
GE Fanuc Manual Series 90-70

1-800-360-6802
sales@pdfsupply.com

GFK-1006

Buy GE Fanuc PLC Series 90-70 NOW!

State Logic Control System

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-70

Î

GE Fanuc Automation

State Logic Products

Series 90�-70
State Logic� Control System

User’s Manual

GFK-1006A March 1998

GFL–002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in this
equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding
and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

This User’s Guide contains information regarding State Logic� Products available through GE
Fanuc. �State Logic is a registered trademark of ADATEK, Inc.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master CIMSTAR Helpmate PROMACRO Series Six
CIMPLICITY GEnet Logicmaster Series One Series 90
CIMPLICITY 90–ADS Genius Modelmaster Series Three VuMaster
CIMPLICITY PowerTRAC Genius PowerTRAC ProLoop Series Five Workmaster

Copyright 1994-1998 GE Fanuc Automation North America, Inc.
All Rights Reserved

iii GFK-1006A

Preface

Content of this Manual
Chapter 1. Preliminaries

Chapter 2. Setting Up the 90-70 State Logic Control System

Chapter 3. State Logic� Control Theory

Chapter 4. Creating a State Logic Control Program

Chapter 5. ECLiPS Programming Features

Chapter 6. Program Instructions

Chapter 7. Perform Functions

Chapter 8. PID Loops

Chapter 9. On-Line Features

Chapter 10. Serieal Communications Module

Appendix A. Key Functions

Appendix B. Language Structure Summary

Appendix C. References to the Genius PowerTrac Block

Appendix D. References to Genius High Speed Counter Block

Appendix E. Errors

Appendix F. Standard Predefined Keywords

Appendix G. Integrating Ladder Logic and/or ‘C’ Programming

Appendix H. ECLiPS Specifications

INDEX

We Welcome Your Comments and Suggestions

At GE Fanuc automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader ’s Comment Card located on the next page.

� State Logic is a registered trademark of Adatek, Inc.

Contents

viiGFK-1006A Series 90–70 Logic Control System – March 1998

Chapter 1 Preliminaries 1-1 .
Items Included with ECLiPS 1-1 .
Product Registration 1-2 .
Getting Answers to Your State Logic Questions 1-2 .
How to Use this Manual 1-3 .

Brief Description of the Manual Chapters 1-3 .
Manual Organization 1-5 .

Chapter 2 Setting Up the 90-70 State Logic Control System 2-1
System Overview (Architecture) 2-2 .
Connecting ECLiPS, OnTOP, and Logicmaster 90 to the State Engine 2-3
Setting Up ECLiPS 2-3 .

Hardware Requirements 2-3 .
ECLiPS Installation 2-4 .
Hardware Key 2-4 .
Configuring ECLiPS Memory Usage 2-4 .
Loading Logicmaster Hardware Configuration 2-5 .
State Engine Configuration Options 2-6 .
Security Setup 2-6 .
ECLiPS Security 2-6 .
OnTOP Security System 2-7 .

Setting Up OnTOP 2-7 .
Installation 2-7 .
Using ECLiPS Program Files 2-8 .

Setting Up Logicmaster 90 2-8 .
Setting Up the State Engine 2-8 .

Loading the State Engine Operating System 2-8 .
Configuring the State Engine Hardware System 2-9

Communicating with the State Engine 2-10 .
Communicating with the Programmer Software Packages 2-10
Serial Communication 2-10 .
EtherNet Communication 2-11 .

Chapter 3 State Logic Control Theory 3-1 .
State Logic Control Theory 3-2 .

The Concept of Finite States 3-2 .
What Makes State Control Logic Different 3-4 .
A Collection of Tasks is a State Logic Program 3-4 .

Developing State Logic Programs with ECLiPS 3-5 .
Tasks - Sequences of States 3-6 .
States - The Building Blocks of a Task 3-6 .
Statements - The Command Set for State Descriptions 3-7
Scan Overview 3-9 .
Interaction Between Tasks 3-9 .
Creating Process Diagnostics 3-11 .

Contents

viiiGFK-1006A Series 90–70 Logic Control System – March 1998

Chapter 4 Creating a State Logic Control Program 4-1 .
Outline the Application 4-2 .

Identify the Tasks 4-2 .
Identify The States 4-2 .
Identify the Statements 4-3 .

Writing The Program 4-4 .
Using English Names in the ECLiPS Program 4-4 .
Statement Structures 4-6 .
Constructing Statements 4-6 .
Using Keywords, Synonyms and Filler Words 4-7 .
Using Variables 4-7 .
Program Scan 4-9 .

Hints for Creating ECLiPS Programs 4-12 .
Outputs are OFF by Default 4-12 .
Task Design 4-14 .
Write Term Considerations 4-14 .
Calculations and a Scanning Operating System 4-15 .
Read Term Considerations 4-15 .
Timer Considerations 4-16 .
Documentation Hints 4-17 .
Programming Conventions 4-18 .
Scan Time Considerations 4-18 .

Chapter 5 ECLiPS Programming Features 5-1 .
State Logic Word Processor 5-2 .

Creating Program Text - Overview 5-2 .
Text Functions - Block Functions 5-3 .
Find Functions - Search and Replace 5-3 .

Project Management 5-4 .
File Management 5-4 .
Documentation - Print Function 5-5 .
Error Checks, Translate, and Download Projects 5-5 .
Task Groups 5-6 .
File Types Created by ECLiPS 5-6 .

Naming Variables 5-7 .
Define Current Word - Search for Undefined Words 5-7
List - Variable Type 5-7 .
The System Configuration Option 5-7 .

On-Line Program Changes 5-8 .
Restrictions 5-8 .

Hints for Using ECLiPS Features 5-8 .
How to Use the ECLiPS Menus 5-8 .
Using ECLiPS Hot Keys 5-8 .
ECLiPS Word Processing Functions 5-9 .
How to Use ECLiPS Lists 5-9 .

Contents

ixGFK-1006A Series 90–70 Logic Control System – March 1998

Chapter 6 Program Instructions 6-1 .

Program Structure 6-2 .
Task Groups 6-2 .
Tasks 6-3 .
State 6-3 .
Statements 6-3 .
Expressions 6-3 .
Terms 6-4 .
Words 6-4 .

Functional Terms 6-5 .
Turning ON Discretes (Actuate Term) 6-5 .
Assigning Analog and Variable Values 6-5 .
Changing Active States Term 6-7 .
Sending Serial Data (Write Term) 6-8 .
PID Loops Control Terms (Start_PID, Stop_PID) 6-9 .
Change Serial Port Configuration Term 6-10 .
Perform Function Term 6-10 .

Conditional Terms 6-10 .
Digital Conditional Term 6-11 .
Timer Conditional Term 6-11 .
Relational Conditional Term 6-12 .
Current State Conditional Term 6-12 .
Complex Conditionals 6-13 .
Character Input Conditional Term 6-13 .

Mathematical Calculations 6-14 .
Operator Precedence 6-14 .

Variables 6-14 .
ASCII Variables 6-15 .
Numeric Variables 6-15 .
Numeric Data Types 6-16 .

Grammatical Rules 6-16 .

Filler Words 6-16 .

Chapter 7 Perform Funtions 7-1 .

Table Functions 7-2 .

BCD I/O Representation 7-5 .

Shift_Register 7-8 .

String Manipulation 7-9 .

Time Counter 7-11 .

VME Communication Functions 7-13 .

Specialized Perform Functions 7-14 .

Contents

xGFK-1006A Series 90–70 Logic Control System – March 1998

Chapter 8 PID Loops 8-1 .

Initializing and Starting PID Loops 8-2 .

PID Initialization Form 8-2 .

PID Loop Paramters 8-3 .

Starting PID Loop Execution 8-5 .

On-Line PID Loop Tuning 8-6 .

Program Control of PID Loops 8-6 .

Program Changes to the Tuning Parameters 8-7 .

Using the Command and Status Bits 8-7 .

PID Algorithm and Philosophy 8-8 .

Simple PID Control 8-9 .

Complex PID Control 8-9 .

Chapter 9 On-Line Features 9-1 .

Debug Mode Display Screen 9-2 .

Controlling the Project 9-2 .

Logging Data 9-2 .

Process Simulation 9-2 .

Download a Project 9-3 .

Reset and Clear State Engine 9-3 .

Observing State Engine Values 9-3 .

Monitor Tables 9-3 .

View 9-4 .

Trace 9-4 .

Display Data 9-4 .

Faults 9-4 .

Changing State Engine Values 9-5 .

Change Variable Data 9-5 .

Force Inputs and Outputs 9-5 .

On-Line Hints 9-5 .

Contents

xiGFK-1006A Series 90–70 Logic Control System – March 1998

Chapter 10 Serial Communications Module 10-1 .

Overview 10-2 .
Serial Cables 10-2 .
SCM Fundamentals 10-3 .

Installation and Maintenance 10-5 .
Description 10-5 .
Installation 10-6 .
Inserting the SCM 10-6 .
Configuration 10-7 .
Battery 10-7 .

Serial Port Parameters 10-8 .
Parameter Details 10-8 .
Changing the Parameter Settings 10-9 .

CCM2 Protocol Serial Port 10-10 .
Enabling CCM2 Communication 10-10 .
CCM Data Types 10-10 .

Troubleshooting 10-14 .
Status LED is not ON Steady 10-14 .
Resets Blinks Port 1 or Port LED 10-14 .
Serial Communication Problems 10-15 .

Appendix A Key Functions A-1 .

Function Keys A-1 .

Hot Keys A-2 .

Miscellaneous Keys A-2 .

Appendix B Language Structure Summary B-1 .

Notational Conventions B-1 .

Language Structure Notational Conventions B-1 .

Functional Structures B-2 .

Conditional Structures B-4 .

Value Expressions B-5 .

Appendix C References to the Genius PowerTRAC Block C-1

PowerTRAC Data Keywords C-2 .

PowerTRAC Status Bit Keywords C-3 .

Appendix D References to Genius High Speed Counter Block D-1

Counter Register Keywords D-2 .

Counter Status Bit Keywords D-2 .

Counter Command Bit Keywords D-3 .

Contents

xiiGFK-1006A Series 90–70 Logic Control System – March 1998

Appendix E Errors E-1 .

Translation Errors E-1 .

Runtime Errors E-13 .

Non-Critical E-13 .

Critical Errors E-15 .

Appendix F Standard Predefined KeyWords F-1 .

Conditional Terms F-1 .

Functional Terms F-2 .

Operators F-4 .

Miscellaneous Keywords F-6 .

Appendix G Integrating Ladder Logic and/or ‘C’ Programming G-1

Appendix H ECLiPS Specifications H-1 .

Content of this Manual iii .

We Welcome Your Comments and Suggestions vi .

Contents

xiiiGFK-1006A Series 90–70 Logic Control System – March 1998

Figure 2-1. 90-70 State Logic Control System 2-2 .

Figure 2-2. OnTOP Security Form 2-7 .

Figure 3-1. State Diagrams 3-2 .

Figure 3-2. Task Description in ECLiPS 3-3 .

Figure 3-3. Sample Task with Some Elements Labeled 3-5 .

Figure 3-4. Five State Task Example with a Single State Highlighted 3-6 .

Figure 3-5. Example ECLiPS State with One complete Statement Highlighted 3-7

Figure 3-6. Highlighted Communication Functions 3-8 .

Figure 3-7. Example Diagnostic Task 3-13 .

Figure 4-1. Example ECLiPS State with Four Statements 4-6 .

Figure 4-2. Statement examples with Functional Terms highlighted 4-6 .

Figure 4-3. Statement example with Conditional Terms highlighted 4-6 .

Figure 4-4. Program Scan 4-9 .

Figure 4-5. Statement Scan 4-10 .

Figure 4-6. Program Scan with GO Terms 4-11 .

Figure 4-7. Statement Scan with GO 4-11 .

Figure 4-8. Using multiple to Tasks to keep an Output ON 4-13 .

Figure 6-1. ECLiPS Program Hierarchy 6-2 .

Figure 6-2. Functional Expressions in Bold Type 6-3 .

Figure 6-3. Conditional Expressions in Bold Type 6-4 .

Figure 6-4. Examples of Multiple Conditional Term Expressions 6-4 .

Figure 6-5. Examples of Multiple Functional Term Expressions 6-4 .

Figure 8-1. PID Initialization Form 8-2 .

Figure 8-2. PID Tuning Screen 8-6 .

Figure 8-3. PID Algorithms 8-9 .

Figure 8-4. Cascaded PID Loops 8-10 .

Figure 10-1. Serial Port Assignments for Series 90-70 SCM 10-2 .

Figure 10-2. IBM PC-AT to SCM Cable 10-3 .

Figure 10-3. Workmaster II or PS/2 to SCM Cable 10-3 .

Figure 10-4. SCMs in Series 90-70 Chasis 10-4 .

Figure 10-5. Serial Communications Module 10-5 .

Figure 10-6. Sample Logicmaster Configuration Screen 10-7 .

Figure 10-7. Sample Port Configuration Screen 10-9 .

Contents

xivGFK-1006A Series 90–70 Logic Control System – March 1998

Table 6-1. Functional Term Quick Reference List 6-5 .

Table 6-2. Conditional Term Quick Reference List 6-10 .

Table 8-1. PID Loop Parameters 8-4 .

Table 8-2. PID Command and Status Bits 8-7 .

Table 10-1. Slot Number to Serial Port Number Correlation 10-3 .

Table 10-2. Slot Number to Serial Port Number Correlation 10-6 .

Table 10-3. Serial Port Parameters 10-8 .

Table 10-4. State Engine Data Types and CCM References 10-11 .

Table 10-5. Digital Point Names 10-11 .

Table 10-6. Internal Flag Names 10-11 .

Table 10-7. Analog Channel Names 10-11 .

Table 10-8. String Variable Names 10-12 .

Table 10-9. Integer Variable Names 10-12 .

Table 10-10. Floating Point Variable Names 10-12 .

Table 10-11. PID Loop Names 10-12 .

Table 10-12. Task and State Names 10-12 .

Table 10-13. PID Parameter Table 10-13 .

Table 10-14. SCM Specifications 10-15 .

Table 10-15. Standards 10-15 .

Table G-1. State Engine Register Usage G-2 .

GE Fanuc Automation North America, Inc. GFJ–317C

Software License Agreement

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THIS PACKAGE. OPENING THIS PACKAGE SIGNI-
FIES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACK-
AGE UNOPENED ALONG WITH ANY OTHER ITEM THAT WAS INCLUDED IN THE SAME CATALOG NUMBER FOR FULL CREDIT.

You, as the Customer, agree as follows:
1. DEFINITIONS

”Application Software” shall mean those portions of the Licensed Software, in object code form only,
created by GE Fanuc.

”Designated Computer” shall mean the one (1) computer upon which Customer shall run the Li-
censed Software.

”Licensed Software” shall mean the Application Software plus any other software, in object code
form only, supplied by GE Fanuc pursuant to this Agreement. The Licensed Software may include
third party software, including but not limited to operating systems, licensed to GE Fanuc. If no oper-
ating system software is included in the software provided under this Agreement, you must make
provision for any required operating system software licenses.
2. LICENSE

2.1 Except as provided in section 2.2 below, you are granted only a personal, non–transfer-
able, nonexclusive license to use the Licensed Software only on the Designated Computer. You may
copy the Licensed Software into machine readable form for backup purposes in support of your use
of the Licensed Software on the Designated Computer, limited to one copy. No other copies shall be
made unless authorized in writing by GE Fanuc. You may not reverse compile or disassemble the
software. The Licensed Software, comprising proprietary trade secret information of GE Fanuc and/
or its licensors, shall be held in confidence by Customer and protected from disclosure to third par-
ties. No title to the intellectual property is transferred. You must reproduce and include all applicable
copyright notices on any copy.

2.2 If you are an authorized GE Fanuc distributor or an Original Equipment Manufacturer who
incorporates the Licensed Software into your equipment for sale to an end user, you may transfer the
Licensed Software to an end user provided that the end user agrees to be bound by the provisions of
this Agreement.

2.3 GE Fanuc’s licensors having a proprietary interest in the Licensed Software shall have the
right to enforce such interests, including the right to terminate this Agreement in the event of a breach
of its terms pertaining to such proprietary interests.

2.4 EXCEPT AS PROVIDED IN SECTION 2.2 ABOVE, IF YOU TRANSFER POSSESSION OF ANY
COPY OF THE LICENSED SOFTWARE TO ANOTHER PARTY WITHOUT WRITTEN CONSENT OF GE
FANUC, YOUR LICENSE IS AUTOMATICALLY TERMINATED. Any attempt otherwise to sublicense,
assign or transfer any of the right, duties or obligations hereunder is void.

2.5 If the Licensed Software is being acquired on behalf of the U.S. Government, Department
of Defense, the Licensed Software is subject to ”Restricted Rights”, including the legend to be affixed
to the software as set forth in DOD Supplement to the Federal Acquisition Regulations (DFAR’s) para-
graph 252.227–7013(c)(1). If software is being acquired on behalf of any other U.S. Government
entity, unit or agency, the Government’s rights shall be as defined in paragraph 52.227–19(c)(2) of
the Federal Acquisition Regulations (FAR’s).
3. WARRANTY

3.1 GE Fanuc warrants that the Application Software will be in substantial conformance with
the specifications in the manual pertaining thereto as of the date of shipment by GE Fanuc. If, within
ninety (90) days of date of shipment, it is shown that the Application Software does not meet this
warranty, GE Fanuc will, at its option, either correct the defect or error in the Application Software, free
of charge, or make available to Customer satisfactory substitute software, or, as a last resort, return to
Customer all payments made as license fees and terminate the license with respect to the Application
Software affected. GE Fanuc does not warrant that operation of the Application Software will be unin-
terrupted or error free or that it will meet Customer’s needs. All other portions of the Licensed Soft-
ware are provided ”as is” without warranty of any kind.

3.2 WITH RESPECT TO THE SOFTWARE WHICH IS THE SUBJECT OF THIS AGREEMENT, THE
FOREGOING WARRANTIES ARE EXCLUSIVE AND ARE IN LIEU OF ALL OTHER WARRANTIES
WHETHER WRITTEN, ORAL, IMPLIED OR STATUTORY. NO IMPLIED OR STATUTORY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE SHALL APPLY.
4. LIMITATION OF LIABILITY

4.1 IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, BREACH OF WAR-
RANTY, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE SHALL GE FANUC OR ITS SUPPLIERS BE
LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PENAL DAMAGES INCLUDING, BUT
NOT LIMITED TO, LOSS OF PROFIT OR REVENUES, LOSS OF USE OF THE LICENSED SOFTWARE OR
ANY PART THEREOF, OR ANY ASSOCIATED EQUIPMENT, DAMAGE TO ASSOCIATED EQUIPMENT,
COST OF CAPITAL, COST OF SUBSTITUTE PRODUCTS, FACILITIES, SERVICES OR REPLACEMENT
POWER, DOWN TIME COSTS, OR CLAIMS OF CUSTOMER’S CUSTOMERS AND TRANSFEREES FOR
SUCH DAMAGES EVEN IF GE FANUC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4.2 EXCEPT AS PROVIDED IN SECTION 5, INDEMNITY, IN NO EVENT, WHETHER AS A RESULT
OF BREACH OF CONTRACT OR WARRANTY, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE,
SHALL GE FANUC’S LIABILITY TO CUSTOMER FOR ANY LOSS OR DAMAGE ARISING OUT OF, OR
RESULTING FROM THIS AGREEMENT, OR FROM ITS PERFORMANCE OR BREACH, OR FROM THE
LICENSED SOFTWARE OR ANY PART THEREFORE, OR FROM ANY SERVICE FURNISHED HERE-
UNDER, EXCEED THE QUOTED CHARGES FOR THE LICENSED SOFTWARE. ANY SUCH LIABILITY
SHALL TERMINATE UPON THE TERMINATION OF THE WARRANTY PERIOD AS SET FORTH IN SEC-
TION 4.

4.3 If GE Fanuc furnishes Customer with advice or other assistance which concerns Licensed
Software or any portion thereof supplied hereunder or any system or equipment on which any such
software may be installed and which is not required pursuant to this Agreement, the furnishing of such
advice or assistance will not subject GE Fanuc to any liability, whether in contract, warranty, tort, (in-
cluding negligence) or otherwise.

4.4 The products to be licensed or sold hereunder are not intended for use in any nuclear,
chemical or weapons production facility or activity, or other activity where failure of the products
could lead directly to death, personal injury or severe physical or environmental damage. If so used,
GE Fanuc disclaims all liability for any damages arising as a result of the hazardous nature of the busi-
ness in question, including but not limited to nuclear, chemical or environmental damage, injury or
contamination, and Customer shall indemnify, hold harmless and defend GE Fanuc, its officers, direc-
tors, employees and agents against all such liability, whether based on contract, warranty, tort (in-
cluding negligence), or any other legal theory, regardless of whether GE Fanuc had knowledge of the
possibility of such damages.
5. INDEMNITY

5.1 GE Fanuc warrants that the Application Software shall be delivered free of any rightful
claim for infringement of any United States patent or copyright. If notified promptly in writing and given
authority, information and assistance, GE Fanuc shall defend, or may settle, at its expense, any suit or
proceeding against Customer so far as based on a claimed infringement which would result in a
breach of this warranty and GE Fanuc shall pay all damages and costs awarded therein against Cus-
tomer due to such breach. In case the Application Software is in such suit held to constitute such an
infringement and its use is enjoined, GE Fanuc shall, at its expense and option, either procure for Cus-
tomer the right to continued use, or replace same with a non–infringing product or part, or modify the
Application Software so that it becomes non–infringing, or remove the software and refund the li-
cense charge pertaining thereto (less reasonable depreciation for any period of use) and any trans-
portation costs separately paid by Customer. The foregoing states the entire liability of GE Fanuc for
patent and copyright infringement by the Licensed Software or any part thereof.

5.2 The indemnity under the preceding paragraph shall not apply to any use of Application
Software in conjunction with any other product in a combination not furnished by GE Fanuc as a part
of this transaction. As to any such use in such combination, GE Fanuc assumes no liability whatsoev-
er for patent and copyright infringement and Customer will hold GE Fanuc harmless against any in-
fringement claims arising therefrom.
6. TERM AND TERMINATION

6.1 You may terminate the license granted hereunder at any time by destroying the Licensed
Software together with all copies thereof and notifying GE Fanuc in writing that all use of the Licensed
Software has ceased and that same has been destroyed.

6.2 GE Fanuc, upon thirty (30) days notice, may terminate this Agreement or any license here-
under if Customer fails to perform any obligation or undertaking to be performed by it under this
Agreement or if Customer attempts to assign this Agreement without the prior written consent of GE
Fanuc. Within twenty (20) days after any such termination of this Agreement, Customer shall certify
in writing to GE Fanuc that all use of the Licensed Software has ceased, and that same has been re-
turned or destroyed, in accordance with GE Fanuc’s instructions.

6.3 Sections 4, 6 and 7 of this Agreement shall survive any expiration or termination and
remain in effect. Termination of this Agreement or any license hereunder shall not relieve Customer of
its obligation to pay any and all outstanding charges hereunder nor entitle Customer to any refund of
such charges previously paid.
7. EXPORT

7.1 If you intend to export (or reexport), directly or indirectly, the software products or techni-
cal information relating thereto supplied hereunder or any portion thereof, it is your responsibility to
assure compliance with U.S. export control regulations and, if appropriate, to secure any required
export licenses in your own name.
8. GENERAL

8.1 This Agreement shall be governed by the laws of the State of Virginia, without regard to its
conflict of law provisions. The provisions of the United Nations Convention on the International Sale of
Goods shall not apply to this Agreement.

Should you have any questions concerning this Agreement, you may contact GE Fanuc by writiing to:
GE Fanuc, P.O. Box 8106, Charlottesville, VA 22906.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US AND SUPERSEDES ANY PRO-
POSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BE-
TWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. FURTHER, NO CHANGE OR
AMENDMENT TO THIS AGREEMENT SHALL BE EFFECTIVE UNLESS AGREED TO BY WRITTEN
INSTRUMENT SIGNED BY A DULY AUTHORIZED REPRESENTATIVE OF GE FANUC.

1

restart lowapp ARestart oddapp: ARestarts for autonumbers that do not restart in
each chapter. figure bi level 1, reset table_big level 1, reset chap_big level 1, reset1
Lowapp Alwbox restart evenap:A1app_big level 1, resetA figure_ap level 1, reset
table_ap level 1, reset figure level 1, reset table level 1, reset these restarts
oddbox reset: 1evenbox reset: 1must be in the header frame of chapter 1. a:ebx, l 1
resetA a:obx:l 1, resetA a:bigbx level 1 resetA a:ftr level 1 resetA c:ebx, l 1 reset1
c:obx:l 1, reset1 c:bigbx level 1 reset1 c:ftr level 1 reset1 Reminders for
autonumbers that need to be restarted manually (first instance will always be 4)
let_in level 1: A. B. C. letter level 1:A.B.C. num level 1: 1. 2. 3. num_in level 1: 1. 2.
3. rom_in level 1: I. II. III. roman level 1: I. II. III. steps level 1: 1. 2. 3.

1-1GFK-1006A

Chapter 1 Preliminaries

This chapter describes some details that should be completed before using this product.
Please take the time to review all of the items in this short chapter.

Items Included with ECLiPS

Check your ECLiPS package that it has the following items:

1. ECLiPS Disks and this Manual

2. ECLiPS Hardware Key

3. OnTOP Disk and Manual

4. Logicmaster 90-70 Demo Version Disk

5. Mini-Converter Kit, Serial Cable and Adapters

If any of these parts is missing, contact your local distributor.

1

1-2 Series 90-70 Logic Control System – March 1998 GFK-1006A

Getting Help

There are three ways to get help:

1. ECLiPS Help System. ECLiPS has a built in help system that can always be accessed
by pressing the key on your keyboard marked <F1>. This help system is context
sensitive meaning that ECLiPS provides the helpful information you need based on
the location of the cursor on the screen or the highlighted menu option at the mo-
ment you ask for help.

More information about using the ECLiPS help system can be found in the reference
chapter of this manual.

2. ECLiPS Reference Manual. The reference chapter of this manual contains helpful
information organized by the command, function or procedure name. Use the main
index at the back of this manual or the reference chapter index at the beginning of
the reference chapter to locate information.

3. GE Fanuc has personnel specially trained throughout the country to provide cus-
tomer support for ECLiPS and other State Logic products that work together with
standard GE Fanuc control products. Call GE Fanuc technical support line at
1-800-828-5747.

1

1-3GFK-1006A Chapter 1 Preliminaries

How to Use this Manual

This section explains how to use this manual. First is a description of each of the
chapters followed by an explanation of how the chapters are organized. Finally is an
explanation of how to take advantage of this organization to find the information
needed.

Brief Description of the Manual Chapters

1. Preliminaries

Preliminaries is the chapter you are now reading.

2. Setup

This chapter first shows the general architectural view of the 90-70 State Logic
Control System then explains all of the setup procedures required to run the
ECLiPS programming software and operate the 90-70 State Engine.

3. State Logic Control Theory

This section provides some basics about the underlying concepts and philosophy
of State Logic Control. Regardless of what you may already know about State
Logic, it is extremely important that you read this section carefully.

4. Creating a State Logic Control Program

This chapter explains how a control application is programmed using ECLiPS.

5. Program Features

This chapter shows the ECLiPS features devoted to creating and modifying State
Logic Programs.

6. Program Structure

The Program Structure chapter explains how to use the functional words in the
State Logic Program Language.

7. Perform Functions

The Perform Functions are a series of advanced State Logic Language features.
This chapter explains how to implement them in a program

8. PID Loops

This chapter explains how to use PID Loops in the State Logic Program.

1

1-4 Series 90-70 Logic Control System – March 1998 GFK-1006A

9. On - Line Features

The On - Line Features are designed to view and modify the information being
handled by the State Engine. This chapter explains what features are available
and how to use them.

10. Serial Communications Module

The Serial Communication Module or SCM is an add on module that is used for
serial communication to serial devices or a host computer. This chapter will ex-
plain how to use the SCM and what features are available with it.

Appendix A Function Keys

Appendix A contains a summary of all of the function keys.

Appendix B Language Structural Summary

Contains a list of all language structures

Appendix C PowerTRAC Data Blocks

Describes the use of PowerTRAC Genius I/O Blocks.

Appendix D High Speed Counter Data Blocks

Describes the use of the Genius block high Speed Counter.

Appendix E Error Messages

Contains a list of all of the ECLiPS generated error messages.

Appendix F Predefined Keywords

List of Keywords that come defined in ECLiPS.

Appendix G Ladder Logic and/or ‘C’ Programming

How to integrate different programming methods with State Logic.

Appendix H ECLiPS Specificications

The ECLiPS programming limits.

1

1-5GFK-1006A Chapter 1 Preliminaries

Manual Organization

To find specific information in this manual use the manual organization. First determine
whether the topic falls into one of these categories:

Setup

Programming

On - Line

Serial Communications

Then go to the chapter or group of chapters that deals with that topic.

The setup options are covered in the chapter, Setting Up the 90-70 State Logic Control
System. This chapter explains the overall system architecture in addition to how to set
up and configure the components of the system. Overall system considerations are
covered in this chapter.

The next group of chapters have information on the details of creating a State Logic
control program. The chapters proceed from fundamental, State Logic Theory, to most
complex, PID Loops. The State Logic Theory chapter is a very important chapter for
first time users is. State Logic is very different from any other type of programming language, so
even if you have extensive experience with procedural languages such as C, BASIC or FORTRAN
or other languages designed for control such as Relay Ladder Logic or Boolean, read this chapter.

The programming chapters are followed by the chapter on the ECLiPS On-line Features
chapter.

The last chapter describes the Serial Communications Module (SCM) used to provide
serial interface to the system.

Use this grouping of the chapters to locate the information needed. Also use the Table
of Contents and the Index to help locate specific topics.

2
section level 1 1
figure bi level 1
table_big level 1

2-1GFK-1006A

Chapter 2 Setting Up the 90-70 State Logic Control
 System

This chapter explains how to set up the 90-70 State Logic system. The first section
describes the State Logic Control System architecture. The following sections explain
how to setup the different components of the State Logic Control System.

2

2-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

System Overview (Architecture)

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
Î

Î
Î
Î

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
ÎÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

B
R
M

a43591

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
Î

Î
Î
Î

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
ÎÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎGENIUS
BLOCK

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

Î
Î ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

IBM PC or PS/2

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
Î

Î
Î
Î

Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

Î
Î
Î

Î
Î
ÎÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

RACK 1

RACK 0

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

P
S

S
E
7

B
T
M

G
B
C

B
R
M

GENIUS I/O BUS (7500 FEET MAXIMUM)

RACK 7

ONE
METER

TOTAL LENGTH OF ALL INTERCONNECTING
CABLES FROM BTM TO LAST BRM IS 50 FEET
(MAXIMUM). ALL RACKS MUST BE AT SAME
GROUND POTENTIAL (8 RACKS MAXIMUM).

NOTE

SERIAL

TERMINATOR PLUG (IC697ACC702)

P
C
M

0

Figure 2-1. 90-70 State Logic Control System

The Series 90-70 State Logic Control system has two main components:

Series 90-70 State Engine and PLC System

The PC Programmer and Software to Interface to the State Engine

The State Logic PLC System includes the State Engine CPU module which executes the
control program, the PLC rack and power supply, and I/O modules. The State Engine
module comes with a memory protection key switch, memory battery backup, four
indicator LED’s, run switch, and an RS-422/485 serial port. For more information on the
State Engine module look for CPU information the GE Fanuc manuals GFK-0262 and
GFK-0265.

The memory protect key switch prevents the program from being changed when
switched ON. An attempt to download a program or make on-line changes will fail
when the switch is ON.

The PC Programmer and interface software is an IBM PC compatible or PS/2 which runs
one of the software packages ECLiPS, OnTOP, or Logicmaster 90 Demo version.

2

2-3GFK-1006A Chapter 2 Setting Up the 90-70 State Logic Control System

Connecting ECLiPS, OnTOP, and Logicmaster 90 to the State
Engine

ECLiPS, OnTOP, and Logicmaster 90 are all software packages that run on an IBM PC
compatible or PS/2. ECLiPS is used to create the State Logic program and perform
on-line operations, OnTOP does only on-line operations and Logicmaster 90 loads the
State Engine operating system and configures the PLC system. Each of these packages
connect to the SNP serial port located on the State Engine.

Use the mini-converter kit supplied with ECLiPS to connect the State Engine to the
computer running any of the software packages. Plug the 15-pin to 9-pin adapter, part
number HE693SNP232, into the serial port on the State Engine. Connect the serial cable
to the computer running ECLiPS, OnTOP, or LogicMaster to either COM port 1 or 2. Use
part number HE693XTADP to convert a 25 pin COM port to 9 pin for the serial cable.

ECLiPS, Logicmaster, and OnTOP use the same serial ports and the same cables to
connect to the State Engine. When changing from one package to another, no changes
are required in the serial cable or port. ECLiPS and OnTOP can use COM 1, or 2.
LogicMaster can be run using COM 1, 2, 3, or 4.

To use ports other than COM1 for Logicmaster 90 set the environment variable
PLC_COM_PORT by entering a line such as

set PLC_COM_PORT=2

in the AUTOEXEC.BAT file.

For more information on using Logicmaster 90 refer to the Logicmaster manuals.

Setting Up ECLiPS

Hardware Requirements

1. IBM PC compatible or PS/2

2. 640K RAM - Expanded and/or Extended Memory Optional

3. DOS version 3.1 or higher

4. 3 MB of Hard Disk Space

5. 3.5 inch floppy disk drive

6. Any printer (Optional)

7. Color or monochrome monitor

8. Serial Port

2

2-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

ECLiPS Installation
To install ECLiPS, insert disk 1 into drive A or B and make this drive the current logged
drive. Type INSTALL and hit <Enter>. Be ready to specify the path (drive and
directory) where ECLiPS is to be installed. Follow the instructions for inserting other
disks. The installation program displays a message when the installation is complete.

To run ECLiPS, make sure that the directory where ECLiPS is installed is the current
directory. Now type ECLIPS to start the program.

There should be lines in the CONFIG.SYS file to set the FILES and BUFFERS to at least
the following minimums:

FILES=20
BUFFERS=20

Hardware Key
ECLiPS is not copy protected and may be installed repeatedly, but the license agreement
specifies that ECLiPS is to be used on only one computer at a time.

ECLiPS requires a hardware key for normal operations. ECLiPS does function in a
limited manner when the hardware key is not present. Operation of ECLiPS without
the hardware key is allowed by the license only for demonstration purposes to evaluate
the operation of the product. DO NOT attempt to use ECLiPS for control operations
without having the key installed.

To install the hardware key, plug it into the parallel port (LPT1) and tighten the security
screws. The port must be a fully compatible IBM Printer Adapter Card. The key does
not restrict or change the use of the parallel port. Any device that normally connects to
the parallel port may be connected to the key and all information is transmitted just as if
the key were not present.

If another software product requiring a similar hardware key is installed on the same
computer as ECLiPS, plug the ECLiPS key directly into the parallel port and connect the
other key to the ECLiPS key.

If there is a need to move ECLiPS to another computer the distribution disks may be
used to install ECLiPS on the other computer and the hardware key moved to the new
computer. To return to the original computer, move the key to that computer.

Configuring ECLiPS Memory Usage
ECLiPS makes use of Expanded and Extended memory if they are available with
appropriate memory managers installed. By using expanded and/or extended memory,
ECLiPS can be configured for more States and Variables and also executes faster. The
Expanded memory and memory manager must be version LIM 3.2 or higher, and the
Extended memory and memory manager must be version XMS 2.0 or higher.

EMM386.SYS can be used for Expanded memory and HIMEM.SYS can be used for
Extended memory. Two megabytes of memory is enough to provide the maximum
capacity and speed for ECLiPS operations.

2

2-5GFK-1006A Chapter 2 Setting Up the 90-70 State Logic Control System

The first ECLiPS screen, the Main Menu, shows the SETUP option which is used to
configure the ECLiPS system. The two parameters that can be selected are; maximum
number of States and the maximum number of I/O and variable names. The number of
names can be from 500 to 3000 selected in increments of 500. The number of States is
500 to 3000 in increments of 500.

The maximum limits cannot be selected for both the number of States and number of
Names for I/O and variables. The maximum total number for States plus names is 4500.
If the ECLiPS computer does not have enough memory for the selected limits, ECLiPS
displays an out of memory error message and allows the Setup limits to be reselected.

There are two reasons to select the smallest size limits for the ECLiPS setup options.
First ECLiPS requires less free conventional memory with lower defined limits. The
second reason is that ECLiPS does some operations faster when using the smaller limits.

If there is not enough conventional memory available to load ECLiPS, the Setup screen is
displayed to re configure ECLiPS for a smaller number of States and/or variables. After
these quantities are changed, ECLiPS is restarted.

Another way to deal with the problem of not enough memory to run ECLiPS, is to free
up conventional memory in your PC by eliminating device drivers and Terminate and
Stay Resident (TSR) programs by changing your CONFIG.SYS and AUTOEXEC.BAT
files. If you are using DOS 5 or better, loading DOS HIGH also frees up additional
conventional memory. To use the maximum settings for either the number of States or
Variables, DOS must be loaded into the high memory area.

Loading Logicmaster Hardware Configuration

ECLiPS can retrieve the Logicmaster hardware configuration. This function allows the
configuration to be viewed from ECLiPS using rack displays similar to Logicmaster. This
display allows the user to view and modify; a) CPU configuration, b) I/O names and
assignments, and c) Comm Port Configurations.

To make the Logicmaster 90 configuration information available to ECLiPS, use the
”Retrieve Logicmaster Configuration Data” option from the DEFINE menu. ECLiPS asks
for the path name of the Logicmaster folder that stores the data. Any valid hardware
configuration can be used to create the configuration data.

After retrieving the configuration information from Logicmaster, it may be accessed by
selecting the ”System Configuration” option from the DEFINE menu. This option
displays a rack of the 90-70 PLC system similar to the display in Logicmaster. The cursor
can be moved through the form with the arrow keys. Using <PageUp> and
<P ageDown> allows viewing of additional racks. Placing the cursor on top of a module
and pressing enter will bring up a menu for that type of module.

2

2-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

State Engine Configuration Options

To configure the CPU, highlight the CPU slot and press enter. A menu of choices is
provided. Choose View/Modify Configuration, a form of options is displayed. The
following parameters can be set:

Select Whether to Run Program on Power Up

Select Runtime Fault Response

Change the Name of the ECLiPS Port

The information from this form will be downloaded to the State Engine each time the
State program is downloaded. If a change is made to the configuration menu, the
project will need to be translated and downloaded again for the changes to take effect.

I/O modules can be configured using the DISPLAY ”System Configuration”
option. Selecting the I/O device of choice will display a menu. Choosing the I/O
Reference option gives access to a form that displays all of the I/O points
associated with that module. Any I/O names that have been defined will be
shown at the assigned I/O point. Writing a name to an I/O point will cause that
name to be defined.

When a Serial Communications Module (SCM) is selected, the form that is
displayed will show all of the configuration parameters for the serial ports that
module provides. See the chapter on the Serial Communications Module for
more information.

When a Genius Bus Controller is selected, each block on the bus can be
displayed. The circuits for I/O blocks can be named by selecting the block. Any
%G global data discrete bits can also be named from this display.

Security Setup

Both ECLiPS and OnTOP can be configured to require passwords to execute. ECLiPS
uses only one password, but OnTOP has four levels of password protection.

ECLiPS Security

After being configured to require a password, ECLiPS cannot be started without entering
that password. Use this security protection to restrict access to the State Engine and the
ECLiPS program files. The password protection only limits entering the ECLiPS package
and does not limit access to the State Engine by another installation of ECLiPS.

Another aspect of the State Logic system that provides security for the State Engine
program is that ECLiPS cannot connect with the State Engine unless it can access the
same version of program files as those that are running in the State Engine. No one can
run or inspect the State Engine program without having a copy of the correct version of
the project files.

2

2-7GFK-1006A Chapter 2 Setting Up the 90-70 State Logic Control System

OnTOP Security System
The OnTOP Security System is designed for machine operation safety. Through this
feature unauthorized access to the control of the machine is prevented. The security
system allows up to 4 levels of security for OnTOP. Levels 1 - 3 are customized to allow
or disallow access to six functions. Level number 4 allows unlimited access to all of the
features in OnTOP, but the State Logic Program cannot be changed.

To initialize the Security System, run ECLiPS from the same drive as OnTOP. Select
”Security” from the ECLiPS Program Mode menu. Often, ECLiPS is uninstalled from the
drive after the program security system is initialized and the program is downloaded to
the controller.

Figure 2-2. OnTOP Security Form

Use the arrow keys to move the highlighted cursor to the OnTOP Level 1 Password
block in the security form. Enter the password. Move the cursor to Level 2, 3, 4 and
enter the appropriate passwords. Move the cursor to the Function Access Table and
enter a ”Y” or an ”N” to activate or deactivate the function listed for each level of
security access. Also use this form to make any changes to an existing security system.

Setting Up OnTOP

Installation
To install OnTOP, place the disk into a floppy drive making that drive the currently
logged drive type INSTALL. There is no copy protection for OnTOP but the license
agreement specifies that each license allows it to execute on only one computer at a time.

2

2-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Using ECLiPS Program Files
OnTOP uses the program files created by ECLiPS for on-line interaction with the State
Engine. These files provide OnTOP with the actual State Logic program and variable
definitions so that information about the operation of the State Engine can be displayed.

The files that have variable definitions use the project name with extension PRJ. If the
project name were PRESS then the definitions would reside in the file PRESS.PRJ.

The files that contain the program information have extensions TG0 through TGF. The
ECLiPS program may have up to sixteen Task Groups, the first task group is saved in file
with extension TG0 and the second in the file with extension TG1 etc. up to TGF.

These ECLiPS files must be on a disk that OnTOP can access before OnTOP can even
connect with the State Engine. If OnTOP cannot find the files to match the State Engine
program it asks for another path that it can search to find the files.

Setting Up Logicmaster 90

To install the Demo version of Logicmaster 90, place disk 1 in a floppy drive and type
INSTALL at the DOS prompt, then follow the directions displayed on the screen. Type
LM90DEMO to start this version of Logicmaster running. Other setup operations and
directions for the use of Logicmaster can be found in the Logicmaster manuals.

Setting Up the State Engine

There are two main steps to setting up the State Engine, loading the operating system
and configuring the system. Both operations are accomplished with Logicmaster 90-70
Demo version.

Loading the State Engine Operating System
The 90-70 State Engine hardware is the 90-70 CPU module. The 90-70 State Engine is
the CPU of the 90-70 PLC System and therefore must be inserted into slot 1 of rack 0 of
the system.

The operating system for the State Engine is located on the State Engine Operating
System disk which accompanies the State Engine. To load the operating system, connect
Logicmaster to the State Engine with the serial cable and adapter, then perform the
following steps:

1. Type LM90DEMO to start Logicmaster demo version running.

2. Select the Programmer Package, <F1>.

3. Place the State Engine operating system disk in a floppy drive.

4. When Logicmaster asks for a folder to use, enter A:\ENGINE. This folder may also
be selected by pressing <F8> then <F1> to name a folder to be used.

5. Press <F9> for the Utility option.

6. Press <Alt + M> repeatedly until Logicmaster displays ON-LINE in the mode
display in the bottom center of the screen.

2

2-9GFK-1006A Chapter 2 Setting Up the 90-70 State Logic Control System

7. Press <F2> to load the operating system into the State Engine

8. Press <Enter> and then Y when told that items will be overwritten and asked
whether to continue.

9. Press <ALT + R> to start the State Engine Operating System executing.

10. When the store is complete, press <ESC> repeatedly and answer Yes when asked
”do you want to exit Logicmaster” to exit LM90DEMO.

To combine ladder logic and/or ’C’ programming with the State Logic program, copy
the State Engine folder to another folder and add the other programming
instructions to the State Engine program block . To add other types of programming
to the State Engine it may be necessary to use the full Logicmaster version. The
demo version of Logicmaster provides a limited number of rungs and program
blocks which may limit how much other programming can be added .

Configuring the State Engine Hardware System
The 90-70 State Engine is completely software configurable, no jumpers or switches are
used. The complete system can be configured using the demo version of Logicmaster
90-70 included with ECLiPS. The items that require configuration are; a) the memory
setup for the State Engine (system CPU), b) the types of modules inserted into each slot,
and c) the number and types of I/O racks used. To configure the system follow these
steps:

1. Type LM90DEMO to start Logicmaster.

2. At the Logicmaster main menu, select the Configuration Package, <F2>.

3. At the Configuration package main menu, select I/O Configuration <F1>.

4. Select the appropriate CPU for the system. Highlight CPU slot and press <F10>, a
blank space for the CPU model number is displayed, press <F1> for a list of possible
CPU types, select the appropriate CPU number by placing the cursor on it and
pressing enter

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

State Engine Part NumberÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Configuration Part Number
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

IC697CSE784 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

IC697CPU782
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

IC697CSE924 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

IC697CPU924

Memory daughter boards for the 782 processor need to be added by pressing <F9>
followed by <F1>, and selecting the correct board from the list. Press <ESC> to
save CPU configuration and return to rack drawing.

5. Configure each of the other slots used in the system. Refer to Logicmaster manuals
for configuration information. After completing the configuration press <ESC> to
save the configuration and return to the Configuration Main Menu.

6. From the Configuration Main Menu, Press <F2> for CPU Configuration then
choose <F4> for Memory Allocation options.

7. Make sure Analog Input, %AI, and Analog Output, %AQ, are both set to 1024 and
Register memory, %R, is set to 16384. Press <ESC> twice to save memory settings
and return to Configuration Main Menu.

8. From the Configuration Main Menu, Press <F9> for the UTILITY functions.

2

2-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

9. Press <ALT + M> to change the mode to ON-LINE, you may have to press <ALT +
M> twice. If the State Engine is in Run Outputs/Enabled mode the scan time will be
displayed at the bottom of the screen. If the State Engine is in run mode press <ALT
+ R> to take it out of run mode.

10. Press <F2> to store the configuration to the State Engine. Press <ALT + R> to put
the State Engine back into run mode. Press <ESC> twice to exit the utility menu
and return to the Configuration Main Menu.

11. To set the State Engine system clock, press <F2> from the Configuration Main
Menu. Press <F1>, to set the State Engine (Called PLC clock) time. Press <Alt +
M> to be ON-LINE. LogicMaster will load the correct time in the clock. Press
<ESC> twice to return to Configuration Main Menu.

12. Press <ALT + R> to start the State Engine Operating System executing.

13. From the Configuration Main Menu, Press <ESC> and answer Y to exit to
LM90DEMO Main Menu. Press <ESC> to exit LM90DEMO.

Communicating with the State Engine

There are three ways to communicate with the State Engine:

1. Using Programmer Software (ECLiPS, OnTOP, or Logicmaster)

2. Using the Serial Ports (Serial Communications Module)

3. Using the 90-70 MMS Ethernet Module

Communicating with the Programmer Software Packages

All of the programmer packages communicate with the 90-70 State Engine through the
State Engine serial port. A previous section in this chapter describes the details of
connecting these packages to the State Engine.

ECLiPS communicates to the State Engine to download programs and display on-line
information. OnTOP can also download programs and display on-line information.
Logicmaster 90 loads the State Engine Operating System and configures the State
Engine memory usage and I/O modules.

Serial Communication

Serial communication between the State Engine and other devices is accomplished
through the Serial Communication Module or SCM. One of the SCM ports can also be
used for CCM protocol communications to connect SCADA and other host computer
programs to the State Engine. For more information on the SCM see the chapter
devoted to the Serial Communications Module.

2

2-11GFK-1006A Chapter 2 Setting Up the 90-70 State Logic Control System

EtherNet Communication

Communication between the State Engine and a host computer with the EtherNet
protocol can be accomplished with the EtherNet Module. Refer to the GE Fanuc
manuals for information about the Ethernet module. Much of the State Engine
information accessible by the Ethernet module resides in register locations. See the
Appendix G of this manual for a register map of which registers are used by the State
Engine to store different types of State Logic information. There are special functions
available for accessing data that is not available in the registers.

3 section level 1 1
figure bi level 1
table_big level 1

3-1GFK-1006A

Chapter 3 State Logic Control Theory

This chapter has two main topics. The first part discusses State Logic Control Theory
and how it differs from traditional control models. The second part discusses the ECLiPS
implementation of State Logic Control.

3

3-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

State Logic Control Theory

State Logic Control has its roots in Finite State Machine Theory, developed by
nineteenth century mathematicians. Because its philosophy is a natural fit to real-time
systems, Finite State Machines have become the strategy of choice in disciplines, such as
electronics and compiler design. This theory has recently been gaining wide spread
acceptance in industrial control industry with all major controls producers offering State
Logic based control products.

The Concept of Finite States
The basic concept of State Logic is that a process can be defined as a sequence of States.
Each State is defined by two components, actions that occur while that State is active
and the transitions to other States.

In the control world, actions are turning ON digital outputs, setting variable and analog
output values, sending messages to an operator, etc.

“Turn ON Mixer_Motor.”

is an example of an ECLiPS program line describing the action of a State.

Transitions are a little more complicated since they are themselves defined by two
components, the condition controlling the transition and the target State.

“If Part_In_Place switch is ON, go to Start_Conveyor State.”

is an ECLiPS program line representing a transition of a State. In the control world
conditions controlling transitions are the status of the digital inputs, the values of
variables and analog inputs, elapsed time, etc. The target State is the one which
becomes active when the condition is true.

A sequence of states can describe any control application. In pure Finite State Machine
science these sequences are each called State Machines. ECLiPS calls each such sequence
a TASK.

It is traditional to diagram Finite State Machines with circles and arrows. The actions of
a State are written inside the circles. The arrows show the transitions with the condition
component of the transition written next to the arrow. The following unlabeled State
diagrams show two simple Finite State Machines or Tasks.

a80001

Figure 3-1. State Diagrams

3

3-3GFK-1006A Chapter 3 State Logic Control Theory

The Task may transition from one State to any other State in the Task depending on how
the State instructions are specified by the system designer. The target State of all
transitions is always pre-defined. A State description may describe several different
State transitions based on differing input information. Each Task is always in one and
only one State at any time, and the transfer from one State to another does not consume
any time.

Project: CHEMICAL PROCESS
Task: Make_Compound_5

State: PowerUp
If the Manual_Switch is on and Start_Pushbutton
is pressed go to the Add_Water State.
Go to Add_Water if Auto_Switch is on.

State: Add_Water
Run Pump_1 until Tank_Guage equals 35 gallons,
then go to the Add_Chemicals State.

State: Add_Chemicals
When the Chemical_Management Task is in the Mixing State,
turn Pump_2 on. When Tank_Guage equals 39 gallons,
send “Tank Filled” to operator_panel and go to the Mixing State.

State: Mixing
If hour is past 8 AM, start the exhaust_system.
Start Main_Mixer. If 20 seconds pass and the Mixer_Monitor
s less_than 100 rpms, go to the Wait_3 State.
Go to the Cooking State after 90 seconds.

State: Wait 3
Write “PROCESS SHUT DOWN BECAUSE MATERIAL IS TOO THICK”.
Go to PowerUp State when Reset_Button is pushed.

Figure 3-2. Task Description in ECLiPS

An IMPORTANT point is that Finite State Theory does not create or invent TASKS.
TASKS are already an inherent part of every process to be controlled. Programming
with a state control language is merely the act of describing the process.

3

3-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

What Makes State Control Logic Different

Both State Logic and traditional methods of control test the condition of the inputs and
internal data to decide how to control a system. The fundamental difference of State
Logic is its inherent ability to also use the current condition (State) of the process in
making control decisions. Traditional methods of control artificially simulate different
States with internal contacts or data values. Consider the following States:

State: Ready_For_Cutting
Turn on the Cutter_Ready_Light.
When the Cut_Push_Button is pressed, go to the Engage_Cutter State.

State: Engage_Cutter
Start the Cutter_Blade.
When the Cut_Complete_Detector is tripped, go to the Raise_Blade State.

These States describe a situation where the only time that the cutter should be activated
from the push button, is when the machine is ready for the cutting operation. State
Logic inherently allows the system designer to take the State of the process into the
decision. By making the only transition to the Engage_Cutter State be in the
Ready_For_Cutting State, the designer limits the time that the Cut_Push_Button has any
affect on the Cutter_Blade.

In these States the only time the cutter is started is when the Engage_Cutter State is
active. Traditional approaches allow for ingenious methods to simulate the States of the
process to protect from an inadvertent pressing of the Cut_Push_Button at the wrong
time. These traditional methods add considerably to the complexity of the system
design, especially in intricate systems.

Because a State Machine model reflects sequence of operation over time, the model
embedded in the controller matches the actual model the real world process follows.
This model makes it possible to define the control system by describing the process.

Because the model matches the real world, program development and modification is
always simpler and easier to understand. Program developers can more easily build
advanced diagnostics for the process into the program because the control program is a
precise model of the process and it is easy to detect when that normal behavior is not
followed.

A Collection of Tasks is a State Logic Program

Finite state machines or tasks define sequential operations. Processes though usually
have more than one sequence of operations executing concurrently. State programs are
usually a collection of Tasks matching the actual real physical Tasks that are inherently
part of the process under control. The State Logic control program is a collection of Tasks
which execute concurrently.

3

3-5GFK-1006A Chapter 3 State Logic Control Theory

Developing State Logic Programs with ECLiPS

Developing State Logic programs can be characterized as entering a description of your
control system into a template. The template is the Finite State Machine model built into
the State Engine in the control hardware. ECLiPS is a tool and framework for entering
that description into the template. ECLiPS will provide all of the commands and tools
you will need to “load” virtually any control application into the State Logic template.
The primary element of the template’s structure is the TASK. Each Task can be
subdivided into an unlimited number of States. The I/O related activity and State
change rules are described in each State with a collection of STATEMENTS. Statements
are the ECLiPS command set you use to describe what you want to have happen at each
State of each Task. In ECLiPS Statements are normal English words, phrases or
sentences. An unlimited number of Statements can be used in any State.

Therefore, State Logic programs are a hierarchy of TASKS, subdivided by STATES,
described by STATEMENTS.

TASK: Drill TASK NAME

State: Drill_Advancing STATE NAME
Turn Fwd_Solenoid on. After 3 seconds start Drill_Motor.
When Fwd_Limit_Switch is tripped go to Retracting State.
Go to Send_Message_1 if 17 seconds pass. STATEMENT

State: Retracting
Actuate Rev_Solenoid. STATEMENT
When Home_Switch is tripped go to the Increment_Counter State.

State: Increment_Counter
Add 1 to Parts_Count.
Write “Parts Count equals %Parts_Count” to operator_display.
If Parts_Count is less than 24 go to the PowerUp State.
If Parts_Count is 24 go to the Send_Message_2 State.

State: Send_Message_1
Write “DRILL BIT DULL” to message_board, go to Retracting State.

State: Send_Message_2
Send “RUN COMPLETED” to operator_display, go to New_Cycle State.

TASK: Setup_DISPLAY

State: Operator_Panel

Figure 3-3. Sample Task with Some Elements Labeled

3

3-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Tasks - Sequences of States
By design a machine or process is a collection of Tasks that operate concurrently. A car
engine has an electrical system, a fuel system, a mechanical motion system, cooling
system, exhaust system and a starting system that, while independent in action, must be
coordinated in time for the engine to work. Similarly all industrial processes, machines
and systems will contain several Tasks that are mutually exclusive in activity yet joined in
time.

While the Tasks are independent in action they are naturally related in time, since all
Tasks come to life at power up and stop with shutdown. The control system designer
can divide the overall process into individual Tasks to exactly mirror the system.

The types of Tasks that may be created are unlimited. Typical Task types include; motion
control tasks, mode control tasks, filling tasks, measuring tasks, shutdown tasks, data
recording tasks, diagnostic tasks, alarm tasks, operator interface tasks and so on.

States - The Building Blocks of a Task
Task: Mix_Station

State: PowerUp
If Can_At_Mix is on, write “Mixing Can” and go to Lower_Mixer.

State: Lower_Mixer
Run Mixer_Down_Motor. When the Mixer_Down_Switch is tripped,
then go to Mix_Chemicals State.

State: Mix_Chemicals
Start the Mixer_Motor.
When 10 seconds have passed, go to Raise_Mixer.

State: Raise_Mixer
Run Mixer_Up_Motor until Mixer_Up_Switch is tripped,
then go to Mix_Complete.

State: Mix_Complete
When Can_At_Mix is off, go to PowerUp.

Figure 3-4. Five State Task Example with a Single State Highlighted

In the automobile engine example we said an engine is viewed as a collection of Tasks;
Fuel System Task, Electrical System Task, Starting System Task and so on. Each of those
Tasks is further described as a precise set of States through which that Task will pass
while the engine operates.

The automobile engine’s Starting System Task has several possible States. For example
we know there is a State in which the key is on, the engine is not running and the starter
motor is not cranking the engine over. We know there must be another State in which
the key is in another position, the engine is not yet running but the starter motor is
cranking the engine over. There are also States in which the key is on, the engine is
running and the starter motor is no longer cranking the engine.

3

3-7GFK-1006A Chapter 3 State Logic Control Theory

Each Task is divided into States. The aggregate activity described by all of the States of a
Task defines all the possible behavior of that Task under all conditions. A State defines
the values for the outputs, sends messages, performs calculations, and assigns values to
data variables. States also describe transitions to other States. Only one State is active
and executed in a Task at any time. If two States need to be active at the same time then
a concurrent Task is required.

Every Task must have at least one State. When the controller is powered up, the Task
goes to this State, called the PowerUp State, which is the first State in the execution
sequence of the Task. Thereafter, activity can move to any other State based on the
Statements in the active State.

Statements - The Command Set for State Descriptions

State: Raise_Mixer

Write “Mixer Moving” to Operator_Panel.
Turn on the Mixer_Up_Motor. When the Mixer_Up_Switch is
tripped, then go to Mix_Complete.

Figure 3-5. Example ECLiPS State with One complete Statement Highlighted

In the automobile engine Starting System example, we would find that to make a
complete description of the Starting System Task, activity would have to be described in
greater detail. We could break down each State into a set of Statements that completely
described the full and possible ranges of activity of that State.

Let’s give the name “Starting” to the State in which we are actually trying to make the
engine start up and run on its own. In the “Starting” State we could make a Statement
like; “When the ignition key is in position three, go to the Crank_Starter_Motor State.”,
representing one of the Statements that form a part of the complete description of all
possible actions of the Starting State in the Starting System Task. If the car was equipped
with an automatic transmission the Statement might need to read; “If the transmission is
in neutral or park and the ignition key is in position three then go to the
Crank_Starter_Moter State.”.

The actions of a State are described with a Statement or a collection of Statements. In
ECLiPS a Statement is a collection of Terms describing the desired actions for that State.
Statements end with a period (.) and can be thought of as sentences, although
punctuation and proper grammar are not required.

There are two types of Terms used in a Statement; Functional and Conditional.

Functional Terms perform a specific action, including turning on digital outputs, setting
analog outputs to values, performing calculations, setting variables to values,
transferring to another State or communicating with other devices.

Conditional Terms perform some decision making test which enables or prevents
execution of the functional Term in the Statement. The conditions that can be checked
for include digital point status, analog values, a read from a serial port, or status of any
system variable, including State activity from other Tasks.

3

3-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Functional and Conditional Terms are listed below using typical ECLiPS terminology.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Functional Terms ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Conditional Terms

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Actuate, Start, Turn on ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

If

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Go ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

when

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Add, Subtract, Divide, etc. ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Read

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Make, Set ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

get

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁStart_PID, Stop_PID ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Suspend_Task, Resume_Task

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Perform ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

State: Wait_For_Command
Read Start_Command from Operator_Panel, then go to
the Start_Process State.
If 20 seconds pass go to the Operator_Prompt State.

State: Operator_Prompt
Write “PLEASE SELECT BATCH AND START PROCESS” to
the Operator_Panel, then go to Wait_for_Command.

State: Problem_Report
Write “PROCESS SHUT DOWN BECAUSE MATERIAL
IS TOO THICK”.
Go to PowerUp State when Reset_Button is pushed.

Figure 3-6. Highlighted Communication Functions

The Adatek controllers have two very powerful serial communication functions. These
are a Read and a Write Term for the various serial ports.

The Write Term allows characters to be written to any of the serial ports in the controller.
These can be connected to operator interface terminals or smart panels to present full
screen displays or simple messages. These ports can also be connected to intelligent
actuators or control devices, such as a robot controller, to provide set points and
operating commands.

When a Read Term is encountered in the execution of a State, it is treated as a
Conditional Term that isn’t satisfied until characters are received from one of the serial
ports. Once the complete message is received it places the characters in the designated
variable for use by the rest of the program and then allows the active State to execute the
next Statement.

The Read Term can be used to communicate to any serial input device. This would
include operator interface devices such as terminals, smart panels, and personal
computers. It would also include intelligent sensors such as weigh scales, and the
various smart pressure and flow transmitters now sold by various manufactures.

Together the Read and Write Terms make communicating with the operator very
powerful yet simple. It also makes it easy to communicate with intelligent sensors,
controllers and other machines that populate the plant or factory.

3

3-9GFK-1006A Chapter 3 State Logic Control Theory

Any one of the serial ports may be set up for the CCM2 communications protocol. Using
this protocol enables the State Engine controller to be a slave on a CCM2 network.
Typically the protocol is used to communicate with Graphical User Interface Software
such as CIMPLICITY, Genesis, The FIX, INTOUCH, Factory Link, Screenware II, etc.

Scan Overview

The State Engine which executes the control program continuously scans the inputs and
the control program. These scans occur hundreds of times each second. Before each
program scan, all of the inputs are scanned, so that each Statement of the program
makes decisions based on the same input information.

During the scan of the program, the active State of each Task is scanned. Each
Statement of a State is scanned in order from the first Statement to the last unless a GO
Term is encountered. As soon as a Go is scanned, no more Terms in this State are
scanned, and the scan moves to the active State of the next Task. Another State is
scanned during the next scan sweep.

While scanning a Statement, the scan evaluates all conditional Terms before
implementing the action described by the functional Terms. If any conditional Term is
not satisfied or false, the scan of this Statement is stopped, the functional Terms are not
implemented, and the scan resumes at the next Statement of the State.

The State Engine keeps a table of all digital outputs and flags which are set ON during
the program scan. Only the outputs set ON by one of the functional Terms in one of the
active States during the scan are set ON, all others are OFF. The real world outputs and
flags are set ON at the end of the scan. Therefore, an output does not go OFF during the
transition from one active State to the next when that output is set ON in both States.

This scan discussion is a general overview of the program and I/O parts of the scan. The
reference section of this manual has a more detailed discussion of the State Engine scan
procedure.

Interaction Between Tasks

Returning to the automobile engine State Logic model, we can see that we could
describe the entire range of actions of an automobile engine as a collection of Tasks.
Further, we can identify the different States through which each individual Task could
pass during operation. Further, we should be able to see how we could use Statements
to describe all of the actions possible for each State and the input conditions that would
dictate which of the possibilities would actually happen.

But the engine wouldn’t work unless we synchronized the timing of Task’s execution
with one another. The Starting System can work perfectly but if the Fuel System Task
doesn’t provide a squirt of gas into the cylinder during the time the Starting System Task
is in the Starting State the engine won’t run. The same is true of the Electrical System
Task, which needs to provide voltage to the spark plug at the right time in relation to the
Fuel System Task, Mechanical System Task and Starting System Task if the engine is to
start running.

All Tasks have two natural synchronization points, PowerUp and Shutdown. In between
the Tasks will execute based on their own instructions and without regard to the other
Tasks unless the program developer instructs the Task to do otherwise.

3

3-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Joining the Tasks in time at various points in the operation of the process under control is
not difficult. There are several techniques for accomplishing this coordination. A good
working knowledge of how to implement Task interaction is important to the efficient
development of State Logic control programs.

The following are a few examples of situations and techniques for controlling Task
interaction.

1. Using a Variable to link Task Activities. One way to communicate between Tasks is
by using a variable. Any Task has access to all variables even if the value for that
variable is controlled by a different Task. An example of States in two Tasks using
the same variable:

Task: Make_Parts
State: Refill_Bin
If the Parts_count is greater that 100 pieces go to the
Refill_State. Otherwise go to the Grab_Base_Part State.

Task: Conveyor_Control
State: Start_Station

When Part_In_Place Switch is tripped, then Add 1 to Parts_Count
and go to Start_Conveyor.

2. Changing the State of one Task from another Task. A common technique for
implementing this type of Task interaction might be in connection with an
Emergency Stop Button. Commonly, a designer may want every State of a Task or
Tasks to take a specific action should an E-Stop Button be pushed. It would work
perfectly well to specify the recognition of and reaction to the E-Stop button
activation in every State, but this would be unnecessarily cumbersome.

A much more efficient method would be to create a separate E-Stop Task that forces a
change of States in other Tasks when the E-Stop Button is activated. The State that the
other Tasks would transition to by the by the E-Stop Task would contain a description of
the desired response to the E-Stop button being pushed. This is how such a Task might
look in ECLiPS.

Task: E-Stop

State: Emergency
If the E-Stop-Button is pushed put the Generating Task into the
Safe State and the Switching Task into the Controlled_Stop
State then go to the Wait_for_Reset State.

3

3-11GFK-1006A Chapter 3 State Logic Control Theory

3. Using the Current State of a Task State as an Conditional Term. The current active
State Status of any Task is a variable in ECLiPS and can be treated as an input
condition to make a Conditional Term within a State of any other Task. An ECLiPS
example follows:

Task: Start_Motors

State: Check_Conditions
If the Conveyor Task is in the Running State then go to the
Start_Main_Motors State. Otherwise go to the Send_Message State.

4. Using internal flags to signal another Task. Internal flags are set and tested just as
are digital outputs. One or several Tasks may set a flag for another set of Tasks to
test, for example:

Task: Smoke_Alarm_Monitor

State: PowerUp
Turn on the Smoke_Alarm_OK flag.
If the Dock_Detector is on or the Boiler_Detector is on, or
the Transfer_Detector is on go to the Alarm State.

The Smoke_Alarm_OK flag is true until one of the detectors is activated and Alarm
becomes the active State. Any other State may test this flag to instantly see whether
there is a smoke alarm activated.

Creating Process Diagnostics

One of the advantages of using the Adatek State engine approach to control is the ease
with which on-line process diagnostics can be added to the control program. Because
the control program describes the process, any aberrations to the normal process can be
detected and a response pre-programmed.

Creating Diagnostic Routines
The diagnostics can be added as Statements inside of States in Control Tasks, or whole
new States within the Tasks, or as complete new Tasks.

If the desired response to an abnormal occurrence is simply a message or closing a
digital output to turn on a light or sound an alarm, then that condition should be
inserted as a Conditional Term in the appropriate Task.

If Tank_Pressure exceeds 90 psi, then write “OVER PRESSURE
CONDITION!” to the Operator and turn on the Alarm and go to the
Alarm_Light State.

3

3-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

If the occurrence of the condition needs to trigger a more elaborate response, or if it
should alter the normal sequence of operation, then a Conditional Term should be
inserted that is followed by a “go to” instruction that transfers the Task to a State where
the diagnostic procedure takes over. If the occurrence can happen in multiple States,
then a separate Task that checks for the occurrence and forces the control State into the
diagnostic State may be the best way to perform the on line diagnostic.

Because the control program written in ECLiPS is self descriptive, and each State
describes what should be happening and what should happen next, it is easy to insert
diagnostics after the control program is finished.

In addition to the ability to add diagnostic logic with Statements, States and diagnostic
Tasks, ECLiPS also contains several functions to help the user automate the process of
adding them.

There are three primary techniques for adding diagnostic capability to a State Logic
control program.

1. Each time a new State is added the user is given the opportunity to enter a
maximum time for which that State can be active. The maximum time selected will
be shown automatically in the program after the State name.

2. An “add diagnostics” choice is available from the menu. If selected the user will be
given a choice of the type of diagnostic to add and a fill in the blanks screen. Once
the screen is filled in, the Diagnostic State will be written automatically and inserted
into the program.

3. Diagnostic logic can be created in the same fashion as control activities are
accomplished, by using Task, States and Statements to describe the desired
diagnostic activity.

3

3-13GFK-1006A Chapter 3 State Logic Control Theory

Task: PINPOINT_FAILURE

State: Check_Pressures

If main_tank_pressure is less than 100 psi write “Pressure too
low, check tank door seal” to operator_panel and go to the
PowerUp State. If main_tank pressure is more than 250 psi go
to the Issue_Warning State.

State: Issue Warning

Write “PRESSURE ABOVE NORMAL”. Go to the Pinpoint_Problem
State.

State: Pinpoint_Problem

If Plant_Overview Task is in the Start-Up State and Pump_One
is on, write “MAIN PUMP ON DURING START-UP - SHUTDOWN WILL
BEGIN IN 30 SECONDS” to the Plant_Alert_Board and go to the
ShutDown State. If the Normal_Run State of the
Pressure_Control Task is active and the Relief_Valve is true
write “Main Tank pressure relief valve is probably jammed” to
Terminal_3.

State: ShutDown

When 30 seconds have passed, go to the Begin_Shutdown State.

Figure 3-7. Example Diagnostic Task

4 section level 1 1
figure bi level 1
table_big level 1

4-1GFK-1006A

Chapter 4 Creating a State Logic Control Program

This section presents the fundamental concepts of how a control program can be built
using ECLiPS. Every designer will develop his own style in using ECLiPS. ECLiPS is
designed to support and even to encourage personal or corporate program development
styles. Initially however, it is suggested that the following procedure be followed in
creating your first control system program with ECLiPS. This procedure is split into two
steps:

1. Outline the Application

2. Write the Program

4

4-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Outline the Application

In this step the control problem is analyzed using a top down design strategy where the
components of the main problem are identified at the top level and then each of these
components is broken down into its separate parts. This decomposition of the problem
continues until the application is completely described. The State Logic Control model
invites top down design because of the hierarchy of its elements, Tasks, States, and
Statements as described in the previous section. There are several different formats to
aid in the top down design process including structure charts and structured flow charts,
but we use a simple outline approach.

Identify the Tasks

The goal of this step is to identify the Tasks of the application. We start at the highest
level, decomposing the problem into its general components. See the discussion on
Tasks in the State Logic Control Theory section of this manual.

Think of the independent operations which must be accomplished to achieve goals of
the application. The natural separations of activity often become Tasks.

The goal is to decompose the problem into parts that can be defined as sequences of I/O
operation. Any cycles which repeat even with some variations are prime candidates to
be Tasks. An important concept for identifying Tasks is that Tasks are a set of sequential
operations. Events which occur in parallel or concurrently should be in separate Tasks.

These main sections of the outline should be general descriptive phrases such as:

Bore Cylinder

Load Boiler

Fill Vat

Retrieve Part

At this stage the goal is to just describe the application not force some solution. Some of
the independent Tasks are quite obvious, others which require interaction with other
Tasks are more difficult to identify at first. This is usually a repetitive process where
original efforts must be adjusted as the outline progresses. As with most activities,
proficiency increases with the number of efforts.

Identify The States

Once the Tasks are determined, then the States of each Task should be identified. The
States describe the actual condition the outputs and responses to inputs at a certain
point in the control process. The States form the control sequence and are really a
picture of how this piece of the process (Task) should behave. See the discussion of
States in the State Logic Control Theory section of this manual.

4

4-3GFK-1006A Chapter 4 Creating an ECLiPS Control Program

At this point in the design stage the goal is to determine that the correct action can be
accomplished with the chosen Task architecture. Simply give each State a descriptive
name fitting the major attribute of the activity that takes place when that State becomes
active. Typical State names are:

Send Message

Add Water

Raise Drill

Start Motor

State names identify the general action of the State. The specific actions and the
transitions are specified in the Statements.

Identify the Statements
This level is the most specific level of the outline. Statements specify detailed actions
which are to occur while this State is active, and the transitions to other States. See the
discussion of Statements in the State Logic Control section of this manual.

The actions specified by Statements include digital outputs that are to be ON, changes in
analog output values, changes in variable values, and messages to be sent. Examples of
actions as specified in Statements are:

Turn ON Pump 5.
Start Mixer Motor.
Write “Operation complete” to Operator.
Add 1 to Parts Count.
Turn ON Forward Solenoid.

Statements also specify the transitions of a State. Both the condition for transition and
the target State are identified. The status of digital inputs, values of analog inputs and
variables, and elapsed time are used to specify conditions for a transition. State names
specify the target State that becomes active when the condition is true. Typical
transitions as they would appear in an outline are:

If Forward Limit Switch is ON, go to the Drill State.
If Vat Temperature is less than 45 degrees go to Raise Temperature State.
When 10 Seconds have Passed, go to Raise Mixer State.
If Part in Place Switch is ON and Manual Switch is OFF, go to Move State.

Statements are often complete English sentences, since very specific operations are
specified at this level of the outline. In fact, feel free to specify Statements in any
comfortable format. Some additional examples combine the State actions with the
transitions:

Run Mixer Motor. When 5 seconds have elapsed, then go Raise Mixer State.
Write “Drill Bit is Dull” to operator, then go to Retract Drill State.
Read Command from Operator, then go to Report State.

4

4-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Writing The Program

With this outline in place, the ECLiPS program is almost completely written. The
finished program is very close to the outline.

There may be some changes to the outline because of some naming conventions for how
Task, State, and some other names are entered into the program. ECLiPS can not
provide for the full expressiveness of the English language so some of the sentence
constructions may have to be changed, although many alternative structures and the
ability to make custom changes to ECLiPS are provided. Also, the outline is in a general
format with no specific reference to the actual I/O of the system so that the wording of
the outline usually becomes more specific in the program.

To write the program the Tasks, States, and Statements of the outline are entered into the
project using the ECLiPS editor which is active whenever ECLiPS is in Program Mode.
Another part of creating the program is specifying I/O names and circuit configurations.
Defining the I/O may be done before, after, or during the writing of the program.

Using English Names in the ECLiPS Program

When you start a new program, ECLiPS asks for the name of the first Task. After the
name is entered, ECLiPS starts the program for you by writing the Task keyword
followed by a colon and the Task name. ECLiPS also writes the first State name,
“PowerUp” into the program. Tasks, States, I/O points and variables can all be assigned
English names. Names can be as brief and code like or as descriptive as you wish.

Clever, descriptive names that fit well to the primary attribute of that State activity is
strongly encouraged. This will pay dividends in future program modifying, clear
documentation and easier troubleshooting.

Further, good descriptive names will enhance the quality of the automatic diagnostics
that can be created by linking Task, State and I/O names together for automatic
diagnostic output information.

Each name can have up to a twenty characters. These characters may be letters,
numbers, or the underscore character (_). Names must begin with a letter. The name
must be a continuous string of characters, i.e., no spaces are allowed.

Because ECLiPS uses the space character as a way to tell where one word ends and the
next begins, as we normally do in written English, a name can not contain a space. To
construct a multiple word name for descriptive purposes the designer should use the
underscore character (_) to separate words or use uppercase to start every new word.

Table_Movement

TableMovement

Naming Tasks
Task names are arbitrary. It is suggested that Task names be descriptive of the activity
they represent. This descriptive use of names means clearer documentation and the
ability to create automatic diagnostic output messages by combining Task, State and I/O
names to make complete messages.

4

4-5GFK-1006A Chapter 4 Creating an ECLiPS Control Program

A Task may be added to the program by using the “Add a New Task” option from the
Add Menu or just typing in the Task keyword followed by a colon and the Task name.
Each Task is assigned a name as it is built and each Task must have a unique name. This
name appears at the beginning of every Task. Every time the designer wants to refer to
the Task using ECLiPS such as in writing other Task sequences, during debugging or
during diagnostics development, the English Task name should be used.

Naming States
Each Task contains one or more States. Similar to Tasks, a name is assigned to every
State of the program either through the Add menu or directly into the program using
the ECLiPS editor. Once assigned, these names are used when performing any
functions associated with States while using ECLiPS.

Each Task always begins execution in the PowerUp State when the program starts. As a
reminder as to which State will begin the sequence when power is applied to the
controller, one State of every Task must be named PowerUp.

While every Task in a controller must have a unique name to differentiate it from the
others, States in different Tasks may have the same name. All States within one common
Task must have a unique name, but a State in one Task can be named the same as one in
a different Task.

As with Tasks, names chosen for the States should be descriptive. By using combinations
of words that describe something unique to the State, such as the action performed or
function of the State, the program becomes self documenting. Using descriptive names
makes it possible for people other than the original designer to use and modify a
sequence at a later date with minimum learning time spent trying to understand the
program.

Naming I/O Circuits, Variables, and Internal Flags
Each input and output from and to the field enters and leaves the controller through
some particular hardware module. A name is given to each of these I/O points. All
references to I/O circuits use the assigned name.

Names are also used for variables and internal flags. All names must be unique. A
variable must not have the same name as a State or a flag must not use the name of a
Task. The only exception to this rule is that States in different Tasks may use duplicate
names.

The English name should be descriptive and can be made up of several words attached
by the underscore character. ECLiPS allows the user to define I/O points or other name
other elements of the program at any time during the programming process.

4

4-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Statement Structures

This section describes how to express the Statements in an ECLiPS program.

State: Drill_Advancing

Turn Fwd_Solenoid on. After 3 seconds pass, start Drill_Motor.
When Fwd_Limit_Switch is tripped go to the Retracting State.
If 17 seconds pass, go to the Send_Message State.

Figure 4-1. Example ECLiPS State with Four Statements

Most States consist of several Statements that describe what action is to happen while
the Task is in that State, what conditions will cause a transfer, and to what State the Task
transfers to. With ECLiPS these Statements are written in descriptive English generally
but not necessarily consistent with the rules of English grammar. Statements are short
sentences or phrases that describe the desired actions in a way that anyone can read and
understand. A Statement always ends with a period just as a sentence does in English.

Constructing Statements
There are two types of Terms in a Statement, functional indicating some action taken
and conditional indicating some test for decision making.

After 3 seconds pass start Drill_Motor.
Turn Main_Heater on if Start_Switch is on.
Write “Parts Run Complete” to User_Panel.

Figure 4-2. Statement examples with Functional Terms highlighted

After 3 seconds pass start Drill_Motor.
Turn Main_Heater on if Start_Switch is on.
Open Vent when temperature is greater than 100 degrees.

Figure 4-3. Statement example with Conditional Terms highlighted

Functional Terms describe an action to perform when they are reached in the execution
of a Task. Conditional Terms describe a condition that needs to be evaluated to decide
whether the Functional Terms in the Statement should be executed at this time.

A Functional Term, such as “turn_on Motor_A” or “close the Red_Clamp”, generally has a
verb that describes the action such as, “turn_on”, “close”, plus a variable name or I/O
name, such as “Motor_A”, “Red_Clamp”.

Terms are combined to form Statements. Most Statements will be a sentence or a phrase.
A Statement may be entirely made up of a Functional Term such as “Turn_on the
Automatic_Mode_Lite.”. A Statement can also be a combination of Functional Terms
such as “Turn_on the Automatic_Mode_Lite and the Main_Conveyor.”. Often a
Statement is a combination of a Conditional Term and a Functional Term such as “If
Motor_A is on turn_on the Automatic_Mode_Lite and start Main_Conveyor.”.

4

4-7GFK-1006A Chapter 4 Creating an ECLiPS Control Program

Every Statement must always have at least one Functional Term. A Statement can
contain more than one Conditional Term, or a Conditional Term that is a combination of
conditions, such as “If Motor_A is on and the Red_Clamp is closed” or “If Motor_A and
Main_Conveyor is on”. There may be many Functional and Conditional Terms in a
Statement.

Using Keywords, Synonyms and Filler Words

Keywords are the words in a Statement that ECLiPS recognizes as instructions to
perform some function. Keyword can be words that cause an action, such as the word
“actuate” when applied to a contact output. Or they can cause a conditional comparison
such as the word “if”, or be part of the comparison such as the symbol “ > ”.

ECLiPS comes with default keywords assigned. Some of these keywords also have
synonyms defined. Using a synonym in the program is the same as using a keyword. A
detailed list of all the keywords are given in the reference section and described in detail.

ECLiPS also comes with several filler words such as “the” or “a” defined. Filler words
have no meaning to the control program. The sole purpose of filler words is to make
program Statements more readable and understandable. The user can place filler words
anywhere in the Statement. Commas and other punctuation may also be used for clarity
without effecting program execution. The only punctuation which has meaning is the
period (.) and the exclamation mark (!). The exclamation mark is used to document or
add comments to the control program.

Keywords are the vocabulary of ECLiPS and together with filler words make it possible
to easily write understandable descriptions that are the control program. This
vocabulary may be changed to suit any desired convention. All of the keywords,
synonyms, and filler words may be changed. ECLiPS can therefore be configured so that
the program is written in a foreign language.

A menu based window function allows the user to make these assignments at any time
during an ECLiPS programming session. In addition, another menu based window
function allows the user to see a list of all synonyms previously assigned and to select
one to enter into the program.

Use the flexibility to create a language that fits the terminology of the industry, or plant,
etc. where ECLiPS is to be used. The written ECLiPS programs become even clearer to
all involved with operating and maintaining the plant as they use the English names for
the process points and the local terminology for the actions and descriptions.

Using Variables

Statements manipulate variables in addition to controlling the I/O. At times the
application requires responses to values other than those represented by real field
sensors. Examples of this might be the number of parts built during a shift, the flow
through a pipe calculated based upon the pressure drop across the pipe, the style of part
being built this production run, etc.

Items stored in variables are the results of calculations, totals that are being accumulated
over time, something that must be remembered from one time period to the next, and
constants that may be changed or tuned. Each variable is assigned a name during
program development.

4

4-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Once created each variable is available to be shared between Tasks and States within
Tasks. One State may assign a value to the variable and another State (or the same State
at a later time period) uses the value of the variable in making a decision. Once a
variable is assigned a value, that variable maintains that value until a program Statement
assigns a new value to that variable.

Variables may be configured to save their values when the program is halted. The
values in the State Engine cannot be saved over a power cycle since computers normally
do not have non-volatile memory. If not configured to save values, a variable is always
set to zero when the program starts running. Variables are always initialized to zero
after a power cycle.

When using ECLiPS to write programs or monitor running controllers, or generate
diagnostics, the user needs to only refer to the variable by its English name. Remember
that choosing descriptive names for variables helps to make the program self
documenting.

The different variable types are listed below:

Integer Variables
This type of variable represents a whole number from +32767 to -32768. Integer
variables have many uses including counts, menu choices, and item quantities.

Integer variables can also be used as logical variables, or variables that have only
two possible values, either 1 or 0. Variables used in this manner can be thought
of as true or false, on or off, etc. Using integer variables in this manner differs
from using flags, since flags are ON only when a State turning them On is
active. On the other hand a variable maintains its value independent of which
State is active.

Internal Flag
Internal flags are variables that act like digital outputs, but do not produce any
physical output from the controller. An internal flag can be set true by a State in
one Task and then checked by a State in another Task. These flags can be used to
coordinate the actions of different independent Tasks.

An internal flag is like a digital output in that if an active State is not setting it
true the controller will automatically turn it OFF.

Floating Point Variable
This variable type is used to store numbers that are not whole numbers or
numbers outside the range of integer variables. When variables are needed
with a math function, generally it should be a real variable.

String Variable
This variable type stores a collection or “string” of characters. These characters
can be any alpha numeric or control character represented by an ASCII code.
This type of variable is a little more complicated and is used mainly in accepting
inputs or creating outputs to serial communication devices.

4

4-9GFK-1006A Chapter 4 Creating an ECLiPS Control Program

Character Variable
Character variables store one single ASCII character. This type of variable is
especially useful for operator interfaces when the operator must enter a single
character.

Time Variables
The time variables are used to view or change the values of the Real Time Clock.
The time variables are second, minute, hour, day, day of the week, and month.
Use these variables to set the clock or to check the current time.

Program Scan
The State Engine operating system is a scanning system. The scan cycle starts at the start
of the program, scanning the active State of every Task. During program execution there
is always one and only one State active in each Task. The operating system completes a
scan of the program hundreds of times every second.

During the scan of the active State of a Task, each Statement of the State is scanned in
the order that it appears. Keep in mind that a Statement is a series of Terms terminated
by a period (.).

TASK 1
State 1

Statement 1
State 2

�

� Statement 1

� Statement 2

State 3
Statement 1

TASK 2
State 1
� Statement 1

� Statement 2

� Statement 3

State 2
Statement 1

TASK 3

a80002

Figure 4-4. Program Scan

Program Scan
The actions specified by Functional Terms are executed when the Functional Term is
scanned. Each Statement must have at least one Functional Term, Conditional Terms are
optional. If there are no Conditional Terms in a Statement, the Functional Terms are
always executed during each scan. When Conditional Terms accompany Functional
Terms in a Statement, the Functional Term is executed when all of the Conditional Terms
are satisfied. There are four types of conditional Terms (see the reference section).

4

4-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Conditional Terms are satisfied as follows:

1. Read - When valid data is received at the appropriate channel.

2. If - When the conditional expression is TRUE.

To understand how Statements are scanned, assume that the Statement Conditional
Terms precede the Functional Terms and that the scan proceeds from left to right.

� Functional Term

� Satisfied Conditional Term Functional Term�

� Unsatisfied Conditional Term Functional Term

� Satisfied Conditional Term �Unsatisfied Conditional Term Functional Term

�

a80003

Figure 4-5. Statement Scan

The Statements of a State are executed in the order that they are written into the
program. Functional Terms of Statements with no Conditional Terms are always
executed. Conditional Terms in Statements control whether or not the Functional Terms
in those Statements are executed. If all of the Conditional Terms are satisfied, the
Functional Terms are executed. If any of the Conditional Terms are not satisfied and
Conditional Terms, the Functional Terms are not executed. For simplicity this rule
assumes that the Conditional Terms are ANDed together. See the reference section
about combining Conditional Terms using the AND and OR logical keywords.

The Statements are executed one at a time. In this manner every Statement of the active
State is evaluated.

There are two types of Functional Terms that can prevent the execution of the rest of the
Statements in a State. One is the Halt command which stops program execution. The
other is the “go to ...” command, which immediately causes another State to become the
active State. No Terms in a State are scanned after a GO is scanned in that State.

4

4-11GFK-1006A Chapter 4 Creating an ECLiPS Control Program

TASK 1
State 1

Statement 1
State 2

�

� (GO) Statement

Statement 2

State 3
Statement 1

TASK 2
State 1
� Statement 1

�

Statement 3

State 2
Statement 1

TASK 3

a80038

(GO) Statement

Figure 4-6. Program Scan with GO Terms

� Functional Term

� Satisfied Conditional Term (GO) Functional Term�

Unsatisfied Conditional Term Functional Term

Satisfied Conditional Term Functional Term�

a80039

Unsatisfied Conditional Term

Figure 4-7. Statement Scan with GO

If Start_Pushbutton is pushed, go to Start_Up State.
Write “Press Start Push Button Now!!”.
If 30 seconds have passed, go to the Restart_Buzzer State.

This series of Statements causes the Start_Up State to become the active State when the
input represented by Start_Pushbutton name is true. When GO Term is scanned, all
Terms or Statements following this Term are not executed and at the next controller
cycle, the scan of this Task starts at the first Statement of the Start_Up State.

During the program scan any changes to variables are made immediately. Therefore, a
variable change in one Task is visible by the rest of the program during the same scan.
On the other hand, digital I/O and Flag and analog values are made at the end of the
scan. Therefore, if one Task makes a change to the condition of a digital output or Flag,
the condition cannot be tested by another Task until the next scan through the program.

4

4-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Hints for Creating ECLiPS Programs

Outputs are OFF by Default

One of the key features of the State Logic model is that the discrete outputs are OFF by
default (their normal condition). Outputs are only ON if they are being turned ON by a
program Statement in an active State.

This arrangement enables the State Logic model to have a one-to-one correspondence
between the control program and the real world. States in the program exactly reflect
the States of the machine being controlled. There are other direct benefits of the outputs
being OFF by default.

While writing the State Logic program, the programmer need not be concerned with
turning any outputs OFF. Having to be concerned with turning outputs OFF adds much
complexity not to mention a great deal of logic to a control program.

Another feature of this arrangement appears when troubleshooting or debugging an
executing program. To see which outputs are ON at any point in time, one only need
check the State definitions of the active States of each Task. Any outputs set ON in these
States are ON and all others are OFF.

Outputs are turned on by using the keyword Start (or any of the synonyms such as
Turn_On, Energize, Actuate, etc.). Outputs are turned off when another State that does
NOT turn on the output becomes active. An example is listed below:

Task: Drill_Press_1
State: PowerUp

If Clamp1 and part_in_place are true, go to Advancing.

State: Advancing
Turn_On Forward_Motor. When Drill1_Forward_LS is true then
Go to Retracting.

State: Retracting
Turn_On Reverse_Motor. When Drill1_Home_LS is true then
Go to the Counter State.

In the Advancing State the Forward_Motor is turned on. When the Drill1_Forward_LS
digital input is true the machine will go to the retracting State. The Forward_Motor
output will then be turned off because it was NOT turned on during this State.

The operating system assumes that if an output is not actuated during an active State
that the output is OFF. When actuating an output remember to continue to actuate (or
turn_on or energize) that output in all successive States that also require that output to
be ON.

Note
An output stays ON during the time when the operating system goes
from one State definition to another, since State transitions do not take
any time.

4

4-13GFK-1006A Chapter 4 Creating an ECLiPS Control Program

The following example demonstrates how to keep an output ON for successive State
definitions:

Task: Fill
State: PowerUp

Energize Fill_A.
Write “Filling tank with liquid A”
Go to the Weight State.

State: Weight
Energize Fill_A.
If Weight_Input > 20 lbs,
Go to Fill_B State.

If there are several States where the same outputs are turned ON again and again, then
probably the program should be rewritten and another Task added to control the
outputs that are ON in several successive States. In the following example the output
Run_Light would be on at all times unless the E_Stop button had been pressed. See Task
Design in following section for more on this subject.

Task: Output_Always_On

State: PowerUp
if Emergency_Stop is on go to E_Stop.
Turn on Run_Light.

State: E_Stop
If Reset_Buttton is pressed go PowerUp.
Put Other_Operations Task Into Emergency State.

Task: Other_Operations
State: PowerUp.

Turn on First_Operation.
if 2 seconds have passed go Next_Step.

State: Next_Step
Turn on Second_Operation

. if 2 seconds have passed go PowerUp.
State: Emergency

Figure 4-8. Using multiple to Tasks to keep an Output ON

4

4-14 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Task Design
Tasks should be designed to control operations that are executed in parallel or at the
same time as other operations. This might be a motion operation that happens in
parallel with operator interface activity.

An emergency stop push button is an example of a function that should be placed in its
own Task. The Task can be called ESTOP for example and its only function is to monitor
the emergency stop button and coordinate the activity of the other Tasks.

Task: ESTOP
State: PowerUp

Let Reset = 0.
If the emergency_stop button is pressed,
Go to the Shut_down State.

State: Shut_down
Make Fill_Can Task = Shut_Down State.
Make Conveyor Task = Shut_Down State.
Make Temp_Control Task = Shut_Down State.
Go to the Wait_Reset State.

State: Wait_Reset
If the Reset button is pressed Let Reset = 1.
Go to the PowerUp State.

This example uses one Task to determine if an emergency stop button has been pressed
and then forces the other Tasks to go to their own shut down States. Notice that States
in different Tasks can have the same name. The integer variable Reset is used to
communicate to the other Tasks when the Reset button has been pressed.
� An indication that another Task should be created, is that a program segment

requires an output to be turned ON in several States or an input is repeatedly
monitored in several States. This type of structure indicates that more than one
activity is being controlled by one Task, and a new Task should be used so that Tasks
are used to control only one activity at a time.

� When Tasks are used for more than one activity, the complexity of the programming
increases. Therefore, inordinate program complexity is another clue that there are
too many activities being controlled by one Task.

Write Term Considerations
The write term is interpreted in a somewhat different manner from the rest of the terms.
Most terms are executed every time they are scanned. Some terms may not be scanned
if preceding conditional terms are not true, but the write term executes only once for the
entire time that the state remains active. As soon as there is a state change, the write
term again will write its message when scanned.

State: OverTempAlarm
Write “Over Temperature Alarm! Press reset switch” to OperatorStation.
If ResetSwitch is pressed, go to PowerUp State.
Wait 10 seconds, then go to OverTempAlarm State.

The previous program segment writes the alarm message once every ten seconds, until
the reset switch is pressed.

4

4-15GFK-1006A Chapter 4 Creating an ECLiPS Control Program

Calculations and a Scanning Operating System
Because the State Engine operating system is a scanning system, each Statement of the
active State of each Task is scanned many times every second. Because of this scanning
design, care must be taken when using mathematical operations.

The make structure is executed each time it is scanned. If there is a mathematical
operation in the Make, that operation is performed each scan. This may result in
unexpected values generated by the Make.

State: Check_For_Part

 Make Parts_Count = Parts_Count + 1.
If Photo_sensor is ON, then go to the PowerUp State.

The State above will cause the variable Parts_Count to be incremented every scan that
the State is active and the Photo_Sensor is not ON. Instead of incrementing the count
by one, it may be incremented by several hundred.

The correct way to construct this counter is to put it after the conditional so that it is
executed only once before the next State becomes active.

State: Check_For_Part

If Photo_Sensor is ON, then Make Parts_Count = Parts_Count + 1 and go
 to PowerUp State.

Read Term Considerations
A Read Term is the READ keyword followed by a variable. This Term causes the
processor to Read an input from the keyboard or from a SCM port and store the input
into the variable that follows READ. The Read Term is a conditional Term and must be
followed by a GO Term. The Read is satisfied when valid input to the variable is
completed.

Input to the variable is completed when valid data for the variable is received at the
specified communications port. Any of the variables may be used with the Read Term,
and the type of data received must match the variable type to be valid. If the data type
does not match the variable type, the data received is ignored and the Read Term
continues to wait for valid input.

If a character variable is used with READ, the first character received at the port is stored
in the variable and the READ conditional is immediately satisfied causing the following
GO Term to be executed. All other variable types used with READ, wait for an End Of
Message Character to be received before the input is satisfied. The default End Of
Message Character is a Carriage Return, so that normally the READ is satisfied when the
<Enter> key is pressed. The End OF Message Character can be changed by using the
Set_CommPort keyword.

It is possible to have two Read Terms for the same port to be active at the same time.
This arrangement can only happen if the Read terms are in separate Tasks. When two
Read terms are active at the same time, it cannot be predicted which one may receive
the next input from the port.

It is a good practice to place all read terms for the same port in the same Task, so that
only one Read is active at a time.

4

4-16 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Timer Considerations

All timers in ECLiPS monitor the time that the current State has been active. This
method of establishing a timer applies to the IF, FOR, and WAIT conditional terms.

Another way to think of the Wait Statement is as a conditional term that says “On the
condition that this State has been active for seconds ...”. If the State has been active
for the amount of time specified the condition will be seen as a satisfied condition. An
example follows:

Task: Cook
State: PowerUp

Go to the Start_Cooking State.
State: Start_Cooking

Actuate Heater.
Wait 10 seconds, go to the mixing State.

A logical ERROR in using a timer is demonstrated below.

Task: Drill
State: PowerUp

Go to the Punch_Down State.

State: Punch_Down
Energize Punch_Down_Output.
When Punch_Down_LS is true and if 3 seconds have passed,
Go to the Punch_Up State.

If it takes 3 or more seconds between the time the Punch_Down_Output is energized
and when the punch down limit switch is met, the Wait timer is immediately satisfied. If
the desired action is to wait 3 seconds after the Punch_Down_LS is true, then another
State can be added as follows:

Task: Drill

State: PowerUp
Go to the Punch_Down State.

State: Punch_Down
Energize Punch_Down_Output.
When Punch_Down_LS is true go to the Punch_Wait State.

State: Punch_Wait
Energize Punch_Down_Output.
Wait 3 seconds, go to the Punch_Up State.

4

4-17GFK-1006A Chapter 4 Creating an ECLiPS Control Program

Documentation Hints

This section offers advice on how to more effectively use the ECLiPS documentation
features.

Descriptive Names

When naming Tasks, States, I/O and other data types it is extremely useful to use
descriptive names. This will prove to be very helpful when debugging the program and
when troubleshooting the production machine. The following program provides an
example of descriptive name use.

Task: Fill_Station
State: PowerUp

If Can_At_Fill is on, go to the Pour_Chem_1 State.

State: Pour_Chem_1
Turn on Chem_Valve_1.
When Fill_Weight_Input is above 20, go to Pour_Chem_2.

State: Pour_Chem_2
Open Chem_Valve_2 until Fill_Weight_Input is above 30 lbs,
then go to Wait_for_Can_Removal.

State: Wait_for_Can_Removal
When Can_At_Fill is OFF, go to PowerUp.

This program is easy to understand because of the names chosen for the Task, State and
I/O channel names selected.

Underscores

The use of underscores is also helpful when naming Tasks, States, and I/O. The previous
example also demonstrates the use of the underscore to help clarify the name of an I/O
point. The underscore is necessary for the compiler’s interpretation of the English text.
A word is always considered complete when a space is found after text. Therefore to
separate letters in one word (like an I/O point name) the underscore acts as a space
without causing the compiler to see the descriptive name as two individual words.

Another popular way to separate words is to capitalize each word but use no spaces.

Power_Up or PowerUp
Can _At_Fill or CanAtFill
Fill_Weight_Input or FillWeightInput
Punch_Down or PunchDown

In either case it is best to be consistent throughout the project.

4

4-18 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Programming Conventions

It is also suggested that the company using ECLiPS decide on a few programming
conventions to increase the standardized look of all of the programs created in one
company. Some suggested conventions include:

1. The default keywords should be selected and used throughout the program.

2. Task and State names are typed in all upper case.

3. Standardize abbreviations such as LS for limit switch, LT for light, etc.

Comments

Comments should be used in the program to clarify confusing or complex logic. To
insert a comment in the program simple type an exclamation mark (!) followed by the
comment. ECLiPS ignores any text following the exclamation mark on that line.
Comments may be inserted after any program lines or take up an entire program line.

Scan Time Considerations

This section presents a few ways to optimize program scan time. It is easy to forget that
this system is a scanning system and that the current State of each Task is scanned
repeatedly. A common mistake is to remain is a State that continuously performs some
redundant operations such as initializing a variable value. Such operations need only be
performed once then proceed to another State. Remember each time the operation is
performed, scan time is used.

Another technique that can save scan time is to locate variables and I/O points at the
lowest number location available. The State Engine accesses all memory locations up to
the largest defined for that type in the program. For example, if the largest analog point
is defined as %AI 900, all of the data from the start of the AIs up to 900 is read by the
State Engine. If there were only one AI in this system, designating it as %AI 900 waists
the scan time necessary to read in all of the unused AIs.

Another scan time saving technique is to split up large States which repeatedly check
many items. If the items do not need to be checked every scan, splitting a large number
of checks into several successive scans can reduce the scan time.

5 section level 1 1
figure bi level 1
table_big level 1

5-1GFK-1006A

Chapter 5 ECLiPS Programming Features

This chapter begins a series of chapters devoted to creating the State Logic program.
This chapter describes the features that are used to create and modify State Logic
programs. It also discusses the features used to convert and download a State Logic
program to the State Engine.

A different chapter, devoted to ON - LINE features, discusses how the State Logic
Programs can be used to control the State Engine.

This chapter highlights the following features:

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

State Logic Word Processor
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Features to create the program textÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Project Management
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Features to manage project filesÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Variable Name Definitions
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Features used to define variable names

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

On - Line Program Changes ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Changing the Program without halting

5

5-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

State Logic Word Processor

State Logic Programs are created in Program Mode. The State Logic Program is written
in English using the State Logic Word Processor. There are a number of features in the
ECLiPS State Logic Word Processor that facilitate the creation of State Logic Program.
This section highlights the features available.

In ECLiPS the top banner always shows the name of the project. The bottom of the
screen shows what key functions are currently available. Pressing the <F3> function
key brings up the Program Mode Menu. The Program Mode Menu provides access to all
of the features in Program Mode. There are several Hot Keys that can be used to short
cut the menu steps.

Help is available in Program Mode by pressing <F1>. The Help system provides help
that is in context with the operation currently being performed. Pressing <F1> twice
brings up a list of all of the Hot Keys available.

Creating Program Text - Overview

There are three ways that text can be entered into a State Logic program. The standard
way that most text is entered into a State Logic Program is by typing data in. In cases
where ECLiPS requires text with more structure, the ADD functions can be used. The
LIST function on the Program Mode menu offers a third way to enter text.

Add Functions
ECLiPS uses the Add functions to assist the State Logic programmer. These add
functions use forms to create program code that requires more structure than normal
English. The forms ask for the required data and then place the data into the program in
the required structure. Some features available through add functions; Variable range
checking diagnostic, User input menus, VME reads and writes, etc.

List Functions
Choosing the list function displays a list of possible data types and information that can
be listed. Selecting a data type lists all the variables of that data type. Placing the cursor
on top of an entry and pressing return places that variable name into the program.

Example: The name for the system variable for the time is needed. Selecting the List
option and the Reserved System Variable option lists the following variable names:

Day
Day_of_week
Hour
Minute
Month
Second
Time

Placing the cursor on the word time and pressing return enters the word ’time’ into the
State Logic Program.

5

5-3GFK-1006A Chapter 5 ECLiPS PRogramming Features

Text Functions - Block Functions
ECLiPS has several keys that can be used to manipulate blocks of text. These functions
can be accessed through menus, or through the use of hot keys.

Block functions can be accessed by selecting TEXT from the Program Mode Menu or by
using the Hot Key <F8>. The cursor is moved to select the text to be include in the
block, press <enter> to select the text. The text that is selected is highlighted. A menu
then gives the options; Copy, Move, Remove, or Perform multiple copies of the selected
text. For copy, move, or perform multiple copies, move the cursor to the new text
location and press <enter>.

The block functions make use of a buffer. Selected text (highlighted) is copied or moved
to the buffer. The contents of the buffer can be placed in the program at any time by
pressing <Ctrl + U>.

For example, press <F8> to select some text then press <enter> and <R> to remove
the text, that text is still accessible by pressing <Ctrl + U>. That text continues to be in
the buffer (therefore accessible), until more text is added to the buffer.

The Hot Keys for Text Blocks are:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<F8> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

To select text press <enter> then use menu selections
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + F8> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

To select text and place it in buffer for remove
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

 <Shift + F8> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

To select text and place it in buffer for moves
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Alt + F8> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

To select text and copy it to buffer.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Deletes any highlighted text to buffer

Find Functions - Search and Replace
ECLiPS is equipped with search and replace capabilities. These functions can be accessed
through the Program Mode Menu under FIND or through a series of Hot Key
sequences.

The FIND feature searches for any specified text string. In addition, the FIND feature
can be used to search for a text string and replace it with a different text string. It can also
be used to move to different tasks, and to find the location of the last error message.

The hot keys that can be used to access the FIND functions are:
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Alt + F5> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Search for a text string and replace it with specified text.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<F5> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Search for a text string
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + F5>
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Looks for each occurrence of a specified text string and
gives the option to replace the string or to continue
searching. <Esc> stops search.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Shift + F5> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Finds every occurrence of a text string and replaces it
with a different string. This command works on text in
all of the task groups of a project.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ<F7>
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLooks for Another task, you must know the task name.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Alt + F7>
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Goes to the position of the Last Project Error

5

5-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Cursor Control Keys - Hot Keys

ECLiPS uses a number of key sequences to facilitate the movement of the cursor through
the document. These key sequences are referred to as hot keys. The following hot keys
can be used to control the cursor:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + Home>ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Moves the cursor to the top of the program

ÁÁÁÁÁÁÁÁ<Ctrl + End> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMoves the cursor to the bottom of the programÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ<Home>

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMoves the cursor to the start of the lineÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
<End>

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Moves the cursor to the end of the line
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Deletes single letter or highlighted block (see Text)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + Y> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Deletes the line the cursor is on. Text is lost.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + Left> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The Left arrow key with Ctrl moves cursor one word left
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<Ctrl + Right>ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The Right arrow with Ctrl moves cursor one word right

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<PgDown> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Moves cursor down one page

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

<PgUp> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Moves cursor up one page

ÁÁÁÁÁÁÁÁ<Alt + F1> ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁToggles between insert text and over type text

Project Management

ECLiPS has a number of features that are designed to assist in the creation,
manipulation, and maintenance of the project files. These features are accessed through
the PROJECT selection of the Program Menu (F3). Many of the features can also be
accessed with the use of Hot Keys.

File Management
The following features can be used to manage the project files.

Retrieve: Hot key <Ctrl + F2> Selecting retrieve from the menu displays a list of
projects in the current directory. Highlight the project of choice and press return, and
that project becomes the active project.

Save: Hot Key <F2> Saves and backs up the project

Copy: Copies the current project to a new directory or project name.

New Path/Drive: Changes the current directory

Make a New Project: Saves the current project and creates a new project

Delete a Project from the Disk: Deletes a project

Import: The Import function allows the combination of sections of other projects with
the current file being used. There are several options under the import file menu choice.

The options, Import Merge Project Sections and Import English Text, are different in how
they operate. When using Import English Text, the text file from the selected project is
brought in as a new task group to the current project. ECLiPS does not look at variable
names or Task and State names. Using “Import Merge Project sections” causes ECLiPS to
import the text and the variable names. It also compares the import project with the
current project to insure that there are no overlapping variable names, variable
assignments, or task names.

5

5-5GFK-1006A Chapter 5 ECLiPS PRogramming Features

Documentation - Print Function

ECLiPS is equipped with a project documentation tool. Selecting the PROJECT “Print”
function brings up a form to be filled out. The Print function has the following
operations:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Header ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Text Printed at the Top of Each Page
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Footer ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Text Printed at the Bottom of Each Page
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Output To ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Any entry besides Printer directs documentation to a file
with that name.- Printer entry sends output to parallel port
printer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Auto Print ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When entry is ’Y’ this print setup is executed whenever the
program is downloaded to the State EngineÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁNumber of Copies
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNumber of copies to printÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Lines per Page
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of lines printed per page - some printers may
need setting less than the 66 default

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁEnglish Code

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPrints the State Logic Program by Task GroupsÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

I/O Map
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints a list of all named I/O Points arranged in numeric
order according to type

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Data List ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints a list of all variables and I/O points in alphabetical
order according to type

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Task / State List ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints a list of Tasks followed by the State in each Task. The
result is a useful outline of the entire project

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Cross Reference List ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints an alphabetical list of every named I/O point and
variable and every Task and State where it appears in the
program. This option may take a long time to execute.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CCM Protocol Listing
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints the number and type to be used when communicat-
ing with the CCM protocol - see the SCM chapter

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PID Loop Info
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints all of the PID parameter initial value settings as spe-
cified in the initialization form

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Keywords, Fillers, PID
Parameters

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints the current keyword and filler word definitions in
addition to the PID parameter keywords

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Last Uploaded Trace ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prints the Trace listing that was last viewed in ECLiPS or
OnTOP

Error Checks, Translate, and Download Projects

The process of converting the English program text into a format that is executable by
the State Engine is called translation. During the translation process the program is also
checked for any errors. There are two options on the PROJECT menu to translate and
error check the project: “Translate and Download Project to the Controller” and “Error
Check and Translate the Current Project”. The only difference between the two options
is that the first also downloads the project to the State Engine when the translation is
complete. ECLiPS saves the project to disk automatically before each translation. At the
end of a successful translation a screen of statistics is displayed.

5

5-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Task Groups
Task Groups are simply a collection of Tasks. Using Task Groups is a way of breaking a
large project down into smaller and more manageable sizes. When the “Make a New
Task Group” option is selected, ECLiPS creates a new text file that is a part of the overall
project. When a New Task Group is selected it also adds the TASK GROUP option to the
Program Mode Menu.

The Task Group menu allows the Task Groups order to be changed. There are times
although rare where the order of Tasks makes a difference in program execution. The
Tasks at the beginning of the program are executed first. The Task Group menu allows
the order of the Task Groups to be changed.

Instances where the Task order is important are when using variable or current State
values in conditional terms. Variable assignments and State changes are visible to the
rest of the program immediately. Discrete value changes are not apparent until the next
program scan cycle.

Variable and I/O names and values are shared across the different Task Groups, and
Tasks in one Task Group can control Tasks in another Task group. The following list
displays options on the Task Group menu.

� Remove a Task Group

� Make a New Task Group

� Give the Current Task Group a New Name

� Change the Order of the Task Groups

� Join Two Task Groups Together

� Switch to Another Task Group (Hot Key <Ctrl + G>).

File Types Created by ECLiPS
ECLiPS uses the concept of projects to keep work organized. A project is considered to
be all of the files that are used in association with one application program. ECLiPS
splits each project up into a variety of different files. All of the files in the project have
the same root name with different extensions.

If the name of the project is Car_Wash, some of the files created by ECLiPS follow:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.PRJ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data about project; variable and state names, etc.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.TG0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The English text of the first task group in the project.

ÁÁÁÁÁÁÁCar_Wash.TG1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptional: The English text of the second task group.ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCar_Wash.TG2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOptional: The English text of the third task group.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
Car_Wash.DBG

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data about Debug operations, Force and monitor tables, etc.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.PRT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optional: Logicmaster Configuration used in ECLiPS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.PSM ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The translated program that is loaded to the State Engine
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.TRC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Optional: This data is used by the trace function in Debug
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.PRB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Backup of Car_Wash.PRJ generated automatically

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.BK0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Backup of Car_Wash.PRJ generated automatically

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.BK1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Backup of Car_Wash.PRJ generated automatically

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Car_Wash.BK2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Backup of Car_Wash.PRJ generated automatically

5

5-7GFK-1006A Chapter 5 ECLiPS PRogramming Features

Naming Variables
State Logic programs refer to variables and Digital I/O by names. Defining a variable
requires; a name, a variable type (Analog Output, Integer, String) and the State Engine
memory location (%AQ2, %R0001, %R1001 for example). There are three ways that
variable name definitions can be made, viewed, and adjusted. The DEFINE menu, LIST
menu, and DEFINE “System Configuration” all allow the user to work with the variable
name definitions.

Define Current Word - Search for Undefined Words
In the DEFINE menu, the “Define the Current Word” (Hot Key <F4>) option looks for
the definition of the word that the cursor is currently on or closest to. If the word is
defined, ECLiPS returns the name, data type, and memory location. If the word is
undefined, ECLiPS goes to the Define Variable Menu where the word can be defined.

The Define Variable Menu provides a choice of different data types. The word can be
left undefined or edited if the word is misspelled. Depending on the data type chosen,
ECLiPS supplies a form that facilitates the definition of the variable.

Another option in the DEFINE menu is the “Define all Undefined words in the Text”
option (Hot Key <Alt + F4>). This option starts at the beginning of the project looking
for variable names that have not been defined. If ECLiPS finds an undefined word, the
Define Variable Menu is displayed. After the variable has been defined, ECLiPS
continues to search for the next undefined word.

List - Variable Type
The LIST option from the Program menu allows the user to view, modify, and make
definitions to variable names. Selecting LIST from the program menu gives a list of data
types that can be listed. After selecting a data type ECLiPS lists all of the variable names
of that type that have been defined.

Variable definition can be modified by positioning the cursor on top of the variable name
and pressing the right arrow key. The variable definition can be deleted by pressing the
delete key when the cursor is on the variable name.

Pressing the insert key when listing a data type, allows the addition of another variable
name to that type of data. Example: while listing the Digital I/O variables, to add
another %I variable named Extra_Input, press insert and add that variable name and fill
out the data entry form.

The System Configuration Option
After the PLC configuration is completed using Logicmaster, a visual representation of
the racks and modules is available by first selecting the “Retrieve Logicmaster
Configuration Data” from the DEFINE menu then selecting the “System Configuration
Menu”. This option displays the individual modules in the racks and the bus addresses
in the genius configurations. For more information on setting up the PLC configuration
see the chapter devoted to Configuring your system.

From the System Configuration display, move the cursor on top of the module to be
viewed and press <Enter> to view a menu. Use the menu to view the I/O that is
assigned to that particular module. The English names, if defined are shown or may be
added for each circuit on this module.

5

5-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

On-Line Program Changes

The State Logic program can be changed without halting the State Engine. Changes to
the State Logic program are made one Task at a time. To make State Logic program
changes while the program is running, select the On-line Modify option from the main
menu and then select the Task to edit from the list of Task names displayed.

Restrictions
There are some restrictions to how much modification can be done with the On-Line
Modify option. The user cannot add or change digital I/O or Internal Flags. Variables
cannot be changed to save over halt. The Project Management features cannot be used
(copy, import, etc.). The user cannot change any of the system configuration data, i.e.
auto run. New states can be added to the program. The user can add up to five states to
any Task

Memor y Usage
Every time the On-Line Modify feature is used, an additional portion of memory is used.
Repeated use of the On_Line modify feature may cause an error message indicating that
there is not enough memory available. Using the “Translate and Download” feature
from Program Mode will free up all the memory, and allow additional use of On-Line
modify.

Hints for Using ECLiPS Features

How to Use the ECLiPS Menus
There is one starting menu for each mode of ECLiPS. Press <F3> to view the main
menu when in Program Mode or Debug Mode.

Options are selected from all ECLiPS menus in the same manner. Use the up and down
arrow keys to highlight the option and press the <Enter> key. A quicker method of
making a selection is to press the highlighted letter of the desired option. Each option
has a letter (usually the first letter) that is displayed in a different color or highlighted
(for monochrome monitors).

Using ECLiPS Hot Keys
The most popular menu options may be selected without using any menus by pressing a
Hot Key. Any Hot Keys are listed to the right of the option on the menu where the
option is displayed. A full listing of all key functions is available at any time by pressing
the help key <F1> twice.

Appendix A has a table of Hot Keys. Notice that the Hot Keys are assigned in a manner
to make it easy to remember their functions. All of the Hot Keys which refer to options
from the Project Menu use the <F2> key. The <Ctrl> key plus letters refer to options
from the List Menu or for Debug Mode selections, for example <Ctrl + D> lists the
Digital Points defined in the program. The <F4> key is used for Define Menu options;
the <F5> key is used for the Find Menu options, <F6> for Add Menu options, and
<F8> for the Text options.

5

5-9GFK-1006A Chapter 5 ECLiPS PRogramming Features

ECLiPS Word Processing Functions

A program developed using ECLiPS is simply a document of ASCII text. The ECLiPS
editor is fundamentally a word processor with specialized functions for editing a State
Logic program.

The Text option offered on the Program Mode Menu is very useful for manipulating
blocks of program text. The Text functions are used to copy, move, and delete blocks.
These functions are very useful for manipulating blocks of the program.

When any of the Text functions are used, the block defined is saved in memory. This
memory location is called the Paste Buffer. The Paste Buffer always contains the last
block highlighted for any of the Text operations. The contents of the Paste Buffer are
’pasted’ into the program at the cursor location by pressing the <Ctrl + U> keys. The
PASTE function may be used to move or copy blocks of text. The PASTE function is also
useful for copying blocks from one program to another.

Use the following steps to copy a block from one program to another program.

Press <F8>, the Hot Key for the Text functions
Highlight the desired block by using the cursor movement keys
 Press the <Enter> key and choose the COPY option from the menu
 Press the <Esc> key to cancel the operation, the paste buffer now has a copy of the

block
 Load another program into ECLiPS
 Press <Ctrl + U> to enter a copy of the block at the cursor location

How to Use ECLiPS Lists

ECLiPS uses lists to display the elements of the control program including I/O points,
keywords, filler words, and variable names. The arrow keys and the <Page Up> and
<P age Down> keys are used to move through the list. Also use <Ctrl + End> and
<Ctrl + Home> to move to the end or the start of the list.

The elements of the list are displayed in alphabetical order. One method to quickly find
an element is to enter the letters of the element. When a letter key is pressed, the first
element starting with that letter is highlighted. Pressing another letter key causes the
first element starting with those two letters to be highlighted. It is possible to enter all of
the letters of the element to highlight it, but usually a few letters brings the highlight
close to the target element.

Generally the <Ins> key is used to add, the key to delete, and the <Esc> key to
exit the list. Lists displayed using the “List” option from the Program Mode main menu,
also allow the highlighted element to be entered directly into the program at the current
cursor location when the <Enter> key is pressed.

6 section level 1 1
figure bi level 1
table_big level 1

6-1GFK-1006A

Chapter 6 Program Instructions

This chapter describes how to structure the State Logic program instructions. The
hierarchy structure of the program is described, and there is a quick reference list of all
of the types of both Functional and Conditional Terms. These lists are followed by more
complex examples and detailed explanations of Conditional and Functional Terms. Also
included are sections on mathematical calculations, variables and data types. Finally is a
list of grammatical rules and an explanation of filler words are included.

6

6-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Program Structure

There is a hierarchy in the structure of the State Logic program. Each program is divided
into one or more Task Groups, each Task Groups may have one or more Tasks, each Task
is divided into one or more States, etc. The figure below lists each element of the
hierarchy in descending order of significance.

Program

Task Group

Task

State

Statement

Expression

Term

Word

Figure 6-1. ECLiPS Program Hierarchy

This hierarchy of Tasks, States, and Statements are explained in sections 2 and 3 of this
manual. A program is a collection of Tasks Groups, a Task Group is merely a collection of
Tasks and is used only as an organizational convenience. Tasks are a collection of States
which describe a sequence of actions.

There may be many Tasks all executing simultaneously. Each State is described by one or
more Statements and each Statement consists of Expressions. Expressions are
constructed from Terms which are composed of words.

Task Groups

Task groups are simply a collection of Tasks. Each Task Group can have up to 60K bytes
of the State Logic program. There may be up to sixteen Task Groups in a program. The
program instructions for each Task Group is stored in a separate file that has the project
name and the extension TG followed by 1–F. The first Task Group for the project
PRESS is stored in the file PRESS.TG1.

6

6-3GFK-1006A Chapter 6 Program Instructions

Tasks
In the program each Task begins with the keyword, Task, followed by a colon then a
Task Name.

Task: Assembly

Each Task includes all of the States from the start of the Task to the beginning of the next
Task.

The Task name may be followed by the keyword, Start_In_Last_State, which indicates
that this Task is to restart with the State that was active when the program stopped
running. This feature works the same whether the program was stopped deliberately or
by a power failure.

Task: VatCooling Start_In_Last_State

State
Similarly, each State begins with the keyword, State, followed by a colon then a State
Name.

State: Attach_Arm

Each State includes all of the Statements from the start of the State to the beginning the
next State.

After the State name the Max_Time keyword followed by a number may be used. This
keyword causes a diagnostic message to be displayed in either the ECLiPS or OnTOP
on–line Terminal Log screens, if the State is active longer than the number of seconds
indicated by the number following the Max_Time keyword.

Statements
Statements, like English sentences, are terminated by a period. The first Statement of a
State begins right after the State name and includes all of the expressions appearing
before the period.

During program execution each Statement of the active State is executed in order
starting at the first Statement in the State. The only exception occurs when a GO term is
executed. Nothing else in a State is executed after a GO is executed.

If the ForwardLimitSwitch is on, go to the Idling State.

Expressions
There are two types of expressions, Conditional and Functional.

Functional expressions describe some action that the controller executes. A Functional
Expression may be the only expression in a Statement or may be accompanied by a
Conditional Expression.

Turn on HeaterCoil_1.
If TankTemperature is greater than 45.6, go to the Cooling State.

Figure 6-2. Functional Expressions in Bold Type

6

6-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Conditional Expressions describe a requirement which must be satisfied for the
functional expression in the same statement to be executed. A Conditional Expression
must always be used together with a Functional Expression.

If TankTemperature is greater than 45.6, go to the Cooling State.
Go to the Collection State, when 5.5 seconds have passed.

Figure 6-3. Conditional Expressions in Bold Type

Terms

Functional Expressions are comprised of one or more Functional Terms and Conditional
Expressions are made of one or more Conditional Terms. Logical AND or OR words are
used to join conditional terms.

If 35 seconds have passed and Parts_Count > 5 then go to Restart.
If ForwardProx is on OR ForwardMotor is on AND Torque > 95, go to ShutDown.
Go to ClosePress, if 3.5 seconds passed and (autoPB is on or startPB is ON).

Figure 6-4. Examples of Multiple Conditional Term Expressions

Turn on DrainValve, DrainPump, and FlowLight.
If InComingSwitch is on, add 1 to PartsCount and go to Clamp.
Start_Pid TankTemperature, write “Tank Temp Auto”, and go to Testing, if AutoPB is on.

Figure 6-5. Examples of Multiple Functional Term Expressions

Words

All words are classified into one of three categories: Keywords, Names, and Filler words.
Words are separated by spaces. Multiple words can be simulated in a single word using
the underscore character, as in Forward_Solenoid, or mixing upper and lower case
letters, as in ForwardSolenoid.

ECLiPS comes with a set of keywords already defined. The programmer can define
synonyms for the keywords and even change the default keywords. Because of this
feature the control program can actually be written in another language.

All filler words are ignored when the program is translated into a control program. The
keywords and names are the only words which affect the execution of the program.
Filler words are used only to make the program more readable.

6

6-5GFK-1006A Chapter 6 Program Instructions

Functional Terms

This section explains the various functional terms. The first display shows a quick
reference list of the functional terms with an example of each term. The rest of the
section describes the syntax and details of using each of the terms in the program.

Table 6-1. Functional Term Quick Reference List

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

TYPE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EXAMPLES
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁTurn On Digital I/O

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁActuate DropGateSolenoid.ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Assign Variable and Analog
Values

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Make ExtrusionLength = 23.45.
Make VatHeater = 75.5.
Make WarningString = “Lubrication Reservoir LOW”.ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Perform Calculations
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Add 1 to PartsCount.
Make SlabArea = SlabHeight * SlabWidth.
Make ResponseLevel = SIN(2*RadianAngle) + 75.3.

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁTransition to Another State

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGo to EStop.ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Change State of Another Task
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Put the FlowControl Task into the NormalFlow State.
Suspend_Task the CutterControl Task.
Resume_Task the Cutter_Control Task.ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Send Data Out the Serial Port
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write “Tank Full” to OperatorDisplay.ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PID Control
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Start_PID TorchTemperature.
Stop_PID WaterFlow.ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Execute a Perform Function
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Perform Time_Counter with
Action=’A’ Integer_Variable=NumberOfMinutes
TimeInterval=’M’.

Turning ON Discretes (Actuate Term)
The Actuate Term is used to turn on Digital Points and Internal Flags. All of the digital
points are OFF by default. Transition to a State that is not turning an output ON has the
effect of turning the output OFF. There is no keyword that turns an output OFF.

DEFINITION: This Term starts with the keyword Actuate followed by one or more
discrete names.

Actuate the Ready_Light.
Start Pump_1 and Pump2.
Energize Clamp_1, Clamp_2, Clamp_3 and Clamp_Flag.

Assigning Analog and Variable Values
To assign values use the Make Term, Math–Assignment Terms, Set_Bit/Clear_Bit Terms.
These Terms assign values to variables and analog I/O points.

6

6-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Make Term Definition:
 The Make Term is used to assign a value to a variable or analog I/O point. The Term starts
with the keyword Make and is followed by a variable or analog name, the keyword equal, then
a number or a calculated value.

Make Flow_Setpoint equal 25.
Make Valve_Control = 67.89.
Make Total_Defects equal Temperature_Failures + Stress_Failures.

Make Output_String equal “Enter setpoint now”.
Make Test_Character = ‘$’.

Make Tank_Level_PID Bias equal 34.456.

See the section “Calculated Values” for a description of how to do mathematical calculations.

Math–Assignment Term
For simple mathematical calculations where a simple operation is performed to a
numeric variable use the Math–Assignment Terms. These simple four function math
terms are ADD, SUBTRACT, MULTIPLY, and DIVIDE.

The Add Term is the keyword Add followed by a number or variable name then a
variable name.

Add 1 to Parts_Count
Add Second_Shift_Parts_Count to Total_Parts_Count

The Subtract Term is the keyword Subtract followed by a number or numeric variable
name then a variable name.

Subtract 2.78 from Starting_Value
Subtract Tare_Weight from Test_Weight.

The Multiply Term is the keyword Multiply followed by a variable name then a number
or variable name.

Multiply Parts_Lost by 2
Multiply Machine_Strokes by Strokes_Per_Cycle

The Divide Term is the keyword Divide followed by a variable name then a number or
variable name.

Divide Right_Side_Length by 4.5
Divide Box_Volumn by Volumn_Adjustment

6

6-7GFK-1006A Chapter 6 Program Instructions

Set_Bit/Clear_Bit Term
The Set_Bit/Clear_Bit Term is used to set an individual bit to either 1 or 0 in an integer
variable. First the Set_Bit or Clear_Bit keyword is used then the variable name followed
by the zero based bit number.

Set_Bit Transfer_Status 2
Clear_Bit Tac_Register 0

Changing Active States Term

A Task can change its own State and can also change the current State of another Task.
Changing the State of another Task is one way that Tasks can coordinate their activities.

The GO term is used by a Task to transition to another State. Only the Go and the State
name are mandatory. All other words are optional. The Go may appear in any
Statement but there may only be one Go per Statement.

Go to the Forward_Motion State.
Go EmergencyStop.

As soon as the GO term is executed, the new State becomes the active State for that Task.
No more terms are executed in the old State and the new State is seen as the active State
by other Tasks during the same program scan.

Tasks control other Tasks by merely setting the Task to a new State value.

Put the Assembly_Control Task into the Emergency_Stop State.

In this example, put is a synonym for make and into is a synonym for equal.

The Suspend_Task and Resume_Task Keywords are also used to change the current
State of a Task. The Suspend_Task keyword saves the current State and puts the named
Task into the Inactive State. The operating system gives every Task a State named
Inactive. When a Task is in the Inactive State, this Task performs no activity and the only
way to exit this State is for another Task to change its current State. The inactive State
can also be used with the GO keyword.

The Resume_Task keyword causes the named Task to go to the State that was active
before being suspended. If the task has not been suspended, then the Resume_Task
keyword will cause the task to become inactive.

If Water_Level is above 45.5 feet then Suspend_Task Fill_Tank.
If Water_Level is below 43.8 feet Resume_Task Fill_Tank.

IMPORTANT: Make sure that both the terms changing the State of another Task execute
for only one scan. These Terms, when placed in a Statement that is executed every scan,
may cause some unexpected results.

6

6-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Sending Serial Data (Write Term)

The Term to send data out a serial port is the keyword Write followed by data to send
inside double quotes. Optionally a communications port name may be specified
following the data to be sent. If no port name is specified the data is sent to the
programming port to be displayed by OnTOP or ECLiPS. See the chapter on the Serial
Communications Module for more information about serial communications.

Write “Push Start Button” to Operator_Control.

The serial data can be a mixture of typed text, variable values, ASCII control characters,
and formatting characters.

The typed text are any characters entered directly from the keyboard. The text may
include carriage returns so that several lines can be entered in one Write Term. Multiple
line messages can be formatted in the program exactly as they appear on an terminal
screen.

Write ”
Opening Operator MENU

 1. Change Today’s Date
 2. Change the Current Time
 3. Engage Startup Procedure
 4. Restart the Process”
 to Operator_Panel.

The menu from the Write Term above appears on the operator screen just as it does in
the program. The limit of the number of characters between the quotes is 512, which is
about 7 full (80 character) lines of text.

Variable values are sent out the port by preceding a variable name with a “%”. Any
variable type, including analog I/O values but excluding discrete values, can be sent out
the serial port.

Write “Current parts count is %Part_Count.” to Operator_Terminal.

If the variable, Part_Count, has a value of 10 at the time the Write Term above is
executed, the following line is displayed on the screen connected to the port named
Operator_Terminal.

Current parts count is 10.

6

6-9GFK-1006A Chapter 6 Program Instructions

Formatting Characters that are used with the Write Term follow:

%NOCRLF – Write Terms always send a carriage return line feed pair
 following each message. Use this formatting feature to suppresses
 these terminating characters.
%CRLF – sends a carriage return line feed character pair
%CRLF(X) – X number of carriage return, line feeds
%CLS – Clear the Screen, sends 25 carriage return, line feeds
%SPACE(X) – X number of spaces

Control Characters are embedded in the string of characters. Embedded control
characters have many uses, controlling screen displays for dumb terminals and PCs
using ANSI.SYS device driver, some serial devices use control characters for special
function control.

%CHR(X) – The ASCII character for the value in the “()” is sent
%#X – The ASCII character for the hexadecimal value X is sent

The “ | ” character is used to place two words together without any spaces in between
them. For example, “%Pressurepsi” would look like one long variable name to ECLiPS
and would yield an error message. But “%Pressure|psi” would yield the desired result
of the value directly followed by the character string, “psi”.

To send a double quote sign use “%#22” or “%CHR(34)”. To send per cent sign use
“%%”. All other keyboard characters are sent by simply typing them between the
quotes.

PID Loops Control Terms (Start_PID, Stop_PID)

PID Loop control Statements start with the keywords Start_PID or Stop_PID, followed
by the PID Loop Name. If stopping a PID loop, a value which sets the value of the
control variable can follow the PID loop name.

Start_PID Oven_1.
Stop_PID TankLevel.
Stop_PID KILN5 with 456.29.

When the PID loop begins execution it uses parameters specified in the PID initial values
form accessed through the DEFINE or LIST menus. See the chapter on PID loops for
more information.

IMPORTANT: Make sure that the Start_PID Term is not executed repeatedly every scan
by changing State after starting the loop operating. The PID loop will not execute as
expected when it is constantly restarted. For more information on PID Loops see the
PID loop chapter.

6

6-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Change Serial Port Configuration Term

The Term to change the configuration of a serial port is the Set_Commport keyword
followed by a port name and then a list of parameters and their values. See the chapter
on the Serial Communications Module for more information about serial
communications.

This Functional Term is automatically entered into the program by using the
“Communication Ports” option on the LIST menu. Select the port and press the right
arrow key “–>” to change the configuration options. When configuration is complete,
press <Enter> when the desired port is highlighted, then select the “Insert
Reconfiguration Data for the Port” option from the next menu. The entire Term is
entered into the program at the current cursor location.

These port parameters can also be changed by using the “System Configuration” option
from the DEFINE menu. When setting the serial port parameters using the “System
Configuration” option the parameters are changed program is downloaded and begins
execution. The Set_Commport keyword method is used to change the settings from the
program.

Perform Function Term

This Term is the Perform keyword followed by the function name, the keyword with
and then a list of parameters and values. This Term is entered into the program
automatically by ECLiPS at the end of the State where the cursor is located. First select
the “Add” option from the menu, then the “Add a Perform Function” option. Fill in the
blanks that are displayed after selecting the function desired. See the chapter on
perform functions for more information.

Conditional Terms

Conditional Terms are used to test for conditions of discrete, numeric, analog, time and
character values and also to test when input has been received in a serial port.
Conditional Expressions must be true for the Functional Expression in the same
Statement to be executed. Normally the program is constructed so that the Functional
Expression that is dependent on a Conditional Expression is a transition to another State.

Table 6-2. Conditional Term Quick Reference List

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

TYPE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EXAMPLESÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Digital
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If PressDownSwitch is ON . . .

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If 3.5 seconds . . .

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Relational ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If TankLevel is greater than 45.67 . . .

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Current State ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If the CleanInPlace Task is in the WaterRinse State . . .

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Serial Input ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read OperatorInput from OperatorDisplay . . .

6

6-11GFK-1006A Chapter 6 Program Instructions

Digital Conditional Term

The Digital Conditional Term tests the status of discrete memory types (%I, %Q, %G,
%T, %S) and the internal flags. To program this type of test use the IF keyword followed
by the name of the discrete point then followed by the keyword ON or OFF.

If Forward_Limit_Switch is on . . .
If Part_Ready_Flag is off . . .

Several digitals can be specified in the same expression joined by AND or OR keywords
as follows:

If Top_Limit_Switch or Bottom_Limit_Switch and Counter_Weight_Switch are OFF . . .

The ANDs are executed first when both ANDs and ORs are in the same expression.

Timer Conditional Term

The Timer Conditional is a number or variable followed by the keyword SECONDS
(must be plural). The timer has a resolution of 1/100 of a second and the value used to
indicate the number of seconds can be a floating point number.

If 3.76 seconds have passed, then . . .

An integer variable can also be used to specify the number of seconds. The value of the
variable indicates the number of hundredths of a second, so

that a variable value of 100 would indicate a time of 1 second.

If Wait_Time seconds, then . . .

Timers always refer to the amount of time that the State has been active. A common
mistake is to assume that the timer starts when the term before it becomes true.

If Track_Monitor is ON and 5.3 seconds have passed . . .

The timer above refers to the time that the State that it is in has been active and is not
influenced by the condition of the Track_Monitor.

The timer number must be in the range of 0.01 to 600.00 seconds which is a maximum of
10 minutes. When using an integer variable, the variable value must be a positive value.

6

6-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

There are several ways to make a timer that uses a period of time greater than 10
minutes. The common methods use State transitions to reset a State timer.

State: Heater_On_One_Hour
Actuate Vat_Heater.
If Ten_Minute_Counter is >= 6, go to Start_Process State.
Wait 600 seconds then go to CountMinutes State.

State: CountMinutes
Add 1 to Ten_Minute_Counter and go to Heater_On_One_Hour State.

Also see the Time_Counter Perform function for a description of other ways to handle
timing situations in State Logic programs.

Relational Conditional Term

Relational Terms test variable and analog values. The Term is a value, followed by a
relational operator, then another value. The values tested can be numbers, calculations,
variable names, and analog names.

If Parts_Count = 500 . . .
If Flow_Meter_Input is above Flow_High_Limit . . .
If Canister_Pressure – Atmosphere <= Pressure_Limit – Safety_Margin . . .
If String_Entry equal “Formula 1” . . .
If Test_Char is not_equal to ’@’ . . .

See the section, Mathematical Calculations, for a discussion on how to use calculations
with Conditional Terms.

Current State Conditional Term

The Current State Conditional is a Task Name followed by the keywords EQUAL or
Not_Equal and then a State Name. This conditional is used to test the current State of
another Task.

If Pump_Monitor Task is in the Backwash State . . .

A Task can test the current State of any other Task. This term is one of the main ways
that Tasks can coordinate their activities.

6

6-13GFK-1006A Chapter 6 Program Instructions

Complex Conditionals
The Conditional Terms can be combined to form a Conditional Expression using the
keywords AND and OR keywords. The AND Terms have lower precedence and are
therefore executed first. The order of execution can be changed by use of parenthesis
and parenthesis can be nested. The keyword NOT can also be used preceding the
conditional term.

If Hydraulic_Pump_Control Task is in the Over_Pressure State or Hydraulic_Prssure
is above 23.56 . . .

If 1 seconds and not Temperature_Setpoint greater than 4.67 / Settling_Value . . .

If Spin_Drive is ON and (Pour_Ladle is not_in Pouring State or not Mold_Number is
above 67) . . .

Character Input Conditional Term
The syntax for this conditional is the keyword READ followed by a variable name. This
conditional is true when a character input message is completed. The character input is
stored in the variable listed.

Optionally this conditional can specify the port from which the input is received. If this
option is used the keyword FROM follows the variable name and then a
communications port name is listed.

Read Menu_Choice from Operator_Station, then go . . .

The above example reads data into the variable named, Menu_Choice, from the
communications port named Operator_Station.

A GO Functional Term must always follow the character input conditional and there
cannot be any other Terms in the Statement besides the READ term and the GO term.

If two READ terms for the same port are both currently active (both in an active State) it
is unknown which conditional receives the message from the port. The program should
be written such that all READs for a port occur in the same Task, assuring that two
READs for the same port are not both active at the same time.

The types of variables used with the Read are:

Integer Variables

Floating Point Variables

String Variables

Character Variables

If the type of data received does not match the variable type, the input is ignored and
the conditional is not satisfied. An example of invalid data is entering string of
characters to a numeric variable.

6

6-14 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The input is completed and the Conditional Term is true, when an end of message
character is received at the port. The default end of message character is the carriage
return, so that normally the input is completed when the <Enter> key is pressed. The
end of message character may be changed using the serial port setup forms. See the
Serial Communications Module chapter for more information on serial communications.

Input to a character variable is complete as soon as one character is received, so that a
character is stored and the GO executed as soon as any character is received.

IMPORTANT: Character variables cannot be used to receive input through the
programming port when connected to ECLiPS or OnTOP.

Mathematical Calculations

Mathematical calculations are used in Functional Terms as in this assignment Term:

Make Pointer_Position = Last_Position * (Forward_Pressure + 345.8)

and in Conditional Terms as in this comparison term:

If Advanced_Magnitude < SIN(Current_Angle) / 45.6 go to Reposition State.

Numerical expressions may be much more complicated using any of the operators in
any order and nested in parenthesis to change order of evaluation or make the
expression more readable. Up to 18 levels of parenthesis may be used.

Operator Precedence

Operators are executed according to their precedence. The operators with the lowest
precedence number are executed first. Operators with the same precedence are
executed left to right. Use parenthesis to change the order of execution. See the
operator keyword table for the precedence of each operator.

Variables

Variables are used to store some information in memory. All variables are identified by a
unique name that is assigned when the undefined words in the program are defined.
Each variable can be configured to save the value over a power cycle or be initialized
when the program is started. There are two main categories of variables, ASCII and
numeric. Calculations may refer to the value stored in any of the numeric variables.

6

6-15GFK-1006A Chapter 6 Program Instructions

ASCII Variables
The ASCII variable types are Character, and String. Character Variables store one
character and use one byte of memory. String Variables store up to 80 characters and use
82 bytes of memory, since every string is terminated by a null character, (00), and
memory is used in two byte words.

String Variables store any ASCII characters. Control characters are used in the string
variable by using the % followed by the # and then two digits that are the hexadecimal
number for the ASCII character, for example:

Make Test_String equal “abc%#1Bxyz”.

This example is an assignment to a String Variable to store the characters abc the escape
character and then xyz.

Numeric Variables
The numeric variable types are Integer, Floating Point, Time, and Analog. The numeric
data types are described later in this section.

Analog Variables
Analog Variables are the values of the analog I/O connected to the system.
Analog values are floating point data type if the channel is scaled and integer if
unscaled.

Time variables
Time Variables store the current time information from the system clock. The
reserved time variables are second, minute, hour, day, day_of_week, and
month. These variables are integer values.

These variables are read only variables meaning that they cannot be changed
from the program or from the debug mode CHANGE option. To change the
system clock, use Logicmaster 90 configuration package to change the CPU clock
values. Access to the clock values are from the Logicmaster CPU configuration
option.

IMPORTANT: Changing the clock while the program is running may cause some timing
functions in progress to work erratically.

Integer Variables
Integer variables store 2 byte integer values.

Floating Point Variables
Floating Point variables store 4 byte IEEE format floating point values.

6

6-16 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Numeric Data Types

There are two numerical data types integer and floating point. Integer data is limited to
the range of –32768 to 32767. Floating point data is limited to the range of +/–1.2E–38
to +/–3.4E+38 with an effective precision of seven decimal digits.

Integer constants are whole numbers in the range –32768 to 32767. Integer constants
can be specified in hexadecimal format by preceding the number with ’#’, i.e., #77FF.
Floating point constants are numbers using decimal points, numbers outside the range
for integers, or numbers using scientific notation.

The numerical data types may be mixed freely within expressions. If any of the
operations in an expression require floating point notation, all of the data elements are
converted to floating point values. If a floating point value is assigned to a variable of
integer variable type, the floating point value is converted to an integer value observing
the following rules:

1. All values are rounded to the nearest number.

2. Values outside the integer range are clipped to –32768 or + 32767.

Floating point operations require more time to perform than integer operations.
Therefore, refrain from floating point operations as much as possible if response time is
critical to your application.

Grammatical Rules

� Every Task must begin with the word “Task:” followed by the Task name.

� Every State must begin with the word “State:” followed by the State name.

� Every Statement must end with a period.

� Every Statement must have a functional expression.

� Only one “Go” is allowed per Statement.

� Only one “Read” is allowed per State.

� If a “Read” Term is used in a Statement, it must be accompanied by a “Go” in the
same Statement. There may be no other Terms in the Statement.

Filler Words

Filler words have no functionality, i.e. they do not change the meaning of any of the
statements in which they appear. Filler words are only be used to increase the clarity of
the English text. For example, “go to the Motion State” looks better and sounds better
than “go Motion”. To some programmers, however, typing fewer words is better.

7 section level 1 1
figure bi level 1
table_big level 1

7-1GFK-1006A

Chapter 7 Perform Funtions

The Perform functions implement operations which are more complicated than the
common State Language Terms. To use a Perform Function, fill in one of the forms that
ECLiPS provides. Once the form is completed press <F9> to save the data and ECLiPS
then enters the code for the Perform Function at the current cursor location. To access
the forms select the “Perform Functions” option from the ADD menu.

The State where a Perform function appears should usually be structured so that the
Perform is executed for only one scan. A common error in using Performs, is to structure
the program to execute a Perform function many times i.e. each scan.

ECLiPS presents a form to enter the parameters for the Perform functions. The forms to
enter the functions provide information about each of the parameters. The specialized
performed function at the end of this chapter use slightly different forms. The column
headings of the forms are as follows:

Parameter Name Type Use Required Actual

The meaning of each of these columns is described below:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Parameter Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

identifies the parameter described in this row of the table.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

specifies the parameter data TYPE and may be integer(I),
floating point(F), character(C), string(S) or digital(D).

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Use ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Specifies whether a variable, constant, or both may be used
for this parameter

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Required ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Specifies whether this parameter is required in the function
call. The parameters that are not required are at the end of
the parameter list. No parameters may be entered follow-
ing one that has not been used.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Actual
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This is where the variable or constant for the parameter is
entered for this particular function call.

7

7-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Table Functions

The table functions are designed to use data in a table, or array type fashion. A Table is a
two dimensional array of values made up of rows and columns. It should be noted for
all the Table functions the row number comes first followed by the column number.

There can be a maximum number of 100 Tables, each assigned a unique number from 1
to 100. These tables can be of any size until the maximum amount of memory allocated
for Table use is consumed. There are 20K bytes of memory reserved for use with table
functions. The size of a table is determined by the number of rows and columns it is de-
fined to have.

There are four TYPEs of data that ECLiPS uses in tables, they are: floating point numbers
(float or F), integer numbers (integer or I), sequence of characters (string or S) or binary
numbers (digital I/O status or D). The table and all of the data in the table must be de-
fined to be of the same TYPE. The Define_Table function is described in detail later.

There are four Swap_Table_Value functions, one for each of the four TYPEs of data. They
are named Swap_Table_Value_Int, Swap_Table_Value_Float, Swap_Table_Value_Dig,
and Swap_Table_Str. The swap functions will either: a) write from a variable into a Table
element, or b) read from a Table element into a variable. The variable and the table must
be of the same TYPE of data. The Swap_Table_Value functions are covered in detail lat-
er.

The Init_Table functions is designed to initialize a table by writing a number of values to
the table in one perform function. Up to 28 data elements can be stored in a table with
one perform function. There are three data TYPE specific Initialize functions, they are:
Init_Table_Integer, Init_Table_Float, and Init_Table_Digital. There is no initialization
function for a string table. Detail descriptions of the Init_Table function follow later in
this section.

The Copy_Table_to_Table function is used to copy data from one table into another table
of the same TYPE. The Copy_Table_to_Table function is described in detail later in this
section.

ECLiPS and the State Engine perform error checks on all table functions to insure that all
actions performed are consistant and legal. They will to check that the data TYPE is con-
sistant, that the row number and column number being used are within the defined lim-
its of the table, etc. The errors will be detected during download or when the program is
run. The most common place for the errors to show up is at run time.

7

7-3GFK-1006A Chapter 7 Perform Functions

Define_Table
Every table must be defined before it can be used. Defining the table will: a) assign a
number to the table (1 to 100), b) determine the size of the table, and c) determine the
type of data in the table. This function will provide a form asking for the following pa-
rameters:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Number_of_table
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the Table number from 1 to 100
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Type_of_table
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the type of variables (I for integer, D for digital or F for float,
S for String) stored in the Table elements

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Number_of_rows
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of rows of the table
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁNumber_of_columns

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁthe number of columns

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Save_value_over_halt
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

indicates whether the Table should be saved through a halt-
run cycle. Enter Y or N.

At State Engine run time, a non-critical error with a message will be generated if the
Table number specified has already been defined. The Table will not be re-defined and
the original definition will be retained. This problem may occur if the define table func-
tion is in a state that executes (or scans) more than one time. The only other non-critical
run time error that can occur is if the table number specified is greater than 100.

Entering and Retrieving Table Values
There are four Swap_Table_Value functions that are exactly the same except they work
on the four different types of Tables.

Swap_Table_Value_Int

Swap_Table_Value_Flt

Swap_Table_Value_Dig

Swap_Table_Value_Str

The Swap functions are used to exchange data between a table and a single variable.
Values can be transfered by either a) write a value from a variable into a Table or b) read
a value from a Table element into a variable. There are four distinct functions one for
each different data TYPE. The TYPE of data in the table and the variable must match.

When the User selects one of these functions from the Perform menu the following in-
formation will be requested:

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Number_of_table ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the Table number from 1 to 100
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Type_of_operation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

(R or W) R for read from a table into a variable or W to write
from a variable into a table.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Row_number ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the row number of the element to be read from or written
intoÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Column_number
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the column number of the element to be read from or writ-
ten into

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Variable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the variable that will exchange data with table

The State Engine will generate run time non critical errors if the TYPE of the Table does
not match the TYPE of Swap being used, or if the row and column numbers are out of
range for the selected Table.

7

7-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Initializing Tables
The three Init_Table functions will initialize a table with up to 28 values in one Perform
function. There are three Init_functions one for each data TYPE. There is no initializa-
tion function for String Tables. The type of data that is being place in the table and the
data type of the table must match. The three Init_Table functions are:

Init_Table_Int

Init_Table_Flt

Init_Table_Dig

Selecting one of these functions from the Perform menu will generate a form with the
following parameters to be filled in:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Number_of_table
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the Table number from 1 to 100ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Row_number
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the row number of the first element where the values listed
are to be storedÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Column_number
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the column number of the first element where the values
listed are to be stored

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Number_of_values
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of values that will be stored in the following
consecutive Table elements

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Value_1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a constant (of the same TYPE as the Table) to be stored in the
first Table element identified by the Row_number and Col-
umn_number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Value_2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a constant (of the same TYPE as the Table) to be stored in the
first Table element after the Table element identified by the
Row_number and Column_numberÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Each additional value must be consecutive. ie. you can not
have Value_3, without Value_2 and Value_1.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Value_28
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a constant (of the same TYPE as the Table) to be stored in the
last Table element identified by the Row_number and Col-
umn_number

There can be up to 28 values initialized with each individual function and they can begin
at any Table element location. The fill order is: first to fill across the row (left to right),
when the row is full, the next row down will be filled.

The State Engine will generate run time critical errors if the Table selected does not
match the TYPE of Swap being used, if the row and column numbers are out of range
for the selected Table, or if the number of values added to the starting element position
would go beyond the last element defined for the Table.

7

7-5GFK-1006A Chapter 7 Perform Functions

Copy_Table_To_Table
The Copy_Table_To_Table function places one Table’s values into another Table. The
Tables must be of the same data TYPE and the Table to be copied from must be equal to or
smaller than the Table to copy into. If the table to be copied from is smaller than the the
table to be copied into, any data elements that are not copied into will be left unchanged.

Choosing Copy_Table_to_Table from the “Add a Perform” menu will provide a form ask-
ing to fill out the following parameters:

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Table_To_Copy_From ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of the Table from which the values will be copied.
Its row number and column number must be less than the
other Table identified

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Table_To_Copy_Into ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of the Table the values will be written into.

The State Engine will generate run time critical errors if the two Tables selected are not
the same TYPE or if the Table to copy from is larger than the other Table.

Table Uses
There are many uses for the Table functions. As an example, the Table functions are valu-
able in applications where the set up of parameters varies depending on the product
under manufacture on the process line. Batch process recipes or flexible manufacturing
assembly lines are examples.

The ECLiPS program can be written using English name variables for parameters
throughout with statements such as:

If Oven_temp_1 is greater than Melting_point ...

used throughout the program description of the process. Then in a State, lets call it the
Select_Product State, by using the Swap_Table_Value_Flt function, the variable Melt-
ing_Point can be made equal to one of the elements of Table 1, where Table 1 contains
the parameters for this particular product run.

Using the Init_Table_Float, Tables containing parameters for each style of product that
can be made on the line can be initialized. When the Operator selects a style of product
in the Select_Product_Style State, the Copy_Table_To_Table function can be used to
move those parameters into Table 1, the Table in which Melting_Point finds its values for
this style and product run.

BCD I/O Representation

General
At times input and output devices are used for data entry or display that use BCD repre-
sentation. Thumb wheel switches and LCD displays are possible examples.

The devices are connected either to digital inputs or digital outputs where 4 hardware
inputs or outputs represent 1 digit of the display. The display or switch then uses a
binary code from the four I/O to represent from 0 to 9. There are 16 total possible bit
combinations (4 outputs or inputs represent 2 to the 4th or 16 possible combinations).
The remaining 6 bit combinations are used for: minus sign, decimal point, and null or
space character.

7

7-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The two functions, BCD_In_Conversion and Output_BCD_Conversion allow the User to
designate a series of consecutive digital inputs or outputs to be treated as if they are
groups of 4 BCD digits. The function then translates between the I/O and a numeric vari-
able, either integer or floating point.

BCD_In_Convert
The BCD_In_Convert translates between a series of digital inputs and an integer or
floating point variable. The inputs will be taken in hardware consecutive order, and the
number of digits can be on more than one block or card as long as the cards have con-
secutive addresses. Each of the digital input lines must be defined with an english name.

example: a device that will provide a two digit number will have 8
digital lines or inputs, 4 for each digit. Each of those eight
inputs must be defined with an English name.

Another factor for consideration is the order of significance of the digital inputs. Eclips
treats the first input as the Least Significant Bit of the Most Significant Digit. For ex-
ample, lets imagine the above device was going to transmit the number 34 to the con-
troler. The eight inputs would transmit a 3 (0011) and a 4 (0100). Eclips treats the first
input as the least significant bit of the most significant digit. In this case a 1. The next bit
would be 1, then 0, and 0. These four bits make up the most significant digit. The next
bit would be the first bit of the 4 or 0, then 0, then 1 and then 0.

The inputs used to receive the digital number 34 if %I12 is the first input

ÁÁÁÁÁ
ÁÁÁÁÁ

%I12 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

%I16 ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

%I13 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

%I17 ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

%I14 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

%I18 ÁÁÁÁÁ
ÁÁÁÁÁ

1

ÁÁÁÁÁ
ÁÁÁÁÁ

%I15 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

%I19 ÁÁÁÁÁ
ÁÁÁÁÁ

0

3 4

BCD uses the standard binary representation for the numerical digits 0 to 9. There is no
true standard for the minus sign or decimal point character. Therefore the function has
the provision for the User to optionally specify the hexadecimal number, #A, #B, #C,
#D, #E, or #F, (where # means hexadecimal number to ECLiPS), that is the pattern for
these two characters.

7

7-7GFK-1006A Chapter 7 Perform Functions

The function parameters are:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Starting_input ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the English name of the first digital input in the string of
consecutive inputs that form the BCD digits. This input
will be the least significant bit of the most significant digitÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Number_of_BCD_digits
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of BCD digits. The number of digital inputs in
the string will be 4 times the number of digits.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Variable_name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the variable to store the translated value
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Variable_type ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the data TYPE of the variable either integer (I) or float (F)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Minus_sign_pattern ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a hexadecimal number from A to F that gives the pattern
for a digit that should be recognized as the minus sign.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Decimal_point_pat ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a hexadecimal number from A to F that gives the pattern
for a digit that should be recognized as the decimal point.
Note the minus sign and decimal point are optional. A mi-
nus sign can be specified without a decimal point, but if a
decimal point is specified the minus sign must also be spe-
cified.

The state engine will generate a run time error if any group of four bits does not equal
either a number, from 0 to 9 or the minus sign or decimal sign pattern.

Output_BCD_Convert

The Output_BCD_Convert translates between an integer or float variable and a series
of digital outputs. The User will enter the name of the first digital output into the form
as well as the number of digits that are stored in the variable. The User also specifies
the TYPE and name of the variable that the value to be converted is stored in.

The outputs are in hardware consecutive order, and the number of digits can be on
more than one block or card as long as the cards have consecutive addresses. Each of
the outputs must be defined with an English name. Two output a two digit number
eight bits would be required. Each of the eight bits must be defined.

The first digital output will hold the information for the least significant bit of the most
significant digit. If the variable is holding the value of 56 two digit will be sent out with 8
bits of information, 5 (0101) and 7 (0110). The first output will hold the least significant
bit of the 5 or 1, the next bits will be 0, 1, 0. The fifth bit sent out will be the first bit of the
value for 6 or 1, the next bits will be 1, 1, 0.

The outputs used to to send 56 with %q11 being the first output bit

ÁÁÁÁÁ
ÁÁÁÁÁ

%Q11 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

%Q15 ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

%Q12 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

%Q16 ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

%Q13 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

%Q17 ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

%Q14 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

%Q18 ÁÁÁÁ
ÁÁÁÁ

0

5 6

7

7-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

BCD uses the standard binary representation for the numerical digits 0 to 9. There is no
true standard for the minus sign or decimal point or null (space) character. Therefore
the function has the provision for the User to optionally specify the hexadecimal num-
ber, #A, #B, #C, #D, #E, or #F, (where # means hexadecimal number to ECLiPS), that
is the pattern for these three characters.

The function parameters are:

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Starting_output ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the English name of the first digital output in the
string of consecutive outputs that form the BCD dig-
its - all of the other outputs used must be defined.
This will be the Least significant bit of the Most signifi-
cant digit.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Number_of_BCD_digits ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of BCD digits. The number of digital out-
puts in the string will be 4 times the number of digits.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Variable_name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the variable that is to be translated and
output

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Variable_type ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the TYPE of variable either I for integer or F for float
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Minus_sign_pattern ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a hexadecimal number from A to F that gives the pat-
tern for a digit that should be recognized as the mi-
nus sign.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Null_character_pat ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a hexadecimal number from A to F that gives the pat-
tern for a digit that should be recognized as the null
or space character.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Decimal_point_pat ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a hexadecimal number from A to F that gives the pat-
tern for a digit that should be recognized as the deci-
mal point.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Number_decimal_dig ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the number of decimal digits; the digits to the right of
the decimal point, that should be output. Note: If the
Number_decimal_dig parameter is used then the
Decimal_point_pat is not optional and must also be
used.

Note: if the value is too large to display in the Number_of_BCD_digits specified, but
there is enough room for all the digits to the left of the decimal point, those digits will be
displayed and no error will be generated. If there is not enough digits for all the num-
bers to the left of the decimal point, the display will not be output and a non-critical er-
ror will be generated.

Shift_Register

The Shift_Register function allows the User to shift values from one integer variable to
another by a User selected number of bits.

The User can define up to 28 integer variables and connect them together to form a shift
register. The maximum size for the shift register would be 448 bits (28 variables of 16
bits each). The contents of the shift register can be shifted by a selected number of bits
(up to 64) to the right or left.

7

7-9GFK-1006A Chapter 7 Perform Functions

The shift can behave in a circular fashion or in a linear fashion. In a circular shift to the
right the bits from the variable farthest to the right that are shifted off the shift register
are placed into the first bit of the variable furthest to the left. If the shift is a fill type
shift the bits fall off the end and do not circle back to the first integer. In the case of a fill
type shift, the value (0 or 1) that is placed in the locations left empty by the shift can be
specified.

The User defined function parameters are:

ÁÁÁÁÁÁÁNumber_of_bits ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁthe number of bits to shift the registers, 0 to 63ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁShift_direction

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁeither R right or L for left. The direction of the shift.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Type_of_shift
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

either C for circular or F for fill, The way the shift will act
when the last variable is reached.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Fill_value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

either 1 or 0. The value that will be placed in the bits of the
variables that have been shifter in a F or fill type shift. No
meaning in a circular shift.ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Variable_1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the first integer variable and therefore the vari-
able farthest to the left in the shift register.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Variable_2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the second integer variable in the shift register.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Variable_28 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

the name of the 28th or last integer variable and therefore
the variable farthest to the right in the shift register.

Note: only Variable_1 must exist, all others are optional.

String Manipulation

General
The String_Manipulation function is used to perform various functions upon a string
variable. String variables can be up to 80 characters long and often are used for input-
ting data from an ASCII oriented device such as a bar code reader, or outputting to a
similar device such as a scale or robot.

In many cases the 80 characters is not one piece of data but a series of sub-strings each
containing unique data. Thus the ability to manipulate the large strings into smaller
units and to combine small strings and numeric data into large strings is useful. ECLiPS
provides a number of different functions to manipulate data into and out of strings.

ECLiPS will allow exchanging data between variables and the string. Numeric data will
be converted to ASCII or into a numeric data type, depending on the action performed.
String data types can be extracted and inserted as needed. In addition, ECLiPS facili-
tates searching for specific characters (match function) and testing the length of data
strings (length function).

7

7-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

ECLiPS provides a form with the following parameters:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

String_name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The name of the string to manipulate

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Start_character_num ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The number of the starting character used in the string.
The first character is 1.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

End_character_num
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The number of the ending character used in the string.
The last character is 80.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Operation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A character code that defines the operation to be per-
formed (see following section for definition)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Reference_variable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The name of the reference variable to be used in this ma-
nipulation. The variable type required depends on the
Operation and the State Engine generates a critical error
if a mismatch occurs.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Search_Character ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The name of a Character_Variable or the actual character
to be matched by this operation. This is an optional pa-
rameter which only needs to be entered when the match
(M) operation is chosen. More information on Match fol-
lows.

Operations
ECLiPS uses the same form for all of the different string functions, the operations pa-
rameter specifies which operation will be performed at this time. The operation charac-
ter is case dependent. In general, using upper case will write data from the string to a
variable. Lower case, is used to insert a variable value into a string. The operation will
also convert string values into numeric values when writing to the variable, and convert
the numeric variable to ASCII code when writing to the string.

(E) for Extract substring to string variable

If the Operation character is an E, the function will extract from the String_Name vari-
able and place the data into the Reference_Variable as ASCII data. The Reference_Vari-
able must be defined as String data TYPE. Starting and ending characters parameters
determine what will be copied to the Reference_variable.

(s) For store a string variable into the String_name variable

If the Operation character is an ’s’, the function will use the string variable named in the
Reference_variable as a sub-string, and store those ASCII characters in the String_Name
variable. The position of the sub-string is defined by the starting and ending character
numbers. The characters in the string named as the Reference_value will be stored until
the end of that string is reached or until the last character number in the main string is
reached. If the sub-string (Reference_Variable) is too long the sub-string will be trun-
cated.

(I) for Extract from string and convert to Integer Variable

If the Operation character is an I, the function will extract the sub-string defined by the
starting and ending character numbers and convert those ASCII characters into an inte-
ger value and store that value in the Reference_variable. Reference_Variable must be
defined as an integer data TYPE.

7

7-11GFK-1006A Chapter 7 Perform Functions

(i) For Convert integer variable to ASCII And Store In String

If the Operation character is an i, the function will convert the value stored at the inte-
ger variable named in the Reference_variable to ASCII and store that value into the
String_Name variable at the location defined by the starting and ending character num-
bers.

(F) for extract from string and convert to Float Variable

If the Operation character is a F, the function will extract the sub-string defined by the
starting and ending character numbers and convert those ASCII characters into a float
value and store that value at the float variable named in the Reference_variable.

(f) for Convert float variable to ASCII And Store In String

If the Operation character is a f, the function will convert the value stored at the float
variable named in the Reference_variable to ASCII and store that value into the
String_Name variable at the location defined by the starting and ending character num-
bers.

(C) for Concatenate or Add to String

If the Operation character is a C, the function will concatenate or add the string of char-
acters named in Reference_variable to the main string. The resulting main string can not
exceed 80 characters, so the addition of the Reference_variable characters will truncate
any additions to keep the String_name variable to 80 characters.

L for string Length

If the Operation character is an L, the function will calculate the number of characters in
the string, and put that number into the integer variable named by Reference_variable.

M for Match the Given Character with a Character in the String

If the operation character is an M, the function matches the character in the
Search_Character parameter to the first character in the sub-string designated by start-
ing character and ending character values. The position of the first match is returned in
the Reference_Variable.

Errors in General

The functions check to make sure when conversions to or from ASCII are performed
that legal values will result and produce errors if they do not.

Time Counter

This time function is designed to keep track of the elapsed time of an event. The time is
stored in named integer variables that can be examined the same way that any other
integer variable is examined. There are four type of time counters, each one being in-
cremented at a different time period (tenth of a second, second, minute, and hour).
There may be up to 30 each of tenth of a second, second, and minute counters and 10
hour counters active at any time during program execution.

7

7-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The Time_Counter form that ECLiPS displays when this Perform Function is selected,
has three parameters to specify the operation of the function:

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁAction

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁA, E, H, or D to assign, enable, halt, or deallocate. see below

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Integer_Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The integer variable that is functioning as a timer
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Time_Interval ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

T, S, M, H for Tenths, Seconds, Minutes, or Hours. see below

Using a time counter requires a minimum of two perform functions. The first perform
function is used to assign the integer variable named in the Integer_name parameter as
a time counter. The Time_Interval that this time counter will use is specified at this
time. After the integer variable is assigned the counter can be turned on by using the
enable command.

The time interval does not need to be specified with the enable command, the counter
will use the time interval specified in the assign perform function. Enabling a time
counter will begin adding to whatever value is in the Integer_Name variable.

The value in the Integer_Name variable can be tested with conditionals, be assigned
new values, or manipulated with mathematical operators at any time. As long as the
counter is enabled value will be added to it at the specified rate.

Action Specifies how the function is applied to the counter. The data type of this pa-
rameter is character, and it may be specified by a variable or as a constant. A description
of the possible choices for this parameter follow:

‘A’ - Assigns the specified variable to be a counter that is incremented as specified in
the Time_Interval parameter. The variable is incremented only when it is enabled.

‘E’ - Enables a defined counter to begin counting the time interval specified when the
counter is ’Assigned’.

‘H’ - Halts the counter from being incremented. The variable storing the time count
maintains its value. To start counting again this counter must be ’Enabled’.

‘D’ - Deallocates the counter. The variable is no longer a counter, which frees up space
for another counter of that time interval to be ’Assigned’.

Integer_Name Specifies the integer variable name to be used as a time counter. The
named must be defined as an integer variable separately. The variable can be used as
an integer in all ways, through the use of conditionals, assignments, and mathematical
operators.

Time_Interval Specifies what time period must pass before incrementing the counter.
The data type of this parameter is character and is specified by either a variable or a
constant. This parameter is required only if the action parameter is an ’A’(Assign). For
other actions this parameter may be left blank. A description of the possible choices for
this parameter follows:

‘T’ - Specifies the counter to be incremented every tenth of a second.

‘S’ - Specifies the counter to be incremented every second.

‘M’ - Specifies the counter to be incremented every minute.

‘H’ - Specifies the counter to be incremented every hour.

7

7-13GFK-1006A Chapter 7 Perform Functions

IMPORTANT: The maximum value for each of these counters is 32767. After reaching
the maximum, the counter continues counting, first becoming a negative value then
returning to 0 and back positive again. If your counter goes over the maximum value,
use the next higher counter type, for example use a minute counter instead of a second
counter.

VME Communication Functions
The VME functions are used to communicate with modules plugged into the VME rack.
There are three VME functions, one for each of the data types that can be transmitted:

VME_Integer

VME_Floating_Point

VME_String.

Each function can either send or receive data depending on the ACTION parameter.
The parameters for these functions are:

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Action ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Determines whether the function reads or writes data,
enter uppercase only, either R or W.ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

AM_Code
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The address modifier which depends on the module
type and slot location.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

VME_Mem_Low_Word ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Least significant memory address word for the data that
is transmitted.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

VME_Mem_High_Word ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Most significant memory address word for the data that
is transmitted.ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Starting_Variable
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The variable name that is the first memory location of
data that is transmitted.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Total_Variables ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The number of variables to be transmitted.

The Total_Variables parameter is not used for the VME_String function. The
VME_String function used to write a string uses the location designated by the Start-
ing_Variable parameter and sends all of the characters stored in that string variable.
When this function is used to read a string, 80 characters are read, starting at the indi-
cated address location. The characters are placed into the string variable designated by
the Starting_Variable parameter.

For information on addressing the VME module being accessed, contact the module
manufacturer. You may also refer to the GE Fanuc manual, “Guidelines for the Selection
of Third-Party VME Modules”, GFK-0448.

Example

ÁÁÁÁÁÁÁÁÁPARAMETER ÁÁÁÁTYPE ÁÁÁÁÁUSE ÁÁÁÁÁREQUIREDÁÁÁÁÁÁÁACTUALÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁAction

ÁÁÁÁ
ÁÁÁÁChar

ÁÁÁÁÁ
ÁÁÁÁÁConstant

ÁÁÁÁÁ
ÁÁÁÁÁTrue

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁWÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
AM_Code

ÁÁÁÁ
ÁÁÁÁ

Integer
ÁÁÁÁÁ
ÁÁÁÁÁ

Constant
ÁÁÁÁÁ
ÁÁÁÁÁ

True
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

19
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

VME_Mem_Low_Word ÁÁÁÁ
ÁÁÁÁ

Integer ÁÁÁÁÁ
ÁÁÁÁÁ

Both ÁÁÁÁÁ
ÁÁÁÁÁ

True ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

14336
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

VME_Mem_High_WordÁÁÁÁ
ÁÁÁÁ

Integer ÁÁÁÁÁ
ÁÁÁÁÁ

Both ÁÁÁÁÁ
ÁÁÁÁÁ

True ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Starting_Variable ÁÁÁÁ
ÁÁÁÁ

Integer ÁÁÁÁÁ
ÁÁÁÁÁ

Both ÁÁÁÁÁ
ÁÁÁÁÁ

True ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MotorSpeed
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Total_Variables ÁÁÁÁ
ÁÁÁÁ

Integer ÁÁÁÁÁ
ÁÁÁÁÁ

Both ÁÁÁÁÁ
ÁÁÁÁÁ

True ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

256

7

7-14 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The fields that are filled in are italicized. The form filled in as above generates the fol-
lowing instructions entered into the program at the current cursor position.

Perform VME_Integer with
Action=’W ’,
AM_Code=19,
VME_Mem_Low_Word=14336,
VME_MeM_High_Word=0,
Starting_Variable=MotorSpeed,
Total_Variables=256.

Specialized Perform Functions

All off the above functions have specific parameters which are passed to the function.
These parameters are all chosen by filling in similar forms which specify parameter type
and whether or not it is required. The following performs each have unique ways that
the operations are specified. All of the Specialty Perform functions must be the only
Statement in the State.

Display Date and Time
This function displays the current date and time in the desired format. After choosing
this option a form is displayed to enter the Name of the State that is created, the format
of the display, the communications port to send the information and the State to branch
to after the operation is completed.

Get User Input
This function enters program text used to retrieve information through a communica-
tions port. A form is displayed for entering the following options:

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Current State
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Name of the State that is created.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Clear Screen ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Option of clearing the screen before the prompt is dis-
played.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Screen MessageÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Prompt telling operator to enter some information.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Input Variable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Variable that stores the input

ÁÁÁÁÁÁComm Port ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Which port is used.ÁÁÁÁÁÁ
ÁÁÁÁÁÁBranch To State

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ State that becomes active when this process is completed.

User Menu
This function will display a menu of up to 10 items and then wait for the user to enter a
selection. If the selection is valid, it will branch to desired State for that selection. This is
very useful when creating a user interface for the control program.

8 section level 1 1
figure bi level 1
table_big level 1

8-1GFK-1006A

Chapter 8 PID Loops

The Series 90-70 State Engine controller provides the capabilities of modulating control
through the use of the PID algorithm. The Series 90-70 State Engine provides twenty
PID algorithms that are continuously executed at user selected time intervals. These PID
algorithms can be connected to field inputs and outputs, or interconnected in cascaded
and other fashions to implement the desired control strategy.

This chapter describes how to set up the initial PID loop tuning constants and start the
loop running. There are also sections describing how to tune the loop from both the
Debug Mode tuning screen and by program statements. Finally there is a section
describing the PID algorithm and its implementation in this product.

8

8-2 Series 90-70 State Logic Control system – March 1998 GFK-1006A

Initializing and Starting PID Loops

There are several tuning constants and loop parameters associated with each of the
twenty PID loops. This chapter explains how to initialize a PID loop, provides a
definition of the parameters, and how to use program statements to start it running.

PID Initialization Form

Each PID is initialized in the Program mode of ECLiPS during program editing. The
starting parameter values are specified by filling in the PID form accessed through the
LIST menu.

Figure 8-1. PID Initialization Form

Within the PID algorithm, all signals are treated as being 0 to 100%. Each input and the
output and the high low limits, have scaling constants associated with them. Values
given for this parameter are converted to a percentage of the range specified by the PID
scaling constants.

If these constants are left blank at programming time, that input is assumed to be
already 0 to 100%. Values given for this parameter are assumed to be a percentage which
has already been scaled.

By using the scaling factors, the output can be scaled to have a live 0, that is go from
-100% to +100%. This is a valuable tool at times when cascading PID’s and the upstream
PID needs the ability to overcome and move the downstream PID across its full range.

8

8-3GFK-1006A Chapter 8 PID Loops

PID Loop Paramters

The PID algorithm has several adjustable tuning constants. These include the Gain,
Reset and Rate, the high limit and low limit, and a bias value. The bias is a value that is
added to the output at all times and can be used to insure a minimum output from the
PID.

The high and low limits set maximum and minimum values, within the scale maximum
and minimum, that the controller output will not exceed. When these limits are reached,
the appropriate status output is set, and anti-reset windup techniques automatically go
into affect for that PID.

Every PID also can be selected to be either a direct acting or inverse acting controller.
This is a parameter selected at programming time. A direct acting controller will
integrate from 0 to 100% if the setpoint is greater than the process variable. A reverse
acting controller will integrate from 0 to 100% when the process variable is greater than
the setpoint. All other features are exactly the same whether the PID is in the direct or
inverse mode.

The following is a summary of User selected values. These values are all entered in the
PID Loop Configuration form displayed for initializing a PID loop. PID loops are
initialized in program mode using the LIST options from the program mode menu.

8

8-4 Series 90-70 State Logic Control system – March 1998 GFK-1006A

Table 8-1. PID Loop Parameters

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Keyword ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Action Direct
or Inverse

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Loop_Action ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set to D or I to make PID integrate from 0 toward 100% if
the setpoint> process variable (direct acting) or process
variable > setpoint (inverse acting.)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Update TimeÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Update ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Time interval between updates for this PID.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gain ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gain ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain for the PID

ÁÁÁÁÁÁReset ÁÁÁÁÁÁReset ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReset constant for this PIDÁÁÁÁÁÁ
ÁÁÁÁÁÁRate

ÁÁÁÁÁÁ
ÁÁÁÁÁÁRate

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRate constant for this PIDÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Setpoint
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Setpoint value
to use as the
initial value.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Name of the variable acting as setpoint or a

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Setpoint Max.
Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SP_Max ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 100% scale or blank to use
100%ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Setpoint Min.
Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SP_Min
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 0% scale or blank to use 0%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Process Vari-
able

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Process_Var ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Name of the process variable

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Process Var.
Max. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PV_Max ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 100% scale or blank to use
100%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Process Var.
Min. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PV_Min ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 0% scale or blank to use 0%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Control Vari-
able

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Control_Var ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The output of the PID loop - analog output channel or
floating point variable.ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Control Var.
Max. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CV_Max
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 100% scale or blank to use
100%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Control Var.
Min. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CV_Min ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 0% scale or blank to use 0%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bias ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bias ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Amount to be added to the OutputÁÁÁÁÁÁ
ÁÁÁÁÁÁHigh Limit

ÁÁÁÁÁÁ
ÁÁÁÁÁÁHigh_Limit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMaximum allowable value for the OutputÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

High Limit
Max. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

HL_Max
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 100% scale or blank to use
100%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

High Limit
Min. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

HL_Min ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 0% scale or blank to use 0%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Low Limit ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Low_Limit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Minimum allowable value for the Output.ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Low Limit
Max. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LL_Max
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 100% scale or blank to use
100%

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Low Limit
Min. Scale

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LL_Min ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Engineering unit value for 0% scale or blank to use 0%

8

8-5GFK-1006A Chapter 8 PID Loops

Starting PID Loop Execution

The PID Loop is started in the program when the Start_PID keyword is executed during
normal program sweep. For example the statement:

Start_PID Tank_Level.

starts the PID Loop named Tank_Level. Care must be taken that the Start_PID operation
is executed only once by making sure it is scanned only once. Each time the Start_PID
keyword is executed, the loop restarts its calculations with the starting parameter values.

To stop a PID Loop use the Stop_PID keyword. For example the Statement:

Stop_PID Tank_Level with 10.

stops the PID Loop named Tank_Level and sets the output to 10. The ending WITH
followed by a value is optional.

Once the loop is executing, it continues its operation until stopped by the program. The
loop operates in the background not depending on which current States are active or
any other program operations.

8

8-6 Series 90-70 State Logic Control system – March 1998 GFK-1006A

On-Line PID Loop Tuning

To tune a PID loop select the PID Loop option from the Debug Mode menu. This option
is displayed only if there is a loop defined in the project.

The Gain, Reset, and Rate constants can be adjusted to obtain the desired PID
performance, such as speed of response and over shoot. In addition, each PID has a high
limit and low limit that can be set to limit the output to less than its full range when
desired. These limits automatically employ anti-reset windup. In addition the Setpoint
values can be adjusted from the tuning form.

Figure 8-2. PID Tuning Screen

Within the PID algorithm, all signals are treated as being 0 to 100%. Each input and the
output and the high low limits, have scaling constants associated with them. Values
given for this parameter are converted to a percentage of the range specified by the
scaling constants.

If these constants are left blank at programming time, that input is assumed to be
already 0 to 100%. Values given for this parameter are assumed to be a percentage which
has already been scaled.

By using the scaling factors, the output can be scaled to have a live 0, that is go from
-100% to +100%. This is a valuable tool at times when cascading PID’s and the upstream
PID needs the ability to overcome and move the downstream PID across its full range.

Program Control of PID Loops

The PID loop is started in operation by the execution of statements in the program. All
of the parameters that can be adjusted from the tuning form can also be changed from
program statements. There are also control and status bits used in the program to either
sense a condition of the loop or control its operation.

8

8-7GFK-1006A Chapter 8 PID Loops

Program Changes to the Tuning Parameters
The program refers to the loop parameters by specifying the name of the PID loop
followed by the parameter keyword. For example, the ECLiPS program statement:

Make Tank_Level Setpoint = 45.

sets the setpoint of PID loop named Tank_Level to 45.

Any of the parameters including Gain, Reset, and Rate can be adjusted by the program.
This capability allows for flexible control to tune the loop automatically with program
instructions.

Using the Command and Status Bits

There are also PID status and command bits associated with each PID loop. These bits
indicate information about the status of the PID loop or may be used to control the PID
loop. To use these bits in an ECLiPS program, the PID name is used followed by the
keyword for the bit.

The ECLiPS statement:

If Tank_Level High_Limit_Status is true, go to Manual_Mode State.
makes Manual_Mode the active State of the Task if the output of Tank_Level

 PID loop is at the high limit value.

The ECLiPS statement:

Set_Bit Tank_Level Track_Mode.

makes the Tank_Level PID loop tack the output so that there is no error signal.

Table 8-2. PID Command and Status Bits

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Status or Command
Bit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Block_Up ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When this bit is set, the PID does not integrate up for a
positive error signal. Used for Anti_Reset Windup.ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Block_Down ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When this bit is set, the PID does notintegrate down for a
negative error signal. Used for Anti_Reset Windup.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Track_Mode ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When this bit is set, the PID tracks the output so that no
error is calculated. Used for a bumpless transfer to auto-
matic mode.

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

High_Limit_Status ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When this bit is set, the PID output has reached the high
limit parameter or Block_Up for this PID is true. This is a
read-only bit.ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Low_Limit_Status
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When this bit is set, the PID output has reached the low
limit parameter value or Block_Down is true for this PID
loop. This is a read-only bit.

8

8-8 Series 90-70 State Logic Control system – March 1998 GFK-1006A

The Track_Mode input when set, puts the PID loop into a track mode where the output
is not changed by the PID, and the algorithm is set up to perform a bumpless transfer
when the Track_Mode input goes back to being false. This signal would be used with a
Manual/Automatic station to obtain Manual/Auto bumpless transfer.

The other two inputs, PID_Block_Up and PID_Block_Down limit the PID loop to
integrating in only one direction and tracking in the other direction. For example, when
Block_Up is true, the PID is allowed to integrate down, towards zero, when the error
signal, the difference between setpoint and process variable, is negative. If the error
signal is positive however, the output will not change and the integral portion will not be
allowed to wind up. Block_Down works exactly opposite.

These two inputs can be used to provide Anti-Reset Windup when one PID is cascaded
into another PID. If during the course of operation the down stream PID reaches the
point it can no longer integrate in response to the upstream PID’s output, as when it
reaches full scale, then any further integrating of the upstream PID would be counter
productive. These inputs can stop that excess integration in the counter productive
direction while allowing immediate response in the opposite direction which is the
direction that will have an affect on the down stream PID.

Using the Track, Block_Up and Block_Down signals allow the User to build very
sophisticated controls. If all that is needed is a simple single loop controller, these inputs
can be ignored. A more detailed discussion of these inputs and their use is in the PID
Algorithm Philosophy Section.

PID Algorithm and Philosophy

The Series 90-70 State Engine PID employs a traditional algorithm that compares a
setpoint with a process variable to generate an error signal. The error signal is acted
upon by any or all of three parts; proportional, integral, or derivative, and the resulting
output is the action that should be taken by the process actuator.

Each of the three parts has a tuning constant associated with it that can be adjusted to
affect how the control action occurs. The Proportional part or term uses the Gain tuning
constant. Its result is simply the product of the error, the difference between the process
input and the setpoint, multiplied by the Gain. It is an instantaneous value that changes
as the error changes.

The Integral term uses the Reset tuning constant. Its result is an accumulation of the
product of the error signal times the Reset over time. Even though an error signal is
currently zero value, the integral portion may provide a result because previous error
signals have accumulated.

The Derivative term uses the Rate tuning constant. The derivative term’s result
immediately allows an error signal to have its full effect, then returns the term’s value to
zero as time goes on. The amount of the Derivative term output for a given error and
the rate it decays is affected by the value of the Rate tuning constant.

The total output of the PID is the sum of the results of the three terms. Figure 1 shows a
simplified diagram of the algorithm. Typically the Proportional and Integral terms are
used more often alone without Derivative because this provides a more stable control
performance. The Derivative term allows more anticipation and quick response, but at a
penalty of possible over response and undesirable process disturbances.

8

8-9GFK-1006A Chapter 8 PID Loops

Setpoint

Input

Propor tional
Term

Integral
Termn

�

�

�

�

� Derivative
Term

Σ�

�

�

� Gain

Bias

Output� Σ �

�

a80023

Figure 8-3. PID Algorithms

When the process variable differs from the setpoint, such as at the time of a step change
in the setpoint, the proportional term immediately causes the output of the controller to
change. As time passes the integral term integrates the controller in the same direction.
The action of the controller hopefully brings the process variable closer to the setpoint.
This causes the error to become smaller and decreases the proportional term, but the
integral term continues to increase as it adds on the error signal over time.

Ultimately the process variable equals the setpoint and the error is zero causing the
proportional term’s value to be zero. In addition, the integral portion is no longer
changing because the error is zero, therefore the controller output remains constant
equal to the value the integral term accumulated. Any changes in process variable or
setpoint cause an error and the controller will integrate to adjust the output to bring the
system to equilibrium.

The addition of the derivative term, makes the controller react more extremely when the
error is first detected. Then as a function of the Rate tuning constant, this reaction decays
out allowing the integral term to bring the system into balance and remove the error.

Simple PID Control

Many applications only require a simple PID loop to achieve the desired control results.
A process variable represented by an analog input is compared with a setpoint with the
output of the PID controller being directly sent to a field actuator by means of an analog
output.

To set up this simple loop, the User needs only choose the “Define PID” function from
the “Define” menu in ECLiPS. The User then enters the name of the analog input, the
name of the analog output, and the various initial settings for the tuning constants.

The setpoint and tuning constants can be changed while the process is on line by using
the “Tuning” function in either the Debug mode of ECLiPS or OnTOP.

Complex PID Control

In some cases a more complex strategy using PID algorithms may be desired. Rather
than the output of the PID going directly to an analog output, a cascaded PID strategy
can be used in which the output of one PID goes to the input of another PID.

8

8-10 Series 90-70 State Logic Control system – March 1998 GFK-1006A

Process Variable 1

Setpoint 1

Process Variable 2 Manual/Auto
Station

PID 1
PID 2

�

� �

�
� �

a80024

Figure 8-4. Cascaded PID Loops

In this example PID 1 compares process variable PV1 with the desired setpoint. The
output of that controller is then fed into PID 2 as a setpoint and is compared with
process variable PV2. Generally the second PID (PID 2) called the downstream PID, will
be tuned to have a faster response time. It will act first to move the controller quickly in
the right direction, and then the slower acting upstream PID will act to integrate out the
error between the control variable and its desired setpoint.

The PID algorithm can use an analog input as its input, as in the case of PID 1 or any
floating point variable. In the case of PID 2, the input to PID 2 can be defined as the
output of PID 1. Likewise the setpoint can be a constant, or a named variable or as in this
case, an analog input. To set this strategy just use the “PID Define” menu and name the
input and setpoint as described in Section .

Bumpless Transfer
Figure 2 also shows a Manual/Auto station between the PID output and the actual
analog output card. This station allows the User to place the station in Manual, and then
by means of Raise and Lower push buttons, change the actual value of the Manual/Auto
output. In the Auto mode, the value of the Manual/Auto station is equal to the output of
the PID.

When the M/A station is in Manual, the station value can and usually will be forced to a
value other than one that will make the setpoint equal the process variable input. If the
PID followed its normal operation, the integral term would continue to integrate
because of the error signal between the process variable and setpoint. This would leave a
difference between the PID output, which is the Auto input to the M/A station, and the
actual M/A output. Then when Auto mode is selected, this difference would cause a
jump or bump in the M/A output. This would upset the process and is desirable to avoid.

To prevent this bump from happening, the PID needs to have another mode of
operation besides its automatic mode. In this mode, called tracking, the PID output will
be maintained at what ever value it is set to, such as the M/A output in this example. The
PID will not perform its normal arithmetic, but will instead set itself so that when
tracking is removed, the PID output gradually goes to the proper value and avoids the
bump. This is called bumpless transfer.

Each of the twenty PID algorithms have logical signals associated with them that use the
name Track_Mode and the actual PID name. As an example, if the User named the first
PID algorithm Tank_Level then the logical signal would be called Tank_Level
Track_Mode. When Track_Mode is made true, then the PID automatically discontinues
its normal algorithm, and begins tracking its output and preparing for bumpless transfer.

The User can set the Track_Mode variable from any active State. Using this variable, the
User can create any tracking strategy he desires.

8

8-11GFK-1006A Chapter 8 PID Loops

Anti-Reset Windup
Using a cascaded PID strategy can cause the User some subtle problems. In the example
shown in Figure 2, if PID 2 has reached its maximum and PID 1 still has an error signal
because the setpoint does not equal PV1, then PID 1 would continue to integrate. The
output of PID 1 would continue to increase, but it would have no affect on PID 2 since it
is already at its maximum. However when the error signal of PID 1 reversed direction
and caused PID 1 to begin integrating in the opposite direction, PID 1 would have to
integrate below the threshold value it was when PID 2 reached its maximum before it
would have any affect on PID 2. This excess amount of output PID 1 has accumulated is
commonly referred to as reset windup.

The upstream controller, PID 1, needs to be prevented from winding up. An input called
Block_Up will transfer the PID algorithm into a mode such that it will not integrate in
the Up, towards 100%, direction. This is called anti-reset windup.

The PID will still be able to integrate down if the error signal reverses direction. That is,
if the process variable is less than the setpoint the PID will not integrate up. If the
process variable becomes greater than the setpoint the PID will integrate down. The
Block_Down input works exactly opposite.

In the case of Figure 2, if the setpoint for PID 1 is greater than PV1, PID 1 output will
continually increase. This is the setpoint for PID 2 and assume it is already greater than
PV2 and PID 2 has reached its high limit. There is no profit in PID 1 output getting larger
since PID 2 can not respond to its demand, PID 2 is already at its limit. Therefore the
User should set the PID_1 Block_Up input true and stop the PID from winding up
further.

Then when either PV2 increases or the high limit on PID 2 is changed which will allow
further action by PID 2, the PID_1 Block_Up input can be set false and PID 1 can resume
integrating. Or if PV1 rises above the setpoint in response to the control action, PID 1
will begin integrating the output of PID 1 in the lower direction which is permissible.
When PID 1 output falls below the input PV2 into the downstream PID 2, PID 2 will
integrate down below its high limit and remove PID_1 Block_Up and return the
complete loop to normal.

Using the Block_Up and Block_Down inputs any amount of cascading of PID’s can be
accomplished without reset windup occurring and with bumpless transfers from one
mode to another.

9 section level 1 1
figure bi level 1
table_big level 1

9-1GFK-1006A

Chapter 9 On-Line Features

This chapter describes the features that are used to work On - Line with the controller.
ECLiPS controls the On - Line conditions of the controller through the use of Debug
Mode. Debug Mode is accessed from the Main Menu or by pressing <F10> from the
Program Mode or selecting the “Debug Mode” option from the main menu..

Debug Mode is used to observe or change the current State of a task, the value of a
variable, or the condition of an I/O point. In addition the program can be viewed and
downloaded, faults inspected and cleared, data logged to printer or to disk, and
simulation mode status changed.

9

9-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Debug Mode Display Screen

The Debug Mode Display Screen is the main interactive link between ECLiPS and the
State Engine. The top of the screen displays which project is being run in the controller.
At the bottom of the screen directions for use and control keys are displayed. The screen
is split into three windows.

The largest window, the Terminal Log displays any communication to or from the
controller. Communication history can be accessed by pressing the up arrow key. The
lower right corner of the screen displays the Controller status, Running, Halt, or No
Comm Connect. It also displays Forced if any variables are being forced. The lower left
corner of the screen displays any run time errors generated by the State Engine.

Several of the features used in ECLiPS temporarily replace the Terminal Log. While
maintaining the same border, a different heading is displayed in the upper left corner of
the Terminal Log border. The keyboard stops responds to a different set of commands
listed across the bottom bar of the display. To return to the Terminal Log press <ESC>.

The Debug Mode Menu is accessed by pressing the <F3> key. All of the features and
functions of the Debug mode can be controlled through the Debug Mode Menu. There
are a number of Hot Keys that can be used to initiate frequently used commands
directly. The help menu can be accessed by pressing the <F1> key at any time. The
help is context sensitive and will provide help on the area being used.

Controlling the Project

The Project option under the Debug Mode Menu controls the project in the controller.
The Run the Program and Halt the Program options are used to control the status of the
State Engine.

Logging Data

All of the text displayed in the Terminal Log may also be logged to the hard drive of the
ECLiPS computer. A hard copy can also be generated by sending the data to a printer
connected to the parallel port, LPT1.

To log data from the program, use WRITE TERMs to send data to the ECLiPS Port. This
data is displayed in the Terminal Log and therefore can be captured by the logging
functions. When logging to a hard drive, a file is specified. If the file already exists, the
file can be either overwritten or appended.

Process Simulation

Simulation mode can be toggled on or off from the PROJECT Menu. When simulation
mode is on, the State Engine does not interact with the I/O. Outputs are not sent to the
output modules and inputs from the field are not seen by the program.

This function is used to test programs without connecting to real world I/O. Inputs may
be controlled with the force function. A very useful way to control the inputs is writing
a simulation Task that turns on the inputs just as the real world machine would. Contact
Adatek for an application note on simulation.

9

9-3GFK-1006A Chapter 9 On-Line Features

Download a Project
The download option can be used to download a new project to the State Engine
without leaving Debug Mode. The current project in the controller must be halted
before a new project can be loaded with this operation.

Reset and Clear State Engine
The “Reset and Clear the State Engine” option on the PROJECT menu is used to clear
the State Engine Program Memory Area and to set all configuration parameters to the
default condition. After this operation ECLiPS displays two choices, download a project
or return to Program Mode.

Observing State Engine Values

There are four menu options to observe State Engine data from the debug mode:
Monitor Tables, View, Trace, and Display Data. Monitor tables provide a real-time view
of a limited number of variables. The View option displays the program allowing the
value of the word at the cursor to be displayed. The trace is used to track the transitions
from State to State in the State Engine. Display data is a quick way to get a snap shot of
the data of a single data point.

Monitor Tables
The monitor command is used to create, display, modify, and delete monitor tables. A
monitor table is an ongoing display of current values of selected elements. The
conditions of these elements are displayed below the Terminal Log. Six elements from
the following list can be combined to make a monitor table:

String and Character Variables

Digital Points

Internal Flags

Analog Channels

Numeric (Integer and Floating Point) Variables

Reserved System Variables (Time, Date, Etc.)

Current State of a Task

Each Monitor table can show information for up to 6 data elements. There can be a total
of 10 different monitor tables, although only one can Monitor table can be shown at a
time. If the user wishes to view a different Monitor Table the Select Monitor Table option
should be used.

Monitor tables can be added, modified, or deleted through the use of the commands in
the Monitor Menu. The bottom of the screen will provide instructions on which keys to
use to accomplish these tasks.

The Clear All Monitor Tables command can be used to clear all of the settings for all of
the monitor tables. Remove the Current Monitor Table will eliminate the settings for
only one monitor table.

9

9-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

View
The View is a very versatile way of observing the operation of the State Engine. The
View feature allows viewing of; the State Logic Program English text, system
information, or the current state of all the tasks. When using the View command, the
Terminal Log is replaced with the View Screen. In order to return to the Terminal Log
the user must press <ESC>.

The View English text option displays the State Logic program text while still in Debug
Mode. Features in the View English Text mode are accessed through the <Alt + F> Key.
The search feature looks for particular words or tasks. Placing the cursor on a variable
name will give the value of that variable. If the cursor is located on a task name, the
current state of that task is displayed and can be changed.

Variable and Digital I/O values can also be displayed and changed from the View English
Text Mode. Place the cursor on the desired word and use the <Alt + F> option.

The View Event Queue command will give the user information about the controller,
such as: Run, halt, power up, run time errors, etc. The information is time and date
stamped. The version of the State Engine is also displayed here.

System Status information, Scan rate, and memory usage can be shown using View
System Status. The scan rate information specifies the average scan rate over the last
1000 scans. If the scan time is displayed as 0ms then the State Engine has not had
enough time to complete a thousand scans. Wait awhile and try again.

The current state of every task can be shown using the View command. This display
contains real-time information so the State information is updated as the data changes.
This option is a very powerful troubleshooting and debugging tool. The current States
provide important information about what the process is currently doing.

Trace
The Trace is a history of the most recent program State transitions. This option allows
the display of the history of State transitions on the screen for all tasks or selected tasks.

The Trace display is stored in a file that may be printed by using the Program Mode
“Print Project Data” option from the PROJECT menu. The transitions are displayed
sequentially, most recent items at the top. The display shows that Task name, the
starting and destination State and the time that the transition occurred. The cursor can
be moved down through the trace or use the <ALT + F> key to search for information.

The Trace can be customized to trace the transitions in specified Tasks only. By limiting
the Tasks, transitions in irrelevant Tasks can be prevented from filling up the Trace
display.

Display Data
ECLiPS allows the user to observe the value or condition of any variable or task through
the Display command. When using the Display command the user selects the data type
and the variable he wishes to observe and the value or condition will be displayed to
the Terminal Log.

Faults
ECLiPS allows the user to observe and clear the PLC fault tables. The PLC fault table
will display information such as “module hardware fault”. The I/O fault table will show
any faults in the PLC I/O system.

9

9-5GFK-1006A Chapter 9 On-Line Features

Changing State Engine Values

There are three functions used to change data values in the State Engine. The View
English Text can be used to change data values, and is covered under the Observing
State Engine Values section.

Change Variable Data

The Change Data option can be used to change the value of string, character, and
numeric variables. The Change command can also be used to change the current State
of any Task. When the change command is used a message is sent to the Terminal Log,
showing what change was made.

Force Inputs and Outputs

This feature allows the user to force digital I/O, Internal Flags, and Analog Channels to
desired conditions. When forced, inputs ignore real world sensor signals and outputs
ignore program instructions. To change a forced condition, use the force option to
change the data or to remove the forces. After the force condition is removed, the input
values returns to the real world status and the outputs are again controlled by the State
Logic program.

On-Line Hints

The structure of State Logic programs makes the key to trouble shooting and debugging
programs is to concentrate on the current States of the process. By knowing the current
States, you know what part of the program is executing and therefore which outputs are
ON, and what conditions must be satisfied to move to the next stage of the process.

When the program is running a powerful tool for watching the process is to have the
current State of every Task displayed on the screen. This display is available from the
VIEW menu by choosing the “View Current State of Each Task”. This screen provides a
view of the status of the entire process.

To troubleshoot dynamic problems use the Trace function . The Trace shows a history of
State changes including a time stamp for each change. This function shows timing
comparisons between Tasks and actual State changes even though the changes happen
too fast to physically see the change.

When the system has stopped for some unknown reason, check the current State of the
Tasks to zoom into the section of the program that is responsible for current activities.

10 section level 1 1
figure bi level 1
table_big level 1

10-1GFK-1006A

Chapter 10 Serial Communications Module

Ths chater describes the Serial Communications Module (SCM), which is a separate
module that inserts into the series 90-70 backplane. This module provides serial ports to
the 90-70 State Logic Control System for RS-232, RS-422/485 communications. These
ports may also be used for CCM communications. This chapter describes the module
hardware and the State Logic programming that uses these serial ports.

10

10-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Overview

The Serial Communications Modules (SCM) occupies a single slot in the Series 90-70
backplane. The SCM provides serial ports for serial communications with the Series
90-70 State Engine.

Each SCM provides two serial ports, each capable of either RS-232 or RS-422/485
communications. There can be up to four SCMs in the 90-70 State Engine control system
providing up to eight serial ports. One of those eight ports can use the CCM protocol to
communicate with a host computer running a SCADA package or some custom level 2
software.

This chapter provides infomation about how to connect, configure, and install the SCM.
There is also information on programming access to the ports and how to use the CCM
port.

Serial Cables
The following drawing shows the pin assignment for the Serial Communications
Module ports. Both ports use the same design.

ÎÎÎ
ÎÎÎ
ÎÎÎ

ÎÎÎ
ÎÎÎ
ÎÎÎ

a42734ÎÎÎ
ÎÎÎ

ÎÎÎ
ÎÎÎ

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RS-232 DTR

RS-485 SD (B)

RS-485 RTS (B)

RS-485 CTS (B’)

TERMINATION (RD)

RS-485 RD (B’)

SHIELD

RS-232 TD

RS-232 RD

RS-232 RTS

RS-232 CTS

RS-232 DCD

2

1

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

14

Figure 10-1. Serial Port Assignments for Series 90-70 SCM

NOTE: In the drawing above, the SD (Send Data) and RD (Receive Data) connections
are the same as TXD and RXD used in other terminologies. (A) and (B) are the same as -
and +. A’ and B’ denote inputs, and A and B denote outputs.

The (SCM) is designed to communicate to a device with a standard AT serial port such as
most IBM PCs using the GE Fanuc standard PCM to IBM-PC cable, part number
IC697CBL702. If hardware flow control is not used the industrt standard null-modem
cable may be used. Use the GE Fanuc RS-422/485 serial cables if RS-422/485
communications are used.

10

10-3GFK-1006A Chapter 10 Serial Communications Module - SCM

SCM

ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

a45088ÎÎ
ÎÎ
ÎÎ

3PL

4PL

PC-AT

RS-232
(DEFAULT PORT)

IC690CBL702

PIN PIN a42832

SCM
25-PIN

CONNECTOR

AT
9-PIN

CONNECTOR

SHLD
TD
RD
DCD
CTS
DTR
GND

1
2
3
8
5

20
7

DCD
RD
TD

DTR
RTS
CTS
GND

1
2
3
4
7
8
5

Figure 10-2. IBM PC-AT to SCM Cable

If connecting the SCM to Workmaster II or PS/2, use the GE Fanuc PCM to Workmaster
cable, part number IC697CBL705.

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

a45093Î
Î
Î

3PL

4PL

WORKMASTER II

RS-232
(DEFAULT PORT)

IC690CBL705
SCM

SCM

a45089

2
3
4
5
8
9
7

TD
RD

RTS
CTS
DCD
DTR
GND

PIN PIN

25- PIN
FEMALE

25- PIN
MALE

WORKMASTER II
AND

IBM PS/2

25- PIN
FEMALE

RD
TD
CTS
DTR
DCD
SHLD
GND

3
2
5

20
8
1
7

Î
Î
Î
Î

Î

Î
Î
Î

Î
ÎÎÎ

Î
ÎÎ
ÎÎ

Î
Î
Î
Î

Î

Î
Î
Î

Î
ÎÎÎ

Î
ÎÎ
ÎÎ

25- PIN
MALE

Figure 10-3. Workmaster II or PS/2 to SCM Cable

SCM Fundamentals

The SCM must occupy one of four specific slots in the Series 90-70 PLC rack 0. The SCM
serial ports are numbered 1 - 8, with the port number being determined by the slot
location of the SCM. There are two ports on each SCM with the lowest number port for
each slot being the port at the top, closest to the LEDs.

Table 10-1. Slot Number to Serial Port Number Correlation

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Slot Number
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Port Numbers

ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 & 2

ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3 & 4

ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5 & 6

ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7 & 8

10

10-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The SCM must be inserted into one of four slots (2 - 5) in the Series 90-70 rack 0. The
following screen capture shows four SCMs in the 90-70 chassis, as displayed by
Logicmaster.

924

Figure 10-4. SCMs in Series 90-70 Chasis

For the 90-70 SCM all the slots between the SCM and 90-70 State Engine must be
occupied by an intelligent module that passes interrupts. .

The State Logic program communicates through the serial ports using WRITE and READ
terms. For example:

State: Get_Setpoint
Write “Enter New Setpoint” to Operator_Panel.
Read SetPoint1 from Operator_Panel, then go to Check_Setpoint State.

The Write Term sends the string of characters, “Enter New Setpoint”, to the port defined
as the Operator_Panel. This same port is then monitored for input by the Read Term in
the next Statement. The variable Setpoint1 is set to the value entered through the
specified port.

In this example the WRITE and READ term information is directed to a particular port.
Operator_Panel in this case is defined in ECLiPS as a specific serial port. The port name
is tagged to the appropriate port (1 - 8) using the “Communication Ports” option from
the LIST menu or from the “System Configuration” option of the DEFINE menu.

The Read and Write Terms may also be used without being directed to any particular
channel, for example:

State: Choose_Recipe
Write “Enter Recipe Number”.
Read Recipe_Number, then go to StartBatch State.

10

10-5GFK-1006A Chapter 10 Serial Communications Module - SCM

Since no port is specified in this example, information is sent to the programming port
using ECLiPS or OnTOP as an operator interface. For a more detailed discussion of
programming serial input and output, look up the READ and WRITE terms in the
Programming Instructions chapter.

Installation and Maintenance

This section describes the SCM physical attributes. Included are a description and
drawing of the module, installation and configuration instructions, and battery
information.

Description

a45122

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎ
ÎÎ

Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î

Î
ÎCURRENTLY

INSTALLED
BATTERY

CONNECTOR

SCM

EXPANSION
MEMORY
BOARD

IC697MEM713
IC697MEM715
IC697MEM717
IC697MEM719

OPEN
REPLACEMENT

BATTERY
CONNECTOR

STATUS

PORT
1

PORT
2

RESTART

Figure 10-5. Serial Communications Module

10

10-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

There are three LED indicators located at the top front edge of the SCM. The top LED is
the status indicator for the SCM and the other two are not used. During power-up this
LED flashes while the SCM is running its diagnostic checks. If this LED is off, either the
power is off, there is some hardware malfunction of the SCM, or there is no CPU present
in the Series 90-70 PLC system. When the LED is on, the SCM is functioning normally.

The SCM comes with a battery to maintain memory when power is removed. This is a
lithium battery which is installed as shown in the SCM drawings. When the battery
reaches a low charge, this condition is reported to the PLC fault table. The battery circuit
preserves the serial port parameter settings in memory for the SCM whenever there is
no power to the module. If the battery is too low to maintain memory, the parameter
settings are returned to their default state when power is restored.

Each SCM also comes with a reset switch. When the reset button is pressed for less than
5 seconds, the SCM behaves as if power were lost momentarily. Do not press the reset
switch continuously for more than 5 seconds. If the reset is pressed for more than 5
seconds, power must be cycled to the SCM before it restarts correct operations.

Installation

The SCM must be installed one of four slots, numbers 2 - 5. The slot used indicates the
port number referenced in the program. There are two ports on each SCM with the
lowest number port for each slot being the port at the top closest to the LEDs.

Table 10-2. Slot Number to Serial Port Number Correlation

ÁÁÁÁÁ
ÁÁÁÁÁ

Slot NumberÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Port Numbers

ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 & 2

ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3 & 4

ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5 & 6
ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7 & 8

For the 90-70 SCM all the slots between the SCM and 90-70 State Engine must be
occupied by an intelligent module that passes interrupts. If any slots between are empty
the SCM cannot communicate with the CPU.

Inserting the SCM

Follow these steps to insert the SCM into the Series 90 rack:

1. Power down the Series 90 PLC system
2. Locate the desired slot.
3. Slide the 90-70 SCM completely into the slot.
4. Press down firmly to lock the module in place, but do not use excessive force.
5. Power up the PLC rack. The Status LED flashes during power-up diagnostics. The

LED comes on steady when the SCM is ready for operations.

10

10-7GFK-1006A Chapter 10 Serial Communications Module - SCM

Configuration
Use the Logicmaster 90 configuration software to add the SCM to the Series 90 I/O
configuration. This software is used to describe the modules present in the PLC racks.
Rack and slot location and other features for each module are entered by completing
setup screens that describe the modules in a rack.

924

Figure 10-6. Sample Logicmaster Configuration Screen

From the main menu of the Logicmaster 90 configuration software, press I/O <F1>.
The screen displays a representation of the modules in a rack. To add an SCM to the
configuration, highlight the desired slot, then press Other <F8> and then PCM <F1>.

Now press Zoom <F10> to view the current configuration. Press <Enter> to enter the
highlighted catalog number and display the PCM detail screen.

Now set the Configuration Mode to PCM CFG for the 90-70 SCM. First highlight the
Config Mode option and repeatedly press the <Tab> key until PCM CFG is displayed
on the screen. The serial ports are under program control and the parameters are
initialized by the 90-70 State Engine each time the program is downloaded to the engine.

Now press the <Esc> key to save the configuration and return to the rack display. The
display should now show a PCM in the correct slot. Send the configuration to the PLC
CPU and the configuration is complete.

Battery
The State Logic Processor comes with a 3 volt lithium battery (IC697ACC701) to maintain
memory through a power cycle. If the battery charge becomes low, a fault is set in the
fault table. These faults can be viewed and cleared from Debug Mode or OnTOP.

To replace the battery, connect the new battery to the extra set of battery connections
then disconnect the old battery. A Product Safety Data Sheet for the battery is available.
Order from GE Fanuc using number GFK-0633.

10

10-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Serial Port Parameters

When first powered up the parameters for the serial ports are set to their default
settings. These parameters control different aspects of how the ports interact with the
serial devices connected to them.

Parameter Details

Table 10-3. Serial Port Parameters
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Settings ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Baud Rate ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

19.2K - 300 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data Transfer Rate
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Utilize XON/XOFF
Protocol

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Software Flow Control

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Data Bits ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

8, 7 or 6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of bits per transmitted chara3cter
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Parity ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Even, Odd, None ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Error checking
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Stop Bits ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2, 1, or 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Number of bits indicating end of character data
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Auto Echo ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Every character received is immediately transmitted
out the transmit line

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Receiver Always
On

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N

.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If the receiver is OFF any characters sent are ignored.
The default setting for this parameter is for the re-
ceiver to be OFF unless a READ term is executed in
the program. When the receiver is Always ON, data
received when there is no active READ is saved for
the next READ that is executed

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Stop Transmit on
Receive

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

All transmission of charcters is stoppe when charac-
ters are being received.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Respond to
Backspace

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

When a backspace character is received the previous
character received is deleted. When disabled the
backspace character is merely saved as other charac-
ters would be.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Issue LF After CR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A line fee is sent after every carriage return.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

End of Message
Character

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Hex 0D
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The ASCII value of the character that indicates that a
message is (Carriage complete. When the en of mes-
sage character is received the previously received
characters are assigned to the READ variable and GO
term following the READ is executed.ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CCM ID #, Non
Zero Enables CCM

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

 - 90
.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CCM protocol provides for networking several de-
vices. Each device has a unique ID number.
0 = CCM disabled

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Enable Hardware
Handshaking

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hardware flow control.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Enable RS422/485 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Each port may use either RS-232 or RS-422/485 com-
munications standards.

10

10-9GFK-1006A Chapter 10 Serial Communications Module - SCM

These parameter options affect the SCM serial port configuration only, not the ECLiPS or
OnTOP programming port setup. The parameters for the programming port cannot be
changed. The default settings are shown in bold type.

Changing the Parameter Settings
There are two ways to change the serial port parameter settings. The first method is to
modify the serial port configuration form which causes the port parameters to be set
when the project is first executed after a download. The second method is to change the
ports from the State Logic program function Set_Commport.

Filling in the Port Configuration Form
To change the serial port parameter settings, fill in the configuration form. Access this
form through either the DEFINE or the LIST options on the Program Mode menu. From
the LIST menu select the “Communication Ports” option. Highlight the desired port
from the list and and press the right arrow key to display the serial parameter form.

Access to the parameter setup form through the DEFINE menu requires that the
Logicmaster configuration be imported into ECLiPS by first using the “Retrieve
Logicmaster Configuration Data” option. Next use the “System Configuration” option to
view the configuration dat. Highlight the slot of the SCM module to be configured and
press <Enter> to bring up a menu of options. Select the “Configure Comm Ports”
option.

Figure 10-7. Sample Port Configuration Screen

The form displays options for two ports at a time. After modifying the parameters press
<F9> to save the settings. These settings are sent to the State Engine when the project
is downloaded. The State Engine sends the configuration information to the SCMs the
first time that the program is starte running after a download.

The parameters are saved over a power cycle since the SCM RAM memory is maintained
by the SCM battery. If there is a problem with the battery and the parameters are lost,

10

10-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

they will be reset to their default settings. The parameters may be reset again by
downloading the project again. The State Engine sends new serial port configuration
the first time the project is run after a download.

Program Changes to the Parameters
The serial port parameters may be controlled from the State Logic program. To change
these settings from the program use the Set_Commport function.

ECLiPS provies an easy way to enter the Set_Commport function into the program. First
set up the parameter options using the forms discussed in the previous section. Now
place the cursor where the function is to be entered in the program an select the
“Communication Ports” option from the LIST menu. Highlight the port to be changed
and press <Enter>. Select the “Insert Reconfiguration Data for Port” option and press
<Enter>.

The Set_Commport function call is automatically entered into the program that changes
the parameters to the settings chosen in the parameter form. The parameters may be
changed as often as necessary by the program. Once the changes are made, the settings
remain set even over a power cycle.

CCM2 Protocol Serial Port

CCM2 protocol is a standard open communications protocol defined by GE Fanuc and
documented in their manuals. The State Engine will act as a slave in a master-to-slave
architecture and responds to valid CCM2 messages. The remote master computer must
poll to retrieve data from or to enter data into the State Engine. The CCM2 protocol
defines the message structure, framing, error checking and handling, and timing for all
message types.

Enabling CCM2 Communication

Any of the eight possible Serial Communications Module (SCM) ports can be designated
the CCM2 Communications port. Select the CCM port designation from the SCM
configuration options. These options are available using the “Communications Ports”
option from the LIST menu or from the PLC rack display shown in the “System
Configuration” option from the DEFINE menu. Select only one of the eight ports to be
the CCM port.

The State Engine under CCM2 will only recognize and respond to messages sent to its
address, which may be any number from 1 to 89. The default address is 0 which disables
use of the CCM protocol. Any non-zero value enables CCM protocol for that port. The
Station Address should be assigned to match the number the Remote Master expects
and should be validated or assigned before CCM2 protocol communications is enabled.

CCM Data Types

The CCM2, as well as many other standard protocols, were designed for communication
with PLCs. To access State Engine data, the CCM host computer must identify each data
element with a CCM number and a CCM type. The types of information accessible from
the State Engine plus the respective CCM information are listed in the following table.

10

10-11GFK-1006A Chapter 10 Serial Communications Module - SCM

Table 10-4. State Engine Data Types and CCM References

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁData Type

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCCM Type

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁCCM NumberÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁTask Current State
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ9501 - 9756ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁAnalog Input
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ1 - 1024ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁAnalog Output
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ1025 - 2048ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PID Loop Parameters
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

4001 - 5000ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Integer Variables
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

6001 - 7000ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Floating Point Variables
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

7001 - 8000

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

String Variables ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

8001 - 8100

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Character Variables ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

9001 - 9064

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Discrete I/O ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 - 45312

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Digital Input ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 - 12288

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Digital Output ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

12889 - 24576

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Internal Flag ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

24577 - 36864

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

% T ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

36865 - 37120

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Global Digitals %G, %GA,
etc

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

37121 - 44800

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

System Digital %S, %SA,
%SB, %SC

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 -

The State Engine assigns this CCM information to each data element in the program. To
access this information use the “Print” option of the Program Mode Project menu. The
CCM information about each data element of the State Logic program is displayed by
the printout. The following is a sample of the CCM information print out:

Table 10-5. Digital Point Names

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type #
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CCM Number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Forward_Limit_Switch
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Discrete Input
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

36
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Pump_A_Starter
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Discrete Output
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

12289

Table 10-6. Internal Flag Names

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type # ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM Number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Part_ID_Read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Discrete ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

24577

Table 10-7. Analog Channel Names

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type # ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM Number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Lube_Oil_PressureÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

65

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Oven_TemperatureÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

121

10

10-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Table 10-8. String Variable Names
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type #
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM Number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁBar_Code_1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁRegister

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ8001

Table 10-9. Integer Variable Names
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type #
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM NumberÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Finished_Parts
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

6001

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Part_ID ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

6002

Table 10-10. Floating Point Variable Names

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type # ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM Number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Oven_Baking_TimeÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

7001

Table 10-11. PID Loop Names
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Name
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM type #
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CCM Number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Tank_Level
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4001

Table 10-12. Task and State Names
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁTask Name

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCCM type

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCCM type #

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCCM NumberÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁStart_Sequence
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁRegister

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ9501

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

State Name ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

State Number
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

PowerUp ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Check_Conditions ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Start_Pump ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3

Each message from the Master of the CCM network specifies the type, starting register
and total number of bytes to be read or written. The Master needs to specify the correct
number of bytes depending upon the type of variable. The byte count and other
considerations for each of the data types follow:

Task Current State The value stored in the designated register represents the
current State of this Task. Current States can be changed and monitored using the
CCM protocol. This value uses 1 register or 2 bytes in a CCM message. The inactive
State is represented by a value of 0. Warning: If an invalid number is written to put
a Task into a State that does not exist, the program continues to execute but that Task
does nothing.

Integer Variables This data type uses 1 register or 2 bytes in a CCM message

Floating Point Variables These values use 2 registers or 4 bytes of space and are stored
in IEEE format. To use these values the host computer must be able to interpret the
4 bytes as an IEEE floating point number.

10

10-13GFK-1006A Chapter 10 Serial Communications Module - SCM

Digital Inputs/Outputs These points are represented by the right most bit of the
transferred byte. A 1 represents ON and a 0 represents OFF. Note that since digital
points are OFF by default, an output set ON with CCM will only be ON for one scan
and then State Engine operating system turns it OFF.

Internal Flags Internal flags are now a sub set of the Discrete Output. They
will function like the Digital Inputs/Outputs

Analog Inputs/Outputs Analog I/O are floating point values and therefore require 2
registers or 4 bytes. The host must be able to interpret this value as an IEEE floating
point number. Analog channels designated high speed channels are integer in-
formation using only 2 of the 4 bytes.

String Variables String variables can be up to 80 bytes or 40 registers long.

Character Variables Characters are 1 byte.

PID Loop Parameters There are 21 parameters associated with each PID loop. The
register number displayed in the printout represents the number of the first parameter
for the loop. The loop CCM numbers will be in multiples of 21 so that if the first loop is
4001 the second is 4022. The order of the parameters is listed in the following table.

Table 10-13. PID Parameter Table

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Parameter NumberÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Byte Count

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Status ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Update Time ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Gain ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁReset ÁÁÁÁÁÁÁÁ4 ÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁRate

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ5

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁSetpoint
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ6

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁSetpoint Minimum
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ7

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁSetpoint Maximum
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ8

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Process Variable (PV)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

9
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PV Minimum
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PV Maximum
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

11
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Control Variable (CV) ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CV Minimum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

13 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CV Maximum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Bias ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Lower Limit (LL) ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

16 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LL Minimum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

17 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LL Maximum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

18 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

High Limit (HL) ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

19 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

HL Minimum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

20 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

HL Maximum ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

21 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

4

10

10-14 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The Status parameter is the only one that is not a floating point value represented in
IEEE format. This parameter has information about the PID loop operation contained in
the lowest 4 bits of the value of this register as follows:

Bit 0 - Block Down

Bit 1 - Block Up

Bit 2 - Track Mode

Bit 3 - Inverse Mode

If the bits are set the corresponding status is true. The other bits are reserved and
should not be changed.

If the minimum and maximum values of a parameter equal 0, the parameter is
considered to be a percentage in the range of 0.0% to 100.0%. Otherwise, the minimum
and maximum values are used with the parameter value to calculate of percentage used
in the PID calculations.

Troubleshooting

This chapter provides procedures for diagnosing Serial Communications Module (SCM)
problems. If these procedures do not solve the problem, contact the GE Fanuc Hotline
1-800-828-5747 or the Adatek Hotline at 1-800-323-3343 for assistance.

Status LED is not ON Steady
1. Check that power is supplied to the I/O rack housing the SCM. Try removing and

reinstalling the SCM.

2. Cycle power to the SCM.

3. Turn the power OFF and disconnect the battery and short the SCM battery terminal
connection points to clear the SCM. Reconnect the battery, turn ON power again,
and reset the SCM.

4. Check that the CPU is functioning properly by checking its “OK” LED.

5. Check that there are no empty slots or non-itelligent modules that do not pass
interrupts between the CPU and the SCM. If there are empty slots, the Status LED
blinks continuously.

6. If the Status LED is still not ON, try to download a program from ECLiPS or OnTOP.
If you can connect with the SCM and download a program, then the Status LED is
faulty.

7. If you get a message that ECLiPS or OnTOP cannot connect to the controller, then
check the fault table in the CPU using Logicmaster 90. If there is a fault “Bad or
missing module”, then the SCM is faulty and must be returned for repairs.

8. If there is no fault then contact the GE Fanuc Hotline for assistance.

Resets Blinks Port 1 or Port LED
If the Port 1 and Port 2 LEDs have an alternating blinking pattern, then the Logicmaster
90 or CPU firmware is out of date with the SCM firmware. Get updated versions of the
Logicmaster software and/or the CPU firmware by calling the GE Fanuc Hotline.

10

10-15GFK-1006A Chapter 10 Serial Communications Module - SCM

Serial Communication Problems

1. Check that the serial cable used conforms to one of the types specified for
communications to the SCM ports. Check that the cable is firmly secured at both
ends.

2. Make sure that the serial port parameters of the serial device match the settings of
the SCM. The default settings of the SCM are 19200 baud rate, 8 data bits, 2 stop
bits, and no parity.

3. Make sure the RS-422/485 RS-232 SCM option matches the device setup.

4. If there are still problems contact the GE Fanuc Hotline for assistance.

Table 10-14. SCM Specifications

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Serial Ports ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

2 RS-232/422/485
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory Backup Battery ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

3 Volt Lithium
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Battery Shelf Life ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

10 years
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Battery Memory Retention with Power OFF ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

6 months nominal
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operating Temperature ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0 to 60oC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Storage Temperature
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

-40 to 85oC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Humidity (non-condensing)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

5-95%
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vibration 1.0 G 9-150 Hz
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

3.5 mm, 5-9 Hz:
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁShock

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ15 G’s 11 msec

Table 10-15. Standards

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

IEC ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

485, 380

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

JIS JIS C 0911 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

C 0912,

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

DIN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

435, 380

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

UL ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

508, 1012

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CSA C22.2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

C22.2 No. 142,

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

NEMA/ICS ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2-230.40

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ANSI/IEE ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

C-37.90A-1978

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

VDE ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

805, 806, 871-877
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

FCC ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

15J Part A
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

VME Standard C.1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Supports VME

A

A-1GFK-1006A

Appendix A Key Functions

This appendix lists how the keys are used by the ECLiPS and OnTOP software.

Function Keys

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

 Key ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Functions
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ<K ey>

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ<Alt + Key>

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ<Ctrl + Key>

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ<Shift + Key >ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F1>
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Help Overtype Mode
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Toggle Insert Help
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Project Error
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F2> Disk ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Save File to ControllerÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Send to Disk ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Retrieve fromÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Check for Errors

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F3> ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Menu ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F4>Cur rent
Word

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Define / View

Undefined Words

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Define All ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F5> Replace
Next

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Find /
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Find Text
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Replace Text
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Replace All

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F6>
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Add State
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Add Task
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F7> Task ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Go to Another ErrorÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Last Project ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F8> ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Mark a Block ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Copy a Block ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Move BlockÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Remove a Block
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F9> FormÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Save/Exit Form ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Next Page in ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

<F10>
Program/

Debug Modes

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Toggle
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

A

A-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Hot Keys
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Key ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Function ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Mode
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + D>
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

List Digital Points
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program/Debug
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ<Ctrl + A>

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁList Analog Channels

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁProgram/DebugÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + N>
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

List Numeric Variables
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program/Debug

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + S> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

List String/Character Variables ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program/Debug

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + Q> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Quit Current Mode ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program/Debug
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + K>
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

List Keywords
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ<Ctrl + W>

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁList Filler Words

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁProgramÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + P>
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

List PID Loops
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + U> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Undelete the last Deleted Block. ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Program

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + R> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Communication Port Reset in Debugger ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Debug
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + V> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

View English in Debugger ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Debug
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ<Ctrl + E>

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁEnable Monitor Display in Debugger

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁDebugÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + F>
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Force Table
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Debug

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

<Ctrl + T> ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Trace Upload/Display ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Debug

Miscellaneous Keys

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Key ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Functions

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

<K ey> ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

<Ctrl + key>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Insert>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Add/Paste
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Delete>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Remove/Cut Character/Item
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Home>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Left side of Screen/Field
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<End> ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Right side of Screen/Field ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Pg Up> ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Scroll Up ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Top of Project / List / Menu
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Pg Down>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Scroll Down
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

End of Project / List / Menu
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Up>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Up 1 Line/Field
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Down>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Down 1 Line/Field
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Left> ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Left 1 Character/Field ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Right> ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Right 1 Character/Field ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Tab> in List/Menu
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Insert 4 spaces / Next Item
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ<Enter> Item

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁCarriage Return / Select

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<Esc>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Cancel Operation
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

B
section level 1 1
figure_ap level 1
table_ap level 1

B-1GFK-1006A

Appendix B Language Structure Summary

Notational Conventions

This section rigorously defines the syntax for the State Logic language with a notational
convention similar to that use for Bakus-Naur representations for programming
languages. First the notation conventions are explained, then the syntax is represented
in a top down manner starting with the program.

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Underline
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Identifies Keywords

ÁÁÁÁÁ
ÁÁÁÁÁ

[] ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Encloses terms which are optional

ÁÁÁÁÁ
ÁÁÁÁÁ

{ } ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Encloses terms which may be repeated
ÁÁÁÁÁ
ÁÁÁÁÁ

< > ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Encloses a generic description of a term
ÁÁÁÁÁ
ÁÁÁÁÁ

|
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Indicates that the term before or after may be used at this point.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

()
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

- Group Terms Together

Language Structure Notational Conventions

Program Hierarchy

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Structure

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Program ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 { <Task Group> }

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Task Group ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

{ <Task> }

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Task: <Task Name> {<State>}
[Start_In_Last_State]

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

State ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

State: <State Name> [{ <Statement> }]

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Statement ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

([<Conditional Expression>]

 <Functional Expression>) |

(<F unctional Expression>

 [<Conditional Expression>])

B

B-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Functional Structures

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Structure

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Functional Expression ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

{ Functional Term }

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Functional Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 < Turn On Discretes Term > |

 < Assign Values Term > |

 < Change Active States Term > |

 < Send Serial Information Term > |

 < PID Control Term > |

 < Change Serial Port Configuration Term > |

 < Execute Perform Functions Term > |

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Turn On Discrete Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Actuate{ <Digital I/O Name> |

 < Internal Flag Name > }

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Assign Values Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 < Make Term > |

 < Math-Assignment Term > |

 < Set_Bit/Clear_Bit Term >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Make Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Make(< Numeric Assignment Term > |

 < Character Assignment Term > |

 < String Assignment Term>)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Numeric Assignment Term

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 (<Numeric Variable Name> |

 <Analog I/O Name>)

 equal < Numeric Value >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Character Assignment
Term

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 <Character Variable Name> equal

 <Character Value>

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

String Assignment Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 <String Variable Name> equal

 <String Value>

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Math-Assignment Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 < Add Term > |

 < Subtract Term > |

 < Multiply Term > |

 < Divide Term >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Add Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Add (< Numeric Constant > |

 < Variable Name>)

 < Variable Name >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Subtract Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Subtract (< Numeric Constant > |

 < Variable Name>)

 < Variable Name >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Multiply Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Multiply (< Numeric Constant > |

 < Variable Name>)

 < Variable Name >

B

GFK-1006A B-3Appendix B Language Control System

Functional Structures Continued

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Divide Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Divide (< Numeric Constant > |

 < Variable Name>)

 < Variable Name >

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Set_Bit/Clear_Bit Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 (Set_Bit | Clear_Bit)

 (<Integer Variable Name>

 <Integer Number>)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Change State Term

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 (Go <State Name>) |

 (Make<Task Name>equal<State Name>)|

 ((Suspend_Task | Resume_Task)

 <Task Name>

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Send Serial Data Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Write” <Serial Data> ” [<Port Name>]

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PID Loop Control Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 <Start PID Term> | <Stop PID Term>

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Start PID Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Start_PID <PID Loop Name>ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Stop PID Term
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Stop_Pid<PID Loop Name>

 [with <Numeric Constant>]ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Port Configuration Term
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Set_Commport <Port Name>

 <Parameter Value List>ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Perform Function Term
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 Perform<F unction Name>

 with <P arameter Value List>

B

B-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Conditional Structures

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Structure

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Conditional Expression ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 < Test Conditional > |

 < Character Input Conditional >ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Character Input
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read <Variable Name>

 [from <Communications Port Name>]ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Test Conditional
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If[NOT] <Conditional Term>

 [{(OR|AND)[NOT]<Conditional Term>}]ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Conditional Term
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Digital Test Conditional> |

<T imer Test Conditional> |

<Relational Test Conditional> |

<Cur rent State Test Conditional>ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Digital Test Conditional
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

(<Digital I/O Name> | <Flag Name>)

[{ (AND | OR)

 (<Digital I/O Name> | <Flag Name>) }]
(ON | OFF)

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Timer Conditional
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

(<Numeric Constant> |

 <Integer Variable Name>) seconds
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Current State Conditional ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Task Name> (equal | not_equal)

<State Name>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Relational Test Conditional ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Numeric Relational Term> |

<Character Relational Term> |

<String Relational Term>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Numeric Relational Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Numeric Value>

<Relational Operator>

<Numeric Value>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Character Relational Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Character Value>

(equal | not_equal) <Character Value>
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

String Relational Term ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<String Value>

(equal | not_equal) <String Value >

B

GFK-1006A B-5Appendix B Language Control System

Value Expressions

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Term
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Structure
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Numeric Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<Numeric Constant> |

<Calculation> |

<Numeric Variable Name> |

<Analog I/O Name> |

<PID Value>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Calculation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

(< Numeric Value > < Operator >

< Numeric Value >) |

<System Functions> (<Numeric Value>)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

System Functions ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SIN | COS | TAN | ARCTAN | SQRT | EXP | LN |
RANDOMÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁNumeric Constant
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<Floating Point Number>|<Integer Number>ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

PID Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<PID Loop Name>

<PID Parameter Keyword>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Character Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

< Character Variable Name > |

’ <Character> ’
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

String Value ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

<String Variable Name > |

 ”<Character String>” - Up to 80 characters

C
section level 1 1
figure_ap level 1
table_ap level 1

C-1GFK-1006A

Appendix C References to the Genius PowerTRAC Block

The PowerTRAC block is designed for power monitoring and industrial applications.
The PowerTRAC block monitors voltage and current inputs and also stores digitized
wave forms. From these values the block calculates voltage, current, active and reactive
power, power factor, and power consumed or supplied. These values are calculated
about once every second. This block is treated as an analog block by ECLiPS and the
State Engine.

The current ECLiPS version supports only the PowerTRAC value calculations and the
input status bits. The PowerTRAC wave form data and transient data functions are not
supported at this time.

In the State Logic program each PowerTRAC block is given a name and all references to
the values returned by this block are made by using the block name followed by the
PowerTRAC keyword for that value. PowerTRAC keywords represent either register or
status bit values.

If Main_Panel Voltage_A_B is less than 255, then go to the Low_Voltage State.
Write ”The Accumulated Main Panel Power is %Main_Panel Accumulated_Power”
to the Status_Printer.

C

C-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The following table lists the PowerTRAC data keywords.

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Keyword ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Use
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_A_B ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase A to B
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_B_C ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase B to C
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_C_A ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase C to A
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_A_Neutral ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase A to Neutral
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_B_Neutral ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase B to Neutral
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Voltage_C_Neutral ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Voltage, Phase C to Neutral
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Current_Phase_A ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Current, Phase A
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Current_Phase_B
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Current, Phase B
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Current_Phase_C
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Current, Phase C
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁCurrent_Aux

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁCurrent, AuxiliaryÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁPhase_A_Power
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁActive Power, Phase AÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁPhase_B_Power
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁActive Power, Phase BÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Phase_C_Power
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Active Power, Phase CÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Phase_A_Var
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Reactive Power, Phase A

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Phase_B_Var ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Reactive Power, Phase B

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Phase_C_Var ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Reactive Power, Phase C

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Power_Factor ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Total Power Factor

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Accumulated_Power ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Total Watt/Kwatt/Mwatt – hours

PowerTRAC Data Keywords

There are several status bits also associated with each PowerTRAC block. The following
table lists the keywords to represent the status bits set by the PowerTRAC block.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Keyword ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Use

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Indicates over current on one of the InputsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Indicates Overcurrent on one of the Inputs
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Phase_Loop_Locked
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Always 1 unless Voltage Low, Block Faulty
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OverCurrent_On_A
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Current on Phase A Over Configured Value

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OverCurrent_On_B ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Current on Phase B Over Configured Value

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OverCurrent_On_C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Current on Phase C Over Configured Value
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OverCurrent_On_Aux ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Current on Auxiliary Over Configured Value
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCalculation_Overflow

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁValue Outside Range –32768 to +32767

C

GFK-1006A C-3Appendix C References to the Genius PowerTRAC Block

PowerTRAC Status Bit Keywords

To reference the status bits in the State Logic program, use the same structures as are
used to test other digital points.

If Line1PowerPanel Over_Current_On_C is on, go to OvercurrentLegC.
If BreakerPanel Overcurrent_Captured is on, go to Shutdown.

The current ECLiPS version supports only the PowerTRAC value calculations and the
input status bits. The PowerTRAC wave form data and transient data functions are not
supported at this time.

D section level 1 1
figure_ap level 1
table_ap level 1

D-1GFK-1006A

Appendix D References to Genius High Speed Counter
 Block

The Genius High-speed Counter (HSC) Block provides direct processing of rapid pulse
signals up to 200kHz. Typical applications for this block are flow meter values, velocity
measurement, motion control, and material handling.

Each HSC block provides up to four counters. All program references to HSC data use a
name that identifies the counter followed by one of the HSC keywords. For example:

If FlowMeter HSC_Strobe_Register > 456 go to PowerUp.

refers to the value in the strobe register of the counter named FlowMeter.

To name the counter follow these steps:

1. Retrieve the Logicmaster configuration data using the “Retrieve Logicmaster
Configuration Data” option from the DEFINE menu.

2. After selecting the “System Configuration” option from the DEFINE menu, highlight the
Genius Bus Controller in the 90-70 rack display and press <Enter>.

3. Select the “Configure Genius Blocks and Circuits” from the resulting menu.

4. Select the HSC block from the list of blocks and press <Enter>. Blanks are provided to
name each of the four counters that can be used in an HSC block.

Some ECLiPS Statements using this reference are:

Make latest_count = PulseCount HSC_accumulator.

which saves the value of the accumulator register in the variable latest_count

Write “Accumulator value is %Counter_1 HSC_Counts_Per_Time”.

which writes the value of the accumulator to the programming port.

There are three types of data values associated with each counter: register values, status
bits, and command bits. Register values refer to count values, status bits provide in-
formation about the counter, and command bits are used to control different counter

D

D-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

functions. Register values and status bits can only be read by the ECLiPS program.
Commands bits can be both read and written to by the ECLiPS program.

The following tables lists the modifying keywords that access the counter data values.
The tables list the data value referred to by the keyword along with the valid counter
types for use with the keyword.

Note

Version 1.00 of the Series 90-70 ECLiPS supports only Type A counters.
If you need to use the HSC block for Type B or C features, call customer
support for information on using Ladder Logic programming to make
use of these features.

Counter Register Keywords

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Register ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC Keyword
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Accumulator
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_ACCUMULATORÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Strobe Register
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_STROBE_REGISTER

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Counts Per Time Base ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_COUNTS_PER_TIME

Counter Status Bit Keywords

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Status Bit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC Keyword
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁStrobe Status

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁHSC_STROBE_STATUSÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Preload Status
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_PRELOAD_STATUS

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Output Status ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_OUTPUT_STATUS
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Module Ready ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_MODULE_READY

The status bits provide information about the counter. Typical ECLiPS Statements using
counter status bits are:

If PositionCount HSC_STROBE_STATUS is ON, go to Reset_Strobe State.
If Encoder1 HSC_OUTPUT_STATUS is OFF, go to Enable_Output State.

Note

Version 1.00 of the Series 90-70 ECLiPS supports only Type A counters.
If you need to use the HSC block for Type B or C features, call customer
support for information on using Ladder Logic programming to make
use of these features.

D

GFK-1006A D-3Appendix D References to Genius High Speed Counter Block

Counter Command Bit Keywords

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Command Bit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC Keyword
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reset Strobe
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_RESET_STROBE

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reset Preload ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_RESET_PRELOAD

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Enable Output ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HSC_ENABLE_OUTPUT
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁOutput Active

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁHSC_OUTPUT_ACTIVE

The counter command bits are used to control the counter. Typical ECLiPS Statements
using command bits are:

If Part_In_Place_LS is closed, turn on Count1 HSC_ENABLE_OUTPUT.
If Gallons_Pumped equals 987, actuate Flow1 HSC_ENABLE_OUTPUT.

Note

Version 1.00 of the Series 90-70 ECLiPS supports only Type A counters.
If you need to use the HSC block for Type B or C features, call customer
support for information on using Ladder Logic programming to make
use of these features.

E
section level 1 1
figure_ap level 1
table_ap level 1

E-1GFK-1006A

Appendix E Errors

There are two basic types of error codes. Translation error codes are generated by
ECLiPS and will appear when error checking a State Logic Program. Run Time Errors
are generated by the State Engine and will appear during program execution.

Translation Errors

Error #0

Invalid or Missing Task Name. Every Task must start with the following line: “Task:
Task_Name” Task_Name may be up to 20 characters and must be a unique name in the
project. It must start with a letter but may contain numbers and the “_” character. Upper
and Lower case are treated equally.

Error # 1

Invalid or Missing State Name. Every State must start with the following line: “State:
State_Name” State_Name may be up to 20 characters long and must be unique within
the current Task. It must start with a letter but may contain numbers and the “_” charac-
ter. Upper and Lower case are treated equally.

Error # 2

Maximum number of States reached. The maximum number of States per Task is 254.
The maximum number of States per Project depends on the value in the Setup menu.

Error # 3

Maximum number of Tasks reached. The maximum number of Tasks allowed is 255.

Error # 4

Undefined Character in Text. The character in quotes has not been defined. Names
must start with a letter and may contain only letters, numbers and the “_” character. All
other characters must be defined as operators such as +, *, etc.

E

E-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 5

Invalid use of the “Perform” Statement. If one of the following 3 “Perform” statements is
used, it must be the only statement in the State.

Get_User_Input
User_Menu
Display_Date_&_Time

Error # 6

Invalid use of a “Read” Statement. A “Read” may only be used along with a “Go” in a
sentence and only one “Read” is allowed per State.

Error # 7

No “PowerUp” State in Task. Every Task must have one and only one “PowerUp” State.
It may appear anywhere in the Task.

Error # 8

Duplicate Name. The name in quotes is a duplicate of another word used in the project.

Error # 9

No other words allowed on the Task Name line. The first line of every Task must read
“Task: Task_Name” and may not have any other words on it except for comments.

Error # 10

No other words allowed on the State Name line. The words allowed on a State name
line besides “State: State_Name” are the “Max_Time” definition for the State.

Error # 11

Missing Statement. The translator was expecting to find some type of statement and
found none.

Error # 12

Invalid Command. The word or character in question is not defined as a valid command
that the translator needs to start or complete the sentence.

Error # 13

Missing Functional Term in Statement. A Conditional statement was found with no
Functional statement anywhere else in the sentence. This is not allowed.

Error # 14

Two Consecutive “ANDS” in a row.

Error # 15

Invalid Digital or Internal Flag name. The name in the expression has not been defined
as Digital Point or Internal Flag. Use the “List” or “Define” function to define it properly.
All Data Elements must start with a letter but may contain numbers and the “_” charac-
ter. Upper and Lower case are treated equally.

E

GFK-1006A E-3Appendix E Errors

Error # 16

Expecting Numeric Value. A numeric value is needed to complete the statement.

Error # 17

Expecting “IN” as next word, instead of... The word “IN” or a synonym for it must ap-
pear at this point in the statement.

Error # 18

Invalid Variable Name. The name found has not been defined as a variable. Use “List” or
“Define” to properly define it. All Data Elements must start with a letter but may contain
numbers and the “_” character. Upper and Lower case are treated equally.

Error # 19

Expecting “FROM” as the next word instead of... The word “From” or a synonym for it is
needed to complete the “Read” statement if a Comm Port name is used.

Error # 20

Invalid Comm Port Name. The name found at the end of the statement must be defined
as a comm port name. Use “List” or “Define” to properly define it.

Error # 21

Expecting “SECONDS” as the next word instead of... The word “Seconds” or a synonym
for it is needed to complete this type of statement.

Error # 22

Invalid Number. The number found is out of the acceptable range of +– 1.17e–38 to
3.4e+38.

Error # 23

Expecting quoted string instead of... A set of characters in “” is needed to complete this
statement.

Error # 24

Matching “(” not found. A “)” was found without a following “)”.

Error # 26

Cannot use “OR” with Digitals or Flags. To obtain this functionality, place the expres-
sions in different sentences.

Error # 27

Missing either “ON” or “OFF” after Digital List The word found at the end of the Digital
expression must be a synonym for either “On” or “Off ” in order to complete the expres-
sion.

E

E-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 28

Expecting an Operator instead of.......

Error # 29

Error Initializing Data Tables A memory error has occurred internally. If this repeats,
please call Technical Support for assistance.

Error # 30

Error Reading Project The Project File has been corrupted and cannot be read. Consult
your DOS manual for instructions on how to determine the status of the file.

Error # 31

Invalid Number or Number Variable

Error # 32

Invalid Perform Name The Perform names are limited to those found on the List of Per-
forms.

Error # 34

Expecting “WITH” as next word instead of.... Either the word “With” or a synonym for it
must appear in this type of statement.

Error # 35

Missing “=” Either the “=” sign or a synonym for it must appear in this type of state-
ment.

Error # 36

Invalid Digital Name or Number. All Data Elements must start with a letter but may
contain numbers and the “_” character. Upper and Lower case are treated equally.

Error # 37

Number must be a 0 or 1

Error # 38

Missing Number in Exponent The exponent operator was used without a following
number.

Error # 39

Invalid Parameter

Error # 40

Invalid Parameter Name

E

GFK-1006A E-5Appendix E Errors

Error # 41

Expecting “Yes” or “No” instead of...... The word “Yes” or “No” must appear in this type
of statement.

Error # 42

Too many Parameters for Perform.

Error # 43

Invalid String Constant. A string type variable may only be assigned up to 80 characters
in double quotes. Any % character in a string must be immediately followed by #xx
where xx represent valid hexadecimal digits, or by another % character.

Error # 44

Invalid Character Constant. A character type variable may only be assigned a single
character in single quotes.

Error # 45

Invalid Assignment. A variable of a particular type may only be assigned values that are
of the same type.

Error # 46

Digitals and Flags Cannot be Turned OFF. The statement contains a synonym for the
word “OFF” and this is not allowed. I/O that is Actuated in a State is ON, ALL others are
implicitly OFF.

Error # 47

Missing “)”. A “)” was found without a preceding “)”

Error # 48

Missing “(”. A “(” was found without a preceding “)”.

Error # 49

Data Type Mismatch. An assignment or comparison was attempted between two differ-
ent data types.

Error # 50

Not Used.

Error # 51

Two Operators used together.

Error # 52

String Assignment is too long, Max. is 80. Because of the storage limitations in the con-
troller, strings are limited to a length of 80 characters.

E

E-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 53

Invalid or Missing Operator. A valid operator (+–=<>*/%) is needed to complete the
statement in question. All “If” and “For” statements require a comparison operator
(<>=) and “Make” statements require an assignment operator (=).

Error # 54

Expecting a “.” All Sentences must end with a Period.

Error # 55

Duplicate or Missing Task Name. A State name is either missing on the line with the
“State:” or the State name entered there is duplicated somewhere else in the same Task.

Error # 56

Duplicate or Missing Task Name. A Task name is either missing on the line with the
“Task:” or the Task name entered there is duplicated somewhere else in the same Project.

Error # 57

Invalid Comparison.

Error # 58

Misplaced Parenthesis. The “()” characters must follow operators as in “1 * (2+3)” and
may not follow operands as in “1 (* 2+3)”.

Error # 59

Expression too long, it must be split. You must break the comparison into smaller multi-
ple expressions. Try breaking it where an “And” was used or making a prior assignment
for a complex mathematical expression so that only

the name must appear in the comparison.

Error # 60

Invalid String Name. The name used has not been defined yet. You can define it with
the “List” or “Define Current Word” Function. Place the cursor on the name and press
the F4 key. All Data Elements must start with a letter but may contain numbers and the
“_” character. Upper and Lower case are treated equally.

Error # 61

Invalid Integer or Integer Name. The name used has not been defined yet or the num-
ber used is out of the Integer range of –32767 to 32768. You can define it with the “List”
or Define Current Word” Function. Place the cursor on the name and press the F4 Key.
All Data Elements must start with a letter but may contain numbers and the “_” charac-
ter. Upper and Lower case are treated equally.

Error # 62

Expecting Integer. The name used is defined as another variable type.

E

GFK-1006A E-7Appendix E Errors

Error # 63

Integer out of range. The number used is out of the integer range of –32767 to 32768.

Error # 64

Expecting an Operand instead of......

Error # 65

Expecting “=” or “<>” instead of..... The operand “=” or “<>” or a synonym for one of
them must appear in this type of statement.

Error # 66

Missing Record Name of PID or Comm Port.

Error # 67

Expecting PID Name instead of..... The name of a valid PID Loop is expected in this type
of statement.

Error # 68

Expecting “GO” after “READ” Command. A “GO” must follow a “READ” in the sen-
tence so that the “READ” is not repeated inadvertently. For example, “Read User_Name,
then go to Process_User_Name”. This rule is due to the way a “READ” statement is han-
dled by the controller and the trouble it can cause if this restriction is not imposed.

Error # 69

Not Used

Error # 70

Not Used

Error # 71

Not Used

Error # 72

String Constant too long. The maximum for a string of characters enclosed in quotes is
512. Try breaking up the statement into smaller pieces.

Error # 73

Can’t open output file. A problem has occurred accessing the disk to create the file that
will get downloaded to the controller. Try the operation again.

Error # 74

Unbalanced Parenthesis in Numerical Expression

E

E-8 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 75

Internal Flag overflow. Too many Internal Flags have been used. ECLiPS uses them to
create the code that comes from “Perform” and “For” statements. Therefore, you must
reduce your use of either those types of statements or the Flags.

Error # 76

Name too long. All names may be us to 20 characters. They must start with a letter but
may contain numbers and the “_” character. Upper and Lower case are treated equally.

Error # 77

Number out of range. The valid range for integer numbers is –32768 to 32767. The val-
id range for floating point numbers is +–1.1E–38 to 3.4E+38. Floating point numbers
must have a decimal point followed by at least one digit. Floating point numbers may
have a maximum of 7 significant digits, not counting the exponent.

Error # 78

Power out of range, must be between –32767 and 32768. When a “^” operator is used,
the following number must be an integer within the given range.

Error # 79

Successive Power Operators not allowed. The “^” operator may not be used twice in a
row.

Error # 80

Expecting “(”. The statement used must have a “(” at the proper place.

Error # 81

Improper use of an “OR”. The two statements in the sentence may not be ORed togeth-
er. Only tests of numeric or character expressions may be ORed.

Error # 82

Maximum Number of Seconds is 600.00. This is the maximum number of seconds that
may be used. The resolution is 1/100 second and 60000 is the maximum value available.

Error # 83

Mixed String and Character Types. The value of a string may not be stored in a character
variable and a character variable must be assigned a single character in single quotes.

Error # 84

Invalid use of Wait Statement. A “WAIT” may only be accompanied by a “GO” in a sen-
tence and must appear before the “GO”. This is due to the abuse this statement would
endure if this restriction was not imposed. The “WAIT” statement is a simple timer that
starts upon entering the State and is satisfied when the time is reached. It is intended to
be used as a process delay.

E

GFK-1006A E-9Appendix E Errors

Error # 85

Expecting “GO” after “WAIT” command. A “WAIT” must be followed by a “GO” and no
other statements may appear in the same sentence. This is due to the abuse this state-
ment would endure if this restriction was not imposed. The “WAIT” statement is a sim-
ple timer that starts upon entering the State and is satisfied when the time is reached. It
is intended to be used as a process delay.

Error # 86

Digitals and Flags not allowed in “WRITE”. The status of a Digital Point or Internal Flag
may not be sent in a “WRITE” statement.

Error # 87

Invalid PID Loop Name. The name in the statement is not a valid PID Loop name. Try
defining it as such.

Error # 88

Expecting Address Value. A valid address value must appear after the “@” operator.

Error # 89

Invalid Element in Address Expression. A valid numeric expression must appear after
the “@” operator.

Error # 90

Time Elements must be set individually. Hour, Minute, and Second must be set

individually as in “Hour = 13, Minute = 10”.

Error # 91

Time Value is out of range. The value of time must be between 0 and 23:59.

Error # 92

Time Value may contain only Hours and Minutes. The time variable is accurate to only
minutes, therefore it may not contain seconds.

Error # 93

Internal String Overflow. Too many Internal Strings have been used. ECLiPS uses them
to create the code that comes from the “Perform” statements for Display_Date_&_Time,
and User_Menu. Therefore, you must reduce your use of either those types of state-
ments or the Strings.

Error # 94

Invalid PID Loop Parameter Value. An invalid value has been given to a PID Loop input
or output. Use the “Define” or “List” function to enter valid values (Analog, Integer or
Floating Point Variable) for all the input and output of each defined PID Loops.

E

E-10 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 95

Not Used

Error # 96

Invalid PID Stop Value. A PID Loop may be stopped only with a valid number.

Error # 97

Only one PID may be started in a State. Due to the implementation of the PID Loop in
the controller, only one PID may be started in a particular state.

Error # 98

Only one “GO” allowed per sentence. Since the “GO” is always placed at the very end
of a sentence, the first one will be executed and no others would ever be seen.

Error # 99

“HALT” and “GO” not allowed in the same sentence. Since the first of the two found in
the English would be executed and the other would not be seen, both are not allowed.

Error # 100

Too Many Functional Terms in sentence. The total number of allowable characters used
by Functional statements in the sentence has exceeded the maximum. The sentence
should be broken up.

Error # 101

Ambiguous Sentence, Conditionals must be Grouped. Two Conditional statements (For,
If, Until, etc.) may not have a Functional statement in between them. The best way to
avoid this error is to break up the sentence into smaller pieces and branch to another
state if necessary.

Error # 104

Floating Point Value Needs Leading Zero A Floating Point value must start with a num-
ber. “.1234” is not valid. You must place a leading zero on the value as follows: “0.1234”.

Error # 114

Parameter Name Mismatch. The parameter name indicated does not match the parame-
ter name in the Perform Function Template.

Error # 115

Missing Parameter. A required parameter is missing from the Perform Function Call.

Error # 116

Parameter Type Mismatch. The actual parameter type does not match the type specified
in the Perform Function Template.

E

GFK-1006A E-11Appendix E Errors

Error # 117

Extra Parameters. More actual parameters were found in the Perform Function Call than
were specified in the Perform Function Template. A Perform statement must end in a
period.

Error # 118

Invalid PowerTRAC Monitor Parameter. The word following the name of a PowerTRAC
Monitor block must be a valid parameter name. Refer to the manual for the complete
list of possible parameters.

Error # 119

Specified Block is Not Defined. The specified PCIM/BLOCK number is in the Custom
I/O Scan Table, but the block is not defined. Either define the block, or remove the entry
from the Custom Scan Table.

Error # 120

Specified Block is Not Scanned. The specified PCIM/BLOCK number is defined, but has
not been included in the Custom I/O Scan Table. Either delete the block, or add the entry
to the Custom Scan Table.

Error # 121

Specified Block is Not Analog. The specified PCIM/BLOCK number is defined in the
Custom I/O Scan Table, and is not an Analog Block. Only analog blocks are allowed in
the table. Remove the entry from the Custom Scan Table.

Error # 122

Specified Point is Not Scanned. The specified Point is defined, but there is no entry in
the Custom I/O Scan Table that will cause this point to be scanned. Either delete the
point, or add an entry to the Custom Scan Table.

Error # 123

R_Register number is out of range. The specified number is not a valid %R number.

Error # 124

FOR expected. The keyword FOR is expected here.

Error # 125

Invalid register length. The R_Register length is out of range. Valid lengths are 1 to 40.
The length + the start register must also be within the valid range of R_Register num-
bers.

Error # 126

Expecting string name. The name of a string variable is expected here.

E

E-12 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Error # 127

Input Capacity Exceeded. The total capacity for moving input data between the State
Engine Co–Processor and the PLC has been exceeded. Remove some input variables.

Error # 129

Mixed Inputs and Outputs. Programs written for the 9030 co–processor may not define
both digital inputs and digital outputs within the same 8 bit byte.

Error # 130

Too Many Variables of type When retentive variables and non–retentive variables of
the same type are used. The total of retentive variables + non–retentive variables of
that type must be at least 1 less than the system total for that type of variable. For exam-
ple, the system allows 1000 integers, if 13 retentive integers are used, only 986 non–re-
tentive integers are allowed, not 987.

Error # 131

Expecting Colon. Every Task must start with the following syntax: “Task: Task_Name”
Every State must start with the following syntax:

“State: State_Name” Blanks are allowed after the “:”, but not before.

Error # 132

Invalid Bit Field in Make Statement. Because High Speed Counter Command and Status
bits are stored in a digital variables, these keywords are not allowed in the Make State-
ment. Reword the statement, or use the Actuate Statement to set the bit.

Invalid:

Make integer_var_1 = ctr_1 HSC_OUTPUT_STATUS.

Make ctr_1 HSC_OUTPUT_STATUS = 1.

Valid:

If ctr1 HSC_OUTPUT_STATUS is on, make integer_var_1 = 1.

Actuate ctr_1 HSC_OUTPUT_STATUS.

Error # 133

Cannot Compare Value to Bit Status. Because High Speed Counter Command and Sta-
tus bits are stored in a digital variables, an invalid comparison was made in the “IF”
Statement. Reword the statement.

Invalid: If integer_var_1 = ctr_1 HSC_STROBE_STATUS, go to state2.

Valid: If integer_var_1=1 and ctr_1 HSC_STROBE_STATUS is on, go to state2.

Error # 134

PID Bit Field in Make Statement Pid Control and Status Bits cannot be used in conjunc-
tion with the MAKE keyword. These bits must be set and cleared with the SET_BIT and
CLEAR_BIT keywords.

E

GFK-1006A E-13Appendix E Errors

Runtime Errors

Non-Critical

Integer Overflow – Value out of the normal integer range was assigned to an integer
variable

Floating Point Overflow – A value outside the allowed floating point range was as-
siogned to a floating point variable

Divide by zero – Attempt to divide by zero

Perform functions may generate the following errors
BCD in called with invalid variable type: The variable type used to store BCD data
must be Float or Integer

BCD output called with too few parameters: The minus sign pattern and null character
parameter must be defined

Too large a number to output in BCD allocated: There are not enough digits to show all
of the numbers to the left of the decimal point

BCD output called with invalid variable type: The variable type used to store BCD
data must be Float or Integer

Error Define_table: called with too large a table number : Table numbers must be from
1 to 100

Error Define_table: table all ready defined: Table number all ready defined the State
Engine will use the first set of table definitions and ignore second definitions

Error Define_table: called with illegal table type : Table Type must be: I for integer, F
for Float, S for string, or D for digital data type.

Error Define_table: called with illegal save_over_halt: Save over halt cannot be used
with this data type.

Error Copy_table_to_table: called with too large a table number: The table number
must be a value from 1 to 100.

Error Copy_table_to_table: called with non_defined table: The tables used must be
defined

Error Copy_table_to_table: mis_matched table types: Both tables must be of the same
type

Error Copy_table_to_table: table to be copied larger than the other table: The table to
be copied must be smaller than the table it will be copied into.

E

E-14 Series 90-70 State Logic Control System – March 1998 GFK-1006A

The Init–digital error codes are repeated for Init–float and Init–integer.

Init_table_digital: called with mismatched number_of_values: The number of Num-
ber_of_values parameter must be equal to the number of values specified in the parame-
ter table

Init_table_digital: called with too large a table number: The table number must be a
value from 1 to 100.

Error Init_table_digital: called with non_defined table: The table must be defined be-
fore an Init table option can be called.

Init_table_digital: called with non_digital table: The table type must match the type of
perform used

Init_table_digital: called with row number out of range: The row_number parameter
must be a value that is valid for the table

Init_table_digital called with column number out of range: the column_number pa-
rameter must be a value that is valid for the table.

Init_table_digital called with too many values: The maximum no. of values that can
added for each perform is 28.

The Swap–dig error codes are repeated for Swap–float, Swap–integer, and Swap–string

Error Swap_table_value_dig: called with too large a table number: The table number
must be a value from 1 to 100.

Error Swap_table_value_dig: called with non_defined table: The table must be defined
before a swap perform function is performed.

Error Swap_table_value_dig: called with non_digital table: The table type must match
the type of perform used

Error Swap_table_value_dig: called with row number out of range: The row_number
parameter must be a value that is valid for the table

Error Swap_table_value_dig: called with column number out of range: the col-
umn_number parameter must be a value that is valid for the table.

Error Swap_table_value_int: called with illegal swap type: The variable that is swap-
ping the data must be of the same type as the table

Error shift_reg par (followed by the bad parameter number): There was an error in the
way the specified parameter number was used

Error String_manipulation starting_character parameter: The staring_character param-
eter must be a value that is within the range of the string

Error String_manipulation ending_character parameter: The ending_character param-
eter must be a value that is within the range of the string.

Error String_manipulation integer too big: The integer value being extracted from the
string is outside of the range –32767 to 32767.

Error String_manipulation not ASCII integer value: the value must be an ASCII integer
to extract as an integer.

Error String_manipulation not ASCII float value: the value must be an ASCII floating
point to extract as a floating point value.

E

GFK-1006A E-15Appendix E Errors

Error String_manipulation concatenated string too long: The string to be added to the
string value is too long.

Error String_manipulation string too long: String lengths are limited to 80 characters

Error String_manipulation not enough digits for integer: The number of digits being
used must be equal to the number of spaces in the string

Error String_manipulation not enough digits for float: The number of digits being used
must be equal to the number of spaces in the string

Operation not a valid character: When performing a String_Manipulation, the follow-
ing characters are used to define the operation: s for store string, E for extract string, i for
save integer, I for extract integer, f for save floating point, F for Extract floating point, C
for Concatenate, L for string length, or M for match character. The operator is case de-
pendent.

Error Time_counter: called with wrong number of parameters: When assigning a time
counter, the time increment H for hour, M for minute, S for second, T for tenths must be
specified.

Error Time_counter: no tenth of second counters available: The maximum number of
time counters that can be used at one time is 30.

Error Time_counter: no second counters available: The maximum number of time
counters that can be used at one time is 30.

Error Time_counter: no minute counters available: The maximum number of time
counters that can be used at one time is 30.

Error Time_counter: no hour counters available: The maximum number of time count-
ers that can be used at one time is 10.

Error Time_counter: integer variable has already been assigned: The integer variable
being assigned has all ready been assigned to a time counter.

Error Time_counter: integer variable has not previously been assigned: The time
counter integer variable must be assigned before being enabled or halted.

Critical Errors

Invalid State Engine Instruction

Go to State that Does not exist

Attempt through CCM to change to an undefined State

F
section level 1 1
figure_ap level 1
table_ap level 1

F-1GFK-1006A

Appendix F Standard Predefined KeyWords

ECLiPS comes with a set of Keywords supplied. Up to 10 synonyms may be added for
each Keyword, and the Default Keyword may be changed. The Keywords are broken
into four categories, Conditional terms, Functional terms, Operators and miscellaneous
words that modify the meaning of a Statement. In the following tables, the default
keyword is displayed in bold print with some suggested synonyms in normal print.

Conditional Terms

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Keyword, SynonymsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning / Examples
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

If, When ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test conditions and values, actions executed
when test returns TRUE condition.

 When the Forward_Limit_Switch is ON, go . . .

 If Count is > 1, go . . .

 If 3.56 seconds, go . . .
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Read ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Get input from comm port

 Read Name from Port_1.

F

F-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Functional Terms

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Keyword,
Synonyms

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning / Examples

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Energize, Start,
Actuate, Turn,
Run, Open,
Turn_On

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Turn on a Digital Point(s)

 Start Conveyor_Motor.

 Energize Forward_Solenoid.

 Actuate Backwash_Pump, and Backwash_Pump_Light.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Add
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Add a value to a variable

 Add 2 to Count.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Divide
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Divide a variable by a value

 Divide Count by 2.ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Go
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Make another State the Active State

 If Switch1 is On, go to the Motion State.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Halt ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Stop the process immediately

 If Alarm is On, Halt.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Make, Put,
Place, Set

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Assignment operator initiator

 Make Total = 0.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Multiply ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Multiply a variable by a value

 Multiply Count by 2.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Perform,
Execute

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Invoke an ECLiPS ”Perform” function

 Perform Display_Date_Time with...
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Set_Commport ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change comm port settings while running

 Set_Commport Port_1 with Baud_Rate=9600,

 Data_Bits=8, Parity=N,

 Stop_Bits=2, Auto_Echo=Y,

 Xon_Xoff=Y,

 Receiver_On=N,

 End_of_Message_Char=h0d.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Start_PID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Invoke a PID Loop

 Start_PID Main_Loop.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Stop_PID
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Halt a PID Loop and set the output value.

 Stop_PID Main_Loop with 234.5.ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Subtract
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Subtract a value from a variable

 Subtract 1 from Count.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Set_Bit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set a condition TRUE or a bit of a 16 bit integer value to 1

 Set_Bit Flowmeter_Counter HSC_OUTPUT_ENABLE.

 Set_Bit Integer_Variable_1 0.

F

GFK-1006A F-3Appendix F Standard Predefined KeyWords

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Clear_Bit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set a condition FALSE or a bit of a 16 bit integer value to 0

 Clear_Bit Resolver_Counter HSC_RESET_PRELOAD.

 Clear_Bit Integer_Variable_2 15.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Suspend_Task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Stop the execution of a Task – no State is active.

 If Level > alarm, Suspend_Task Automatic.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Resume_Task
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Restart Task in State active when the Task was suspended.

 If Level < alarm, Resume_Task Automatic.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Write
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send data out the comm port

 Write ”Error Message” to Operator_Console.

F

F-4 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Operators
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Keyword,
Synonyms

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning / Examples ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Precedence

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

() ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parentheses – Used to group terms to
change order of of operation. Up to 18
levels of parentheses are permitted.
Parentheses may be used in mathematical
expressions and with relational
conditional terms.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ARCTAN(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arctangent:
 function returns an angle in radians
where
 –65535 <= exp <= 65535
 Make Var = ARCTAN(Hyp * 2).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

COS(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

COSINE:
 exp is the angle in radians where
 –65535 <= exp <= 65535
 Make Near = COS(Test_Value).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

EXP(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

e to a power:
 Make Inverse = EXP(Transfer).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

LN(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Natural logarithm (base e):
 Make Test_Value = LN(Input – 3.4)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

RANDOM
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Random number generator:
 Generates a random number (0 – 1)
Make Sim_In = Seed * Random

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

SIN(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sine:
 exp is the angle in radians
 where –65535 <= exp <= 65535
 Make Vector1 = SIN(Gauge).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

SQRT(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Square Root:
 Make Out_Pot = SQRT(Flow_Meter).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

TAN(exp) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tangent:
 exp is the angle in radians
 where –65535 <= exp <= 65535
 Make Slope = TAN(In_Flow).

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

^
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exponential Operator
 Make Count = Amount ^ 2.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

%, Modulus
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Modulus Operator – integer operands
only
 If Count % 5 = 0, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

*, Times ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Multiplication Operator
 Make Count = Amount * 2.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3

F

GFK-1006A F-5Appendix F Standard Predefined KeyWords

Operators Continued

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Keyword,
Synonyms

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning / Examples ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Precedence

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

/, Divided_By ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Division Operator

 Make Count = Amount / 2.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

+, Plus ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Plus Operator

 Make Count = Amount + 2.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

–, Minus ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Minus Operator or Negative sign

 Make Count = Amount – 2.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Bitwise_And ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

AND bits operator

 Value = Code Bitwise_And Mask

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Bitwise_Or ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OR bits operator

 Setup = Code Biwise_Or Mask.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<, Less, Under ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Less than Operator

 If Count < 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<=, =< ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Less then or equal to Operator

 If Count <= 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

=, Is, Equal, Equals,
Into

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equal Operator

 If Count = 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

>, Greater, Above,
More

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Greater than Operator

 If Count > 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

>=, => ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Greater than or equal to Operator

 If Count >= 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<>, Not_equal ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Not Equal Operator

 If Count <> 5, go...

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

AND ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

AND Operator for Conditional and
Functional Terms

 If Count > 5 AND Top_Switch is ON

 Actuate Pump_5 AND Pump_6.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

OR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OR Operator for Relational Conditional
Terms Only

 If Vat < 98 degrees OR Fuel < 12

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

NOT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOT Operator for Relational Conditional
Terms Only

 If NOT Inlet_Pressure > 100 psi

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

6

F

F-6 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Miscellaneous Keywords

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁKeyword, Synonyms

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMeaning / Examples

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

State
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Identifies the Name of State Logic States

 State: PowerUp

 go to the Motion State.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Task ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Identifies the Name of State Logic Tasks

 Task: Main

 If the Main Task is in the PowerUp State, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

AM ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Time Suffix

 If Time is past 3:00 AM, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Friday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 5

 If day_of_week = Friday, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

From ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used in ”Read” Terms

 Read Name from Port_1.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Max_Time ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used to set the maximum time diagnostic for a State

 State: PowerUp Max_Time 2.5
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Monday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 1

 If day_of_week = Monday, go...

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Not ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logical ”NOT” in a conditional expression

 If not (Count > 1 or Count < 10), go...

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Off, False,
Not_True,Not_Tripped

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test for Digital I/O for not set state

 If Switch1 is Off, go...ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

On, True, Tripped
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test for Digital I/O for set state

 If Switch1 is On, go...ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Or
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logical ”OR” in a conditional expression

 If Count > 1 or Count < 10, go...ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Inactive
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Name of the State in Which No Actions Occur

 Put the Manual Task into the Inactive State.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

PM
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Time suffix

 If Time is past 3:00 PM, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Saturday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 6

 If day_of_week = Saturday, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Seconds ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Used for comparison in a Timer Term

 If 3.2 seconds have passed, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Sunday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 7

 If day_of_week = Sunday, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Thursday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 4

 If day_of_week = Thursday, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Tuesday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 2

 If day_of_week = Tuesday, go...

F

GFK-1006A F-7Appendix F Standard Predefined KeyWords

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Wednesday ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Day of week number 3

If day_of_week = Wednesday, go...
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

With ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Prefix for data that is needed by a function

 Stop_PID Kiln_Temperature with 45.679
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Start_In_Last_State ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This keyword is used to configure a Task to start in
the State that was active when the program
stopped.

 Task: Master_Control Start_In_Last_State

G
section level 1 1
figure_ap level 1
table_ap level 1

G-1GFK-1006A

Appendix G Integrating Ladder Logic and/or ‘C‘
 Programming

The 90–70 State Logic Control System provides the ability to integrate ladder logic and/
or ‘C’ programming with State Logic programming. This section explains the details of
making the different systems work together.

How the System Works

The State Engine executes in a program block that is on a rung of the 90–70 operating
system. To add ladder logic or ‘C’ programming all that is necessary is to add additional
rungs to the existing State Engine program block.

It may be necessary to use the full Logicmaster 90 version to add ladder logic and/or ’C’
programming because the demo version limits the number of rungs and program blocks
that can be added to the State Engine program block. To add other programming, copy
the State Engine folder to another folder and add ladder logic or ’C’ programming to the
State Engine program block in the new folder. Use the Logicmaster 90 manuals for in-
formation on using these programming capabilities.

Integrating the Programs

Each of the programs uses the same memory areas to store numeric or I/O information.
Integrating these programs requires management of each program’s memory usage, so
that one program does not conflict with another program’s operation.

State Logic Outputs OFF by Default

Remember that all State Logic discrete outputs are OFF by default. The State Engine
makes sure that any of the outputs defined in the program are OFF unless the program
specifically turns one ON. Do not attempt to control any of the outputs defined in the
State Logic program from any other program or any other device.

G

G-2 Series 90-70 State Logic Control System – March 1998 GFK-1006A

Forcing Outputs

Another area of potential confusion is that both ECLiPS and Logicmaster can both force
discrete and analog output values. One package cannot know what forces are active
from the other package. So that an output that has been forced in Logicmaster is seen to
be ON in the ECLiPS package, but ECLiPS cannot see that the output has been forced.

ECLiPS can only force the outputs that have been named in the Program Mode. It is a
good practice to only force State Logic outputs in ECLiPS and outputs used by other pro-
grams in Logicmaster.

Analog Scaling

Another operation that can be handled in both ECLiPS and Logicmaster is analog scaling
of raw data to engineering units. To eliminate confusion and for more accurate analog
representation, any analog values used in the State Logic program should be scaled only
with ECLiPS.

ECLiPS uses floating point numbers to represent analog engineering unit values. Float-
ing point representation more accurately represents the true values indicated by the
analog signals produced in the field devices.

Using State Engine Memory Location

Whenever the ladder logic of ‘C’ program changes memory locations, care must be
taken not to conflict with State Logic operation. The different programming types
should use memory locations to coordinate their activities with each other. The
programs may access the same memory locations, but only one type should attempt to
change a particular location.

Register Locations
Logicmaster designates register memory with %R followed by a number and discrete
memory with %M followed by a number. The State Engine uses register locations to
make data available from other programming methods, the Ethernet module and other
devices on the VME backplane. The %R register map as used by the State Engine are
displayed in the following table:

Table G-1. State Engine Register Usage

State Engine Use Variable
Bytes

Variables
Allowed

Register
Number

ECLiPS Communication
Registers – Do NOT use

N/A N/A 1 - 3000

Integer Variables 2 1000 3001 - 4000

Floating Point Variables 4 1000 4001 - 6000

String Variables 82 100 6001 - 10100

Character Variables 2 64 10201 - 10265

Unused N/A N/A 10266 - 10900

%AI and %AQ Scaled Values 4 1024 of each 10901 - 15000

Current State Values 2 1000 - 255 in ECLiPS 15001 - 16000

Unused N/A 16001 - 16384

G

GFK-1006A G-3Appendix G Integrating Ladder and/or C Programming

Each variable has a variable number assigned when its name is defined using ECLiPS.
The variable number indicates the memory location used to store that variable’s value.
For example a floating point variable with number 10 would be stored in four bytes
starting at %R register number 4037.

Other programs and devices may use, without fear of conflicts, any register locations not
used by the State logic program. Therefore, if there were no Integer Variables used in a
State Logic program, other programs and devices could use registers 3001 through 4000.

I/O Memory Locations

The State Engine uses I/O memory space to interact with real world signals, register
locations for variable and status storage, and discrete locations for internal status
memory. Real world inputs can be read by all programming types, but outputs should
only be controlled by one program.

The State Engine also uses discrete memory designated as %M memory in Logicmaster
for internal flag values. these flags are mapped to %M locations 1 – 1000. In addition
%M locations 1001 – 1500 are reserved for State Engine use and should NOT be used by
other programs or devices.

There are three %M memory locations that are available as READ ONLY State Logic
status information:

%M 1030 – Program Running

%M 1031 – Discrete Point Forced

%M 1032 – Analog Channel Forced

Other discrete points that the State Logic program may control are: %Q, %G, and %T.
When controlling discrete points the State Engine controls all points up to the largest
number referenced in the State Logic program. The best practice is to use the lowest
reference numbers possible for all points used in the State Logic program to reduce scan
time and limit conflicts with other devices and programs.

For example, if the largest reference number for %G discrete points is %G500 in the State
Logic program, all %Gs up to and including %G500 are controlled by the State Engine.
All %Gs in that range are OFF except those turned on by the program. those not turned
ON or not defined in the program are OFF. Other programs and devices should not
attempt to control these points.

Analog outputs are updated in a similar fashion. all %AQs are controlled by the State
Engine up to the highest %AQ referenced in the program. all unscaled outputs are
updated every scan and scaled outputs are updated periodically as specified by the
analog update rates specified on the tables accessed through the ECLiPS DEFINE menu.
Any outputs not defined by the program but lower than the highest output referenced is
set to 0 every scan. Again it is best to use to lowest %AQ reference numbers for
improved scan time and fewest possible conflicts with other program and devices.

H
section level 1 1
figure_ap level 1
table_ap level 1

H-1GFK-1006A

Appendix H ECLiPS Specifications

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tasks ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

256
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Task Groups ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

States
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3000
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

States Per Task
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

254
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁStatements per State

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁUnlimitedÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInteger Variables (range –32768 to +32767)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1000ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Floating Point Variables (range +/– 1.175494E–38 to +/–
3.402823E+38) 32 BIT IEEE Format

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1000

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

String Variables ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

100
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

String Variable Size
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

80 Characters
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Character Variables
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

64
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPID Loops

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ20

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInternal Flags

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1000ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Digital Circuits
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4096ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Analog Circuits
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2048

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timers ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Unlimited

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timer Resolution ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1/100 second

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Characters per Write Term ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

512

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

State Changes Listed in Trace Display ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

100

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Force Table Size ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

32

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Monitor Table Size ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

6 entries

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Monitor Tables ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

10

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O and Variable Names ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3000

Index

Index-1GFK-1006A

A
Actuate , 6-5

Add, 6-6 , F-2

Add Functions, 5-2

AM, F-6

Analog, 6-6 , 6-12 , 6-15

Analog Scaling, G-2

AND, 6-4 , 6-11 , 6-13 , F-5

AntiReset Windup, 8-8 , 8-11

Architecture, 2-2

ARCTAN, F-4

ASCII control characters, 6-8

ASCII variable, 6-15

Assignment Term, 6-14

Auto Echo, 10-8

AUTOEXEC.BAT, 2-3 , 2-5

B
Battery, 2-2

Baud Rate, 10-8

Bias, 8-3

Bitwise_And, F-5

Bitwise_Or, F-5

Block_Down, 8-7 , 8-11

Block_Up, 8-7 , 8-11

Bumpless Transfer, 8-10

C
C Programming, 2-9 , G-1

Calculations, 6-14

Cascaded PID, 8-11

CCM, 2-10 , 3-9

CCM communications, 10-1

CCM ID, 10-8

CCM Number, 10-11

CCM Type, 10-11

CCM2, 10-10

Change, 9-5

Changing Active State, 6-7

Character Variable, 4-9 , 6-15

Clear_Bit, 6-7 , F-3

Clock, 6-15

Command bit, 8-7

Comments, 4-18

Communications Port, 6-13

Conditional Expression, 6-3

Conditional Term, 3-7 , 4-7 , 6-10 , F-1

CONFIG.SYS, 2-4 , 2-5

Configuration, 2-5 , 2-6 , 2-9 , 6-15

Control Characters, 6-9

Control Theory, 3-1

Control Variable, 8-4

Copy, 5-3

COS, F-4

Current State, 3-11 , 6-7 , 6-12 , 9-5

D
Day, 6-15

Day_of_week, 6-15

Debug Mode, 9-1

DEFINE , 5-7 , 10-9

Diagnostics, 3-4 , 3-11

Digital , 6-11

Direct acting, 8-3

Display, 9-4

Divide, 6-6 , F-2

Documentation , 4-17 , 5-5

DOS, 2-3 , 2-5

Download, 9-3

Download , 5-5

E
End of Message Character, 10-8

Energize, F-2

Error Check, 5-5

Index

Index-2 GFK-1006A

Errors, E-1

EtherNet , 2-11

EXP, F-4

Expanded memory, 2-4

Expression, 6-2

Extended memory, 2-4

F
Faults, 9-4

Filler Words, 4-7 , 6-4 , 6-16

FIND , 5-3

Finite State, 3-2 , 3-4

Floating Point Variable, 4-8 , 6-15 , 6-16

Force, 9-5 , G-2

Formatting, 6-8

Friday, F-6

FROM, 6-13 , F-6

Function Keys, A-1

Functional Expression, 6-3 , 6-16

Functional Term, 3-7 , 4-6 , 6-5 , F-1

G
Gain, 8-3 , 8-8

Genius Bus Controller, 2-6

Go, 6-7 , 6-16 , F-2

Grammatical Rules, 6-16

H
Halt, F-2

Hardware Handshaking , 10-8

Hardware Key, 2-4

Help , 1-2

Hierarchy, 6-2

High Limit, 8-3

High Speed Counter Block, D-1

High_Limit_Status, 8-7

Hints, 4-12 , 4-17 , 5-8 , 9-5

Hot Key, 5-8 , A-2

Hour, 6-15

I
If, F-1

Inactive State, 6-7 , F-6

Installation, 2-4 , 2-7

Integer, 6-16

Integer Variable, 4-8 , 6-15

Internal Flag, 4-8

Inverse acting, 8-3

K
Key, 1-1

Key Functions, A-1

Keywords, 4-7 , 6-4 , F-1

L
Ladder Logic, 2-9 , G-1

Language, 6-4

Language Structure, B-1

LIST , 5-7 , 10-9

List Functions, 5-2

LN, F-4

Logging Data, 9-2

Logicmaster, 2-3 , 2-5 , 2-8 , 2-10 , 5-7 , 6-15
, 10-4 , 10-9 , G-1

Low Limit, 8-3

Low_Limit_Status, 8-7

M
Make, F-2

Make Term, 6-5 , 6-6

Manual/Auto station, 8-10

MathAssignment , 6-6

Mathematical Calculations, 6-14

Max_Time, F-6

Index

Index-3GFK-1006A

Memory , 2-4

Minute, 6-15

Model, 3-4

Monday, F-6

Monitor Tables, 9-3

Month, 6-15

Move, 5-3

Multiply, 6-6 , F-2

N
Name, 4-4 , 4-17 , 5-7 , 6-4 , 6-14

Natural Logarithm, F-4

NOT, 6-13 , F-5 , F-6

Numeric Data Types, 6-16

Numeric Variable, 6-15

Numerical expressions, 6-14

O
Off, F-6

On, F-6

On – Line Features, 9-1

Online Modify, 5-8

OnTOP, 2-3 , 2-6 , 2-10 , 6-8 , 6-14 , 8-9 ,
10-5 , 10-9 , A-1

Operator Precedence, 6-14

Operators, F-1

OR, 6-4 , 6-11 , 6-13 , F-5 , F-6

P
Parenthesis, 6-14

Password, 2-6

PASTE , 5-9

Perform, 6-5 , F-2

Perform Function, 6-10

PID Initialization, 8-2

PID Loop, 6-9 , 8-1

PID Loop Parameter, 8-3 , 10-13

PID Loop Tuning, 8-6

PID scaling constants, 8-2

PM, F-6

PowerTRAC Block, C-1

Precedence, 6-14

Print , 5-5

Process Variable, 8-4

Program Files, 2-6 , 2-8

Program Mode, 5-2

Program Scan, 4-9

Project Management, 5-4

Q
Quick Reference, 6-5 , 6-10

R
RANDOM, F-4

Rate, 8-3 , 8-8

READ, 6-13 , 6-16 , F-1

Read Term, 4-15 , 10-4

Receiver Always On, 10-8

Registration, 1-2

Relational Term, 6-12

Remove, 5-3

Reset , 8-3 , 8-8

Respond to Backspace, 10-8

Resume_Task, 6-7 , F-3

RS–232, 10-1

RS–422/485, 10-1 , 10-2 , 10-8

Run Switch, 2-2

Runtime Errors, E-13

S
Saturday, F-6

SCADA package, 10-2

SCM Battery, 10-9 , 10-14

SCM Specifications, 10-15

Index

Index-4 GFK-1006A

Search and Replace, 5-3

Seconds, 6-11 , 6-15 , F-6

Security , 2-6 , 2-7

Serial Cable, 1-1 , 2-3 , 10-2

Serial Communications, 3-8 , 6-8 , 6-14 ,
10-1

Serial Communications Module, 2-6 , 2-10,
10-1

Serial Port, 2-2 , 10-1

Serial Port Configuration, 10-9

Serial Port Parameters, 10-8

Set_Bit, 6-7 , F-2

Set_Commport, 6-10 , 10-9 , 10-10 , F-2

Setpoint, 8-4

SETUP , 2-5

Simulation, 9-1 , 9-2

SIN, F-4

Specifications, H-1

SQRT, F-4

Start_In_Last_State, F-7

Start_PID, 6-5 , 6-9 , 8-5 , F-2

State, 3-2 , 4-2 , 6-2 , 6-7 , 6-16 , F-6

State Diagram, 3-2

State Engine, 2-8 , 2-9

State Logic, 3-1

Statement, 3-5 , 4-3 , 6-2 , 6-16

Status Bits, 8-7

Stop Bits, 10-8

Stop Transmit on Receive, 10-8

Stop_PID, 6-5 , 6-9 , 8-5 , F-2

String Variable, 4-8 , 6-15

Subtract, 6-6

Subtract , F-2

Sunday, F-6

Suspend_Task, 6-7

Suspend_Task , F-3

Synonyms, 4-7 , F-1

System Configuration, 2-6 , 5-7 , 6-10 ,
10-4, 10-9

System Status, 9-4

System Variable, 5-2

T
TAN, F-4

Task, 3-3 , 3-4 , 3-6 , 3-9 , 4-2 , 4-14 , 6-2 ,
6-16 , F-6

Task Group, 5-6 , 6-2

Task interaction, 3-10

Term, 6-2

Terminal Log, 9-2

Text Functions, 5-3

Thursday, F-6

Time Variable, 4-9 , 6-15

Timer, 4-16 , 6-11

Trace, 9-4

Track_Mode, 8-7 , 8-10

Translate, 5-5

Translation Errors, E-1

Tuesday, F-6

Tuning Parameters, 8-7

U
Update Time, 8-4

V
Variables, 4-7

Version, 2-6

View, 9-4

W
Wednesday, F-7

When, F-1

WITH, 8-5 , F-7

Word, 6-2

Word Processing, 5-9

Write, 6-5 , 6-8 , F-3

Write Term, 4-14 , 9-2 , 10-4

X
XON/XOFF, 10-8

	gfk1006a.pdf
	Chapter 1 Preliminaries
	Items Included with ECLiPS
	Getting Help

	How to Use this Manual
	Brief Description of the Manual Chapters
	Manual Organization

	Chapter 2 Setting Up the 90-70 State Logic Control System
	System Overview (Architecture)
	Connecting ECLiPS, OnTOP, and Logicmaster 90 to the State Engine
	Setting Up ECLiPS
	Hardware Requirements
	ECLiPS Installation
	Hardware Key
	Configuring ECLiPS Memory Usage
	Loading Logicmaster Hardware Configuration
	State Engine Configuration Options
	Security Setup
	ECLiPS Security
	OnTOP Security System

	Setting Up OnTOP
	Installation
	Using ECLiPS Program Files

	Setting Up Logicmaster 90
	Setting Up the State Engine
	Loading the State Engine Operating System
	Configuring the State Engine Hardware System

	Communicating with the State Engine
	Communicating with the Programmer Software Packages
	Serial Communication
	EtherNet Communication

	Chapter 3 State Logic Control Theory
	State Logic Control Theory
	The Concept of Finite States
	What Makes State Control Logic Different
	A Collection of Tasks is a State Logic Program

	Developing State Logic Programs with ECLiPS
	Tasks - Sequences of States
	States - The Building Blocks of a Task
	Statements - The Command Set for State Descriptions
	Scan Overview
	Interaction Between Tasks
	Creating Process Diagnostics
	Creating Diagnostic Routines

	Chapter 4 Creating a State Logic Control Program
	Outline the Application
	Identify the Tasks
	Identify The States
	Identify the Statements

	Writing The Program
	Using English Names in the ECLiPS Program
	Statement Structures
	Constructing Statements
	Using Keywords, Synonyms and Filler Words
	Using Variables
	Integer Variables
	Internal Flag
	Floating Point Variable
	String Variable
	Program Scan

	Hints for Creating ECLiPS Programs
	Outputs are OFF by Default
	Note
	Task Design
	Write Term Considerations
	Calculations and a Scanning Operating System
	Read Term Considerations
	Timer Considerations
	Documentation Hints
	Descriptive Names
	Underscores
	Programming Conventions
	Scan Time Considerations

	Chapter 5 ECLiPS Programming Features
	State Logic Word Processor
	Creating Program Text - Overview
	Text Functions - Block Functions
	Find Functions - Search and Replace

	Project Management
	File Management
	Documentation - Print Function
	Error Checks, Translate, and Download Projects
	Task Groups
	File Types Created by ECLiPS

	Naming Variables
	Define Current Word - Search for Undefined Words
	List - Variable Type
	The System Configuration Option

	On-Line Program Changes
	Restrictions

	Hints for Using ECLiPS Features
	How to Use the ECLiPS Menus
	Using ECLiPS Hot Keys
	ECLiPS Word Processing Functions
	How to Use ECLiPS Lists

	Chapter 6 Program Instructions
	Program Structure
	Tasks
	State
	Statements
	Expressions
	Terms
	Words

	Functional Terms
	Turning ON Discretes (Actuate Term)
	Assigning Analog and Variable Values
	Changing Active States Term
	Sending Serial Data (Write Term)
	PID Loops Control Terms (Start_PID, Stop_PID)
	Change Serial Port Configuration Term
	Perform Function Term

	Conditional Terms
	Digital Conditional Term
	Timer Conditional Term
	Relational Conditional Term
	Current State Conditional Term
	Complex Conditionals
	Character Input Conditional Term

	Mathematical Calculations
	Operator Precedence

	Variables
	ASCII Variables
	Numeric Variables
	Numeric Data Types

	Grammatical Rules
	Filler Words

	Chapter 7 Perform Funtions
	Table Functions
	BCD I/O Representation
	Shift_Register
	String Manipulation
	Time Counter
	VME Communication Functions
	Specialized Perform Functions

	Chapter 8 PID Loops
	Initializing and Starting PID Loops
	PID Initialization Form
	PID Loop Paramters
	Starting PID Loop Execution

	On-Line PID Loop Tuning
	Program Control of PID Loops
	Program Changes to the Tuning Parameters
	Using the Command and Status Bits

	PID Algorithm and Philosophy
	Simple PID Control
	Complex PID Control

	Chapter 9 On-Line Features
	Debug Mode Display Screen
	Controlling the Project
	Logging Data
	Process Simulation
	Download a Project
	Reset and Clear State Engine

	Observing State Engine Values
	Monitor Tables
	View
	Trace
	Display Data
	Faults

	Changing State Engine Values
	Change Variable Data
	Force Inputs and Outputs

	On-Line Hints

	Chapter 10 Serial Communications Module
	Overview
	Serial Cables
	SCM Fundamentals

	Installation and Maintenance
	Description
	Inserting the SCM
	Configuration
	Battery

	Serial Port Parameters
	Parameter Details
	Changing the Parameter Settings

	CCM2 Protocol Serial Port
	Enabling CCM2 Communication
	CCM Data Types

	Troubleshooting
	Status LED is not ON Steady
	Resets Blinks Port 1 or Port LED
	Serial Communication Problems

	Appendix A Key Functions
	Function Keys
	Hot Keys
	Miscellaneous Keys

	Appendix B Language Structure Summary
	Notational Conventions
	Language Structure Notational Conventions
	Functional Structures
	Conditional Structures
	Value Expressions

	Appendix C References to the Genius PowerTRAC Block
	PowerTRAC Data Keywords
	PowerTRAC Status Bit Keywords

	Appendix D References to Genius High Speed Counter Block
	Counter Register Keywords
	Counter Status Bit Keywords
	Counter Command Bit Keywords

	Appendix E Errors
	Translation Errors
	Runtime Errors
	Non-Critical
	Critical Errors

	Appendix F Standard Predefined KeyWords
	Conditional Terms
	Functional Terms
	Operators
	Miscellaneous Keywords

	Appendix G Integrating Ladder Logic and/or C Programming
	Appendix H ECLiPS Specifications
	Index

