3 Amps 7.2 Amps 16 Amps 28 Amps

3N21-H 100 42 n/a n/a

3N22-H 100 42 n/a n/a

3N24-G 87 36 n/a n/a

3N31-H 100 46 21 n/a

3N32-G 100 42 n/a n/a

3N32-H 100 86 39 22

3N33-G 93 39 n/a n/a

3N33-H 100 79 36 20

3S22-G 50 21 n/a n/a

3S32-G 100 42 n/a n/a

3S33-G 100 44 20 n/a

3S33-H 100 88 40 23

3S34-G 100 42 n/a n/a

3S35-G 100 42 n/a n/a

3S43-G 97 40 n/a n/a

3S43-H 100 79 36 20

3S45-G 100 76 34 20

3S45-H 100 100 69 39

3S46-G 100 76 34 20

3S46-H 100 100 69 40

3S63-G 100 100 69 40

3S63-H 100 100 100 79

3S65-G 100 100 68 39

3S65-H 100 100 100 77

3S67-G 100 100 71 40

3S67-H 100 100 100 81

3S84-G 100 100 100 100

3S86-G 100 100 100 100

3S88-G 100 100 100 100

3S8A-G 100 100 100 88

 Target ARS Servo Motor CURC Values
 1 Servo 2 Servo 3 Servo 4 Servo

Motor Modules Modules Modules Modules

3S22-G 23 n/a n/a n/a

3S32-G 48 24 n/a n/a

3S33-G 53 26 n/a n/a

3S33-H 100 53 35 26

3S34-G 50 25 n/a n/a

3S35-G 48 24 n/a n/a

3S43-G 48 24 n/a n/a

3S43-H 93 46 31 23

3S45-G 91 45 30 22

3S45-H 100 91 61 45

3S46-G 91 45 30 22

3S46-H 100 91 61 45

3S63-G 100 91 61 45

3S65-G 100 89 59 44

3S67-G 100 94 63 47

3S88-G 100 100 100 100

3S8A-G 100 100 100 100

GFK-2205 Appendix A Registers and Commands A-67

A

 IMJ Servo Unit CURC Values

Motor 3 Amps 7.2 Amps 16 Amps 20 Amps 28 Amps

3T11-G 32 n/a n/a n/a n/a

3T12-G 63 n/a n/a n/a n/a

3T13-G 91 n/a n/a n/a n/a

3T21-G 57 n/a n/a n/a n/a

3T22-G 88 n/a n/a n/a n/a

3T23-G 90 38 n/a n/a n/a

3T23-H 100 47 n/a n/a n/a

3T23-I 100 69 n/a n/a n/a

3T24-H 100 46 n/a n/a n/a

3T24-I 100 74 n/a n/a n/a

3T42-G 93 39 n/a n/a n/a

3T42-H 100 65 29 24 n/a

3T43-G 100 51 23 n/a n/a

3T43-H 100 64 29 23 n/a

3T43-I 100 100 63 51 n/a

3T43-J 100 100 45 36 n/a

3T44-G 100 50 23 n/a n/a

3T44-H 100 75 34 27 n/a

3T44-I 100 100 63 51 n/a

3T44-J 100 100 45 36 n/a

3T45-G 100 50 23 n/a n/a

3T45-H 100 99 44 36 n/a

3T45-I 100 100 63 50 n/a

3T53-G n/a 94 43 34 24

3T53-H n/a 100 61 49 35

3T54-G n/a 99 44 36 25

3T54-H n/a 100 66 53 38

3T55-G n/a 99 44 36 25

3T55-H n/a 100 66 53 38

3T55-I n/a 100 100 100 76

3T57-G n/a 100 61 49 35

3T57-H n/a 100 100 98 70

3T65-G n/a n/a 71 57 40

3T65-H n/a n/a 100 100 75

3T66-G n/a n/a 71 57 40

3T66-H n/a n/a 100 100 74

3T67-G n/a n/a 100 100 74

3T69-G n/a n/a 100 100 74

A-68 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

CURP Peak Current

Class: Axis Register

Type: Floating point

Syntax:

I, jr CURP

CURPp1 (e.g., CURP1 CURPVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units %

 default 100.0

 minimum 1.0

 maximum 100.0

Restrictions: Brushless servo only.

Use: The peak current setting limits the peak value of the current

that the drive will supply to the motor. It is a percentage of the

maximum peak current rating of the drive. The maximum peak

current is two times the drive’s continuous rating.

Remarks: Use the following equation to calculate CURP:

100% x (motor peak current rating / drive peak current rating)

For example, when using a 5 Amp motor with a 4.3 Amp drive

(8.6 Amp peak), CURP = 100% x (5 Amps / 8.6 Amps) = 58%.

Related Registers: CURC

GFK-2205 Appendix A Registers and Commands A-69

A

CURS Power Save Current I jr

Class: Axis Register

Type: Floating point

Syntax: CURS

Range:

units %

default 60.0

minimum 0.0

maximum 100.0

Restrictions: Stepper only.

Use: The power save current is used to reduce motor heating when

the axis is stopped. While the axis is in position, the continuous

current value, CURC, is reduced to the percentage loaded into

CURS. For example, if CURC=50 and CURS=20, the value of

CURC will be reduced to 10 percent while the axis is in

position.

Related Registers: CURC

A-70 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DATE Date I

Class: System Register

Type: String

Syntax: DATE

Range:

allowed values 1994-1-1 (i.e., January 1, 1994) through

2060-12-31 (i.e., December 31, 2060)

Restrictions: Cannot be assigned in motion blocks.

Use: The DATE register is used to keep track of the current date.

The format is year-month-day. For example, to set the date to

August 9, 1998, the command would be DATE=“1998-8-9”.

Example:

DATE=“1998-7-21” (* set date to 1998-7-21 [i.e., July 21, 1998])

DATE? (* report date)

*“1998-07-21”

Related Registers: TIME, DAY, MONTH

GFK-2205 Appendix A Registers and Commands A-71

A

DAY Day I

Class: System Register

Type: String

Syntax: DAY

Range:

allowed values Sunday, Monday, Tuesday,...Saturday

Restrictions: Read only.

Use: The DAY register is used to keep track of the current day of the

week.

Example:

DAY? (* report day)

*Tuesday

Related Registers: TIME, DATE, MONTH

A-72 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DEL Deletes Current Statement in Line Editor

Class: Program Command

Syntax: DEL

Restrictions: Allowed only in programs or motion blocks.

Use: This command is used to edit programs or motion blocks in the

terminal window line editor. It deletes the current statement in

the line editor and makes the next statement the current

statement.

Remarks: To use the terminal window for program editing, use the

PROGRAM and MOTION commands. Edits you make in the

line editor are not saved to your original program or motion

block’s .txt file.

While in the line editor each line is prefixed by an asterisk (*).

The exclamation point (!) command is used to exit the terminal

window line editor.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* define program 1)

* PSA=0 * PSA1=0

X X (* step through program)

* MVL=10 * MVL1=10

X X (* step through program)

* MAC=40 * MAC1=40

DEL DEL (* delete current statement)

* MPA=12 * MPA1=12

MAC=10 MAC1=10 (* set motion acceleration)

* MPA=12 * MPA1=12

! ! (* exit line editor)

 What will happen: This program example changes “MAC=40” to “MAC=10” in

program 1.

Related Commands: PROGRAM, L, LABEL, X, !

GFK-2205 Appendix A Registers and Commands A-73

A

DGC Loads Diagnostic Condition for Printing

Class: Diagnostic Command

Syntax: DGCp1=p2 (e.g., DGC1=MB1, DGC2=TL1 or IP1)

Parameters: default allowed values description

I, jr p1 1 through 4 diagnostic condition number

 p2 OFF any Boolean diagnostic condition

expression or OFF

 p1 1 through 8 diagnostic condition number

 p2 OFF any Boolean diagnostic condition

expression or OFF

Restrictions: Not allowed in programs or motion blocks.

Use: This command assigns diagnostic condition p1. When one of

the user defined diagnostic conditions is satisfied, and if

diagnostics are enabled, a diagnostic line of items is sent to the

terminal (see DGL, DGI).

Remarks: Upon clearing the memory with the CLM command, all

diagnostic conditions and items are set to the value “OFF,”

which means that there are no diagnostic conditions/items

assigned. If you wish to eliminate the assignment of diagnostic

condition p1, use the DGC command and set parameter p2 to

“OFF.” For example, DGC1=OFF will eliminate the

assignment of diagnostic condition one.

Example:

STM2=0.5 (* set start time of timer two to 0.5 seconds)

DGC1=TM2 AND

PROG1 (* assign diagnostic condition 1)

 What will happen: Setting the start time of timer 2 and assigning diagnostic

condition 1 will send a diagnostic line of items to the terminal

every 0.5 seconds while program 1 is executing. Each

diagnostic line will begin with the diagnostic condition

satisfied, which in this case would be “TM2 AND PROG1,”

and then be followed by a colon and the diagnostic items

loaded.

Related Commands: DGE, DGI, DGL, DGP

A-74 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DGE Enables Diagnostics

Class: Diagnostic Command

Syntax: DGE=p1 (e.g., DGE=0)

Parameters: default allowed values description

p1 0 0 and 1 diagnostic enable bit

Restrictions: Not allowed in programs or motion blocks. Diagnostics work

only via serial communication.

Use: This command is used to enable the diagnostic mode of the

system. When DGE is set to 1, diagnostics are enabled, and

when set to 0, diagnostics are disabled.

Remarks: DGE is set to 0 upon power-up.

Related Commands: DGC, DGI, DGL, DGP, DGO, DGS, DGT

GFK-2205 Appendix A Registers and Commands A-75

A

DGI Assigns Diagnostic Item to Print

Class: Diagnostic Command

Syntax: DGIp1=p2 (e.g., DGI1=VLA DGI3=PHR1)

Parameters: default allowed values description

p1 1 through 8 diagnostic item number

p2 OFF any register diagnostic item

or OFF

Restrictions: Not allowed in programs or motion blocks.

Use: This command assigns a diagnostic item to be printed

whenever a DGL is executed or whenever one of the

user-defined diagnostic conditions is met.

Remarks: Upon clearing the memory with the CLM command, all

diagnostic conditions and items are set to the value “OFF,”

which means that there are no diagnostic conditions/items

assigned. If you wish to eliminate the assignment of diagnostic

item p1, use the DGI command and set parameter p2 to “OFF.”

For example, DGI1=OFF will eliminate the assignment of

diagnostic item one.

Examples: IMC/IMJ Target ARS

DGI1=PSA DGI1=PSA1 (* assign diagnostic item one)

DGI2=VLA DGI2=VLA1 (* assign diagnostic item two)

DGI3=FE DGI3=FE1 (* assign diagnostic item three)

DGI4=PSR DGI4=RSR1 (* assign diagnostic item four)

 What will happen: Assigning these diagnostic items when diagnostics are enabled

will send the diagnostic items to the terminal when the DGL

command is executed.

Related Commands: DGE, DGC, DGL, DGP

A-76 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DGL Prints Diagnostic Line of Items

Class: Diagnostic Command

Syntax: DGL

Use: This command prints to the terminal a diagnostic line of items

that have been assigned with the DGI command. This works

only while diagnostics are enabled.

Remarks: Since this command is ignored when diagnostics are not

enabled, it can be left in programs even when you are not using

diagnostics.

Examples: IMC/IMJ Target ARS

DGI1=PSA DGI=1PSA1 (* assign diagnostic item one)

DGI2=VLA DGI2=VLA1 (* assign diagnostic item two)

DGI3=FE DGI3=FE1 (* assign diagnostic item three)

DGI4=PSR DGI4=PSR1 (* assign diagnostic item four)

DGL DGL (* print diagnostic line of items)

*DGL: PSA=0, *DGL: PSA1=0,

 VLA=0 VLA1=0

DGL: FE=0, DGL: FE1=0,

 PSR=3061 PSR1=3061

Related Commands: DGE, DGC, DGI, DGP

GFK-2205 Appendix A Registers and Commands A-77

A

DGO Outputs Diagnostic Register Value to Serial Port

Class: Diagnostic Command

Syntax:

I, jr DGO p1 (e.g., DGO VLA, DGO IO)

DGO p1 (e.g., DGO VLA1, DGO IOS)

Parameters: allowed values description

p1 any register register

Use: This command outputs a diagnostic register value to the serial

or program port when diagnostics are enabled (DGE=1). It

works the same as the “?” command, but it can also be used in

programs and motion blocks.

Remarks: Since this command is ignored when diagnostics are not

enabled, it can be left in programs even when you are not using

diagnostics.

Examples:

DGO PSA (* outputs axis position to the serial port)

DGO VLA (* outputs axis velocity to the serial port)

Related Commands: ?, DGE, DGL, DGP

A-78 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DGP Prints Diagnostic Message to Serial Port

Class: Diagnostic Command

Syntax: DGP“p1” (e.g., DGP“Drill operating”)

Parameters: allowed values description

p1 any string, 0 through diagnostic message

127 characters long

Use: This command prints the diagnostic message p1 to the serial or

program port. It works only when diagnostics are enabled.

Remarks: Since this command is ignored when diagnostics are not

enabled, it can be left in programs even when you are not using

diagnostics.

Example:

DGE=1 (* enable diagnostics)

DGP“Diagnostics enabled” (* send diagnostic message to serial or program port)

*Diagnostics enabled

Related Commands: DGE, DGC, DGI, DGL

GFK-2205 Appendix A Registers and Commands A-79

A

DGS Sets Program to Single Step Mode

Class: Diagnostic Command

Syntax: DGS=p1 (e.g., DGS=2)

Parameters: default allowed values description

I, jr p1 0 0 through 4 program number (0 = no

program in single step mode)

 p1 0 0 through 17 program number (0 = no

program in single step mode)

Restrictions: Not allowed in motion blocks.

Use: This command sets program p1 to single step mode. If DGS is

set to 0, single step mode is disabled. Single step mode can

occur only when diagnostics are enabled.

Remarks: To execute a program while in single step mode, use the X

command to step through the program (i.e., execute the

program one statement at a time). As each line of the program

is executed, it is sent to the terminal.

Examples: IMC/IMJ Target ARS

DGE=1 DGE=1 (* enable diagnostics)

DGS=3 DGS=3 (* set program three to single step mode)

EXP3 EXP2 (* execute program three)

* PSA=0 * PSA1=0

X X (* step through program)

* MVL=25 * MVL1=25

X X (* step through program)

* MAC=10 * MAC1=10

X X

* MPI=40 * MPI1=40

X X

* RPI * RPI1

X X

* END * END

X X

* *

 What will happen: Enabling diagnostics, setting program three to single step

mode, and executing program three will cause only the first

line of the program to execute. The X command causes the

program to execute the next line, send that line to the terminal,

and so on until it reaches the end of the program.

Related Commands: DGE, DGT

A-80 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DGT Sets Program to Trace Mode

Class: Diagnostic Command

Syntax: DGT=p1 (e.g., DGT=2)

Parameters: default allowed values description

I, jr p1 0 0 through 4 program number (0 = no

program in trace mode)

 p1 0 0 through 17 program number (0 = no

program in trace mode)

Restrictions: Not allowed in motion blocks.

Use: This command sets program p1 to trace mode. If DGT is set to

0, trace mode is disabled. Trace mode can occur only when

diagnostics are enabled.

Remarks: 1. When trace mode is enabled, each line of program p1 is sent

to the terminal as it is executing.

2. CAUTION: Trace mode can cause the program to run

approximately 1,000 times slower than normal!

Examples: IMC/IMJ Target ARS

DGE=1 DGE=1 (* enable diagnostics)

DGT=3 DGT=3 (* set program three to trace mode)

EXP3 EXP3 (* execute program three)

* PSA=0 * PSA1=0

MVL=25 MVL1=25

MAC=10 MAC1=10

MPI=40 MPI1=40

RPI RPI1

END END

* *

 What will happen: Enabling diagnostics, setting program three to trace mode, and

executing program three will cause each line of the program to

be sent to the terminal while it is executing.

Related Commands: DGE, DGS

GFK-2205 Appendix A Registers and Commands A-81

A

DI Digital Input

Class: Input/Output Register

Type: Integer, Boolean

Syntax:

I, jr DIp1 (e.g., DI DI4 DIVI1)

DIp1.p2 (e.g., DI1 DIVI2 DI1.4 DI1.VI1 DIVI1.3)

Parameters: allowed values description

IMJ-_ _ _D p1 none or 1 through 14 or VIn digital input number

IMJ-_ _ _E p1 none or 1 through 21 or VIn digital input number

I p1 none or 1 through 12 or VIn digital input number

 p1 1 through 8 or VIn digital module number

 p2 none or 1 through 32 or VIn digital input number

Range: allowed values

IMJ-_ _ _-D 0 through 3FFF16 or 0 and 1

IMJ-_ _ _-E 0 through 1FFFFF16 or 0 and 1

I 0 through FFF16 or 0 and 1

0 through FFFFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The digital input register contains the values of digital inputs,

which are general purpose inputs used for process control.

Remarks:

I, jr 1. When the DIp1? command is executed, the value of the digital input p1 will

be given as a Boolean number.

I, jr 2. When DI? is executed, the digital inputs will be reported as binary numbers.

The left-most bit represents digital input 12, 14, or 21, depending on your

controller model number (see Parameters above); and the right-most bit

represents digital input 1.

jr 3. DI1 = home; DI2 = forward overtravel (+OT); DI3 = reverse overtravel

(-OT). Set the OTE register = 1 to enable the overtravels.

1. When the DIp1.p2? command is executed, the value of the digital input p2

of digital module p1 will be given as a Boolean number.

2. When DIp1? is executed, digital inputs 1 through 32 of digital module p1

will be reported as a binary number with the bits in groups of four. The

left-most bit represents digital input 32, and the right-most bit represents digital

input 1.

Examples: IMC/IMJ Target

DI? DIVI1? (* report value of digital input register)

DI4? DI1.4? (* report value of digital input four)

Related Registers: EG, DO, DID, IO, IOA, IOS

A-82 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DIA Digital Input Filter Assignment

Class: Input/Output Register

Type: Integer

Syntax: DIAp1.p2 (e.g., DIA1.2 DIA1.VI1 DIAVI1.1 DIAVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 and 2 or VIn 1 — digital inputs 1 through 16

2 — digital inputs 17 through 32

Range:

allowed values 0 through FFFF16

Restrictions: Cannot be assigned in motion blocks.

Use: The digital input filter assignment is used to define which of

the digital inputs are to be filtered. This number is a 16-bit

binary number, where the left-most bit represents input 16 for

p2=1 (32 for p2=2) and the right-most bit represents input 1 for

p2=1 (17 for p2=2). If an input’s corresponding bit is set to 1,

then the input is to be filtered; and if set to 0, it is not to be

filtered.

Example:

DIA1.1=2#0001_0001_1010_0000 (* set digital input filter assignment of digital

module one to inputs 6, 8, 9, and 13)

DIA1.2=2#0001_0001_1010_0000 (* set digital input filter assignment of digital

module one to inputs 22, 24, 25, and 29)

Related Registers: DI, DIT

GFK-2205 Appendix A Registers and Commands A-83

A

DID Digital Input Digit

Class: Input/Output Register

Type: Integer

Syntax: DIDp1.p2 (e.g., DID1.4 DID1.VI1 DIDVI1.3 DIDVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 through 8 or VIn digital input digit number

Range:

minimum 0

maximum 15

Restrictions: Read only.

Use: The digital input digits are hexadecimal digits, each of which

are taken from four digital inputs. For example, digital input

digit 1 comes from digital inputs 1 through 4, digit 2 comes

from inputs 5 through 8, and so on up to digit 8, which comes

from digital inputs 29 through 32.

Example:

DIDVI1.3? (* report value of digital input digit three of digital module

VI1)

Related Registers: DI

A-84 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DIR Direction of Motor for Forward Moves

Class: Axis Register

Type: String

Syntax:

I, jr DIR

DIRp1 (e.g., DIR2 DIRVI1)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default CW

 allowed values CW, CCW

Restrictions: Not allowed in motion blocks.

Use: This register is used to define the direction of the motor

assigned to the axis for forward moves. If DIR is set to CW, a

forward move by the motor is clockwise, facing the motor

shaft. If DIR is set to CCW, a forward move by the motor is

counterclockwise, facing the motor shaft. The Fwd/Rev LED

on the front of the controller illuminates green when the axis is

moving in the forward direction and yellow when moving in

the negative direction. In a program, this register can be set

only when the controller is faulted.

GFK-2205 Appendix A Registers and Commands A-85

A

DIT Digital Input Filter Time

Class: Input/Output Register

Type: Floating point

Syntax:

I, jr DITp1 (e.g., DIT2 DITVI3)

DITp1.p2 (e.g., DIT1.2 DIT1.VI1 DITVI1.1 DITVI1.VI2)

Parameters: allowed values description

I, jr p1 1 through 12 or VIn digital input number

 p1 1 through 8 or VIn digital module number

 p2 1 and 2 or VIn 1— digital inputs 1 through 16

2 — digital inputs 17 through 32

Range:

I, jr units seconds

 default 0

 minimum 0

 maximum 4.000

 units seconds

 default 0.001

 minimum 0.001

 maximum 4.000

Restrictions: Cannot be assigned in motion blocks.

Use: The digital input filter time is used to represent the minimum

duration of a pulse that the filter will allow to pass. This filter

time is applied to the digital input specified. DIT allows up to

three decimal places.

Remarks: The primary use for this command is to debounce a contact

connected to a digital input. Generally, contact bounce lasts for

less than 30 milliseconds; so setting DIT=.03 should debounce

the contact. Because filtering slows input response, use the

smallest value for filter time that works for the application.

Examples: IMC/IMJ Target ARS

DIT3=.03 DIT1.1=.03 (* set digital input filter time to 30 ms)

Related Registers: DI, DIA

A-86 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DM Digital Module Rack Slot Assignment

Class: System Register

Syntax: DMp1 (e.g., DM4 DMVI2)

Parameters: allowed values description

p1 1 through 8 digital module number

Range:

default 0

allowed values 0; 11 through 18; 21 through 28; 31 through 38

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: The digital module rack slot assignment is used to define in

which slot a digital module resides. The digital module rack

slot assignment consists of two digits. The first digit is the rack

number, and the second digit is the slot number. If DMp1 is

equal to 0, it means that digital module p1 is not used in the

system.

Example:

DM1=18 (* set digital module rack slot assignment of digital module one

to rack one, slot eight)

DM5? (* report digital module rack slot assignment of digital

module 5)

Related Registers: AM, SM, DME

GFK-2205 Appendix A Registers and Commands A-87

A

DME Digital Module Assignment Error

Class: System Register

Type: Integer, Boolean

Syntax: DMEp1 (e.g., DME DME8 DMEVI2)

Parameters: allowed values description

p1 none or 0 through 23 digital module assignment

or VIn error register bit number

Range:

allowed values 0 through FFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The digital module assignment error register is used to

determine if any of the digital modules are not properly

assigned by the system.

Remarks: 1. When the DME? command is executed, the module

assignment error register value will be given as an English

statement. If all digital module assignments are correct, the

message given is All module assignments are correct.

2. If the computer interface format is enabled, and the DME?

command is executed, the module assignment error register

value will be given as an integer number. If all digital module

assignments are correct, the module assignment error register is

set to 0. The possibilities are listed below:

bit message

0 Module in rack one, slot one did not respond to assignment

1 Module in rack one, slot two did not respond to assignment

2 Module in rack one, slot three did not respond to assignment

3 Module in rack one, slot four did not respond to assignment

4 Module in rack one, slot five did not respond to assignment

5 Module in rack one, slot six did not respond to assignment

6 Module in rack one, slot seven did not respond to assignment

7 Module in rack one, slot eight did not respond to assignment

8 Module in rack two, slot one did not respond to assignment

... ...

... ...

... ...

22 Module in rack three, slot seven did not respond to assignment

23 Module in rack three, slot eight did not respond to assignment

A-88 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DO Digital Output

Class: Input/Output Register

Type: Integer, Boolean

Syntax:

I, jr DOp1 (e.g., DO DO9 DOVI1)

DOp1.p2 (e.g., DO1 DOVI3 DO1.4 DO1.VI1 DOVI1.VI2)

Parameters: allowed values description

IMJ-_ _ _D p1 none or 9 through 14 or VIn digital output number

IMJ-_ _ _E p1 none or 12 through 21 or VIn digital output number

I p1 none or 7 through 12 or VIn digital output number

 p1 1 through 8 or VIn digital module number

 p2 none or 1 through 32 or VIn digital output number

Range: allowed values

IMJ-_ _ _-D 0 through 3F0016 or 0 and 1

IMJ-_ _ _-E 0 through 1FF80016 or 0 and 1

I 0 through FC016 or 0 and 1

0 through FFFFFFFF16
or 0 and 1

Use: The digital output register contains the values of digital outputs. The digital

outputs are general purpose outputs used for process control.

Remarks:

I, jr 1. When the DOp1? command is executed, the value of the digital output p1

will be given as a Boolean number.

2. When DO? is executed, the digital outputs will be reported as binary

numbers. The left-most bit represents digital output 12, 14, or 21, depending

on your controller model number (see Parameters above); and the right-most

bit represents digital output 1.

I 1. The IMC has six set point outputs, A–F, that are assigned to the following

digital outputs: A=11, B=12, C=7, D=8, E=9, F=10.

1. When the DOp1.p2? command is executed, the value of the digital output

p2 of digital module p1 will be given as a Boolean number.

2. When DOp1? is executed, digital outputs 1 through 32 of digital module p1

will be reported as a binary number with the bits in groups of four. The

left-most bit represents digital output 32, and the right-most bit represents

digital output 1.

Examples: IMC/IMJ Target ARS

DO=16#3400 DO1=16#11A00000 (* set digital output register)

DOVI1=1 DO1.VI1=1 (* set digital output VI1)

DO? DO1? (* report digital output register)

DO12? DO1.12? (* report value of digital output 12)

Related Registers: DI, DO, DOD, DOP

GFK-2205 Appendix A Registers and Commands A-89

A

DOD Digital Output Digit

Class: Input/Output Register

Type: Integer

Syntax: DODp1.p2 (e.g., DOD1.4 DOD1.VI1 DODVI1.3

DODVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 through 8 or VIn digital output digit number

Range:

default 0

minimum 0

maximum 15

Use: The digital output digits are hexadecimal digits, each of which

are taken from four digital outputs. For example, digital output

digit 1 comes from digital outputs 1 through 4; digit 2 comes

from outputs 5 through 8; and so on up to digit 8, which comes

from digital outputs 29 through 32.

Example:

DOD1.2=12 (* set digital output digit two of digital module one to 12)

DODVI1.3? (* report value of digital output digit three of digital

module VI1)

Related Registers: DO

A-90 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DOE Fault on Digital Output Fault Enable

Class: Input/Output Register

Type: Boolean

Syntax: DOE

Range:

default 0

allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks.

Use: This register is used to enable the system to fault on a digital

output fault. A digital output fault occurs when the state of the

digital output is true but the state of the associated digital input

is not (after a time of 4 ms). If DOE is set to 1, the fault on

digital output fault is enabled; and if DOE is set to 0, it is

disabled.

GFK-2205 Appendix A Registers and Commands A-91

A

DOP Power-up State of Digital Outputs I

Class: Input/Output Register

Syntax:

I DOP

DOPp1.p2 (e.g., DOP1.2 DOP4.VI1 DOPVI1.1

DOPVI1.VI2)

Parameters: allowed values description

 p1 1 through 8 or VIn digital module number

 p2 1 and 2 or VIn 1 — digital outputs 1 through 16

2 — digital outputs 17 through 32

Range:

 default OFF

 allowed values OFF (all off)

LAST (last state)

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: The power-up state of digital outputs is the state that the digital

output assumes upon system power-up. “LAST” means that

the power-up state of the digital outputs is the same as the state

they were in before the system was powered off.

Examples: IMC Target ARS

DOP=OFF DOP1.1=OFF (* set power-up state of digital

outputs to OFF)

DOP? DOPVI1.2? (* report value of power-up state

of digital outputs)

Related Registers: DO

A-92 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

DSE Display Format Enable I jr

Class: System Register

Type: Boolean

Syntax: DSE

Range:

default 1

allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks.

Use: This command is used to enable the display format on the serial

port. If DSE is set to 1, the display format is enabled; and if set

to 0, the display format is disabled.

Remarks: When the display format is enabled, output strings from the

PUT and OUT commands are prefixed by control code 1116

and suffixed by control code 1216. The OIP display intercepts

all strings delimited by the control codes and does not send

those strings to its host port.

Related Commands: PUT, OUT

GFK-2205 Appendix A Registers and Commands A-93

A

This page left blank intentionally.

A-94 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

EG Positive-edge-sensitive Digital Input

Class: Input/Output Register

Type: Integer, Boolean

Syntax:

I, jr EGp1 (e.g., EG EG4 EGVI3)

EGp1.p2 (e.g., EG1 EGVI2 EG1.4 EG1.VI1 EGVI1.3)

Parameters: allowed values description

IMJ-_ _ _D p1 none or 1 through 14 or VIn positive-edge-sensitive

digital input number

IMJ-_ _ _E p1 none or 1 through 21 or VIn positive-edge-sensitive

digital input number

I p1 none or 1 through 12 or VIn positive-edge-sensitive

digital input number

 p1 1 through 8 or VIn digital module number

 p2 none or 1 through 32 or VIn positive-edge-sensitive

digital input number

Range:

IMJ-_ _ _-D 0 through 3FFF16 or 0 and 1

IMJ-_ _ _-E 0 through 1FFFFF16 or 0 and 1

I allowed values 0 through FFF16 or 0 and 1

 allowed values 0 through FFFFFFFF16 or 0 and 1

Use: EG contains the values of all digital inputs that have made a

low to high transition since they were last cleared. These

general purpose inputs are used for process control.

Remarks:

I, jr 1a. When the EGp1? command is executed, its value will be

given as a Boolean number. A value of 1 means DIGITAL

INPUT p1 made a low to high state change since its EG value

was last read (i.e., cleared).

I, jr 2a. When EG? is executed, the positive-edge-sensitive digital

inputs will be reported as binary numbers. The left-most bit

represents digital input 12, 14, or 21, depending on your

controller model (see Parameters above); the right-most bit

represents digital input 1.

1b. When the EGp1.p2? command is executed, the value of p2

of digital module p1 will be given as a Boolean number.

GFK-2205 Appendix A Registers and Commands A-95

A

2b. When EGp1? is executed, positive-edge-sensitive digital

inputs 1 through 32 of digital module p1 will be reported as a

binary number with the bits in groups of four. The left-most bit

represents digital input 32; the right-most bit represents digital

input 1.

I, jr, 3. After the state of an input is read using the EG command,

the EG value of that input is set to zero.

I, jr, 4. When setting the positive-edge-sensitive digital inputs, note

that a zero will reset the input, and a 1 will not change the state

of the input.

Examples: IMC/IMJ Target ARS

EG=16#1A0 EG1=16#1A0 (* set EG to 1A016, [i.e., don’t

(*change inputs 6, 8, and 9, but

(* reset all others])

EGVI1=0 EG1.VI1=0 (* set EG VI1 to 0 [i.e., reset the

(* input])

EG? EG1? (* report positive-edge-sensitive

(* register)

Related Registers: DI

A-96 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

EKB Empties Key Buffer

Class: Input/Output Command

Syntax: EKB

Restrictions: Not allowed in motion blocks.

Use: This command empties the key buffer.

Related Commands: KY, GET, GETW, IN, INW, WKY

Related Registers: KEY, KEYW

GFK-2205 Appendix A Registers and Commands A-97

A

END Ends Program or Motion Block and Exits Editor

Class: Program Command

Syntax: END

Restrictions: Allowed only in programs or motion blocks.

Use: This command marks the end of a program or motion block

and exits the terminal window line editor.

Remarks: Caution: When used in the terminal window line editor this

command will delete all program/motion block statements that

follow it. If you want only to exit the editor, use the !

command.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* define program 1)

PSA=0 PSA1=0 (* set axis position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* set absolute move position)

RPA RPA1 (* run to absolute position)

END END (* end program 1 and exit editor)

Related Commands: !

A-98 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

EOT Encoder Output Type jr

Class: Axis Register

Type: Integer

Syntax: EOT

Range:

units lines per revolution

default 0

allowed values Resolver Feedback Controllers: 0; 250; 256; 500; 512; 1,000;

1,024

Encoder Feedback Controllers: 0; 500; 625; 1,000; 1,250;

2,000; 2,500

Restrictions: Brushless servo only; not allowed in motion blocks.

Use: This register sets the output type for the encoder output. When

this register is set to zero, the encoder output buffers the

encoder input. When the register is non-zero, the encoder

output tracks the motor feedback. The lines per revolution of

the motor is set by the number entered in the register.

Examples:

EOT=0 (* encoder output buffers encoder input)

EOT=1000 (* encoder output provides 1,000 lines per revolution of the

motor)

GFK-2205 Appendix A Registers and Commands A-99

A

ETB Empties Tertiary Port Buffer

Class: Input/Output Command

Syntax: ETB

Restrictions: Not allowed in motion blocks.

Use: The command empties the tertiary port buffer.

Related Commands: INT, GETT

Related Registers: KEYT

A-100 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

EUB Empties User Port Buffer

Class: Input/Output Command

Syntax: EUB

Restrictions: Not allowed in motion blocks.

Use: The command empties the user port buffer.

Related Commands: GET, IN

Related Registers: KEY

GFK-2205 Appendix A Registers and Commands A-101

A

EXM Executes Motion Block

Class: Program Command

Syntax: EXMp1 (e.g., EXM50 EXMVI10)

Parameters: allowed values description

I, jr p1 1 through 100 or VIn motion block number

 p1 1 through 400 or VIn motion block number

Restrictions: Not allowed in motion blocks.

Use: This command executes motion block p1. Motion blocks

behave like run macros. They are not programs and are not

killed by KLALL. Use HT or ST to end a motion block.

Remarks:

I, jr If a motion block is executing, the EXM command will quit

executing that motion block and then execute motion block p1.

If motion block p1 is already executing, EXMp1 will restart it.

One motion block cannot start another motion block.

If a motion block that has the same axes assigned as motion

block p1 is executing, the EXM command will quit executing

that motion block and then execute motion block p1. If motion

block p1 is already executing, EXMp1 will restart it. One

motion block cannot start another motion block.

Examples: IMC/IMJ Target ARS

MOTION1 MOTION1 (* edit motion block 1)

MBA1 (* assign axis one to motion block)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPI=15 MPI1=15 (* set incremental move position)

RPI RPI1 (* run to incremental move position)

END END (* end motion block 1 and exit editor)

EXM1 EXM1 (* execute motion block 1)

 What will happen: Issuing the EXM1 command will cause the axis to move

15 units in the forward direction.

Related Commands: EXP

A-102 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

EXP Executes Program

Class: Program Command

Syntax: EXPp1 (e.g., EXP4 EXPVI9)

Parameters: allowed values description

I, jr p1 1 through 4 or VIn program number

 p1 1 through 17 or VIn program number

Restrictions: Not allowed in motion blocks.

Use: This command executes program p1.

Remarks: If program p1 is already executing, then this command does

nothing.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* edit program 1)

PSA=0 PSA1=0 (* set axis position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* set absolute move position)

RPA RPA1 (* run to absolute position)

END END (* end program 1 and exit editor)

EXP1 EXP1 (* execute program 1)

 What will happen: Issuing the EXP1 command will cause the axis to move

12 units in the forward direction.

Related Commands: EXM

GFK-2205 Appendix A Registers and Commands A-103

A

EXVS Execute Command Stored in String Variable

Class: Program Command

Syntax: EXVSp1 (e.g., EXVS12 EXVSVI6)

Parameters: allowed values description

p1 1 through 144 or VIn string variable number

Restrictions: Not allowed in motion blocks.

Use: This command executes the command stored in string variable

p1.

Remarks: Commands that are not allowed in programs cannot be

executed using EXVS.

Examples: IMC/IMJ Target ARS

VS1=“MPA=10” VS1=“MPA1=10” (* set string variable 1)

EXVS1 EXVS1 (* execute command

stored in string

variable 1)

 What will happen: Loading string variable 1 and executing the command stored in

string variable 1 will set the absolute move position, MPA, to

10 units.

A-104 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

FAULT Enters Editor at Faulting Statement

Class: Program Command

Syntax: FAULT

Restrictions: Not allowed in programs or motion blocks.

Use: This command enters the editor and makes the statement that

faulted the system the current statement.

Remarks: This command will execute only when all axes have stopped

and no programs or motion blocks are executing.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* edit program 1)

PSA=0 PSA1=0 (* set axis position register)

STF STFS (* set fault)

END END (* end program 1 and exit editor)

EXP1 EXP1 (* execute program 1)

FAULT FAULT (* enter editor and make statement

that faulted system the current

statement)

*STF *STFS

GFK-2205 Appendix A Registers and Commands A-105

A

FC Fault Code I jr

Class: System Register

Type: Integer, Boolean

Syntax: FCp1 (e.g., FC FC5 FCVI3)

Parameters: allowed values description

p1 none or 0 through 31 fault code register bit number

or VIn

Range:

allowed values 0 through FFFFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The fault code register is used to identify what type of fault has

taken place.

Remarks: 1. When the FC? command is executed from the terminal window, the fault

code register value will be given as an English statement. If no fault has

occurred, the message given is Controller functional.

2. The Fault Code register is latched. Once a bit is set true it will not be cleared

until faults are reset (RSF command executed).

3. When FCx is executed the Boolean status of bit ‘x’ will be given.

4. If the computer interface format is enabled (CIE=1), and the FC? command

is executed, the fault code register value will be given as an integer number

equal to the decimal equivalent of the register’s binary value. If no fault has

occurred, the fault code register is set to 0. The possibilities are listed below:

bit message bit message

0 Power Failure 20 Duplicate Network Address

1 Reserved 21 Excessive Following Error

2 Software Fault 22 Excessive Command Increment

3 Lost Enable 23 Position Register Overflow

4 Digital Output Fault 24 Position Feedback Lost

5 Invalid Command in String 25 Motor Power Over-Voltage

6 Transmit Buffer Overflow 26 (3 & 4.3 Amp IMJ) Motor Power Clamp Excessive Duty Cycle

7 Resource Not Available (3 & 6 Amp IMC; 7 Amp IMJ) Motor Power Clamp Excessive

8 Invalid Variable Pointer Duty Cycle—Under-Voltage

9 Mathematical Overflow (12–28 Amp) Motor Power Under-Voltage

10 Mathematical Data Error 27 (3 & 4.3 Amp IMJ) Reserved

11 Value Out of Range (3 & 6 Amp IMC; 7 Amp IMJ) Motor Power Clamp

12 String Too Long Over-Current Fault

13 Nonexistent Label (12–28 Amp) Motor Power Clamp Excessive Duty Cycle

14 Gosub Stack Underflow 28 Motor Over-Current Fault

15 Gosub Stack Overflow 29 Motor Over-Temperature

16 Invalid Motion 30 Controller Over-Temperature

17 Reserved 31 Network Communication Error

18 Reserved

19 Network Power Failure

A-106 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

FCA Axis Fault Code

Class: System Register

Type: Integer, Boolean

Syntax: FCAp1.p2 (e.g., FCA1 FCAVI1.3 FCA2.VI3 FCAVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

p2 none or 0 through 31 axis fault code register bit number

or VIn

Range:

allowed values 0 through FFFFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The axis fault code register is used to identify what type of axis

fault has taken place.

Remarks: 1. When the FCAp1? command is executed, the axis fault code

will be given as an English statement that says which axis faults

have occurred. If no axis fault has occurred, the message given

is Axis functional.

2. If the computer interface format is enabled, and the FCAp1?

command is executed, the axis fault code will be given as an

integer number. If no axis fault has occurred, the axis fault code

register is set to 0. The possibilities are listed below:

bit message bit message

0 Power Failure 11 Motor Power Clamp Current Fault

1 Encoder Supply Fault 12 Servo Module Current Fault

2 Software Fault 13 Servo Module Over-Temperature

3 Lost Enable 14 Power Module Over-Temperature

4 Excessive Following Error 15 Motor Over-Temperature

5 Excessive Command Increment 16–19 Reserved

6 Position Register Overflow 20 Set Point Output Fault

7 Position Feedback Lost 21–23 Reserved

8 Motor Power Under-Voltage 24 System Communication Error

9 Motor Power Over-Voltage 25 Servo Module Communication Error

10 Motor Power Clamp Excessive Duty 26–30 Reserved

Cycle 31 Servo Module Assignment Error

GFK-2205 Appendix A Registers and Commands A-107

A

FCS System Fault Code

Class: System Register

Type: Integer, Boolean

Syntax: FCSp1 (e.g., FCS FCS2 FCSVI1)

Parameters: allowed values description

p1 none or 0 through 31 system fault code register bit

or VIn number

Range:

allowed values 0 through FFFFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The system fault code register is used to identify what type of

system fault has taken place.

Remarks: 1. When the FCS? command is executed, the system fault code

register value will be given as an English statement. If no

system fault has occurred, the message given is System

functional.

2. If the computer interface format is enabled, and the FCS?

command is executed, the system fault code register value will

be given as an integer number. If no system fault has occurred,

the system fault code register is set to 0. The possibilities are

listed below:

bit message bit message

0 Power Failure 16 Invalid Motion

1 24 Volt Supply Fault 17 Inconsistent Axis Groupings

2 Software Fault 18 Duplicate Network Address

3 Lost Enable 19 Network Power Failure

4 Digital Output Fault 20 Set Point Output Fault

5 Invalid Command in String 21 Tertiary Transmit Buffer Overflow

6 User Transmit Buffer Overflow 22 Program Transmit Buffer Overflow

7 Resource Not Available 23 Firmware Load Error

8 Invalid Variable Pointer 24 Axis Communication Error

9 Mathematical Overflow 25 I/O Communication Error

10 Mathematical Data Error 26 User Port Communication Error

11 Value Out of Range 27 Network Communication Error

12 String Too Long 28 Axis Assignment Error

13 Nonexistent Label 29 Analog Module Assignment Error

14 Gosub Stack Underflow 30 Digital Module Assignment Error

15 Gosub Stack Overflow 31 Servo Module Assignment Error

A-108 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

FE Axis Following Error

Class: Axis Register

Type: Floating point

Syntax:

I, jr FE

FEp1 (e.g., FE1 FEVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 minimum 0 pulses

 maximum 16,000 pulses

Restrictions: Read only.

Use: The axis following error is the difference between the axis

position, PSA, and the command position, PSC.

Remarks: The numerical values for the minimum and maximum of this

register are assuming that the axis unit ratio, URA, is set at its

default value of 1. If the axis unit ratio is set to a value other

than 1, the minimum and maximum values will change

appropriately (see URA).

Related Registers: PSA, PSC, FEB, URA

GFK-2205 Appendix A Registers and Commands A-109

A

FEB Following Error Bound

Class: Axis Register

Type: Floating point

Syntax:

I, jr FEB

FEBp1 (e.g., FEB1 FEBVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 defaults 400 pulses (resolver feedback brushless servo)

5,000 pulses (2,500 line count encoder servo)

5,000 pulses (stepper)

100 pulses (ampless servo)

 minimum 0 pulses

 maximum 16,000 pulses

Use: The following error bound is a limit set on the following error.

If this limit is exceeded, the system will fault and the motor

will free-wheel to a stop.

Remarks: This value must always be set to a non-zero value. If FEB is

set to zero the controller will fault when initiating any

motion command or block. The numerical values for the

default, minimum, and maximum of this register are assuming

that the axis unit ratio, URA, is set at its default value

of 1. If the axis unit ratio is set to a value other than 1, the

default, minimum, and maximum values will change

appropriately (see URA).

Examples: IMC/IMJ Target ARS

FEB=0.5 FEB1=5 (* set following error bound)

FEB? FEBVI3? (* report value of following error bound)

Related Registers: FE, URA

A-110 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

FI Fault Input I jr

Class: System Register

Type: Integer, Boolean

Syntax: FIp1 (e.g., FI FI8 FIVI7)

Parameters: allowed values description

p1 none or 0 through 15 fault input register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The fault input register is used to identify what type of faults

are currently active.

Remarks: 1. When the FI? command is executed from the terminal

window, the fault input register value will be given as an

English statement as shown below. If no faults are active, the

message given is No fault input is active.

2. If the computer interface format is enabled, and the FI?

command is executed, the fault input register value will be

given as an integer number equal to the decimal equivalent of

the register’s binary value. If no faults are active, the fault

input register is set to 0. The possibilities are listed below.

3. When FIx is executed the Boolean status of bit ‘x’ will be

given.

bit message

0 Position feedback lost input active

1 Motor power over-voltage input active

2 (3 Amp IMJ) Motor power clamp input active

(3 & 6 Amp IMC; 7 Amp IMJ) Motor power clamp or

under-voltage input active

(12–28 Amp) Motor power under-voltage input active

3 (3 Amp IMJ) Reserved

(3 & 6 Amp IMC; 7 Amp IMJ) Motor power clamp over-current

input active

(12–28 Amp) Motor power clamp input active

4 Motor over-current input active

5 Motor over-temperature input active

6 Controller over-temperature input active

7 Network power failure input active

8–15 Reserved

GFK-2205 Appendix A Registers and Commands A-111

A

FIRMWARE Downloads and Saves Firmware

Class: System Command

Syntax: FIRMWARE

Restrictions: Not allowed in programs or motion blocks.

Use: This command, when executed from the terminal window, sets

the controller in a mode to receive an updated firmware file,

downloads the controller or system firmware, and saves it in

nonvolatile memory.

Remarks: This command will execute only when the controller or system

and all axes are faulted and no programs or motion blocks are

executing.

A-112 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

FR Axis Feedback Resolution

Class: Axis Register

Type: Integer

Syntax:

I, jr FR

 FRp1 (e.g., FR1 FRVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses/revolution

 defaults 4,096 (resolver feedback brushless servo)

10,000 (2,500 line count encoder servo)

1,000 (ampless servo)

 minimum 500

 maximum 1,000,000

Restrictions: Servo only.

Use: The axis feedback resolution is defined as the number of

feedback pulses per revolution of the axis.

Related Commands: AUTOTUNE

GFK-2205 Appendix A Registers and Commands A-113

A

FUNCTION Goes to Label Associated with Key Pressed

Class: Input/Output Command

Syntax: FUNCTION p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12

Parameters: allowed values description

p1 0, 1 through 999 label associated with function key A

...

p12 0, 1 through 999 label associated with function key L

Restrictions: Allowed only in programs.

Use: This command, when executed in a program, first fetches the key code

from the key buffer. If there is no key in the key buffer, it will wait

for a key to be pressed. If a function key has been pressed, program

execution is then transferred to the statement at the label associated

with the function key pressed. If any other key has been pressed, the

key code goes back into the key buffer and execution continues at the

next program statement.

Remarks: If one or more of the function keys have been disabled by setting

KYAp1 to OFF, where p1 is the number of the function key, it is

appropriate to set the associated label(s) in the FUNCTION statement

equal to 0.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

PSA=0 PSA1=0 (* set axis position)

MVL=5 MVL1=5 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

5 FUNCTION 10,20, 5 FUNCTION 10,20,

30,5,5,5,5,5,5,5,5,5 30,5,5,5,5,5,5,5,5,5 (* go to label associated with key pressed)

GET VS1 GETW VS1 (* get character from key buffer)

GOTO 5 GOTO 5 (* go back and wait for another key press)

10 RVF 10 RVF1 (* run forward)

GOTO 5 GOTO 5 (* go back and wait for another key press)

20 RVR 20 RVR1 (* run reverse)

GOTO 5 GOTO 5 (* go back and wait for another key press)

30 ST 30 ST1 (* stop axis)

WAIT IP WAIT IP1 (* wait for axis to be in position)

GOTO 5 GOTO 5 (* go back and wait for another key press)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will set the axis position, motion

velocity, and acceleration. It will then wait for a key to be pressed,

and then the program execution will go to label 10, 20, 30, or 5,

depending on which function key was pressed. If some other key was

pressed, then the key code is taken out of the key buffer (GET VS1)

and execution goes back to label 5.

Related Commands: GOTO

A-114 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GET Gets One Character from Key Buffer I jr

Class: Input/Output Command

Syntax: GET p1 (e.g., GET VI5 GET VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command gets one character from the key buffer

(256 bytes maximum) and loads it into the variable p1. If no

character is available in the key buffer, then this command

waits until a character is put into the key buffer.

Remarks: 1. If p1 is a Boolean variable, VBn or VBVIn, the resulting

value will be 0 if the character is ASCII 0; otherwise the

resulting value is 1.

2. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn, the resulting value will be the ASCII value of the

character.

3. If p1 is a string variable, VSn or VSVIn, the resulting value

is the actual character.

Example:

PROGRAM1 (* edit program 1)

GET VI1 (* get one character from the key buffer)

GET VS1 (* get one character from the key buffer)

END (* end program 1 and exit editor)

EXP1 (* execute program 1)

KYE (* put one character into key buffer)

KYE (* put one character into key buffer)

VI1? (* report value of integer variable register)

* 69

VS1? (* report value of string variable register)

* E

Related Commands: PUT, IN, OUT, EKB

GFK-2205 Appendix A Registers and Commands A-115

A

GET Gets One Character from User Serial Port

Class: Input/Output Command

Syntax: GET p1 (e.g., GET VI5 GET VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs

Use: This command gets one character from the user serial port and

loads it into the variable p1.

Remarks: 1. If p1 is a Boolean variable, VBn or VBVIn, the resulting

value will be 0 if the character is ASCII 0; otherwise the

resulting value is 1.

2. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn, the resulting value will be the ASCII value of the

character.

3. If p1 is a string variable, VSn or VSVIn, the resulting value

is the actual character.

Example:

PROGRAM1 (* edit program 1)

GET VI1 (* get one character from the user serial port buffer)

GET VS1 (* get one character from the user serial port buffer)

END (* end program 1 and exit editor)

Related Commands: PUT, IN, OUT, EUB

A-116 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GETT Gets One Character from Tertiary Port

Class: Input/Output Command

Syntax: GETT p1 (e.g., GETT VI5 GETT VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command gets one character from the tertiary port and

loads it into the variable p1. If no character is available, then

this command waits until a character is available.

Remarks: 1. If p1 is a Boolean variable, VBn or VBVIn, the resulting

value will be 0 if the character is ASCII 0; otherwise the

resulting value is 1.

2. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn, the resulting value will be the ASCII value of the

character.

3. If p1 is a string variable, VSn or VSVIn, the resulting value

is the actual character.

Example:

PROGRAM1 (* edit program 1)

GETT VI1 (* get one character from the tertiary port buffer)

GETT VS1 (* get one character from the tertiary port buffer)

END (* end program 1 and exit editor)

Related Commands: PUTT, INT, OUTT, ETB

GFK-2205 Appendix A Registers and Commands A-117

A

GETW Gets One Character from Key Buffer

Class: Input/Output Command

Syntax: GETW p1 (e.g., GETW VI5 GETW VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs

Use: This command gets one character from the key buffer and loads

it into the variable p1. If no character is available, then this

command waits until a character is available.

Remarks: 1. If p1 is a Boolean variable, VBn or VBVIn, the resulting

value will be 0 if the character is ASCII 0; otherwise the

resulting value is 1.

|2. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn, the resulting value will be the ASCII value of the

character.

3. If p1 is a string variable, VSn or VSVIn, the resulting value

is the actual character.

Example:

PROGRAM1 (* edit program 1)

GETW VI1 (* get one character from the key buffer)

GETW VS1 (* get one character from the key buffer)

END (* end program 1 and exit editor)

EXP1 (* execute program 1)

WKYE (* put one character into key buffer)

WKYE (* put one character into key buffer)

VI1? (* report value of integer variable register)

* 69

VS1? (* report value of string variable register)

* E

Related Commands: PUTW, INW, OUTW, EKB

A-118 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GOSUB Unconditionally “Gosubs” Label

Class: Program Command

Syntax: GOSUBp1 (e.g., GOSUB349 GOSUBVI10)

Parameters: allowed values description

p1 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This command causes the program execution to go

unconditionally to the subroutine at label p1. The program will

return to the line immediately following the GOSUB command

when it encounters the RETURN command.

Remarks: There can be up to 32 nested gosub statements in a program.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)
PSA=0 PSA1=0 (* set axis position register)
MVL=1 MVL1=1 (* set motion velocity)
MAC=10 MAC1=10 (* set motion acceleration)
RVF RVF1 (* run to velocity forward)
GOSUB5 GOSUB5 (* unconditionally gosub 5)
VI1=6 VI1=6 (* load integer variable)
GOSUBVI1 GOSUBVI1 (* unconditionally gosub 6)
GOTO10 GOTO10 (* unconditionally goto 10)
5 OUT “Press any key to stop axis $N” 5 OUTW “Press any key to stop axis $N”

(* output string expression to display)
GET VI2 GETW VI2 (* get one character from key buffer)
ST ST 1 (* stop axis)
RETURN RETURN (* return from gosub)
6 OUT “Axis position is “+ FTS(PSA, 6 OUTW “Axis position is “+ FTS(PSA1,
 5,2) + “ units.$N” 5,2) + “ units.$N” (* output string expression to display)
RETURN RETURN (* return from gosub)
10 END 10 END (* end program 1 and exit editor)

 What will happen: This program, once executed, runs the axis in the forward

direction. Then the execution goes to the subroutine at label 5,

which waits for a character from the key buffer and returns

upon receiving the character. Next, the execution goes to the

subroutine at label 6, which prints the axis position on the

display and returns. It then goes to the statement at label 10,

which ends the program.

Related Commands: GOTO, RETURN, POP, RSTSTK

GFK-2205 Appendix A Registers and Commands A-119

A

GOTO Unconditionally “Gotos” Label

Class: Program Command

Syntax: GOTOp1 (e.g., GOTO50 GOTOVI43)

Parameters: allowed values description

p1 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This command causes the program execution to go

unconditionally to the statement at label p1.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)
PSA=0 PSA1=0 (* set axis position register)
MVL=1 MVL1=1 (* set motion velocity)
MAC=10 MAC1=10 (* set motion acceleration)
RVF RVF1 (* run to velocity forward)
GOSUB5 GOSUB5 (* unconditionally gosub 5)
VI1=6 VI1=6 (* load integer variable)
GOSUBVI1 GOSUBVI1 (* unconditionally gosub 6)
GOTO10 GOTO10 (* unconditionally goto 10)
5 OUT “Press any key to stop axis $N” 5 OUTW “Press any key to stop axis $N”

(* output string expression to display)
GET VI2 GETW VI2 (* get one character from key buffer)
ST ST1 (* stop axis)
RETURN RETURN (* return from gosub)
6 OUT “Axis position is “ + FTS(PSA, 6 OUTW “Axis position is “+ FTS(PSA1,
 5,2) + “ units.$N” 5,2) + “ units.$N” (* output string expression to display)
RETURN RETURN (* return from gosub)
10 END 10 END (* end program 1 and exit editor)

 What will happen: This program, once executed, runs the axis in the forward

direction. Then the execution goes to the subroutine at label 5,

which waits for a character from the key buffer and returns

upon receiving the character. Next, the execution goes to the

subroutine at label 6, which prints the axis position on the

display and returns. It then goes to the statement at label 10,

which ends the program.

Related Commands: GOSUB

A-120 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GRB Gearing Bound

Class: Motion Register

Type: Floating point

Syntax:

I, jr GRB

GRBp1 (e.g., GRB2 GRBVI5)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/sec

 default 0 pulses/sec

 minimum 0 pulses/sec

 maximum 16,000,000 pulses/sec

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register sets a bound on the maximum axis pulses per

second that the electronic gearing function can command. If

the pulse input rate times the gearing ratio, GRN/GRD, results

in a value outside of the bound, then the extra pulses are

discarded (i.e., the rate is clamped at the bound limit). When

the value of GRB is zero, there is no bound on electronic

gearing.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value of URA (see URA).

Related Registers: GRN, GRD

GFK-2205 Appendix A Registers and Commands A-121

A

GRD Gearing Denominator

Class: Motion Register

Type: Integer

Syntax:

I, jr GRD

GRDp1 (e.g., GRD2 GRDVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 1

 minimum 1

 maximum 10,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The gearing denominator is a parameter used in electronic

gearing. It is defined as the denominator of the gearing ratio

between the axis and the gearing input. The gearing input

source is typically the auxiliary encoder input unless the

handwheel input is enabled (HWE=1). Change the sign on the

GRN parameter to change motor direction while gearing is

enabled (GRE=1).

Axis pulses = gearing input pulses * GRN/GRD.

If either GRN or GRD is outside the allowed range, try

dividing both register values by a prime number (2, 3, 5, 7, 11,

etc.) until both values are integers within the allowable range.

Related Registers: GRN, GRE, GRI, HWE, QTX

A-122 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GRE Gearing Enable

Class: Motion Register

Type: Boolean

Syntax:

I, jr GRE

GREp1 (e.g., GRE2 GRE245 GREVI3)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8

or VIn

Range:

default 0

allowed values 0, 1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The gearing enable is used to enable electronic gearing. If

GRE is set to 1, then electronic gearing is enabled and the axis

will follow the gearing input based on the gearing ratio

(GRN/GRD). If GRE is set to 0, it is disabled.

Remarks: Electronic gearing does not use acceleration/deceleration limits

and will accelerate/decelerate as quickly as system constraints

will allow when the GRE bit is set true/false. Use pulse-based

motion when acceleration limits are required. When the gearing

enable bit is set true the controller will begin to accumulate

master encoder pulses. If gearing is enabled while the master is

moving the axis will overspeed within system constraints in an

attempt to decrement any master pulses that accumulate while

the axis is accelerating. Gearing is automatically disabled when

a controller fault occurs.

Registers Used: GRD, GRI, GRN, GRB, GRF

Motion Templates:

I, jr Single-axis electronic gearing

Multi-axis electronic gearing

Utility Template:

Jog using analog input

GFK-2205 Appendix A Registers and Commands A-123

A

GRF Gearing Filter Constant

Class: Motion Register

Type: Integer

Syntax:

I, jr GRF

GRFp1 (e.g., GRF2 GRFVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0

 minimum 0

 maximum 8

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The gearing filter constant is used to filter the output of

electronic gearing. The amount of filtering increases by the

value as a power of two from 0 (no filter) to 8 (a filter of

256 samples). Note that higher values slow system response so

use the smallest acceptable value.

Related Registers: GRB, GRN, GRD

A-124 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

GRI Gearing Input

Class: Motion Register

Syntax: GRIp1 (e.g., GRI2 GRIVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default FREQ

allowed values FREQ frequency source (2,048 pulses/sec)

PSXa auxiliary input of selected axis (a: 1 through 8)

PSCa command position of selected axis (a: 1 through 8)

PSAa axis position of selected axis (a: 1 through 8)

Use: The gearing input is used in electronic gearing as a source for

position information for axis p1. This, along with the gearing

ratio (defined by GRNp1 and GRDp1), defines the motion of

axis p1.

Example:

GRI1=PSA5 (* set gearing input for axis one to the axis position of axis five)

GRI2=FREQ (* set gearing input for axis two to the frequency source)

GRIVI1? (* report gearing input for axis VI1)

Related Registers: GRN, GRD, GRE

GFK-2205 Appendix A Registers and Commands A-125

A

GRN Gearing Numerator

Class: Motion Register

Type: Integer

Syntax:

I, jr GRN

GRNp1 (e.g., GRN2 GRNVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 1

 minimum -10,000

 maximum 10,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The gearing numerator is a parameter used in electronic

gearing. It is defined as the numerator of the gearing ratio

between the axis and the gearing input. The gearing input

source is typically the auxiliary encoder input unless the

handwheel input is enabled (HWE=1). Changing the sign of the

GRN value will change the direction of the motor while

gearing is enabled (GRE=1).

Axis pulses = gearing input pulses * GRN/GRD.

If either GRN or GRD is outside the allowed range, try

dividing both register values by a prime number (2, 3, 5, 7, 11,

etc.) until both values are integers within the allowable range.

Related Registers: GRD, GRE, GRI, HWE, QTX

A-126 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

HSE XON, XOFF Handshake Protocol Enable

Class: System Register

Type: Boolean

Syntax: HSE

Range:

default 0

allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks.

Use: This register is used to enable the XON, XOFF handshake

protocol on the serial/program port. If HSE is set to 1, then

handshake protocol is enabled; and if HSE is set to 0, then it is

disabled.

Related Registers: CIE

GFK-2205 Appendix A Registers and Commands A-127

A

HT Halts Motion

Class: Motion Command

Syntax:

I, jr HT

HTp1 (e.g., HT HT5 HT146 HTVI3)

Parameters allowed values description

 p1 none or 1 through 8 or axis number

list of numbers 1 through 8

or VIn

Restrictions:

Not allowed in motion blocks without specified axis.

Use: This command immediately halts all axis motion.

Remarks: This command should be used only at low velocities or in

extreme situations as the sudden stop may damage mechanical

components in the system.

Examples: IMC/IMJ Target ARS

MVL=10 MVL1=10 (* set motion velocity)

MAC=10 MAC1=10 (* set motion acceleration)

RVF RVF1 (* run to velocity forward)

HT HT1 (* halt motion)

 What will happen: Setting the velocity and acceleration and issuing the RVF

command will cause the axis will to run in the forward

direction. Issuing the HT command will cause the axis to halt

immediately.

Related Commands: ST, HTT

A-128 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

HTT Halts Trajectory Motion

Class: Motion Command

Syntax: HTT

Use: This command immediately halts trajectory motion.

Remarks: This command should be used only at low velocities or in

extreme situations as the sudden stop may damage mechanical

components in the system.

Example:

TVL=5 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MPI1=10 (* set incremental position)

MPI2=20 (* set incremental position)

RLI12 (* run incremental linear)

HTT (* halt trajectory motion)

 What will happen: Setting the trajectory velocity, trajectory feedrate acceleration,

and incremental positions and issuing the RLI command will

cause axes one and two to move in a line. Issuing the HTT

command will cause the axes to halt immediately.

Related Commands: STT, HT

GFK-2205 Appendix A Registers and Commands A-129

A

HWE Handwheel Input Enable I jr

Class: Motion Register

Type: Boolean

Syntax: HWE

Range:

default 0

allowed values 0, 1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The handwheel input enable is used to enable handwheel

quadrature input on digital inputs 5 (channel A) and

6 (channel B) to be used in place of the auxiliary encoder input

for electronic gearing. If HWE is set to 1, then handwheel

input is enabled; and if HWE is set to 0, it is disabled; and the

auxiliary encoder is used as the electronic gearing input source.

The axis will follow the auxiliary input based on the values of

GRN and GRD as shown below:

Axis pulses = Handwheel Input Pulses * GRN/GRD

Remarks: The electronic handwheel is used in place of the auxiliary input

to position the axis for electronic gearing. The maximum pulse

rate is 500 pulses/second.

Utility Template: Jog using electronic handwheel

A-130 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IF...GOSUB Conditionally “Gosubs” Label

Class: Program Command

Syntax: IF p1 GOSUBp2 (e.g., IF VB5 GOSUB35)

Parameters: allowed values description

p1 any Boolean expression Boolean expression

p2 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This command causes the program execution to go

conditionally to the subroutine at label p2 if p1 is true (i.e.,

evaluates to 1). The program will return when it encounters the

RETURN command.

Remarks: There can be up to 32 nested gosub statements in a program.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)
PSA=0 PSA1=0 (* set axis position register)
MVL=1 MVL1=1 (* set motion velocity)
MAC=10 MAC1=10 (* set motion acceleration)
RVF RVF1 (* run to velocity forward)
OUT “Press any key OUTW “Press any key
 to stop axis $N” to stop axis $N” (* output string expression to display)
1 IF KEY GOSUB5 1 IF KEYW GOSUB5 (* conditionally gosub 5)
IF IP GOTO10 IF IP1 GOTO10 (* conditionally goto 10)
GOTO1 GOTO1 (* unconditionally goto 1)
5 OUT “Axis position 5 OUTW “Axis position

is “ + FTS(PSA, is “ + FTS(PSA1,
5,2) + “ units.$N” 5,2) + “ units.$N” (* output string expression to display)

EKB EKB (* empty key buffer)
ST ST 1 (* stop axis)
RETURN RETURN (* return from gosub)
10 END 10 END (* end program 1 and exit editor)

 What will happen: This program runs the axis in the forward direction. It then

waits for a character from the key buffer and goes to the

subroutine at label 5 upon receiving the character. This

subroutine prints the axis position on the display, empties the

key buffer, stops the axis, and returns. Once the axis is in

position (IP or IP1), the execution goes to the statement at label

10, which ends the program.

Related Commands: GOSUB, IF...GOTO, RETURN, POP, RSTSTK

GFK-2205 Appendix A Registers and Commands A-131

A

IF...GOTO Conditionally “Gotos” Label

Class: Program Command

Syntax: IF p1 GOTOp2 (e.g., IF VB3 GOTO11)

Parameters: allowed values description

p1 any Boolean expression Boolean expression

p2 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This command causes the program execution to go

conditionally to label p2 if p1 is true (i.e., evaluates to 1).

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)
PSA=0 PSA1=0 (* set axis position register)
MVL=1 MVL1=1 (* set motion velocity)
MAC=10 MAC1=10 (* set motion acceleration)
RVF RVF1 (* run to velocity forward)
OUT “Press any key OUTW “Press any key
 to stop axis$N” to stop axis$N” (* output string expression to display)
1 IF KEY GOSUB5 1 IF KEYW GOSUB5 (* conditionally gosub 5)
IF IP GOTO10 IF IP1 GOTO10 (* conditionally goto 10)
GOTO1 GOTO1 (* unconditionally goto 1)
5 OUT “Axis position 5 OUTW “Axis position
 is “ + FTS(PSA, is “ + FTS(PSA1,
 5,2) + “ units.$N” 5,2) + “ units.$N” (* output string expression to display)
EKB EKB (* empty key buffer)
ST ST 1 (* stop axis)
RETURN RETURN (* return from gosub)
10 END 10 END (* end program 1 and exit editor)

 What will happen: This program, once executed, runs the axis in the forward

direction. It then waits for a character from the key buffer and

goes to the subroutine at label 5 upon receiving the character.

This subroutine prints the axis position on the display, empties

the key buffer, stops the axis, and returns. Once the axis is in

position (IP or IP1), the execution goes to the statement at

label 10, which ends the program.

Related Commands: GOTO, IF...GOSUB, IF...THEN

A-132 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IF...THEN Conditionally Executes Next Command

Class: Program Command

Syntax: IF p1 THEN (e.g., IF VF3>1.1 THEN)

Parameters: allowed values description

p1 any Boolean expression Boolean expression

Restrictions: Allowed only in programs and motion blocks.

Use: This command conditionally executes the next command in the

program. If condition p1 is true the next program line is

executed. Otherwise, the next line is skipped.

Example:

PROGRAM1 (* edit program 1)

VB1=0 (* set Boolean variable)

IF VB1 THEN (* conditionally execute next command)

VF5=30 (* set floating point variable)

END (* end program 1 and exit editor)

 What will happen: This program, once executed, sets Boolean variable one to zero

and does not set floating point variable to 30 because the

condition of the IF...THEN command was false.

Related Commands: IF...GOTO

GFK-2205 Appendix A Registers and Commands A-133

A

IN Inputs Register Value from Key Buffer I jr

Class: Input/Output Command

Syntax: IN p1 (e.g., IN VI5 IN VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command inputs a register value from the key buffer. The

characters entered are echoed back to the display device until an

invalid character or a carriage return is entered. If the display format

enable is set and an invalid character is entered, then the command

aborts and the offending character is left in the key buffer.

Remarks: 1. If p1 is a Boolean, floating point, or integer variable, VBn, VBVIn,

VFn, VFVIn, VIn, VIVIn: a.) if the number is greater than

40 characters long, or if it is out of the numerical range of the variable,

then bit 5 in the program status register will be set to 1, which means

“String value out of range.” A zero will be loaded into the variable.

b.) if one or more of the characters is not valid, then bit 4 in the

program status register will be set to 1, which means “Invalid digit in

string.” A zero will be loaded into the variable.

2. If p1 is a string variable, VSn, or VSVIn, and the string entered is

greater than 127 characters, only the first 127 characters will be

loaded. The rest will stay in the key buffer.

Example:

PROGRAM1 (* edit program 1)

OUT “Enter an integer:$N” (* output string expression to display)

1 IN VI1 (* input register value from key buffer)

IF NOT CE1 GOTO2 (* conditionally goto 2)

OUT “Invalid number -

 Enter again$N” (* output string expression to display)

EKB (* empty key buffer)

GOTO1 (* unconditionally goto 1)

2 OUT “Enter a string:$N” (* output string expression to display)

IN VS1 (* input register value from key buffer)

END (* end program 1 and exit editor)

 What will happen: This program, once executed, will prompt the user to enter an integer.

After the user enters the number, the program checks to see if both

program status register bits 4 and 5 (CE1) are not set. If either one is

set, the program prints an error message and asks the user to enter it

again. If neither one is set, the program goes to 2, where the user will

be prompted to enter a string. Once it is entered, the program ends.

Related Commands: GET, OUT

Registers Used: CE

A-134 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IN Inputs Register Value from User Serial Port

Class: Input/Output Command

Syntax: IN p1 (e.g., IN VI5 IN VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command inputs a register value from the user serial port.

Remarks: 1. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn: a.) if the number is greater than 40 characters

long, or if it is out of the numerical range of the variable, then

bit 5 in the program status register will be set to 1, meaning

“String value out of range.” A zero will be loaded into the

variable; b.) if one or more of the characters are not valid, then

bit 4 in the program status register will be set to 1, which

means “Invalid digit in string.” A zero will be loaded into the

variable.

2.) If p1 is a string variable, VSn or VSVIn, and the string

entered is greater than 127 characters, only the first

127 characters will be loaded. The rest will stay in the user

serial port buffer.

Example:

PROGRAM1 (* edit program 1)

OUT “Enter an integer:$N” (* output string expression to user serial port)

1 IN VI1 (* input register value from user serial port)

IF NOT CE1 GOTO2 (* conditionally goto 2)

OUT “Invalid number -

 Enter again$N” (* output string expression to user serial port)

GOTO1 (* unconditionally goto 1)

2 OUT “Enter a string:$N” (* output string expression to user serial port)

IN VS1 (* input register value from user serial port)

END (* end program 1 and exit editor)

 What will happen: This program, once executed, will prompt the user to enter an

integer. After the user enters the number, the program checks

to see if both program status register bits 4 and 5 (CE1) are not

set. If either one is set, the program prints an error message

and asks the user to enter it again. If neither one is set, the

program goes to 2, where the user will be prompted to enter a

string. Once it is entered, the program ends.

Related Commands: GET, OUT

Registers Used: CE

GFK-2205 Appendix A Registers and Commands A-135

A

INT Inputs Register Value from Tertiary Port

Class: Input/Output Command

Syntax: INT p1 (e.g., INT VI5 INT VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command inputs a register value from the tertiary port.

Remarks: 1. If p1 is a floating point or integer variable, VFn, VFVIn,

VIn, VIVIn: a.) if the number is greater than 40 characters

long, or if it is out of the numerical range of the variable, then

bit 5 in the program status register will be set to 1, meaning

“String value out of range.” A zero will be loaded into the

variable; b.) if one or more of the characters are not valid, then

bit 4 in the program status register will be set to 1, which

means “Invalid digit in string.” A zero will be loaded into the

variable.

2.) If p1 is a string variable, VSn or VSVIn, and the string

entered is greater than 127 characters, only the first

127 characters will be loaded. The rest will stay in the tertiary

port buffer.

Example:

PROGRAM1 (* edit program 1)

OUTT “Enter an integer:$N” (* output string expression to tertiary port)

1 INT VI1 (* input register value from tertiary port)

IF NOT CE1 GOTO2 (* conditionally goto 2)

OUTT “Invalid number -

 Enter again$N” (* output string expression to tertiary port)

GOTO1 (* unconditionally goto 1)

2 OUTT “Enter a string:$N” (* output string expression to tertiary port)

INT VS1 (* input register value from tertiary port)

END (* end program 1 and exit editor)

What will happen: This program, once executed, will prompt the user to enter an

integer. After the user enters the number, the program checks

to see if both program status register bits 4 and 5 (CE1) are not

set. If either one is set, the program prints an error message

and asks the user to enter it again. If neither one is set, the

program goes to 2, where the user will be prompted to enter a

string. Once it is entered, the program ends.

Related Commands: GETT, OUTT

Registers Used: CE

A-136 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

INW Inputs Register Value from Key Buffer

Class: Input/Output Command

Syntax: INW p1 (e.g., INW VI5 INW VS10)

Parameters: allowed values description

p1 any variable register variable register

Restrictions: Allowed only in programs.

Use: This command inputs a register value from the key buffer. The

characters entered are echoed back to the display device until an

invalid character or a carriage return is entered. If an invalid character

is entered, then the command aborts and the offending character is left

in the key buffer.

Remarks: 1. If p1 is a Boolean, floating point, or integer variable, VBn, VBVIn,

VFn, VFVIn, VIn, VIVIn: a.) if the number is greater than

40 characters long, or if it is out of the numerical range of the variable,

then bit 5 in the program status register will be set to 1, which means

“String value out of range.” A zero will be loaded into the variable.

b.) if one or more of the characters is not valid, then bit 4 in the

program status register will be set to 1, which means “Invalid digit in

string.” A zero will be loaded into the variable.

2. If p1 is a string variable, VSn, or VSVIn, and the string entered is

greater than 127 characters, only the first 127 characters will be

loaded. The rest will stay in the key buffer.

Example:

PROGRAM1 (* edit program 1)

OUTW “Enter an integer:$N” (* output string expression to display)

1 INW VI1 (* input register value from key buffer)

IF NOT CE1 GOTO2 (* conditionally goto 2)

OUTW “Invalid number -

 Enter again$N” (* output string expression to display)

EKB (* empty key buffer)

GOTO1 (* unconditionally goto 1)

2 OUTW “Enter a string:$N” (* output string expression to display)

INW VS1 (* input register value from key buffer)

END (* end program 1 and exit editor)

 What will happen: This program, once executed, will prompt the user to enter an integer.

After the user enters the number, the program checks to see if both

program status register bits 4 and 5 (CE1) are not set. If either one is

set, the program prints an error message and asks the user to enter it

again. If neither one is set, the program goes to 2, where the user will

be prompted to enter a string. Once it is entered, the program ends.

Related Commands: GETW, OUTW

Registers Used: CE

GFK-2205 Appendix A Registers and Commands A-137

A

IO General I/O I jr

Class: Input/Output Register

Type: Integer, Boolean

Syntax: IOp1 (e.g., IO IO4 IOVI8)

Parameters: allowed values description

p1 none or 0 through 15 I/O register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The general I/O register is used to identify what inputs and

outputs are active.

Remarks: 1. When the IO? command is executed, the general I/O register

will be given as an English statement that says what inputs or

outputs, if any, are active. If none of the inputs or outputs are

active, the message given is No I/O is active.

2. If the computer interface format is enabled, and the IO?

command is executed, the general I/O register will be given as

an integer number equal to the decimal equivalent of the

register’s binary value. If none of the inputs or outputs are

active, the I/O register is set to 0. The possibilities are listed

below.

3. When IOx is executed, the Boolean status of bit ‘x’ is given.

bit message bit message

0 (IMC) Capture input 2 active 7 Marker input active

(IMJ) Reserved 8 Home input active

1 (IMC) Capture input 2 edge 9 Forward overtravel input active

(IMJ) Reserved 10 Reverse overtravel input active

2 Axis channel A input active 11 Enable input active

3 Axis channel B input active 12 Capture input 1 active

4 Auxiliary channel A input active 13 Capture input 1 edge

5 Auxiliary channel B input active 14 Reserved

6 Auxiliary index input active 15 OK output active

Related Registers: DI, DO

A-138 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IOA Axis I/O

Class: Input/Output Register

Type: Integer, Boolean

Syntax: IOAp1.p2 (e.g., IOA1 IOAVI1.3 IOA2.VI3 IOAVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

p2 none or 0 through 15 axis I/O register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The axis I/O register is used to identify what inputs and outputs

of an axis are active.

Remarks: 1. When the IOAp1? command is executed, the axis I/O

register will be given as an English statement that says what

inputs or outputs, if any, are active. If none of the axis inputs

or outputs are active, the message given is No axis I/O is active.

2. If the computer interface format is enabled, and the IOAp1?

command is executed, the axis I/O register will be given as an

integer number. If none of the axis inputs or outputs are active,

the axis I/O register is set to 0. The table below lists the

possibilities:

bit message bit message

0 Set point output active 8 Home input active

1 Set point input active 9 Forward overtravel input active

2 Axis channel A input active 10 Reverse overtravel input active

3 Axis channel B input active 11 Enable input active

4 Auxiliary channel A input active 12 Capture input active

5 Auxiliary channel B input active 13 Capture input edge

6 Position feedback lost input active 14 Motor over-temperature input active

7 Marker input active 15 OK output active

Related Registers: DI, DO

GFK-2205 Appendix A Registers and Commands A-139

A

IOS System I/O

Class: Input/Output Register

Type: Integer, Boolean

Syntax: IOSp1 (e.g., IOS IOS3 IOSVI4)

Parameters: allowed values description

p1 none or 0 through 15 system I/O register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The system I/O register is used to identify what inputs and

outputs of the system are active.

Remarks: 1. When the IOS? command is executed, the system I/O

register will be given as an English statement.

2. If the computer interface format is enabled, and the IOS?

command is executed, the system I/O register will be given as

an integer number. The table below lists the possibilities:

bit message

0 Set point output active

1 Set point input active

2 Flash memory card inserted

3 Flash memory card write protected

4 Extended memory card inserted

5 Extended memory card write protected

6 Extended memory card battery low

7 Extended memory card battery dead

8 Teach pendant available

9 Suspend input active

10 Resume input active

11 Enable input active

12 Network power failure input active

13 Reserved

14 Ready output active

15 OK output active

Related Registers: DI, DO

A-140 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IP Axis in Position

Class: System Register

Type: Boolean

Syntax:

I, jr IP

 IPp1 (e.g., IP3 IPVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 allowed values 0, 1

Restrictions: Read only.

Use: The axis in position register is used to determine whether the

axis is in position. If the axis is in position, then IP will be 1;

and if the axis is not in position, then IP will be 0. The axis is

in position when the position error (PSC-PSA) is less than the

value set by the In Position Band (IPB) register. For

continuous moves initiated by the RVF or RVR commands,

IP is set true at the end of the acceleration segment.

Related Registers: IPALL, IPB, SRA

GFK-2205 Appendix A Registers and Commands A-141

A

IPALL All Axes in Position

Class: System Register

Type: Boolean

Syntax: IPALL

Range:

allowed values 0, 1

Restrictions: Read only.

Use: The all axes in position register is used to determine whether

all of the axes are in position. If all axes are in position, the

IPALL will be 1; and if not, IPALL will be 0.

Related Registers: IP, IPB, SRS

A-142 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

IPB In-Position Band

Class: Axis Register

Type: Floating point

Syntax:

I, jr IPB

IPBp1 (e.g., IPB1 IPBVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum 0 pulses

 maximum 16,000 pulses

Use: The in-position band register defines the maximum amount of

position error (PSC-PSA) that the axis can have and still be in

position.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value of URA (see URA).

Related Registers: URA, IP

GFK-2205 Appendix A Registers and Commands A-143

A

KA Acceleration Feedforward

Class: Axis Register

Type: Integer

Syntax:

I, jr KA

KAp1 (e.g., KA1 KAVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0

 minimum 0

 maximum 64,000

Restrictions: Servo only.

Use: The acceleration feedforward constant is used to reduce

following error during acceleration or deceleration. The

equation for setting KA based on the torque to inertia ratio and

the axis feedback resolution, FR, is:

This value along with the values of all the other control

constants can be set automatically by the AUTOTUNE

command.

Related Registers: FR

Related Commands: AUTOTUNE

A-144 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KD Derivative Control Gain

Class: Axis Register

Type: Integer

Syntax:

I, jr KD

KDp1 (e.g., KD1 KDVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 defaults 500 (ampless servo)

200 (2,500 line count encoder servo)

500 (resolver feedback brushless servo)

 minimum 0

 maximum 8,000

Restrictions: Servo only.

Use: The derivative control gain is used to multiply the time

derivative of the following error to control the position of the

axis. The equations for setting KD based on the torque to

inertia ratio and the axis feedback resolution, FR, are listed

below:

For resolver and 2,500 line count encoder models (i.e., IMJ,

Target, and standard model IMCs):

For sinusoidal encoder models (i.e., custom-order IMCs only):

This value along with the values of all the other control

constants can be set automatically by the AUTOTUNE

command.

Related Registers: FR

Related Commands: AUTOTUNE

GFK-2205 Appendix A Registers and Commands A-145

A

KEY Character in Key Buffer I jr

Class: System Register

Type: Boolean

Syntax: KEY

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether a character is in the

key buffer. KEY is equal to 1 when there is a character in the

key buffer, and it is equal to 0 when there is none. The key

buffer can hold up to 256 bytes.

Related Registers: KYA, SRS

Related Commands: KY, EKB, GET, IN

A-146 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KEY Character in User Receive Buffer

Class: System Register

Type: Boolean

Syntax: KEY

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether a character is in the

user receive buffer. KEY is equal to 1 when there is a

character in the user receive buffer, and it is equal to 0 when

there is none.

Related Registers: SRS

Related Commands: EUB, GET, IN

GFK-2205 Appendix A Registers and Commands A-147

A

KEYT Character In Tertiary Receive Buffer

Class: System Register

Type: Boolean

Syntax: KEYT

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether a character is in the

tertiary receive buffer. KEYT is equal to 1 when there is a

character in the buffer, and it is equal to 0 when there is none.

Related Registers: SRT

Related Commands: ETB, GETT, INT

A-148 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KEYW Character in Key Buffer

Class: System Register

Type: Boolean

Syntax: KEYW

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether a character is in the

key buffer. KEY is equal to 1 when there is a character in the

key buffer, and it is equal to 0 when there is none.

Related Registers: KYA, SRT

Related Commands: WKY, EKB, GETW, INW

GFK-2205 Appendix A Registers and Commands A-149

A

KI Integral Control Gain

Class: Axis Register

Type: Integer

Syntax:

I, jr KI

KIp1 (e.g., KI1 KIVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0

 minimum 0

 maximum 64,000

Restrictions: Servo only.

Use: The integral control gain is used to multiply the time integral of

the following error to control the position of the axis. The

equations for setting KI based on the torque to inertia ratio and

the axis feedback resolution, FR, are shown below:

For resolver and 2,500 line count encoder models (i.e., IMJ,

Target, and standard model IMCs):

Torque is the continuous torque of the motor in inch-pounds,

and inertia is the system inertia in inch-pounds/sec2. This value

along with the values of all the other control constants can be

set automatically by the AUTOTUNE command.

Related Registers: FR

Related Commands: AUTOTUNE

A-150 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KL Motor Inductance jr

Class: Axis Register

Type: Integer

Syntax: KL

Range:

units mH

default 10 mH

minimum 1 mH

maximum 100 mH

Restrictions: Servo only.

Use: The motor inductance is used to tune the digital current

controller to the attached motor. This register should be set to

the motor’s line-line inductance in mH—use the following

table for your KL values:

Motor Inductance Values — N and S Series Motors

Motor KL Motor KL

3N21-H ______ 4 3S46-G ______ 25

3N22-H ______ 6 3S46-H ______ 6

3N24-G ______ 9 3S63-G ______ 9

3N31-H ______ 10 3S63-H ______ 2

3N32-G ______ 18 3S65-G ______ 14

3N32-H ______ 5 3S65-H ______ 3

3N33-G ______ 25 3S67-G ______ 18

3S22-G ______ 21 3S67-H ______ 5

3S32-G ______ 23 3S84-G ______ 3

3S33-G ______ 22 3S86-G ______ 4

3S33-H ______ 6 3S88-G ______ 4

3S34-G ______ 30 3S8A-G ______ 7

3S35-G ______ 42

3S43-G ______ 53

3S43-H ______ 13

3S45-G ______ 20

3S45-H ______ 5

GFK-2205 Appendix A Registers and Commands A-151

A

Motor Inductance Values — T Series Motors

Motor KL Motor KL

3T11-G ______ 7 3T53-G ______ 15

3T12-G ______ 4 3T53-H ______ 7

3T13-G ______ 3 3T54-G ______ 16

3T21-G ______ 11 3T54-H ______ 7

3T22-G ______ 7 3T55-G ______ 20

3T23-G ______ 11 3T55-H ______ 9

3T23-H ______ 7 3T55-I ______ 2

3T23-I ______ 3 3T57-G ______ 13

3T24-H ______ 9 3T57-H ______ 3

3T24-I ______ 4 3T65-G ______ 20

3T42-G ______ 26 3T65-H ______ 5

3T42-H ______ 9 3T66-G ______ 24

3T43-G ______ 20 3T66-H ______ 7

3T43-H ______ 13 3T67-G ______ 8

3T43-I ______ 3 3T69-G ______ 10

3T43-J ______ 5

3T44-G ______ 27

3T44-H ______ 12

3T44-I ______ 4

3T44-J ______ 7

3T45-G ______ 33

3T45-H ______ 9

3T45-I ______ 4

A-152 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KLALL Kills All Programs

Class: Program Command

Syntax: KLALL

Restrictions: Not allowed in motion blocks.

Use: This command kills all programs (i.e., it stops their execution).

Remarks: 1. This command will not stop any motion caused by any

previously executed programs.

2. If this command is executed in a program, then the program

that executes the command will not be killed

Related Commands: KLP

GFK-2205 Appendix A Registers and Commands A-153

A

KLP Kills Program

Class: Program Command

Syntax: KLPp1 (e.g., KLP3 KLPVI30)

Parameters: allowed values description

I, jr p1 1 through 4 or VIn program number

 p1 1 through 17 or VIn program number

Restrictions: Not allowed in motion blocks.

Use: This command kills program p1 (i.e., it stops its execution).

Remarks: This command will not stop any motion caused by program p1.

Related Commands: KLALL

A-154 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KM Motor Number jr

Class: Axis Register

Type: Integer

Syntax: KM

Range:

Units none

Default 1

Minimum 1

Maximum 20

Restrictions: Stepper only.

Use: The motor number parameter is used to tune the stepper

controller current loop to provide optimum performance for the

attached stepper motor. This register must be set to the KM

number found on the stepper motor label or selected from the

following table. The KM value is used as a pointer by the

controller to look-up a number of tuning constants for a given

motor. If the value for KM is not recognized by the controller,

a set of default tuning constants are used and may not be

optimum for the connected motor.

Motor KM Wiring* Max Current

1350x-A 1 Parallel 7.9 Amps

Reserved 2 - -

1337x-D 3 Series 4.1 Amps

1350x-D 4 Series 4.0 Amps

Reserved 5 - -

1324x-D 6 Series 2.7 Amps

1221x-D 7 Series 2.0 Amps

1N42xx-A 8 Parallel 6.4 Amps

1N31xx-A 9 Parallel 6.6 Amps

1231x-D 10 Series 2.3 Amps

Reserved 11 - -

1N32-xxD 12 Series 4.1 Amps

Reserved 13 – 20 - -

GFK-2205 Appendix A Registers and Commands A-155

A

KP Proportional Control Gain

Class: Axis Register

Type: Integer

Syntax:

I, jr KP

KPp1 (e.g., KP1 KPVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

default 10

minimum 0

maximum 8,000

Restrictions: Servo only.

Use: The proportional control gain is used to multiply the following

error to control the position of the axis. The equation for setting

KP based on the axis feedback resolution, FR, is:

For resolver and 2,500 line count encoder models (i.e., IMJ,

Target, and standard model IMCs):

This value along with the values of all the other control

constants can be set automatically by the AUTOTUNE

command.

Related Registers: FR

Related Commands: AUTOTUNE

A-156 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KT Filter Time Constant

Class: Axis Register

Type: Integer

Syntax:

I, jr KT

KTp1 (e.g., KT1 KTVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

jr default 3

I default 1

 minimum 0

 maximum 5

Restrictions: Servo only.

Use: The filter time constant is used to eliminate dither. Generally,

the lower the bandwidth of a servo system, the higher the filter

time constant should be. The equation for setting KT based on

the torque to inertia ratio is:

For IMCs:

For IMJs:

where the brackets mean to take the integer part of the number

only. Torque is the continuous torque of the motor in in-lbs

and inertia is the system inertia in in-lb-sec2 . This value, along

with the values of all the other control constants, can be set

automatically by the AUTOTUNE command.

Related Commands: AUTOTUNE

GFK-2205 Appendix A Registers and Commands A-157

A

KY Puts One Character into Key Buffer I jr

Class: Input/Output Command

Syntax: KYp1 (e.g., KY1 KYB)

Parameters: allowed values description

p1 any ASCII character ASCII character

Restrictions: Not allowed in motion blocks.

Use: This command puts one character into the key buffer.

Example:

KYE (* put “E” into key buffer)

KY1 (* put “1” into key buffer)

Related Commands: GET, IN

A-158 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

KYA Key Assignment

Class: Input/Output Register

Syntax: KYAp1 (e.g., KYA2)

Parameters: allowed values description

p1 1 through 12 function key A-L (see table below)

Range:

default SINGLE

allowed values OFF (no key codes are put in the key buffer)

SINGLE (only key-pressed code is put into key buffer)

DOUBLE (key-pressed/key-released codes are put into key

buffer)

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: This register is used to determine what function key codes are

put into the key buffer after pressing and releasing function key

p1.

Related Registers: KEY, KEYW

Function Key Value

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

I 9

J 10

K 11

L 12

GFK-2205 Appendix A Registers and Commands A-159

A

L Makes Last Statement the Current Statement in Line Editor

Class: Program Command

Syntax: L

Restrictions: Allowed only in programs or motion blocks.

Use: This command makes the last statement the current statement

in the line editor.

Examples: IMC/IMJ Target ARS

PROGRAM1 PROGRAM1 (* edit program 1)

* PSA=0 * PSA1=0

X X (* step through program)

* MVL=10 * MVL1=10

X X (* step through program)

* MAC=40 * MAC1=40

L L (* make last statement the

current statement)

* MVL=10 * MVL1=10

! ! (* exit line editor)

* *

Related Commands: PROGRAM, MOTION, X

A-160 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

LABEL Makes Statement at Label the Current Statement

Class: Program Command

Syntax: LABELp1 (e.g., LABEL53)

Parameters: allowed values description

p1 1 through 999 label number

Restrictions: Allowed only in programs being edited in the terminal window

line editor.

Use: This command makes the statement at label p1 the current

statement in the terminal window line editor.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

* PSA=0 * PSA1=0

LABEL5 LABEL5 (* make statement at label 5 current statement)

*005OUT “Press *005OUTW “Press

 any key to any key to

 stop axis$N” stop axis$N”

! ! (* exit line editor)

* *

Related Commands: PROGRAM, L, X, !

GFK-2205 Appendix A Registers and Commands A-161

A

LED State of Display Led

Class: Input/Output Register

Type: Boolean

Syntax: LEDp1 (e.g., LED2 LEDVI5)

Parameters: allowed values description

p1 1 through 3 or VIn LED number

Range:

default 0 on power-up

allowed values 0, 1

Restrictions: Write only.

Use: This register contains the state of one of the display LEDs.

Remarks: Please note that this register is write only. It cannot be read.

Example:

LED1=1 (* set state of display LED one)

ASCII Codes: See the following table

Code (Hex) Description Command

31 Turn LED1 on LED1=1, OUT “$1B$31”

32 Turn LED2 on LED2=1, OUT “$1B$32”

33 Turn LED3 on LED3=1, OUT “$1B$33”

34 Turn LED 1 off LED1=0, OUT “$1B$34”

35 Turn LED 2 off LED2=0, OUT “$1B$35”

36 Turn LED 3 off LED3=0, OUT “$1B$36”

A-162 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

LOCK Locks Interpreter to Program

Class: Program Command

Syntax: LOCK

Restrictions: Allowed only in programs.

Use: This command locks the interpreter to the program, which

causes other currently executing programs to be to suspended.

Remarks: Once a program containing the LOCK command is done

executing, the interpreter will automatically be unlocked from

that program. LOCK will not prevent program 4 from

executing when a fault occurs.

Example:

PROGRAM1 (* edit program 1)

STM1=0.01 (* load start time of timer 1 and start timer 1)

1 WAIT TM1 (* wait for expression to be true)

LOCK (* lock interpreter to program)

IF KEY GOTO2 (* conditionally goto 2)

UNLOCK (* unlock interpreter from program)

GOTO1 (* unconditionally goto 1)

2 END (* end program and exit editor)

 What will happen: This program, once executed, will first wait for 10 ms. Then, it

locks the interpreter and checks for KEY to be true (i.e., for a

character to be entered into the key buffer). If KEY is true,

then the program goes to the statement at label 2, which ends

the program. If it is not, then it unlocks the interpreter and

goes to the statement at label 1, which waits for 10 ms, etc.

Related Commands: UNLOCK

GFK-2205 Appendix A Registers and Commands A-163

A

MAC Motion Acceleration/Deceleration

Class: Motion Register

Type: Floating point

Syntax:

I, jr MAC

MACp1 (e.g., MAC2 MACVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/sec2

 default 100 pulses/sec2

 minimum 100 pulses/sec2

 maximum 1,000,000,000 pulses/sec2

Use: This register is used to define both an acceleration and a

deceleration rate for the axis. Define the deceleration rate

separately with MDC. In cases where the acceleration rate

differs from the deceleration rate, you must set MAC first and

MDC second. MAC is used only when the motion type, MT, is

set to velocity (MT=VEL).

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the URA is set to a value other than

1, the default, minimum, and maximum values must be divided

by the value of URA (see URA).

Examples: IMC/IMJ Target ARS

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* set absolute move position)

RPA RPA1 (* run to absolute position)

 What will happen: Setting the axis position, velocity, acceleration, and absolute

move position and issuing the RPA command will cause the

axis to move 12 units in the forward direction. It will

accelerate at 40 units/sec2 to a velocity of 10 units/sec, and then

decelerate at 40 units/sec2 to zero velocity.

Related Registers: MDC, MAP, MT, URA

A-164 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MAP Motion Acceleration/Deceleration Percentage

Class: Motion Register

Type: Integer

Syntax:

I, jr MAP

MAPp1 (e.g., MAP2 MAPVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units %

 default 50

 minimum 1

 maximum 99

Use: Time based moves (MT=TIME): This register defines both

acceleration and a deceleration percentage for the axis. The

deceleration percentage can be defined separately with the

MDP command. In cases where the acceleration percentage

differs from the deceleration percentage, you must set MAP

first and MDP second. The acceleration percentage is the

percentage of axis move time that the axis will accelerate. The

deceleration percentage is similarly defined (see MDP).

For Compiled Cam Profile Segments (MT=VEL): For

compiled cam motion the MAP register defines the percentage

of the total segment length over which

acceleration/deceleration will take place. MAP also sets the

Motion Deceleration Percentage register (MDP) to the same

value. When using MDP to specify a deceleration value that is

different from the acceleration value you must first set MAP

and then set MDP.

Pulse-based moves (MT=PULSE or PULVEL): This

register defines the percentage of total auxiliary units (defined

by the MPL) over which axis acceleration or deceleration will

occur during an incremental or absolute pulse-based move. For

example if MAP=20 the acceleration will take 20% of the total

move pulses, deceleration will take 20% and the constant

velocity segment will take the remaining 60%. MAP is not

required for continuous pulse-based moves initiated by the

RVF and RVR commands. For applications requiring different

acceleration and deceleration values the MDP register must be

set after the MAP register.

GFK-2205 Appendix A Registers and Commands A-165

A

Remarks: 1. If MAP is set to a value greater than 50, then MDP is

automatically set to the value of MAP subtracted from 100.

Otherwise, MDP=MAP.

2. If MAP and MDP are assigned separately, their values

cannot be set so that MAP+MDP>100.

Examples: IMC/IMJ Target ARS

MPI=5 MPI1=5 (* set incremental move position)

MT=TIME MT1=TIME (* set motion type to time)

MTM=10 MTM1=10 (* set move time)

MAP=40 MAP1=40 (* set acceleration percentage)

RPI RPI1 (* run to incremental move position)

 What will happen: The example used above will cause the axis to move 5 units in

the forward direction in 10 seconds. It will accelerate 40% of

the move time (i.e., 4 seconds), then stay at a constant speed for

20% of move time, then decelerate for the last 40% of move

time (i.e., 4 seconds).

Related Registers: MDP, MAC, MT, MTM

A-166 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MB Motion Block Executing

Class: System Register

Type: Boolean

Syntax:

I, jr MB

MBp1 (e.g., MB3 MBVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether a motion block is

executing. If the motion block is executing, then MB is equal

to 1; and when it is not executing, then MB is equal to 0.

Related Registers: MBANY, SRA

GFK-2205 Appendix A Registers and Commands A-167

A

MBA Assigns Axes to Motion Block

Class: Program Command

Syntax: MBAp1 (e.g., MBA3 MBA1234 MBAVI2)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Restrictions: Allowed only in motion blocks

Use: This command assigns the axes that the motion block will use.

Remarks: This command must be the first command in a motion block.

Example:

MOTION1 (* edit motion block 1)

MBA13 (* assign axes 1 and 3 to motion block)

MVL1=10 (* set axis one velocity)

MAC1=10 (* set axis one acceleration)

MVL3=5 (* set axis three velocity)

MAC3=10 (* set axis three acceleration)

RVF13 (* run axes 1 and 3 forward)

END (* end motion block)

A-168 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MBANY Any Motion Block Executing

Class: System Register

Type: Boolean

Syntax: MBANY

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine whether any of the motion

blocks are executing. If any of the motion blocks are

executing, then MBANY is equal to 1; and if none of the

motion blocks are executing, then MBANY is equal to 0.

Related Registers: MB, SRS

GFK-2205 Appendix A Registers and Commands A-169

A

MDA Absolute Move Distance

Class: Motion Register

Type: Floating point

Syntax: MDAp1 (e.g., MDA2 MDAVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

units axis units

default 0 pulses

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Use: This register is used to define the absolute move distance of the

axis for arc segment moves.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values will

change appropriately (see URA).

Example: PSA1=0 (* set axis one position)

PSA2=0 (* set axis two position)

MPA1=0 (* set axis one absolute position)

MPA2=0 (* set axis two absolute position)

MDA1=3 (* set axis one absolute distance)

MDA2=3 (* set axis two absolute distance)

TVL=5 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate percentage)

RCA12 (* run arc segment with center)

 What will happen: Setting the axis position, absolute move, absolute distance,

trajectory velocity, and trajectory feedrate acceleration and

issuing the RCA command will cause axes one and two to

move in a circle centered at (3, 3).

Related Registers: MDI, MDO, URA

Related Commands: RCA, RTA

A-170 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MDC Motion Deceleration

Class: Motion Register

Type: Floating point

Syntax:

I, jr MDC

MDCp1 (e.g., MDC2 MDCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/sec2

 default 100 pulses/sec2

 minimum 100 pulses/sec2

 maximum 1,000,000,000 pulses/sec2

Use: This register is used to define a deceleration rate for the axis

when the deceleration rate must be different from the

acceleration rate. In these cases, you must set MAC first and

MDC second. MDC is used only when the motion type is set

to velocity (MT=VEL). Deceleration for pulse- and time-based

moves is set using MDP.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value of URA (see URA).

Examples: IMC/IMJ Target ARS

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MDC=10 MDC1=10 (* set motion deceleration)

MPA=12 MPA1=12 (* set absolute move position)

RPA RPA1 (* run to absolute position)

 What will happen: Setting the axis position, velocity, acceleration, and absolute

move position and issuing the RPA command will cause the

axis to move 12 units in the forward direction. It will

accelerate at 40 units/sec2 to a velocity of 10 units/sec, and then

decelerate at 10 units/sec2 to zero velocity.

Related Registers: MAC, MDP, MT, URA

GFK-2205 Appendix A Registers and Commands A-171

A

MDI Incremental Move Distance

Class: Motion Register

Type: Floating point

Syntax: MDIp1 (e.g., MDI2 MDIVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

units axis units

default 0 pulses

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Use: This register is used to define the incremental move distance of

the axis for arc segment moves.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values will

change appropriately (see URA).

Example: MPI1=0 (* set axis one incremental position)

MPI2=0 (* set axis two incremental position)

MDI1=3 (* set axis one incremental distance)

MDI2=3 (* set axis two incremental distance)

TVL=5 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate percentage)

RCI12 (* run arc segment with center)

 What will happen: Setting the axis position, absolute move, absolute distance,

trajectory velocity, and trajectory feedrate acceleration and

issuing the RCI command will cause axes one and two to move

in a circle centered at (3, 3) incrementally from their current

position.

Related Registers: MDA, MDO, URA

Related Commands: RCI, RTI

A-172 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MDO Offset Move Distance

Class: Motion Register

Type: Floating point

Syntax: MDOp1 (e.g., MDO1 MDOVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

units axis units

default 0 pulses

minimum -2,000,000,000

maximum 2,000,000,000

Use: This register is used to define the offset move distance of the

axis for arc segment moves.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values will

change appropriately (see URA).

Example: PSO1=0 (* set axis one position offset)

PSO2=0 (* set axis two position offset)

MPO1=0 (* set axis one offset position)

MPO2=0 (* set axis two offset position)

MDO1=3 (* set axis one offset move distance)

MDO2=3 (* set axis two offset move distance)

TVL=5 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate percentage)

RCO12 (* run arc segment with center)

 What will happen: Setting the axis position, absolute move, absolute distance,

trajectory velocity, and trajectory feedrate acceleration and

issuing the RCO command will cause axes one and two to

move in a circle centered at offset position (3, 3).

Related Registers: MDI, MDA, URA

Related Commands: RCO, RTO

GFK-2205 Appendix A Registers and Commands A-173

A

MDP Motion Deceleration Percentage

Class: Motion Register

Type: Integer

Syntax:

I, jr MDP

MDPp1 (e.g., MDP2 MDPVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units %

 default 50

 minimum 1

 maximum 99

Use: Time based moves (MT=TIME): This register defines a deceleration

percentage for the axis. The deceleration percentage is the percentage of axis

move time that the axis will decelerate. In cases where the deceleration

percentage differs from the acceleration percentage, you must set MAP first

and MDP second.

For Compiled Cam Profile Segments (MT=VEL): For compiled cam

motion the MDP register defines the percentage of the total segment length

over which deceleration will take place. When using MDP to specify a

deceleration value that is different from the acceleration value you must first

set MAP and then set MDP.

Pulse-based moves (MT=PULSE or PULVEL): This register defines the

percentage of total auxiliary units (defined by the MPL register) over which

axis deceleration will occur during an incremental or absolute pulse-based

move. For example if MDP=20 the deceleration will take 20% of the total MPL

units. For applications requiring different acceleration and deceleration values

the MDP register must be set after the MAP register. MDP is not required for

continuous pulse-based moves initiated by the RVF and RVR commands.

Remarks: 1. If the deceleration percentage is the same as the acceleration percentage the

MDP command is not necessary (MDP=MAP). In this case if MAP is set to a

value greater than 50, then MDP is automatically set to the value of MAP

subtracted from 100.

2. If MAP and MDP are assigned separately, their values cannot be set so that

MAP+MDP>100.

Examples: IMC/IMJ Target

MPI=5 MPI1=5 (* set incremental move position)

MT=TIME MT1=TIME (* set motion type to time)

MTM=10 MTM1=10 (* set move time)

MAP=25 MAP1=25 (* set acceleration percentage)

MDP=40 MDP1=40 (* set deceleration percentage)

RPI RPI1 (* run to incremental move position)

 What will happen: Setting the incremental move position, move time, acceleration percentage, and

deceleration percentage and issuing the RPI command will cause the axis to

move 5 units in the forward direction in 10 seconds. It will accelerate 25% of

the move time (i.e., 2.5 seconds), then stay at a constant speed for 35% of move

time (i.e., 3.5 seconds), then decelerate for the last 40% of move time

(i.e., 4 seconds).

Related Registers: MAP, MDC, MT, MVT

A-174 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MEMORY Reports Memory Remaining

Class: System Command

Syntax: MEMORY

Restrictions: Not allowed in programs or motion blocks.

Use: This command reports the remaining memory in bytes.

GFK-2205 Appendix A Registers and Commands A-175

A

MFA Motion Feedrate Acceleration/Deceleration

Class: Motion Register

Type: Integer

Syntax:

I, jr MFA

MFAp1 (e.g., MFA2 MFAVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units percent/second

 default 1,000

 minimum 1

 maximum 200,000

Use: This register is used to define both an acceleration and a

deceleration rate for the motion feedrate percentage. Define

the deceleration rate separately with MFD. In cases where the

acceleration rate differs from the deceleration rate, you must set

MFA first and MFD second.

Examples: IMC/IMJ Target

MFP=40 MFP5=40 (* set motion feedrate percentage)

MFA=500 MFA5=500 (* set motion feedrate acceleration)

MFP=80 MFP5=80 (* set motion feedrate percentage)

 What will happen: Setting motion feedrate acceleration to 500 and motion feedrate

percentage to 80 will cause the controller to accelerate the

motion feedrate from 40 percent to 80 percent at

500 percent/second.

Related Registers: MFD, MFP

A-176 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MFD Motion Feedrate Deceleration

Class: Motion Register

Type: Integer

Syntax:

I, jr MFD

MFDp1 (e.g., MFD2 MFDVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units percent/second

 default 1,000

 minimum 1

 maximum 200,000

Use: This register is used to define a deceleration rate for the motion

feedrate percentage. In cases where the acceleration rate

differs from the deceleration rate, you must set MFA first and

MFD second.

Examples: IMC/IMJ Target

MFP=80 MFP5=80 (* set motion feedrate percentage)

MFD=500 MFD5=500 (* set motion feedrate deceleration)

MFP=40 MFP5=40 (* set motion feedrate percentage)

 What will happen: Setting motion feedrate deceleration to 500 and the motion

feedrate percentage to 40 will cause the controller to decelerate

the motion feedrate from 80 percent to 40 percent at

500 percent/second.

Related Registers: MFA, MFP

GFK-2205 Appendix A Registers and Commands A-177

A

MFP Motion Feedrate Percentage

Class: Motion Register

Type: Floating point

Syntax:

I, jr MFP

MFPp1 (e.g., MFP2 MFPVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units percent

 default 100.00

 minimum 0.00

 maximum 100.00

Use: This register is used to define a feedrate percentage for the axis

motion. The feedrate percentage causes the motion to run at a

velocity that is a percentage of the motion velocity specified

when the motion command was executed.

Remarks: This register is set to its default value on power-up.

Examples: IMC/IMJ Target

MVL=20 MVL4=20 (* set motion velocity)

MAC=50 MAC4=50 (* set motion acceleration)

RVF RVF4 (* run forward at velocity)

MFD=500 MFD4=500 (* set feedrate deceleration)

MFP=63 MFP4=63 (* set feedrate percentage)

 What will happen: Setting motion velocity, acceleration, feedrate deceleration, and

feedrate percentage and issuing the run forward to velocity

command will cause the axis to run forward at 63% of

20 units/second, or 12.6 units/second.

Related Registers: MFA, MFD

Motion Templates: Velocity-based absolute move with feedrate override;

time-based, single-axis absolute move with feedrate override

A-178 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MI Motion Pulse Input

Class: Motion Register

Syntax: MIp1 (e.g., MI2 MIVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default PSXa

allowed values PSXa auxiliary input of selected axis (a: 1 through 8)

PSCa command position of selected axis (a: 1 through 8)

PSAa axis position of selected axis (a: 1 through 8)

Restrictions: Not allowed in expressions.

Use: This register selects the pulse input source for pulse-based

motion. MI is used when motion type, MT, is set to pulse.

Related Registers: MT, MPL, MPS

GFK-2205 Appendix A Registers and Commands A-179

A

MJK Motion Jerk Percentage

Class: Motion Register

Type: Integer

Syntax:

I, jr MJK

MJKp1 (e.g., MJK2 MJKVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units %

 default 0

 minimum 0

 maximum 100

Restrictions: MJK has no effect when MT is set to PULSE or PULVEL.

Use: This register is used to define a jerk percentage for the axis.

The jerk percentage is the percentage of

acceleration/deceleration time that the axis will jerk.

Remarks: If MJK is set to 0, there is no jerk limit (i.e., the jerk is infinite).

Examples: IMC.IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=5 MVL1=5 (* set motion velocity)

MAC=10 MAC1=10 (* set motion acceleration)

MPI=40 MPI1=40 (* set incremental move position)

MJK=100 MJK1=100 (* set motion jerk percentage)

RPI RPI1 (* run to incremental move position)

MJK=0 MJK1=0 (* set motion jerk percentage)

RPI RPI1 (* run to incremental move position)

 What will happen: This program will cause the axis to move 40 units in the

forward direction. The axis will smoothly ramp the

acceleration and deceleration up to 10 units/sec2 and back

down to zero for the whole time it is accelerating and

decelerating. Then, setting the jerk percentage to 0 and issuing

the RPI command will enable the axis to achieve

instantaneously the acceleration rate and deceleration rate

during the move.

A-180 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MONTH Month I

Class: System Register

Type: String

Syntax: MONTH

Range:

allowed values January...December

Restrictions: Read only.

Use: The month register is used to keep track of the month.

Example:

MONTH? (* report month)

*April

Related Registers: TIME, DATE, DAY

GFK-2205 Appendix A Registers and Commands A-181

A

MOTION Edits Motion Block

Class: Program Command

Syntax: MOTIONp1 (e.g., MOTION60)

Parameters: allowed values description

I, jr p1 1 through 100 motion block number

 p1 1 through 400 motion block number

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to enter the terminal window line editor

at the first statement of motion block p1. It can be used either

to view or edit motion blocks.

Remarks: This command will execute only when all axes have stopped

and no programs or motion blocks are running.

Examples: IMC/IMJ Target

MOTION1 MOTION1 (* edit motion block 1)

MBA1 (* assign axis one to motion block)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPI=15 MPI1=15 (* set incremental move position)

RPI RPI1 (* run to incremental move position)

END END (* end motion block 1 and exit editor)

Related Commands: PROGRAM, END, X, !, DEL, L, FAULT

A-182 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MOTORSET Automatically Sets Up Motor Constants

Class: System Command

Syntax:

I, jr MOTORSET

MOTORSETp1 (e.g., MOTORSET5)

Parameters: allowed values description

 p1 1 through 8 axis number

Restrictions: Brushless servo only; not allowed in programs or motion

blocks.

Use: This command automatically sets up the motor constants,

which are CMO and CMR for the IMC; and CMO,CMR, and

AR for the Target.

Remarks: This command will execute only when the controller or system

and axis are faulted, the axis Enable input is true, and no

programs or motion blocks are executing. The motor must

not be connected to a load when you use this command.

Executing MOTORSET with a load attached will yield

improper values. When executed, it causes the motor rotor to

line up with two locations of the stator vector. This command

must be executed from the terminal window and takes from

two to 30 seconds to execute; when finished, the controller or

system will return either an asterisk (*) indicating successful

completion or a question mark (?) followed by the appropriate

error message. The possible error messages are as follows:

1. SWITCH MOTOR LEADS — two motor leads should be

switched.

2. BAD POLES RATIO — the motor poles to resolver poles

ratio was less than 1 or greater than 16.

3. BAD RESOLVER AMPLITUDE — the amplitude of the

resolver signals could not be properly set.

Related Commands: AUTOTUNE

Registers Used: CMO, CMR, AR, CURC

GFK-2205 Appendix A Registers and Commands A-183

A

MPA Absolute Move Position

Class: Motion Register

Type: Floating point

Syntax:

I, jr MPA

MPAp1 (e.g., MPA2 MPAVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Use: For velocity-based, time-based and pulse-based moves this

register is used to define the absolute position to which the axis

will move. For compiled cam profile segments the MPA

register defines the axis absolute position at the end of the

profile segment.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value of URA (see URA).

Examples: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=8 MPA1=8 (* set absolute move position)

RPA RPA1 (* run to absolute position)

 What will happen: Setting the axis position, velocity, acceleration, and absolute

move position and issuing the RPA command will cause the

axis to move 8 units in the forward direction.

Related Registers: MPI, MPO, URA

Related Commands: RPA, RLA, RCA, RTA

A-184 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MPI Incremental Move Position

Class: Motion Register

Type: Floating point

Syntax:

I, jr MPI

MPIp1 (e.g., MPI2 MPIVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units axis units

default 0 pulses

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Use: This register is used to define the incremental move position of

the axis.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value of URA (see URA).

Examples: IMC/IMJ Target

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPI=12 MPI1=12 (* set incremental move position)

RPI RPI1 (* run to incremental move position)

 What will happen: Setting the velocity, acceleration, and incremental move

position and issuing the RPI command will cause the axis to

move 12 units in the forward direction.

Related Registers: MPA, MPO, URA

Related Commands: RPI, RLI, RCI, RTI

GFK-2205 Appendix A Registers and Commands A-185

A

MPL Move Pulses

Class: Motion Register

Type: Floating point

Syntax:

I, jr MPL

MPLp1 (e.g., MPL2 MPLVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units the units are the same as the pulse input selection

 default 20,000,000 pulses

 minimum 1 pulse

 maximum 20,000,000 pulses

Restrictions: For IMCs, this function available only with the extended command set.

Use: Used only for pulse-based motion (MT=PULSE or PULVEL). This register is

not used for time-based or velocity-based motion.

For Incremental or Absolute Moves: When MT=PULSE: this register

defines the number of input pulses (or auxiliary position units if URX is not

equal to 1) over which the axis makes its motion. When MT=PULVEL: this

register defines the total auxiliary units over which the acceleration and

deceleration for the axis motion will occur. The percentage of MPL used for

acceleration is defined by MAP (i.e. axis acceleration will occur over

MPL*MAP/100 aux. units). The remainder of MPL is then used for

deceleration. MVP in this case defines the axis velocity as a ratio of axis

units/aux. unit.

For Continuous Moves: The MPL register defines the number of auxiliary

position units over which the acceleration or deceleration will occur.

Remarks: The numerical values for the default, minimum, and maximum of this register

assume that the pulse unit ratio is set at 1. If the unit ratio is set to a value other

than 1, the default, minimum, and maximum must be divided by the value of

URX (see URX).

Examples: IMC/IMJ Target

MT=PULSE MT1=PULSE (* set motion type to pulse)

MI1=PSX1 (* set motion pulse input)

PSA=0 PSA1=0 (* set axis position to zero)

PSX=0 PSX1=0 (* set auxiliary position to zero)

MPS=2 MPS1=2 (* set motion start position to 2 aux. units)

MPL=5 MPL1=5 (* set move pulses to 5 aux. units)

MAP=20 MAP1=20 (* set motion acceleration/deceleration

percent to 20)

MPA=10 MPA1=10 (* set absolute move position to 10 axis units)

RPA RPA1 (* run to absolute position)

 What will happen: After you issue the RPA command, the axis will wait until the auxiliary

position reaches 2 units; then, while the auxiliary position moves to 7 units, the

axis will move to 10 units, using 1 auxiliary unit of motion to accelerate,

3 units to run at a constant velocity, and 1 unit to decelerate to a stop.

Related Registers: MT, MPS, MVP, URX, MI

A-186 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MPO Offset Move Position

Class: Motion Register

Type: Floating point

Syntax:

I, jr MPO

MPOp1 (e.g., MPO2 MPOVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Use: This register is used to define the destination position for an

offset move initiated by the Run to Offset Position (RPO)

command. MPO is similar to MPA except that positions are

with respect to the PSO register instead of the PSA register.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values must

be divided by the value of URA (see URA).

Examples: IMC/IMJ Target

PSO=0 PSO1=0 (* set offset position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPO=8 MPO1=8 (* set offset move position)

RPO RPO1 (* run to offset move position)

 What will happen: Setting the offset position register, velocity, acceleration, and

offset move position and issuing the RPO command will cause

the axis to move 8 units in the forward direction.

Related Registers: MPA, MPI, URA

Related Commands: RPO, RLO, RCO, RTO

GFK-2205 Appendix A Registers and Commands A-187

A

MPS Motion Pulse Start Position

Class: Motion Register

Type: Floating point

Syntax:

I, jr MPS

MPSp1 (e.g., MPS2 MPSVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units the units are the same as the pulse input selection

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended command set.

Use: This register is used to define the auxiliary position (PSX) at which the

pulse-based axis motion should start. To use the MPS register MT must be set

to PULSE or PULVEL. It is not used for velocity-based or time-based motion.

Remarks: The meaning of the MPS register differs slightly for pulse-based incremental or

absolute moves and pulse-based continuous moves.

For incremental (RPI) and absolute (RPA) moves: MPS defines the

auxiliary position (PSX) where the axis motion will start.

For continuous moves (RVF or RVR): The MPS register is used to define the

auxiliary position where either axis acceleration or deceleration will start.

Therefore, program segments for continuous moves must use MPS twice. Once

to specify where to start the acceleration segment and again to specify where to

start the deceleration segment.

The numerical values shown for the default, minimum, and maximum of this

register assume that the Auxiliary Unit Ratio (URX) is set to its default value

of 1. If URX is set to a value other than 1, the default, maximum, and minimum

values must be divided by the value of URX.

Examples: IMC/IMJ Target

MT=PULSE MT1=PULSE (* set motion type to pulse)

MI1=PSX1 (* set motion pulse input)

PSA=0 PSA1=0 (* set axis position to zero)

PSX=0 PSX1=0 (* set auxiliary position to zero)

MPS=2 MPS1=2 (* set motion start position to 2 aux. units)

MPL=5 MPL1=5 (* set move pulses to 5 auxiliary units)

MAP=20 MAP1=20 (* set motion acceleration/deceleration

percent to 20)

MPA=10 MPA1=10 (* set absolute move position to 10 axis units)

RPA RPA1 (* run to absolute position)

 What will happen: After you issue the RPA command, the axis will wait until the auxiliary

position reaches 2 units; then, while the auxiliary position moves to 7 units, the

axis will move to 10 units, using 1 auxiliary unit of motion to accelerate,

3 units to run at a constant velocity, and 1 unit to decelerate to a stop.

Related Registers: MT, MPL, MVP, URX, MI

A-188 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MT Motion Type

Class: Motion Register

Syntax:

I, jr MT

MTp1 (e.g., MT2 MTVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

default VEL

allowed values VEL (velocity)

PULSE (pulse input)

TIME (time)

PULVEL (pulse/velocity)

Restrictions: Not allowed in expressions; cannot be changed when motion

generator is active. For IMCs, the PULSE and PULVEL

settings are available only with the extended command set.

Use: The motion type register is used to define the type of

commands that will be used to define a motion profile. The

motion registers that are used for each of the allowed motion

types are:

MT Setting Registers that Define Motion Profile

MT=VEL MAC, MDC, MJK, and MVL

MT=PULSE MAP, MDP, MPL, MPS, and MVP

MT=PULVEL MAP, MPL, MPS, and MVP

MT=TIME MAP, MDP, MJK , and MTM

Remarks: MT can be changed between PULSE and PULVEL while the

axis is in motion. The change will take effect when the next

motion command is executed. The PULVEL mode function is

the same as the PULSE mode except for incremental or

absolute moves the axis velocity is specified by the MVP

register as the ratio of axis units/aux. units.

Examples: IMC/IMJ Target

MT=VEL MT1=VEL (* set motion type to velocity)

MT? MTVI3? (* report motion type of axis)

GFK-2205 Appendix A Registers and Commands A-189

A

MTE Motor Temperature Input Enable jr

Class: System Register

Type: Boolean

Syntax: MTE

Range:

default 0

allowed values 0, 1

Restrictions: Encoder feedback servo only.

Use: The motor temperature input enable parameter defines whether

the motor temperature input on the position feedback connector

is enabled. If MTE is set to 1, the motor temperature input is

enabled; and if MTE is set to 0, then the motor temperature

input is disabled.

Related Registers: FC

A-190 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MTM Move Time

Class: Motion Register

Type: Floating point

Syntax:

I, jr MTM

MTMp1 (e.g. MTM2 MTMVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units seconds

 default 10,000.000

 minimum .005

 maximum 10,000.000

Use: The move time register defines the time in which the axis will

move. MTM is used when the motion type, MT, is assigned to

time.

Examples: IMC/IMJ Target

MPI=5 MPI1=5 (* set incremental move position)

MT=TIME MT1=TIME (* set motion type to time)

MTM=10 MTM1=10 (* set move time)

MAP=40 MAP1=40 (* set motion acceleration

percentage)

RPI RPI1 (* run to incremental move position)

 What will happen: Setting the incremental move position, move time, and

acceleration percentage and issuing the RPI command will

cause the axis to move 5 units in the forward direction in

10 seconds.

Related Registers: MT

GFK-2205 Appendix A Registers and Commands A-191

A

MVL Motion Velocity

Class: Motion Register

Type: Floating point

Syntax:

I, jr MVL

MVLp1 (e.g., MVL2 MVLVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/sec

 default 1 pulse/sec

 minimum 1 pulse/sec

 maximum 16,000,000 pulses/sec

Use: This register is used to define the motion velocity of the axis.

MVL is used when the motion type, MT, is assigned to

velocity.

Remarks: The numerical values for the default, minimum, and maximum

of this register assume that the axis unit ratio, URA, is set at its

default value of 1. If URA is set to a value other than 1, the

default, maximum, and minimum values will change

appropriately (see URA).

Examples: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* set absolute move position)

RPA RPA1 (* run to absolute position)

 What will happen: Setting the axis position, velocity, acceleration, and absolute

move position and issuing the RPA command will cause the

axis to move 12 units in the forward direction. It will

accelerate at 40 units/sec2 to a velocity of 10 units/sec, and then

decelerate at 40 units/sec2 to zero velocity.

Related Registers: MT, MAC, URA

A-192 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

MVM Motion Velocity for Run to Marker

Class: Motion Register

Type: Floating point

Syntax:

I, jr MVM

MVMp1 (e.g., MVM2 MVMVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/sec

 default 4,096 pulses/sec

 minimum 1 pulse/sec

 maximum 4,096 pulses/sec

Use: This register is used to define the motion velocity of the axis

when one of the run to marker commands, RMF or RMR, is

used.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values must

be divided by the value of URA (see URA).

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program one)

MVM=0.5 MVM1=0.5 (* set motion velocity for run to marker)

MAC=40 MAC1=40 (* set motion acceleration)

RMF RMF1 (* run forward to marker)

WAIT IP WAIT IP1 (* wait for axis one to be in position)

PSA=0 PSA1=0 (* set axis position)

END END (* end program one and exit program editor)

 What will happen: This program, once executed, will set the velocity for run to

marker and acceleration and then run the axis forward until the

marker is encountered. It will then wait for the axis to be in

position and set the axis position to 0.

Related Registers: MT, MVL, URA

Related Commands: RMF, RMR

GFK-2205 Appendix A Registers and Commands A-193

A

MVP Motion Velocity of Pulse Move

Class: Motion Register

Type: Floating point

Syntax:

I, jr MVP

MVPp1 (e.g., MVP2 MVPVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units/pulse units

 default .000001

 minimum .000001

 maximum 1,000

Restrictions: For IMCs, this function available only with the extended command set.

Use: This register defines the motion velocity only for pulse-based moves.

When MT=PULSE: The MVP register is used only for continuous moves

(initiated using the RVF or RVR commands) and is expressed as a ratio of axis

units to auxiliary units. For example, if both the axis and the auxiliary encoder

are scaled for revolutions then MVP defines the number of revolutions the axis

motor will move for each revolution of the auxiliary encoder.

When MT=PULVEL: In this mode the MVP register is used to define the axis

velocity for incremental, absolute and continuous moves and is expressed as a

ratio of axis units to auxiliary units. The MVP register is not used for

velocity-based moves or time-based moves.

MVP cannot be changed for any move already armed (by executing the

respective RPI , RPA, RVF or RVR command) or in process.

Examples: IMC/IMJ Target

MT=PULSE MT1=PULSE (* set motion type to pulse)

MI1=PSX1 (* set motion pulse input)

PSX=0 PSX1=0 (* set auxiliary position to zero)

MPS=1 MPS1=1 (* set motion start position to 1 aux. unit)

MPL=3 MPL1=3 (* set move pulses to 3 auxiliary units)

MVP=2.5 MVP1=2.5 (* set motion velocity to 2.5 axis units/

auxiliary units)

RVF RVF1 (* run forward)

WAIT PSX>5. WAIT PSX1>5. (* wait for auxiliary position to be > 5 units)

MPS=10 MPS1=10 (* set motion start position to 10 aux. units)

MPL=2 MPL1=2 (* set move pulses to 2 auxiliary units)

ST ST1 (* stop motion)

 What will happen: After you issue the RVF command, the axis will wait until the auxiliary

position reaches 1 unit; then, while the auxiliary position moves to 4 units, the

axis will accelerate to 2.5 axis units/auxiliary units. After waiting for the

auxiliary position to be greater than 5 units, the axis will wait until the auxiliary

position reaches 10 units; then, while the auxiliary position moves to 12 units,

the axis will decelerate to a stop.

Related Registers: MT, MPS, MPL, MI

A-194 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

OFA Axis Position Offset

Class: Axis Register

Type: Floating point

Syntax:

I, jr OFA

OFAp1 (e.g., OFA1 OFAVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: Write only.

Use: This register defines an offset to be applied to the axis position

register, PSA. The offset is not stored; rather, the value of the

PSA register is changed by the offset.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values will

change appropriately (see URA).

Example: IMC/IMJ Target

PSA? PSA3? (* query value of axis position register)

*5.326 *-2.36 (* current position)

OFA=4.674 OFA=-1.64 (* offset position register)

PSA? PSA3? (* query value of axis position register)

*10 *-4 (* current position)

Related Registers: PSA, URA

GFK-2205 Appendix A Registers and Commands A-195

A

OFX Auxiliary Position Offset

Class: Axis Register

Type: Floating point

Syntax:

I, jr OFX

OFXp1 (e.g., OFX1 OFXVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units auxiliary units

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: Write only.

Use: This register defines an offset to be applied to the auxiliary

position register, PSX. The offset is not stored. Rather, the

value of the PSX register is changed by the offset. Wrapping

of pulse motion is allowed.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the auxiliary unit ratio, URX,

is set at its default value of 1. If the auxiliary unit ratio is set to

a value other than 1, the default, maximum, and minimum

values must be divided by the value of URX (see URX).

Example: IMC/IMJ Target

PSX? PSX3? (* query value of auxiliary

position register)

*5.326 *-2.36 (* current position)

OFX=4.674 OFX3=-1.64 (* offset position register)

PSX? PSX3? (* query value of auxiliary

position register)

*10 *-4 (* current position)

Related Registers: PSX, URX

A-196 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

OTE Hardware Overtravel Enable I jr

Class: Axis Register

Type: Boolean

Syntax: OTE

Range:

jr default 0

I default 1

 allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks.

Use:

jr The OTE register is used to enable IMCjr hardware overtravel

inputs using digital inputs 2 and 3 (IN_01 and IN_02). Input 2

is the forward overtravel input, and input 3 is the reverse

overtravel input. Directional conventions are set by the DIR

command.

I The OTE register is used to enable IMC hardware overtravel

inputs.

Remarks: If the hardware overtravel inputs are disabled (OTE=0), they

can be used as general purpose inputs. Use bits 9 and 10 of the

IO register to read the state of the hardware overtravel inputs

when enabled. Bit 10 of the Axis Status Register (SRA) also

reports if either overtravel limit is active but cannot specify

which specific limit is active. Controllers also support software

travel limits set using the OTF and OTR commands. Generally

when travel limits are used in an application the Position Wrap

Enable function should be disabled (PWE=0).

Related Registers: IO

GFK-2205 Appendix A Registers and Commands A-197

A

OTF Forward Software Overtravel

Class: Axis Register

Type: Floating point

Syntax:

I, jr OTF

OTFp1 (e.g., OTF2 OTFVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 2,100,000,000 pulses

 minimum -2,100,000,000 pulses

 maximum 2,100,000,000 pulses

Use: This register is used to define the forward software overtravel

limit for the axis.

Remarks: The software overtravel limits are ignored during any of the

homing functions (RHF, RHR, RMF, RMR, ROF, ROR). The

numerical values for the default, minimum, and maximum of

this register are assuming that the axis unit ratio, URA, is set at

its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values be

divided by the value of URA (see URA).

Example: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* set absolute move position)

OTF=10 OTF1=10 (* set forward software overtravel limit)

RPA RPA1 (* run to absolute move position)

 What will happen: By setting the axis position, velocity, acceleration, absolute

move position, and forward software overtravel and issuing the

RPA command, the axis will move 10 units in the forward

direction and immediately halt all motion.

Related Registers: OTR, URA

A-198 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

OTR Reverse Software Overtravel

Class: Axis Register

Type: Floating point

Syntax:

I, jr OTR

OTRp1 (e.g., OTR2 OTRVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default -2,100,000,000 pulses

 minimum -2,100,000,000 pulses

 maximum 2,100,000,000 pulses

Use: This register is used to define the reverse software overtravel

limit for the axis.

Remarks: The software overtravel limits are ignored during any of the

homing functions (RHF, RHR, RMF, RMR, ROF, ROR). The

numerical values for the default, minimum, and maximum of

this register are assuming that the axis unit ratio, URA, is set at

its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values will

change appropriately (see URA).

Example: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=-15 MPA1=-15 (* set absolute move position)

OTR=-12 OTR=-12 (* set reverse software overtravel limit)

RPA RPA1 (* run to absolute move position)

 What will happen: Setting the axis position, velocity, acceleration, absolute move

position, and reverse software overtravel and issuing the RPA

command causes the axis to move 12 units in the reverse

direction and immediately halts all motion.

Related Registers: OTF, URA

GFK-2205 Appendix A Registers and Commands A-199

A

OUT Outputs String Expression to Serial Port I jr

Class: Input/Output Command

Syntax: OUTp1 (e.g., OUT VS1, OUT “Hello”)

Parameters: allowed values description

 p1 any string expression string expression

Use: This command outputs a string expression to the serial port. The string

operand “$” can be used to convert register and variable values to strings for

use by the OUT command.

Remarks: The operand p1 can be from 1 to 127 characters long. If the display format is

disabled (i.e., DSE is set to 0), the string expression will be sent to the terminal.

Example:

VS1=“TEST” (* load string variable)

OUT VS1 (* output string expression to the serial port)

*TEST

Related Commands: PUT

Registers Used: DSE

ASCII Codes: See the following table

A-200 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

OUT Outputs String Expression to Serial Port

Class: Input/Output Command

Syntax: OUTp1 (e.g., OUT VS1, OUT “Hello”)

Parameters: allowed values description

p1 any string expression string expression

Use: This command outputs a string expression to the user serial

port.

Example:

VS1=“TEST” (* load string variable)

OUT VS1 (* output string expression to the serial port)

Related Commands: PUT

GFK-2205 Appendix A Registers and Commands A-201

A

OUTS Outputs Screen to OIP

Class: Input/Output Command

Syntax: OUTSp1 (e.g., OUTS2 OUTSVI1)

Parameters: allowed values description

p1 1 through 50 or VIn screen number

Use: This command is used to output screen p1 to the Operator

Interface (OIP).

Remarks: This command is used in conjunction with the display when

DSE is set to 1.

Registers Used: SCRL, DSE

A-202 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

OUTT Outputs String Expression to Tertiary Port

Class: Input/Output Command

Syntax: OUTT p1 (e.g., OUTT VS1 OUTT “Hello”)

Parameters: allowed values description

 p1 any variable register variable register

Use: This command outputs a string expression to the tertiary port.

Example:

VS1=“TEST” (* load string variable)

OUTT VS1 (* output string expression to the tertiary port)

Related Commands: PUTT

GFK-2205 Appendix A Registers and Commands A-203

A

OUTW Outputs String Expression to OIP

Class: Input/Output Command

Syntax: OUTW p1 (e.g., OUTW VS1 OUTW “Hello”)

Parameters: allowed values description

p1 any variable register variable register

Use: This command outputs a string expression to the display.

Example:

VS1=“TEST” (* load string variable)

OUTW VS1 (* output string expression to the display)

Related Commands: PUTW

ASCII Codes: See the following table

A-204 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PAR Parity of Serial Port I jr

Class: System Register

Syntax: PAR

Range:

default ODD

allowed values NONE, EVEN, ODD

Restrictions: Not allowed in motion blocks or expressions.

Use: This register is used to define the parity of the serial port.

Remarks: Setting PAR to NONE and BIT to 7 at the same time is not

allowed. This register defaults to ODD on power-up.

Related Registers: BAUD, BIT, HSE

GFK-2205 Appendix A Registers and Commands A-205

A

PARP Parity of Program Port

Class: System Register

Syntax: PARP

Range:

default automatically set to even or odd

allowed values NONE, EVEN, ODD

Restrictions: Not allowed in motion blocks or expressions.

Use: This register is used to define the parity of the program port.

Remarks: Setting PARP to NONE and BITP to 7 at the same time is not

allowed.

Related Registers: BITU, PARU, BAUDU, BAUDP, BITP

A-206 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PARU Parity of User Serial Port

Class: System Register

Syntax: PARU

Range:

default ODD

allowed values NONE, EVEN, ODD

Restrictions: Not allowed in motion blocks or expressions.

Use: This register is used to define the parity of the user serial port.

Remarks: Setting PARU to NONE and BITU to 7 at the same time is not

allowed.

Related Registers: PARP, BITU, BAUDU, BAUDP, BITP

GFK-2205 Appendix A Registers and Commands A-207

A

PASSWORD Prompts for Password

Class: System Command

Syntax: PASSWORD

Restrictions: Not allowed in programs or motion blocks.

Use: This command prompts the user to enter a password that was

previously defined using the CHANGEPW command.

Remarks: Enter the 4 to 10 character password at the Enter password:

prompt to gain full access to the controller programming and

configuration. If the correct password is not entered at the

prompt, only diagnostic commands can be entered. To assign

an initial password or to change an existing password use the

CHANGEPW command.

Warning!

Do NOT forget your password. Clearing memory will not reset

the password. You must return the unit to the factory for repair.

THERE IS NO BACKDOOR! Consider using the SECURE

command instead.

Related Commands: CHANGEPW, SECURE

A-208 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PCA Axis Position Capture

Class: Axis Register

Type: Floating point

Syntax:

I, jr PCA

PCAp1 (e.g., PCA3 PCAVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: Read only.

Use: This register is used to store the value of the position captured

by the position capture input when this input is used to capture

the axis position.

Remarks: 1. If a position has not been captured, then the axis position

capture register will be 0. Bit 13 of the I/O register (IO/IOA)

will be set to 1 when a position has been captured. After a

position has been captured, the position can be reported using

the PCA? command. The register will then be set to 0, and

bit 13 will be cleared until a position is captured again.

2. The numerical values for the minimum and maximum of

this register are assuming that the axis unit ratio, URA, is set at

its default value of 1. If the axis unit ratio is set to a value

other than 1, the maximum and minimum values must be

divided by the value of URA (see URA).

Related Registers: URA, PCX, IO, IOA

GFK-2205 Appendix A Registers and Commands A-209

A

PCX Auxiliary Position Capture

Class: Axis Register

Type: Floating point

Syntax:

I, jr PCX

PCXp1 (e.g., PCX3 PCXVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units auxiliary units

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: This register is used to store the value of the position captured

when the position capture is used to capture the auxiliary

encoder input of the axis.

Remarks: 1. If a position has not been captured, then the auxiliary

position capture register will be 0. Bit 13 of the I/O register

(IO/IOA) will be set to 1 when a position has been captured.

After a position has been captured, the position can be reported

using the PCX? command. The register will then be set to 0,

and bit 13 will be cleared until a position is captured again.

2. To ensure proper operation of the edge trigger, always read

PCA as well as PCX when using PCX.

3. The numerical values for the minimum and maximum of

this register are assuming that the auxiliary unit ratio, URX, is

set at its default value of 1. If the auxiliary unit ratio is set to a

value other than 1, the maximum and minimum values must be

divided by the value of URX (see URX).

Related Registers: URX, PCA, IO, IOA

A-210 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PCX2 Auxiliary Position Capture Two I

Class: Axis Register

Type: Floating point

Syntax: PCX2

Range:

units auxiliary units

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: This register is used to store the value of the position captured

when position capture input two captures the auxiliary encoder

input of the axis.

Remarks: 1. If a position has not been captured, then the auxiliary

position capture two register will be 0. Bit 1 of the I/O register

(IO) will be set to 1 when a position has been captured. After a

position has been captured, the position can be reported using

the PCX2? command. The register will then be set to 0, and

bit 1 will be cleared until a position is captured again.

2. The numerical values for the minimum and maximum of

this register are assuming that the auxiliary unit ratio, URX, is

set at its default value of 1. If the auxiliary unit ratio is set to a

value other than 1, the maximum and minimum values will

change appropriately (see URX).

Related Registers: URX, PCX, IO

GFK-2205 Appendix A Registers and Commands A-211

A

PDV Pulse Divisor I

Class: Input/Output Register

Type: Floating point

Syntax: PDV

Range:

units auxiliary units

default 0

minimum 0 pulses

maximum 30,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to provide a pulse output on I/O 10. When

this register is set to zero, I/O 10 has normal function. When

PDV is non-zero, I/O 10 will change state for every PDV pulse

of the auxiliary input.

Related Registers: URX

A-212 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PFB Position Feedback Deadband

Class: Axis Register

Type: Floating point

Syntax:

I, jr PFB

PFBp1 (e.g., PFB2 PFBVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses (dual loop feedback servo) or 10 pulses (stepper)

 minimum 0 pulses

 maximum 16,000 pulses

Restrictions: Stepper or dual loop feedback servo only.

Use: The Position Feedback Deadband is the amount of static

position error allowed before the controller attempts to correct

the position error when the controller is configured for

dual-loop mode (see PFE for more on axis position control

modes.)

Remarks: The numerical values for the default, minimum, and maximum

of this register are correct for an axis unit ratio, URA, of 1. If

the axis unit ratio is set to a value other than 1, the default,

maximum, and minimum values must be divided by the value

of URA (see URA).

Related Registers: URA, PFL, PFT, PFE, PFN, PFD, PFC

GFK-2205 Appendix A Registers and Commands A-213

A

PFC Position Feedback Correction Numerator

Class: Axis Register

Type: Integer

Syntax:

I, jr PFC

PFCp1 (e.g., PFC2 PFCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default PFN

 minimum 0

 maximum 10,000

Restrictions: Stepper or dual loop feedback servo only.

Use: The position feedback correction numerator is a parameter used

when auxiliary encoder position feedback is used to control the

position of a stepper servo (i.e. closed loop stepper) or when a

servo controller is configured for dual-loop mode. PFC

replaces the numerator of the feedback ratio PFN/PFD and is

used to fine-tune this feedback ratio to eliminate hunting as the

controller attempts to correct of the final position error (see

PFE for more on axis position control modes.)

Remarks: Normally this parameter is left at the default of PFN, which

means it has the same value as PFN. If there are problems with

hunting for the final position, use this parameter to reduce the

correction by setting it to a value less than PFN.

Related Registers: PFD, PFE, PFN

A-214 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PFD Position Feedback Denominator

Class: Axis Register

Type: Integer

Syntax:

I, jr PFD

PFDp1 (e.g., PFD2 PFDVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 1 (dual loop feedback servo) or 4 (stepper)

 minimum 1

 maximum 10,000

Restrictions: Closed-loop stepper or dual loop feedback servo only.

Use: The position feedback denominator is a parameter used when auxiliary encoder

position feedback is used to control the position of a stepper servo (i.e. closed

loop stepper) or when a servo controller is configured for dual-loop mode. PFD

is defined as the denominator of the position feedback ratio (PFN/PFD)

between the motor position feedback and the auxiliary encoder inputs. This

ratio must equate the number of motor position feedback pulses to auxiliary

encoder pulses per unit of load movement. This determination must include all

gearing and mechanical translation in both the auxiliary encoder and motor

connection to the load. For example, consider a servo application where a

1000 line auxiliary encoder is belted to the load end of a ball screw using a

2:1 ratio with the motor mounted to the opposite end of the screw through a

2:1 gearbox. For each screw revolution the auxiliary encoder makes

2 revolutions and generates 8,000 quadrature pulses to the controller

(2 rev * 4000 pulses/rev). For the same 1 revolution of the screw the motor

makes 2 revolutions and generates 8,192 quadrature pulses

(2 rev * 10,000 pulses/rev). Therefore, the PFN/PFD ratio must be equivalent

to 8,192/8000 and be within the allowable range.

Stepper Controller (PFN= non-zero & PFE=1):

For a stepper controller using encoder feedback the Position Feedback Ratio

(PFN/PFD) is used to map the auxiliary encoder feedback to the

50,000 steps/revolution of the motor. This is done by setting the ratio equal to

the number of motor pulses/rev (50,000) divided by the number of auxiliary

encoder pulses generated during 1 motor revolution. In the simplest case where

the encoder is mounted to the stepper motor the denominator would be the

quadrature resolution of the auxiliary encoder. For example using a 1000 line

encoder (4000 quad pulses) the ratio is 50000/4000. Since the PFN and PFD

registers are limited to a range of 10,000 we can reduce this ratio to 50/4 or

PFN=50 and PFD=4 which are the default register values. If the feedback

encoder is mounted at the load this ratio must include all gearing and

mechanical translation in both the auxiliary encoder and motor connection to

the load (see example for dual-loop servo above except use 50,000 pulses/rev

for the motor instead of 4,096/rev).

Related Registers: PFN, PFE

GFK-2205 Appendix A Registers and Commands A-215

A

PFE Position Feedback Enable

Class: Axis Register

Type: Boolean

Syntax:

I, jr PFE

PFEp1 (e.g., PFE3 PFEVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0

 allowed values 0, 1

Restrictions: Stepper or dual loop feedback servo only; not allowed in motion blocks. This

register can be set only when the controller is faulted.

Use: The position feedback enable register is used to determine whether the axis

receives position feedback from the motor position feedback or from the

auxiliary encoder.

Servo Controller (PFE=0):

If PFE is set to 0, then the axis uses the motor position feedback. This is the

controller’s normal operating mode.

Servo Controller (PFE = 1 and PFN=0):

In this single-loop mode the auxiliary encoder is used for axis position

feedback and directly updates the axis position register (PSA). The motor

position feedback is still used for commutation.

Servo Controller (PFE = 1 and PFN=non-zero):

In this dual-loop mode the motor position feedback is the primary axis position

feedback device and the auxiliary encoder is the secondary feedback device.

The motor position feedback is used for axis position feedback while normal

programmed motion is being executed while the secondary feedback is used to

ensure accurate static position based on the auxiliary encoder feedback. This

dual-loop mode offers the best servo stability when using a separate (load

mounted) position feedback device in applications where there is lost motion in

the motor drive train. The Position Feedback ratio (PFN/PFD) must be properly

set when using this mode. Also the PFB, PFC, PFL and PFT registers are

enabled in this mode.

Open Loop Stepper (PFE=0):

If PFE is set to 0, then the stepper controller runs open loop. This is the

controller’s default operating mode.

Closed Loop Stepper (PFE=1):

If PFE is set to 1, then the stepper controller uses the auxiliary encoder

feedback to close the position loop. The Position Feedback Ratio (PFN/PFD)

must be properly configured to map the auxiliary encoder feedback to the

50,000 steps/revolution of the stepper motor.

Registers Used: PFN, PFD, PFL, PFT, PFB, PFC

A-216 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PFL Position Feedback Backlash

Class: Axis Register

Type: Integer

Syntax:

I, jr PFL

PFLp1 (e.g., PFL3 PFLVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 default 0

 minimum 0

 maximum 16,000

Restrictions: Stepper or dual loop feedback servo only.

Use: The position feedback backlash is used to compensate for

mechanical backlash when using auxiliary encoder position

feedback. Enable auxiliary encoder position feedback by

setting PFE equal to 1. When configured for dual-loop servo

(PFR=1 and PFN=non-zero), the PFL value is used to offset an

equivalent number of pulses lost due to mechanical backlash or

other sources of lost motion in the motor drive train when axis

direction is reversed.

Related Registers: PFT, PFB, PFE

GFK-2205 Appendix A Registers and Commands A-217

A

PFN Position Feedback Numerator

Class: Axis Register

Type: Integer

Syntax:

I, jr PFN

PFNp1 (e.g., PFN2 PFNVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0 (dual loop feedback servo) or 50 (stepper)

 minimum 0

 maximum 10,000

Restrictions: Stepper or dual loop feedback servo only.

Use: The position feedback correction numerator is a parameter used

in encoder position feedback. It is the numerator of the

position feedback ratio between the axis and the encoder input.

Related Registers: PFD, PFE, PFC

A-218 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PFT Position Feedback Correction Time

Class: Axis Register

Type: Floating point

Syntax:

I, jr PFT

PFTp1 (e.g., PFT2 PFTVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units seconds

 default .010

 minimum .001

 maximum 4.000

Restrictions: Stepper or dual loop feedback servo only.

Use: The position feedback correction time is the time that the

system waits between position corrections when using position

feedback. The position feedback is enabled by setting PFE

equal to 1.

Related Registers: PFL, PFB, PFE

GFK-2205 Appendix A Registers and Commands A-219

A

PHB Phase Error Bound

Class: Motion Register

Type: Integer

Syntax:

I, jr PHB

PHBp1 (e.g., PHB1 PHBVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 default 32,000

 minimum 0

 maximum 32,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase error bound register is used to define a bound on the

phase error of the phase-locked loop. If this limit is exceeded,

the phase error is set to half of the phase error bound, and bit

five of the axis status register, SRA, is set to 1. This

corresponds to the axis status message Phase error past bound.

Related Registers: PHR, PHE

A-220 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PHE Phase-Locked Loop Enable

Class: Motion Register

Type: Boolean

Syntax:

I, jr PHE

PHEp1 (e.g., PHE1 PHE245 PHEVI4)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers

1 through 8 or VIn

Range:

 default 0

 allowed values 0, 1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to determine whether the phase-locked

loop is enabled. If PHE is set to 1, then the phase-locked loop

is enabled; and if PHE is set to 0, it is disabled.

Registers Used: PHB, PHG, PHL, PHM, PHO, PHP, PHR, PHT, PHZ

Motion Templates:

I, jr, Single-axis, phase-locked loop

Multi-axis phase-locked loop

GFK-2205 Appendix A Registers and Commands A-221

A

PHG Phase Gain

Class: Motion Register

Type: Integer

Syntax:

I, jr PHG

PHGp1 (e.g., PHG1 PHGVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

default 0

minimum 0

maximum 255

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase gain is used to multiply the phase error, PHR, to

adjust the value of the phase multiplier, PHM.

Related Registers: PHR, PHM, PHE

A-222 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PHL Phase Length

Class: Motion Register

Type: Integer

Syntax:

I, jr PHL

PHLp1 (e.g., PHL1 PHLVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 default 1,000

 minimum 500

 maximum 64,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase length register is used to define the number of pulses

during one cycle of the reference input.

Related Registers: PHP

GFK-2205 Appendix A Registers and Commands A-223

A

PHM Phase Multiplier

Class: Motion Register

Type: Floating point

Syntax:

I, jr PHM

PHMp1 (e.g., PHL1 PHLVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 minimum 0.0001

 maximum 10,000.0000

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: The phase multiplier is the ratio between the axis and the

reference input when using the phase-locked loop.

Related Registers: PHE

A-224 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PHO Phase Offset

Class: Motion Register

Type: Integer

Syntax:

I, jr PHO

PHOp1 (e.g., PHO1 PHOVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 default 0

 minimum -32,000

 maximum 32,000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase offset register is used to define an offset on the

reference position, PHP, of the phase-locked loop.

Related Registers: PHP

GFK-2205 Appendix A Registers and Commands A-225

A

PHP Phase Position

Class: Motion Register

Type: Integer

Syntax:

I, jr PHP

PHPp1 (e.g., PHP1 PHPVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 default 0

 minimum -PHL/2

 maximum PHL/2 - 1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase position register is used to define the reference

position of the phase-locked loop.

Related Registers: PHL, PHO, PHE

A-226 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PHR Phase Error

Class: Motion Register

Type: Integer

Syntax:

I, jr PHR

PHRp1 (e.g., PHR1 PHRVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units pulses

 minimum -32,000

 maximum 32,000

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: The phase error is the difference between the desired reference

position and the reference position that was captured when the

position capture input became active. It can be used, along

with PHG and PHZ, to make corrections in the phase position.

Related Registers: PHG, PHZ, PHE

GFK-2205 Appendix A Registers and Commands A-227

A

PHT Phase Lockout Time

Class: Motion Register

Type: Floating point

Syntax:

I, jr PHT

PHTp1 (e.g., PHT1 PHTVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units seconds

 default 0.05

 minimum .001

 maximum 4.000

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase lockout time is the time interval, after the position

capture, in which the position capture input is disabled. This

time interval is used to account for any undesired position

capture inputs.

Related Registers: PHE

A-228 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PHZ Phase Zero

Class: Motion Register

Type: Integer

Syntax:

I, jr PHZ

PHZp1 (e.g., PHZ1 PHZVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 245

 minimum 0

 maximum 255

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The phase zero register is used to define the zero of the

compensator of the phase-locked loop. This, in conjunction

with PHG, defines a method of correction of the phase in the

phase-locked loop.

Related Registers: PHG, PHE

GFK-2205 Appendix A Registers and Commands A-229

A

PLA Axis Position Length

Class: Axis Register

Type: Floating point

Syntax:

I, jr PLA

PLAp1 (e.g., PLA1 PLAVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 2,000,000,000 pulses

 minimum 500 pulses

 maximum 2,000,000,000 pulses

Restrictions: Not allowed in programs or motion blocks.

Use: This register is used to define the axis position length. This is

actually half the axis position register length. The axis position

register, PSA, will count from -PLA units to PLA-(1/URA)

units if position register wrap, PWE, is enabled. PLA has no

effect on the axis position register if PWE is disabled.

For the Target ARS, when CAT=PSRp1, PLAp1 defines the

cam shaft input length. The cam shaft input counts from

-180 to 180 as PSAp1 counts from -PLAp1 to PLAp1-1.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values must

be divided by the value of URA (see URA).

Related Registers: PWE, URA

A-230 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PLX Auxiliary Position Length

Class: Axis Register

Type: Floating point

Syntax:

I, jr PLX

PLXp1 (e.g., PLX1 PLXVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units auxiliary units

 default 2,000,000,000 pulses

 minimum 500 pulses

 maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set; not allowed in programs or motion blocks.

Use: This register is used to define the auxiliary position range. This

is actually half the auxiliary position register length. The

auxiliary position register, PSX, counts from -PLX units to

PLX-(1/URX) units.

When Electronic Cam is Enabled:

When the electronic cam function is enabled (CAE=1) the

auxiliary position register range defined above represents the

cam master position range required to complete one cycle of

the cam table. For example, assuming we have a 1000 line

(4000 pulse/rev) auxiliary encoder, the axis and auxiliary units

are both in revolutions (URA=10000; URX=4000) and

PLX=0.5, then the PSX register will count from –0.5 to

0.49975 encoder revolutions to complete one cam cycle.

Remarks: The position wrap enable register (PWE) has no effect on the

auxiliary position register rollover. The PSX register

automatically rolls over at the limits defined above for PLX.

Make sure the PSX register is initialized to a value that falls

with this range. The numerical values for the default,

minimum, and maximum of this register are assuming that the

auxiliary unit ratio, URX, is set at its default value of 1. If the

auxiliary unit ratio is set to a value other than 1, the default,

maximum, and minimum values must be divided by the value

for URX (see URX).

Related Registers: URX, PSX

GFK-2205 Appendix A Registers and Commands A-231

A

PLY Playback Recorded Positions Enable

Class: Motion Register

Type: Boolean

Syntax: PLYp1 (e.g., PLY1 PLY245 PLYVI4)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Range:

default 0

allowed values 0, 1

Use: This register is used to determine whether position playback is

enabled. If PLY is set to 1, then position playback is enabled;

and if PLY is set to 0, it is disabled.

Example: PPB2=5000 (* set position pointer begin)

PPE2=10000 (* set position pointer end)

PPI2=1 (* set position pointer interval)

VI1=PPB2 (* set integer variable)

MPA2=ITF(VIVI1)/ITF(URA2) (* set motion absolute move)

RPA2 (* run to absolute position)

PLY2=1 (* enable playback of position)

 What will happen: Setting the position pointer begin, end, and interval; loading the

absolute move position with the first pointed position; issuing

the run command; and enabling playback will cause the axis to

move to the positions stored in integer variables 5,000 through

10,000 at 10 milliseconds per position.

Registers Used: PPB, PPE, PPI, PPR, PP

Utility Template: Multi-axis path recording

A-232 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

POE Power Output Stage Enable

Class: Axis Register

Type: Boolean

Syntax:

I, jr POE

POEp1 (e.g., POE2 POEVI1)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 1

 allowed values 0, 1

Use: This register is used to determine whether the power output

stage of the amplifier of the axis is enabled. If POE is set to 1,

then the power output stage is enabled; and if POE is set to 0, it

is disabled.

GFK-2205 Appendix A Registers and Commands A-233

A

POP Pops “Gosub” Address from Top of “Gosub” Stack

Class: Program Command

Syntax: POP

Restrictions: Allowed only in programs

Use: This command pops the last gosub address from the top of the

gosub stack. It causes the program to exit a subroutine without

returning.

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=5 MVL1=5 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=10 MPA1=10 (* set absolute move position)

GOSUB10 GOSUB10 (* unconditionally gosub 10)

GOTO20 GOTO20 (* unconditionally goto 20)

10 RPA 10 RPA1 (* run to absolute position)

11 IF IP GOTO12 11 IF IP1 GOTO12 (* conditionally goto 12)

IF FC <> 0 GOTO15 IF FCA1 <> 0 GOTO15 (* conditionally goto 15)

GOTO11 GOTO11 (* unconditionally goto 11)

12 RETURN 12 RETURN (* return from gosub)

15 POP 15 POP (* pop gosub address from top of gosub stack)

OUT “CONTROLLER OUTW “AXIS ONE

 FAULT$N” FAULT$N” (* output string expression to the display)

OUT “TYPE ‘FC?’ FOR OUTW “TYPE ‘FCA1?’

 MESSAGE$N” FOR MESSAGE$N” (* output string expression to the display)

20 END 20 END (* end program 1 and exit editor)

 What will happen: This program, when executed, will set the velocity,

acceleration rate, and absolute move position. Execution will

then go to the subroutine at label 10, which will run the axis in

the forward direction for 10 units. While the axis is running,

the program checks two things: 1) to see if the axis is in

position (IP or IP1); and 2) to see if a fault has occurred

(FC<>0 or FCA1<>0). If a fault has occurred, the program

execution will go to label 15. Then, the program will pop the

address of label 10 off of the stack, print an error message, and

end. If a fault does not occur, the program will return to the

statement after “GOSUB10,” which goes to the statement at

label 20, which ends the program.

Related Commands: GOSUB, RETURN, RSTSTK

A-234 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PP Position Pointer

Class: Motion Register

Type: Integer

Syntax: PPp1 (e.g., PP2 PPVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

minimum 4,097

maximum 262,144

Restrictions: Read only.

Use: This register contains the current value of the position pointer

for record or playback.

Related Registers: PPB, PPE, PLY, REC

GFK-2205 Appendix A Registers and Commands A-235

A

PPB Position Pointer Begin

Class: Motion Register

Type: Integer

Syntax: PPBp1 (e.g., PPB2 PPBVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default 4,097

minimum 4,097

maximum 262,144

Use: This register defines the beginning value of the position pointer

for position playback or record. The pointer points to the

extended integer variable space.

Remarks: The maximum value of this register assumes VFEA is set to the

default of 2,048. If VFEA is set differently, the maximum will

be reduced accordingly.

Example: PPB2=5000 (* set position pointer begin)

PPE2=10000 (* set position pointer end)

PPI2=1 (* set position pointer interval)

VI1=PPB2 (* set integer variable)

MPA2=ITF(VIVI1)/ITF(URA2) (* set motion absolute move)

RPA2 (* run to absolute position)

PLY2=1 (* enable playback of position)

 What will happen: Setting the position pointer begin, end, and interval; loading the

absolute move position with the first pointed position; issuing

the run command; and enabling playback will cause the axis to

move to the positions stored in integer variables 5,000 through

10,000 at 10 milliseconds per position.

Related Registers: PPE, PPI, PPR, PLY, REC

A-236 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PPE Position Pointer End

Class: Motion Register

Type: Integer

Syntax: PPEp1 (e.g., PPE2 PPEVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default 4,097

minimum 4,097

maximum 262,144

Use: This register determines the ending value of the position

pointer for position playback or record. The pointer points to

the extended integer variable space.

Remarks: The maximum value of this register assumes VFEA is set to the

default of 2,048. If VFEA is set differently, the maximum will

be reduced accordingly.

Example: PPB2=5000 (* set position pointer begin)

PPE2=10000 (* set position pointer end)

PPI2=1 (* set position pointer interval)

VI1=PPB2 (* set integer variable)

MPA2=ITF(VIVI1)/ITF(URA2) (* set motion absolute move)

RPA2 (* run to absolute position)

PLY2=1 (* enable playback of position)

 What will happen: Setting the position pointer begin, end, and interval; loading the

absolute move position with the first pointed position; issuing

the run command; and enabling playback will cause the axis to

move to the positions stored in integer variables 5,000 through

10,000 at 10 milliseconds per position.

Related Registers: PPB, PPI, PPR, PLY, REC

GFK-2205 Appendix A Registers and Commands A-237

A

PPI Position Pointer Interval

Class: Motion Register

Type: Floating point

Syntax: PPIp1 (e.g., PPI2 PPI236 PPIVI3)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Range:

default 1.0

minimum 0.1

maximum 10.0

Use: This register determines the time interval between positions

during playback or record. The interval roughly corresponds to

units of 10 milliseconds. For example, a value of 1.5 would be

approximately 15 milliseconds.

Example:

PPB2=5000 (* set position pointer begin)

PPE2=10000 (* set position pointer end)

PPI2=1 (* set position pointer interval)

REC2=1 (* enable record positions)

 What will happen: Setting the position pointer begin, end, and interval and

enabling record positions will cause the Target to record the

position of axis two in integer variables 5,000 to 10,000 every

10 milliseconds.

Related Registers: PLY, REC

A-238 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PPR Position Pointer Repeat Enable

Class: Motion Register

Type: Boolean

Syntax: PPRp1 (e.g., PPR2 PPRVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default 0

minimum 0, 1

Use: This register is used to determine whether position pointer

repeat is enabled. If PPR is set to 1, then repeat is enabled; and

when the position pointer reaches the end, it will be reloaded

with the beginning value and continue. If PPR is set to 0, then

repeat is not enabled.

Related Registers: PPB, PPE, PLY, REC

GFK-2205 Appendix A Registers and Commands A-239

A

PROG Program Executing

Class: System Register

Type: Boolean

Syntax: PROGp1 (e.g., PROG3 PROGVI4)

Parameters: allowed values description

I, jr p1 1 through 4 or VIn program number

 p1 1 through 17 or VIn program number

Range:

 allowed values 0, 1

Restrictions: Read only.

Use: The program executing register is used to determine whether a

program is executing. If program p1 is executing, then

PROGp1 will be 1; and if program p1 is not executing, then

PROGp1 will be 0.

Related Registers: SRP

A-240 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PROGRAM Edits Program

Class: Program Command

Syntax: PROGRAMp1 (e.g., PROGRAM2)

Parameters: allowed values description

I, jr p1 1 through 4 program number

 p1 1 through 17 program number

Restrictions: Not allowed in programs or motion blocks.

Use: This command enters the line editor at the first statement of

program p1. It is used either to view programs or to start

editing them.

Remarks: This command will execute only when all axes have stopped

and no programs or motion blocks are executing.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

PSA=0 PSA1=0 (* set axis position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=12 MPA1=12 (* load absolute move position)

RPA RPA1 (* run to absolute move position)

END END (* end program 1 and exit editor)

Related Commands: MOTION, END, X, !, DEL, L, LABEL, FAULT

GFK-2205 Appendix A Registers and Commands A-241

A

PSA Axis Position

Class: Axis Register

Type: Floating point

Syntax:

I, jr PSA

PSAp1 (e.g., PSA2 PSAVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Use: This register is used to define the position of the axis.

Remarks: This register supports up to six decimal places. The numerical

values for the default, minimum, and maximum of this register

are assuming that the axis unit ratio, URA, is set at its default

value of 1. If the axis unit ratio is set to a value other than 1,

the default, maximum, and minimum values must be divided

by the value of URA (see URA).

Example: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=8 MPA1=8 (* set absolute move position)

RPA RPA1 (* run to absolute position)

 What will happen: Setting the axis position, velocity, acceleration, and absolute

move position and issuing the RPA command will cause the

axis to move 8 units in the forward direction.

Related Registers: URA, PLA, PWE, OFA

A-242 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PSC Command Position

Class: Axis Register

Type: Floating point

Syntax:

I, jr PSC

PSCp1 (e.g., PSC2 PSCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: Read only.

Use: This register is used to determine the command position of the

axis. The command position is the controller’s required

position for the axis. The difference between this and the axis

position, PSA, is called the following error, FE.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value for URA (see URA).

Related Registers: PSA, FE, PSE

GFK-2205 Appendix A Registers and Commands A-243

A

PSE Command Position Only Enable

Class: Axis Register

Type: Boolean

Syntax: PSEp1 (e.g., PSE2 PSEVI1)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default 0

allowed values 0, 1

Use: This register is used to determine whether the system will only

calculate command positions and not move the motor to those

positions. If PSE is set to 1, then no actual motion will occur;

and only the command position will change when a move

command is issued. If PSE is set to 0, then the axis will fault;

and normal moves will be possible after the fault has been

cleared.

A-244 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PSO Offset Position

Class: Axis Register

Type: Floating point

Syntax:

I, jr PSO

PSOp1 (e.g., PSC2 PSCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units axis units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Use: This register is used to define the offset position of the axis.

Remarks: This register supports up to six decimal places. The numerical

values for the default, minimum, and maximum of this register

are assuming that the axis unit ratio, URA, is set at its default

value of 1. If the axis unit ratio is set to a value other than 1,

the default, maximum, and minimum values must be divided

by the value for URA (see URA).

Example: IMC/IMJ Target

PSO=0 PSO1=0 (* set offset position)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPO=10 MPO1=10 (* set offset move position)

RPO RPO1 (* run to offset move position)

 What will happen: Setting the offset position, velocity, acceleration, and offset

move position and issuing the RPO command will cause axis

one to move 10 units in the forward direction.

Related Registers: URA

GFK-2205 Appendix A Registers and Commands A-245

A

PSR Resolver Position

Class: Axis Register

Type: Integer

Syntax:

I, jr PSR

PSRp1 (e.g., PSR2 PSRVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

minimum 0

maximum 4,095 (resolver feedback brushless servo) or

65,535 (encoder feedback brushless servo)

Restrictions: Brushless servo only; read only.

Use: This register is used to determine the resolver position.

A-246 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PSX Auxiliary Position

Class: Axis Register

Type: Floating point

Syntax:

I, jr PSX

PSXp1 (e.g., PSX2 PSXVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units auxiliary units

default 0 pulses

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set.

Use: This register is used to define the auxiliary position of the axis.

The auxiliary position is simply the position of the auxiliary

encoder of the axis.

Remarks: This register supports up to six decimal places. The numerical

values for the default, minimum, and maximum of this register

are assuming that the auxiliary unit ratio, URX, is set at its

default value of 1. If the auxiliary unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value for URX (see URX).

Example: IMC/IMJ Target

PSX=20 PSX1=20 (* set auxiliary position to 20 auxiliary units)

PSX? PSXVI4? (* report auxiliary position)

Related Registers: URX, PLX, OFX

GFK-2205 Appendix A Registers and Commands A-247

A

PUT Puts One Character to Serial Port

Class: Input/Output Command

Syntax: PUT p1 (e.g., PUT VS1 PUT“A”)

Parameters: allowed values description

p1 any string expression string expression

Use: This command puts one character to the serial port. It takes the

string expression and outputs only the first character to the

serial port.

Example:

PUT VS1 (* put one character of string variable 1 to serial port)

PUT“Hello” (* put one character of the string “Hello” to serial port [i.e., H])

Related Commands: GET, IN, OUT

A-248 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PUTT Puts One Character to Tertiary Port

Class: Input/Output Command

Syntax: PUTT p1 (e.g., PUTT VS1 PUTT“A”)

Parameters: allowed values description

p1 any string expression string expression

Use: This command puts one character to the tertiary port. It takes

the string expression and outputs only the first character to the

tertiary port.

Example:

PUTT VS1 (* put one character of string variable 1 to tertiary port)

PUTT“Hello” (* put one character of the string “Hello” to tertiary port

[i.e., H])

Related Commands: GETT, INT, OUTT

GFK-2205 Appendix A Registers and Commands A-249

A

PUTW Puts One Character to OIP

Class: Input/Output Command

Syntax: PUTW p1 (e.g., PUTW VS1 PUTW“A”)

Parameters: allowed values description

p1 any string expression string expression

Use: This command puts one character to the display. It takes the

string expression and outputs only the first character to the

display.

Example:

PUTW VS1 (* put one character of string variable 1 to display)

PUTW“Hello” (* put one character of the string “Hello” to display [i.e., H])

Related Commands: GETW, INW, OUTW

A-250 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PWE Position Register Wrap Enable

Class: Axis Register

Type: Boolean

Syntax:

I, jr PWE

PWEp1 (e.g., PWE2 PWEVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default 0

 allowed values 0, 1

Restrictions: Cannot be assigned in programs or motion blocks.

Use: This register is used to determine whether position register

wrap is enabled. If PWE is set to 1, position register wrap is

enabled; and if PWE is set to 0, it is disabled.

Remarks: When position register wrap is enabled, the controller will use

the axis position length, PLA, to define the upper and lower

roll over limits for the axis position register (PSA) as -PLA

axis units to PLA-(1/URA) axis units. Wrapping is required in

unidirectional applications to prevent position register overflow

or in applications where it makes sense to define a position

modulus. PWE has no effect on the auxiliary position register

(PSX), which always wraps. The setting of PWE has no effect

on electronic cam mode.

Registers Used: PLA, PSA

GFK-2205 Appendix A Registers and Commands A-251

A

PZA Axis Position Synchronized

Class: Axis Register

Type: Floating point

Syntax:

I, jr PZA

PZAp1 (e.g., PZA1 PZAVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units axis units

default 0 pulses

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: This register is used to synchronize the reading of the axis

position and the auxiliary position. This register is read first,

then the PZX register is read. By using these registers instead

of the standard position registers (PSA and PSX), there will be

no more than 10 microseconds between the two readings.

Remarks: Each time the PZA command is executed, the value in the axis

position register (PSA) is latched into the PZA register and

within 10 microseconds the value in the auxiliary position

register (PSX) is latched into the PZX register. These values

remain until the PZA command is executed again.

The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, minimum, and maximum values must

be divided by the value for URA (see URA).

Examples: IMC/IMJ Target

VF1=PZA-PZX VF1=PZA1-PZX1 (* calculate difference

between axis and auxiliary

positions)

Related Registers: PZX, URA, PSA

A-252 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

PZX Auxiliary Position Synchronized

Class: Axis Register

Type: Floating point

Syntax:

I, jr PZX

PZXp1 (e.g., PZX1 PZXVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 units auxiliary units

 default 0 pulses

 minimum -2,000,000,000 pulses

 maximum 2,000,000,000 pulses

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: This register is used to synchronize the readings of the

auxiliary position and the axis position. The PZA register is

read first, then this register is read. By using these registers

instead of the standard position registers (PSA and PSX), there

will be no more than 10 microseconds between the two

readings.

Remarks: Each time the PZA command is executed the value in the axis

position register (PSA) is latched into the PZA register and

within 10 microseconds the value in the auxiliary position

register (PSX) is latched into the PZX register. These values

remain until the PZA command is executed again.

The numerical values for the default, minimum, and maximum

of this register are assuming that the auxiliary unit ratio, URX,

is set at its default value of 1. If the auxiliary unit ratio is set to

a value other than 1, the default, minimum, and maximum

values must be divided by the value for URX see URX).

Example: IMC/IMJ Target

VF1=PZA-PZX VF1=PZA1-PZX1 (* calculate difference

between axis and auxiliary

positions)

Related Registers: PZA, URX

GFK-2205 Appendix A Registers and Commands A-253

A

Q Reports Value of Register

Class: Diagnostic Command

Syntax: p1Q (e.g, AM1Q SRSQ PSAVI1Q MPAQ)

Parameters: allowed values description

p1 any register register

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to report the value of any register. It is

exactly the same as the ? command.

Related Commands: DGO, ?

A-254 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

QTA Axis Feedback Quadrature Type I

Class: Axis Register

Syntax: QTA

Range:

default Q4

allowed values PD pulse/direction

Q1 quadrature x1

Q2 quadrature x2

Q4 quadrature x4

Restrictions: Stepper and ampless servo only; not allowed in expressions.

Use: This register is used to define the quadrature type for the axis

feedback encoder input. The possibilities are listed below:

PD (pulse/direction) Sets the input for a pulse input on channel A and a direction

input on channel B.

Q1 (quadrature x1) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 1.

Q2 (quadrature x2) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 2.

Q4 (quadrature x4) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 4.

Remarks: The axis feedback is in the forward direction when

1) QTA=Q1, Q2, or Q4 and channel A leads channel B;

2) QTA=PD and channel B+ < channel B-.

Related Registers: PSA, QTX

GFK-2205 Appendix A Registers and Commands A-255

A

QTX Auxiliary Quadrature Type

Class: Axis Register

Syntax:

I, jr QTX

QTXp1 (e.g., QTX1 QTXVI2)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

 default All Q4

 allowed values I Q1 (quadrature x1)

I Q2 (quadrature x2)

All Q4 (quadrature x4)

All PD (pulse/direction)

jr CW (clockwise/counterclockwise)

Restrictions: For IMCs, this function available only with the extended

command set; not allowed in expressions.

Use: This register is used to define the quadrature type for the

auxiliary encoder input. The possibilities are listed below:

I Q1 (quadrature x1) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 1.

I Q2 (quadrature x2) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 2.

All Q4 (quadrature x4) Sets the input for two pulse waveforms in quadrature with a

pulse multiplier of 4.

All PD (pulse/direction) Sets the input for a pulse input on channel A and a direction

input on channel B.

jr CW (clockwise/counterclockwise) Sets the input for a pulse input on channel A for CW

motion and a pulse input on channel B for CCW motion.

Remarks: The auxiliary encoder output will cause the auxiliary position

register, PSX, to increase when:

I 1) QTX=Q1, Q2, or Q4 and channel A leads channel B;

I 2) QTX=PD and channel B+ < channel B-.

jr 1) QTX=Q4 and channel A leads channel B;

jr 2) QTX=PD and channel B+ > channel B-;

jr 3) QTX=CW and channel A has a pulse waveform and

channel B does not.

Related Registers: PSX, QTA

A-256 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RCA Runs Arc Segment Absolute Move with Center

Class: Motion Command

Syntax: RCAp1,p2 (e.g., RCA34 RCA13,6 RCA345,678)

Parameters allowed values description

p1 2 or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

absolute move positions with a center at their absolute move

distances. In the same amount of time, this command also runs

the p2 axes to their absolute move positions. When three

trajectory axes are specified, the motion generated is a helix

around a right-circular cylinder whose center line is specified

by the three axes’ MDA registers. The MDA register of the

axis paralleled to the center line must be set to 2,000,000,000

pulses for a helical move.

Example:

PSA1=0 (* set absolute position)

PSA2=0 (* set absolute position)

PSA3=0 (* set absolute position)

MPA1=5 (* set absolute move position)

MPA2=5 (* set absolute move position)

MPA3=3.2 (* set absolute move position)

MDA1=2.5 (* set absolute move distance)

MDA2=2.5 (* set absolute move distance)

TAD=CW (* set arc direction)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RCA12,3 (* run to absolute move position)

 What will happen: Setting the registers and issuing the RCA command will cause

both axes 1 and 2 to move in a half circle clockwise to position

5 units at 4 units/second; axis 3 will move to position 3.2 units

at the same time.

Related Commands: RCI, RCO, RTA

Registers Used: MPA, MDA, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D arc segment using start, end, and center point: absolute

move

GFK-2205 Appendix A Registers and Commands A-257

A

RCI Runs Arc Segment Incremental Move with Center

Class: Motion Command

Syntax: RCIp1,p2 (e.g., RCI34 RCI13,6 RCI345,678)

Parameters allowed values description

p1 2 or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

incremental move positions with a center at their incremental

move distances. In the same amount of time, this command

also runs the p2 axes to their incremental move positions.

When three trajectory axes are specified, the motion generated

is a helix around a right-circular cylinder whose center line is

specified by the three axes’ MDA registers. The MDA register

of the axis paralleled to the center line must be set to

2,000,000,000 pulses for a helical move.

Example:

MPI1=5 (* set incremental move position)

MPI2=5 (* set incremental move position)

MPI3=3.2 (* set incremental move position)

MDI1=2.5 (* set incremental move distance)

MDI2=2.5 (* set incremental move distance)

TAD=CW (* set arc direction)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RCI12,3 (* run to incremental move position)

 What will happen: Setting the registers and issuing the RCI command will cause

both axes 1 and 2 to move in a half circle clockwise

incrementally 5 units at 4 units/second; axis 3 will move

incrementally 3.2 units at the same time.

Related Commands: RCA, RCO, RTI

Registers Used: MPI, MDI, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D arc segment using start, end, and center point: incremental

move

A-258 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RCO Runs Arc Segment Offset Move with Center

Class: Motion Command

Syntax: RCOp1,p2 (e.g., RCO34 RCO13,6 RCO345,678)

Parameters allowed values description

p1 2 or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

offset move positions with a center at their offset move

distances. In the same amount of time, this command also runs

the p2 axes to their offset move positions. When three

trajectory axes are specified, the motion generated is a helix

around a right-circular cylinder whose center line is specified

by the three axes’ MDA registers. The MDA register of the

axis paralleled to the center line must be set to 2,000,000,000

pulses for a helical move.

Example:

PSO1=0 (* set offset position)

PSO2=0 (* set offset position)

PSO3=0 (* set offset position)

MPO1=5 (* set offset move position)

MPO2=5 (* set offset move position)

MPO3=3.2 (* set offset move position)

MDO1=2.5 (* set offset move distance)

MDO2=2.5 (* set offset move distance)

TAD=CW (* set arc direction)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RCO12,3 (* run to offset move position)

 What will happen: Setting the registers and issuing the RCO command will cause

both axes 1 and 2 to move in a half circle clockwise to position

5 units at 4 units/second; axis 3 will move to position 3.2 units

at the same time.

Related Commands: RCI, RCA, RTO

Registers Used: MPO, MDO, TAD, TVL, TFP, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D arc segment using start, end, and center point: offset move

GFK-2205 Appendix A Registers and Commands A-259

A

REC Record Position Enable

Class: Motion Register

Type: Boolean

Syntax: RECp1 (e.g., REC1 REC245 RECVI4)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Range:

default 0

allowed values 0, 1

Use: This register is used to determine whether position record is

enabled. If REC is set to 1, then position record is enabled; and

if REC is set to 0, it is disabled.

Example:

PPB2=5000 (* set position pointer begin)

PPE2=10000 (* set position pointer end)

PPI2=1 (* set position pointer interval)

REC2=1 (* enable record positions)

 What will happen: Setting the position pointer begin, end, and interval and

enabling record positions will cause the Target to record the

position of axis two in integer variables 5,000 to 10,000 every

10 milliseconds.

Registers Used: PPB, PPE, PPI, PPR, PP

Utility Template: Multi-axis path recording

A-260 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

REM Remark

Class: Program Command

Syntax: REMp1 (e.g., REM Program starts here)

Parameters: allowed values description

p1 any string, 0 through 127 characters text comment

Restrictions: Allowed only in programs or motion blocks.

Use: This command is used to add textual comments to a program or

motion block.

Remarks: Comments are stored as part of a program or motion block, but

they are ignored while the program or motion block is

executing.

Example:

PROGRAM1 (* edit program 1)

REM Set update

 screen to 5 (* comment)

UPS=5 (* set update screen register)

GFK-2205 Appendix A Registers and Commands A-261

A

REPEAT Repeats Motion from Start of Motion Block

Class: Program Command

Syntax: REPEAT

Restrictions: Allowed only in motion blocks.

Use: This command causes the motion block to repeat motion from

the beginning of the motion block.

Examples:

IMC/IMJ Target

MOTION1 MOTION1 (* edit motion block 1)

MBA1 (* assign axis one to motion block)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPI=15 MPI1=15 (* set incremental move position)

MPA=0 MPA1=0 (* set absolute move position)

RPI RPI1 (* run to incremental position)

RPA RPA1 (* run to absolute position)

REPEAT REPEAT (* repeat motion from beginning of motion block)

END END (* end motion block 1 and exit editor)

 What will happen: This motion block, when executed, will load the velocity,

acceleration rate, incremental move position, and absolute

move position. Next, the axis will move 15 units in the forward

direction. Once the motion is completed, the axis will then

move 15 units in the reverse direction. It will repeat this

motion until a motion command or another motion block is

executed.

A-262 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RETRIEVE Retrieves User Memory

Class: System Command

Syntax: RETRIEVE

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to retrieve user memory from

nonvolatile memory.

Remarks: This command will execute only when the controller or the

system and all axes are faulted, the UPS register is set to zero,

and no programs or motion blocks are executing.

Related Commands: SAVE, AUTORET

GFK-2205 Appendix A Registers and Commands A-263

A

RETURN Returns from “Gosub”

Class: Program Command

Syntax: RETURN

Restrictions: Allowed only in programs.

Use: This command causes the program to return from a subroutine

to the statement after the gosub statement.

Examples:

IMC/IMC Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=5 MVL1=5 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=10 MPA1=10 (* set absolute move position)

GOSUB10 GOSUB10 (* unconditionally gosub 10)

GOTO20 GOTO20 (* unconditionally goto 20)

10 RPA 10 RPA1 (* run to absolute position)

WAIT IP WAIT IP1 (* wait for expression to be true)

OUT “Axis in position$N” OUTW “Axis in position$N”

(* output string expression to display)

RETURN RETURN (* return from gosub)

20 END 20 END (* end program 1 and exit editor)

 What will happen: This program, when executed, will load the velocity,

acceleration rate, and absolute move position. It will then go to

the subroutine at label 10, which will run the axis in the

forward direction for 10 units. Once the axis is in position, the

program will print a string. The program will return to the

statement after “GOSUB10,” which goes to the statement at

label 20, which ends the program.

Related Commands: GOSUB, POP, RSTSTK

A-264 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

REVISION Reports Firmware Revision

Class: Diagnostic Command

Syntax: REVISION

Restrictions: Not allowed in programs or motion blocks.

Use: This command reports the revision of the system firmware.

GFK-2205 Appendix A Registers and Commands A-265

A

RHF Runs Forward to Home Input

Class: Motion Command

Syntax:

I, jr RHF

RHFp1 (e.g., RHF2 RHF357 RHFVI4)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs forward to the home input.

Remarks: When this command is executed, the axis, or axes, will run

forward until the home input is encountered. It will then stop

and run back to the position where the home input was

detected. The software overtravel limits, OTF and OTR, are

ignored while the axis is homing.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=1 MVL1=1 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

RHF RHF1 (* run forward to home input)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

and acceleration. It will then run the axis in the forward

direction until the home input is encountered, wait for the axis

to be in position, and then set the axis position register to 0.

Related Commands: RHR, RMF, ROF

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until home input; run reverse until home and

marker inputs

A-266 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RHR Runs Reverse to Home Input

Class: Motion Command

Syntax:

I, jr RHR

RHRp1 (e.g., RHR3 RHR123 RHRVI9)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs reverse to the home input.

Remarks: When this command is executed, the axis, or axes, will run

reverse until the home input is encountered. It will then stop

and run back to the position where the home input was

detected. The software overtravel limits, OTF and OTR, are

ignored while the axis is homing.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=1 MVL1=1 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

RHR RHR1 (* run reverse to home input)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

and acceleration. It will then run the axis in the reverse

direction until the home input is encountered, wait for the axis

to be in position, and then set the axis position register to 0.

Related Commands: RHF, RMR, ROR

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until home input; run reverse until home and

marker inputs

GFK-2205 Appendix A Registers and Commands A-267

A

RLA Runs Linear Interpolation Absolute

Class: Motion Command

Syntax: RLAp1,p2 (e.g., RLA12 RLA45,8 RLA237,56)

Parameters allowed values description

p1 1, 2, or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in a line segment to their

absolute move positions. In the same amount of time, this

command also runs the p2 axes to their absolute move

positions.

Example:

PSA1=0 (* set absolute position)

PSA2=0 (* set absolute position)

PSA3=0 (* set absolute position)

MPA1=4 (* set absolute move position)

MPA2=6 (* set absolute move position)

MPA3=2.3 (* set absolute move position)

TVL=3 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RLA12,3 (* run to absolute move position)

 What will happen: Setting the registers and issuing the RLA command will cause

axes 1 and 2 to move to positions 4 units and 6 units at

3 units/second; at the same time, axis 3 will move to position

2.3 units.

Related Commands: RLI, RLO, RPA

Registers Used: MPA, MDA, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D line segment: absolute move

A-268 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RLI Runs Linear Interpolation Incremental

Class: Motion Command

Syntax: RLIp1,p2 (e.g., RLI12 RLI45,8 RLI237,56)

Parameters allowed values description

p1 1, 2, or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in a line segment to their

incremental move positions. In the same amount of time, this

command also runs the p2 axes to their incremental move

positions.

Example:

MPI1=4 (* set incremental move position)

MPI2=6 (* set incremental move position)

MPI3=2.3 (* set incremental move position)

TVL=3 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RLI12,3 (* run to incremental move position)

 What will happen: Setting the registers and issuing the RLI command will cause

axes 1 and 2 to move incrementally 4 units and 6 units at

3 units/second; at the same time, axis 3 will move

incrementally 2.3 units.

Related Commands: RLA, RLO, RPI

Registers Used: MPI, MDI, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D line segment: incremental move

GFK-2205 Appendix A Registers and Commands A-269

A

RLO Runs Linear Interpolation Offset

Class: Motion Command

Syntax: RLOp1,p2 (e.g., RLO12 RLO45,8 RLO237,56)

Parameters allowed values description

p1 1, 2, or 3 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in a line segment to their offset

move positions. In the same amount of time, this command

also runs the p2 axes to their offset move positions.

Example:

PSO1=0 (* set offset position)

PSO2=0 (* set offset position)

PSO3=0 (* set offset position)

MPO1=4 (* set offset move position)

MPO2=6 (* set offset move position)

MPO3=2.3 (* set offset move position)

TVL=3 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RLO12,3 (* run to offset move position)

 What will happen: Setting the registers and issuing the RLO command will cause

axes 1 and 2 to move to positions 4 units and 6 units at

3 units/second; at the same time, axis 3 will move to position

2.3 units.

Related Commands: RLI, RLA, RPO

Registers Used: MPO, MDO, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

Motion Templates: 2-D line segment: offset move

A-270 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RMF Runs Forward to Marker

Class: Motion Command

Syntax:

I, jr RMF

RMFp1 (e.g., RMF3 RMF78 RMFVI5)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs forward to the marker. The marker is

defined as the zero position on the resolver when using resolver

feedback or as the encoder channel index input when using

encoder feedback units.

Remarks: When this command is executed, the axis, or axes, will run

forward at the velocity specified in the MVM register until the

marker is encountered. It will then stop and run back to the

position where the marker was detected. The software

overtravel limits, OTF and OTR, are ignored while homing the

axis.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVM=1 MVM1=1 (* set motion velocity for run to marker)

MAC=50 MAC1=50 (* set motion acceleration)

RMF RMF1 (* run forward to marker)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

for run to marker and acceleration. It will then run the axis in

the forward direction until the marker is encountered, wait for

the axis to be in position, and then set the axis position register

to 0.

Related Commands: RMR, RHF, ROF

Registers Used:

When MT=VEL MVM, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until marker input; run reverse until home and

marker inputs; run reverse until overtravel and marker inputs

GFK-2205 Appendix A Registers and Commands A-271

A

RMR Runs Reverse to Marker

Class: Motion Command

Syntax:

I, jr RMR

RMRp1 (e.g., RMR5 RMR257 RMRVI1)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs reverse to the marker. The marker is

defined as the zero position on the resolver of resolver

feedback units, or the encoder channel index input on encoder

feedback units.

Remarks: When this command is executed, the axis, or axes, will run

reverse at the velocity specified in the MVM register until the

marker is encountered. It will then stop and run back to the

position where the marker was detected. The software

overtravel limits, OTF and OTR, are ignored while the axis is

homing.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVM=1 MVM1=1 (* set motion velocity for run to marker)

MAC=50 MAC1=50 (* set motion acceleration)

RMR RMR1 (* run reverse to marker)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

for run to marker and acceleration. It will then run the axis in

the reverse direction until the marker is encountered, wait for

the axis to be in position, and then set the axis position register

to 0.

Related Commands: RMF, RHR, ROR

Registers Used:

When MT=VEL MVM, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until marker input; run reverse until home and

marker inputs; run reverse until overtravel and marker inputs

A-272 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

ROF Runs Forward to Overtravel Input

Class: Motion Command

Syntax:

I, jr ROF

ROFp1 (e.g., ROF3 ROF267 ROFVI2)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs forward to the forward overtravel input.

Remarks: When this command is executed, the axis, or axes, will run

until the forward overtravel input is encountered. It will then

stop and run back to the position where the forward overtravel

input was detected. The software overtravel limits, OTF and

OTR, are ignored while the axis is homing. The hardware

overtravel inputs do not need to be enabled (OTE=1) to use this

command.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=1 MVL1=1 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

ROF ROF1 (* run forward to overtravel input)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

and acceleration. It will then run the axis in the forward

direction until the forward overtravel input is encountered, wait

for the axis to be in position, and then set the axis position

register to 0.

Related Commands: ROR, RHF, RMF

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until overtravel inputs; run reverse until overtravel

and marker inputs

GFK-2205 Appendix A Registers and Commands A-273

A

ROR Runs Reverse to Overtravel Input

Class: Motion Command

Syntax:

I, jr ROR

RORp1 (e.g., ROR5 ROR136 RORVI4)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs reverse to the reverse overtravel input.

Remarks: When this command is executed, the axis, or axes, will run

until the reverse overtravel input is encountered. It will then

stop and run back to the position where the reverse overtravel

input was detected. The software overtravel limits, OTF and

OTR, are ignored while the axis is homing. The hardware

overtravel inputs do not need to be enabled (OTE=1) to use this

command.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=1 MVL1=1 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

ROR ROR1 (* run reverse to overtravel input)

WAIT IP WAIT IP1 (* wait for axis to be in position)

PSA=0 PSA1=0 (* set axis position register)

END END (* end program 1 and exit editor)

 What will happen: This program, once executed, will first set the motion velocity

and acceleration. It will then run the axis in the reverse

direction until the reverse overtravel input is encountered, wait

for the axis to be in position, and then set the axis position

register to 0.

Related Commands: ROF, RHR, RMR

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE Command cannot be used

Motion Templates: Run reverse until overtravel inputs; run reverse until overtravel

and marker inputs

A-274 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RPA Runs to Absolute Position

Class: Motion Command

Syntax:

I, jr RPA

RPAp1 (e.g., RPA6 RPA358 RPAVI4)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs the axis, or axes, to the absolute move

position.

Remarks: The run commands override each other unless they are used in

a motion block.

Examples: IMC/IMJ Target

PSA=0 PSA1=0 (* set axis position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=8 MPA1=8 (* set absolute move position)

RPA RPA1 (* run to absolute move position)

 What will happen: Setting the axis position register, velocity, acceleration, and

absolute move position and issuing the RPA command will

cause the axis to move 8 units in the forward direction.

Related Commands: RPI, RPO, RVF, RVR

Registers Used:

When MT=VEL MPA, MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME MPA, MTM, MAP, MDP, MJK, MFP, MFA, MFD

When MT=PULSE MPA, MPS, MPL, MAP, MDP, MVP

Motion Templates:

I, jr, Velocity-based absolute move; velocity-based blended moves;

velocity-based absolute move with feedrate override;

time-based, single-axis, absolute move; time-based, single-axis

absolute move with feedrate override; pulse-based, single-axis,

absolute move; pulse-based, single-axis, blended move

Multi-axis absolute move

GFK-2205 Appendix A Registers and Commands A-275

A

RPI Runs to Incremental Position

Class: Motion Command

Syntax:

I, jr RPI

RPIp1 (e.g., RPI8 RPI1256 RPIVI3)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs the axis, or axes, to the incremental move

position, MPI (i.e., it runs from the current position of the axis

to the current position incremented by the value of MPI).

Remarks: The run commands override each other unless they are used in

a motion block.

Examples: IMC/IMJ Target

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration rate)

MPI=12 MPI1=12 (* set incremental move position)

RPI RPI1 (* run to incremental move

position)

 What will happen: Setting the velocity, acceleration, and incremental move

position and issuing the RPI command will cause the axis to

move 12 units in the forward direction.

Related Commands: RPA, RPO, RVF, RVR

Registers Used:

When MT=VEL MPI, MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME MPI, MTM, MAP, MDP, MJK, MFP, MFA, MFD

When MT=PULSE MPI, MPS, MPL, MAP, MDP, MVP

Motion Templates:

I, jr, Velocity-based incremental move; time-based, single-axis,

incremental move; pulse-based, single-axis, incremental move;

single-axis index move after input; single-axis index move at

predefined auxiliary position reference

Time-based, multi-axis, incremental move; pulse-based, multi-

axis, incremental move

A-276 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RPO Runs to Offset Position

Class: Motion Command

Syntax:

I, jr RPO

RPOp1 (e.g., RPO6 RPO3457 RPOVI2)

Parameters: allowed values description

 p1 1 through 8 or axis numbers

list of numbers 1 through 8 or VIn

Use: This command runs the axis, or axes, to the offset move

position.

Remarks: The run commands override each other unless they are used in

a motion block.

Examples: IMC/IMJ Target

PSO=0 PSO1=0 (* set offset position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration rate)

MPO=8 MPO1=8 (* set offset move position)

RPO RPO1 (* run to offset move position)

 What will happen: Setting the offset position register, velocity, acceleration, and

offset move position and issuing the RPO command will cause

the axis to move 8 units in the forward direction.

Related Commands: RPA, RPI, RVF, RVR

Registers Used:

When MT=VEL MPO, MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME MPO, MTM, MAP, MDP, MJK, MFP, MFA, MFD

When MT=PULSE MPO, MPS, MPL, MAP, MDP, MVP

Motion Templates:

I, jr Velocity-based offset move; time-based, single-axis, offset

move; pulse-based, single-axis, offset move

Velocity-based offset move; time-based, single-axis, offset

move; time-based, multi-axis, offset move; pulse-based, multi-

axis, offset move

GFK-2205 Appendix A Registers and Commands A-277

A

RSF Resets Faults I jr

Class: System Command

Syntax: RSF

Restrictions: Not allowed in motion blocks.

Use: This command resets all controller faults.

Remarks: The RSF command sets the axis commanded position equal to

the actual position, thus making axis following error and motor

torque output equal to zero. Faults should be automatically

reset by a program only after allowing appropriate inspection

into the source of the fault.

Related Commands: STF

Related Registers: FC

A-278 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RSFA Resets Axis Faults

Class: System Command

Syntax: RSFAp1 (e.g., RSFA2 RSFA356 RSFAVI4)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command resets axisp1 faults.

Related Commands: RSFALL, RSFS, STFA, STFSALL, STFS

Related Registers: FCS

GFK-2205 Appendix A Registers and Commands A-279

A

RSFALL Resets System and All Axes’ Faults

Class: System Command

Syntax: RSFALL

Use: This command resets system and all axes’ faults.

Related Commands: RSFA, RSFS, STFA, STFALL, STFS

Related Registers: FCA, FCS

A-280 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RSFS Resets System Faults

Class: System Command

Syntax: RSFS

Use: This command resets system faults.

Related Commands: RSFA, RSFALL, STFA, STFALL, STFS

Related Registers: FCS

GFK-2205 Appendix A Registers and Commands A-281

A

RSM Resumes Motion

Class: Program Command

Syntax:

I, jr RSM

RSMp1 (e.g., RSM2 RSM123 RSMVI5)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Restrictions: Not allowed in motion blocks.

Use: This command resumes suspended motion of axis.

Related Commands: RSMALL, SUP, SUPALL

A-282 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RSMALL Resumes All Motion

Class: Program Command

Syntax: RSMALL

Restrictions: Not allowed in motion blocks.

Use: This command resumes all suspended axis motion.

Related Commands: RSM, SUP, SUPALL

GFK-2205 Appendix A Registers and Commands A-283

A

RSTSTK Resets “Gosub” Stack to Empty

Class: Program Command

Syntax: RSTSTK

Restrictions: Allowed only in programs.

Use: This command resets the gosub stack to empty.

Remarks: This command will eliminate all gosubs that have been

executed.

Example:

PROGRAM1 (* edit program 1)

IN VI1 (* input variable value from key buffer)

IF VI1>=0 GOTO5 (* conditionally goto 5)

OUT“-” (* output string expression to serial port)

VI1=-VI1 (* set integer variable 1)

5 VI2=10 (* set integer variable 2 with pointer)

GOSUB10 (* unconditionally gosub 10)

GOTO30 (* unconditionally goto 30)

10 VIVI2=VI1 - VI1/10*10 + 48 (* set integer variable VI2)

VI1=VI1/10 (* set integer variable 1)

VI2=VI2+1 (* set integer variable 2 with next pointer)

IF VI2>16 GOTO20 (* conditionally goto 20)

IF VI1<>0 GOSUB10 (* conditionally gosub 10)

VI2=VI2-1 (* set integer variable 2 with pointer)

OUT CHR(VIVI2) (* output string expression to serial port)

RETURN (* return from gosub)

20 RSTSTK (* reset gosub stack to empty)

OUT“ERROR:$N” (* output string expression to serial port)

OUT“Number more than 6 digits$N” (* output string expression to serial port)

30 END (* end program 1 and exit editor)

 What will happen: This program inputs an integer variable value from the key

buffer. If the value is negative, the program sends a negative

sign to the display, sets the integer value positive, and

continues to label 5, which sets the variable pointer to 10. The

program then goes to the subroutine at label 10, which stores

the ASCII code of the ones digit in VI10, the ASCII code of the

tens digit in VI11, etc. If the number of digits is greater than 6,

the program goes to label 20, which resets the gosub stack and

prints an error message; otherwise, each character of integer

number VI1 will be sent to the serial port and the program ends

at label 30.

Related Commands: POP, GOSUB

A-284 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RTA Runs Arc Segment Absolute Move with Third Point

Class: Motion Command

Syntax: RTAp1,p2 (e.g., RTA56 RTA24,7 RTA68,12)

Parameters allowed values description

p1 2 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

absolute move positions where the arc segment includes the

point at their absolute move distances. In the same amount of

time, this command also runs the p2 axes to their absolute

move positions.

Example:

PSA1=0 (* set absolute position)

PSA2=0 (* set absolute position)

PSA3=0 (* set absolute position)

MPA1=5 (* set absolute move position)

MPA2=5 (* set absolute move position)

MPA3=3.2 (* set absolute move position)

MDA1=6.04 (* set absolute move distance)

MDA2=2.5 (* set absolute move distance)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* t trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RTA12,3 (* run to absolute move position)

 What will happen: Setting the registers and issuing the RTA command will cause

both axes 1 and 2 to move in a half circle counterclockwise to

position 5 units at 4 units/second; at the same time, axis 3 will

move to position 3.2.

Related Commands: RTI, RTO, RCA

Registers Used: MPA, MDA, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

GFK-2205 Appendix A Registers and Commands A-285

A

RTF Retrieves Firmware from Nonvolatile Memory

Class: System Command

Syntax: RTF

Use: This command retrieves firmware from the flash memory card

and puts it in code memory. It also disables all other

commands except SVF.

Related Commands: SVF

A-286 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RTI Runs Arc Segment Incremental Move with Third Point

Class: Motion Command

Syntax: RTIp1,p2 (e.g., RTI56 RTI24,7 RTI68,12)

Parameters allowed values description

p1 2 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

incremental move positions where the arc segment includes the

point at their incremental move distances. In the same amount

of time, this command also runs the p2 axes to their

incremental move positions.

Example:

MPI1=5 (* set incremental move position)

MPI2=5 (* set incremental move position)

MPI3=3.2 (* set incremental move position)

MDI1=6.04 (* set incremental move distance)

MDI2=2.5 (* set incremental move distance)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RTI12,3 (* run to incremental move position)

 What will happen: Setting the registers and issuing the RTI command will cause

both axes 1 and 2 to move in a half circle counterclockwise

incrementally 5 units at 4 units/second; at the same time, axis 3

will move incrementally 3.2 units.

Related Commands: RTA, RTO, RCI

Registers Used: MPI, MDI, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

GFK-2205 Appendix A Registers and Commands A-287

A

RTO Runs Arc Segment Offset Move with Third Point

Class: Motion Command

Syntax: RTOp1,p2 (e.g., RTO56 RTO24,7 RTO68,12)

Parameters allowed values description

p1 2 axis numbers 1 through 8 trajectory axis numbers

p2 none or

list of axis numbers 1 through 8 coordinated axis numbers

Use: This command runs the p1 axes in an arc segment to their

offset move positions where the arc segment includes the point

at their offset move distances. In the same amount of time, this

command also runs the p2 axes to their offset move positions.

Example:

PSO1=0 (* set offset position)

PSO2=0 (* set offset position)

PSO3=0 (* set offset position)

MPO1=5 (* set offset move position)

MPO2=5 (* set offset move position)

MPO3=3.2 (* set offset move position)

MDO1=6.04 (* set offset move distance)

MDO2=2.5 (* set offset move distance)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent)

TFA=500 (* set trajectory feedrate acceleration)

MAP3=20 (* set motion acceleration percentage to 20)

MJK3=100 (* set motion jerk percentage to 100)

RTO12,3 (* run to offset move position)

 What will happen: Setting the registers and issuing the RTO command will cause

both axes 1 and 2 to move in a half circle counterclockwise to

position 5 units at 4 units/second; at the same time, axis 3 will

move to position 3.2.

Related Commands: RTI, RTA, RCO

Registers Used: MPO, MDO, TAD, TFP, TVL, TFA, TFD, MAP, MDP, MJK

A-288 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RTU Remote Terminal Unit Mode Enable I jr

Syntax: RTU

Type: Boolean

Range:

default 0

allowed values 0, 1

Restrictions: Cannot be assigned in motion blocks. Available in IMJ

firmware 2.1 and higher; IMC firmware 3.1 and higher.

Use: The RTU enables the controller to communicate with a remote

terminal unit (RTU). If RTU is set to 1, RTU mode is enabled;

if RTU is set to 0, RTU mode is disabled.

Remarks: IMC and IMJ controllers allow users to toggle back and forth

between RTU mode and serial communication mode. With the

controller in RTU mode, press the <Enter> key 10 consecutive

times to send the controller back to serial communication mode

with the currently set baud rate, odd parity, and 7 data bits set.

Once in this mode it is not possible to set RTU=1 and it is

necessary to cycle power on the controller to re-enable RTU

communications.

Related Registers: ADDR, BAUD, BIT, RTUF

GFK-2205 Appendix A Registers and Commands A-289

A

RTUF Remote Terminal Unit Communication Flag I jr

Syntax: RTUF

Type: Boolean

Range:

allowed values 0, 1

Restrictions: Read only. Available in IMJ firmware 2.1 and higher; IMC

firmware 3.1 and higher.

Use: This register is used to tell whether remote terminal unit (RTU)

communication is occurring. This operand is set to one when a

RTU communication occurs correctly and is cleared to zero

when its value is tested. A program can monitor correct RTU

communication by testing RTUF at a rate slower than the RTU

communication rate. As long as RTUF continues to return a

value of 1, RTU communication is correctly taking place.

Related Registers: RTU

A-290 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RTV Retrieve Variable from Nonvolatile Memory to RAM jr

Syntax: RTV

Restrictions: Allowed only in programs.

Use: The RTV command retrieves integer variables 1 through 1,024

and floating point variables 1 through 512 from nonvolatile

memory (flash) to RAM.

Remarks: The RTV command will fill variables with 1s bits if executed

after the flash is erased until the SVV command is successfully

executed. Units ship from the factory with all variables

initialized to zero.

Related Registers: SVV, VI, VF

Related Commands: SAVE, SVV, RETRIEVE

GFK-2205 Appendix A Registers and Commands A-291

A

RVF Runs to Velocity Forward

Class: Motion Command

Syntax:

I, jr RVF

RVFp1 (e.g., RVF4 RVF235 RVFVI6)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs the axis, or axes, in the forward direction.

Remarks: The run commands override each other unless they are used in

a motion block.

Examples: IMC/IMJ Target

MVL=10 MVL1=10 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

RVF RVF1 (* run forward)

 What will happen: Loading the velocity and acceleration and issuing the RVF

command will cause the axis to run in the forward direction

until another motion command is issued.

Related Commands: RVR, RPA, RPI, RPO

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE MPS, MPL, MVP

Motion Templates: Run reverse until torque limit; velocity-based continuous

move; run forward until torque limit; run reverse at torque

limit; single-axis run forward until input

Utility Templates: Jog using OIP; jog using single-pole, double-throw switch

A-292 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

RVR Runs to Velocity Reverse

Class: Motion Command

Syntax:

I, jr RVR

RVRp1 (e.g., RVR8 RVR57 RVRVI2)

Parameters: allowed values description

 p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command runs the axis, or axes, in the reverse direction.

Remarks: The run commands override each other unless they are used in

a motion block.

Examples: IMC/IMJ Target

MVL=10 MVL1=10 (* set motion velocity)

MAC=50 MAC1=50 (* set motion acceleration)

RVR RVR1 (* run forward)

 What will happen: Setting the velocity and acceleration and issuing the RVR

command will cause the axis to run in the reverse direction

until another motion command is issued.

Related Commands: RVF, RPA, RPI, RPO

Registers Used:

When MT=VEL MVL, MAC, MDC, MJK, MFP, MFA, MFD

When MT=TIME Command cannot be used

When MT=PULSE MPS, MPL, MVP

Motion Templates: Run reverse until torque limit; velocity-based continuous

move; run forward until torque limit; run reverse at torque

limit; single-axis run forward until input

Utility Templates: Jog using OIP; jog using single-pole, double-throw switch

GFK-2205 Appendix A Registers and Commands A-293

A

SAVE Saves User Memory

Class: System Command

Syntax: SAVE

Restrictions: Not allowed in programs or motion blocks.

Use: This command is used to save user memory from RAM to

nonvolatile memory.

Remarks: This command will execute only when the controller or system

and all axes are faulted and no programs or motion blocks are

executing.

jr In IMJ controllers, executing the SAVE command

automatically executes the AUTORET command.

Related Commands: RETRIEVE, SVL, AUTORET

A-294 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SCAN Maximum Scan Time

Syntax: SCAN

Range:

units seconds

default 0

minimum 0.00

maximum 1.00

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: Use to define the maximum time allowed between updates of

the I/O connection of the network. If the I/O connection is not

updated in time, then the system will fault due to Network

Communication Error and the FCN register will have bit 11 set

to indicate I/O Scan Time-Out. If SCAN is set to zero, then no

check of the update time is performed.

Example:

SCAN=.05 (* set maximum scan time to 50 milliseconds)

GFK-2205 Appendix A Registers and Commands A-295

A

SCRD Screen Data

Class: Input/Output Register

Syntax: SCRDp1.p2 (e.g., SCRD1.1 SCRDVI1.2 SCRDVI5.VI7)

Parameters: allowed values description

p1 1 through 50 or VIn screen number

p2 1 through 4 or VIn line number

Restrictions: Not allowed in expressions.

Use: This register is used to define screen data for line p2 of screen

number p1.

Example:

SCRD1.1=FTS(VLA,5,2) (* set screen data for screen 1, line 1 to axis velocity, field

width of 5 and 2 decimal places)

SCRDVI1.2=“Jogging” (* set screen data for screen VI1, line 2 to “Jogging”)

Related Registers: SCRP, SCRL, UPS

A-296 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SCRL Screen Line

Class: Input/Output Register

Type: String

Syntax: SCRLp1.p2 (e.g., SCRL1.1 SCRLVI2.3 SCRLVI4.VI9)

Parameters: allowed values description

p1 1 through 50 or VIn screen number

p2 1 through 4 or VIn line number

Range:

default “”

allowed values any string, 0 through 40 characters long

Use: This register is used to define a line of characters for line

number p2 of screen p1.

Example:

SCRL1.1=“Axis velocity:” (* set screen line 1 of screen 1 to “Axis velocity:”)

SCRLVI2.3=“Motion Parameters” (* set screen line 3 of screen VI2 to “Motion

Parameters”)

Related Registers: SCRD, SCRL, UPS

GFK-2205 Appendix A Registers and Commands A-297

A

SCRP Screen Position of Data

Class: Input/Output Register

Type: Integer

Syntax: SCRPp1.p2 (e.g., SCRP1.1 SCRPVI2.3 SCRPVI3.VI6)

Parameters: allowed values description

p1 1 through 50 or VIn screen number

p2 1 through 4 or VIn line number

Range:

default 1

minimum 1

maximum 40

Use: This register is used to define the column position where the

screen data, SCRD, is placed on the screen line.

Example:

SCRP1.1=15 (* set screen position of data for screen 1, line 1 to column 15)

SCRPVI2.3=20 (* set screen position of data for screen VI2, line 3 to

column 20)

Related Registers: SCRD, SCRL, UPS

A-298 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SECURE Secures User Memory

Class: System Command

Syntax: SECURE

Restrictions: Not allowed in programs or motion blocks.

Use: This command secures user memory space and protects user’s

intellectual property. It disables the PROGRAM, FAULT, and

MOTION commands and prohibits programs or motion blocks

from being uploaded to the controller. To re-enable these

commands, you must execute the CLM command to clear the

memory.

Related Commands: PASSWORD, CHANGEPW

GFK-2205 Appendix A Registers and Commands A-299

A

SM Servo Module Assignment

Class: System Register

Syntax: SMp1 (e.g., SM2 SM5)

Parameters: allowed values description

p1 1 through 8 axis number

Range:

default 0

allowed values 0 or list of up to 8 rack slots separated by commas, where the

rack slots are 11 through 18; 21 through 28; 31 through 38

Restrictions: Not allowed in programs, motion blocks, or expressions.

Use: The servo module rack slot assignment is used to define which

servo module(s) are assigned to an axis. The servo module

assignment consists of a list of up to eight rack slots, where

each rack slot consists of two digits. The first digit is the rack

number and the second digit is the slot number. If SMp1 is

equal to 0, it means that no servo modules are assigned to axis

p1.

Example:

SM1=13 (* set axis one servo module assignment to the servo module in

rack one, slot three)

SM5=23,24,25 (* set axis 5 servo module assignment to the servo modules in

rack two, slots three, four, and five)

SM7? (* report axis 7 servo module assignment)

A-300 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SME Servo Module Assignment Error

Class: System Register

Type: Integer, Boolean

Syntax: SMEp1 (e.g., SME SME8 SMEVI2)

Parameters: allowed values description

p1 none or 0 through 23 servo module assignment error

or VIn register bit number

Range:

allowed values 0 through FFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The servo module assignment error register is used to

determine if any of the servo modules are not properly assigned

by the system.

Remarks: 1. When the SME? command is executed, the module

assignment error register value will be given as an English

statement. If all servo module assignments are correct, the

message given is All module assignments are correct.

2. If the computer interface format is enabled, and the SME?

command is executed, the module assignment error register

value will be given as an integer number. If all servo module

assignments are correct, the module assignment error register

will be set to 0. The possibilities are listed below:

bit message

0 Module in rack one, slot one did not respond to assignment

1 Module in rack one, slot two did not respond to assignment

2 Module in rack one, slot three did not respond to assignment

3 Module in rack one, slot four did not respond to assignment

4 Module in rack one, slot five did not respond to assignment

5 Module in rack one, slot six did not respond to assignment

6 Module in rack one, slot seven did not respond to assignment

7 Module in rack one, slot eight did not respond to assignment

8 Module in rack two, slot one did not respond to assignment

... ...

... ...

22 Module in rack three, slot seven did not respond to assignment

23 Module in rack three, slot eight did not respond to assignment

GFK-2205 Appendix A Registers and Commands A-301

A

SPp1p2B Set Point Begin I

Class: Input/Output Register

Type: Floating point

Syntax:

I SPp1p2B (e.g., SPA1B SPFVI4B)
SPp1p2Bp3 (e.g., SPA1B2 SPA1BVI2 SPAVI2B1)

Parameters: allowed values description

I p1 A through F set point
 p2 1 through 8 or VIn set point pair number

 p1 A set point
 p2 1 through 8 or VIn set point pair number
 p3 1 through 8 or VIn axis number

Range:

units axis units
default OFF
minimum -2,000,000,000 pulses
maximum 2,000,000,000 pulses

Use: This register is used to define a set point pair begin position for
set points A through F for the IMC and set point A for Target.
Up to eight pairs can be defined for each set point with p2
being the pair designation. The pairs are defined by a begin
point and an end point. These points are the position at which
the set point will turn on and turn off, respectively. If a set
point pair is set to OFF, it is not defined.

Remarks::

I IMC set point outputs are assigned to the following digital
outputs: A=DO11,B=DO12, C=DO7, D=DO8, E=DO9,
F=DO10.

Examples: IMC Target
PSA=0 PSA1=0 (* set axis position)
MPA=20 MPA1=20 (* set absolute move position)
SPA1B=5 SPA1B1=5 (* set set point A pair one begin)
SPA1E=10 SPA1E1=10 (* set set point A pair one end)
SPA2B=12 SPA2B1=12 (* set set point A pair two begin)
SPA2E=20 SPA2E1=20 (* set set point A pair two end)
RPA RPA1 (* run to absolute position)

 What will happen: First, the axis position register is set and absolute move
position is loaded. Next, the set point A pair one begin at 5
units and set point A pair one end at 10 units are loaded. Then,
set point A pair two begin at 12 units and set point A pair two
end at 20 units are loaded. Issuing the RPA command will
cause the axis to move 20 units in the forward direction. Set
point A will turn on at 5 units, turn off at 10 units, turn on
again at 12 units, and finally turn off at 20 units.

Related Registers: URA, SPp1p2E, SPIA, SPOA

A-302 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SPp1p2E Set Point End I

Class: Input/Output Register

Type: Floating point

Syntax:

I SPp1p2E (e.g., SPA1E SPFVI4E)

SPp1p2Ep3 (e.g., SPA1E2 SPA1EVI2 SPAVI2E1 SPAVI1EVI2)

Parameters: allowed values description

I p1 A through F set point

p2 1 through 8 or Vin set point pair number

p1 A set point

p2 1 through 8 or VIn set point pair number

p3 1 through 8 or VIn axis number

Range:

units axis units

default OFF

minimum -2,000,000,000 pulses

maximum 2,000,000,000 pulses

Use: This register is used to define a set point pair end position for set

points A through F for the IMC and set point A for Target. Up to

eight pairs can be defined for each set point with p2 being the pair

designation. The pairs are defined by a begin point and an end point.

These points are the position at which the set point will turn on and

turn off, respectively. If a set point pair is set to OFF, it is not defined.

Remarks:

I IMC set point outputs are assigned to the following digital outputs:

A=DO11,B=DO12, C=DO7, D=DO8, E=DO9, F=DO10.

Examples: IMC Target

PSA=0 PSA1=0 (* set axis position)

MPA=20 MPA1=20 (* set absolute move position)

SPA1B=5 SPA1B1=5 (* set set point A pair one begin)

SPA1E=10 SPA1E1=10 (* set set point A pair one end)

SPA2B=12 SPA2B1=12 (* set set point A pair two begin)

SPA2E=20 SPA2E1=20 (* set set point A pair two end)

RPA RPA1 (* run to absolute position)

 What will happen: First, the axis position register is set and absolute move position is

loaded. Next, the set point A pair one begin at 5 units and set point A

pair one end at 10 units are loaded. Then, set point A pair two begin at

12 units and set point A pair two end at 20 units are loaded. Issuing

the RPA command will cause the axis to move 20 units in the forward

direction. Set point A will turn on at 5 units, turn off at 10 units, turn

on again at 12 units, and finally turn off at 20 units.

Related Registers: URA, SPp1p2B, SPIA, SPOA

GFK-2205 Appendix A Registers and Commands A-303

A

SPp1I Set Point Input I

Class: Input/Output Register

Syntax: SPp1I (e.g., SPAI SPFI)

Parameters: allowed values description

p1 A through F set point

Range:

default PSA

allowed values PSA (axis position)

PSX (auxiliary position)

Restrictions: Not allowed in programs or motion blocks. For IMCs, this

function available only with the extended command set.

Use: This register sets the set point input for set points A through F.

Related Registers: PSA, PSX, SPp1T

A-304 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SPp1T Set Point Turn-off Time I

Class: Input/Output Register

Type: Floating point

Syntax: SPp1T (e.g., SPAT SPFT)

Parameters: allowed values description

p1 A through F set point

Range:

units seconds

default 0

minimum 0 seconds

maximum 2.0000 seconds

Use: This register is used to set an output pulse width in seconds for

set points A through F.

Remarks: The SPp1T register overrides all output functions—return

SPp1T to its default setting of zero to disable pulse output

operation.

Example:

SPAT=1.075 (* set output pulse width of setpoint A to 1.075 seconds)

Related Registers: SPp1p2B, SPp1p2E

GFK-2205 Appendix A Registers and Commands A-305

A

SPIA Axis Set Point Input

Class: Input/Output Register

Type: Boolean

Syntax: SPIAp1 (e.g., SPIA1 SPIAVI2)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine the state of an axis set point

input.

Related Registers: SPOA, SPAB

A-306 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SPIS System Set Point Input

Class: Input/Output Register

Type: Boolean

Syntax: SPIS

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to determine the state of the system set

point input.

Related Registers: SPOS, SPS

GFK-2205 Appendix A Registers and Commands A-307

A

SPOA Axis Set Point Output

Class: Input/Output Register

Type: Boolean

Syntax: SPOAp1 (e.g., SPOA1 SPOAVI2)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

default 0

allowed values 0, 1

Use: The axis set point output is used to force the set point on. If

SPOAp1 is equal to 1, the set point output is forced on. If

SPOAp1 is equal to 0, the set point output is controlled by the

axis set point pairs defined by SPAB and SPAE.

Related Registers: SPIA, SPAB

A-308 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SPOS System Set Point Output

Class: Input/Output Register

Type: Boolean

Syntax: SPOS

Range:

default 0

allowed values 0, 1

Use: The system set point output is used to force the set point on. If

SPOS is equal to 1, the set point output is forced on. If SPOS

is equal to 0, the set point output is controlled by the system set

point sets defined by SPS.

Related Registers: SPIS, SPS

GFK-2205 Appendix A Registers and Commands A-309

A

SPS System Set Point

Class: Input/Output Register

Syntax: SPSp1 (e.g., SPS2 SPSVI3)

Parameters: allowed values description

p1 1 through 8 or VIn set point set number

Range:

default OFF

allowed values set of up to 8 axis numbers, where each axis number can be

1 through 8

Restrictions: Not allowed in expressions.

Use: The system set point is an output that turns on whenever all of

the axis set points in one of the defined sets are on

simultaneously. It turns off whenever none of the defined sets

have all of their axis set points on simultaneously. If a system

set point set is set to OFF, it is not defined.

Example:

SPS1=134 (* set system set point set one to axis one, axis three and axis

four set points)

SPSVI2? (* report system set point VI2)

Related Registers: SPIS, SPOS, SPAB

A-310 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SRA Axis Status

Class: System Register

Type: Integer, Boolean

Syntax:

I, jr SRAp1 (e.g., SRA SRA4 SRAVI3)

SRAp1.p2 (e.g., SRA2 SRAVI1.3 SRAVI1.V12)

Parameters: allowed values description

I, jr p1 none or 0 through 15 axis status register bit number

or Vin

 p1 1 through 8 or VIn axis number

 p2 none or 0 through 15 axis status register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The axis status register is used to determine the status of the

axis.

Remarks: 1. When the SRA? command is executed, the axis status

register value will be given as an English statement.

2. If the computer interface format is enabled, and the SRA?

command is executed, the axis status register value will be

given as an integer number equal to the decimal equivalent of

the register’s binary value. Note that if the axis direction is

reverse, bit 7 will be set to 0, and the associated message is

Axis direction reverse. The possibilities are listed below:

bit message bit message

0 Motion generator enabled 8 Axis in position

1 Gearing enabled 9 Axis at torque limit

2 Phase locked loop enabled 10 Axis at overtravel

3 Motion block executing 11 Axis at software overtravel

4 Phase error captured 12 Motion suspended

5 Phase error past bound 13 AXIS FAULT

6 Axis accel/decel 14 Cam enabled

7 Axis direction forward I, jr 15 Reserved

15 Play/record enabled

GFK-2205 Appendix A Registers and Commands A-311

A

SRAM Analog Module Status

Class: System Register

Type: Integer, Boolean

Syntax: SRAMp1.p2 (e.g., SRAM1 SRAM2.VI3 SRAMVI1.VI2)

Parameters: allowed values description

p1 1 through 4 or VIn analog module number

p2 none or 0 through 15 analog module status register bit

or VIn number

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The analog module status register is used to determine the

status of one of the analog modules.

Remarks: 1. When the SRAMp1? command is executed, the analog

module status register value will be given as an English

statement.

2. If the computer interface format is enabled, and the

SRAMp1? command is executed, the analog module status

register value will be given as an integer number. This number

is the sum of all the powers of two associated with each analog

module status register bit equal to 1. Note that if there is no

module fault, bit 12 will be set to 0 and the associated message

is Module Functional. The possibilities are listed below:

bit message bit message

0 Reserved 7 System Communication Error

1 Reserved 8 Reserved

2 Reserved 9 Reserved

3 Reserved 10 Reserved

4 Reserved 11 Module Enabled

5 Reserved 12 MODULE FAULT

6 Reserved

A-312 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SRC Communication Status

Class: System Register

Type: Integer, Boolean

Syntax: SRCp1 (e.g., SRC SRC8 SRCVI2)

Parameters: allowed values description

p1 none or 0 through 23 communication status register bit

or VIn number

Range:

allowed values 0 through FFFFFF16 or 0 and 1

Restrictions: Read only.

Use: The communication status register is used to determine if any

communication between the modules is bad.

Remarks: 1. When the SRC? command is executed, the communication

status register value will be given as an English statement. If

all communication is OK, the message given is All

communication is ok.

2. If the computer interface format is enabled, and the SRC?

command is executed, the communication status register value

will be given as an integer number. If all communication is

OK, the communication status register is set to 0. The

possibilities are listed below:

bit message bit message

0 Axis one communication is bad 12 Reserved

1 Axis two communication is bad 13 Reserved

2 Axis three communication is bad 14 Reserved

3 Axis four communication is bad 15 Reserved

4 Axis five communication is bad 16 Digital module one communication is bad

5 Axis six communication is bad 17 Digital module two communication is bad

6 Axis seven communication is bad 18 Digital module three communication is bad

7 Axis eight communication is bad 19 Digital module four communication is bad

8 Analog module one communication is bad 20 Digital module five communication is bad

9 Analog module two communication is bad 21 Digital module six communication is bad

10 Analog module three communication is bad 22 Digital module seven communication is bad

11 Analog module four communication is bad 23 Digital module eight communication is bad

GFK-2205 Appendix A Registers and Commands A-313

A

SRDM Digital Module Status

Class: System Register

Type: Integer, Boolean

Syntax: SRDMp1.p2 (e.g., SRDM1 SRDM2.VI3 SRDMVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 none or 0 through 15 digital module status register bit

or VIn number

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The digital module status register is used to determine the

status of one of the digital modules.

Remarks: 1. When the SRDMp1? command is executed, the digital

module status register value will be given as an English

statement.

2. If the computer interface format is enabled and the

SRDMp1? command is executed, the digital module status

register value will be given as an integer number. Note that if

there is no module fault, bit 12 will be set to 0, and the

associated message is Module Functional. The table below

lists the possibilities:

bit message

0 Reserved

1 Output Fault

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 24 Volt Supply Fault

7 System Communication Error

8 Reserved

9 Reserved

10 Reserved

11 Module Enabled

12 MODULE FAULT

A-314 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SRP Program Status

Class: System Register

Type: Integer, Boolean

Syntax: SRPp1.p2 (e.g., SRP1 SRPVI1.3 SRP2.VI3 SRPVI1.VI2)

Parameters: allowed values description

p1 1 through 4 or VIn program number

p2 none or 0 through 15 program status register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The program status register is used to determine the status of a

program.

Remarks: 1. When the SRPp1? command is executed, the program status

will be given as an English statement. If the program is not

executing, the message given is Program not executing.

2. If the computer interface format is enabled and the SRPp1?

command is executed, the program status will be given as an

integer number equal to the decimal equivalent of the register’s

binary value. Note that if the program is not executing, bit 0

will be set to 0, and the associated message is Program not

executing. The possibilities are listed below:

bit message bit message

0 Program executing I 9 Screen lines save failure

1 Program locked out jr 9 Variable save failure

2 Reserved 9 Reserved

3 Reserved 10 Reserved

4 Invalid digit in string 11 Reserved

5 String value out of range 12 Reserved

6 Floating point value out of range 13 Reserved

I 7 Invalid time/date 14 Reserved

jr 7 Reserved 15 PROGRAM FAULT

8 Invalid command acknowledgment

GFK-2205 Appendix A Registers and Commands A-315

A

SRS System Status

Class: System Register

Type: Integer, Boolean

Syntax: SRSp1 (e.g., SRS SRS8 SRSVI2)

Parameters: allowed values description

p1 none or 0 through 15 system status register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The system status register is used to determine the status of the

system.

Remarks: 1. When the SRS? command is executed, the system status

register value will be given as an English statement.

2. If the computer interface format is enabled and the SRS?

command is executed, the system status register value will be

given as an integer number. Note that if no program is

executing, bit 0 will be set to 0, and the associated message is

No program executing. The possibilities are listed below:

bit message bit message

0 Program executing I, jr 9 Reserved

1 Program locked out 9 Variable save failure

2 Reserved I, jr 10 Reserved

3 Motion block executing 10 Axis at overtravel

I, jr 4 Key buffer empty I, jr 11 Reserved

4 User receive buffer empty 11 Axis at software overtravel

I, jr 5 Transmit buffer empty 12 I/O FAULT

5 User transmit buffer empty 13 AXIS FAULT

6 Network connection available 14 SYSTEM FAULT

7 Network on-line 15 MEMORY FAULT

I, jr 8 Reserved

8 All axes in position

A-316 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SRSM Servo Module Status

Class: System Register

Type: Integer, Boolean

Syntax: SRSMp1.p2.p3 (e.g., SRSM1.1 SRSM2.1.5 SRSMVI1.1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

p2 1 through 8 servo module number

p3 none or 0 through 15 servo module status register bit

or VIn number

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The servo module status register is used to determine the status

of one of the servo modules.

Remarks: 1. When the SRSMp1.p2? command is executed, the servo

module status register value will be given as an English

statement.

2. If the computer interface format is enabled, and the

SRSMp1.p2? command is executed, the servo module status

register value will be given as an integer number. If there is no

module fault, bit 12 will be set to 0; the associated message is

Module Functional. The possibilities are listed below:

bit message bit message

0 Under-Voltage 7 Axis Communication Error

1 Over-Voltage 8 Servo Module

2 Clamp Excessive Duty Cycle Communication Error

3 Clamp Current Fault 9 Reserved

4 Current Fault 10 Reserved

5 Over-Temperature 11 Module Enabled

6 Power Module Over-Temperature 12 MODULE FAULT

GFK-2205 Appendix A Registers and Commands A-317

A

SRT Tertiary Status

Class: System Register

Type: Integer, Boolean

Syntax: SRTp1 (e.g., SRT SRT2 SRTVI3)

Parameters: allowed values description

p1 none or 0 through 15 tertiary status register bit number

or VIn

Range:

allowed values 0 through FFFF16 or 0 and 1

Restrictions: Read only.

Use: The tertiary status register is used to determine the status of the

tertiary and operator interface buffers.

Remarks: 1. When the SRT? command is executed, the tertiary status

register value will be given as an English statement.

2. If the computer interface format is enabled and the SRT?

command is executed, the tertiary status register value will be

given as an integer number. Note that if no status bits are set,

the associated message is No tertiary status active. The

possibilities are listed below:

bit message

0 Reserved

1 Reserved

2 Key buffer empty

3 Program transmit buffer empty

4 Tertiary receive buffer empty

5 Tertiary transmit buffer empty

6–15 Reserved

16 No tertiary status active

A-318 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

ST Stops Motion

Class: Motion Command

Syntax:

I, jr ST

STp1 (e.g., ST ST3 ST567 STVI2)

Parameters: allowed values description

 p1 none or 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Restrictions:

Not allowed in motion blocks without a specified axis.

Use: This command stops all motion.

Remarks: This command, once executed, will immediately decelerate the

axis at the deceleration loaded. For the Target, if p1 is not

specified, all axes will stop.

Examples: IMC/IMJ Target

MVL=10 MVL1=10 (* set motion velocity)

MAC=20 MAC1=20 (* set motion acceleration)

MDC=40 MDC1=40 (* set motion deceleration)

RVF RVF1 (* run forward)

ST ST1 (* stop all motion)

 What will happen: Setting the velocity, acceleration, and deceleration and issuing

the RVF command will cause the axis to run forward. Issuing

the ST command will decelerate the axis at 40 units/sec2 and

stop all motion.

Related Commands: HT, STT

Registers Used:

When MT=VEL MDC, MJK

When MT=TIME No registers used

When MT=PULSE MPS, MPL

Motion Template: Single-axis run forward until input

Utility Templates: Jog using OIP; jog using single-pole, double-throw switch

GFK-2205 Appendix A Registers and Commands A-319

A

STEP Step Input

Class: Motion Command

Syntax:

I, jr STEPp1 (e.g., STEP100 STEPVI1)

STEPp1.p2 (e.g., STEP3.100 STEP45.100 STEPVI1.VI2)

Parameters: allowed values description

I, jr p1 -16,000 through 16,000 or VIn number of pulses

 p1 1 through 8 or axis number

list of numbers 1 through 8 or Vin

 p2 -16,000 through 16,000 or VIn number of pulses

Restrictions: Servo only; not allowed in motion blocks.

Use: This command applies a step input to the axis or axes.

Remarks: The step input cannot be larger than the following error bound,

FEB.

Related Registers: FEB

A-320 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

STF Sets Fault I jr

Class: System Command

Syntax: STF

Restrictions: Not allowed in motion blocks.

Use: This command faults the controller.

Remarks: If this command is in a program, executing STF will fault the

program, which will stop program execution.

Related Commands: RSF

Related Registers: FC

GFK-2205 Appendix A Registers and Commands A-321

A

STFA Sets Axis Fault

Class: System Command

Syntax: STFAp1 (e.g., STFA3 STFA145 STFAVI6)

Parameters: allowed values description

p1 1 through 8 or axis number

list of numbers 1 through 8 or VIn

Use: This command sets axis p1 fault.

Related Commands: RSFA, RSFALL, RSFS, STFALL, STFS

A-322 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

STFALL Sets System and All Axes’ Fault

Class: System Command

Syntax: STFALL

Use: This command sets system and all axes’ fault.

Remarks: If this command is in a program, executing STFALL will fault

the program, which will stop program execution.

Related Commands: RSFA, RSFALL, RSFS, STFA, STFS

GFK-2205 Appendix A Registers and Commands A-323

A

STFS Sets System Fault

Class: System Command

Syntax: STFS

Use: This command sets the system fault.

Remarks: If this command is in a program, executing STFS will fault the

program, which will stop program execution.

Related Commands: RSFA, RSFALL, RSFS, STFA, STFALL

A-324 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

STM Start Time of Timer

Class: System Register

Type: Floating point

Syntax: STMp1 (e.g., STM2 STMVI3)

Parameters: allowed values description

I, jr p1 1 through 8 or VIn timer number

 p1 1 through 16 or VIn timer number

Range:

units seconds

default 2,000,000.000

minimum .001

maximum 2,000,000.000

Use: This register is used to define the starting time from which a

timer will count down continuously to zero seconds. Once a

timer is set, it will immediately start counting. For example,

after you enter STM1=7, timer one would be set to seven

seconds and would immediately start to count down to zero

seconds. Once it has reached zero seconds, it would start again

at seven seconds, count down to zero seconds, and so on.

Examples:

STMVI2=5 (* set start time of timer VI2 to five seconds)

STM3? (* report start time of timer three)

Related Registers: TMR, TM

GFK-2205 Appendix A Registers and Commands A-325

A

STT Stops Trajectory Motion

Class: Motion Command

Syntax: STT

Use: This command stops trajectory motion.

Remarks: This command, once executed, will immediately decelerate all

trajectory axes at the trajectory feedrate deceleration loaded.

Example:

TVL=5 (* set trajectory velocity)

TFA=500 (* set trajectory feedrate acceleration)

MPI1=10 (* set incremental position)

MPI2=20 (* set incremental position)

RLI12 (* run incremental linear)

TFD=1000 (* set trajectory feedrate deceleration)

STT (* stop trajectory motion)

 What will happen: Setting the trajectory velocity, trajectory feedrate acceleration,

and incremental positions and issuing the RLI command will

cause axes one and two to move in a line. Issuing the STT

command will cause the axes to decelerate to a stop.

Related Commands: HTT, ST

Registers Used: TFD

A-326 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

STVB…GOTO Sets Boolean Variable; “Gotos” Label

Class: Program Command

Syntax: STVBp1 GOTOp2 (e.g., STVB1 GOTO30

STVBVI1 GOTOVI2)

Parameters: allowed values description

p1 1 through 256 or VIn Boolean variable number

p2 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This command sets Boolean variable p1 and then checks to see

if it was previously set. If Boolean variable p1 was not set, this

command will cause the program to go to label p2.

Example:

PROGRAM1 PROGRAM2 (* edit program)

10 VI1=VI1+1 10 VI2=VI2+1 (* set integer variable)

IF VI1<1000 GOTO10 IF VI2<996 GOTO10 (* conditionally goto 10)

STVB1 GOTO20 STVB1 GOTO20 (* set Boolean variable 1 and if

(* Boolean variable 1 wasn’t set, goto 20)

GOTO10 GOTO10 (* unconditionally goto 10)

20 OUT“VI1=” 20 OUT“VI2=” (* output string expression to the serial port)

OUT ITS(VI1,5)+“$N” OUT ITS(VI2,5)+“$N” (* output string expression to the serial port)

VI1=0 VI2=0 (* load integer variable)

VB1=0 VB1=0 (* reset Boolean variable 1)

GOTO10 GOTO10 (* unconditionally goto 10)

END END (* end program and exit editor)

 What will happen: These two programs, when executed, will increment integer

variables 1 and 2 until they reach 1,000 and 996 respectively.

The first program to finish this task will set p1 equal to 1; and,

since it was not previously set, it will go to the statement at

label 20, which outputs the value to the display, loads 0 into the

integer variable, and resets Boolean variable 1. If one program

finishes this task while the other is outputting the value to the

display, the program will go back to label 10, increment the

integer variable, and check again for Boolean variable 1 to be

reset.

Related Commands: IF...GOTO

GFK-2205 Appendix A Registers and Commands A-327

A

SUP Suspends Motion

Class: Program Command

Syntax:

I, jr SUP

SUPp1 (e.g., SUP5 SUP346 SUPVI2)

Parameters: allowed values description

 p1 1 through 8 or axis numbers

list of numbers 1 through 8 or VIn

Restrictions: Not allowed in motion blocks.

Use: This command suspends axis motion.

Remarks: Motion will continue to be suspended until the RSM or

RSMALL command is executed, which resumes the motion.

If, however, a motion command is issued while motion is

suspended, the suspended motion will be eliminated.

Related Commands: RSM, RSMALL, SUPALL

A-328 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SUPALL Suspends All Motion

Class: Program Command

Syntax: SUPALL

Restrictions: Not allowed in motion blocks.

Use: This command suspends all motion.

Remarks: All motion will continue to be suspended until the RSM or

RSMALL command is executed, which resumes the motion.

If, however, a motion command is issued while motion is

suspended, the suspended motion will be eliminated.

Related Commands: RSM, RSMALL, SUP

GFK-2205 Appendix A Registers and Commands A-329

A

SVF Saves Firmware in Nonvolatile Memory

Class: System Command

Syntax: SVF

Use: This command saves firmware in the flash memory card from

code memory. It can be executed only after RTF. The SVF

command enables all other commands.

Related Commands: RTF

A-330 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

SVL Saves Screen Lines I jr

Class: System Command

Syntax: SVL

Restrictions: Not allowed in motion blocks.

Use: This command is used to save the screen lines from RAM to

nonvolatile memory.

Remarks: If the screen lines are not saved correctly, then bit 9 in the

program status register will be set to 1, which means Screen

Lines Save Failure.

Related Commands: RETRIEVE, SAVE

GFK-2205 Appendix A Registers and Commands A-331

A

SVV Save Variables from RAM to Nonvolatile Memory jr

Class: System Command

Syntax: SVV

Restrictions: Allowed only in programs. SVV will execute only when the

profile generator is not running (i.e., SRA bits 0, 1, 2 and 14

are false).

Use: The SVV command saves integer variables 1 through 1,024

and floating point variables 1 through 512 from RAM to

nonvolatile memory. SVV will execute only when the profile

generator is not running, i.e., SRA bits 0–2 and SRA bit 14 are

all false.

Remarks: Test the state of the variable save failure bit (bit 9) in the

Program Status (SRP) register after each SVV command in a

program to ensure SVV completed successfully. If the

variables are not saved correctly, then bit 9 in the Program

Status Register (SRP) will be set to 1, which means Variable

Save Failure.

Caution: The controller flash memory can support a finite

number of write cycles before the flash memory will fail.

Although the typical limit for this type of flash is +100,000

write cycles, it is easy to exceed this limit by executing

frequent SVV commands from within a program.

Related Registers: VI, VF

Related Commands: SAVE, RETRIEVE, RTV

A-332 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TAD Trajectory Arc Direction

Class: Motion Register

Syntax: TAD

Range:

default CW

allowed values CW (clockwise)

CCW (counterclockwise)

Use: This register determines the direction of arc moves.

GFK-2205 Appendix A Registers and Commands A-333

A

TBA Trajectory Motion Buffer Available

Class: Motion Register

Type: Boolean

Syntax: TBA

Range:

allowed values 0, 1

Restrictions: Read only.

Use: The TBA register reports a value of 1 when there is buffer

space available for a trajectory move to be buffered; it reports a

value of 0 when the buffer is full.

A-334 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TFA Trajectory Feedrate Acceleration/Deceleration

Class: Motion Register

Type: Integer

Syntax: TFA

Range:

units percent/second

default 1,000

minimum 1

maximum 200,000

Use: This register is used to define both an acceleration and a

deceleration rate for the trajectory feedrate percentage. Define

the deceleration rate separately with TFD. In cases where the

acceleration rate differs from the deceleration rate, you must set

TFA first and TFD second.

Example:

PSA1=0 (* set axis one position)

PSA2=0 (* set axis two position)

MPA1=3 (* set axis one absolute position)

MPA2=5 (* set axis two absolute position)

TVL=4 (* set trajectory velocity)

TFA=500 (* set trajectory feedrate acceleration)

TFD=200 (* set trajectory feedrate deceleration)

TFP=80 (* set trajectory feedrate percentage)

RLA12 (* run linear trajectory motion)

 What will happen: Setting axis position, absolute move position, trajectory

velocity, trajectory feedrate acceleration, and trajectory

feedrate deceleration and issuing the run linear motion

command will cause axes one and two to ramp up to 80 percent

of 4 units/second (i.e., 3.2) of trajectory velocity at

500 percent/second and then ramp down to a stop at 3 units and

5 units at 200 percent/second.

Related Registers: TFD, TFP

GFK-2205 Appendix A Registers and Commands A-335

A

TFD Trajectory Feedrate Deceleration

Class: Motion Register

Type: Integer

Syntax: TFD

Range:

units percent/second

default 1,000

minimum 1

maximum 200,000

Use: This register is used to determine a deceleration rate for the

trajectory feedrate percentage. In cases where the acceleration

rate differs from the deceleration rate, you must set TFA first

and TFD second.

Example:

PSA1=0 (* set axis one position)

PSA2=0 (* set axis two position)

MPA1=3 (* set axis one absolute position)

MPA2=5 (* set axis two absolute position)

TVL=4 (* set trajectory velocity)

TFA=500 (* set trajectory feedrate acceleration)

TFD=200 (* set trajectory feedrate deceleration)

TFP=80 (* set trajectory feedrate percentage)

RLA12 (* run linear trajectory motion)

 What will happen: Setting axis position, absolute move position, trajectory

velocity, trajectory feedrate acceleration, and trajectory

feedrate deceleration and issuing the run linear motion

command will cause axes one and two to ramp up to 80 percent

of 4 units/second (i.e., 3.2) of trajectory velocity at

500 percent/second and then ramp down to a stop at 3 units and

5 units at 200 percent/second.

Related Registers: TFA, TFP

A-336 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TFP Trajectory Feedrate Percentage

Class: Motion Register

Type: Floating Point

Syntax: TFP

Range:

units percent

default 100.00

minimum 0.00

maximum 100.00

Use: This register is used to determine a feedrate percentage for the

trajectory motion. The feedrate percentage causes the motion

to run at a velocity that is a percentage of the trajectory velocity

specified when the motion command was executed.

Remarks: This register is set to its default value on power-up.

Example:

PSA1=0 (* set axis one position)

PSA2=0 (* set axis two position)

MPA1=3 (* set axis one absolute position)

MPA2=5 (* set axis two absolute position)

TVL=4 (* set trajectory velocity)

TFA=500 (* set trajectory feedrate acceleration)

TFD=200 (* set trajectory feedrate deceleration)

TFP=80 (* set trajectory feedrate percentage)

RLA12 (* run linear trajectory motion)

 What will happen: Setting axis position, absolute move position, trajectory

velocity, trajectory feedrate acceleration, and trajectory

feedrate deceleration and issuing the run linear motion

command will cause axes one and two to ramp up to 80 percent

of 4 units/second (i.e., 3.2) of trajectory velocity at

500 percent/second and then ramp down to a stop at 3 units and

5 units at 200 percent/second.

Related Registers: TFA, TFD, TVL

GFK-2205 Appendix A Registers and Commands A-337

A

TIME Time Of Day I

Class: System Register

Type: String

Syntax: TIME

Range:

allowed values 00:00:00 through 23:59:59

Restrictions: Cannot be assigned in motion blocks.

Use: The time of day register is used to keep track of the time of day

in 24-hour format. For example, if you wanted to set the time

of day to 2:30 P.M., the command would be

TIME=“14:30:00”.

Examples:

TIME=“20:40:15” (* set time of day to 15 seconds after 8:40 P.M.)

TIME? (* report time of day)

Related Registers: DATE, DAY, MONTH

A-338 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TL Axis at Torque Limit

Class: System Register

Type: Boolean

Syntax:

I, jr TL

TLp1 (e.g., TL3 TLVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

allowed values 0, 1

Restrictions: Servo only; read only.

Use: This register is used to determine whether the axis is at its

torque limit. If the axis is at its torque limit, then TL is equal to

1; and when it is not at its torque limit, then TL is equal to 0.

Related Registers: TLANY, TLC, TLE, SRA

GFK-2205 Appendix A Registers and Commands A-339

A

TLANY Any Axis at Torque Limit

Class: System Register

Type: Boolean

Syntax: TLANY

Range:

allowed values 0, 1

Restrictions: Servo only; read only.

Use: This register is used to determine whether any of the axes are at

torque limit. If any of the axes are at torque limit, then

TLANY is equal to 1; if none of the axes are at torque limit,

then TLANY is equal to 0.

Related Registers: TL, TLC, TLE, SRS

A-340 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TLC Torque Limit Current

Class: Axis Register

Type: Floating point

Syntax:

I, jr TLC

TLCp1 (e.g., TLC1 TLCVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units %

default 100.0

minimum 0.1

maximum 100.0

Restrictions: Servo only.

Use: This command loads the torque limit current as a percentage of

the continuous current, CURC.

Remarks: The torque limit is enabled by the TLE command.

Related Registers: TLE, CURC

GFK-2205 Appendix A Registers and Commands A-341

A

TLE Torque Limit Enable

Class: Axis Register

Type: Boolean

Syntax:

I, jr TLE

TLEp1 (e.g., TLE1 TLEVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

default 0

allowed values 0, 1

Restrictions: Servo only.

Use: This command is used to enable the torque limit. If TLE is set

to 1, then torque limit is enabled; and if TLE is set to 0, it is

disabled.

Registers Used: TLC, TL

Motion Templates: Run reverse until torque limit; run forward until torque limit;

run reverse at torque limit.

A-342 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TM Timer Timed Out Flag

Class: System Register

Type: Boolean

Syntax: TMp1 (e.g., TM1 TMVI3)

Parameters: allowed values description

I, jr p1 1 through 8 or VIn timer number

 p1 1 through 16 or VIn timer number

Range:

allowed values 0, 1

Restrictions: Read only.

Use: This register is used to tell whether one of the timers timed out

(i.e., was equal to 0). If TMp1 is set to 1, then the timer timed

out; if TMp1 is set to 0, it did not time out. After the state of

the timed out flag is read, the flag is set to zero until the timer

times out again. It is then set to 1 and will stay at 1 until it is

read again.

Related Registers: TMR, STM

GFK-2205 Appendix A Registers and Commands A-343

A

TMI Interval Timer

Class: Input/Output Register

Type: Floating point

Syntax: TMIp1.p2 (e.g., TMI1.3 TMI5.VI1 TMIVI2.1 TMIVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 through 4 or VIn interval timer number

Range:

units seconds

minimum 0.0000

maximum 200,000.0000

Restrictions: Read only.

Use: The interval timer register is used to store the time between two

successive activations of a digital input. Each of the interval

timers takes its input from one of the first four inputs of a

digital I/O module. For example, interval timer one takes its

input from digital input one, interval timer two from digital

input two, etc.

Example:

TMI5.VI1? (* report interval timer VI1 of digital module five)

Related Registers: CTR, TMP

A-344 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TMP Pulse Timer

Class: Input/Output Register

Type: Floating point

Syntax: TMPp1.p2 (e.g., TMP1.3 TMP5.VI1 TMPVI2.1

TMPVI1.VI2)

Parameters: allowed values description

p1 1 through 8 or VIn digital module number

p2 1 through 4 or VIn pulse timer number

Range:

units seconds

maximum 0.0000

maximum 200,000.0000

Restrictions: Read only.

Use: The pulse timer register is used to store the time during which a

digital input stays active. Each of the pulse timers takes its

input from one of the first four inputs of a digital I/O module.

For example, pulse timer one takes its input from digital input

one, pulse timer two from digital input two, etc.

Example:

TMP5.VI1? (* report pulse timer VI1 of digital module five)

Related Registers: CTR, TMI

GFK-2205 Appendix A Registers and Commands A-345

A

TMR Timer

Class: System Register

Type: Floating point

Syntax: TMRp1 (e.g., TMR2 TMRVI3)

Parameters: allowed values description

I, jr p1 1 through 8 or VIn timer number

 p1 1 through 16 or VIn timer number

Range:

units seconds

minimum 0.000

maximum 2,000,000.000

Restrictions: Read only.

Use: The timer register is used to determine the current value of

timer p1.

Example:

TMRVI2? (* report timer VI2)

Related Registers: STM, TM

A-346 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

TP Test Point Output

Class: Axis Register

Type: Floating point

Syntax: TPp1 (e.g., TP2 TPVI3)

Parameters: allowed values description

p1 1 through 8 or VIn axis number

Range:

units volts

default VLA

allowed values -10.000 through 10.000 or

VLA (axis velocity)

CMD (control output)

FE (following error)

Use: The test point output is an analog output that can be used either

as a general purpose output or to output a test signal, which can

be one of the following:

VLA (axis velocity) 10 volts = 20 Krpm

CMD (control output) 10 volts = maximum combined peak rating of assigned

modules

FE (following error) 10 volts = 2,048 pulses of following error

Example:

TP1=VLA (* set test point of axis one to axis velocity)

TPVI2=4 (* set test point of axis VI2 to 4 volts)

GFK-2205 Appendix A Registers and Commands A-347

A

TVL Trajectory Velocity

Class: Motion Register

Type: Floating point

Syntax: TVL

Range:

units trajectory units

default .000001

minimum .000001

maximum 16,000,000

Use: This register is used to determine the trajectory velocity of a

trajectory motion.

Remarks: 1. The trajectory units are determined by the axis units of the

axes involved in the trajectory motion.

2. The trajectory velocity register is used only when trajectory

motion is first started from a stop.

Example:

PSA1=0 (* set axis one position)

PSA2=0 (* set axis two position)

MPA1=3 (* set axis one absolute move position)

MPA2=5 (* set axis two absolute move position)

TVL=4 (* set trajectory velocity)

TFP=100 (* set trajectory feedrate to 100 percent

TFA=500 (* set trajectory feedrate acceleration)

RLA12 (* run linear trajectory motion)

 What will happen: Setting axis position, absolute move position, trajectory

velocity, and trajectory feedrate acceleration and issuing the

run linear motion command will cause axes one and two to

move to 3 units and 5 units, running along a line at

4 units/second.

Related Registers: TFA, TFP, TFD

Related Commands: RLA

A-348 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

UNLOCK Unlocks Interpreter from Program

Class: Program Command

Syntax: UNLOCK

Restrictions: Allowed only in programs.

Use: This command unlocks the interpreter from the program, which

lets other currently suspended programs execute concurrently.

Example:

PROGRAM1 (* edit program 1)

STM1=0.01 (* load start time of timer 1 and start timer 1)

1 WAIT TM1 (* wait for expression to be true)

LOCK (* lock interpreter to program)

IF KEY GOTO2 (* conditionally goto 2)

UNLOCK (* unlock interpreter from program)

GOTO1 (* unconditionally goto 1)

2 END (* end program and exit editor)

 What will happen: This program, once executed, will first wait for 10 ms. Then it

locks the interpreter and checks for KEY to be true (i.e., for a

character to be entered into the key buffer). If KEY is true,

then the program goes to the statement at label 2, which ends

the program. If KEY is not true, it unlocks the interpreter and

goes to the statement at label 1, which waits for 10 ms, etc.

Related Commands: LOCK

GFK-2205 Appendix A Registers and Commands A-349

A

UPS Update Screen

Class: Input/Output Register

Type: Integer

Syntax: UPS

Range:

default 0

minimum 0

maximum 50

Use: This register is used to determine which screen is updated. The

screen data, SCRD, for the screen specified in UPS is updated

every 1/4 second.

Remarks: This register is set to 0 upon power-up.

Registers Used: SCRD, SCRP

A-350 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

URA Axis Unit Ratio

Class: Axis Register

Type: Integer

Syntax:

I, jr URA

URAp1 (e.g., URA1 URAVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units pulses/axis unit

default 1

minimum 1

maximum 1,000,000

Restrictions: Not allowed in programs or motion blocks.

Use: The axis unit ratio scales the axis programming units from the

default “pulses” to the desired engineering units. A similar

register, URX, is used to scale the auxiliary encoder feedback.

URA scales controller registers that represent axis position,

velocity, acceleration or jerk.

Remarks: 1. This register can be set only after the memory has been

cleared using the CLM command and before any programs or

motion blocks are defined.

2. The numerical values for the default, minimum, and

maximum of all registers with axis units are assuming that the

axis unit ratio, URA, is set at its default value of 1. If the axis

unit ratio is set to a value other than 1, the maximum and

minimum values will be divided by the axis unit ratio. For

example, if the maximum value of a register is

2,000,000,000 pulses and the axis unit ratio is set to 4,096, the

new maximum of that parameter will be

(2,000,000,000 pulses)/(4,096 pulses/axis unit) =

488,281.25 axis units.

Related Registers: URX, PLA, PSA, PZA, OFA, VLA

GFK-2205 Appendix A Registers and Commands A-351

A

URX Auxiliary Unit Ratio

Class: Axis Register

Type: Integer

Syntax:

I, jr URX

URXp1 (e.g., URX1 URXVI4)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units auxiliary encoder pulses/auxiliary unit

default 1

minimum 1

maximum 1,000,000

Restrictions: For IMCs, this function available only with the extended

command set; not allowed in programs or motion blocks.

Use: The auxiliary unit ratio is used to define auxiliary units

(engineering units for the auxiliary encoder input) for the PLX,

PSX, PZX, OFX and VLX registers.

Remarks: 1. This register can be set only after the memory has been

cleared using the CLM command and before any programs or

motion blocks are defined.

2. The numerical values for the default, minimum, and

maximum of all registers with auxiliary units are assuming that

the auxiliary unit ratio, URX, is set at its default value of 1. If

the auxiliary unit ratio is set to a value other than 1, the

maximum and minimum values will be divided by the auxiliary

unit ratio. For example, if the maximum value of a register is

2,000,000,000 pulses and the auxiliary unit ratio is set to 4,096,

the new maximum of that parameter will be

(2,000,000,000 pulses)/(4,096 pulses/auxiliary unit) =

488,281.25 auxiliary units.

Related Registers: PLX, PSX, PZX, OFX, VLX, URA

A-352 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VB Boolean Variable

Class: Variable Register

Type: Boolean

Syntax: VBp1 (e.g., VB1 VBVI2)

Parameters: allowed values description

p1 1 through 256 or VIn Boolean variable number

Range:

default 0

allowed values 0, 1

Use: Boolean variables are used mainly in conditional statements of

programs, such as IF...GOTO (conditional goto) and WAIT

(wait for expression to be true). They can also be used to load

register values.

Example:

VB1=VI1>0 (* set Boolean variable one to 1 if integer variable one is

greater than zero)

VB3=VB1 AND VB2 (* set Boolean variable three to 1 if both Boolean variable one

and Boolean variable two are set)

VBVI2=VI1<5 (* set Boolean variable VI2 to 1 if integer variable one is less

than five)

VBVI2? (* report Boolean variable VI2)

GFK-2205 Appendix A Registers and Commands A-353

A

VF Floating Point Variable

Class: Variable Register

Type: Floating point

Syntax: VFp1 (e.g., VF1 VFVI2)

Parameters: allowed values description

p1 1 through 2,048 or VIn floating point variable number

Range:

default 0.0

minimum 1.5 x 10-39 (absolute value)

maximum 1.7 x 1038 (absolute value)

Use: Floating point variables are used in variable expressions and to

load register values.

Remarks: 1. The numerical value for the maximum of parameter p1

shown above is assuming that the floating point variable

allocation, VFA, is set to 2,048. If VFA is set to a value other

than 2,048, the maximum of p1 will change.

2. To access the extended floating point variables, use the

indirect addressing scheme (i.e., VFVIn).

Example:

VF1=5.776 (* set floating point variable one to 5.776)

VI1=2000 (* set integer variable to 2,000)

VFVI1=SQR(2.*VF1) (* set floating point variable VI1 [i.e., 2,000] to square root of

2 times 5.776)

VF2=PSA/5. (* set floating point variable two to axis position divided by 5)

VFVI1? (* report floating point variable VI1)

Related Registers: VFA, VFEA

A-354 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VFA Floating Point Variable Allocation

Class: System Register

Type: Integer

Syntax: VFA

Range:

default 1,024

minimum 0

maximum 2,048

Restrictions: Cannot be assigned in programs or motion blocks.

Use: The floating point variable allocation register is used to define

how many floating point variables can reside in memory.

Remarks: 1. This register can be set only after the memory has been

cleared using the CLM command and before any programs or

motion blocks are defined.

2. Setting the register will overwrite part of the memory space

normally allocated for integer variables. One floating point

variable will take over the space that two integer variables

previously occupied. For example, if VFA is set to 200, the

integer variables will range from 1 to 3,696 [4,096 - (2*200)].

Related Registers: VFEA, VF, VI

GFK-2205 Appendix A Registers and Commands A-355

A

VFEA Floating Point Variable Extended Allocation I

Class: System Register

Type: Integer

Syntax: VFEA

Range:

 default 2,048

 minimum 2,048

I maximum 14,336

 maximum 131,072

Restrictions: Cannot be assigned in programs or motion blocks.

Use: The floating point variable extended allocation register is used

to define how many floating point variables can reside in

extended memory.

Remarks: 1. This register can be set only after the memory has been

cleared using the CLM command and before any programs or

motion blocks are defined.

2. Setting the register overwrites part of the memory space

normally allocated for integer variables. One floating point

variable will take over the space that two integer variables

previously occupied. For example, if VFEA is set to 4,000, the

extended integer variables will range from 4,097 to 258,240

(262,144 - 2*(4,000 - 2,048)); or from 4,097 to 10,432

(14,336 - 2*(4,000 - 2,048)).

Related Registers: VFA, VF, VI

A-356 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VI Integer Variable

Class: Variable Register

Type: Integer, Boolean

Syntax: VIp1.p2 (e.g., VI1 VIVI2 VI1.5 VI1.VI3 VIVI2.VI6)

Parameters: allowed values description

p1 1 through 4,096 or VIn integer variable number

p2 none or 0 through 31 integer variable bit number

or VIn

Range:

default 0

minimum -2,147,483,648

maximum 2,147,483,647

Use: Integer variables are used in variable expressions and to load

register values.

Remarks: 1. The numerical value for the maximum of parameter p1

shown above is assuming that the floating point variable

allocation, VFA, is set to 0. If VFA is set to a value other than

0, the maximum of p1 will change.

2. To access the extended integer variables, the indirect

addressing scheme (i.e., VIVIn) must be used.

Examples:

VI1=3000 (* set integer variable one to 3,000)

VI2=-330 (* set integer variable two to -330)

VIVI1=VI1+VI2 (* set integer variable VI1 [i.e., integer variable 3,000] to 3,000

plus -330)

VI3=PSR*2 (* set integer variable three to PSR times 2 [i.e., resolver

position times 2])

VI2? (* report integer variable two)

VI1.4=1 (* set bit four of integer variable one)

VI5.17=0 (* clear bit 17 of integer variable five)

VI2.3=VI4.2 OR VI5.7 (* set bit three of VI2 if bit two of VI4 or bit seven of VI5 is

set)

Related Registers: VFA, VFEA

GFK-2205 Appendix A Registers and Commands A-357

A

VLA Axis Velocity

Class: Axis Register

Type: Floating point

Syntax:

I, jr VLA

VLAp1 (e.g., VLA1 VLAVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units axis units/sec

minimum -16,000,000 pulses/sec

maximum 16,000,000 pulses/sec

Restrictions: Read only.

Use: This register is used to determine the current velocity of the

axis.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the axis unit ratio, URA, is set

at its default value of 1. If the axis unit ratio is set to a value

other than 1, the default, maximum, and minimum values will

change appropriately (see URA).

Related Registers: URA, VLAT

A-358 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VLAT Axis Velocity Filter Time Constant

Class: Axis Register

Type: Floating point

Syntax:

I, jr VLAT

VLATp1 (e.g., VLAT1, VLATVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units seconds

default 0.01

minimum 0.002

maximum 0.1

Use: The axis velocity filter time constant represents the length of

the time window that is used to filter the axis velocity, VLA.

This time window is applied to previous values of VLA in

order to calculate the current filtered value of VLA. This

happens every 2 msec.

Remarks: VLAT can be set only in 2 msec increments (i.e., 0.002, 0.004,

0.006, ...). This corresponds to the number of previous values

of VLA that are being filtered. For example, setting

VLAT = 0.01 means that the previous 5 values of VLA will be

filtered, since 0.002*5 = 0.01.

Example: IMC/IMJ Target

VLAT=0.008 VLAT1=0.008 (* set axis velocity filter time

(* constant to 0.008 sec)

VLAT? VLAT1? (* report value of axis velocity

(* filter time constant)

Related Registers: VLA, VLXT

GFK-2205 Appendix A Registers and Commands A-359

A

VLT Trajectory Velocity

Class: Axis Register

Type: Floating point

Syntax: VLT

Range:

units trajectory units/sec

minimum -16,000,000 units/sec

maximum 16,000,000 units/sec

Restrictions: Read only.

Use: This register is used to determine the current trajectory velocity

of a trajectory move.

A-360 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VLX Auxiliary Velocity

Class: Axis Register

Type: Floating point

Syntax:

I, jr VLX

VLXp1 (e.g., VLX1 VLXVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units auxiliary units/sec

minimum -16,000,000 pulses/sec

maximum 16,000,000 pulses/sec

Restrictions: For IMCs, this function available only with the extended

command set; read only.

Use: This register is used to determine the current auxiliary velocity

of the axis.

Remarks: The numerical values for the default, minimum, and maximum

of this register are assuming that the auxiliary unit ratio, URX,

is set at its default value of 1. If the auxiliary unit ratio is set to

a value other than 1, the default, minimum, and maximum

values will change appropriately (see URX).

Related Registers: URX, VLXT

GFK-2205 Appendix A Registers and Commands A-361

A

VLXT Auxiliary Velocity Filter Time Constant

Class: Axis Register

Type: Floating point

Syntax:

I, jr VLXT

VLXTp1 (e.g., VLXT1 VLXTVI3)

Parameters: allowed values description

 p1 1 through 8 or VIn axis number

Range:

units seconds

default 0.01

minimum 0.002

maximum 0.1

Restrictions: For IMCs, this function available only with the extended

command set.

Use: The auxiliary velocity filter time constant is used to represent

the length of the time window that is used to filter the auxiliary

velocity, VLX. This time window is applied to previous values

of VLX in order to calculate the current filtered value of VLX.

This happens every 2 msec.

Remarks: VLXT can be set only in 2 msec increments (i.e., 0.002, 0.004,

0.006, ...) This corresponds to the number of previous values

of VLX that are being filtered. For example, setting

VLXT = 0.01 means that the previous 5 values of VLX will be

filtered, since 0.002*5 = 0.01.

Example: IMC/IMJ Target

VLXT=0.008 VLXT1=0.008 (* set auxiliary velocity filter)

VLXT? VLXT1? (* report value of auxiliary

(* velocity filter time constant)

Related Registers: VLX, VLAT

A-362 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

VS String Variable

Class: Variable Register

Type: String

Syntax: VSp1 (e.g., VS1 VSVI2)

Parameters: allowed values description

p1 1 through 144 or VIn string variable number

Range:

default “”

allowed values any string, 0 through 127 characters long, enclosed in quotes

Use: String variables are used mainly to load strings and in

input/output commands such as GET, PUT, IN, and OUT as a

means of user interface.

Remarks: If the extended memory card is available, then p1 can be up to

272 for a Target.

Examples:

VS1=“$20”+“$R” (* set string variable one to a space followed by a carriage

return)

VI1=2 (* set integer variable one to 2)

VSVI1=“Done”+VS1 (* set string variable VI1 [i.e., string variable two] to “Done”

followed by a space and a carriage return)

VSVI2? (* report string variable VI2)

Related Commands: EXVS, GET, PUT, IN, OUT

GFK-2205 Appendix A Registers and Commands A-363

A

WAIT Waits for Expression to be True

Class: Program Command

Syntax: WAITp1 (e.g., WAIT VB1 WAIT KEY)

Parameters: allowed values description

p1 any Boolean expression Boolean expression

Restrictions: Allowed only in programs or motion blocks.

Use: This command causes the program or motion block to wait for

Boolean expression p1 to be true (i.e., evaluate to 1). Once p1

is true, the next program or motion block statement will be

executed.

Example:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

PSA=0 PSA1=0 (* set axis position register)

MVL=10 MVL1=10 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPA=0 MPA1=0 (* set absolute move position)

MPI=10 MPI1=10 (* set incremental move position)

RPI RPI1 (* run to incremental move position)

WAIT IP WAIT IP1 (* wait for expression to be true)

STM1=1 STM1=1 (* set start time of timer 1)

WAIT TM1 WAIT TM1 (* wait for expression to be true)

RPA RPA1 (* run to absolute move position)

WAIT IP WAIT IP1 (* wait for expression to be true)

OUT “Motion completed” OUTW “Motion completed”

(* output string expression to display)

END END (* end program 1 and exit editor)

 What will happen: This program sets the axis position register, velocity,

acceleration, absolute move position, and incremental move

position. Then it issues the RPI command, which runs the axis

10 units in the forward direction. It then waits until the axis is

in position. Next, it loads timer 1 with a start time of 1 second.

The timer will then count down from 1 second to 0. Once it

reaches 0, the RPA command is issued, which runs the axis

10 units in the reverse direction. It waits until the axis is in

position, and then it prints Motion completed to the display.

Related Commands: WAIT...WHEN...GOTO

A-364 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

WAIT…WHEN…GOTO
Class: Program Command

Syntax: WAIT p1 WHEN p2 GOTOp3

Parameters: allowed values description

p1 any Boolean expression Boolean expression

p2 any Boolean expression Boolean expression

p3 1 through 999 or VIn label number

Restrictions: Allowed only in programs.

Use: This statement causes the program either to wait for p1 to

become true (i.e., evaluate to 1) or to go conditionally to label

p3 if p2 is true (i.e., evaluates to 1).

Examples:

IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

MVL=5 MVL1=5 (* set motion velocity)

MAC=40 MAC1=40 (* set motion acceleration)

MPI=25 MPI1=25 (* set incremental move position)

RPI RPI1 (* run to incremental move position)

WAIT IP WHEN KEY GOTO5 WAIT IP1 WHEN KEYW GOTO5

(* wait for expression to be true or

(* when condition becomes true goto 5)

OUT “Motion complete$N” OUTW “Motion complete$N”

(* output string expression to display)

GOTO10 GOTO10 (* unconditionally goto 10)

5 ST 5 ST1 (* stop axis)

WAIT IP WAIT IP1 (* wait for expression to be true)

OUT “Motion interrupted$N” OUTW “Motion interrupted$N”

(* output string expression to display)

10 END 10 END (* end program 1 and exit editor)

 What will happen: This program, once executed, sets the velocity, acceleration,

and incremental move position. It then issues the RPI

command, which runs the axis 25 units in the forward

direction. If a character goes into the key buffer (KEY) before

the axis is in position (IP), the program execution will go to the

statement at label 5, which stops the axis. It then prints Motion

interrupted to the display and ends. If a character does not go

into the key buffer before the axis is in position, the program

will continue to the next statement, which prints Motion

complete. It then goes to the statement at label 10, which ends

the program.

Related Commands: WAIT

GFK-2205 Appendix A Registers and Commands A-365

A

WKY Puts Character into Key Buffer

Class: Input/Output Command

Syntax: WKYp1 (e.g., WKY1 WKYB)

Parameters: allowed values description

p1 any ASCII character ASCII character

Restrictions: Not allowed in motion blocks.

Use: This command puts one character into the key buffer.

Example:

WKYE (* put “E” into key buffer)

WKY1 (* put “1” into key buffer)

Related Commands: GETW, INW

A-366 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

A

X Steps through Program/Motion Block

Class: Program Command

Syntax: Xp1 (e.g., X X3 X10)

Parameters: allowed values description

p1 1 through 65,000 step size

Use: This command steps p1 lines through a program or motion

block while in the line editor; or it steps through the execution

of a program if not in the line editor and single step mode is

enabled (i.e., DGE is set to 1 and DGS is set to the program

you wish to step through [see DGS]).

Remarks: Note that p1 is optional. If p1 is not specified, a value of 1 will

be assumed.

Examples: IMC/IMJ Target

PROGRAM1 PROGRAM1 (* edit program 1)

* MVL=5 * MVL1=5

X X (* step through program)

* MAC=40 * MAC1=40

X X (* step through program)

* MPI=25 * MPI1=25

! ! (* exit line editor)

* *

Related Commands: DGE, DGS, PROGRAM, MOTION, L, LABEL, !

GFK-2205 B-1

Operators

This appendix provides details on the following types of operators:

 Relational

> greater than operator
>= greater than or equal to operator
= equal to operator
<> not equal to operator
<= less than or equal to operator
< less than operator

 Logical

NOT not operator
AND and operator
OR or operator
XOR exclusive or operator
ROL rotate left operator
ROR rotate right operator
SHL arithmetic shift left operator
SHR arithmetic shift right operator

 Arithmetic

+ add operator
- subtract operator
* multiply operator
/ divide operator
** exponentiate operator

 Math

ABS absolute value operator
CRC cyclical redundancy check calculation operator
EXP exponential operator
LGN natural log operator
SQR square root operator

 Trigonometric

SIN sine of angle in degrees operator
COS cosine of angle in degrees operator
TAN tangent of angle in degrees operator
ATN arctangent to angle in degrees operator

B
Appendix

B-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

 String

+ concatenation operator
LEN length of string operator
LFT leftmost characters of string operator
MID middle characters of string operator
RGT rightmost characters of string operator
FIN find string in string operator
INS insert characters into string
DEL delete characters from string
LWR convert string to lower case operator
UPR convert string to upper case operator
ASC convert from character to ASCII code operator
CHR convert from ASCII code to character operator

 Convert to Floating Point

ITF convert integer to floating point operator
STF convert string to floating point operator

 Convert to Integer

DTI convert date to integer operator
TTI convert time to integer operator
FTI convert floating point to integer operator
TRC truncate floating point to integer operator
STI convert string to integer operator

 Convert to String

FTS convert floating point to string operator
ITB convert integer to binary string operator
ITH convert integer to hexadecimal string operator
ITS convert integer to string operator

 Convert to Time/Date

ITD convert integer to date operator
ITT convert integer to time operator

GFK-2205 Appendix B Operators B-3

B

>, >=, =, <>, <=, < Relational Operators

Type: Boolean

Syntax: p > p2, p >= p2, p = p2, p <> p2, p <= p2, p < p2

Parameters: allowed values

p1 any integer, floating point, or string operand

p2 any integer, floating point, or string operand

Use: These operators are used to compare the two operands p1 and

p2. Note that p1 and p2 must be of the same type. If the relation

is false, its value is 0; and if the relation is true, its value is . A

relation is two operands with a relational operator between

them. The operators are described below:

p1 > p2 p1 greater than p2

p1 >= p2 p1 greater than or equal to p2

p1 = p2 p1 equal to p2

p1 <> p2 p1 not equal to p2

p1 <= p2 p1 less than or equal to p2

p1 < p2 p1 less than p2

Remarks: Note that for string operands, the relational operators compare

the two strings character by character. The ASCII values of

each character are compared one by one from left to right.

Example:

VF = 2.5 (* set floating point variable to 2.5)

VF2= 2.0 (* set floating point variable 2 to 2.0)

VB = VF <=VF2 (* set boolean variable to VF <=VF2)

VB ? (* report value of boolean variable)

* 0

VS =“Hello” (* set string variable to “Hello”)

VS2=“AB” (* set string variable 2 to “AB”)

VS3=“AC” (* set string variable 3 to “AC”)

VS4=“ABC” (* set string variable 4 to “ABC”)

VB = VS <>VS2 (* set boolean variable to VS <>VS2)

VB ? (* report value of boolean variable)

*

VB = VS2<VS3 (* set boolean variable to VS2<VS3)

VB ? (* report value of boolean variable)

*

VB =VS2>VS4 (* set boolean variable to VS2>VS4)

VB ? (* report value of boolean variable)

* 0

B-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

NOT, AND, OR, XOR Logical Operators

Type: Boolean, integer

Syntax: NOT p2 p1 AND p2 p1 OR p2 p1 XOR p2

Parameters: allowed values

p1 any boolean or integer operand

p2 any boolean or integer operand

Use: These operators are used to perform logical operations on p1

and p2. Note that p1 and p2 must be of the same type. If p1 and

p2 are integer operands, the logical operators perform bitwise

logical operations. The operations are described below:

NOT p2 not operator

p1 AND p2 and operator

p1 OR p2 or operator

p1 XOR p2 exclusive or operator

GFK-2205 Appendix B Operators B-5

B

ROL, ROR Rotate Operators

Type: Integer

Syntax: p1 ROL p2 p1 ROR p2

Parameters: allowed values

p1 any integer operand

p2 any integer operand

Use: These operators are used to rotate the bits of p1 by the number

of places specified by p2.

Example:

VI =2# 0 00 (* set integer variable to 2# 0 00)

VI2=VI ROL 2 (* set integer variable 2 to VI rotated left by 2 places)

VS =ITB(VI2, 2) (* set string variable to VI2 converted to binary string)

VS ? (* report value of string variable)

*“2# 0 00 00”

VI3=VI ROR 3 (* set integer variable 3 to VI rotated right by 3 places)

VS2=ITB(VI3,32) (* set string variable 2 to VI3 converted to binary string)

VS2? (* report value of string variable 2)

*“2# 000000000000000000000000 0 ”

Related Operators: SHL, SHR

B-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

SHL, SHR Arithmetic Shift Operators

Type: Integer

Syntax: p1 SHL p2 p1 SHR p2

Parameters: allowed values

p1 any integer operand

p2 any integer operand

Use: These operators are used to perform an arithmetic shift of p1 by

the number of places specified by p2.

Example:

VI =2# 0 00 (* set integer variable to 2#0 0 00)

VI2=VI SHL 3 (* set integer variable 2 to VI shifted left by 3 places)

VS =ITB(VI2, 3) (* set string variable to VI2 converted to binary string)

VS ? (* report value of string variable)

*“2# 0 00 000”

VI3=VI SHR 2 (* set integer variable 3 to VI shifted right by 2 places)

VS2=ITB(VI3,8) (* set string variable 2 to VI3 converted to binary string)

VS2? (* report value of string variable 2)

*“2# 0 0”

Related Operators: ROL, ROR

GFK-2205 Appendix B Operators B-7

B

+, -, *, /, ** Arithmetic Operators

Type: Floating point, integer

Syntax: p1 + p2, p1 - p2, - p1, p1 * p2, p1 / p2, p1 ** p2

Parameters: allowed values

p1 any integer or floating point operand

p2 any integer or floating point operand

Use: These operators are used to perform arithmetic operations on

p1 and p2. Note that p1 and p2 must be of the same type. The

operations are described below:

p1 + p2 add

p1 - p2 subtract

- p1 negate

p1 * p2 multiply

p1 / p2 divide

p1 ** p2 exponentiate (i.e., raise p1 to the p2 power)

B-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

ABS Absolute Value Operator

Type: Floating point, integer

Syntax: ABS(p1)

Parameters: allowed values

p1 any integer or floating point operand

Use: This operator is used to take the absolute value of p1.

GFK-2205 Appendix B Operators B-9

B

CRC Cyclical Redundancy Check Calculation Operator

Type: Integer

Syntax: CRC(p1)

Parameters: allowed values

p1 any integer operand

Use: This operator is used to do a 6-bit cyclical redundancy check

calculation on 8-bit data.

Example:

VI =65535 (* initialize CRC register)

VI =CRC(VI XOR 23) (* calculate CRC of 23)

VI =CRC(VI XOR 2 5) (* calculate CRC of 23 and 2 5)

B-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

EXP Exponential Operator

Type: Floating point

Syntax: EXP(p1)

Parameters: allowed values

p1 any floating point operand

Use: This operator is used to take the exponential of p1 (i.e., raise

the number e to the power p1).

GFK-2205 Appendix B Operators B-11

B

LGN Natural Log Operator

Type: Floating point

Syntax: LGN(p1)

Parameters: allowed values

p1 any positive floating point operand

Use: This operator is used to take the natural log of p1 (i.e., the

logarithm base e of p1).

B-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

SQR Square Root Operator

Type: Floating point, integer

Syntax: SQR(p1)

Parameters: allowed values

p1 any positive integer or floating point operand

Use: This operator is used to take the square root of p1.

GFK-2205 Appendix B Operators B-13

B

SIN, COS, TAN, ATN Trigonometric Function Operators

Type: Floating point

Syntax: SIN(p1) COS(p1) TAN(p1) ATN(p1)

Parameters: allowed values

p1 any floating point operand

Use: These operators are used to perform trigonometric functions on

p1. When using SIN, COS, or TAN, p1 must be in degrees. The

operations are described below:

SIN(p1) sine of angle in degrees

COS(p1) cosine of angle in degrees

TAN(p1) tangent of angle in degrees

ATN(p1) arctangent to angle in degrees

B-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

+ Concatenation Operator

Type: String

Syntax: p1 + p2

Parameters: allowed values

p1 any string operand

p2 any string operand

Use: This operator is used to concatenate strings p1 and p2.

Example:

VS =“Hello” (* set string variable to “Hello”)

VS2=VS + “ There” (* set string variable 2 to the concatenation of VS and “

 There”)

VS2? (* report value of string variable 2)

*“Hello There”

GFK-2205 Appendix B Operators B-15

B

LEN Length Of String Operator

Type: Integer

Syntax: LEN(p1)

Parameters: allowed values

p1 any string operand

Use: This operator is used to compute the length of the string in p1.

Example:

VI =LEN(“Hello”) (* set integer variable to length of string “Hello”)

VI ? (* report value of integer variable)

*5

B-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

LFT, MID, RGT Select Characters Of String Operators

Type: String

Syntax: LFT(p1,p2) MID(p1,p2,p3) RGT(p1,p2)

Parameters: allowed values description

p1 any string operand string

p2 any integer operand >= 0 number of characters

p3 any integer operand >= location of characters

Use: These operators are used to select characters of string p1. The

operations are described below:

LFT leftmost characters of string—takes the leftmost p2

characters of string operand p1.

MID middle characters of string—takes the middle p2

characters of string operand p1 from character number

p3.

RGT rightmost characters of string—takes the rightmost p2

characters of string operand p1.

Example:

VS =“Jogging axis forward”

(* set string variable to “Jogging axis forward”)

VS2=LFT(VS ,7) (* set string variable 2 to leftmost 7 characters of VS)

VS2? (* report value of string variable 2)

*“Jogging”

VS3=MID(VS ,4,9) (* set string variable 3 to the middle 4 characters of VS from

character 9)

VS3? (* report value of string variable 3)

*“axis”

VS4=RGT(VS ,7) (* set string variable 4 to leftmost 7 characters of VS)

VS4? (* report value of string variable 4)

*“forward”

GFK-2205 Appendix B Operators B-17

B

FIN Find String In String Operator

Type: Integer

Syntax: FIN(p1,p2)

Parameters: allowed values

p1 any string operand

p2 any string operand

Use: This operator is used to find string p2 in string p1. If p2 is

found in p1, the value returned is the location of the first

character of p2 in the string p1. If p2 is not in p1, the value

returned is 0.

Example:

VS =“Jogging” * set string variable to “Jogging”)

VI =FIN(VS ,“Jog”) (* set integer variable to location of first character of “Jog” in

 VS)

VI ? (* report value of integer variable)

*

VI2=FIN(VS ,“in”) (* set integer variable 2 to location of first character of “in” in

 VS)

VI2? (* report value of integer variable 2)

*5

VI3=FIN(VS ,“Hello”) (* set integer variable 3 to location of first character of “Hello”

 in VS)

VI3? (* report value of integer variable 3)

*0

B-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

INS, DEL Edit String Operators

Type: String

Syntax: INS(p1,p2,p4) DEL(p1,p3,p4)

Parameters: allowed values description

p1 any string operand string to be edited

p2 any string operand string to be inserted

p3 any integer operand >= 0 number of characters to delete

p4 any integer operand >= location in p1 to insert/delete

Use: These operators are used to edit string operand p1. The

operations are described below:

INS insert characters into string—inserts string operand p2

into string operand p1 at location p4.

DEL delete characters from string—deletes p3 characters

starting at location p4 of string operand p1.

Example:

VS =“Drill operation” (* set string variable to “Drill operation”)

VS2=INS(VS ,“in ”,7) (* set string variable 2 to SV with “in ” inserted at location 7)

VS2? (* report value of string variable 2)

*“Drill in operation”

VS3=DEL(VS2,3,7) (* set string variable 3 to SV2 with 3 characters deleted starting

 at location 7)

VS3? (* report value of string variable 3)

*“Drill operation”

GFK-2205 Appendix B Operators B-19

B

LWR, UPR Case Conversion Operators

Type: String

Syntax: LWR(p1) UPR(p1)

Parameters: allowed values

p1 any string operand

Use: These operators are used to convert string operand p1 to either

lower (LWR) or upper (UPR) case.

Example:

VS =“Hello” (* set string variable to “Hello”)

VS2=UPR(VS) (* set string variable 2 to upper case of VS)

VS2? (* report value of string variable 2)

*“HELLO”

VS3=LWR(VS) (* set string variable 3 to lower case of VS)

VS3? (* report value of string variable 3)

*“hello”

B-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

ASC Convert from Character to ASCII Operator

Type: Integer

Syntax: ASC(p1)

Parameters: allowed values

p1 any string operand

Use: This operator is used to convert the first character in string

operand p1 to the ASCII code that represents this character.

Example:

VI =ASC(“Hello”) (* set integer variable to the ASCII code of the first character

 of “Hello”)

VI ? (* report value of integer variable)

72 (note that 72 is the ASCII code for “H”)

Related Operators: CHR

GFK-2205 Appendix B Operators B-21

B

CHR Convert from ASCII Code to Character Operator

Type: String

Syntax: CHR(p1)

Parameters: allowed values

p1 any integer operand

Use: This operator is used to convert the ASCII code p1 to the

character represented by ASCII code p1.

Example:

VS =CHR(65) (* set string variable to the character represented by ASCII

 code 65)

VS ? (* report value of string variable)

*“A”

Related Operators: ASC

B-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

ITF Convert Integer to Floating Point Operator

Type: Floating point

Syntax: ITF(p1)

Parameters: allowed values

p1 any integer operand

Use: This operator is used to convert integer operand p1 to a floating

point number.

Example:

VI = 2 (* set integer variable to 2)

VF =ITF(VI) (* set floating point variable to VI converted to floating

 point)

VF ? (* report value of floating point variable)

* 2.

GFK-2205 Appendix B Operators B-23

B

STF Convert String to Floating Point Operator

Type: Floating point

Syntax: STF(p1)

Parameters: allowed values

p1 any string operand

Use: This operator is used to convert the string operand p1 to a

floating point number.

Remarks: . If the string operand contains an invalid digit for a floating

point number, then this operator will return a result of zero and

set the “Invalid digit in string” bit (i.e., bit 4) of the program

status register.

2. If the converted value is too large to be represented by a

floating point number, then this operator will return a result of

zero and set the “String value out of range” bit (i.e., bit 5) of

the program status register.

Example:

VS =“ 2.95” (* set string variable to “ 2.95”)

VF =STF(VS) (* set floating point variable to VS converted to floating

 point)

VF ? (* report value of floating point variable)

* 2.95

B-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

DTI, TTI Convert Time/Date to Integer Operators

Type: Integer

Syntax: TTI(p1) DTI(p1)

Parameters: allowed values

p1 any string operand

Use: These operators are used to convert a time or date string p1 to

integer. The operations are described below:

TTI convert time to integer—converts 24-hour format time

string to number of seconds.

DTI convert date to integer—converts date string to

number of seconds from January , 994.

Remarks: If the string operand is not a valid representation of a time or

date, then these operators will return a result of zero and set the

“Invalid time/date” bit (i.e., bit 7) of the program status

register.

Example:

VS =“09:30:30” (* set string variable to “09:30:30”)

VI =TTI(VS) (* set integer variable to VS converted to seconds)

VI ? (* report value of integer variable)

*34230

VS2=“ 996-02-0 ” (* set string variable 2 to “ 996-02-0 ”)

VI2=DTI(VS2) (* set integer variable 2 to VS2 converted to seconds)

VI2? (* report value of integer variable 2)

*65750400

GFK-2205 Appendix B Operators B-25

B

FTI, TRC Convert Floating Point to Integer Operators

Type: Integer

Syntax: FTI(p1) TRC(p1)

Parameters: allowed values

p1 any floating point operand

Use: These operators are used to convert floating point operand p1

to an integer:

FTI Convert floating point to integer—rounds p1 to the nearest

integer.

TRC Truncate floating point to integer—truncates p1.

Remarks: If the floating point number is too large to be represented by an

integer, then these operators will return a result of zero and set

the Floating point value out of range bit (i.e., bit 6) of the

program status register.

Example:

VF = 2.9505 (* set floating point variable to 2.9505)

VI =FTI(VF) (* set integer variable to VF converted to integer by

 rounding)

VI ? (* report value of integer variable)

* 3

VI2=TRC(VF) (* set integer variable 2 to VF converted to integer by

 truncation)

VI2?

* 2

B-26 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

STI Convert String to Integer Operator

Type: Integer

Syntax: STI(p1)

Parameters: allowed values

p1 any string operand

Use: This operator is used to convert the string operand p1 to an

integer.

Remarks: . If the string operand contains an invalid digit for an integer,

then this operator will return a result of zero and set the

“Invalid digit in string” bit (i.e., bit 4) of the program status

register.

2. If the converted value is too large to be represented by an

integer, then this operator will return a result of zero and set the

“String value out of range” bit (i.e., bit 5) of the program status

register.

Example:

VS =“ 204” (* set string variable to “ 204”)

VI =STI(VS) (* set integer variable to VS converted to integer)

VI ? (* report value of integer variable)

* 024

GFK-2205 Appendix B Operators B-27

B

FTS Convert Floating Point to String Operator

Type: String

Syntax: FTS(p1,p2,p3)

Parameters: allowed values description

p1 any floating point operand floating point operand

p2 any integer operand in field width

range 0 through 40

p3 any integer operand in number of decimal places

range 0 through 0

Use: This operator is used to convert floating point operand p1 to a

string with field width p2 and p3 decimal places.

Remarks: . If the floating point number cannot be contained in the field

width specified, then the result is a string of asterisks of length

equal to the field width.

2. If the field width is set to 0, then the result is the string

representation of the floating point number, which has the

minimum field width.

Example:

VF = 2.9505 (* set floating point variable to 2.9505)

VS =FTS(VF ,6,2) (* set string variable to VF converted to string with field

 width 6 and 2 decimal places)

VS ? (* report value of string variable)

*“ 2.95”

B-28 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

B

ITB, ITH, ITS Convert Integer to String Operators

Type: String

Syntax: ITS(p1,p2) ITB(p1,p2) ITH(p1,p2)

Parameters: allowed values description

p1 any integer operand integer

p2 any integer operand in field width

range 0 through 40

Use: These operators are used to convert the integer operand p1 to a

string. The operations are described below:

ITB convert integer to binary string—converts p1 to a

binary string.

ITH convert integer to hex string—converts p1 to a

hexadecimal string.

ITS convert integer to string—converts p1 to a string.

Remarks: . If the integer cannot be contained in the field width

specified, then the result is a string of asterisks of length equal

to the field width.

2. If the field width is set to 0, then the result is the string

representation of the integer, which has the minimum field

width.

Example:

VI =2282 (* set integer variable to 2282)

VS =ITS(VI ,6) (* set string variable to VI converted to string with field

 width of 6)

VS ? (* report value of string variable)

*“ 2282”

VS2=ITB(VI , 4) (* set string variable 2 to VI converted to binary string with

 field width of 4)

VS2? (* report value of string variable 2)

*“2# 000 0 0 0”

VS3=ITH(VI ,4) (* set string variable 3 to VI converted to hex string with field

 width of 4)

VS3? (* report value of string variable 3)

*“****”

VS3=ITH(VI ,0) (* set string variable 3 to VI converted to hex string with

 minimum field width)

VS3? (* report value of string variable 3)

*“ 6#8EA”

GFK-2205 Appendix B Operators B-29

B

ITD, ITT Convert Integer to Time/Date Operators

Type: String

Syntax: ITT(p1) ITD(p1)

Parameters: allowed values

p1 any integer operand in range 0 through 2, 4,380,799 for date

and 0 through 86,399 for time

Use: These operators are used to convert the integer operator p1 to a

date or time string. The operations are described below:

ITD convert integer to date—converts seconds from

January , 994 to date.

ITT convert integer to time—converts seconds to 24-hour

time format.

Example:

VI =34230 (* set integer variable to 34230)

VS =ITT(VI) (* set string variable to VI converted to time string)

VS ? (* report value of string variable)

*“09:30:30”

VI2=65750400 (* set integer variable 2 to 65,750,400)

VS2=ITD(VI2) (* set string variable 2 to VI2 converted to date string)

VS2? (* report value of string variable 2)

*“ 996-02-0 ”

GFK-2205 C-1

Operands

FALSE, OFF, ON, p1, TRUE BOOLEAN OPERANDS

Type: Boolean

Syntax: TRUE, FALSE, ON, OFF, p1, p2

Parameters: allowed values range

p1 any boolean 0, 1

p2 any boolean register

Use: These operands are used as boolean numbers. TRUE and ON

are equivalent to the boolean number 1, and FALSE and OFF

are equivalent to the boolean number 0.

Example:

VB1=TRUE (* set boolean variable 1 to TRUE [i.e, one])

POE1=ON (* set power output stage enable of axis one to ON [i.e., one])

DO1.8=ON (* set digital output 8 of module 1 to one)

VB2=0 (* set boolean variable 2 to zero)

C
Appendix

C-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

C

p1, p2 Floating Point Operands

Type: Floating point

Syntax: p1, p2

Parameters: allowed values range

p1 any floating point +/- 1.5E-39 through 1.7E38

p2 any floating point register

Use: These operands are used as floating point numbers. Note that

floating point numbers must always have a decimal point in

them.

Example:

VF1=105. (* set floating point variable 1 to 105.)

MPA1=20.2 (* set axis one absolute move position to 20.2)

VF2=FEB1 (* set floating point variable 2 to axis one following error

 bound)

GFK-2205 Appendix C Operands C-3

C

p1, 2#p2, 16#p3, p4 Integer Operands

Type: Integer

Syntax: p1, 2#p2, 16#p3, p4

Parameters: allowed values range

p1 any integer -2,147,483,648 through

2,147,483,647

p2 any base 2 integer 0 through

1111111111111111111111111111111

(2^32 -1)

p3 any base 16 integer 00000000 through FFFFFFFF

p4 any integer register

Use: These operands are used as integer numbers.

Example:

MAP1=45 (* set axis one motion acceleration percent to 45%)

VI1=2#10101111 (* set integer variable 1 to 101011112 [i.e., 17510])

URA1=4096 (* set axis one unit ratio to 4,096 pulses/rev)

VI2=423234 (* set integer variable 2 to 423,234)

VI3=16#40E8 (* set integer variable 3 to 40E816 [i.e., 1661610])

C-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

C

“p1”, p2, $p3 String Operands

Type: String

Syntax: “p1”, p2, $p3

Parameters: allowed values

p1 any string, 0 through 127 characters long

p2 any string register

p3 any nonstring register

Use: These operands are used as strings.

Remarks: 1. When a string contains a dollar sign, the character

immediately after it is treated in a special manner. The

possibilities are:

Character after $ Interpretation when sent to serial port

$ dollar sign

“ quote

0 through FF ASCII code (in hexadecimal)

T tab

L line feed

R carriage return

N new line (carriage return and line feed)

2. Using the dollar sign followed by a register converts the

value of the register into the appropriate string. Floating point,

integer, and boolean register values will be converted into

strings containing the number value of the register. In the

special case of bit-valued registers (e.g., SRS, SRP1, FCS), the

register value will be converted into a string containing the

hexadecimal (base 16) value of the registers. If the bit is

specified (e.g., SRS1, SRP1.5, FCS2), the string will be “0” if

the bit is zero; or it will be the assigned message of the bit.

Example:

VS1=“Energy cost: $$50” (* set string variable 1 to “Energy cost: $50”)

VS2=“$“Hello$”” (* set string variable 2 to ““Hello””)

OUT VS2 (* output string expression to serial port)

*““Hello””

VS3=$SRA1 (* set string variable 3 to axis one status register converted to

 hex string)

VS3? (* report value of string variable 3)

*“16#0100”

VS4=$PSA1 (* set string variable 4 to axis one position converted to string)

VS4? (* report value of string variable 4)

*“2.563924”

VS5=$SRA1.8 (* set string variable 5 to bit 8 of axis one status register)

VS5? (* report value of string variable 5)

* “Axis in position”

GFK-2205 D-1

IMC and Target Command Fault and Status

Messages

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

6 RECEIVE ERROR A character that was entered
was not received correctly by
the controller.

Check to make sure that the serial/program port
settings (baud, parity, databits) are correct.

Check the connection to the serial/program port.

7 NETWORK ADDRESS
OUT OF RANGE

The network address entered is
less than 0 or greater than 63.

Re-enter the address making sure that it is a
number 0 through 63.

8 LABEL OUT OF
RANGE

The program label entered as
part of a program statement is
less than 1 or greater than 999.

Re-enter the label making sure that it is a
number 1 through 999.

9 INVALID COMMAND The system or controller did
not recognize the command
entered.

The command was misspelled. Re-enter
correctly spelled command.

The command was invalid. Re-enter valid
command.

10 INVALID DIGIT The number entered as a
parameter for the command
contained an invalid digit.

Re-enter the command making sure that the
parameter does not contain an invalid digit.

11 INVALID
ASSIGNMENT

The assignment entered was
not valid for the command
entered.

The assignment was misspelled. Re-enter
correctly spelled command.

The assignment was invalid. Re-enter the
command with valid assignment.

12 TOO MANY
DECIMAL PLACES

Value entered as a parameter
had more decimal places than
allowed for the command
entered.

Re-enter the command making sure that the
parameter does not have too many decimal
places.

13 SYNTAX ERROR -
POSSIBLY
MISMATCHED
OPERAND AND
OPERATOR TYPE

The operands of an operator in
an expression are not of the
correct type for the operator.

Make sure to use the appropriate conversion
operators to achieve the correct types of
operands for the operator.

14 SYNTAX ERROR -
POSSIBLY TOO
MANY OPERANDS

There are more operands in an
expression than the operators
require.

Review the syntax of the operators used. Check
the parentheses used for proper placement.

15 SYNTAX ERROR -
POSSIBLY TOO FEW
OPERANDS

There are fewer operands in an
expression than the operators
require.

Review the syntax of the operators used. Check
the parentheses used for proper placement.

16 SYNTAX ERROR -
POSSIBLY
UNBALANCED
PARENTHESES

There are not the same number
of left parentheses as there are
right parentheses.

Be sure to use the same number of left and right
parentheses.

D
Appendix

D-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

D

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

17 EXPRESSION TOO
LONG

The expression entered is
longer than the register or
command will accept.

Simplify the expression.

Break the expression into two or more parts.

18 EXPRESSION NOT
BOOLEAN

The command expects an
expression with a Boolean
result and the expression
entered evaluated to an integer,
floating point, or string.

Review the expression for correct form.

Consider using one of the comparison
operators.

19 EXPRESSION NOT
INTEGER

The command expects an
expression with an integer
result and the expression
entered evaluated to a Boolean,
floating point, or string.

Review the expression for correct form.

Consider using one of the conversion operators.

20 EXPRESSION NOT
FLOATING POINT

The command expects an
expression with a floating point
result and the expression
entered evaluated to a Boolean,
integer, or string.

Review the expression for correct form.

Consider using one of the conversion operators.

21 EXPRESSION NOT
STRING

The command expects an
expression with a string result
and the expression entered
evaluated to a Boolean, integer,
or floating point.

Review the expression for correct form.

Consider using one of the conversion operators.

22 COMMAND NOT
ALLOWED

The command entered in the
program/motion block editor is
not allowed in a
program/motion block, or the
command entered in immediate
mode is allowed only in a
program and/or motion block.

For specific information about the command
you are using, see the Restrictions information
in Appendix A.

23 NOT READY FOR
COMMAND

The system was not ready to
accept the command entered
because it was executing an
operation that cannot be
interrupted by that command.

Wait until the operation finishes or stop it
completely; kill programs with the KLP or
KLALL command, and stop any motion with
the ST or HT command. See the Remarks

information in Appendix A.

24 OUT OF PROGRAM
MEMORY

The system has run out of
memory available for programs
and motion blocks.

Delete any programs or motion blocks that are
not currently being used.

25 NO PROGRAM
FAULT

The FAULT command was
entered without there being a
program fault.

If the controller is faulted, the FC?, FCS?, or
FCAa? command can be used to show what
fault has occurred.

26 INVALID
COMMAND IN
STRING

An attempt was made to
execute the EXVS command,
but the command stored in the
string variable was not
recognized by the system.

The command is misspelled. Check spelling
and re-enter the command.

The command is invalid. Re-enter valid
command.

27 TRANSMIT BUFFER
OVERFLOW

The program has sent more
characters to the transmit
buffer than the
communications port can
handle.

The PUT, OUT, or OUTS commands have been
executed multiple times — they are in a loop.
Change the program accordingly.

28 RESOURCE NOT
AVAILABLE

The addressed network
controller is not online.

 An attempt was made to
execute a command specific to
a module, but the module is not
available.

Check network connections.

Check network address and baud rate.

 Check system configuration.

GFK-2205 Appendix D IMC and Target Command Fault and Status Messages D-3

D

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

29 INVALID VARIABLE
POINTER

The pointer loaded in an
integer variable was out of the
range of registers available.

Re-enter the pointer making sure that it is in the
range of the type of register accessed.

30 MATHEMATICAL
OVERFLOW

The result of the expression
entered was outside the
allowed bounds of the type of
expression.

Re-enter the expression making sure that the
operation will never go outside the allowed
bounds of the type of expression.

If using an integer expression, consider using a
floating point expression instead.

31 MATHEMATICAL
DATA ERROR

The result of the expression
entered cannot be represented
as a number.

Make sure that the SQR and LGN operators
never have negative operands.

Make sure that a divide-by-zero operation will
never occur.

32 VALUE OUT OF
RANGE

The value entered as a
parameter was out of the
range specified for the
command entered.

Re-enter the command making sure that the
parameter is within the range specified for the
command. See the Parameters information in
Appendix A for the allowed range.

33 STRING TOO LONG The string entered was longer
than 127 characters.

Re-enter the command/string using
127 or fewer characters.

34 NONEXISTENT
LABEL

The LABEL command was
entered in program editor with
a nonexistent label.

Re-enter the LABEL command making sure
that the label exists in the program.

35 DUPLICATE LABEL The program label entered as
part of a program statement
was already in the current
program.

Re-enter the program statement making sure
that the label does not already exist in the
program.

Remove the label from the existing program
statement first.

36 MISSING
QUOTATION
MARK

A string was entered as part of
a command without being
enclosed in quotes.

Re-enter the command with the string enclosed
in quotation marks.

37 INVALID MOTION The combination of motion
parameters defines a motion
that cannot be executed, or a
motion command or motion
block was executed when the
system was faulted.

Make sure that the motion parameters define a
motion that can be executed. For specific
information about the parameters you are using,
see Appendix A. Make sure the system is not
faulted when executing a motion command or
motion block.

38 I, jr Reserved

 INCONSISTENT
AXIS GROUPING

 Two motion commands
with intersecting axis sets were
executed together.

 Ensure that coordinated motion commands
running together are consistent.

39 SWITCH MOTOR
LEADS

The MOTORSET command
was entered and the system
decided from its calculations
that two motor leads should be
switched.

Switch two of the motor leads.

40 BAD POLES RATIO The MOTORSET command
was entered, and the system
calculated the motor poles to
resolver poles ratio to be less
than 1 or greater than 16.

Use a different resolver.

41 I, jr Reserved

 BAD RESOLVER
AMPLITUDE

 The MOTORSET command
was entered, and the system
could not set the resolver
amplitude correctly.

 Use a different motor or a different resolver.

D-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

D

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

42 TORQUE TO
INERTIA RATIO
TOO LOW

The AUTOTUNE command
was entered and the system
calculated the torque to inertia
ratio of the axis to be less than
125 radians/sec2.

Autotuning with the AUTOTUNE command
will not work. Use the expressions for KA, KD,
KI, KP, and KT to calculate values if possible.
See Appendix A.

43 TORQUE TO INERTIA
RATIO TOO HIGH

The AUTOTUNE command
was entered and the system
calculated the torque to inertia
ratio of the axis to be greater
than 125,000 radians/sec2.

Autotuning with the AUTOTUNE command
will not work. Use the expressions for KA, KD,
KI, KP, and KT to calculate values if possible.
See Appendix A.

44 TORQUE RESPONSE
NON-LINEAR

The AUTOTUNE command
was entered, and the system
could not calculate the control
constants because the motor
did not respond linearly.

Autotuning with the AUTOTUNE command
will not work. Use the expressions for KA, KD,
KI, KP, and KT to calculate values if possible.
See Appendix A.

45 Enter password: The PASSWORD command
has been entered, and the
system is waiting for the
password to be entered.

Enter the password.

46 Password accepted The PASSWORD command
and the correct password have
been entered, or the
CHANGEPW command and
the new password have been
entered correctly.

Continue with normal operation.

47 Invalid password -
access denied

The PASSWORD or
CHANGEPW command has
been entered, and the password
entered is incorrect.

Enter the PASSWORD command again,
and enter the correct password.

48 Enter old password: The CHANGEPW command
has been entered, and the
system is waiting for the old
password to be entered.

Enter the old password.

49 Enter new password: The CHANGEPW command
has been entered, and the
system is waiting for the new
password to be entered.

Enter the new password.

50 Enter new password
again to verify:

The CHANGEPW command
has been entered, and the
system is waiting for the new
password to be entered and
verified.

Enter the new password again.

51 Invalid password -
Password unchanged

The CHANGEPW command
has been entered, and either the
new password entered is
invalid, or the new password
entered the second time does
not match the one entered the
first time.

Enter the CHANGEPW command again to
start over. Make sure that the new
password is at least 4 characters and no
longer than 10 characters.

52 Retrieving user
memory...

The RETRIEVE command has
been entered, and the system is
in the process of retrieving user
memory.

Wait for user memory to be retrieved.

53 User memory retrieved The RETRIEVE command has
been entered, and the system
has retrieved user memory.

Continue with normal operation.

54 Saving user memory... The SAVE command has been
entered; the system is in the
process of saving user memory.

Wait for user memory to be saved.

GFK-2205 Appendix D IMC and Target Command Fault and Status Messages D-5

D

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

55 User memory saved The SAVE command has been
entered, and the system has
saved user memory.

Continue with normal operation.

56 FLASH MEMORY
PROGRAM
FAILURE

The SVF or SAVE command
was entered, and the flash
memory could not be erased.

Try a different flash memory card.

Replace the System Module.

57 FLASH MEMORY
PROGRAM FAILURE

The SVF or SAVE command
was entered, and the program
could not be written to the
flash memory card.

Try a different flash memory card.

Replace the System Module.

58 STORED PROGRAM
DOES NOT
CHECKSUM

The RETRIEVE command was
entered, and the program stored
in the flash card does not
checksum.

Download the program, and save the program
again using the SAVE command.

Replace the flash card.

59 Are you sure you
want to clear all the
user memory and
reset the registers to
their default values?

The CLM command has been
entered, and the system is
waiting for the user to respond.

If you are sure that you want to do this, type Y
or y. The system will clear all memory and
reset the registers to their default values.

If you are not sure, type N or n. The system
will continue with normal operation.

60 User memory cleared The user memory has been
cleared using the CLM
command.

Continue with normal operation.

61 Are you sure you want
to erase the current
firmware and load a
new firmware version?

The FIRMWARE command
has been entered, and the
system is waiting for the user
to respond.

If you are sure that you want to do this, type Y
or y. The system will erase the current
firmware and load the new firmware.

If you are not sure, type N or n. The system
will continue with normal operation.

62 FLASH CARD NOT
INSERTED

The flash memory card is not
inserted in the System Module.

Insert the flash memory card into the System
Module.

Make sure that the flash memory card is
properly seated.

63 FLASH CARD
WRITE PROTECTED

The flash memory card in the
System Module is write
protected.

Remove write protection from the flash memory
card by moving the switch to the correct
position.

64 COMMAND CAN
BE EXECUTED ONLY
AFTER RTF
COMMAND

The SVF command was
executed before the RTF
command was executed.

Wait until you have executed the RTF
command before executing the SVF command.

67 TERTIARY
TRANSMIT BUFFER
OVERFLOW

The program has sent more
characters to the transmit
buffer than the tertiary port can
handle.

The PUTT or OUTT commands have been
executed multiple times; they are in a loop.
Change the program accordingly.

68 PROGRAM
TRANSMIT BUFFER
OVERFLOW

The program has sent more
characters to the transmit
buffer than the program port
can handle.

The PUTW, OUTW, or OUTS commands have
been executed multiple times; they are in a loop.
Change the program accordingly.

69 EXTENDED
MEMORY CARD NOT
INSERTED

The extended memory card is
not inserted in the System
Module.

Insert the extended memory card into the
System Module.

Ensure the extended memory card is properly
seated.

70 EXTENDED
MEMORY CARD
WRITE PROTECTED

The extended memory card in
the System Module is write
protected.

Remove write protection from the memory card
by moving the switch to the correct position.

71 RAM CARD NOT
INSERTED

The RAM memory card is not
inserted in the System Module.

Insert the RAM memory card into the System
Module.

Ensure the RAM memory card is properly
seated.

D-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

D

Command Messages—IMC and Target

Number Command Message Possible Cause(s) Possible Solution(s)

72 RAM CARD
WRITE PROTECTED

The RAM memory card in the
System Module is write
protected.

Remove write protection from the RAM
memory card by moving the switch to the
correct position.

73 COPYING
EXTENDED
MEMORY CARD...

The COPYRAM or
COPYFLASH command has
been entered, and the system is
in the process of copying the
extended memory card.

Wait for the card to be copied.

74 EXTENDED
MEMORY CARD
COPIED

The COPYRAM or
COPYFLASH command has
been entered, and the system
has copied the extended
memory card.

Continue with normal operation.

75 Are you sure you
want to clear the
extended memory card?

The CLX command has
been entered, and the
system is waiting for the
user to respond.

If you are sure that you want to do this, type Y
or y. The system will clear the extended
memory card.

If you are not sure, type N or n. The system
will continue with normal operation.

76 Extended memory
card cleared.

The extended memory card has
been cleared using the CLX
command.

Continue with normal operation.

GFK-2205 E-1

IMC Fault and Status Register Messages

FC—IMC/IMJ System Fault Code Register

Bit
System Fault

Code Message
Possible Cause(s) Possible Solution(s)

0 Power Failure A power failure has occurred.
This fault always occurs when
the system is powered-up.

Use the RSF command to reset
the fault condition.

1 Reserved

2 Software Fault The STF command was
executed.

Use the RSF command to
reset the fault condition.

3 Lost Enable The enable input was
deactivated.

Reactivate the enable input; use
the RSF command to reset the
fault condition.

4 Digital Output Fault The digital input associated with
the digital output did not detect a
change of state in the output
after setting the digital output
register, DO, and the digital
output fault enable, DOE, is
enabled.

Check that the output common is
connected to power return and the
input common is connected to
power supply or vice versa,
depending on whether you have a
sinking or sourcing configuration.

Check that the output is not
shorted.

5 Invalid Command in String The program attempted to
execute the EXVS command,
but the command stored in the
string variable was not
recognized by the system.

The program attempted to
execute the OUTN command,
but the command sent over the
network was not recognized by
the recipient.

The command is misspelled.
Re-enter the correctly spelled
command in the program
editor.

The command is invalid.
Re-enter the valid command in
the program editor.

6 Transmit Buffer Overflow The program has sent more
characters to the transmit buffer
than the COM port can handle.

The PUT, OUT, or OUTS
commands have been executed
multiple times—they are in a
loop. Change the program
accordingly.

7 Resource Not Available The addressed network
controller is not online.

Check network connections.

Check network address and baud
rate.

8 Invalid Variable Pointer The pointer loaded in an integer
variable in a program/motion
block was out of the range of
registers available.

Re-enter the pointer in the
program editor making sure that it
is in the range of the type of
register accessed.

E
Appendix

E-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

E

FC—IMC/IMJ System Fault Code Register

Bit
System Fault

Code Message
Possible Cause(s) Possible Solution(s)

9 Mathematical Overflow The result of an expression in
the program or motion block
was outside the allowed bounds
of the type of expression.

Re-enter the expression in the
program/motion block editor
making sure that the operation
will never go outside the allowed
bounds of the type of expression.

If using an integer expression,
consider using a floating point
expression instead.

10 Mathematical Data Error The result of an expression in
the program or motion block
cannot be represented as a
number.

Make sure that the SQR and LGN
operators in the program/motion
block never have negative
operands.

Make sure that a divide by zero
operation will never occur in the
program/motion block.

11 Value Out of Range The value of a parameter
obtained from a variable or
expression was out of the range
specified for the register or
command in the program or
motion block.

Make sure that the variable or
expression stays within the range
of the register or parameter of the
command. See the Parameter and
Range information in Appendix
A.

12 String Too Long The result of a string variable
operation in the program/ motion
block was longer than
127 characters.

Re-enter the string variable
operation in the
program/motion block editor
making sure that the result is
not more than
127 characters.

13 Nonexistent Label One of these commands was in
the program with a label that
does not exist in the program:
GOTO, GOSUB, IF...GOTO,
IF...GOSUB,
WAIT...ON...GOTO,
STVB...GOTO, FUNCTION.

Re-enter the command in the
program editor making sure that
the label exists in the program.

Add the label number to the
appropriate statement in the
program.

14 Gosub Stack Underflow The RETURN command was
executed without a
corresponding GOSUB.

Make sure the program will
execute a gosub the same number
of times it will execute a return.

Check for program flow through a
subroutine without a gosub call.

15 Gosub Stack Overflow There were more than 32 nested
gosubs in the program.

Make sure the program will
execute a return the same number
of times it will execute a gosub.

If a program leaves a subroutine
without using a RETURN
command, use the POP gosub
stack command to remove the
return address from the gosub
stack.

16 Invalid Motion The combination of motion
parameters defines a motion that
cannot be executed, or a motion
command or motion block was
executed when the system was
faulted.

Make sure that the motion
parameters define a motion that
can be executed. For specific
information about the parameters
you are using, see the commands
information in Appendix A.

Make sure the system is not
faulted when executing a motion
command or motion block.

17 Reserved

GFK-2205 Appendix E IMC Fault and Status Register Messages E-3

E

FC—IMC/IMJ System Fault Code Register

Bit
System Fault

Code Message
Possible Cause(s) Possible Solution(s)

18 Reserved

19 Network Power Failure The network connector is
disconnected, or the network
power is below the minimum
voltage.

Reconnect the network connector.

Inspect the network power source
and replace if required.

20 Duplicate Network
Address

More than one device at the
same MAC ID.

Assign each device a unique
address.

21 Excessive Following Error The following error, FE, was
greater than the following error
bound, FEB.

Make sure that the control
constants are set up properly.

Make sure that the position
feedback wiring is correct.

Make sure that the motor has
sufficient torque.

22 Excessive Command
Increment

Too many motions were
simultaneously executed by the
program.

Make sure that the program does
not execute too many motions
simultaneously.

23 Position Register Overflow The axis has moved past
+/-2,000,000,000 pulses and
position register wrap, PWE, is
disabled.

If the axis is to move constantly in
one direction for long periods of
time, PWE should be enabled.

Make sure that the motion
parameters define a motion that
does not cause position register
overflow. For specific
information about the parameters
you are using, see Appendix A.

24 Position Feedback Lost The position feedback became
disconnected.

Check the position feedback
connection.

25 Motor Power Over-
Voltage

The bus voltage was greater than
475 V.

The clamp did not function
correctly. Make sure that the
wiring is correct.

26

(3 amp IMJ)

26

(7 amp IMJ)

26

(3 & 6 amp IMC)

26

(12–28 amp)

Motor Power Clamp
Excessive Duty Cycle–
Under-Voltage

Motor Power Clamp
Excessive Duty Cycle–
Under-Voltage

Motor Power Clamp
Excessive Duty Cycle–
Under-Voltage

Motor Power Under-
Voltage

The internal clamp was operated
past its rating of 25 W
continuous.

The internal clamp was operated
past its rating of 25 W
continuous, or the motor power
is off.

The internal clamp was
operated past its rating of 50
W continuous, or the motor
power is off.

The motor power is off.

Increase cycle time.

Try using an external clamp
resistor instead.

Turn motor power on.

Replace blown fuse(s).

Try using an external clamp
resistor instead.

Turn motor power on.

Replace blown fuse(s).

Turn motor power on.

Replace blown fuse(s).

E-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

E

FC—IMC/IMJ System Fault Code Register

Bit
System Fault

Code Message
Possible Cause(s) Possible Solution(s)

27

(3 amp IMJ)

27

(3 & 6 amp IMC;

7 amp IMJ)

27

(12–28 amp)

Reserved

Motor Power Clamp
Over-Current Fault

Motor Power Clamp
Excessive Duty Cycle

The external clamp resistance
was less than 50 ohms.

The internal clamp was operated
past its rating of 50 W
continuous.

Make sure that the resistor value
is equal to 50 ohms.

Make sure that the resistor is
correctly wired.

Try using an external clamp
resistor.

28

(3–7 amp)

28

(12–28 amp)

Motor Over-Current
Fault

Motor Over-Current
Fault

The controller was putting out
excessive current through the
motor leads.

The external clamp resistor is
shorted; or the controller was
putting out excessive current
through the motor leads.

Check the wiring of the motor
leads.

Ensure motor leads are not
shorted.

Make sure the clamp leads are not
shorted.

Check the wiring of the motor
leads.

Ensure motor leads are not
shorted.

29 Motor Over-Temperature The temperature sensor in the
motor sensed the motor going
over its maximum allowed
temperature.

Check for a broken wire in motor
feedback cable.

If motor is hot, it is improperly
sized.

30 Control Over-
Temperature

The temperature of the
controller heat sink was
greater than 80 degrees
Celsius.

Check the controller for adequate
air flow. A fan may be needed, or
through-wall heat sink mounting
can be used to allow adequate air
flow.

31 Network Communication
Error

Network is not properly
configured.

Check network configuration.

All bits set to 0 Controller
Functional

The controller is not faulted. Continue with normal operation.

GFK-2205 Appendix E IMC Fault and Status Register Messages E-5

E

FC—IMC/IMJ System Fault Code Register

Bit
System Fault

Code Message
Possible Cause(s) Possible Solution(s)

FI—IMC/IMJ System Fault Input Register

Bit Fault Input Message Possible Solution(s)

0 Position feedback lost input active The position feedback is disconnected.

1 Motor power over-voltage input active The bus voltage is greater than 475 V.

2

(3 amp IMJ)

2

(3 & 6 amp IMC;
7 amp IMJ)

2

(12–28 amp)

Motor power clamp input active

Motor power clamp or under-voltage input active

Motor power under-voltage input active

The internal clamp is on.

The internal clamp is on, or the motor power is
off.

The motor power is off.

3

(3 amp IMJ)

3

(3 & 6 amp IMC;

7 amp IMJ)

3

(12–28 amp)

Reserved

Motor power clamp over-current input
active

Motor power clamp input active

The external clamp resistance is less than
50 ohms.

The internal clamp is on.

4 Motor over-current input active The controller was putting out excessive current
through the motor leads.

5 Motor over-temperature input active The temperature sensor in the motor is sensing
the motor temperature is over its allowed
maximum, or the motor feedback cable is not
connected correctly.

6 Controller over-temperature input active The temperature of the controller heat sink is
greater than 80 degrees Celsius.

7 Network power failure input active The network is disconnected or the network
power source is below the minimum voltage.

All bits set to 0 No fault input is active There are no currently active fault inputs.

E-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

E

IO—IMC/IMJ General I/O Register

Bit General I/O Message Description

0

(IMJ)

0

(IMC)

Reserved

Capture input 2 active The position capture input 2 is active.

1

(IMJ)

1

(IMC)

Reserved

Capture input 2 edge A positive edge was sensed on position
capture input 2.

2 Axis channel A input active Channel A of the axis encoder is active.

3 Axis channel B input active Channel B of the axis encoder is active.

4 Auxiliary channel A input active Channel A of the auxiliary encoder is active.

5 Auxiliary channel B input active Channel B of the auxiliary encoder is active.

6 Auxiliary index input active The index input of the auxiliary encoder is
active.

7 Marker input active The resolver of a resolver feedback unit is at 0,
or the index input of an encoder feedback unit
is active.

8 Home input active The home input is active.

9 Forward overtravel input active The forward overtravel input is active.

10 Reverse overtravel input active The reverse overtravel input is active.

11 Enable input active The enable input is active.

12 Capture input active The position capture input is active.

13 Capture input edge A positive edge was sensed on the position
capture input.

14 Reserved

15 OK output active The OK output is active.

All bits set to 0 No I/O is active None of the above I/O is active.

GFK-2205 Appendix E IMC Fault and Status Register Messages E-7

E

SRA—IMC/IMJ Axis Status Register

Bit Axis Status Message Description

0 Motion generator enabled The motion generator is enabled.

1 Gearing enabled Electronic gearing is enabled.

2 Phase-locked loop enabled The phase-locked loop is enabled.

3 Motion block executing A motion block is executing.

4 Phase error captured The phase error, PHR, has been captured by
the position capture input.

5 Phase error past bound The phase error is past the phase error bound,
PHB.

6 Axis accel/decel The axis is either accelerating or decelerating.

7 Axis direction forward The axis is moving or has last moved in the
forward direction.

8 Axis in position The axis is stopped and within the position
band, IPB, of the command position, PSC.

9 Axis at torque limit The torque limit enable, TLE, is enabled, and
the axis is at the torque limit set by the torque
limit current, TLC.

10 Axis at overtravel The axis is either at a hardware overtravel
input or a software overtravel limit.

11 Axis at software overtravel The axis is at a software overtravel limit.

12 Motion suspended The motion of the axis has been suspended.

13 AXIS FAULT A fault specific to the axis has occurred.

14 Cam enabled Cam following is enabled.

15 Reserved

Bits 7set to 0 Axis direction reverse The axis is moving or has last moved in the
reverse direction.

E-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

E

SRP—IMC/IMJ Program Status Register

Bit Program Status Message Description

0 Program executing The program is executing.

1 Program locked out The program is being locked out by another
program.

2 Reserved

3 Reserved

4 Invalid digit in string The program specified a string variable to
floating point or integer variable
conversion, and the string variable
contained an invalid digit; or the floating
point or integer variable input by the IN
command contained an invalid digit.

5 String value out of range The program specified a string variable to
floating point or integer variable conversion,
and the string variable contained a number out
of the range of the variable; or the floating
point or integer variable input by the IN
command was out of the range of the variable.

6 Floating point value out of range The program specified a floating point to
integer variable conversion and the floating
point variable contained a number out of the
range of the integer variable.

7

(IMJ)

Reserved

7

(IMC)

Invalid time/date The program specified a time/date to integer
variable conversion and the string variable
contained an invalid time/date.

8 Invalid command acknowledgment The OUSN command was executed, and the
responding device didn’t accept the command
as valid.

9

(IMJ)

9

(IMC)

Variable save failure

Screen lines save failure

The SVV command was executed and
variables couldn’t be saved in flash memory.

The SVL command was executed, and
the screen lines could not be saved in
flash memory.

10-14 Reserved

15 PROGRAM FAULT The program specified caused the system
to fault.

All bits set to 0 Program not executing The program specified is not executing.

GFK-2205 Appendix E IMC Fault and Status Register Messages E-9

E

SRS—IMC/IMJ System Status Register

Bit System Status Message Description

0 Program executing One of the programs is executing.

1 Program locked out One of the executing programs is being locked
out by another program.

2 Reserved

3 Motion block executing One of the motion blocks is executing.

4 Key buffer empty The key buffer contains no characters to be
input by the GET or IN command.

5 Transmit buffer empty The transmit buffer of the controller is empty.

6 Network connection available There is a connection available for
communication.

7 Network on-line The network is ready to communicate.

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 I/O FAULT A digital output fault has occurred. See the
Digital Output Fault message for the FC
register in Appendix E for more information.

13 AXIS FAULT A fault specific to the axis has occurred.

14 SYSTEM FAULT A fault has occurred. This could be any fault
possible in the system.

15 MEMORY FAULT A memory fault has occurred due to the user
program memory not checksumming.

Bits 0 set to 0 No program executing None of the programs is executing.

Bits 4 set to 0 Character in key buffer A character is available to be input by the GET
or IN command.

GFK-2205 F-1

Target Fault and Status Register Messages

AME, DME, SME—Target Module Assignment Error Register

Bit Module Assignment

Error Message

Possible Cause(s) Possible Solution(s)

0 Module in rack one, slot
one did not respond to
assignment

The module assigned to rack one, slot
one is not in the rack with the System
Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

1 Module in rack one, slot
two did not respond to
assignment

The module assigned to rack one, slot
two is not in the rack with the System
Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

2 Module in rack one, slot
three did not respond to
assignment

The module assigned to rack one, slot
three is not in the rack with the
System Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

3 Module in rack one, slot
four did not respond to
assignment

The module assigned to rack one, slot
four is not in the rack with the System
Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

4 Module in rack one, slot
five did not respond to
assignment

The module assigned to rack one, slot
five is not in the rack with the System
Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

5 Module in rack one, slot
six did not respond to
assignment

The module assigned to rack one, slot
six is not in the rack with the System
Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

6 Module in rack one, slot
seven did not respond to
assignment

The module assigned to rack one, slot
seven is not in the rack with the
System Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

7 Module in rack one, slot
eight did not respond to
assignment

The module assigned to rack one, slot
eight is not in the rack with the
System Module or is not functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

F
Appendix

F-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

AME, DME, SME—Target Module Assignment Error Register

Bit Module Assignment

Error Message

Possible Cause(s) Possible Solution(s)

8 Module in rack two, slot
one did not respond to
assignment

The module assigned to rack two, slot
one is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

9 Module in rack two, slot
two did not respond to
assignment

The module assigned to rack two, slot
two is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

10 Module in rack two, slot
three did not respond to
assignment

The module assigned to rack two, slot
three is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

11 Module in rack two, slot
four did not respond to
assignment

The module assigned to rack two, slot
four is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

12 Module in rack two, slot
five did not respond to
assignment

The module assigned to rack two, slot
five is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

13 Module in rack two, slot
six did not respond to
assignment

The module assigned to rack two, slot
six is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

GFK-2205 Appendix F Target Fault and Status Register Messages F-3

F

AME, DME, SME—Target Module Assignment Error Register

Bit Module Assignment

Error Message

Possible Cause(s) Possible Solution(s)

14 Module in rack two, slot
seven did not respond to
assignment

The module assigned to rack two, slot
seven is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

15 Module in rack two, slot
eight did not respond to
assignment

The module assigned to rack two, slot
eight is not in the rack with the
expansion module (which is
connected directly to the System
Module) or is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack two
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

16 Module in rack three,
slot one did not respond
to assignment

The module assigned to rack three,
slot one is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

17 Module in rack three,
slot two did not respond
to assignment

The module assigned to rack three,
slot two is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

18 Module in rack three,
slot three did not
respond to assignment

The module assigned to rack three,
slot three is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

19 Module in rack three,
slot four did not
respond to assignment

The module assigned to rack three,
slot four is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

F-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

AME, DME, SME—Target Module Assignment Error Register

Bit Module Assignment

Error Message

Possible Cause(s) Possible Solution(s)

20 Module in rack three,
slot five did not respond
to assignment

The module assigned to rack three,
slot five is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

21 Module in rack three,
slot six did not respond
to assignment

The module assigned to rack three,
slot six is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

 Make sure that the module is in the
correct slot.

Replace the module if not
functional.

22 Module in rack three,
slot seven did not
respond to assignment

The module assigned to rack three,
slot seven is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in
the correct slot.

23 Module in rack three,
slot eight did not
respond to assignment

The module assigned to rack three,
slot eight is not in the rack with the
expansion module (which is
connected to rack two by the
expansion module) or is not
functional.

Replace the module if not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module in rack three
is either not installed or not
functional.

Make sure that the module is in the
correct slot.

Replace the module if not
functional.

All bits set to
0

All module assignments
are correct

All modules are properly installed and
functional.

Continue with normal operation.

GFK-2205 Appendix F Target Fault and Status Register Messages F-5

F

AXE—Target Axis Assignment Error Register

Bit Axis Assignment

Error Message

Possible Cause(s) Possible Solution(s)

0 Axis one did not
respond to
assignment

An Axis Module is not in the rack with the
System Module, or it is not functional.

Make sure that the Axis Module is in
the rack with the System Module.

Replace the module if not functional.

1 Axis two did not
respond to
assignment

An Axis Module is not in the rack with the
System Module, or it is not functional.

Make sure that the Axis Module is in
the rack with the System Module.

Replace the module if not functional.

2 Axis three did not
respond to
assignment

A Four-Axis Module is not in the rack
with the System Module, or it is not
functional.

Make sure that a Four-Axis Module is
in the rack with the System Module.

Replace the module if not functional.

3 Axis four did not
respond to
assignment

A Four-Axis Module is not in the rack
with the System Module, or it is not
functional.

Make sure that a Four-Axis Module is
in the rack with the System Module.

Replace the module if not functional.

4 Axis five did not
respond to
assignment

An Axis Module is not in the rack with the
expansion module, or it is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module is either not
installed or not functional.

Make sure that the Axis Module is in
the rack with the expansion module.

Replace the module if not functional.

5 Axis six did not
respond to
assignment

An Axis Module is not in the rack with the
expansion module, or it is not functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module is either not
installed or not functional.

Make sure that the Axis Module is in
the rack with the expansion module.

Replace the module if not functional.

6 Axis seven did not
respond to
assignment

A Four-Axis Module is not in the rack
with the expansion module, or it is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module is either not
installed or not functional.

Make sure that a Four-Axis Module is
in the rack with the expansion module.

Replace the module if not functional.

7 Axis eight did not
respond to
assignment

A Four-Axis Module is not in the rack
with the expansion module, or it is not
functional.

Check the rack expansion cables to
see if they are correctly installed.

The expansion module is either not
installed or not functional.

Make sure that a Four-Axis Module is
in the rack with the expansion module.

Replace the module if not functional.

All bits
set to 0

All axis assignments
are correct

All Axis Modules are properly installed
and functional.

Continue with normal operation.

F-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

FCA—Target Axis Fault Code Register

Bit Axis Fault

Code Message

Possible Cause(s) Possible Solution(s)

0 Power Failure A power failure has occurred. This fault
always occurs when the system is
powered-up.

Use the RSFALL command to reset
the fault condition.

1 Encoder Supply Fault The encoder power supply of an Axis
Module is not functioning correctly.

Check for short on power supply.

Replace Power Module.

2 Software Fault The STFA command was executed. Use the RSFA command to reset the
fault condition.

3 Lost Enable The enable input was deactivated. Reactivate the enable input and use
the RSFA command to reset the fault
condition.

4 Excessive Following
Error

The following error, FE, was greater than
the following error bound, FEB.

Make sure that the control constants
are set up properly.

Make sure that the position feedback
wiring is correct.

Make sure that the motor has
sufficient torque.

5 Excessive Command
Increment

Too many motions were simultaneously
executed by the program.

Make sure that the program does not
execute too many motions
simultaneously.

6 Position Register
Overflow

The axis has moved past +/-2,000,000,000
pulses, and position register wrap, PWE, is
disabled.

If the axis is to move constantly in one
direction for long periods of time,
PWE should be enabled.

Make sure that the motion parameters
define a motion that does not cause
position register overflow. For
specific information about the
parameters you are using, see
Appendix A.

7 Position Feedback
Lost

The position feedback became
disconnected.

Check the position feedback
connection.

8 Motor Power
Under-Voltage

The motor power is off. Turn motor power on.

Replace blown fuse(s).

9 Motor Power
Over-Voltage

The bus voltage was greater than 475 V. The clamp did not function correctly.
Make sure that the wiring is correct.

10 Motor Power Clamp
Excessive Duty
Cycle

The internal clamp was operated past its
rating of 50 W continuous.

Try using an external clamp.

11 Motor Power Clamp
Current Fault

The external clamp resistance was less
than 12 ohms.

Make sure that the resistor value is
equal to 12 ohms.

Make sure that the resistor is correctly
wired.

12 Servo Module
Current Fault

The module was not able to control the
current to the motor correctly.

Check the wiring of the motor leads.

Make sure that the motor leads are not
shorted.

13 Servo Module
Over-Temperature

The temperature of the Servo Module heat
sink was greater than 80 degrees Celsius.

Check the Servo Module for adequate
air flow.

14 Power Module
Over-Temperature

The temperature of the Power Module
heat sink was greater than 80 degrees
Celsius.

Check the Power Module for adequate
air flow.

15 Motor
Over-Temperature

The temperature sensor in the motor
sensed the motor going over its maximum
allowed temperature.

Check for a broken wire in the motor
feedback cable.

If motor is hot, it is improperly sized.

16 Reserved

17 Reserved

GFK-2205 Appendix F Target Fault and Status Register Messages F-7

F

FCA—Target Axis Fault Code Register

Bit Axis Fault

Code Message

Possible Cause(s) Possible Solution(s)

18 Reserved

19 Reserved

20 Set Point Output
Fault

The axis set point input did not detect a
change of state in the axis set point output
after executing the SPOA or SPA
command.

Check that the output common is
connected to power return and the
input common is connected to power
supply or vice versa, depending on
whether you have a sinking or
sourcing configuration.

Check that the output is not shorted.

21 Reserved

22 Reserved

23 Reserved

24 System
Communication
Error

The System Module and the Axis Module
are not communicating properly.

Replace System Module and/or Axis
Module if fault will not go away with
RSFA command.

25 Servo Module
Communication
Error

The Servo Module and the Axis Module
are not communicating properly.

Try reassigning modules with the
SM command.

Replace Servo Module and/or Axis
Module if fault will not go away with
RSFA command.

26 Reserved

27 Reserved

28 Reserved

29 Reserved

30 Reserved

31 Servo Module
Assignment Error

A Servo Module is not in the correct rack
slot or it is not functional.

Type SME? to find which module is
causing the error.

All bits
set to 0

Axis Functional The axis is not faulted . Continue with normal operation.

F-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

FCS—Target System Fault Code Register

Bit System Fault

Code Message

Possible Cause(s) Possible Solution(s)

0 Power Failure A power failure has occurred. This fault
always occurs when the system is
powered-up.

Use the RSFALL command to reset
the fault condition.

1 24 Volt Supply Fault The 24 V power supply of the System
Module is not functioning correctly.

Check for short on power supply.

Replace Power Module.

2 Software Fault The STFS command was executed. Use the RSFS command to reset the
fault condition.

3 Lost Enable The enable input was deactivated. Reactivate the enable input and use
the RSFS command to reset the fault
condition.

4 Digital Output Fault The digital input associated with the
digital output did not detect a change of
state in the output after setting the digital
output register, DO; and the digital output
fault enable, DOE, is enabled.

Check that the output common is
connected to power return and the
input common is connected to power
supply or vice versa, depending on
whether you have a sinking or
sourcing configuration.

Check that the output is not shorted.

5 Invalid Command in
String

An attempt was made by the program to
execute the EXVS command, but the
command stored in the string variable was
not recognized by the system.

The command is misspelled. Re-enter
the correctly spelled command in the
program editor.

The command is invalid. Re-enter the
valid command in the program editor.

6 User Transmit Buffer
Overflow

The program has sent more characters to
the transmit buffer than the user serial port
can handle.

The PUT or OUT commands have
been executed multiple times—they
are in a loop. Change the program
accordingly.

7 Resource Not
Available

An attempt was made to execute a
command specific to a module, but the
module is not available. The addressed
network controller is not online.

Double check the configuration of the
system.

Check the network connections,
network address, and baud rate.

8 Invalid Variable
Pointer

The pointer loaded in an integer variable
in a program/motion block was out of the
range of registers available.

Re-enter the pointer in the program
editor making sure that it is in the
range of the type of register accessed.

9 Mathematical
Overflow

The result of an expression in the
program or motion block was outside
the allowed bounds of the type of
expression.

Re-enter the expression in the
program/motion block editor making
sure that the operation will never go
outside the allowed bounds of the type
of expression.

If using an integer expression,
consider using a floating point
expression instead.

10 Mathematical Data
Error

The result of an expression in the program
or motion block cannot be represented as a
number.

Make sure that the SQR and LGN
operators in the program/motion block
never have negative operands.

Make sure that a divide by zero
operation will never occur in the
program/motion block.

11 Value Out of Range The value of a parameter obtained from a
variable or expression was out of the range
specified for the register or command in
the program or motion block.

Make sure that the variable or
expression stays within the range of
the register or parameter of the
command. See the Parameter and
Range information in Appendix A.

12 String Too Long The result of a string variable
operation in the program/motion
block was longer than 127 characters.

Re-enter the string variable operation
in the program/motion block editor
making sure that the result is not more
than 127 characters.

GFK-2205 Appendix F Target Fault and Status Register Messages F-9

F

FCS—Target System Fault Code Register

Bit System Fault

Code Message

Possible Cause(s) Possible Solution(s)

13 Nonexistent Label One of these commands was in the
program with a label that does not exist in
the program: GOTO, GOSUB,
IF...GOTO, IF...GOSUB,
WAIT...ON...GOTO, STVB...GOTO,
FUNCTION.

Re-enter the command making sure
that the label exists in the program.

Add the label number to the
appropriate statement in the program.

14 Gosub Stack
Underflow

The RETURN command was executed
without there being a corresponding
GOSUB.

Make sure that the program will
execute a gosub the same number of
times that it will execute a return.

Check for program flow through a
subroutine without a gosub call.

15 Gosub Stack
Overflow

There were more than 32 nested gosubs in
the program.

Make sure that the program will
execute a return the same number of
times that it will execute a gosub.

If a program leaves a subroutine
without using a RETURN command,
use the POP gosub stack command to
remove the return address from the
gosub stack.

16 Invalid Motion The combination of motion parameters
defines a motion that cannot be executed,
or a motion command or motion block
was executed when the system was
faulted.

Make sure that the motion parameters
define a motion that can be executed.
For specific information about the
parameters you are using, see the
command summary.

Make sure the system is not faulted
when executing a motion command or
motion block.

17 Inconsistent Axis
Groupings

Two motion commands with intersecting
axis sets were executed together.

Make sure that coordinated motion
commands running together are
consistent.

18 Duplicate Network
Address

More than one device at the same MAC
ID.

Assign each device a unique address.

19 Network Power
Failure

The network connector is disconnected, or
the network power is below the minimum
voltage.

Reconnect the network connector.

Inspect the network power source and
replace if required.

20 Set Point Output
Fault

The system set point input did not detect a
change of state in the system set point
output after executing the SPOS or SPS
command.

Check that the output common is
connected to power return and the
input common is connected to
power supply or vice versa,
depending on whether you have a
sinking or sourcing configuration.

Check that the output is not shorted.

21 Tertiary Transmit
Buffer Overflow

The program has sent more characters to
the transmit buffer than the tertiary port
can handle.

The PUTT or OUTT commands have
been executed multiple times; they are
in a loop. Change the program
accordingly.

22 Program Transmit
Buffer Overflow

The program has sent more characters to
the transmit buffer than the program port
can handle.

The PUTW, OUTW, or OUTS
commands have been executed
multiple times; they are in a loop.
Change the program accordingly.

23 Firmware Load Error The firmware did not load correctly. Try to reload the firmware.

24 Axis Communication
Error

The System Module is not
communicating properly with one of
the axes.

Type SRC? to determine the specific
axis that is causing the error.

25 I/O Communication
Error

The System Module is not communicating
properly with one of the I/O Modules.

Type SRC? to determine the specific
I/O Module that is causing the error.

F-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

FCS—Target System Fault Code Register

Bit System Fault

Code Message

Possible Cause(s) Possible Solution(s)

26 User Port
Communication
Error

The System Module and the device
connected to the user port are not
communicating properly.

Check to make sure that the user serial
port settings (baud, parity, databits)
are correct.

Check the connection to the user port.

27 Network
Communication
Error

Network is not configured properly. Check network configuration.

28 Axis Assignment
Error

An Axis Module is not in the rack, or it is
not functional.

Type AXE? to find which axis is
causing the error.

29 Analog Module
Assignment Error

An Analog Module is not in the correct
rack slot, or it is not functional.

Type AME? to find which module is
causing the error.

30 Digital Module
Assignment Error

A Digital Module is not in the correct rack
slot, or it is not functional.

Type DME? to find which module is
causing the error.

31 Servo Module
Assignment Error

A Servo Module is not in the correct rack
slot, or it is not functional.

Type SME? to find which module is
causing the error.

All bits
set to 0

System Functional The system is not faulted. Continue with normal operation.

IOA—Target Axis I/O Register

Bit Axis I/O Message Description

0 Set point output active The set point output is active.

1 Set point input active The set point input is active.

2 Axis channel A input active Channel A of the axis encoder is active.

3 Axis channel B input active Channel B of the axis encoder is active.

4 Auxiliary channel A input active Channel A of the auxiliary encoder is active.

5 Auxiliary channel B input active Channel B of the auxiliary encoder is active.

6 Position feedback lost input active The position feedback is disconnected.

7 Marker input active The resolver of a resolver feedback unit is at 0 or the index
input of an encoder feedback unit is active.

8 Home input active The home input is active.

9 Forward overtravel input active The forward overtravel is active.

10 Reverse overtravel input active The reverse overtravel input is active.

11 Enable input active The enable input is active.

12 Capture input active The position capture input is active.

13 Capture input edge A positive edge was sensed on the position capture input.

14 Motor over-temperature input active The temperature sensor in the motor is sensing the
motor temperature over its allowed maximum, or the
motor feedback cable is not connected properly.

15 OK output active The OK output is active.

All bits set
to 0

No I/O is active None of the above I/O is active.

GFK-2205 Appendix F Target Fault and Status Register Messages F-11

F

IOS—Target System I/O Register

Bit System I/O Message Description

0 Set point output active The set point output is active.

1 Set point input active The set point input is active.

2 Flash memory card inserted The flash memory card is inserted.

3 Flash memory card write protected The flash memory card is write protected.

4 Extended memory card inserted The extended memory card is inserted.

5 Extended memory card write protected The extended memory card is write protected.

6 Extended memory card battery low The battery in the extended memory card is low.

7 Extended memory card battery dead The battery in the extended memory card is dead.

8 Teach pendant available The teach pendant is available for use.

9 Suspend input active The suspend input is active.

10 Resume input active The resume input is active.

11 Enable input active The enable input is active.

12 Network power failure input active The network is disconnected, or the network power source
is below the minimum voltage.

13 Reserved

14 Ready output active The ready output is active.

15 OK output active The OK output is active.

All bits set
to 0

No I/O is active None of the above I/O is active.

F-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

SRA—Target Axis Status Register

Bit Axis Status Message Description

0 Motion generator enabled The motion generator is enabled.

1 Gearing enabled Electronic gearing is enabled.

2 Phase-locked loop enabled The phase-locked loop is enabled.

3 Motion block executing A motion block specifying the axis is executing.

4 Phase error captured The phase error, PHR, has been captured by the position
capture input.

5 Phase error past bound The phase error is past the phase error bound, PHB.

6 Axis accel/decel The axis is either accelerating or decelerating.

7 Axis direction forward The axis is moving or has last moved in the forward
direction.

8 Axis in position The axis is stopped and within the position band, IPB, of
the command position, PSC.

9 Axis at torque limit The torque limit enable, TLE, is enabled, and the axis is at
the torque limit set by the torque limit current, TLC.

10 Axis at overtravel The axis is either at a hardware overtravel input or a
software overtravel limit.

11 Axis at software overtravel The axis is at a software overtravel limit.

12 Motion suspended The motion of the axis has been suspended.

13 AXIS FAULT A fault specific to the axis has occurred.

14 Cam enabled Cam following is enabled.

15 Play/record enabled Playback or record of positions is enabled.

Bit 7 set to 0 Axis direction reverse The axis is moving or has last moved in the reverse
direction.

SRAM—Target Analog Module Status Register

Bit Analog Module Status Message Description

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 System Communication Error The Analog Module specified is not communicating
properly with the System Module.

8 Reserved

9 Reserved

10 Reserved

11 Module enabled The Analog Module specified is enabled.

12 MODULE FAULT The Analog Module specified is faulted.

Bit 12 set
to 0

Module Functional The Analog Module specified is not faulted.

GFK-2205 Appendix F Target Fault and Status Register Messages F-13

F

SRC—Target Communication Status Register

Bit Communication

Status Message

Possible Cause(s) Possible Solution(s)

0 Axis one
communication is bad

The System Module is not
communicating properly with axis one.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

1 Axis two
communication is bad

The System Module is not
communicating properly with axis two.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

2 Axis three
communication is bad

The System Module is not
communicating properly with axis
three.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

3 Axis four
communication is bad

The System Module is not
communicating properly with axis four.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

4 Axis five
communication is bad

The System Module is not
communicating properly with axis five.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

5 Axis six
communication is bad

The System Module is not
communicating properly with axis six.

Replace System Module and/or
Axis Module if fault will not go
away with the RSFALL
command.

6 Axis seven
communication is bad

The System Module is not
communicating properly with axis
seven.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

7 Axis eight
communication is bad

The System Module is not
communicating properly with axis eight.

Replace System Module and/or Axis
Module if fault will not go away with
the RSFALL command.

8 Analog Module one
communication is bad

The System Module is not
communicating properly with
Analog Module one.

Try reassigning the module with the
AM1 command.

Replace System Module and/or
Analog Module if fault will not go
away with the RSFALL command.

9 Analog Module two
communication is bad

The System Module is not
communicating properly with Analog
Module two.

Try reassigning the module with the
AM2 command.

Replace System Module and/or
Analog Module if fault will not go
away with the RSFALL command.

10 Analog Module three
communication is bad

The System Module is not
communicating properly with Analog
Module three.

Try reassigning the module with the
AM3 command.

Replace System Module and/or
Analog Module if fault will not
go away with the RSFALL
command.

11 Analog Module four
communication is bad

The System Module is not
communicating properly with
Analog Module four.

Try reassigning the module with the
AM4 command.

Replace System Module and/or
Analog Module if fault will not go
away with the RSFALL command.

12 Reserved

13 Reserved

14 Reserved

15 Reserved

F-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

SRC—Target Communication Status Register

Bit Communication

Status Message

Possible Cause(s) Possible Solution(s)

16 Digital Module one
communication is bad

The System Module is not
communicating properly with
Digital Module one.

Try reassigning the module with the
DM1 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

17 Digital Module two
communication is bad

The System Module is not
communicating properly with
Digital Module two.

Try reassigning the module with the
DM2 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

18 Digital Module three
communication is
bad

The System Module is not
communicating properly with
Digital Module three.

Try reassigning the module with the
DM3 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

19 Digital Module four
communication is bad

The System Module is not
communicating properly with Digital
Module four.

Try reassigning the module with the
DM4 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

20 Digital Module five
communication is bad

The System Module is not
communicating properly with
Digital Module five.

Try reassigning the module with the
DM5 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

21 Digital Module six
communication is
bad

The System Module is not
communicating properly with Digital
Module six.

Try reassigning the module with the
DM6 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

22 Digital Module seven
communication is
bad

The System Module is not
communicating properly with Digital
Module seven.

Try reassigning the module with the
DM7 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

23 Digital Module eight
communication is bad

The System Module is not
communicating properly with
Digital Module eight.

Try reassigning the module with the
DM8 command.

Replace System Module and/or
Digital Module if fault will not go
away with the RSFALL command.

All bits
set to 0

All communication is
ok

All modules are communicating
properly with each other.

Continue with normal operation.

GFK-2205 Appendix F Target Fault and Status Register Messages F-15

F

SRDM—Target Digital Module Status Register

Bit Digital Module Status Message Description

0 Reserved

1 Output Fault The digital input associated with the digital output did not
detect the output in the correct state as specified by the DO
register.

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 24 Volt Supply Fault The 24 V power supply of the specified module is not
functioning correctly.

7 System Communication Error The Digital Module specified is not communicating
properly with the System Module.

8 Reserved

9 Reserved

10 Reserved

11 Module Enabled The Digital Module specified is enabled.

12 MODULE FAULT The Digital Module specified is faulted.

Bit 12 set
to 0

Module Functional The Digital Module specified is not faulted.

F-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

SRP—Target Program Status Register

Bit Program

Status Message

Description

0 Program executing The program is executing.

1 Program locked out The program is being locked out by another program.

2 Reserved

3 Reserved

4 Invalid digit in string The program specified a string variable to floating point or integer variable
conversion, and the string variable contained an invalid digit; or the floating
point or integer variable input by the IN command contained an invalid
digit.

5 String value out of range The program specified a string variable to floating point or integer variable
conversion, and the string variable contained a number out of the range of
the variable; or the floating point or integer variable input by the IN
command was out of the range of the variable.

6 Floating point value out of
range

The program specified a floating point to integer variable conversion, and
the floating point variable contained a number out of the range of the integer
variable.

7 Invalid time/date The program specified a time/date to integer variable conversion and the
string variable contained an invalid time/date.

8 Invalid command
acknowledgment

The OUSN command was executed, and the responding device didn’t
accept the command as valid.

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 PROGRAM FAULT The program specified caused the system to fault.

Bit 0 set
to 0

Program not executing The program specified is not executing.

GFK-2205 Appendix F Target Fault and Status Register Messages F-17

F

SRS—Target System Status Register

Bit System Status Message Description

0 Program executing One of the programs is executing.

1 Program locked out One of the executing programs is being locked out by another program.

2 Reserved

3 Motion block executing One of the motion blocks is executing.

4 User receive buffer empty The user serial port receive buffer contains no characters to be input by the
GET or IN command.

5 User transit buffer empty The user serial port transmit buffer contains no characters to be output.

6 Network connection
available

There is a connection available for communication.

7 Network on-line The network is ready to communicate.

8 All axes in position All axes are stopped and within the position band, IPB, of the command
position, PSC.

9 Axis at torque limit An axis is at the torque limit set by the torque limit current, TLC.

10 Axis at overtravel An axis is either at a hardware overtravel input or a software overtravel
limit.

11 Axis at software overtravel An axis is at a software overtravel limit.

12 I/O FAULT A digital or an analog I/O Module is faulted.

13 AXIS FAULT An axis is faulted.

14 SYSTEM FAULT Any fault possible in the system has occurred.

15 MEMORY FAULT A memory fault has occurred due to the user program memory not
checksumming.

Bit 0 set
to 0

No program executing None of the programs is executing.

Bit 4 set
to 0

Character in use buffer A character is available to be input by the GRT or IN command.

F-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

F

SRSM—Target Servo Module Status Register

Bit Servo Module

Status Message

Description

0 Under-Voltage The motor power is off.

1 Over-Voltage The bus voltage was greater than 475 V.

2 Clamp Excessive Duty
Cycle

The internal clamp was operated past its rating of 50 W continuous.

3 Clamp Current Fault The external clamp resistance was less than 12 ohms.

4 Current Fault The Servo Module was not able to control the current to the motor correctly.

5 Over-Temperature The temperature of the Servo Module heat sink was greater than 80 degrees
Celsius.

6 Power Module
Over-Temperature

The temperature of the Power Module heat sink was greater than
80 degrees Celsius.

7 Axis Communication Error The Servo Module and the Axis Module are not communicating properly.

8 Servo Module
Communication Error

The Servo Module and the Axis Module are not communicating properly.

9 Reserved

10 Reserved

11 Module Enabled The Servo Module specified is enabled.

12 MODULE FAULT The Servo Module specified is faulted.

Bit 12
set to 0

Module Functional The Servo Module specified is not faulted.

SRT—Target Tertiary Status Register

Bit Tertiary

Status Message

Description

0 Reserved

2 Key buffer empty The key buffer contains no characters to be input by the GETW or INW
command.

3 Program transmit buffer
empty

The program transmit buffer contains no characters to be output.

4 Tertiary receive buffer
empty

The tertiary receive buffer contains no characters to be input by the GETT
or INT command.

5 Tertiary transmit buffer
empty

The tertiary transmit buffer contains no characters to be output.

16 No tertiary status active No tertiary status is active.

Bit 2 set
to 0

Character in key buffer The key buffer contains a character to be input by the GETW or INW
command.

Bit 4 set
to 0

Character in tertiary buffer A character is available to be input by the GETT or INT command.

GFK-2205 G-1

Motion Templates

This appendix provides details on the following types of Motion templates:

 Homing Routines

 Velocity-Based Moves

 Time-Based Moves

 Pulse-Based Moves

 Torque-Limited Moves

 Synchronized Moves

 Trajectory Moves

G
Appendix

G-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Homing Routines

Run Reverse until Home Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT of Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHHM.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until home input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until the home input is off. Run reverse until

(* home input, then stop and run back to the position where the

(* home input was detected. Set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

GFK-2205 Appendix G Motion Templates G-3

G

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVF (* run forward

WAIT NOT IO8 (* wait for home input to be off

RHR (* run reverse until home input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHHM.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse until home input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until the home input is off. Run reverse

(* until home input, then stop and run back to the position where

(* the home input was detected. Set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MVL = .0 (* set motion velocity, units/sec

RVF (* run axis forward

WAIT NOT IOA .8 (* wait for home input to be off

RHR (* run axis reverse until home input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

G-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Run Reverse until Marker Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until marker input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run reverse until marker input, then stop and run back to the

(* position where the marker input was detected. Set position to

(* zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVM = .0 (* set motion velocity for run to marker, units/sec

RMR (* run reverse until marker input

GFK-2205 Appendix G Motion Templates G-5

G

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse until marker input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis reverse until marker input, then stop and run back to

(* the position where the marker input was detected. Set position

(* to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MJK = 0 (* set motion jerk percentage, % of accel & decel

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MVM = .0 (* set motion velocity for run to marker, units/sec

RMR (* run axis reverse until marker input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

G-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Run Reverse until Overtravel Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHOT.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until overtravel input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until reverse overtravel input is off. Run reverse

(* until overtravel input, then stop and run back to the position

(* where the overtravel input was detected. Set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVF (* run forward

WAIT NOT IO 0 (* wait for reverse overtravel input to be off

ROR (* run reverse until overtravel input

GFK-2205 Appendix G Motion Templates G-7

G

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHOT.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse until overtravel input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until reverse overtravel input is off. Run

(* reverse until overtravel input, then stop and run back to the

(* position where the overtravel input was detected. Set position

(* to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MJK = 0 (* set motion jerk percentage, % of accel & decel

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MVL = .0 (* set motion velocity, units/sec

RVF (* run axis forward

WAIT NOT IOA . 0 (* wait for reverse overtravel input to be off

ROR (* run axis reverse until overtravel input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

G-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Run Reverse until Home and Marker Inputs

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHHMMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until home and marker inputs

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until home input is off. Run reverse until home

(* input is on. Run reverse until the marker input, then stop and

(* run back to that position. Wait until axis is in position and set

(* position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MVM = .0 (* set motion velocity for move to marker, units/sec

RVF (* run forward

WAIT NOT IO8 (* wait for home input to be off

RHR (* run reverse until home input

GFK-2205 Appendix G Motion Templates G-9

G

WAIT IP (* wait for axis to be in position

RMR (* run reverse until index input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHHMMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse until home and marker inputs

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until home input is off. Run reverse until

(* home input is on. Run reverse until the marker input, then stop

(* and run back to that position. Wait until axis is in position and

(* set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MJK = 0 (* set motion jerk percentage, % of accel & decel

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MVL = 2.0 (* set motion velocity, units/sec

MVM = .0 (* set motion velocity for move to marker, units/sec

RVF (* run axis forward

WAIT NOT IOA .8 (* wait for home input to be off

RHR (* run axis reverse until home input

WAIT IP (* wait for axis to be in position

RMR (* run axis reverse until index input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

G-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Run Reverse until Overtravel and Marker Inputs

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHOTMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until overtravel and marker inputs

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until reverse overtravel input is off. Run reverse

(* until overtravel input. Run forward until marker input, then

(* stop and run back to the position where the marker input was

(* detected. Set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MVM = .0 (* set motion velocity for run to marker, units/sec

RVF (* run forward

WAIT NOT IO 0 (* wait for reverse overtravel input to be off

GFK-2205 Appendix G Motion Templates G-11

G

ROR (* run reverse until overtravel input

WAIT IP (* wait for axis to be in position

RMF (* run forward until index input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHOTMK.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC

(* Move Type: Run reverse until overtravel and marker inputs

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until reverse overtravel input is off. Run

(* reverse until overtravel input. Run forward until marker input,

(* then stop and run back to the position where the marker input

(* was detected. Set position to zero.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MVM = .0 (* set motion velocity for run to marker, units/sec

RVF (* run axis forward

WAIT NOT IOA . 0 (* wait for reverse overtravel input to be off

ROR (* run axis reverse until overtravel input

WAIT IP (* wait for axis to be in position

RMF (* run axis forward until index input

WAIT IP (* wait for axis to be in position

PSA = 0.0 (* set axis position, units

G-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Run Reverse until Torque Limit

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_RHTQLT.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse until torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run reverse until torque limit reached. Disable torque limit

(* and set position to zero once axis is in position.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVR (* run reverse

WAIT TL (* wait axis to be at torque limit

HT (* halt all motion

GFK-2205 Appendix G Motion Templates G-13

G

TLE = OFF (* disable torque limit

PSA = 0.0 (* set axis position, units

Target Template

(* Motion Template: T_RHTQLT.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse until torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis reverse until torque limit reached. Disable torque

(* limit and set position to zero once axis is in position.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MJK = 0 (* set motion jerk percentage, % of accel & decel

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVR (* run axis reverse

WAIT TL (* wait axis to be at torque limit

HT (* halt all motion

TLE = OFF (* disable torque limit

PSA = 0.0 (* set axis position, units

G-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based Moves

Velocity-Based, Continuous Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_MVCON.TXT

(* Revision Log: REV 098OCT0

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, continuous move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move forward with a velocity of 2 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

RVF (* run forward

GFK-2205 Appendix G Motion Templates G-15

G

Target Template

(* Motion Template: T_MVCON.TXT

(* Revision Log: REV 098OCT0

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, continuous move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback

(* resolution

(* Motion: Move axis forward with a velocity of 2 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

RVF (* run axis forward

G-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based, Incremental Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_MVINC.TXT

(* Revision Log: REV 098OCT0

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move forward 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPI = 0.0 (* set incremental move position, units

RPI (* run to incremental move position

GFK-2205 Appendix G Motion Templates G-17

G

Target Template

(* Motion Template: T_MVINC.TXT

(* Revision Log: REV 098OCT0

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, incremental move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* Motion: Move axis forward 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPI = 0.0 (* set axis incremental move position, units

RPI (* run axis to incremental move position

G-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based, Absolute Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA at the end of a homing motion.

IMC & IMJ Template

(* Motion Template: I_MVABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to absolute position of 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Move axis to absolute position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

GFK-2205 Appendix G Motion Templates G-19

G

MVL = 2.0 (* set motion velocity, units/sec

MPA = 0.0 (* set absolute move position, units

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MVABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, absolute move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* Motion: Move axis to absolute position of 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set axis absolute position, units

(* Move axis to absolute position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPA = 0.0 (* set axis absolute move position, units

RPA (* run axis to absolute move position

G-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based, Offset Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPO moves the axis from its present position to the offset position specified in the MPO

(* register. This example begins by loading the offset position register, PSO, with 0 for the

(* purpose of accurately graphing the subsequent motion. Applications may require other

(* offset position register values.

IMC & IMJ Template

(* Motion Template: I_MVOFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to offset position of 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

(* Initialize offset position register to 0

PSO = 0.0 (* set offset position, units

(* Move axis to offset position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

GFK-2205 Appendix G Motion Templates G-21

G

MPO = 0.0 (* set offset move position, units

RPO (* run to offset move position

Target Template

(* Motion Template: T_MVOFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, offset move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* Motion: Move axis to offset position of 0 units.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

(* Initialize axis offset position register to 0

PSO = 0.0 (* set axis offset position, units

(* Move axis to offset position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPO = 0.0 (* set axis offset move position, units

RPO (* run axis to offset move position

G-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based, Blended Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values need not be reloaded

(* for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading absolute position register PSA with 0 for

(* the purpose of accurately graphing the subsequent motion. In general, applications will

(* only load PSA at the end of a homing motion.

(* 5- Blended moves are specified by setting a new velocity in the instruction immediately

(* following a run command AND CAN BE DONE ONLY IN MOTION BLOCKS!

IMC & IMJ Template

(* Motion Template: I_MVBLN.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, blended move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to 00 units at 30 units/sec, then decelerate to 5 units/sec

(* and move to 0 units. Finally, move back to position 0 at

(* 40 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-23

G

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Execute blended move with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 30.0 (* set motion velocity, units/sec

MPA = 00.0 (* set absolute move position, units

RPA (* run to absolute move position

MVL = 5.0 (* set motion velocity, units/sec

MPA = 0.0 (* set absolute move position, units

RPA (* run to absolute move position

MPA = 0.0 (* set absolute move position, units

MVL = 40.0 (* set motion velocity, units/sec

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MVBLN.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, blended move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis to 00 units at 30 units/sec, then decelerate to

(* 5 units/sec and move to 0 units. Finally, move back to

(* position 0 at 40 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* VEL. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set axis absolute position, units

(* Execute blended move with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 30.0 (* set motion velocity, units/sec

MPA = 00.0 (* set axis absolute move position, units

RPA (* run axis to absolute move position

MVL = 5.0 (* set motion velocity, units/sec

MPA = 0.0 (* set axis absolute move position, units

RPA (* run axis to absolute move position

MPA = 0.0 (* set axis absolute move position, units

MVL = 40.0 (* set motion velocity, units/sec

RPA (* run axis to absolute move position

G-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Velocity-Based, Absolute Move with Feedrate Override

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- Loading the MFA register also loads the MFD register with the same value. To set MFD

(* to a value different from MFA, load MFD after loading the MFA register.

(* 4- The Motion Feedrate Percentage register, MFP, slows time by the % specified. Thus the

(* velocity is scaled by MFP. Since acceleration is proportional to /(t^2), the acceleration

(* is scaled by (MFP)^2.

(* 5- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA at the end of a homing motion.

IMC & IMJ Template

(* Motion Template: I_MVABSF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Velocity-based, absolute move with feedrate override

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to 0 units at 20% of 0 units/sec, i.e., 2 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-25

G

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Move axis to absolute position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 0.0 (* set motion velocity, units/sec

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 20.0 (* set motion feedrate percentage, % of velocity

MPA = 0.0 (* set absolute move position, units

WAIT MFP <= 20.0 (* wait for feedrate to decrease to 20.0

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MVABSF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Velocity-based, absolute move with feedrate override

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis to 0 units at 20% of 0 units/sec, i.e., 2 units/sec.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set axis absolute position, units

(* Move axis to absolute position 0 with the accelerations and velocities shown.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 0.0 (* set motion velocity, units/sec

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 20.0 (* set motion feedrate percentage, % of velocity

MPA = 0.0 (* set axis absolute move position, units

WAIT MFP <= 20.0 (* wait for feedrate to decrease to 20.0

RPA (* run axis to absolute move position

G-26 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Timed-Based Moves

Time-Based, Single-Axis Incremental Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_MT INC.TXT

(* Revision Log: REV 098OCT0

(* DspMotion Series: IMC & IMJ

(* Move Type: Time-based, single-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move 5 units forward in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPI = 5.0 (* set incremental move position, units

RPI (* run to incremental move position

GFK-2205 Appendix G Motion Templates G-27

G

Target Template

(* Motion Template: T_MT INC.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, single-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis 5 units forward in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* TIME. The default value for MT is VEL.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPI = 5.0 (* set axis incremental move position, units

RPI (* run axis to incremental move position

G-28 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Single-Axis Absolute Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT and Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA at the end of a homing motion.

IMC & IMJ Template

(* Motion Template: I_MT ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Time-based, single-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to absolute position of 5 units in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Move axis to absolute position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

GFK-2205 Appendix G Motion Templates G-29

G

MTM = 4.0 (* set move time, seconds

MPA = 5.0 (* set absolute move position, units

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MT ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, single-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis to absolute position of 5 units in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* TIME. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set axis absolute position, units

(* Move axis to absolute position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPA = 5.0 (* set axis absolute move position, units

RPA (* run axis to absolute move position

G-30 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Single-Axis Offset Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files I_MVABSF.TXT and I_MT ABF.TXT for examples using the MFP

(* register.

(* 4- RPO moves the axis from its present position to the offset position specified in the MPO

(* register. This example begins by loading the offset position register, PSO, with 0 for the

(* purpose of accurately graphing the subsequent motion. Applications may require other

(* offset position register values.

IMC & IMJ Template

(* Motion Template: I_MT OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Time-based, single-axis offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to offset position of 5 units in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

(* Initialize offset position register to 0

PSO = 0.0 (* set offset position, units

(* Move axis to offset position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

GFK-2205 Appendix G Motion Templates G-31

G

MPO = 5.0 (* set offset move position, units

RPO (* run to offset move position

Target Template

(* Motion Template: T_MT OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, single-axis offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis to offset position of 5 units in 4.0 seconds.

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

(* Initialize axis offset position register to 0

PSO = 0.0 (* set axis offset position, units

(* Move axis to offset position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPO = 5.0 (* set axis offset move position, units

RPO (* run axis to offset move position

G-32 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Single-Axis Absolute Move with Feedrate Override

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- Loading the MFA register also loads the MFD register with the same value. To set MFD

(* to a value different from MFA, load MFD after loading the MFA register.

(* 4- The Motion Feedrate Percentage register, MFP, slows time by the % specified. Thus the

(* move time and the accel and decel times are increased by the reciprocal of the %

(* specified in MFP.

(* 5- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA at the end of a homing motion.

IMC & IMJ Template

(* Motion Template: I_MT ABF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Time-based, single-axis absolute move with feedrate override

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move to 5 units in 0 seconds.

(* (note that 40% of 0 seconds = 4 seconds)

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-33

G

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Move axis to absolute position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPA = 5.0 (* set absolute move position, units

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 40.0 (* set motion feedrate percentage, % of velocity

WAIT MFP <= 40.0 (* wait for feedrate to decrease to 40.0

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MT ABF.txt

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, single-axis absolute move with feedrate override

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Move axis to 5 units in 0 seconds

(* (note that 40% of 0 seconds = 4 seconds)

(* MT = TIME This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Move axis to absolute position 5 with the accelerations and move times shown.

MAP = 25 (* set motion acceleration percentage, % of move time

MDP = 20 (* set motion deceleration percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MPA = 5.0 (* set absolute move position, units

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 40.0 (* set motion feedrate percentage, % of velocity

WAIT MFP <= 40.0 (* wait for feedrate to decrease to 40.0

RPA (* run axis to absolute move position

G-34 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Multi-axis Incremental Move

Target Template

(* Motion Template: T_MT4INC.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, multi-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = axis feedback resolution

(* URA2 = axis 2 feedback resolution, etc.

(* Motion: Move axes , 2, 3 and 4 forward by 3, 5, 6 and 8 units in

(* 4.0 seconds.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set

(* MDP to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* MT = TIME

(* MT2 = TIME

(* MT3 = TIME

(* MT4 = TIME The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

MAP = 25 (* set motion accel percentage, % of move time

MAP2 = 25 (* set motion accel percentage, % of move time

MAP3 = 25 (* set motion accel percentage, % of move time

MAP4 = 25 (* set motion accel percentage, % of move time

MDP = 20 (* set motion decel percentage, % of move time

MDP2 = 20 (* set motion decel percentage, % of move time

GFK-2205 Appendix G Motion Templates G-35

G

MDP3 = 20 (* set motion decel percentage, % of move time

MDP4 = 20 (* set motion decel percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MJK2 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK3 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK4 = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MTM2 = 4.0 (* set move time, seconds

MTM3 = 4.0 (* set move time, seconds

MTM4 = 4.0 (* set move time, seconds

MPI = 3.0 (* set axis incremental move position, units

MPI2 = 5.0 (* set axis 2 incremental move position, units

MPI3 = 6.0 (* set axis 3 incremental move position, units

MPI4 = 8.0 (* set axis 4 incremental move position, units

RPI 234 (* run axes , 2, 3 and 4 to incremental move positions

G-36 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Multi-axis Absolute Move

Target Template

(* Motion Template: T_MT4ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, multi-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = axis feedback resolution

(* URA2 = axis 2 feedback resolution, etc.

(* Motion: Move axes , 2, 3 and 4 to absolute positions of 3, 5, 6 and

(* 8 units in 4.0 seconds.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- RPA moves the axes from their present positions to the absolute positions specified in the

(* MPA registers. This example begins by loading the absolute position registers, PSA

(* through PSA4, with 0 for the purpose of accurately graphing the subsequent motion. In

(* general, applications will only load PSA at the end of a homing motion.

(* MT = TIME

(* MT2 = TIME

(* MT3 = TIME

(* MT4 = TIME The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-37

G

(* Initialize absolute position registers to 0

PSA = 0.0 (* set axis absolute position, units

PSA2 = 0.0 (* set axis 2 absolute position, units

PSA3 = 0.0 (* set axis 3 absolute position, units

PSA4 = 0.0 (* set axis 4 absolute position, units

(* Move axes to absolute positions 3, 5, 6 and 8 with the accelerations and move times shown.

MAP = 25 (* set motion accel percentage, % of move time

MAP2 = 25 (* set motion accel percentage, % of move time

MAP3 = 25 (* set motion accel percentage, % of move time

MAP4 = 25 (* set motion accel percentage, % of move time

MDP = 20 (* set motion decel percentage, % of move time

MDP2 = 20 (* set motion decel percentage, % of move time

MDP3 = 20 (* set motion decel percentage, % of move time

MDP4 = 20 (* set motion decel percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MJK2 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK3 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK4 = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MTM2 = 4.0 (* set move time, seconds

MTM3 = 4.0 (* set move time, seconds

MTM4 = 4.0 (* set move time, seconds

MPA = 3.0 (* set axis absolute move position, units

MPA2 = 5.0 (* set axis 2 absolute move position, units

MPA3 = 6.0 (* set axis 3 absolute move position, units

MPA4 = 8.0 (* set axis 4 absolute move position, units

RPA 234 (* run axes , 2, 3 and 4 to absolute move positions

G-38 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Time-Based, Multi-axis Offset Move

Target Template

(* Motion Template: T_MT4OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Time-based, multi-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = axis feedback resolution

(* URA2 = axis 2 feedback resolution, etc.

(* Motion: Move axes , 2, 3 and 4 to offset positions of 3, 5, 6 and 8 units

(* in 4.0 seconds.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- RPO moves the axes from their present positions to the offset positions specified in the

(* MPO registers. This example begins by loading the offset position registers, PSO

(* through PSO4, with 0 for the purpose of accurately graphing the subsequent motion.

(* Applications may require other offset position register values.

(* MT = TIME

(* MT2 = TIME

(* MT3 = TIME

(* MT4 = TIME The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than TIME. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-39

G

(* Initialize axis offset position registers to 0

PSO = 0.0 (* set axis offset position, units

PSO2 = 0.0 (* set axis 2 offset position, units

PSO3 = 0.0 (* set axis 3 offset position, units

PSO4 = 0.0 (* set axis 4 offset position, units

(* Move axes to offset positions 3, 5, 6 and 8 with the accelerations and move times shown.

MAP = 25 (* set motion accel percentage, % of move time

MAP2 = 25 (* set motion accel percentage, % of move time

MAP3 = 25 (* set motion accel percentage, % of move time

MAP4 = 25 (* set motion accel percentage, % of move time

MDP = 20 (* set motion decel percentage, % of move time

MDP2 = 20 (* set motion decel percentage, % of move time

MDP3 = 20 (* set motion decel percentage, % of move time

MDP4 = 20 (* set motion decel percentage, % of move time

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MJK2 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK3 = 0 (* set motion jerk percentage, % of accel & decel interval

MJK4 = 0 (* set motion jerk percentage, % of accel & decel interval

MTM = 4.0 (* set move time, seconds

MTM2 = 4.0 (* set move time, seconds

MTM3 = 4.0 (* set move time, seconds

MTM4 = 4.0 (* set move time, seconds

MPO = 3.0 (* set axis offset move position, units

MPO2 = 5.0 (* set axis 2 offset move position, units

MPO3 = 6.0 (* set axis 3 offset move position, units

MPO4 = 8.0 (* set axis 4 offset move position, units

RPO 234 (* run axes , 2, 3 and 4 to offset move positions

G-40 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Pulse-Based Moves

Pulse-Based, Single-Axis Incremental Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

IMC & IMJ Template

(* Motion Template: I_MP INC.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Pulse-based, single-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run forward 0 axis units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

GFK-2205 Appendix G Motion Templates G-41

G

(* Move axis 0 units as the auxiliary position goes from 2 to 7 units

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPI = 0.0 (* set incremental move position, units

RPI (* run to incremental move position

Target Template

(* Motion Template: T_MP INC.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, single-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run forward 0 axis units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axis 0 units as the auxiliary position goes from 2 to 7 units

MI = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPI = 0.0 (* set incremental move position, units

RPI (* run axis to incremental move position

G-42 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Pulse-Based, Single-Axis Absolute Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA at the end of a homing motion.

(*5- This example loads the auxiliary position register (PSX) with 0 for the purpose of

(* accurately depicting the motion. In general, applications will load MPS with the

(* appropriate starting position.

IMC & IMJ Template

(* Motion Template: I_MP ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Pulse-based, single-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run to an absolute position

(* of 0 units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-43

G

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axis to absolute position 0 with the accelerations and move pulses shown.

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPA = 0.0 (* set absolute move position, units

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MP ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, single-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run to an absolute position

(* of 0 units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize axis absolute position register to 0

PSA = 0.0 (* set axis absolute position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axis to absolute position 0 with the accelerations and move pulses shown

MI = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPA = 0.0 (* set axis absolute move position, units

RPA (* run axis to absolute move position

G-44 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Pulse-Based, Single-Axis Offset Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- RPO moves the axis from its present position to the offset position specified in the

(* MPO register. This example begins by loading the offset position register, PSO, with

(* 0 for the purpose of accurately graphing the subsequent motion. Applications may

(* require other offset position register values.

(*5- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

IMC & IMJ Template

(* Motion Template: I_MP OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Pulse-based, single-axis offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run to an offset position

(* of 0 units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

GFK-2205 Appendix G Motion Templates G-45

G

(* Initialize offset position register to 0

PSO = 0.0 (* set offset position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axis to offset position 0 with the accelerations and move pulses shown.

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPO = 0.0 (* set offset move position, units

RPO (* run to offset move position

Target Template

(* Motion Template: T_MP OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, single-axis offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will run to an absolute position

(* of 0 units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize axis offset position register to 0

PSO = 0.0 (* set axis offset position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axis to offset position 0 with the accelerations and move pulses shown

MI = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPO = 0.0 (* set axis offset move position, units

RPO (* run axis to offset move position

G-46 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Pulse-Based, Single-Axis Blended Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values need not be reloaded

(* for this motion.

(* 2- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT and Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 3- This example begins by loading the auxiliary position register with 0 for the purpose of

(* accurately depicting the motion. In general, applications will load MPS with the

(* appropriate starting position.

(* 4- RPA moves the axis from its present position to the absolute position specified in the

(* MPA register. This example begins by loading the absolute position register, PSA, with

(* 0 for the purpose of accurately graphing the subsequent motion. In general, applications

(* will load PSA only at the end of a homing motion.

(* 5- Blended moves are specified by setting a new velocity in the instruction immediately

(* following a run command AND CAN BE DONE ONLY IN MOTION BLOCKS!

IMC & IMJ Template

(* Motion Template: I_MP BLN.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Pulse-based blended move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis (axis for Target) will remain in position until the

(* auxiliary position increases to 2 aux units. Then, as the aux

(* position increases from 2 to 0 aux units, the axis will run

(* forward to 30 axis units. As the aux position further increases

(* to 4 aux units, the axis will finish running forward to 34 axis

(* units. Finally, as the aux position increases from 5 to 22 aux units,

(* the axis will move back to position 0 axis units.

GFK-2205 Appendix G Motion Templates G-47

G

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0.

PSX = 0 (* set auxiliary position, aux units

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

(* Execute blended move with the accelerations and velocities shown.

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 8.0 (* set move pulses, aux units

MPA = 30.0 (* set absolute move position, units

RPA (* run to absolute move position

MVP = .0 (* set motion velocity of pulse move, axis units/aux units

MPS = MPS + 8.0 (* set motion start position, aux units

MPL = 4.0 (* set move pulses, aux units

MPA = 34.0 (* set absolute move position, units

RPA (* run to absolute move position

MPS = MPS + 5.0 (* set motion start position, aux units

MPL = 7.0 (* set move pulses, aux units

MPA = 0.0 (* set absolute move position, units

RPA (* run to absolute move position

Target Template

(* Motion Template: T_MP BLN.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based blended move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0.

PSX = 0 (* set auxiliary position, aux units

(* Initialize absolute position register to 0

PSA = 0.0 (* set absolute position, units

G-48 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* Execute blended move with the accelerations and velocities shown.

MI = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPL = 8.0 (* set move pulses, aux units

MPA = 30.0 (* set absolute move position, units

RPA (* run axis to absolute move position

MVP = .0 (* set motion velocity of pulse move, axis units/aux units

MPS = MPS + 8.0 (* set motion start position, aux units

MPL = 4.0 (* set move pulses, aux units

MPA = 34.0 (* set absolute move position, units

RPA (* run axis to absolute move position

MPS = MPS + 5.0 (* set motion start position, aux units

MPL = 7.0 (* set move pulses, aux units

MPA = 0.0 (* set absolute move position, units

RPA (* run axis to absolute move position

GFK-2205 Appendix G Motion Templates G-49

G

Pulse-Based, Single-Axis Continuous Move

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

(* 2- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 3- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

IMC & IMJ Template

(* Motion Template: I_MP CON.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Pulse-based, single-axis continuous move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will accelerate to 3 units/aux

(* units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

G-50 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* Execute single-axis continuous move with the accelerations and move pulses shown

MPS = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MVP = 3.0 (* set pulse move velocity, units/aux units

RVF (* run forward

Target Template

(* Motion Template: T_MP CON.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, single-axis continuous move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Axis will remain in position until the auxiliary position

(* increases to 2 aux units. Then, as the aux position increases

(* from 2 to 7 aux units, the axis will accelerate to 3 units/aux

(* units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Execute single-axis continuous move with the accelerations and move pulses shown

MI = PSX (* set motion pulse input to axis aux input

MPS =2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MVP = 3.0 (* set pulse move velocity, units/aux units

RVF (* run axis forward

GFK-2205 Appendix G Motion Templates G-51

G

Pulse-Based, Multi-axis Incremental Move

Target Template

(* Motion Template: T_MP4INC.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, multi-axis incremental move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* URA2 = position feedback resolution, etc.

(* Motion: Each axis will remain in position until the auxiliary position of

(* axis increases to 2 aux units. Then, as the aux position

(* increases from 2 to 7 aux units, axes , 2, 3 and 4 will run

(* forward by 8, 0, and 3 units.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

(* MT = PULSE

(* MT2 = PULSE

(* MT3 = PULSE

(* MT4 = PULSE The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

G-52 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Execute multi-axis incremental move with the accelerations and move pulses shown

MI = PSX (* set motion pulse input to axis aux input

MI2 = PSX (* set motion pulse input to axis aux input

MI3 = PSX (* set motion pulse input to axis aux input

MI4 = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MAP2 = 20 (* set motion acceleration percentage, % of move pulses

MAP3 = 20 (* set motion acceleration percentage, % of move pulses

MAP4 = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MDP2 = 5 (* set motion deceleration percentage, % of move pulses

MDP3 = 5 (* set motion deceleration percentage, % of move pulses

MDP4 = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPS2 = 2.0 (* set motion start position, aux units

MPS3 = 2.0 (* set motion start position, aux units

MPS4 = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPL2 = 5.0 (* set move pulses, aux units

MPL3 = 5.0 (* set move pulses, aux units

MPL4 = 5.0 (* set move pulses, aux units

MPI = 8.0 (* set axis incremental move position, units

MPI2 = 0.0 (* set axis 2 incremental move position, units

MPI3 = .0 (* set axis 3 incremental move position, units

MPI4 = 3.0 (* set axis 4 incremental move position, units

RPI 234 (* run axes , 2, 3 and 4 to incremental move positions

GFK-2205 Appendix G Motion Templates G-53

G

Pulse-Based, Multi-axis Absolute Move

Target Template

(* Motion Template: T_MP4ABS.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, multi-axis absolute move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution,

(* URA2 = position feedback resolution, etc.

(* Motion: Each axis will remain in position until the auxiliary position of

(* axis increases to 2 aux units. Then, as the aux position

(* increases from 2 to 7 aux units, axes , 2, 3 and 4 will run to

(* absolute positions of 8, 0, and 3 units.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- RPA moves the axes from their present positions to the absolute positions specified in

(* the MPA registers. This example begins by loading the absolute position registers, PSA

(* through PSA4, with 0 for the purpose of accurately graphing the subsequent motion. In

(* general, applications will only load PSA at the end of a homing motion.

(* 5- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

G-54 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* MT = PULSE

(* MT2 = PULSE

(* MT3 = PULSE

(* MT4 = PULSE The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize absolute position registers to 0

PSA = 0.0 (* set axis absolute position, units

PSA2 = 0.0 (* set axis 2 absolute position, units

PSA3 = 0.0 (* set axis 3 absolute position, units

PSA4 = 0.0 (* set axis 4 absolute position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set axis auxiliary position, aux units

(* Move axes to absolute positions 8, 0, and 3 with the accelerations and move pulses

(* shown.

MI = PSX (* set motion pulse input to axis aux input

MI2 = PSX (* set motion pulse input to axis aux input

MI3 = PSX (* set motion pulse input to axis aux input

MI4 = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MAP2 = 20 (* set motion acceleration percentage, % of move pulses

MAP3 = 20 (* set motion acceleration percentage, % of move pulses

MAP4 = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MDP2 = 5 (* set motion deceleration percentage, % of move pulses

MDP3 = 5 (* set motion deceleration percentage, % of move pulses

MDP4 = 5 (* set motion deceleration percentage, of move pulses

MPS = 2.0 (* set motion start position, aux units

MPS2 = 2.0 (* set motion start position, aux units

MPS3 = 2.0 (* set motion start position, aux units

MPS4 = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPL2 = 5.0 (* set move pulses, aux units

MPL3 = 5.0 (* set move pulses, aux units

MPL4 = 5.0 (* set move pulses, aux units

MPA = 8.0 (* set axis absolute move position, units

MPA2 = 0.0 (* set axis 2 absolute move position, units

MPA3 = .0 (* set axis 3 absolute move position, units

MPA4 = 3.0 (* set axis 4 absolute move position, units

RPA 234 (* run axes , 2, 3 and 4 to absolute move positions

GFK-2205 Appendix G Motion Templates G-55

G

Pulse-Based, Multi-axis Offset Move

Target Template

(* Motion Template: T_MP4OFF.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, multi-axis offset move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* URA2 = position feedback resolution, etc.

(* Motion: Each axis will remain in position until the auxiliary position of

(* axis increases to 2 aux units. Then, as the aux position

(* increases from 2 to 7 aux units, axes , 2, 3 and 4 will run to

(* offset positions of 8, 0, and 3 units.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- RPO moves the axes from their present positions to the offset positions specified in the

(* MPO registers. This example begins by loading the offset position registers, PSO

(* through PSO4, with 0 for the purpose of accurately graphing the subsequent motion.

(* Applications may require other offset position register values.

(* 5- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

G-56 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* MT = PULSE

(* MT2 = PULSE

(* MT3 = PULSE

(* MT4 = PULSE The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other than

(* PULSE. The default value for MT is VEL.

(* Initialize axis offset position register to 0

PSO = 0.0 (* set axis offset position, units

PSO2 = 0.0 (* set axis 2 offset position, units

PSO3 = 0.0 (* set axis 3 offset position, units

PSO4 = 0.0 (* set axis 4 offset position, units

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Move axes to offset positions 8, 0, and 3 with the accelerations and move pulses

(* shown.

MI = PSX (* set motion pulse input to axis aux input

MI2 = PSX (* set motion pulse input to axis aux input

MI3 = PSX (* set motion pulse input to axis aux input

MI4 = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MAP2 = 20 (* set motion acceleration percentage, % of move pulses

MAP3 = 20 (* set motion acceleration percentage, % of move pulses

MAP4 = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MDP2 = 5 (* set motion deceleration percentage, % of move pulses

MDP3 = 5 (* set motion deceleration percentage, % of move pulses

MDP4 = 5 (* set motion deceleration percentage, % of move pulses

MPS = 2.0 (* set motion start position, aux units

MPS2 = 2.0 (* set motion start position, aux units

MPS3 = 2.0 (* set motion start position, aux units

MPS4 = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPL2 = 5.0 (* set move pulses, aux units

MPL3 = 5.0 (* set move pulses, aux units

MPL4 = 5.0 (* set move pulses, aux units

MPO = 8.0 (* set axis offset move position, units

MPO2 = 0.0 (* set axis 2 offset move position, units

MPO3 = .0 (* set axis 3 offset move position, units

MPO4 = 3.0 (* set axis 4 offset move position, units

RPO 234 (* run axes , 2, 3 and 4 to offset move positions

GFK-2205 Appendix G Motion Templates G-57

G

Pulse-Based, Multi-axis Continuous Move

Target Template

(* Motion Template: T_MP4CON.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Pulse-based, multi-axis continuous move

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* URA2 = position feedback resolution, etc.

(* Motion: Each axis will remain in position until the auxiliary position of

(* axis increases to 2 aux units. Then, as the aux position

(* increases from 2 to 7 aux units, axes , 2, 3 and 4 will

(* accelerate to 2, 3, 6 and 7 units/aux units.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 3- This example begins by loading the auxiliary position register (PSX) with 0 for the

(* purpose of accurately depicting the motion. In general, applications will load MPS with

(* the appropriate starting position.

G-58 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* MT = PULSE

(* MT2 = PULSE

(* MT3 = PULSE

(* MT4 = PULSE The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

(* Initialize auxiliary position register to 0

PSX = 0 (* set auxiliary position, aux units

(* Execute multi-axis continuous move with the accelerations and move pulses shown

MI = PSX (* set motion pulse input to axis aux input

MI2 = PSX (* set motion pulse input to axis aux input

MI3 = PSX (* set motion pulse input to axis aux input

MI4 = PSX (* set motion pulse input to axis aux input

MPS = 2.0 (* set motion start position, aux units

MPS2 = 2.0 (* set motion start position, aux units

MPS3 = 2.0 (* set motion start position, aux units

MPS4 = 2.0 (* set motion start position, aux units

MPL = 5.0 (* set move pulses, aux units

MPL2 = 5.0 (* set move pulses, aux units

MPL3 = 5.0 (* set move pulses, aux units

MPL4 = 5.0 (* set move pulses, aux units

MVP = 2.0 (* set pulse move velocity, units/aux units

MVP2 = 3.0 (* set pulse move velocity, units/aux units

MVP3 = 6.0 (* set pulse move velocity, units/aux units

MVP4 = 7.0 (* set pulse move velocity, units/aux units

RVF 234 (* run axis , 2, 3 and 4 forward

GFK-2205 Appendix G Motion Templates G-59

G

Torque-Limited Moves

Run Forward until Torque Limit

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- If this template is executed within a motion block, the WAIT TL command is not

(* executed until the acceleration portion of the RVF command is complete.

IMC & IMJ Template

(* Motion Template: I_MTQFOR.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run forward until torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until torque limit.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVF (* run forward

G-60 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

WAIT TL (* wait for axis to be at torque limit

ST (* stop all motion

TLE = OFF (* disable torque limit

Target Template

(* Motion Template: T_MTQFOR.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run forward until torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until torque limit.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVF (* run axis forward

WAIT TL (* wait for axis to be at torque limit

ST (* stop all motion

TLE = OFF (* disable torque limit

GFK-2205 Appendix G Motion Templates G-61

G

Run Reverse at Torque Limit

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- If this template is executed within a motion block, the WAIT TL and TLE = OFF

(* commands are executed only after the acceleration portions of the preceding motion

(* commands are complete.

IMC & IMJ Template

(* Motion Template: I_MTQREV.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: IMC & IMJ

(* Move Type: Run reverse at torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until torque limit, then run reverse.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

G-62 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVF (* run forward

WAIT TL (* wait for axis to be at torque limit

RVR (* run reverse

TLE = OFF (* disable torque limit

Target Template

(* Motion Template: T_MTQREV.TXT

(* Revision Log: REV 098OCT02

(* DspMotion Series: Target ARS

(* Move Type: Run reverse at torque limit

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until torque limit, then run reverse.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

TLC = 0.0 (* set torque limit current, % of continuous current

TLE = ON (* enable torque limit

RVF (* run axis forward

WAIT TL (* wait for axis to be at torque limit

RVR (* run axis reverse

TLE = OFF (* disable torque limit

GFK-2205 Appendix G Motion Templates G-63

G

Synchronized Moves

Single-Axis Electronic Gearing

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

IMC & IMJ Template

(* Motion Template: I_MS EG.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: IMC & IMJ

(* Move Type: Single-axis electronic gearing

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the auxiliary input. Axis will follow

(* the auxiliary input based on the values of GRN and GRD, i.e.,

(*

(* GRN

(* axis pulses = —— * auxiliary pulses

(* GRD

GRN = (* set gearing numerator

GRD = (* set gearing denominator

GRB = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRE = ON (* enable electronic gearing

Target Template

(* Motion Template: T_MS EG.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: Single-axis electronic gearing

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the auxiliary input. Axis will

(* follow the auxiliary input based on the values of GRN and

(* GRD , i.e.,

(*

(* GRN

(* axis pulses = ——— * auxiliary pulses

(* GRD

G-64 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

GRI = PSX (* set gearing input to aux input of axis

GRN = (* set gearing numerator

GRD = (* set gearing denominator

GRB = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRE = ON (* enable electronic gearing for axis

GFK-2205 Appendix G Motion Templates G-65

G

Multi-axis Electronic Gearing

Target Template

(* Motion Template: T_MS4EG.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: Multi-axis electronic gearing

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URX = axis auxiliary feedback resolution

(* URA2 = axis 2 position feedback resolution, etc.

(* Motion: Move each axis in relation to axis auxiliary input. Each axis

(* will follow the auxiliary input based on the values of GRNp

(* and GRDp , i.e.,

(* GRNp

(* axis pulses = ——— * auxiliary pulses

(* GRDp

(*

(* where p is an axis number through 4. In this template, we

(* have set the gear ratios to be / , 3/4, 5/6 and 2/ .

(* Notes:

(* -Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

GRI = PSX (* set gearing input to aux input of axis

GRI2 = PSX (* set gearing input to aux input of axis

GRI3 = PSX (* set gearing input to aux input of axis

GRI4 = PSX (* set gearing input to aux input of axis

GRN = (* set axis gearing numerator

GRN2 = 3 (* set axis 2 gearing numerator

GRN3 = 5 (* set axis 3 gearing numerator

GRN4 = 2 (* set axis 4 gearing numerator

GRD = (* set axis gearing denominator

GRD2 = 4 (* set axis 2 gearing denominator

GRD3 = 6 (* set axis 3 gearing denominator

GRD4 = (* set axis 4 gearing denominator

GRB = 0 (* set gearing bound

GRB2 = 0 (* set gearing bound

GRB3 = 0 (* set gearing bound

GRB4 = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRF2 = 0 (* set gearing filter constant

GRF3 = 0 (* set gearing filter constant

GRF4 = 0 (* set gearing filter constant

GRE 234 = ON (* enable electronic gearing for axes , 2, 3 and 4

G-66 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Single-Axis, Phase-Locked Loop

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

(* reloaded for this motion.

(* 2- The phase-locked loop becomes active whenever a position is captured. The output of

(* the phase-locked loop is calculated based on the phase error, PHR, which is the

(* difference between the desired reference position, PHP, and the captured position. The

(* output of the PLL replaces the gearing numerator each time the position is captured,

(* thereby changing the value of PHM.

IMC & IMJ Template

(* Motion Template: I_MS PLL.TXT

(* Revision Log: REV 098OCT 6

(* DspMotion Series: IMC & IMJ

(* Move Type: Single-axis, phase-locked loop

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the auxiliary input. The axis will

(* follow the auxiliary input based on the output of the

(* phase-locked loop, i.e.,

(*

(* axis pulses = PHM * auxiliary pulses

(*

(* where PHM is the phase multiplier, which is equal to the output

(* of the phase-locked loop divided by the gearing denominator,

(* GRD.

PHP = 0 (* set phase position, pulses

PHL = 4000 (* set phase length, pulses

PHO = 0 (* set phase offset, pulses

PHB = 2000 (* set phase error bound, pulses

PHG = 0 (* set phase gain

PHZ = 245 (* set phase zero

PHT = 0.05 (* set phase lockout time, seconds

GRN = 000 (* set gearing numerator

GRD = 000 (* set gearing denominator

GRB = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRE = ON (* enable electronic gearing

PHE = ON (* enable phase-locked loop

GFK-2205 Appendix G Motion Templates G-67

G

Target Template

(* Motion Template: T_MS PLL.TXT

(* Revision Log: REV 098OCT 6

(* DspMotion Series: IMC

(* Move Type: Single-axis, phase-locked loop

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the auxiliary input. Axis will

(* follow the auxiliary input based on the output of the

(* phase-locked loop, i.e.,

(*

(* axis pulses = PHM * auxiliary pulses

(*

(* where PHM is the phase multiplier, which is equal to the output

(* of the phase-locked loop divided by the gearing denominator,

(* GRD.

PHP = 0 (* set phase position, pulses

PHL = 4000 (* set phase length, pulses

PHO = 0 (* set phase offset, pulses

PHB = 2000 (* set phase error bound, pulses

PHG = 0 (* set phase gain

PHZ = 245 (* set phase zero

PHT = 0.05 (* set phase lockout time, seconds

GRI = PSX (* set gearing input to aux input of axis

GRN = 000 (* set gearing numerator

GRD = 000 (* set gearing denominator

GRB = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRE = ON (* enable electronic gearing for axis

PHE = ON (* enable phase-locked loop for axis

G-68 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Multi-axis, Phase-Locked Loop

Target Template

(* Motion Template: T_MS4PLL.TXT

(* Revision Log: REV 098OCT 6

(* DspMotion Series: Target ARS

(* Move Type: Multi-axis phase-locked loop

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URX = axis auxiliary feedback resolution

(* URA2 = axis 2 position feedback resolution

(* URX2 = axis 2 auxiliary feedback resolution, etc.

(* Motion: Move each axis in relation to its corresponding auxiliary input.

(* Each axis will follow each auxiliary input based on the output

(* of the phase-locked loop, i.e.,

(*

(* axis pulses = PHMp * auxiliary pulses

(*

(* where p is an axis number through 4. PHM is the phase

(* multiplier, which is equal to the output of the phase-locked

(* loop divided by the gearing denominator, GRD. Also note that

(* in this template, we have set the gear ratios to be / , 3/4, 5/6

(* and 2/ .

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- The phase-locked loop becomes active whenever a position is captured. The output of

(* the phase-locked loop is calculated based on the phase error, PHR, which is the

(* difference between the desired reference position, PHP, and the captured position. The

(* output of the PLL replaces the gearing numerator each time the position is captured,

(* thereby changing the value of PHM.

PHP = 0 (* set phase position, pulses

PHL = 4000 (* set phase length, pulses

PHO = 0 (* set phase offset, pulses

PHB = 2000 (* set phase error bound, pulses

PHG = 0 (* set phase gain

PHZ = 245 (* set phase zero

PHT = 0.05 (* set phase lockout time, seconds

PHP2 = 0 (* set phase position, pulses

PHL2 = 4000 (* set phase length, pulses

PHO2 = 0 (* set phase offset, pulses

PHB2 = 2000 (* set phase error bound, pulses

GFK-2205 Appendix G Motion Templates G-69

G

PHG2 = 0 (* set phase gain

PHZ2 = 245 (* set phase zero

PHT2 = 0.05 (* set phase lockout time, seconds

PHP3 = 0 (* set phase position, pulses

PHL3 = 4000 (* set phase length, pulses

PHO3 = 0 (* set phase offset, pulses

PHB3 = 2000 (* set phase error bound, pulses

PHG3 = 0 (* set phase gain

PHZ3 = 245 (* set phase zero

PHT3 = 0.05 (* set phase lockout time, seconds

PHP4 = 0 (* set phase position, pulses

PHL4 = 4000 (* set phase length, pulses

PHO4 = 0 (* set phase offset, pulses

PHB4 = 2000 (* set phase error bound, pulses

PHG4 = 0 (* set phase gain

PHZ4 = 245 (* set phase zero

PHT4 = 0.05 (* set phase lockout time, seconds

GRI = PSX (* set gearing input to aux input of axis

GRI2 = PSX2 (* set gearing input to aux input of axis 2

GRI3 = PSX3 (* set gearing input to aux input of axis 3

GRI4 = PSX4 (* set gearing input to aux input of axis 4

GRN = 000 (* set axis gearing numerator

GRN2 = 750 (* set axis 2 gearing numerator

GRN3 = 833 (* set axis 3 gearing numerator

GRN4 = 2000 (* set axis 4 gearing numerator

GRD = 000 (* set axis gearing denominator

GRD2 = 000 (* set axis 2 gearing denominator

GRD3 = 000 (* set axis 3 gearing denominator

GRD4 = 000 (* set axis 4 gearing denominator

GRB = 0 (* set gearing bound

GRB2 = 0 (* set gearing bound

GRB3 = 0 (* set gearing bound

GRB4 = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRF2 = 0 (* set gearing filter constant

GRF3 = 0 (* set gearing filter constant

GRF4 = 0 (* set gearing filter constant

GRE 234 = ON (* enable electronic gearing for all axes

PHE 234 = ON (* enable phase-locked loop for all axes

G-70 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

GFK-2205 Appendix G Motion Templates G-71

G

Single-Axis, Electronic Camming

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 4- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 5- Since this template incorporates labels and commands that are not allowed in motion

(* blocks (GOSUB, RETURN) it can only be used in a program.

IMC & IMJ Template

(* Motion Template: I_MS EC.TXT

(* Revision Log: REV 098OCT 9

(* DspMotion Series: IMC & IMJ

(* Move Type: Single-axis electronic camming

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the auxiliary input. The axis will

(* follow the auxiliary input based on the cam table which

(* contains the points for the cam motion.

(* Variables used: VI 0 initial cam location

(* VF 0 calculated cam shaft offset, degrees

(*

(* CAM TABLE SETUP

(*

 00CAZ (* zero cam table

(* compile 285 - 75 degree motion segment

CCP = - .0 (* set cam compile start position, axis units

MPA = .0 (* set absolute move position, axis units

CCB = 285.0 (* set cam compile beginning point, degrees

CCE = 75.0 (* set cam compile ending point, degrees

MAP = 25 (* set motion accel percentage, % of motion

MDP = 20 (* set motion decel percentage, % of motion

MJK = 00 (* set motion jerk percentage, % of accel/decel interval

CCM (* compile axis motion segment

G-72 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* compile 75 - 05 degree dwell

CCP = MPA (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 05.0 (* set cam compile ending point, degrees

CCM (* compile axis motion segment

(* compile 05 - 255 degree motion segment

CCP = MPA (* set cam compile start position, axis units

MPA = - .0 (* set absolute move position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 255.0 (* set cam compile ending point, degrees

CCM (* compile axis motion segment

(* compile 255 - 285 degree dwell

CCP = MPA (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 285.0 (* set cam compile ending point, degrees

CCM (* compile axis motion segment

RETURN (* return from subroutine

(*

(* RUN CAM MOTION

(*

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

CAT = PSX (* set cam type to auxiliary input

CAS = 2.5 (* set cam scale factor

VI 0 = 2700 (* define initial cam location

VF 0 = -CAP + ITF(VI 0) / 0. (* calculate the cam shaft offset

IF VF 0 > 80. THEN (* bound offset to +/- 80 degrees

VF 0 = VF 0 - 360.

IF VF 0 <= - 80. THEN VF 0 = VF 0 + 360.

CAO = VF 0 (* set cam offset, degrees

GOSUB 00 (* generate cam table

MVL = .0 (* set motion velocity, units/sec

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MPA = CAS * CAMVI 0 (* set absolute move position, units

RPA (* run to initial cam follower position

WAIT IP (* wait for axis to be in position

CAF = 2 (* set cam filter constant

STM = 0. (* set start time of timer , seconds

WAIT TM (* wait for filter to settle

CAE = ON (* enable electronic camming

GFK-2205 Appendix G Motion Templates G-73

G

Target Template

(* Motion Template: T_MS EC.TXT

(* Revision Log: REV 098OCT 9

(* DspMotion Series: Target ARS

(* Move Type: Single-axis electronic camming

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URA2 = axis 2 position feedback resolution

(* Motion: Move axis 2 in relation to axis . Axis 2 will follow the axis

(* based on the cam table which contains the points for the cam

(* motion.

(* Variables used: VI 0 initial cam location

(* VF 0 calculated cam shaft offset, degrees

(*

(* CAM TABLE SETUP

(*

 00CAZ2 (* zero cam table

(* compile 285 - 75 degree motion segment

CCP2 = - .0 (* set cam compile start position, axis units

MPA2 = .0 (* set absolute move position, axis units

CCB = 285.0 (* set cam compile beginning point, degrees

CCE = 75.0 (* set cam compile ending point, degrees

MAP2 = 25 (* set motion accel percentage, % of motion

MDP2 = 20 (* set motion decel percentage, % of motion

MJK2 = 00 (* set motion jerk percentage, % of accel/decel interval

CCM2 (* compile axis motion segment

(* compile 75 - 05 degree dwell

CCP2 = MPA2 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 05.0 (* set cam compile ending point, degrees

CCM2 (* compile axis motion segment

(* compile 05 - 255 degree motion segment

CCP2 = MPA2 (* set cam compile start position, axis units

MPA2 = - .0 (* set absolute move position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 255.0 (* set cam compile ending point, degrees

CCM2 (* compile axis motion segment

(* compile 255 - 285 degree dwell

CCP2 = MPA2 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 285.0 (* set cam compile ending point, degrees

CCM2 (* compile axis motion segment

RETURN (* return from subroutine

G-74 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(*

(* RUN CAM MOTION

(*

CAT = PSR (* set cam type to axis resolver input

CAS2 = 2.5 (* set cam scale factor

VI 0 = 2700 (* define initial cam location

VF 0 = -CAP + ITF(VI 0) / 0.

(* initialize the cam shaft offset

IF VF 0 > 80. THEN (* bound offset to +/- 80 degrees

VF 0 = VF 0 - 360. IF VF 0 <= - 80. THEN VF 0 = VF 0 + 360.

CAO2 = VF 0 (* set cam offset, degrees

GOSUB 00 (* generate cam table

MVL2 = .0 (* set motion velocity, units/sec

MAC2 = 50.0 (* set motion acceleration, units/sec^2

MDC2 = 75.0 (* set motion deceleration, units/sec^2

MPA2 = CAS2 * CAM2.VI 0 (* set absolute move position, units

RPA2 (* run to initial cam follower position

WAIT IP2 (* wait for axis to be in position

CAF = 2 (* set cam filter constant

STM = 0. (* set start time of timer , seconds

WAIT TM (* wait for filter to settle

CAE2 = ON (* enable electronic camming

GFK-2205 Appendix G Motion Templates G-75

G

Multi-axis, Synchronized Electronic Camming

Target Template

(* Motion Template: T_MS2EC.TXT

(* Revision Log: REV 098OCT 9

(* DspMotion Series: Target ARS

(* Move Type: Multi-axis synchronized electronic camming

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution URA2 = axis 2 position feedback resolution;

(* URA3 = axis 3 position feedback resolution

(* Motion: Move axes 2 and 3 in relation to axis . Axes 2 and 3 will

(* follow the axis based on the cam table that contains the points

(* for the cam motion.

(* Variables used: VI 0 initial cam location

(* VF 0 calculated cam shaft offset, degrees

(* Notes:

(* - Registers that have been previously loaded with appropriate values do not have to be

reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 4- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 5- Since this template incorporates labels and commands that are not allowed in motion

(* blocks (GOSUB, RETURN), it can only be used in a program.

(* CAM TABLE SETUP

(*

 00CAZ23 (* zero cam tables

(* compile axis 2 cam motion

(* compile 285 - 75 degree motion segment

CCP2 = - .0 (* set cam compile start position, axis units

MPA2 = .0 (* set absolute move position, axis units

CCB = 285.0 (* set cam compile beginning point, degrees

CCE = 75.0 (* set cam compile ending point, degrees

MAP2 = 25 (* set motion accel percentage, % of motion

MDP2 = 20 (* set motion decel percentage, % of motion

MJK2 = 00 (* set motion jerk percentage, % of accel/decel interval

CCM2 (* compile axis motion segment

(* compile 75 - 05 degree dwell

CCP2 = MPA2 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 05.0 (* set cam compile ending point, degrees

G-76 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

CCM2 (* compile axis motion segment

(* compile 05 - 255 degree motion segment

CCP2 = MPA2 (* set cam compile start position, axis units

MPA2 = - .0 (* set absolute move position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 255.0 (* set cam compile ending point, degrees

CCM2 (* compile axis motion segment

(* compile 255 - 285 degree dwell

CCP2 = MPA2 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 285.0 (* set cam compile ending point, degrees

CCM2 (* compile axis motion segment

(* compile axis 3 cam motion

(* compile 3 0 - 50 degree motion segment

CCP3 = 0.0 (* set cam compile start position, axis units

MPA3 = 5.0 (* set absolute move position, axis units

CCB = 3 0.0 (* set cam compile beginning point, degrees

CCE = 50.0 (* set cam compile ending point, degrees

CCM3 (* compile axis motion segment

(* compile 50 - 30 degree dwell

CCP3 = MPA3 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 30.0 (* set cam compile ending point, degrees

CCM3 (* compile axis motion segment

(* compile 30 - 230 degree motion segment

CCP3 = MPA3 (* set cam compile start position, axis units

MPA3 = 0.0 (* set absolute move position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 230.0 (* set cam compile ending point, degrees

CCM3 (* compile axis motion segment

(* compile 230 - 3 0 degree dwell

CCP3 = MPA3 (* set cam compile start position, axis units

CCB = CCE (* set cam compile beginning point, degrees

CCE = 3 0.0 (* set cam compile ending point, degrees

CCM3 (* compile axis motion segment

RETURN (* return from subroutine

(* RUN CAM MOTION

(*

CAT = PSR (* set cam type to axis resolver input

CAS2 = 2.5 (* set axis 2 cam scale factor

CAS3 = (* set axis 3 cam scale factor

VI 0 = 2700 (* define initial cam location

VF 0 = -CAP + ITF(VI 0) / 0.

(* initialize the cam shaft offset

IF VF 0 > 80. THEN (* bound offset to +/- 80 degrees

VF 0 = VF 0 - 360.

IF VF 0 <= - 80. THEN VF 0 = VF 0 + 360.

CAO2 = VF 0 (* set axis 2 cam offset, degrees

GFK-2205 Appendix G Motion Templates G-77

G

CAO3 = VF 0 (* set axis 3 cam offset, degrees

GOSUB 00 (* generate cam table

MVL2 = .0 (* set motion velocity, units/sec

MVL3 = .0 (* set motion velocity, units/sec

MAC2 = 50.0 (* set motion acceleration, units/sec^2

MAC3 = 50.0 (* set motion acceleration, units/sec^2

MDC2 = 75.0 (* set motion deceleration, units/sec^2

MDC3 = 75.0 (* set motion deceleration, units/sec^2

MPA2 = CAS2 * CAM2.VI 0 (* set absolute move position, units

MPA3 = CAS3 * CAM3.VI 0 (* set absolute move position, units

RPA23 (* run axes to initial cam follower position

WAIT (IP2 AND IP3) (* wait for axes to be in position

CAF = 2 (* set cam filter constant

STM = 0. (* set start time of timer , seconds

WAIT TM (* wait for filter to settle

CAE23 = ON (* enable electronic camming

G-78 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Single-Axis, Index Move after Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_MS AIN.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: IMC & IMJ

(* Move Type: Single-axis index move after input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward by 3 units after digital input turns on.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPI = 3.0 (* set incremental move position, units

WAIT DI (* wait for digital input to be turned on

RPI (* run to incremental move position

GFK-2205 Appendix G Motion Templates G-79

G

Target Template

(* Motion Template: T_MS AIN.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: Target ARS

(* Move Type: Single-axis index move after input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward by 3 units after digital input turns on.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

MPI = 3.0 (* set axis incremental move position, units

WAIT DI . (* wait for digital input to be turned on

RPI (* run axis to incremental move position

G-80 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Single-Axis, Run Forward until Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set

(* MDC to a value different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

IMC & IMJ Template

(* Motion Template: I_MS FIN.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: IMC & IMJ

(* Move Type: Run forward until input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run forward until input turned on.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

RVF (* run forward

WAIT DI (* wait for digital input to be turned on

ST (* stop all motion

GFK-2205 Appendix G Motion Templates G-81

G

Target Template

(* Motion Template: T_MS FIN.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: Target ARS

(* Move Type: Run forward until input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Run axis forward until input turned on.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 2.0 (* set motion velocity, units/sec

RVF (* run axis forward

WAIT DI . (* wait for digital input to be turned on

ST (* stop all motion

G-82 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

Single-Axis Index Move at Predefined Auxiliary Position Reference

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAP register also loads the MDP register with the same value. To set MDP

(* to a value different from MAP, load MDP after loading the MAP register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value

(* of 00. See IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files

(* T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP register.

(* 4- In order for this example to work properly, the position register wrap must be enabled,

(* i.e., PWE must be set to ON.

(* 5- Since this template incorporates labels and commands that are not allowed in motion

(* blocks (GOTO), it can be used only in a program.

IMC & IMJ Template

(* Motion Template: I_MS POS.TXT

(* Revision Log: REV 098OCT 2

(* DspMotion Series: IMC & IMJ

(* Move Type: Single-axis index move at predefined auxiliary position

(* reference

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: The axis will remain in position until the position capture input

(* edge is detected. Then, as the aux position increases by 3 aux

(* units, the axis will run forward 6 axis units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPL = 3.0 (* set move pulses, aux units

MPI = 6.0 (* set incremental move position, units

VF 0 = 0.2 (* load distance between sensor and motion start

 00 VF20 = PCA (* reset position capture

VF2 = PCX (* reset aux position capture

WAIT IO 3 (* wait for position capture input edge

VF = PCX + VF 0 (* calculate motion start position

IF VF < (PLX - (MPL + VF 0)) - (.0 / ITF(URX)) GOTO 0

(* if start position < max positive goto 0

OFX = -(MPL + VF 0) (* offset aux position by move pulses + distance between

(*sensor and motion start

MPS = VF - (MPL + VF 0)

(* set motion start position, aux units

RPI (* run to incremental move position

GFK-2205 Appendix G Motion Templates G-83

G

WAIT IP (* wait until motion ends

OFX = MPL + VF 0 (* offset aux position back to original

GOTO (* go back and wait for position capture

 0 0MPS = VF (* set motion start position, aux units

RPI (* run to incremental move position

WAIT IP (* wait until motion ends

GOTO (* go back and wait for position capture

Target Template

(* Motion Template: T_MS POS.TXT

(* Revision Log: REV 098OCT 2

(* DspMotion Series: Target ARS

(* Move Type: Single-axis index move at predefined auxiliary position

(* reference

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Axis will remain in position until the position capture input

(* edge is detected. Then, as the aux position increases by 3 aux

(* units, the axis will run forward 6 axis units.

(* MT = PULSE This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than PULSE. The default value for MT is VEL.

MI = PSX (* set motion pulse input to axis aux input

MAP = 20 (* set motion acceleration percentage, % of move pulses

MDP = 5 (* set motion deceleration percentage, % of move pulses

MPL = 3.0 (* set move pulses, aux units

MPI = 6.0 (* set incremental move position, units

VF 0 = 0.2 (* load distance between sensor and motion start

 00 VF20 = PCA (* reset position capture

VF2 = PCX (* reset aux position capture

WAIT IOA . 3 (* wait for position capture input edge

VF = PCX + VF 0 (* calculate motion start position

IF VF < (PLX - (MPL + VF 0)) - (.0 / ITF(URX)) GOTO 0

(* if start position < max positive goto 0

OFX = -(MPL + VF 0) (* offset aux position by move pulses + distance between

(* sensor and motion start

MPS = VF - (MPL + VF 0)

(* set motion start position, aux units

RPI (* run axis to incremental move position

WAIT IP (* wait until motion ends

OFX = MPL + VF 0 (* offset aux position back to original

GOTO (* go back and wait for position capture

G-84 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

 0 0MPS = VF (* set motion start position, aux units

RPI (* run axis to incremental move position

WAIT IP (* wait until motion ends

GOTO (* go back and wait for position capture

GFK-2205 Appendix G Motion Templates G-85

G

Trajectory Moves

2-D Line Segment: Incremental Move

Target Template:

(* Motion Template: T_MI2IL.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D line segment: incremental move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 by 4 and 6 units in a line segment at a

(* trajectory velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00.0 (* set trajectory feedrate percentage, % of trajectory velocity

MPI = 4.0 (* set axis incremental move position, units

MPI2 = 6.0 (* set axis 2 incremental move position, units

RLI 2 (* run axes and 2 to incremental move positions

G-86 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

2-D Line Segment: Absolute Move

Target Template:

(* Motion Template: T_MI2AL.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D line segment: absolute move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 to absolute positions of 4 and 6 units in a

(* line segment at a trajectory velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

(* 3- This example begins by loading the absolute position registers, PSA and PSA2, with 0

(* for the purpose of accurately graphing the subsequent motion. In general, applications

(* will only load PSA and PSA2 at the end of a homing motion.

(* Initialize absolute position registers to (0,0)

PSA = 0.0 (* set axis absolute position register, units

PSA2 = 0.0 (* set axis 2 absolute position register, units

(* Move axes and 2 to absolute position (4,6) with the accelerations and velocities shown.

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00.0 (* set trajectory feedrate percentage, % of trajectory velocity

MPA = 4.0 (* set axis absolute move position, units

MPA2 = 6.0 (* set axis 2 absolute move position, units

RLA 2 (* run axes and 2 to absolute move positions

GFK-2205 Appendix G Motion Templates G-87

G

2-D Line Segment: Offset Move

Target Template:

(* Motion Template: T_MI2OL.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D line segment: offset move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 to offset positions of 4 and 6 units in a line

(* segment at a trajectory velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

(* 3- This example begins by loading the offset position registers, PSO and PSO2, with 0 for

(* the purpose of accurately graphing the subsequent motion. Applications may require

(* other offset position register values.

(* Initialize offset position registers to (0,0)

PSO = 0.0 (* set axis offset position register, units

PSO2 = 0.0 (* set axis 2 offset position register, units

(* Move axes and 2 to offset position (4,6) with the accelerations and velocities shown.

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00.0 (* set trajectory feedrate percentage, % of trajectory velocity

MPO = 4.0 (* set axis offset move position, units

MPO2 = 6.0 (* set axis 2 offset move position, units

RLO 2 (* run axes and 2 to offset move positions

G-88 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

2-D Arc Segment Using Start, End, and
Center Point: Incremental Move

Target Template:

(* Motion Template: T_MI2ICC.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D arc segment using start, end, and center point: incremental

(* move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution; URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 in an arc with incremental center point at

(* (2.5, 2.5). Move clockwise from starting position to

(* incremental position (5,5) at a trajectory velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

(* 3- When using RCI to move the axes in arc, the incremental move distance registers, MDI

(* and MDI2, are used to define the center point of the arc.

TAD = CW (* set arc direction

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00. (* set trajectory feedrate percentage, % of trajectory velocity

MDI = 2.5 (* set axis incremental move distance, units

MDI2 = 2.5 (* set axis 2 incremental move distance, units

MPI = 5.0 (* set axis incremental move position, units

MPI2 = 5.0 (* set axis 2 incremental move position, units

RCI 2 (* run axes and 2 to incremental move positions

GFK-2205 Appendix G Motion Templates G-89

G

2-D Arc Segment Using Start, End, and Center Point: Absolute Move

Target Template:

(* Motion Template: T_MI2ACC.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D arc segment using start, end, and center point: absolute

(* move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution; URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 in an arc with center point at (2.5, 2.5)

(* clockwise from position (0,0) to position (5,5) at a trajectory

(* velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

(* 3- The circularly interpolated move command, RCA, requires that both the starting and

(* ending points of the motion lie on a circle with the specified center. This example begins

(* by moving the axes to absolute position (0,0), the starting point for the circle.

(* 4- When using RCA to move the axes in arc, the absolute move distance registers, MDA

(* and MDA2, are used to define the center point of the arc.

(* Initialize absolute position registers to (0,0)

PSA = 0.0 (* set axis absolute position register, units

PSA2 = 0.0 (* set axis 2 absolute position register, units

G-90 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* Move axes and 2 along circular path to absolute position (5,5) with the accelerations and

(* velocities shown.

TAD = CW (* set arc direction

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00. (* set trajectory feedrate percentage, % of trajectory velocity

MDA = 2.5 (* set axis absolute move distance, units

MDA2 = 2.5 (* set axis 2 absolute move distance, units

MPA = 5.0 (* set axis absolute move position, units

MPA2 = 5.0 (* set axis 2 absolute move position, units

RCA 2 (* run axes and 2 to absolute move positions

GFK-2205 Appendix G Motion Templates G-91

G

2-D Arc Segment Using Start, End, and Center Point: Offset Move

Target Template:

(* Motion Template: T_MI2OCC.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: 2-D arc segment using start, end, and center point: offset move

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback

(* resolution

(* URA2 = axis 2 position feedback resolution

(* Motion: Move axes and 2 in an arc with center point at offset position

(* (2.5, 2.5). Move clockwise from offset position (0,0) to offset

(* position (5,5) at a trajectory velocity of 3 units/sec.

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the TFA register also loads the TFD register with the same value. To set TFD to

(* a value different from TFA, load it after the TFA register.

(* 3- The circularly interpolated move command, RCO, requires that both the starting and

(* ending points of the motion lie on a circle with the specified center. This example begins

(* by setting the offset position to (0,0), the starting point for the circle.

(* 4- When using RCO to move the axes in arc, the offset move distance registers, MDO and

(* MDO2, are used to define the center point of the arc.

(* Initialize offset position registers to (0,0)

PSO = 0.0 (* set axis offset position register, units

PSO2 = 0.0 (* set axis 2 offset position register, units

G-92 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

G

(* Move axes and 2 along circular path to offset position (5,5) with the accelerations and

(* velocities shown.

TAD = CW (* set arc direction

TVL = 3.0 (* set trajectory velocity, units/sec

TFA = 500 (* set trajectory feedrate acceleration, feedrate % / sec

TFD = 650 (* set trajectory feedrate deceleration, feedrate % / sec

TFP = 00. (* set trajectory feedrate percentage, % of trajectory velocity

MDO = 2.5 (* set axis offset move distance, units

MDO2 = 2.5 (* set axis 2 offset move distance, units

MPO = 5.0 (* set axis offset move position, units

MPO2 = 5.0 (* set axis 2 offset move position, units

RCO 2 (* run axes and 2 to offset move positions

GFK-2205 H-1

Utility Templates

This appendix provides details on the following templates:

 First-In First-Out (FIFO) Buffer

 Display and Edit Time and Date on Operator Interface (OIP)

 Jogging Routines

- Jog Using Analog Input

- Jog Using Electronic Handwheel

- Jog Using Single-Pole, Double-Throw Switch

- Jog Using Operator Interface (OIP)

 Multi-axis Path Recording

 Report Controller Faults to OIP

 Retriggerable One-Shot

 Solve PID Algorithm

 Torque-Limited Pressing

 Two-Hand Anti-Tiedown

H
Appendix

H-2 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

First-In First-Out Buffer

(* Utility Template: A_FIFO.TXT

(* Revision Log: REV 098APR29 Original release

(* DspMotion Series: ALL

(* Function: First in first out buffer

(* Operation:

(* Subroutine 300: Increment stack input pointer and depth.

(* Depth limited to value in VI2 .

(* Set VB20 if depth = VI2 .

(*

(* Subroutine 3 0: If depth > 0, increment stack output pointer and

(* decrement stack depth. VB2 set if depth = 0.

(*

(* Subroutine 320: Initialize FIFO stack input and output pointers to

(* value in VI20. Initialize depth to 0.

(* Global resources:

(* VB20 FIFO full flag

(* VB2 FIFO empty flag

(* Module specific resources:

(* Labels 300 through 320

(* VFVI20 - VF(VI20+VI2)FIFO stack variables

(* VI20 FIFO start

(* VI2 maximum FIFO length

(* VI22 FIFO input pointer

(* VI23 FIFO output pointer

(* VI24 FIFO depth

(* Example of FIFO use:

(*

(* VFVI22 = AI (* load analog input into fifo (IMJ uses AIp1)

(* GOSUB 300 (* increment input pointer

(* ...

(* IF VI24 = 0 GOTO 20 (* check for data available

(* AO = VFVI23 (* load analog output from fifo

(* GOSUB 3 0 (* increment output pointer

(* 20 ...

(* begin FIFO

(* Subroutine: Increment FIFO stack input pointer. Call after loading

(* variable pointed to by VI22 with new input value.

GFK-2205 Appendix H Utility Templates H-3

H

300 VI22 = VI22 + (* increment input pointer

IF VI22 >= (VI20+VI2) THEN (* reset input pointer if

VI22 = VI20 (* past top of buffer

VI24 = VI24 + (NOT VB20) (* increment stack depth

VB2 = FALSE (* reset FIFO empty flag

VB20 = (VI24 >= VI2) (* set state of FIFO full flag

RETURN (* return from subroutine

(* Subroutine: Increment FIFO stack output pointer. Call after

(* retrieving value from variable pointed to by VI23.

3 0 IF VI24 = 0 GOTO 3 5 (* If empty, return from subroutine

VI23 = VI23 + (* increment output pointer

IF VI23 >= (VI20+VI2) THEN (* reset output pointer if

VI23 = VI20 (* end of buffer

VI24 = VI24 - (* decrement stack depth

VB2 = (VI24 = 0) (* set state of FIFO empty flag

3 5 RETURN (* return from subroutine

(* Subroutine: Initialize FIFO

320 VI22 = VI20 (* initialize input pointer

VI23 = VI20 (* initialize output pointer

VI24 = 0 (* initialize stack depth

VB20 = FALSE (* reset FIFO full flag

VB2 = TRUE (* set FIFO empty flag

RETURN (* return from subroutine

H-4 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

Display and Edit Time/Date on OIP I

(* Utility Template: I_T&DATE.TXT

(* Revision Log: REV 098OCT 9 Original release

(* DspMotion Series: IMC + OIP-DSP -C

(* Function: Display and Edit Time and Date on Operator Interface

Display

(* Operation: Time and date displayed at cursor position when called.

(* Edit functions use display line in VI 00 of to 4.

(* Template includes:

(* Label Function

(* ——— ————————————————————————————

(* 600 Display Date

(* 6 0 Display Time as hh:mm:ss:AM or hh:mm:ss:PM

(* 620 Edit Date

(* 640 Edit 24 Time in 24 hour format

(* 650 Edit Time in AM/PM format

(* 670 Convert 24 hour time string in VS 20 to AM/PM time format

(* 680 Convert AM/PM time string in VS 20 to 24 hour time format

(* Global resources: Date and Time registers

(* VI 00 - Pointer to display line to use for edit

(* Module specific resources: Integer variables VI 20, VI 2 , VI 22

(* String variables VS 20, VS 2

(* Example of Time & Date Display and Edit

program

cls

vi 00 = 3 (* use line 3 for edit

stm = 0.5 (* update time each .5 sec

0 0 wait tm

crp . (* position cursor for date

gosub 600 (* display date

crp .30 (* position cursor for time

gosub 6 0 (* display time

crp2. (* position cursor for message

ekb (* empty key buffer

out “Press A to edit date B or C to edit time”

(* Key Press A B C D E F G H I J K L

0 5 function 020, 040, 050, 0 5, 0 5, 0 5, 0 5, 0 5, 0 5, 0 5, 0 5, 0 5

020 gosub 620 (* edit date

 goto 0

040 gosub 640 (* edit 24 hr time

goto 0

050 gosub 650 (* edit AM/PM time

goto 0 (* repeat forever

GFK-2205 Appendix H Utility Templates H-5

H

(* Subroutine: Display Date at present cursor position

(* Revision .0 08/05/98 wbh

(* Format is month day, year i.e. January 0 , 2000

600 out month+” “+rgt(date,2)+”, “+lft(date,4)

return

(* Subroutine: Display Time as hh:mm:ss:AM or hh:mm:ss:PM

(* Revision .0 08/05/98 wbh

(* VS 20, VI 20 used as scratchpads

6 0 vs 20 = time (* capture time

gosub 670 (* convert to AM/PM

if lft(vs 20,)=”0" then

vs 20 = “ “ + rgt(vs 20, 0)

out vs 20 (* display

return

(* Subroutine: Edit date

(* Revision .0 08/05/98 wbh

(* Format is month day, year i.e. January 0 , 2000

(* VI 00 contains line number of display to use for edit of -4

(* vs 2 -vs 23 and vi 2 -vi 23 used as scratchpad

620 crpvi 00. (* move cursor to edit line

cll

vs 2 = mid(date,2,6)+”-”+rgt(date,2)+”-”+lft(date,4)

out “Type date, Enter to accept: “

622 crpvi 00.30

out vs 2 (* write date: mo-da-yrrr

crpvi 00.30

ekb (* flush key input buffer

in vs 22 (* get new date

if len(vs 22) = 0 goto 632 (* quit if Enter

if len(vs 22) <> 0 goto 628 (* error if wrong # of char

vi 2 = sti(lft(vs 22,2)) (* test month

if (vi 2 > 0) and (vi 2 < 3) goto 624

goto 628

624 vi 22 = sti(mid(vs 22,2,4)) (* test day

if (vi 22 > 0) and (vi 22 < 32) goto 626

goto 628

626 vi 23 = sti(rgt(vs 22,4)) (* test year

if (vi 23 > 993) and (vi 23 < 2050) goto 630

628 crpvi 00. (* error: clear line

cll

out “Please re-enter date: “

goto 622

H-6 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

630 vs 23 = its(vi 23,4) + “-” (* assemble year into date string

vs 23 = vs 23 + its(vi 2 ,2) + “-”

vs 23 = vs 23 + its(vi 22,2)

if mid(vs 23, ,6) = “ “ then

vs 23 = lft(vs 23,5) + “0” + rgt(vs 23,4)

if mid(vs 23, ,9) = “ “ then

vs 23 = lft(vs 23,8) + “0” + rgt(vs 23,)

date = vs 23

632 crpvi 00. (* clear edit line

cll

639 return

(* Subroutine: Edit Time in 24 hour format

(* Revision .0 08/05/98 wbh

(* Format is hh:mm:ss

(* VI 00 contains line number of display to use for edit of -4

(* VS 20 used as scratchpad

640 crpvi 00. (* clear edit line

cll

out “Type 24 hr time as hh.mm.ss: “

642 crpvi 00.30

vs 20 = time (* capture time

out lft(vs 20,2)+”.”+mid(vs 20,2,4)+”.”+rgt(vs 20,2)

crpvi 00.30

ekb (* flush key input buffer

in vs 20 (* get new time

if len(vs 20) = 0 goto 648 (* quit if Enter

if len(vs 20) <> 8 goto 644 (* error if wrong # of char

(* check hour

if sti(lft(vs 20,2)) < 0 or sti(lft(vs 20,2)) > 23 goto 644

(* check minute

if sti(mid(vs 20,2,4)) < 0 or sti(mid(vs 20,2,4)) > 59 goto 644

(* check second

if sti(rgt(vs 20,2)) < 0 or sti(rgt(vs 20,2)) > 59 goto 644

if mid(vs 20, ,3) <> “.” goto 644 (* check punctuation

if mid(vs 20, ,6) = “.” goto 646

644 crpvi 00. (* write error message

cll

out “Please re-enter time:”

goto 642 (* go get new input

646 time = lft(vs 20,2)+”:”+mid(vs 20,2,4)+”:”+rgt(vs 20,2)

648 crpvi 00. (* clear edit line

cll

return (* done

(* Subroutine: Edit Time in AM/PM format

(* Revision .0 08/05/98 wbh

GFK-2205 Appendix H Utility Templates H-7

H

(* Format is hh:mm:ss:AM or hh:mm:ss:PM

(* VI 00 contains line number of display to use for edit of -4

(* VS 20 - VS 22 used as scratchpad

650 crpvi 00. (* clear edit line

cll

out “Type new time as hh.mm.ss: “

652 crpvi 00.30

vs 20 = time (* capture time

gosub 670 (* convt to AM/PM

if lft(vs 20,) = “ “ then

vs 20 = “0” + rgt(vs 20, 0) (* strip AM/PM

out lft(vs 20,2)+”.”+mid(vs 20,2,4)+”.”+mid(vs 20,2,7)

crpvi 00.30

ekb (* flush key input buffer

in vs 20 (* get new time

if len(vs 20) = 0 goto 668 (* quit if Enter

if len(vs 20) <> 8 goto 654 (* error if wrong # of char

(* check hour

if sti(lft(vs 20,2)) < or sti(lft(vs 20,2)) > 2 goto 654

(* check minute

if sti(mid(vs 20,2,4)) < 0 or sti(mid(vs 20,2,4)) > 59 goto 654

(* check second

if sti(rgt(vs 20,2)) < 0 or sti(rgt(vs 20,2)) > 59 goto 654

if mid(vs 20, ,3) <> “.” goto 654 (* check punctuation

if mid(vs 20, ,6) = “.” goto 656

654 crpvi 00. (* write error message

cll

out “Please re-enter time:”

goto 652 (* go get new input

656 vs 22 = lft(vs 20,2)+”:”+mid(vs 20,2,4)+”:”+rgt(vs 20,2)

crpvi 00. (* prompt for AM/PM

cll

out “Press for AM, 2 for PM: “

658 ekb (* flush key input buffer

get vs 2 (* get response

out vs 2 (* echo response

if vs 2 = “ ” goto 660 (* am

if vs 2 = “2” goto 662 (* pm

crpvi 00. (* error

cll (* prompt for new entry

out “Please re-enter: =AM, 2=PM: “

goto 658

H-8 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

660 vs 20 = vs 22 + “:AM”

goto 664

662 vs 20 = vs 22 + “:PM”

664 gosub 680 (* convert to 24 hour

time = vs 20 (* save new time

668 crpvi 00. (* clear edit line

cll

669 return

(* Subroutine: Convert 24 hour time string in VS 20 to AM/PM time format

(* Rev .0 08/05/98 wbh

(* Input format is hh:mm:ss Output format is hh:mm:ss:AM or hh:mm:ss:PM

(* VI 20 used as scratchpad

670 vi 20 = sti(lft(vs 20,2)) (* convt hr to integer

if vi 20 < 2 goto 672 (* if hr < 2 then AM

(* time is PM

if vi 20 > 2 then (* if hour > 2 then

vi 20 = vi 20 - 2 (* hour = hour – 2

vs 20 = its(vi 20,2)+rgt(vs 20,6)+”:PM” (* assemble time string

goto 674

(* time is AM

672 if vi 20 < then (* if hour <

vi 20 = 2 (* then 2 am

vs 20 = its(vi 20,2)+rgt(vs 20,6)+”:AM” (* assemble time string

674 return

(* Subroutine: Convert AM/PM time string in VS 20 to 24 hour time format

(* Rev .0 08/05/98 wbh

(* Input format is hh:mm:ss:AM or hh:mm:ss:PM Output format is hh:mm:ss

(* VI 20 used as scratchpad

680 vi 20 = sti(lft(vs 20,2)) (* convt hour to integer

if rgt(vs 20,2) = “AM” goto 682 (* test for AM or PM

if vi 20 < 2 then (* map PM to 24 hour

vi 20 = vi 20 + 2

goto 684

682 if vi 20 > then (* map AM to 24 hour

vi 20 = vi 20 – 2

684 vs 20 = its(vi 20,2)+mid(vs 20,6,3) (* assemble time string

if lft(vs 20,) = “ “ then

vs 20 = “0” + rgt(vs 20,7)

return

end

GFK-2205 Appendix H Utility Templates H-9

H

Jog Using Analog Input

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set MDC to a value

(* different from MAC, load MDC after loading the MAC register.

(* 3- Loading the MFA register also loads the MFD register with the same value. To set MFD to a value

(* different from MFA, load MFD after loading the MFA register.

(* 4- The Motion Feedrate Percentage Register, MFP, slows time by the % specified. Thus the velocity is

(* scaled by MFP. Since acceleration is proportional to /(t^2), the acceleration is scaled by (MFP)^2.

(* 5- Since this template incorporates labels and commands that are not allowed in motion

(* blocks (GOTO), it can be used only in a program.

IMC & IMJ Template

(* Motion Template: I_RJANAI.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: IMC & IMJ

(* Move Type: Jog using analog input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis in response to the analog input. The axis will move at

(* a velocity that is proportional to the analog input.

(* Variables used: VF 0 velocity scale factor, (units/sec)/volt

(* VF computed feedrate percentage

(* VF 2 maximum velocity, units/sec

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

AIB = 0.0 (* set analog input deadband, volts (IMJ requires AIBp1=0.0)

AIO = 0.0 (* set analog input offset, volts (IMJ requires AIOp1)

VF 0 = 4.0 (* set velocity scale factor, (units/sec)/volt

VF 2 = 40.0 (* set maximum velocity, units/sec

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 0.0 (* set motion feedrate percentage, % of velocity

MAC = 200000.0 (* set motion acceleration, units/sec^2

MDC = 200000.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 40.0 (* set motion velocity, units/sec

WAIT MFP = 0.0 (* wait for feedrate to decrease to 0.0

RVF (* run forward

00 VF = ((AI * VF 0) / VF 2) * 00.

(* compute feedrate percentage (IMJ requires AIp1)

IF VF < 0.5 THEN (* if feedrate < minimum allowed then

H-10 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

VF = 0.0 (* set feedrate to 0

IF VF > 00.0 THEN (* if feedrate > maximum allowed then

VF = 00.0 (* set feedrate to maximum

MFP = VF (* set motion feedrate percentage

GOTO (* go back and compute new feedrate

Target Template

(* Motion Template: T_RJANAI.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: Target ARS

(* Move Type: Jog using analog input

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis in response to analog input of analog module .

(* The axis will move at a velocity that is proportional to the

(* analog input.

(* Variables used: VF 0 velocity scale factor, (units/sec)/volt

(* VF computed feedrate percentage

(* VF 2 maximum velocity, units/sec

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

AIB . = 0.0 (* set analog input deadband, volts

AIO . = 0.0 (* set analog input offset, volts

VF 0 = 4.0 (* set velocity scale factor, (units/sec)/volt

VF 2 = 40.0 (* set maximum velocity, units/sec

MFA = 500 (* set motion feedrate acceleration, feedrate % / sec

MFD = 650 (* set motion feedrate deceleration, feedrate % / sec

MFP = 0.0 (* set motion feedrate percentage, % of velocity

MAC = 200000.0 (* set motion acceleration, units/sec^2

MDC = 200000.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = 40.0 (* set motion velocity, units/sec

WAIT MFP = 0.0 (* wait for feedrate to decrease to 0.0

RVF (* run axis forward

00 VF = ((AI . * VF 0) / VF 2) * 00.

(* compute feedrate percentage

IF VF < 0.5 THEN (* if feedrate < minimum allowed then

VF = 0.0 (* set feedrate to 0

IF VF > 00.0 THEN (* if feedrate > maximum allowed then

VF = 00.0 (* set feedrate to maximum

MFP = VF (* set motion feedrate percentage

GOTO (* go back and compute new feedrate

GFK-2205 Appendix H Utility Templates H-11

H

Jog Using Electronic Handwheel I

IMC Template

(* Motion Template: I_RJELHW.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: IMC

(* Move Type: Jog using electronic handwheel

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* URX = auxiliary feedback resolution

(* Motion: Move axis in relation to the electronic handwheel. The

(* electronic handwheel is used in place of the auxiliary input as a

(* means of positioning for electronic gearing. The axis will

(* follow the auxiliary input based on the values of GRN and

(* GRD, i.e.,

(*

(* GRN

(* axis pulses = —— * handwheel pulses

(* GRD

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- The electronic handwheel input can be connected to the auxiliary input or to digital inputs

(* 5 and 6. Setting HWE = ON enables digital inputs 5 and 6 as the handwheel inputs.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

GRN = (* set gearing numerator

GRD = (* set gearing denominator

GRB = 0 (* set gearing bound

GRF = 0 (* set gearing filter constant

GRE = ON (* enable electronic gearing

HWE = ON (* enable digital inputs 5 and 6 electronic handwheel

H-12 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

Jog Using Single-Pole, Double-Throw Switch

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set MDC to a value

(* different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of 00. See

(* IMC files I_MVABSF.TXT and I_MT ABF.TXT or Target files T_MVABSF.TXT and

(* T_MT ABF.TXT for examples using the MFP register.

(* 4- Since this template incorporates labels and commands that are not allowed in motion blocks

(* (GOTO), it can only be used in a program.

IMC & IMJ Template

(* Motion Template: I_RJSPOL.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: IMC & IMJ

(* Move Type: Jog using single-pole, double-throw switch

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis in response to a single-pole, double-throw switch. Jog

(* axis forward while digital input is true. Jog axis reverse

(* while digital input 2 is true.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

00 WAIT DI OR DI2 (* wait for digital input or 2 to turn on

IF DI2 GOTO 20 (* goto label 20 if digital input 2 on

RVF (* run forward

WAIT NOT DI (* wait for digital input to turn off

ST (* stop all motion

GOTO (* go back and wait for digital input

020 RVR (* run reverse

WAIT NOT DI2 (* wait for digital input 2 to turn off

ST (* stop all motion

GOTO (* go back and wait for digital input

GFK-2205 Appendix H Utility Templates H-13

H

Target Template

(* Motion Template: T_RJSPOL.TXT

(* Revision Log: REV 098OCT05

(* DspMotion Series: Target ARS

(* Move Type: Jog using single-pole, double-throw switch

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis in response to a single-pole, double-throw switch.

(* Jog axis forward while digital input of digital I/O module

(* is true. Jog axis reverse while digital input 2 of digital I/O

(* module is true.

(* MT = VEL This register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

00 WAIT DI . OR DI .2 (* wait for digital input or 2 to turn on

IF DI .2 GOTO 20 (* goto label 20 if digital input 2 on

 RVF (* run axis forward

WAIT NOT DI . (* wait for digital input to turn off

ST (* stop all motion

GOTO (* go back and wait for digital input

020 RVR (* run axis reverse

WAIT NOT DI .2 (* wait for digital input 2 to turn off

ST (* stop all motion

GOTO (* go back and wait for digital input

H-14 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

Jog Using Operator Interface (OIP)

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- Loading the MAC register also loads the MDC register with the same value. To set MDC to a value

(* different from MAC, load MDC after loading the MAC register.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of 00. See

(* IMC & IMJ files I_MVABSF.TXT and I_MT ABF.TXT or Target files T_MVABSF.TXT and

(* T_MT ABF.TXT for examples using the MFP register.

(* 4- Since this template incorporates labels and commands that are not allowed in motion blocks

(* (GOTO, FUNCTION), it can be used only in a program.

(* 5- In order for this example to work, KYA and KYA2 (the key assignments for function keys A and

(* B) must be set to DOUBLE in the initialization of the IMC and the Target. This allows both the

(* key press and the key release codes to be put in the key buffer.

IMC & IMJ Template

(* Motion Template: I_RJOIP.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: IMC & IMJ

(* Move Type: Jog using OIP

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis while a key on the Operator Interface display

(* is pressed. The twelve function keys on the left-hand side of

(* the OIP are programmable. In this case, keys A and B

(* are programmed to jog the axis forward and reverse.

00 EKB (* empty key buffer

FUNCTION 00,200, , , , , , , , , ,

(* go to label associated with key pressed

GOTO (* go back and check for key press

00 MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVF (* run forward

WAIT KEY (* wait for character in key buffer

ST (* stop all motion

GOTO (* go back and check for key press

200 MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVR (* run reverse

WAIT KEY (* wait for character in key buffer

GFK-2205 Appendix H Utility Templates H-15

H

ST (* stop all motion

GOTO (* go back and check for key press

Target Template

(* Motion Template: T_RJOIP.TXT

(* Revision Log: REV 098OCT08

(* DspMotion Series: Target ARS

(* Move Type: Jog using OIP

(* Engineering Units: Motor revolutions: i.e., URA = position feedback resolution

(* Motion: Jog axis while a key on the Operator Interface

(* display is pressed. The twelve function keys on the left-hand

(* side of the OIP are programmable. In this case, keys

(* A and B are programmed to jog the axis forward and reverse.

00 EKB (* empty key buffer

FUNCTION 00,200, , , , , , , , , ,

(* go to label associated with key pressed

GOTO (* go back and check for key press

00 MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage,

(* % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVF (* run axis forward

WAIT KEYW (* wait for character in key buffer

ST (* stop all motion

GOTO (* go back and check for key press

200 MAC = 50.0 (* set motion acceleration, units/sec^2

MDC = 75.0 (* set motion deceleration, units/sec^2

MJK = 0 (* set motion jerk percentage, % of accel & decel interval

MVL = .0 (* set motion velocity, units/sec

RVR (* run axis reverse

WAIT KEYW (* wait for character in key buffer

ST (* stop all motion

GOTO (* go back and check for key press

H-16 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

Multi-axis Path Recording
(* Motion Template: T_RT4PR.TXT

(* Revision Log: REV 098OCT06

(* DspMotion Series: Target ARS

(* Move Type: Multi-axis path recording

(* Engineering Units: Motor revolutions: i.e., URA = axis position feedback resolution

(* URA2 = axis 2 position feedback resolution, etc.

(* Motion: Record and playback a sequence of positions that the axes

(* move. During record, the axes will move in response to the

(* auxiliary inputs. Digital input of digital I/O module will

(* start record, and digital input 2 will start playback.

(* Variables used: VI , VI3, VI5, VI7

(* axis -4 position pointer end

(* VI2, VI4, VI6, VI8

(* axis -4 position pointer begin

(* Notes:

(* - Registers that have been previously loaded with appropriate values

(* do not have to be reloaded for this motion.

(* 2- The position pointers point to extended variable space. Since this example uses integer

(* variables up to 84999, the extended floating point variable allocation, VFEA, must be set

(* to a value <= 90620. See VFEA in the system registers for more information on extended

(* integer and floating point variable allocation.

(* 3- This example assumes the MFP (Motion Feedrate Percentage) is set to its default value of

(* 00. See files T_MVABSF.TXT and T_MT ABF.TXT for examples using the MFP

(* register.

(* 4- This example assumes the gearing registers GRN, GRD, GRF and GRB are set to their

(* default values. See files T_MS EG.TXT and T_MS4EG.TXT for examples using these

(* registers.

(* 5- Since this template incorporates labels and commands that are not allowed in motion

(* blocks (GOTO) it can only be used in a program.

(* MT = VEL

(* MT2 = VEL

(* MT3 = VEL

(* MT4 = VEL The MT register cannot be loaded if motion is in progress.

(* MT does not need to be set unless it is set to a MT setting other

(* than VEL. The default value for MT is VEL.

GRI = PSX (* set axis gearing input to axis aux input

GRI2 = PSX2 (* set axis 2 gearing input to axis 2 aux input

GRI3 = PSX3 (* set axis 3 gearing input to axis 3 aux input

GRI4 = PSX4 (* set axis 4 gearing input to axis 4 aux input

IPB = 0.005 (* set in position band, units

IPB2 = 0.005 (* set in position band, units

IPB3 = 0.005 (* set in position band, units

IPB4 = 0.005 (* set in position band, units

VI = 500 (* set axis default position pointer end

VI3 = 2500 (* set axis 2 default position pointer end

GFK-2205 Appendix H Utility Templates H-17

H

VI5 = 4500 (* set axis 3 default position pointer end

VI7 = 6500 (* set axis 4 default position pointer end

00 WAIT DI . OR DI .2 (* wait for record input or playback input

IF DI .2 GOTO 20 (* if playback input goto 20

GRE 234 = ON (* enable electronic gearing

PPE = 24999 (* set axis position pointer end

PPB = 5000 (* set axis position pointer begin

PPE2 = 44999 (* set axis 2 position pointer end

PPB2 = 25000 (* set axis 2 position pointer begin

PPE3 = 64999 (* set axis 3 position pointer end

PPB3 = 45000 (* set axis 3 position pointer begin

PPE4 = 84999 (* set axis 4 position pointer end

PPB4 = 65000 (* set axis 4 position pointer begin

PPI = .0 (* set axis position pointer interval

PPI2 = .0 (* set axis 2 position pointer interval

PPI3 = .0 (* set axis 3 position pointer interval

PPI4 = .0 (* set axis 4 position pointer interval

WAIT NOT IPALL (* wait for one of the axes to start moving

REC 234 = ON (* enable record positions

WAIT NOT DI . (* wait for not record input

REC 234 = OFF (* disable record positions

GRE 234 = OFF (* disable electronic gearing

VI = PP - (* get last valid axis position pointer

VI3 = PP2 - (* get last valid axis 2 position pointer

VI5 = PP3 - (* get last valid axis 3 position pointer

VI7 = PP4 - (* get last valid axis 4 position pointer

GOTO (* go back and check for inputs

020 PPE = VI (* set axis position pointer end

PPB = 5000 (* set axis position pointer begin

PPE2 = VI3 (* set axis 2 position pointer end

PPB2 = 25000 (* set axis 2 position pointer begin

PPE3 = VI5 (* set axis 3 position pointer end

PPB3 = 45000 (* set axis 3 position pointer begin

PPE4 = VI7 (* set axis 4 position pointer end

PPB4 = 65000 (* set axis 4 position pointer begin

PPI = .0 (* set axis position pointer interval

PPI2 = .0 (* set axis 2 position pointer interval

PPI3 = .0 (* set axis 3 position pointer interval

PPI4 = .0 (* set axis 4 position pointer interval

VI2 = PPB (* get axis position pointer begin

MPA = ITF(VIVI2)/ITF(URA)

(* set axis absolute move position, units

VI4 = PPB2 (* get axis 2 position pointer begin

MPA2 = ITF(VIVI4)/ITF(URA)

(* set axis 2 absolute move position, units

VI6 = PPB3 (* get axis 3 position pointer begin

MPA3 = ITF(VIVI6)/ITF(URA)

(* set axis 3 absolute move position, units

VI8 = PPB4 (* get axis 4 position pointer begin

MPA4 = ITF(VIVI8)/ITF(URA)

H-18 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

(* set axis 4 absolute move position, units

MVL = .0 (* set motion velocity, units/sec

MVL2 = .0 (* set motion velocity, units/sec

MVL3 = .0 (* set motion velocity, units/sec

MVL4 = .0 (* set motion velocity, units/sec

RPA 234 (* run axes to absolute position

WAIT IPALL (* wait for all axes to run back to beginning

PLY 234 = ON (* enable playback of recorded positions

WAIT PP = VI (* wait for end of run

WAIT NOT DI .2 (* wait for not play input

GOTO (* go back and check for inputs

GFK-2205 Appendix H Utility Templates H-19

H

Report Controller Faults to OIP I, jr

(* Utility Template: I_FAULTS.TXT

(* Revision Log: REV 098OCT 6 Original release

(* DspMotion Series: IMC or IMJ and OIP-DSP -C

(* Function: Report DspMotion Controller fault(s) to OIP

(* Operation: Write all currently active faults to line 4 of the OIP until OIP

(* key is pressed. Active faults are scrolled at the rate of one per

(* 2 seconds.

(* Global resources: Serial communication port

(* Module specific resources: VI 0 is system fault bit counter

(* VI 02 is network fault bit counter

(* Example of use:

program4

(* gosub 00 (* display active faults

(* function (* decode key press

(* Begin IMC or IMJ fault reporting

00 crp4. (* position cursor on fault

cll (* display line & clear line

05 vi 0 = 0 (* initialize fault count

0 if fc <> 0 goto 5 (* if fault, go decode

cll (* else clear line

out “Controller Functional” (* and write ok message

stm4 = 2 (* start 2 sec timer

wait tm4 when key goto 35 (* wait for timer or key press

goto 05 (* repeat

5 if not fcvi 0 goto 30 (* test for fault

cll (* if fault, clear fault line

if vi 0 <> 2 goto 8 (* if not STF fault, go on

out “Machine Fault” (* else write new message

goto 25 (* go to pause

8 if vi 0 <> 26 goto 20 (* if not excessive clamp, go on

out “Excessive Motor Clamp - Under Voltage” (* else write message

goto 25 (* go to pause

20 out $fcvi 0 (* report fault

25 stm4 = 2 (* start 2 sec timer

wait tm4 when key goto 35 (* wait for timer or key press

30 vi 0 = vi 0 + (* increment fault count

if vi 0 < 32 goto 0 (* test for faults done

if fcn <> 0 gosub 40 (* report network faults

goto 05 (* repeat

35 RETURN

H-20 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

(* Begin IMC or IMJ Network fault reporting

40 vi 02 = 0 (* initialize fault count

45 if not fcnvi 02 goto 50 (* test for fault

cll (* if fault, clear fault line

out $fcnvi 02 (* report fault

stm4 = 2 (* start 2 sec timer

wait tm4 when key goto 55 (* wait for timer or key press

50 vi 02 = vi 02 + (* increment fault count

if vi 02 < goto 45 (* repeat if not faults done

55 return

(* End IMC or IMJ fault reporting

GFK-2205 Appendix H Utility Templates H-21

H

Retriggerable One-Shot I, jr

(* Utility Template: I_ SHOT.TXT

(* Revision Log: REV 097MAY 6 Original release

(* DspMotion Series: IMC/IMJ

(* Function: Retriggerable One Shot

(* Operation: Implement one-shot output on DO 2 and DO 3 with

(* programmable on-delay and programmable off-delay.

(* One-shots are triggered by VB27 and VB28.

(* NOTE: to maintain accurate timing, call this module every 0 ms.

(*

(* Global resources:

(* vb27 DO 2 one shot input

(* vb28 DO 3 one shot input

(* vf40 DO 2 on-delay time, sec

(* vf4 DO 2 off-delay time, sec

(* vf42 DO 3 on-delay time, sec

(* vf43 DO 3 off-delay time, sec

(* Module specific resources:

(* Labels 500 through 549

(* tm7 and tm8 One shot timers

(* vb 20 DO 2 output on_delay timer flag

(* vb 2 tm 2 timer state

(* vb 22 DO 3 output on_delay timer flag

(* vb 23 tm8 timer state

(* do7 one shot output

(* do8 one shot output

(* Example of One-Shot use:

(* do 2 = off (* initialize outputs to off

(* do 3 = off

(* vb 20 = off (* initialize states to off

(* vb 2 = off

(* vb 22 = off

(* vb 23 = off

(* stm = 0.0 (* initialize i/o scan timer

(* 005 wait tm (* wait for scan tick

(* ... (* body of i/o scan

(* gosub 500 (* execute ONE_SHOT

(* goto 05 (* repeat scan

H-22 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

(* Begin One_shot

(* Start DO7 One-Shot if vb27

500 if not vb27 goto 505 (* if no input go check timers

vb27 = false (* reset input trigger

if vf40 < 0.005 goto 5 0 (* no delay if time < 5 ms

stm7 = vf40 (* start on-delay timer

vb 20 = true (* set on-delay timer flag

505 vb 2 = tm7 (* capture timer state

if (not vb 20) or (not vb 2) goto 5 5

(* if timing, continue else start off-delay

5 0 if vf4 < 0.005 goto 5 6 (* no delay for short times

stm7 = vf4 (* start off-delay timer

vb 20 = false (* cancel on-delay flag

do 2 = on (* turn on output

goto 520 (* go check next input

5 5 if vb 20 or (not vb 2) or (not do 2) goto 520

(* if timing continue

5 6 do 2 = off (* else turn off output

(* Start DO 3 One-Shot if vb28

520 if not vb28 goto 525 (* if no input go check timers

vb28 = false (* reset input trigger

if vf42 < 0.005 goto 530 (* no delay if time < 5 ms

stm8 = vf42 (* start on-delay timer

vb 22 = true (* set on-delay timer flag

525 vb 23 = tm8 (* capture timer state

if (not vb 22) or (not vb 23) goto 535

(* if timing, continue else start off-delay

530 if vf43 < 0.005 goto 536 (* no delay for short times

stm8 = vf43 (* start off-delay timer

vb 22 = false (* cancel on-delay flag

do 3 = on (* turn on output

goto 540 (* go check next input

535 if vb 22 or (not vb 23) or (not do 3) goto 540

(* if timing continue

536 do 3 = off (* else turn off output

540 return

(* End One_shot

GFK-2205 Appendix H Utility Templates H-23

H

Solve PID Algorithm

(* Utility Template: A_PID.TXT

(* Revision Log: REV 097SEP 2 Original release

(* DspMotion Series: All

(* Function: Proportional, Integral, Derivative Controller with bounded integrator

(* Operation: Solve PID algorithm:

(* output(n) = KA*command(n) + KP*error(n) + KI*sum(error(N))

(* + KD*{0.2083646*[error(n-) - error(n-2)]

(* - .0285944*[error(n) - error(n-3)]}

(* Global resources:

(* PID parameters

(* VF20 KP, proportional gain

(* VF2 KI, integral gain

(* VF22 KD, derivative gain

(* VF23 KF, feed forward gain

(* VF24 integrator bound

(* Inputs

(* VF 00 command(n)

(* VF 0 error(n)

(* Output

(* VF 02 PID output(n)

(* Module specific registers:

(* VF 03 error(n-)

(* VF 04 error(n-2)

(* VF 05 error(n-3)

(* VF 06 integrator accumulator

(* VF 07 derivative result

(* Example PID initialization:

(* VF20 = .0 (* set proportional gain

(* VF2 = .0 (* set integral gain

(* VF22 = 0.0 (* set derivative gain

(* VF23 = 0.0 (* set feed forward gain

(* VF24 = 7.5 (* set integrator bound

(* VF 03 = 0.0 (* reset PID state to zero

(* VF 04 = 0.0

(* VF 05 = 0.0

(* VF 06 = 5.0 (* preset integrator with command

(* Example PID use: input is analog input, output is analog output

(* STM2 = 0.0 (* initialize control loop timer

(* 005 WAIT TM2 (* wait for timer

(* VF 00 = 5.0 (* load command

(* VF 0 = VF 00 - AI (* compute error (IMJ requires AIp1)

(* CALL 00 (* execute PID

(* IF VF 02 > 0. THEN (* bound output

H-24 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

(* VF 02 = 0.

(* IF VF 02 < - 0. THEN

(* VF 02 = - 0.

(* AO = VF 02 (* set output

(* ... (* other control loop functions

(* GOTO 05 (* repeat

(* Begin PID

(* Compute integral term: accum = accum + (error * KI)

00 vf 06 = vf 06 + vf 0 * vf2 (* add error to accumulator

if vf 06 < -vf24 then (* lower integrator bound

vf 06 = -vf24

if vf 06 > vf24 then (* upper intergrator bound

vf 06 = vf24

(* Compute derivative term using 4th order FIR filter

vf 07 = (vf 0 - vf 05) * -0.0285944 + (vf 03 - vf 04) * 0.2083646

vf 05 = vf 04 (* update history registers

vf 04 = vf 03

vf 03 = vf 0

(* Compute PID output

vf 02 = vf 0 *vf20 + vf 06 + vf 07*vf22 + vf 00*vf23

return

(* End PID

GFK-2205 Appendix H Utility Templates H-25

H

Torque-Limited Pressing I, jr

(* Utility Template: I_TLPRESS.TXT

(* Revision Log: REV 098OCT23 Original release

(* DspMotion Series: IMC & IMJ

(* Function: Torque limited pressing

(* Operation: Run motor to press workpiece. Pressing operation ends when specified torque

(* limit or maximum press travel is reached. Set cycle complete and workpiece

(* accept outputs.

(* Global resources:

(* DI Input of start cycle

(* DI2 Input of stop cycle

(* DO 2 Output of part accepted

(* DO 3 Output of cycle complete

(* VB0 At cycle start flag

(* VB02 Motion has stopped flag

(* VB03 Press reached torque limit flag

(* VF0 Press acceleration, units/sec^2

(* VF02 Press deceleration, units/sec^2

(* VF03 Press jerk, % of accel and decel interval

(* VF04 Press velocity, units/sec

(* VF05 Cycle start position, units

(* VF06 Maximum press travel, units

(* VF07 Press torque limit current, % maximum continuous current

(* VF08 Minimum acceptable part location, units

(* VF09 Maximum acceptable part location, units

(* VF 0 Retract acceleration, units/sec^2

(* VF Retract deceleration, units/sec^2

(* VF 2 Retract jerk, % of accel and decel interval

(* VF 3 Retract velocity, units/sec

(* VF 4 Press location at torque limit, units

(* Module specific resources:

(* Example of torque limited pressing invocation:

(* do 2 = off (* cancel part accepted output

(* do 3 = off (* cancel cycle done output

(* goto 00

(* Begin torque limited pressing:

00 WAIT EG AND NOT DI2 (* wait for cycle start input

DO 3 = OFF (* turn off cycle complete output

IF VB0 GOTO 005 (* if not at start position

VB0 = FALSE (* then reset at cycle start flag

EXM (* run to cycle start position

WAIT VB0 WHEN EG2 GOTO 0 0 (* wait until at start position if cycle stop, go stop

005 IF EG2 GOTO 0 0 (* when cycle stop, go stop

VB03 = FALSE (* reset reached torque limit flag

MAC = VF0 (* set run acceleration, units/sec^2

MDC = VF02 (* set deceleration, units/sce^2

H-26 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

MJK = FTI(VF03) (* set motion jerk percentage, % of accel & decel interval

MVL = VF04 (* set run velocity

MPA = VF06 (* set maximum distance to run

TLC = VF07 (* set torque limit current, % continuous current

TLE = ON (* enable torque limit

RPA (* run to position with torque limit

WAIT (IP OR TL OR EG2) (* wait until in position or torque limit

VB03 = TL (* save torque limit state

VF 4 = PSA (* save axis position

DO 2 = VB03 AND PSA>=VF08 AND PSA<= VF09 (* set accept output

ST (* stop axis motion

STM2 = (* pause at torque limit

WAIT TM2

TLE = OFF (* disable torque limit

VB0 = FALSE (* reset at cycle start flag

EXM (* retract to home

WAIT VB0 WHEN EG2 GOTO 0 0 (* wait for move complete

(* when cycle stop, go stop

DO 3 = ON (* turn on cycle complete output

GOTO 00 (* go to start of program

0 0 VB02 = FALSE (* reset stopped flag

EXM2 (* stop motion

WAIT VB02 (* wait for motion stopped

GOTO 00 (* go to start of program

(* Motion Blocks

Motion (* Run reverse to cycle start position

MAC = VF 0 (* set acceleration, units/sec^2

MDC = VF (* set deceleration, units/sce^2

MJK = FTI(VF 2) (* set motion jerk percentage, % of accel & decel interval

MVL = VF 3 (* set run velocity

MPA = VF05 (* set position

RPA (* run to position

WAIT IP (* wait for axis to be in position

VB0 = TRUE (* set at cycle start flag

End (* End motion block

Motion2 (* Stop motion

MDC = VF (* set deceleration, units/sce^2

MJK = FTI(VF 2) (* set motion jerk percentage, % of accel & decel interval

ST (* stop

VB0 = FALSE (* reset at start position

VB02 = TRUE (* set motion stopped flag

End

GFK-2205 Appendix H Utility Templates H-27

H

Two-Hand Anti-Tiedown I, jr

(* Utility Template: I_2HAND.TXT

(* Revision Log: REV 098OCT 6 Original release

(* DspMotion Series: IMC & IMJ

(* Function: Two hand anti_tiedown

(* Operation: Implement anti_tiedown on inputs DI and DI2.

(* VI 0 = 30 while (DI AND DI2) if DI and DI2

(* occur within 0.5 seconds of one another.

(* Global resources:

(* DI anti_tiedown input

(* DI2 anti_tiedown input

(* VI 0 anti_tiedown state of

(* idle of 0 waiting for input

(* armed of 20 waiting for 2nd input

(* active of 30 both inputs active

(* relax of 40 waiting for no inputs

(* Module specific resources:

(* TM03 anti_tiedown timer

(* Example of anti_tiedown use:

(* vi 0 = 040 (* initialize state to relax

(* do 2 = off (* “active” output

(* stm = .025 (* initialize i/o scan timer

(* 005 wait tm (* wait for i/o scan timer

(* gosub vi 0 (* scan: goto state

(* do 2 = (vi 0 = 30) (* set/reset output

(* ... (* rest of i/o scan

(* goto 005 (* repeat

(* Begin anti_tiedown

(* state is idle - wait for either input

0 0 if not (di or di2) goto 0 5(* if no input return to scan

stm3 = .5 (* start timer

vi 0 = 20 (* state is armed

0 5 return (* return to scan

(* state is armed - wait for time-out or both inputs

020 if not tm3 goto 22 (* if timed out

vi 0 = 40 (* state is relax

goto 025 (* return to scan

022 if not (di and di2) goto 025 (* if both inputs are true

vi 0 = 30 (* state is active

025 return (* return to scan

H-28 Generation D Real-Time Operating System Programming Manual – August 2002 GFK-2205

H

(* state is active - wait for either input relaxed

030 if di and di2 goto 035 (* if either input is false

vi 0 = 40 (* state is relax

035 return (* return to scan

(* state is relax - wait for both inputs relaxed

040 if (di or di2) goto 045 (* if both inputs false

vi 0 = 0 (* state is idle

045 return (* return to scan

(* End of anti_tiedown

Index

GFK-2205 Index-1

!
!, A-2

?
?, A-3

+
+

concatenation operator, B-14

+, -, *, /, **, B-7

A
ABS, B-8
absolute move distance, A-169
absolute value operator, B-8
AC Power

IMC-1000 series, 2-16
IMC-2000 series, 2-21
Target, 2-33

acceleration feedforward, A-143
Address of serial port, A-5
ADDS, A-5
AI, A-6
AIB, A-8
AIF, A-10
AIO, A-11
AM, A-13
AME, A-14
Amplitude of resolver excitation, A-17
Analog expansion card

assign, A-13

Analog input, A-6
Analog input deadband, A-8
Analog input filter frequency, A-10
Analog input offset, A-11, A-12
Analog module assignment error, A-14
Analog module rack slot assignment, A-13
ANALOG MODULE STATUS, A-311
Analog output, A-15

power-up state, A-16

Analog Output Cable
Target, 2-32

AND, B-4
AO, A-15
AOP, A-16
application program

diagnostics in, 6-1
minimum requirements, 5-17
task interaction, 5-17

Application program

archive, 5-22
create in CCS file editor, 3-4
document with (* delimiter, 5-21
document with REM command, 5-22
edit, 3-8
finding a fault in, 6-6
password-protect, 5-24
run, 3-7
securing, 5-23
send file to controller, 3-6
storing in Flash EPROM, 5-24

AR, A-17
arc segment moves

MDI, A-171

Archive application program, 5-22
arithmetic operators, B-7
arithmetic shift operators, B-6
ASC(, B-20
ATN, B-13
AUTORET, A-18
AUTORET

from EPROM, 5-25

Autoretrieve
disable, 5-25

Autoretrieve data from flash EPROM, 5-25
Autotune

IMC-2000 series, 2-22

AUTOTUNE, A-19
CURC, A-19
FR, A-19
IMC-3000 series, 2-28
KA, A-19
KD, A-19
KI, A-19
KP, A-19
KT, A-19
Target, 2-36

auxiliary position, A-246
auxiliary position length, A-230
auxiliary position offset, A-195
auxiliary position synchronized, A-252
auxiliary quadrature type, A-255
auxiliary velocity, A-360
auxiliary velocity filter time constant, A-361
AXE, A-20
AXIS, A-21
Axis assignment, A-21
Axis assignment error, A-20
Axis fault code, A-106
axis feedback quadrature type, A-254
Axis feedback resolution, A-112
Axis following error, A-108
axis I/O, A-138
axis in position, A-140
axis position, A-241
axis position length, A-229
axis position offset, A-194

Index

Index-2 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

axis position synchronize, A-251
axis status, A-310
axis velocity filter time constant, A-358

B
Backspaces cursor, A-28
Ballscrew compensation, A-29
Ballscrew compensation enable, A-30
BAUD, A-22
Baud rate of program port, A-23
Baud rate of serial port, A-22
Baud rate of user serial port, A-24
BAUDP, A-23
BAUDU, A-24
BBRAM, 5-24
BIT, A-25
BITP, A-26
BITU, A-27
Boolean Operands, C-1
Boolean variable, A-352
Boolean variables, 4-7

set LED equal to, 4-16

Brake release
IMC-3000 series, 2-26
Target, 2-34

BS, A-28
BSC, A-29
BSE, A-30

C
Cable

analog output, 2-32
encoder feedback, 2-32
motor power, 2-31
Resolver Feedback, 2-31

cables
host-link communication, 2-6
serial communication, 2-17, 2-21, 2-26, 2-34

CAE, A-31
CAF, A-32
CAI, A-33
CAM, A-34
Cam compile begin point, A-42
Cam compile end point, A-43
Cam compile start position, A-45
Cam enable, A-31
Cam filter constant, A-32
Cam offset, A-36
Cam point, A-34
Cam position

CAF, A-32

Cam position register, A-38

Cam position register increment, A-33
Cam scale factor, A-39
Cam shaft position, A-37
Cam shaft position type, A-40
CAO, A-36
CAP, A-37
capture

auxiliary position, A-209
axis position, A-208

Capture, 6-11
CAR, A-38
CAS, A-39
case conversion operators, B-19
CAT, A-40
CAZ, A-41
CB, A-42
CCE, A-43
CCM, A-44
CCP, A-45
CCS

create application program files, 3-3
send file, 3-6
Terminal window, 2-4

CCS online help
motion templates, 3-2
utility templates, 3-2

CE, A-46
CHANGEPW, 5-24, A-47
CHR, B-21
CIE, A-48
Circular buffer, 4-8
Clear user memory, A-50
CLL, A-49
CLM, A-50
clock, 4-10
CLS, A-51
CLX, A-52
CMA, A-53
CMD, A-54
CMO, A-55
CMR, A-56
command position, A-242
command position only enable, A-243
comment delimiter, 3-3
comments

embed with REM, A-260

Comments
embedded with REM, 8-3
not stored, 8-3

Communicate, see sign-on, 2-17, 2-21, 2-26, 2-
34

Communication
troubleshooting, 8-1

communication status, A-312
Commutation angle advance, A-53

Index

GFK-2205 Index Index-3

Commutation angle offset, A-55
Compile cam motion, A-44
Computer interface format enable, A-48
concatenation operator, B-14
configure

registers, 5-5

Configure
IMC-1000 Series, 2-18
IMC-2000 series, 2-22
Target, 2-35

Configure the Motor
IMC-3000 series, 2-28
Target, 2-36

Control constants
AUTOTUNE, A-19

Conversion error, A-46
convert to ASCII operator, B-20
convert to character operator, B-21
COPYFLASH, A-57
COPYRAM, A-58
COS, B-13
countdown timers, 4-10
Counter, A-64
counters/pulse timers, 4-10
CR, A-59
CRC, B-9
CRH, A-60
CRM, A-61
CRP, A-62
CRR, A-63
CTR, A-64
CTR, 4-10
CURC, A-65
CURC

IMC-1000 series, 2-18
IMC-3000 series, 2-27
Target, 2-35

CURP, A-68
IMC-3000 series, 2-27
Target, 2-36

Current
continuous, A-65
peak, A-68
power save, A-69

CURS, A-69
CURS

set for IMC-1000 series, 2-18

cyclical redundancy check calculation operator,
B-9

D
Data typing, 4-6
Databits of program port, A-26
Databits of serial port, A-25

Databits of user serial port, A-27
DATE, 4-10, A-70
DAY, 4-10, A-71
Debugging

with FAULT, 6-4
with FC, 6-4

Debugging tools, 6-4
DEL, A-72

edit string operator, B-18

derivative control gain, A-144
DGC, A-73
DGC, 6-2
DGE, A-74
DGI, A-75
DGI, 6-2
DGL, A-76
DGO, A-77
DGO, 6-1
DGP, 6-1, A-78
DGS, A-79
DGT, A-80
DI, A-81
DIA, A-82
Diagnostic commands, 6-1

outside programs, 6-2
within programs, 6-1

Diagnostic condition
load, A-73

Diagnostic conditions, 6-2
Boolean expression, 6-3

Diagnostic item
assign to print, A-75

Diagnostics
capture, 6-11
embed, 6-1
enable with DGE, A-74
example of application program including, 6-1
output register value to serial port, A-77
print line of items, A-76
print message to serial port, A-78
single-step mode, 6-9

DID, A-83
DIGITAL INPUT, A-81
Digital input

digit, A-83
filter assignment, A-82
filter time, A-85
positive-edge-sensitive, A-94

Digital module
assignment error, A-87
rack slot assignment, A-86

digital module status, A-313
Digital output, A-88

power-up state, A-91

Digital output digit, A-89
Digital output fault, A-105

Index

Index-4 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

DIR, A-84
Direction

of motor, A-84

display
state of LEDs, A-161

Display
backspace cursor, A-28
clear, A-51
clear line, A-49
format enable, A-92
position cursor, A-59, A-60, A-62
position cursor at remembered position, A-63
remember cursor position, A-61

display and edit time and date on OIP, H-4
DIT, A-85
DM, A-86
DME, A-87
DO, A-88
DOD, A-89
DOP, A-91
Download

firmware, A-111

DSE, A-92
DspMotion capabilities, 1-2
DspMotion system resources and capabilities,

1-1
DTI, B-24

E
edit string operators, B-18
EG, A-94
EKB, A-96
electronic gearing

handwheel input, A-129

Electronic gearing
bound, A-120
denominator, A-121
enable, A-122
filter output of, A-123
gearing input, A-124
numerator, A-125

enable, 6-1
Enable

display format, A-92

Enable auto retrieving of user memory, A-18
Enable drive

IMC-1000 series, 2-18
IMC-2000 series, 2-22
IMC-3000 series, 2-28

Enable the Drive
Target, 2-37

Encoder Feedback Cable
Target, 2-32

END, A-97
ETB, A-99

EUB, A-100
Executes command stored in string variable, A-

103
EXM, 5-2, A-101
EXP, 5-2, A-102

exponential operator, B-10

exponential operator, B-10
EXVS, A-103

F
FALSE, C-1
fault

controller with STF, A-320
registers, 5-20
set for system and all axes with STFALL, A-322
set system fault with STFS, A-323

Fault
correcting, 6-7

FAULT, 6-4, 6-6, A-104
Fault code, A-105
fault handling

in IMC, 5-18
in Target, 5-19
recommended program structure, 5-20

Fault input, A-110
faults

causes for, 5-20
clearing, 5-20

Faults
IMC and Target command fault and status
messages, D-1
IMC fault and status register messages, E-1
Target fault and status register messages, F-1

FC, 5-20, 6-4, A-105
FCA, 5-20, A-106
FCS, A-107
FE, A-108
FEB, A-109
FI, A-110
File editor

(* comment delimiter, 3-3
.txt file rules, 3-3
change an application program, 3-8
system constants, 3-3

File send, 3-6
fix an error, 3-9

filter time constant, A-156
FIN, B-17
find string in string operator, B-17
FIRMWARE, A-111

report revision of, A-265
retrieve from flash memory card, A-285

first-in first-out buffer, H-2
Flash EPROM, 5-24
floating point operands, C-2

Index

GFK-2205 Index Index-5

floating point variable, A-353, A-354
floating point variable extended allocation, A-

355
Flow control, 4-4
following error, A-143
Following error bound, A-109
FR, A-112
FTI, B-25
FTS, B-27
FUNCTION, A-113
Function keys on OIP

create legend for, 4-16

G
Gearing denominator, A-121
Gearing enable, A-122
Gearing filter constant, A-123
Gearing input, A-124
Gearing numerator, A-125
Generation D Real-Time Operating System for

Machine Control, 1-2
Generation D RTOS

global resources, 5-1

Get one character from key buffer, A-117
for IMC, A-114

Get one character from tertiary port, A-116
Get one character from user serial port, A-115
GETT, A-116
GETW, A-117
global resources

dividing among tasks, 5-21

gosub
reset stack to empty, A-283
return, A-263

GOSUB, 4-4, A-118
nested, 4-4

gosub address
pop, A-233

GOTO, 4-4, A-119
GRB, A-120
GRD, A-121
GRE, A-122
GRF, A-123
GRI, A-124
GRN, A-125

H
Halt the Motor with IMC, HT, 2-19
Halt the motor with Target, HTp1, 2-37
halts motion, A-127
handshake protocol, A-126
handwheel input enable, A-129

homing routines
run reverse until home and marker inputs, G-8
run reverse until home input, G-2
run reverse until marker input, G-4
run reverse until overtravel and marker inputs,
G-10
run reverse until overtravel input, G-6
run reverse until torque limit, G-12

Host-Link Communication Cable, 2-6
HSE, A-126
HT, A-127
HTT, A-128
HWE, A-129

I
I/O

configure for Target, 2-31

IF...GOSUB, A-130
IF...GOTO, A-131
IF...THEN, A-132
IF…GOSUB, 4-4
IF…GOTO, 4-4
IN, A-133, A-134
incremental move distance, A-171
incremental move position, A-184
inputs

axis I/O, A-138
I/O, A-137
system I/O, A-139

Inputs
count, A-64

INS, B-18
Install

CCS, 2-17, 2-21
PCMCIA card in Target, 2-30
Target modules in rack, 2-29

INT, A-135
integer operands, C-3
integer variable, A-356
Integer variables, 4-7
integral control gain, A-149
interpreter

LOCK to program, A-162

INW, A-136
IO, A-137
IOA, A-138
IP, A-140
IPALL, A-141
IPB, A-142
ITB, B-28
ITD, B-29
ITF, B-22
ITH, B-28
ITS, B-28

Index

Index-6 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

ITT, B-29

J
jerk percentage, A-179
jogging utilities

using analog input, H-9
using electronic handwheel, H-11
using single-pole, double-throw switch, H-12
using Whedco OIP, H-14

Jumper I/O
Target, 2-31

K
KA, A-143
KD, A-144
KEY, A-145, A-146
key buffer

character in, A-145, A-148
input register value from, A-133, A-136
key assignment, A-158
put one character into, A-157

Key buffer
empty, A-96

KEYT, A-147
KEYW, A-148
KI, A-149
KLALL, 5-2, A-152
KLP, 5-2, A-153
KP, A-155
KT, A-156
KY, A-157
KYA, A-158

L
L, A-159
LABEL, A-160
LABEL, 4-4
Labels, 4-4
LED, A-161
LED

on OIP, 4-16

LEN, B-15
length of string operator, B-15
LFT, B-16
LGN, B-11
line editor

make last statement current, A-159
make statement at label current, A-160
PROGRAM, A-240
step through with X, A-366

Line editor
delete line, A-72

fault, A-104
how to open, 6-5
scroll through program in, 6-6
versus ASCII file editor, 6-5

Line Editor
Exit, A-2

Linear array, 4-8
LOCK, 5-4, A-162
logical operators, B-4
Lowpass filter

of analog input, A-10

LWR, B-19

M
MAC, A-163
MAP, A-164
Math and logical operations, 1-3
Math functions, 4-6
MB, A-166
MBA, 4-4, A-167
MBANY, A-168
MDA, A-169
MDC, A-170
MDI, A-171
MDO, A-172
MDP, A-173
memory

save firmware in nonvolatile, A-329
secure, A-298

Memory
autoretrieve, A-18
clear extended memory card, A-52
clear user, A-50
copy extended memory card, A-57
copy extended memory card to ram card, A-58

MEMORY, A-174
MFA, A-175
MFD, A-176
MFP, A-177
MI, A-178
MID, B-16
MJK, A-179
Modules

install, 2-29
placement in rack, 2-29

MONTH, 4-10, A-180
MOTION, A-181
motion acceleration/deceleration, A-163
motion block

assign axes to, A-167
edit, A-181
executing, A-166
repeat motion from start of, A-261

Motion block

Index

GFK-2205 Index Index-7

execute, A-101

motion blocks
executing, A-168

Motion blocks
assign Target axes to, 4-3
number allowed, 4-2
rules for execution, 4-2

motion deceleration, A-170
motion feedrate acceleration/deceleration, A-

175
motion feedrate deceleration, A-176
motion feedrate percentage, A-177
motion pulse input, A-178
motion pulse start position, A-187
motion type, A-188
motion velocity, A-191

for run to marker, A-192
of pulse move, A-193

motor constants
automatically set, A-182

Motor faults, 8-2
Motor poles to resolver poles commutation

ratio, A-56
Motor Power Cable

Target, 2-31

Motor will not move, 8-3
MOTORSET, A-182

IMC-3000 series, 2-28
Target, 2-36

move time, A-190
MPA, A-183
MPI, A-184
MPL, A-185
MPO, A-186
MPS, A-187
MT, A-188, A-189
MTM, A-190
mult-axis path recording, H-16
Multitasking

capabilities, 5-2
commands, 5-4
how it works, 5-2

MVL, A-191
MVM, A-192
MVP, A-193

N
natural log operator, B-11

O
OFA, A-194
OFF, C-1
offset move distance, A-172

offset position, A-244
OFX, A-195
OIP, 4-11

Host-Link Communication Cable, 2-6
meaningless information on screen, 8-2
output screen to, A-201
put one character to, A-249

OIP standard screens
create with registers, 4-13
create with ScreenView, 4-11
use in programs, 4-13

ON, C-1
Operators, 4-6
OR, B-4
OTF, A-197
OTR, A-198
OUT, A-199, A-200
Output

analog, A-15

OUTS, A-201
OUTT, A-202
OUTW, A-203
overtravel

forward software, A-197
reverse software, A-198

P
p1, 2#p2, 16#p3, p4, C-3
PAR, A-204
parameters

initialize, 5-5

parity
program port, A-205
serial port, A-204
user serial port, A-206

PARP, A-205
PARU, A-206
Password

lost, 8-3

PASSWORD, A-207
protect application program, 5-24

PCA, A-208
PCMCIA card

install in Target, 2-30

PCX, A-209, A-210, A-211
PFB, A-212
PFC, A-213
PFD, A-214
PFE, A-215
PFL

backlash, A-216

PFN, A-217
PFT, A-218
phase error, A-226

Index

Index-8 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

phase error bound, A-219
phase gain, A-221
phase length, A-222
phase lockout time, A-227
phase multiplier, A-223
phase offset, A-224
phase position, A-225
phase zero, A-228
phase-locked loop

enable, A-220

PHB, A-219
PHE, A-220
PHG, A-221
PHL, A-222
PHM, A-223
PHO, A-224
PHP, A-225
PHR, A-226
PHT, A-227
PHZ, A-228
PLA, A-229
playback recorded positions, A-231
PLX, A-230
PLY, A-231
POE, A-232
Pointers, 4-8
POP, 4-4, A-233
Position controller command output, A-54
position error, A-142
position feedback

correction time, A-218
enable, A-215
numerator, A-217

position pointer, A-234
begin, A-235
end, A-236
interval, A-237
repeat, A-238

position register wrap, A-250
Position-based outputs, 4-11
Power

AC, 2-16

power output stage enable, A-232
Power-up state of analog output, A-16
PP, A-234
PPB, A-235
PPE, A-236
PPI, A-237
PPR, A-238
PROG, A-239
program

kill, A-153
status, A-314

Program
execute, A-102

PROGRAM, A-240
Program 1, 5-21
Program 17, 5-19, 5-20
Program 4, 5-18, 5-20
Program development tools overview, 3-1
program executing, A-239
program port

parity of, A-205

Program port
baud rate of, A-23

Programming environment, 1-2
programs

kill all, A-152

Programs 2-16 for Target, 5-21
Programs 2-3 for IMC, 5-21
proportional control gain, A-155
PSA, A-241
PSC, A-242
PSE, A-243
PSO, A-244
PSR, A-245
PSX, A-246
pulse-based moves

blended, G-46
multi-axis absolute, G-53
multi-axis continuous, G-57
multi-axis incremental, G-51
multi-axis offset, G-55
single-axis absolute move, G-42
single-axis continuous, G-49
single-axis incremental move, G-41
single-axis offset move, G-44

Push down stack, 4-8
PUT, A-247
PUTT, A-248
PUTW, A-249
PWE, A-250
PZA, A-251
PZX, A-252

Q
Q, A-253
QTA, A-254
QTX, A-255
Query machine parameters

one-time values, 6-8
real-time values, 6-8

R
Rack slot assignment

analog module, A-13

RCA, A-256
RCI, A-257

Index

GFK-2205 Index Index-9

RCO, A-258
REC, A-259
Receive

all, 7-3
data, 7-1

save as .txt file, 7-4
motion blocks, 7-3
programs, 7-3
registers, 7-3
screens, 7-3
variables, 7-2

record position, A-259
register

report value of, A-254

Registers, Commands, and Operators, 1-3
relational operator, B-3
REM, 3-3, 5-20, A-260
REPEAT, A-261
report DspMotion controller fault(s) to OIP, H-

19
report firmware revision, A-265
Report Value of Register, A-3
reset controller faults, A-278
Resolver feedback brushless servo

AR, A-17

Resolver Feedback Cable
Target, 2-31

resolver position, A-246
RETRIEVE, A-262

from EPROM to BBRAM, 5-25

retrieve user memory, A-262
retriggerable one-shot, H-21
RETURN, 4-4, A-263
REVISION, A-264
RGT, B-16
RHF, A-265
RHR, A-266
RLA, A-267
RLI, A-268
RLO, A-269
RMF, A-270
RMR, A-271
ROF, A-272
ROR, A-273
rotate operators, B-5
RPA, A-274
RPI, A-275
RPO, A-276
RSF, 5-20, A-277
RSFA, A-278
RSFALL, 5-20, A-279
RSFS, A-280
RSM, A-281
RSMALL, A-282
RSTSTK, 4-4, A-283

RTA, A-284
RTF, A-285
RTO, A-287
run

arc segment absolute move with center, A-256
arc segment absolute move with third point, A-
284
arc segment incremental move with center, A-
257
arc segment offset move with center, A-258
arc segment offset move with third point, A-287
forward to home input, A-265
forward to marker, A-270
forward to overtravel input, A-272
linear interpolation absolute, A-267
linear interpolation incremental, A-268
linear interpolation offset, A-269
reverse to home input, A-266
reverse to marker, A-271
reverse to overtravel input, A-273
to absolute position, A-274
to incremental position, A-275
to offset move position, A-276
to velocity forward, A-291
to velocity reverse, A-292

Run application program, 3-7
Run the Motor

IMC-1000 series, 2-19
IMC-2000 series, 2-23
IMC-3000 series, 2-29
Target, 2-37

RVF, A-291
RVR, A-292

S
SAVE, A-293

from BBRAM to EPROM, 5-24

save the screen lines, A-330
SCRD, A-295
screen

update, A-349

SCRL, A-296
SCRP, A-297
SECURE, A-298

application program, 5-23

select characters of string operators, B-16
Send file, 3-6, 3-9
Serial Communication Cable

IMC to PC, 2-17, 2-21, 2-26, 2-34

serial port
output string expression to, A-199
parity of, A-204
put one character to, A-247

Serial port
ADDS, A-5
baud rate, A-22

Index

Index-10 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

Serial port address
DIP switch settings, A-5

servo module
assignment, A-299
assignment error, A-300

servo module status, A-316
set point input

system, A-305

set point output
axis, A-307
system, A-308

Set point outputs, 4-11
Set up control constants, A-19
sign on

IMC-1000 series, 2-17, 2-22, 2-27

SIN, B-13
Single-step mode, 6-9

enable, A-79

SM, A-299
SME, A-300
solve PID algorithm, H-23
SPAB, A-301
SPAE, A-302, A-303, A-304
SPIA, A-305
SPOA, A-307
SPOS, A-308
SPS, A-309
SQR, B-12
square root operator, B-12
SRA, 5-25, A-310
SRAM, 5-25, A-311
SRC, 5-25, A-312
SRDM, 5-25, A-313
SRP, 5-25, A-314
SRS, 5-25, A-315
SRSM, 5-25, A-316
SRT, A-317
ST, A-318
STEP, A-319
step input, A-319
STF, A-320, B-23
STFA, A-321
STFALL, A-322
STFS, A-323
STI, B-26
STM, 4-10, A-324
Stop the Motor with IMC, ST, 2-19
Stop the motor with Target, STp1, 2-37
string variable, A-362
STT, A-325
STVB, A-326
Subroutines, 4-4
SUP, A-327
SUPALL, A-328

suspend motion, A-327
SUPALL, A-328

SVF, A-329
SVL, A-330
synchronize

auxiliary position and axis position, A-252
axis position and auxiliary position, A-251

synchronized moves
multi-axis electronic gearing, G-65
multi-axis phase-locked loop, G-68
multi-axis synchronized electronic camming, G-
75
run forward until input, G-80
single-axis electronic camming, G-71
single-axis electronic gearing, G-63
single-axis index move after input, G-78
single-axis index move at predefined auxiliary
position, G-82
single-axis, phase-locked loop, G-66

Syntax, 1-3
system

status, A-315

system constants
in .txt file, 3-3
procedure for setting, 5-5

System fault code, A-107
System resources and capabilities, 1-1
system set point, A-309

T
TAD, A-332, A-333
TAN, B-13
Target

AC input with internal power electronics, 2-33
AC power with external power electronics, 2-33
set up with external electronics, 2-32
set up with internal electronics, 2-31

Task division
example, 5-22

Task Interaction, 5-17
Terminal window, 2-4

capture, 6-11

tertiary port
input register value from, A-135
output string expression to, A-202
put one character to, A-248

Tertiary port buffer
empty, A-99

tertiary receive buffer
character in, A-147

tertiary status, A-317
test point output, A-346
TFA, A-334
TFD, A-335
TFP, A-336

Index

GFK-2205 Index Index-11

TIME, 4-10, A-337
time-based moves

multi-axis absolute move, G-36, G-38
multi-axis incremental move, G-34
single-axis absolute move, G-28
single-axis absolute move with feedrate
override, G-32
single-axis incremental move, G-26
single-axis offset move, G-30

timer, A-345
interval, A-343
pulse, A-344
start, A-324
timed out, A-342

timer flag, 4-10
Timing devices

countdown timers, 4-10
counters/pulse timers, 4-10

Timing Devices
countdown timers, 5-17

TL, A-338
TLANY, A-339
TLC, A-340
TLE, A-341
TM, 4-10, A-342
TMI, 4-10, A-343
TMP, 4-10, A-344
torque limit

axis at, A-338
current, A-340
enable, A-341

torque mode drives, 2-22
torque-limited moves

run forward until torque limit, G-59
run reverse at torque limit, G-61

torque-limited pressing, H-25
TP, A-346
Trace mode

enable, A-80

trajectory
feedrate acceleration/deceleration, A-334, A-
335, A-336, A-337, A-338, A-339, A-340, A-
341, A-342, A-343, A-344, A-345, A-346, A-
347, A-348, A-349, A-350, A-351, A-352, A-
353, A-354, A-355, A-356, A-357, A-358, A-
359, A-360, A-361, A-362, A-363, A-364
feedrate deceleration, A-335
feedrate percentage, A-336
velocity, A-347, A-359

trajectory motion
halt, A-128
stop, A-325

trajectory moves
2-D arc segment using start, end, and center
point, G-88, G-89, G-91
2-D line segment

absolute move, G-86

incremental move, G-85
offset move, G-87

TRC, B-25
trigonometric function operators, B-13
TRUE, C-1
TTI, B-24
Tune the Motor

IMC-2000 series, 2-22
IMC-3000 series, 2-28
Target, 2-36

TVL, A-347
two hand anti-tiedown, H-27
txt files

creating in CCS, 3-3

Typical syntax, 1-3

U
UNLOCK, 5-4, A-348
UPR, B-19
UPS, A-349
URA, A-350
URX, A-351
user memory

retrieve, A-262

User port buffer
EUB, A-100

user receive buffer
character in, A-146

User serial por
baud rate, A-24

user serial port
input register value from, A-134
output string expression to, A-200
parity of, A-206

Using the ASCII file editor, 3-3

V
Variable pointers, 4-8

to shorten programs, 4-8

variables, 4-7
Variables

Boolean, 4-7
integer, 4-7
pointers, 4-8
string, 4-8

VB, 4-7, A-352
velocity

of axis, A-357

velocity-based moves
absolute, G-18
absolute move with feedrate override, G-24
blended, G-22
continuous, G-14
incremental, G-16

Index

Index-12 Generation D Real-Time Operating System Programming Manual –August 2002 GFK-2205

offset, G-20

VF, 4-7, A-353
VFA, 4-7, A-354
VFEA, 4-7, A-355
VI, 4-7, A-356
VLA, A-357
VLAT, A-358
VLT, A-359
VLX, A-360
VLXT, A-361
Voltage offset

add to analog input, A-11, A-12

VS, 4-8, A-362

W
WAIT, A-363
WAIT... WHEN... GOTO, A-364

X
X, A-366
XON, XOFF handshake protocol, A-126
XOR, B-4

Z
Zeros cam table, A-41

	Generation D Real-Time Operating System Programming Manual
	About this Manual
	Preface
	Warnings, Cautions and Notes
	Related Publications
	Contents

	Chapter 1. DspMotion Overview
	DspMotion System Resources and Capabilities
	Computing Power

	Generation D Real-Time Operating System for Machine Control
	DspMotion Capabilities
	Programming Environment
	Registers, Commands, and Operators
	Typical Syntax
	Math and Logical Operations

	Modes of Operation
	Related Publications
	What’s Next?

	Chapter 2. Getting Started
	What You Will Need
	Supplied Components
	User-Supplied Components

	The Process for Basic Set-up
	Start CCS Version 5.1.1 or Later
	Install CCS on Your PC
	Run CCS
	Terminal Window

	Connect and Configure Operator Interface (OIP)—Optional
	Set DIP Switches
	IMC and IMJ Users
	Target Users

	DspMotion Controller Type?
	Note to IMJ Users
	Configure IMJ
	Step 1: Jumper Dedicated I/O Lines
	Step 2: Connect Motor Power Cable (CBL-13-MP-10, CBL-14-MP-10)
	Step 3: Connect Position Feedback Cable (Servo only)
	Step 4: Connect and Apply AC Power
	Single-Phase AC Input
	Three-Phase AC Input
	Apply Power to the IMCjr
	If You Have a Motor with a Brake ...

	Step 5: Establish Communication using CCS for Windows
	Connect Serial Communication Cable (CBL-H1IC-10)
	Establish Communication

	Step 6: Configure the System
	Configure the Drive
	Configure Servo Motor
	Tune Servo Motor

	Step 7: Verify that Set-up is Correct
	Verify Feedback Connection (Servo Only)
	Enable the Drive
	Know How to Stop or Halt the Motor
	Run the Motor

	Note to IMC Users
	Configure IMC(s)
	Step 1: Set DIP Switches for Serial Port Configuration
	Step 2: Jumper Dedicated I/O Lines
	For Sinking (i.e., Low-True) Connections
	For Sourcing (i.e., High-True) Connections

	Go to DspMotion Controller Model-Specific Instructions

	IMC-1000 Series
	Step 3: Connect Motor Power Cable (CBL-13-MP-10, CBL-14-MP-10)
	Step 5: Connect and Apply AC Power
	Connect Single-Phase AC Input
	Apply Power to the IMC

	Step 6: Establish Communication
	Connect Serial Communication Cable (CBL-H1IC-10)
	Establish Communication

	Step 7: Configure the System
	Configure the Drive

	Step 8: Verify that Set-up is Correct
	Enable the Drive
	Know How to Stop or Halt the Motor
	Run the Motor

	IMC-2000 Series
	Step 3: Connect Analog Output Cable (CBL-20-AT-10)
	Step 4: Connect Motor Power Cable
	Step 5: Connect Encoder Feedback Cable (CBL-20-ED-10)
	Step 6: Connect and Apply AC Power
	Connect Single-Phase AC Input
	Apply Power to the IMC

	Step 7: Establish Communication
	Connect Serial Communication Cable (CBL-H1IC-10)
	Establish Communication

	Step 8: Configure the System
	Tune the Motor Using Autotune
	Tune the Motor Manually

	Step 9: Verify that Set-up is Correct
	Verify Feedback Connection
	Enable the Drive
	Know How to Stop or Halt the Motor
	Run the Motor

	IMC-3000 Series
	Step 3: Connect Motor Power Cable (CBL-34-MP-10, CBL-3C-MP-10, CBL-3P-MP-10, �CBL-38-MP-10)
	Step 4: Connect Feedback Cable (CBL-3C-RD-10, CBL-34-ED-10)
	Step 5: Connect and Apply AC Power
	Single-Phase AC Input
	Three-Phase AC Input
	Apply Power to the IMC
	If You Have a Motor with a Brake…

	Step 6: Establish Communication
	Connect Serial Communication Cable (CBL-H1IC-10)
	Establish Communication

	Step 7: Configure the System
	Configure the Drive
	Configure the Motor
	Tune the Motor

	Step 8: Verify that Set-up is Correct
	Verify Feedback Connection
	Enable the Drive
	Know How to Stop or Halt the Motor
	Run the Motor

	Note to Target Users
	Target
	Step 1: Install Modules in Rack
	Step 2: Insert PCMCIA Card
	Step 3: Jumper Dedicated I/O Lines
	Axis Module
	System Module

	Step 5: If Your Power Electronics are Internal…(if not, go to step 6)
	Connect Motor Power Cable (CBL-34-MP-10, CBL-3C-MP-10,�CBL-3P-MP-10, CBL-38-MP-10)
	Connect Resolver Feedback Cable (CBL-3C-RD-10)

	Step 6: If Your Power Electronics are External…(if not, go to step 7)
	Connect Analog Output Cable (CBL-20-AT-10)
	Connect Encoder Feedback (CBL-20-ED-10)

	Step 7: Connect and Apply AC Power
	Connect Three-Phase AC Input
	Apply Power to the Target
	If You Have a Motor with a Brake…

	Step 8: Establish Communication
	Connect Serial Communication Cable (CBL-H1IC-10)
	Establish Communication

	Step 9: Configure System for Appropriate Electronics
	Configure the Drive
	Configure the Motor—Internal Drive Electronics Only
	Tune the Motor

	Step 10: Verify that Set-up is Correct
	Verify Feedback Connection
	Enable the Drive
	Know How to Stop or Halt the Motor
	Run the Motor

	Chapter 3. Creating Application Programs in CCS
	Program Development Tools Overview
	Using The ASCII File Editor
	Rules for Creating .txt Files in CCS
	Create an Application Program

	Send An Application Program To Your DspMotion Controller
	Run An Application Program
	Change An Application Program Using The ASCII File Editor
	Fix An Error That Occurs During a File Send
	Create End User Application
	End User’s Memory Options in DspComm

	Chapter 4. Application Program Resources
	Program Maps
	Motion Blocks
	Example of a Motion Block for the IMC
	Assigning Target Axes to Motion Blocks (MBA)

	Flow Control
	Labels and Subroutines (LABEL, GOTO, GOSUB, IF…GOTO, IF…GOSUB)
	Flow Control Commands

	Math Functions
	Data Typing

	Variables
	Types of Variables (VBn, VIn, VFn, VSn)
	Boolean Variables (VB)
	Floating Point Variables (VF, VFA, VFEA)
	Integer Variables (VI)
	String Variables (VS)
	Variable Pointers

	Timing Devices
	Countdown Timers (STM, TM)
	Counters/Pulse Timers (CTR, TMI, TMP)
	Real-time Clock (TIME, DAY, DATE, MONTH)

	Set Point Outputs
	OIP (Optional)
	The Liquid Crystal Display (LCD)
	Creating Standard Screens

	Using Standard Screens in Programs
	Creating Custom Screens
	Using Custom Screens in Programs
	The Keypad

	Using Key Input in Programs
	Labeling the Function Keys
	LEDs
	Using LEDs in Programs

	Chapter 5. Developing an Application Program
	Structure of the Generation D RTOS
	Multitasking
	How Multitasking Works (EXP, KLP, EXM, KLALL)
	Multitasking Commands

	Step 1: Set System Constants
	Setting IMC System Constants
	Setting Target System Constants

	Step 2: Assess Task Interaction
	Step 3: Structure a Fault Handling Program
	What Happens When a Fault Occurs?
	What Causes a Fault?
	Clearing Faults
	Recommended Fault Handling

	Step 4: Structure Program 1 and Additional Tasks
	Moving Forward…

	Step 5: Manage Your Application Program
	Archiving Your Program
	Using SECURE to Block User Access to Programs (Optional)
	Using PASSWORD Protection (Optional)
	Storing Your Program in Flash EPROM (Optional)
	SAVE Command
	RETRIEVE Command
	AUTORET Command
	Disable AUTORET Command

	Chapter 6. Application Program Diagnostics and Debugging Tools
	Embed and Enable Diagnostics in an Application Program
	Runtime Debugging Tools
	About the Line Editor
	Find a Bug with the FAULT Command
	Fix a Bug
	Monitor Real-time Machine Parameters with Query/Start (Q?)
	Query Registers for Moment-in-Time Data (Q,?)
	Run an Application Program in Trace Mode
	Capture an Online Terminal Session

	Chapter 7. Receiving Data from a DspMotion Controller to Your PC
	Overview
	Receive Variables
	Receive All

	Chapter 8. Troubleshooting
	My Controller Doesn’t Communicate
	Probable Fix for the IMC: Check Communication Configuration
	Probable Fix for the Target

	Operator Interface Panel Displays Meaningless Information
	When I Enable the Servo Drive, My Motor Jumps and Then Faults
	Where are My (* Delimited Comments?
	I Forgot/Lost the Password!
	My Controller Is Not Faulted, But the Motor Will Not Move!

	Appendix A. Registers and Commands
	Overview
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Appendix B. Operators
	>, >=, =, <>, <=, <	Relational Operators
	NOT, AND, OR, XOR		Logical Operators
	ROL, ROR 	Rotate Operators
	SHL, SHR 	Arithmetic Shift Operators
	+, -, *, /, **		Arithmetic Operators
	ABS 		Absolute Value Operator
	CRC 		Cyclical Redundancy Check Calculation Operator
	EXP		Exponential Operator
	LGN		Natural Log Operator
	SQR		Square Root Operator
	SIN, COS, TAN, ATN	Trigonometric Function Operators
	+			Concatenation Operator
	LEN		Length Of String Operator
	LFT, MID, RGT		Select Characters Of String Operators
	FIN			Find String In String Operator
	INS, DEL	Edit String Operators
	LWR, UPR		Case Conversion Operators
	ASC		Convert from Character to ASCII Operator
	CHR	Convert from ASCII Code to Character Operator
	ITF			Convert Integer to Floating Point Operator
	STF		Convert String to Floating Point Operator
	DTI, TTI	Convert Time/Date to Integer Operators
	FTI, TRC	Convert Floating Point to Integer Operators
	STI			Convert String to Integer Operator
	FTS		Convert Floating Point to String Operator
	ITB, ITH, ITS	Convert Integer to String Operators
	ITD, ITT	Convert Integer to Time/Date Operators

	Appendix C. Operands
	Appendix D. IMC and Target Command Fault and Status Messages
	Appendix E. IMC Fault and Status Register Messages
	Appendix F. Target Fault and Status Register Messages
	Appendix G. Motion Templates
	Homing Routines
	Run Reverse until Home Input
	IMC & IMJ Template
	Target Template

	Run Reverse until Marker Input
	IMC & IMJ Template
	Target Template

	Run Reverse until Overtravel Input
	IMC & IMJ Template
	Target Template

	Run Reverse until Home and Marker Inputs
	IMC & IMJ Template
	Target Template

	Run Reverse until Overtravel and Marker Inputs
	IMC & IMJ Template
	Target Template

	Run Reverse until Torque Limit
	IMC & IMJ Template
	Target Template

	Velocity-Based Moves
	Velocity-Based, Continuous Move
	IMC & IMJ Template
	Target Template

	Velocity-Based, Incremental Move
	IMC & IMJ Template
	Target Template

	Velocity-Based, Absolute Move
	IMC & IMJ Template
	Target Template

	Velocity-Based, Offset Move
	IMC & IMJ Template
	Target Template

	Velocity-Based, Blended Move
	IMC & IMJ Template
	Target Template

	Velocity-Based, Absolute Move with Feedrate Override
	IMC & IMJ Template
	Target Template

	Timed-Based Moves
	Time-Based, Single-Axis Incremental Move
	IMC & IMJ Template
	Target Template

	Time-Based, Single-Axis Absolute Move
	IMC & IMJ Template
	Target Template

	Time-Based, Single-Axis Offset Move
	IMC & IMJ Template
	Target Template

	Time-Based, Single-Axis Absolute Move with Feedrate Override
	IMC & IMJ Template
	Target Template

	Time-Based, Multi-axis Incremental Move	(
	Target Template

	Time-Based, Multi-axis Absolute Move	(
	Target Template

	Time-Based, Multi-axis Offset Move	(
	Target Template

	Pulse-Based Moves
	Pulse-Based, Single-Axis Incremental Move
	IMC & IMJ Template
	Target Template

	Pulse-Based, Single-Axis Absolute Move
	IMC & IMJ Template
	Target Template

	Pulse-Based, Single-Axis Offset Move
	IMC & IMJ Template
	Target Template

	Pulse-Based, Single-Axis Blended Move
	IMC & IMJ Template
	Target Template

	Pulse-Based, Single-Axis Continuous Move
	IMC & IMJ Template
	Target Template

	Pulse-Based, Multi-axis Incremental Move	(
	Target Template

	Pulse-Based, Multi-axis Absolute Move	(
	Target Template

	Pulse-Based, Multi-axis Offset Move	(
	Target Template

	Pulse-Based, Multi-axis Continuous Move	(
	Target Template

	Torque-Limited Moves
	Run Forward until Torque Limit
	IMC & IMJ Template
	Target Template

	Run Reverse at Torque Limit
	IMC & IMJ Template
	Target Template

	Synchronized Moves
	Single-Axis Electronic Gearing
	IMC & IMJ Template
	Target Template

	Multi-axis Electronic Gearing	(
	Target Template

	Single-Axis, Phase-Locked Loop
	IMC & IMJ Template
	Target Template

	Multi-axis, Phase-Locked Loop	(
	Target Template

	Single-Axis, Electronic Camming
	IMC & IMJ Template
	Target Template

	Multi-axis, Synchronized Electronic Camming	(
	Target Template
	IMC & IMJ Template
	Target Template

	Single-Axis, Run Forward until Input
	IMC & IMJ Template
	Target Template

	Single-Axis Index Move at Predefined Auxiliary Position Reference
	IMC & IMJ Template
	Target Template

	Trajectory Moves
	2-D Line Segment: Incremental Move	(
	Target Template:

	2-D Line Segment: Absolute Move	(
	Target Template:

	2-D Line Segment: Offset Move	(
	Target Template:

	2-D Arc Segment Using Start, End, and	(�Center Point: Incremental Move
	Target Template:

	2-D Arc Segment Using Start, End, and	(Center Point: Absolute Move
	Target Template:

	2-D Arc Segment Using Start, End, and	(Center Point: Offset Move
	Target Template:

	Appendix H. Utility Templates
	First-In First-Out Buffer
	Display and Edit Time/Date on OIP	I
	Jog Using Analog Input
	
	IMC & IMJ Template
	Target Template

	Jog Using Electronic Handwheel	I
	
	IMC Template

	Jog Using Single-Pole, Double-Throw Switch
	
	IMC & IMJ Template
	Target Template

	Jog Using Operator Interface (OIP)
	
	IMC & IMJ Template
	Target Template

	Solve PID Algorithm

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

