
GE Fanuc Manual Series 90-30

1-800-360-6802
sales@pdfsupply.com

GFK-0833

Buy GE Fanuc Series 90-30 NOW!

Diagnostic System

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

Preface

vi Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

We Welcome Your Comments and Suggestions

At GE Fanuc automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader ’s Comment Card located on the next page.

Contents

vii

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Chapter 1 Getting Started 1-1 .

Overview 1-1 .

How to Use this Manual 1-1 .

Notational Conventions: 1-2 .

Brief Description of the Manual Sections 1-2 .

UPTime Hardware Requirements 1-3 .

Serial Cable 1-3 .

UPTime Installation 1-4 .

Getting Help 1-4 .

Chapter 2 Diagnostic Strategy Overview 2-1 .

Fill-in-the-Blank Diagnostics 2-1 .

Diagnostic Names 2-2 .

Triggering Value 2-2 .

Actions 2-3 .

The Device Structure 2-3 .

State Logic 2-4 .

State Logic Theory 2-5 .

The Concept of Finite States 2-5 .

Developing State Logic Programs with UPTime 2-7 .

Scan Overview 2-10 .

Communication Functions 2-10 .

Control Capabilities 2-11 .

Chapter 3 Creating A Diagnostic Strategy 3-1 .

Overview 3-1 .

Creating Diagnostics 3-1 .

Diagnostics Only Strategy 3-2 .

Diagnostics vs. State Logic 3-2 .

Creating State Logic Sequences 3-2 .

Creating Sequences to Follow System Operations (Continuous Sequences) 3-3

Creating Diagnostic Action Sequences (Triggered Sequences) 3-14

Creating Interactive Informational Sequences (Instructional Sequences) 3-14 . .

Contents

viii

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Chapter 4 Tutorial 4-1 .

Tutorial Overview 4-1 .

Lesson Preview 4-1 .

Tutorial Procedure 4-2 .

The Sample Application 4-3 .

4-4 .

Indexing Conveyor 4-4 .

Cutting Lubrication System 4-5 .

Drill 4-5 .

Clamp 4-5 .

Set up Series 90–70 System for the Lessons 4-5 .

Series 90–70 System Setup 4-6 .

UPTime Orientation and Setup 4-6 .

LESSON 1 – Creating a Simple Diagnostic Strategy 4-7

Define a Digital Point 4-7 .

Create a Fill–in–the–Blank Diagnostic 4-7 .

Send Diagnostic Strategy to Diagnostic Processor 4-8 .

Introduction to Debug Mode 4-9 .

Executing the Simple Diagnostic Strategy 4-10 .

LESSON 2 – Adding More Diagnostics 4-11 .

Analog Diagnostic 4-11 .

Variable Diagnostic 4-11 .

Device Diagnostic 4-12 .

Execute the Strategy 4-14 .

Creating State Logic Continuous Sequences 4-15 .

Outline the Application 4-15 .

LESSON 3 – Create State Logic Programming
 (Continuous Sequences) 4-19 .

Load Simulation Program 4-19 .

Add and Execute a Sequence 4-20 .

LESSON 4 – Add Diagnostic Logic to Framework Logic 4-21

Indexing Conveyor 4-22 .

Drill 4-23 .

Drill Bit Lubrication System 4-24 .

Execute DRILL2 Diagnostic Strategy 4-24 .

LESSON 5 – Triggered Sequence 4-25 .

LESSON 6 – Instructional Sequences 4-27 .

Contents

ix

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Chapter 5 Diagnostic Processor 5-1 .

Diagnostic Processor Description 5-1 .

Physical Description 5-1 .

Operational Description 5-3 .

Installation and Maintenance 5-4 .

Troubleshooting 5-6 .

Serial Communications 5-7 .

Diagnostic Processor/CPU Interface 5-12 .

CPU Memory Accessed by the Diagnostic Processor 5-12

Clearing Outputs at Power Up 5-15 .

Diagnostic Processor Scan Considerations 5-15 .

Steps of the Scan Cycle 5-15 .

Program Scan 5-16 .

Analog Scaling and Update Rates 5-18 .

Other Diagnostic Processor Setup Options 5-19 .

Run–time Error Setup 5-19 .

Automatically Start Program Execution 5-19 .

Simulation Mode 5-20 .

Setting the System Clock 5-20 .

Chapter 6 UPTime Menus and Keys 6-1 .

UPTime Menu System 6-1 .

Create Mode 6-1 .

Debug Mode 6-8 .

Keyboard Definitions 6-12 .

Chapter 7 Fill-in-the-Blank Diagnostics 7-1 .

Creating Diagnostics 7-1 .

Name Blank in Diagnostic Forms 7-1 .

Triggering Value Blank in Diagnostic Forms 7-2 .

Action Blank 7-4 .

Controlling Diagnostics with State Logic 7-5 .

Online Diagnostic Features 7-5 .

Terminal Log 7-5 .

Menu Options 7-5 .

Contents

x

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Chapter 8 State Logic Programming 8-1 .

Program Structure 8-1 .

Language Notational Conventions 8-2 .

Functional Expressions 8-3 .

Controlling Sequences 8-4 .

Controlling Diagnostics 8-4 .

Turning ON Discrete (Actuate Term) 8-4 .

Assigning Values (Make, Math–Assignment, Set_Bit/Clear_Bit) 8-5

Changing Active Steps Term 8-7 .

Sending Character Data (Write Term) 8-8 .

PID Loops Control Terms (Start_PID, Stop_PID) 8-9 .

Change Serial Port Configuration Term 8-10 .

Perform Function Term 8-10 .

When_Done_Ne xt_Step 8-10 .

Conditional Expressions 8-10 .

Test Conditional 8-11 .

Character Input Conditional 8-13 .

The Words of the State Logic Program 8-14 .

Names 8-14 .

Keywords 8-16 .

Filler Words 8-22 .

Perform Functions 8-22 .

Table Functions 8-22 .

BCD I/O Representation 8-26 .

Shift_Register 8-27 .

String Manipulation 8-28 .

Specialized Perform Functions 8-30 .

Miscellaneous Programming Operations 8-31 .

Numerical Data Types 8-31 .

Variables 8-32 .

Mathematical Calculations 8-35 .

Grammatical Rules 8-36 .

PID Loops 8-36 .

Language Structure Summary 8-44 .

Program Hierarchy 8-44 .

Functional Structures 8-45 .

Conditional Structures 8-47 .

Value Expressions 8-48 .

Appendix A Specifications A-1 .

Contents

xi

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Figure 2-1. State Diagrams 2-6 .

Figure 3-1. Program Scan 3-7 .

Figure 3-2. Statement Scan 3-7 .

Figure 4-1. Tutorial Application 4-4 .

Figure 4-2. Digital Diagnostic Form 4-8 .

Figure 4-3. Defining the Clamp Device 4-13 .

Figure 4-4. Defining Clamp Device Diagnostic 4-14 .

Figure 5-1. Diagnostic Processor in Series 90–70 Chassis 5-2 .

Figure 5-2. Series 90-70 Diagnostic Processor 5-3 .

Figure 5-3. Sample Logicmaster Configuration Screen 5-5 .

Figure 5-4. IBM PC–AT to Diagnostic Processor Cable 5-11 .

Figure 5-5. Workmaster II or PS/2 to Diagnostic Processor Cable 5-11 .

Figure 5-6. Serial Port Assignments for Series 90-70 Diagnostic Processor 5-12 .

Figure 5-7. Program Scan 5-17 .

Figure 5-8. Statement Scan 5-17 .

Figure 7-1. Alarm List Display 7-6 .

Figure 7-2. Histogram Display 7-6 .

Contents

xii

GFK–0833 Series 90-70 Diagnostic System User’s Guide – July 1993

Table 4-1. New Diagnostics for Indexing Conveyor 4-22 .

Table 5-1. Serial Port Parameters 5-10 .

Table 5-2. Mini Converterr Kit Adapters 5-11 .

Table 5-3. Discrete Memory Types 5-13 .

Table 5-4. Register Memory Types 5-13 .

Table 5-5. 90-70 CPU and Diagnostic Processor I/O and Register Capacity 5-14 .

Table 6-1. Function Key Definitions 6-12 .

Table 6-2. Hot Key Definitions 6-13 .

Table 6-3. Miscellaneous Key Definitions 6-13 .

Table 8-1. Language Structure Notational Conventions 8-2 .

Table 8-2. Conditional Terms 8-16 .

Table 8-3. Functional Terms 8-17 .

Table 8-3. Functional Terms (continued) 8-18 .

Table 8-4. Mathematical Operators 8-19 .

Table 8-5. Relational Operators 8-20 .

Table 8-6. Miscellaneous Keywords 8-21 .

Table 8-7. PID Loop Parameters 8-41 .

Table 8-8. PID Command and Status Bits 8-42 .

Table 8-9. Language Structure Notational Conventions 8-44 .

Table A-1. UPTime Specifications A-1 .

Table A-2. Diagnostic Processor Specifications A-2 .

Table A-3. Meets or Exceeds these Standards A-2 .

Table A-4. 90-70 Diagnostic Processor I/O and Register Specifications A-3 .

1

restart lowapp ARestart oddapp: ARestarts for autonumbers that do not restart in
each chapter. figure bi level 1, reset table_big level 1, reset chap_big level 1, reset1
Lowapp Alwbox restart evenap:A1app_big level 1, resetA figure_ap level 1, reset
table_ap level 1, reset figure level 1, reset table level 1, reset these restarts
oddbox reset: 1evenbox reset: 1must be in the header frame of chapter 1. a:ebx, l 1
resetA a:obx:l 1, resetA a:bigbx level 1 resetA a:ftr level 1 resetA c:ebx, l 1 reset1
c:obx:l 1, reset1 c:bigbx level 1 reset1 c:ftr level 1 reset1 Reminders for
autonumbers that need to be restarted manually (first instance will always be 4)
let_in level 1: A. B. C. letter level 1:A.B.C. num level 1: 1. 2. 3. num_in level 1: 1. 2.
3. rom_in level 1: I. II. III. roman level 1: I. II. III. steps level 1: 1. 2. 3.

1-1GFK-0833

Chapter 1 Getting Started

This chapter provides general information about the Diagnostic System. There is a
general overview of the product, instructions on using this manual, installation
procedures, serial cable information, hardware requirements, and sources of information
about using UPTime.

Overview
The two parts of the Diagnostic System are the UPTime software and the Diagnostic
Processor module.

UPTime stands for “Uptime Promotion Tool”. UPTime is a complete environment
(programming tool and on–line debugger) for creating and monitoring the Diagnostic
Strategy. The purpose of the strategy is to reduce downtime in applications controlled
by GE Fanuc Series 90–70 PLCs. This strategy is composed of fill–in–the–blank point
level diagnostics and systems level State Logic programming using natural English
terms, phrases and sentences. These programs mirror the controlled process step for
step, checking the operations, collecting data, providing information about the process,
and aiding preventive maintenance.

The Diagnostic Strategies created by UPTime are executed by the Series 90–70
Diagnostic Processor. This is a parallel processor module that plugs into the PLC
backplane.

The Diagnostic Processor accesses the CPU register and I/O tables through the Series
90–70 backplane as the CPU controls the I/O through its normal program execution
cycle. This is a parallel processing system, since the CPU executes a control program
while the Diagnostic Processor is executing it Diagnostic Strategy. The Diagnostic
Processor is also capable of any control operation turning ON outputs or setting analog
and register values. If both the CPU and the Diagnostic Processor attempt to control the
same data element, the CPU always takes precedence. For information about the
Diagnostic Processor see the Diagnostic Processor User’s Manual.

How to Use this Manual
This product differs significantly from any other product on the market, therefore it is
very important to read sections 2 and 3, Diagnostic Strategy Overview and Creating a
Diagnostic Strategy.

After reading these sections, install UPTime in the computer and follow along with the
Diagnostic Strategy Tutorial chapter. The tutorial demonstrates how to create and
execute a Diagnostic Strategy and how the system features can be used to reduce
process downtime.

The manual also has chapters that describe creating Diagnostics, State Logic
Programming, the Diagnostic Processor Module, the UPTime menu system, and system
specifications.

1

1-2 Series 90–70 Diagnostic System User’s Guide – July 1993 GFK-0833

Notational Conventions:
� All text that should be entered at the keyboard are printed in bold italics.

� All references to individual keys are enclosed in angle brackets <>.

� Sample program lines to show examples but not necessarily entered into your
computer are displayed in a box.

� Displays showing computer screens are all captures of actual UPTime displays with
rounded corners on the surrounding box.

� References to menu options appear between double quote marks.
“Make a New Project”

Brief Description of the Manual Sections

1. Chapter 1. Getting Started

Getting Started is the section you are now reading. Getting Started tells you how to
install UPTime on your DOS based computer and other particulars related to
accessing information.

2. Chapter 2. Diagnostic Strategy Overview

UPTime is an interface that allows you to tap into the substantial power and
flexibility of State Logic programming plus providing simple to use
Fill–in–the–Blank Diagnostics. This chapter provides some basics about the
underlying concepts and philosophy of State Logic programming and Diagnostics.
Regardless of what you may already know about State Logic, it is extremely
important that you read this chapter carefully.

3. Chapter 3. Creating a Diagnostic Strategy

This chapter explains how to create a Diagnostic Strategy using UPTime. A
procedure for structuring State Logic programming and information about using
Diagnostics are provided.

4. Chapter 4. Tutorial

This chapter walks you through the creation and execution of a simple Diagnostic
Strategy programmed in State Logic with UPTime. Some simple program sections
are created then executed. Building on previous examples, a complete Diagnostic
Strategy is created and executed.

5. Chapter 5. �iagnostic Processor

This chapter explains the details of using the Diagnostic Processor. Topics discussed
are installing and troubleshooting the module, serial communications, details of the
scanning system, and interfacing with the CPU of the system.

6. Chapter 6. The UPTime Menu System

This chapter describes some of the options available from the UPTime menu system.
The options covered are those that are not used all the time and might be difficult to
understand.

1

1-3GFK-0833 Chapter 1 Getting Started

7. Chapter 7. Fill–in–the–Blank Diagnostics

This chapter contains detailed information about creating and using Diagnostics.
The four types of Diagnostics are described and the debug mode operations used to
view and record Diagnostic actions are explained.

8. Chapter 8. State Logic Programming

This chapter has all of the details about State Logic programming. The use of the
State Logic language is discussed, including language structure and use of English
words in the program, and the Perform Functions.

9. Appendix A. Specifications

This chapter has specifications for both the UPTime software package and the
Diagnostic Processor module. The is also a table of standards that this product
meets.

UPTime Hardware Requirements
1. IBM PC compatible or PS2

2. 640K RAM

3. DOS version 3.1 or higher; if DOS 5.0 or higher is used, then DOS must be loaded in
the high memory area.

4. Hard Disk

5. 5.25 inch or 3.5 inch floppy disk drive

6. Serial Port

7. Any printer (Optional)

8. Color or monochrome monitor

Serial Cable

Communication between the UPTime host computer and the Diagnostic Processor is
through the serial ports. The UPTime software is designed to use two different GE
Fanuc serial cables. One cable is in the mini–converter kit that is included with UPTime.
The other cable is the normal IBM PC cable, IC690CBL702, or Workmaster cable for a PS2
type computer, IC690CBL705.

Mini–Conver ter Kit
UPTime comes with a serial cable kit that is used to both connect the CPU to a computer
running the Logicmaster software and to connect the Diagnostic processor with a
computer running UPTime. This kit comes with 3 adapters described in the following
table:

9–pin Male to 15–pin Male CPU Port HE693SNP232

9–pin Male to 25–pin Male SLP Ports 1 or 2 AD232/1–2

9–pin Male to 25–pin Female IBM PC COM 2 HE693XTADP

1

1-4 Series 90–70 Diagnostic System User’s Guide – July 1993 GFK-0833

Mini Converter Kit Adapters
The cable that comes with this kit is terminated with two 9–pin female connectors. The
9–pin male to 15–pin male adapter connects this cable to the CPU to set the
configuration with Logicmaster. The 9–pin male to 25–pin male adapter connects the
cable to one of the Diagnostic Processor ports. The 9–pin male to 25–pin female
adapter connects the cable to a 25–pin serial port on the IBM computer.

UPTime Installation

To install UPTime, insert disk 1 into drive A or B and make this drive the current logged
drive. Type INSTALL and hit <Enter>. Choose the “INSTALL” option. Be ready to
specify the hard drive where UPTime is to be installed. Follow the instructions for
inserting other disks. The installation program displays a message when the installation
is complete.

UPTime is copy protected so that only one installation is allowed per set of distribution
disks. If an attempt is made to run UPTime without proper installation, a message is
displayed saying that this is an unauthorized version of UPTime. The installation
program does not allow a second installation from the distribution disks.

If there is a need to move UPTime to another computer use the UNINSTALL option of
the installation program. This option removes UPTime from the computer on which it is
installed. The distribution disks are modified to allow UPTime to be installed again on
another computer.

To run UPTime, make sure that \UPTIME\S90–70 is the current directory by typing
CD\UPTIME\S90–70 and then press <Enter>. Now type UPTIME to start the
program.

Getting Help

There are three ways to get help:

1. UPTime Help System. UPTime has a built in help system that can always be
accessed by pressing the key on your keyboard marked <F1>. This help system is
context sensitive, meaning that UPTime provides the helpful information you need
based on the location of the cursor on the screen or the highlighted menu option at
the moment you ask for help.

2. This manual provides detailed information for most of your needs. If you still need
more information, feel free to call either of the numbers provided in the next
paragraph.

3. GE Fanuc has personnel specially trained throughout the country to provide
customer support for UPTime and other Adatek products that work together with
GE Fanuc control products. Call GE Fanuc technical support line at (800) 828–5747.
The Adatek technical support number is (800) 323–3343.

2 section level 1 1
figure bi level 1
table_big level 1

2-1GFK-0833

Chapter 2 Diagnostic Strategy Overview

The end product of the UPTime Create mode is a Diagnostic Strategy to reduce
downtime of a process controlled by a Series 90–70 PLC. The programmer creates the
Diagnostic Strategy using one or both of the two types of diagnostic aids: point level
Fill–in–the–Blank Diagnostics and advanced systems level State Logic programming.

Fill-in-the-Blank Diagnostics
Diagnostics are simple point level alarms that monitor discrete and analog I/O and
variable status. The Diagnostic initiates some action when that monitored data element
causes the Diagnostic to be in an alarm state.

There are four Diagnostic types:
Discrete
Analog
Variable
Device

Most of the CPU memory locations can be monitored, %I, %Q, %M, %T, %G, %S, %SA,
%SB, %SC, %AI, %AQ, and %R. In addition State Logic variables stored in the
Diagnostic Processor can also be monitored.

Diagnostics are created by filling in a form such as the one displayed below.

2

2-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Diagnostic Names
The first blank of each Diagnostic form is the blank for the name of the data element
being monitored. Names are used throughout the Diagnostic Strategy in both
Diagnostics and State Logic Sequences to refer to I/O and variable data stored in both
the CPU and the Diagnostic Processor.

There are three ways to identify an I/O point or data location with a name:

Define the Name in UPTime (PartsCount)
Use the Memory Address Directly (%R34)
Use Nicknames Used in Logicmaster Ladder Logic Program (FST_SCN)

UPTime Names
UPTime displays a list of names defined for the type of Diagnostic being created, when
the cursor is on the name blank and the <Ins> key is pressed. For example when
creating an analog Diagnostic, UPTime displays a list of all analog I/O names that are
currently defined if the <Ins> key is pressed when the cursor is in the name blank of
the form.

A name can be up to 20 characters long and must start with a letter but may contain
numbers and the underscore character “ _ ” . The user attaches a name to an I/O or data
address through one of the UPTime name definition forms. For example the name,
Foward_Limit_Switch, might be attached to %I34, using one of the several methods
explained below for defining a name.

Since names must be one word, underscores and uppercase letters are used to simulate
word breaks, making the text more readable. Tank_Level and BypassSwitch are
examples of techniques for simulating word breaks in names.

Logicmaster Nicknames
Another way to identify I/O and register data is to use the same nicknames used in the
Logicmaster 90 programming package to create the Relay Ladder Logic program. When
UPTime needs the address for names used in the Strategy, one of the places it checks is a
nickname file created by Logicmaster 90 to locate the I/O address. Therefore, if the
nickname, REV_LS, has been attached to %I35 in Logicmaster, UPTime knows to use
that same address location when that name is found in the Diagnostic Strategy. See the
State Logic Programming chapter for detailed information on creating and locating the
Logicmaster nickname file.

Direct Memory Reference
In addition to defining the name using UPTime, I/O and register data can be identified
by just directly referring to the CPU memory address. Therefore, %I34 can be used
directly without defining any name just by entering I34 in the blank for the name.

Triggering Value
Each type of Diagnostic has a value that causes the Diagnostic to be tripped. Digital
Diagnostics can be set to trip when the point is ON, OFF, or just changes state. Analog
and variable Diagnostics have both high and low limits that activate the Diagnostic. The
Device Diagnostic specifies the maximum amount of time for the device to open and a
maximum time to close. If the time is exceeded the Diagnostic is tripped.

2

2-3GFK-0833 Chapter 2 Diagnostic Strategy Overview

Actions
Actions are the activity that the diagnostic initiates when tripped. There are three actions
that a diagnostic can initiate:

Send a Default Message
Send a Custom Message
Start a State Logic Sequence

Default Message
The Default Message action causes the diagnostic processor to assemble a generic
message that states the type of fault that has occurred, the name of the I/O point or
variable involved, and its current value. This message is sent out the serial port
designated the Diagnostic Port, when the Diagnostic is tripped.

Example Default Message:

Discrete Value Switched to ON : Name is DriveMotorOverload

There is a different Default Message for each type of Diagnostic. The text for each
Default Message can be changed by options on the Define menu to any message up to
80 characters in length.

Custom Message
The Custom Message action causes a message to be sent out the Diagnostic Port when
the Diagnostic is tripped. The text of this message is entered in the window provided
when the Diagnostic form is saved. The message can be up to 128 characters in length.

Sequence
The Sequence action causes a Sequence to begin execution when the Diagnostic is
tripped. Sequences are State Logic procedures that are used to do higher level analysis
and operations.

The Device Structure
One of the four types of Diagnostics is the Device Diagnostic. A Device is a high level
structure that treats several I/O points as a single entity.

There are many mechanisms in industrial applications that use an output\input I/O pair.
The output starts an operation and the input indicates when the operation is complete.
These mechanisms include motors, valves, presses, clamps, hydraulic rams, etc.

The Device structure groups two outputs and their associated input verifiers into one
entity. With two output/input pairs, the Device structure can be used for the many
mechanisms that involve a travel cycle such as a hydraulic ram opening and closing.

Creating a Device
A Device is defined by filling in the blanks in a form. The Device is given a name by
filling in the name blank. The Device terminology is designed to describe an implement
that opens and closes. The blanks for the two outputs are labeled Open Actuate and
Close Actuate, and the blanks for the two inputs are labeled Open Complete and Close
Complete.

2

2-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Names must be defined before being used in the form. The same naming capabilities
are used in the Device form as in the Diagnostic forms. A name is attached to an I/O
point by using UPTime menus and forms and a list appears when the <Ins> key is
pressed. The name blank may also be a direct memory address specification such as I76
or Q45, or a name may be a nickname used in Logicmaster when the Ladder Logic
program controlling the process was created.

In the Device form there is a normally open or normally closed designation under the
blank for each I/O name. For outputs this designation says “Actuate When On” or
“Actuate When Off” , and for the inputs the designation says “Complete When On” or
“Complete When Off” . The “Actuate When Off” designation is used for the many
mechanisms that start the operation when the output is Off.

Although it is most common that outputs start the operation and inputs indicate when
the operation is complete, it is not necessary to set up the Device in this manner. Any
Digital point whether input or output can be used in any blank in the Device form.

The Device Diagnostic
The Device Diagnostic has a space for the Device name. The Device must be defined
before the Diagnostic is created. A list of Devices is displayed when the <Ins> key is
pressed and the cursor is in the name blank.

The Device Diagnostic has four different situations which trigger actions. Two of the
conditions triggering actions monitor the time it takes for the Device to open or close. A
timer starts when the close or open process is started by the specified I/O point that
starts the operation. If the Device takes too long for the open or close operation, then
the specified action is triggered.

The last two actions trigger when the Device either opens or closes as indicated by the
I/O point that monitors for the completion of that operation.

State Logic

The State Logic part of the Diagnostic Strategy is the programming written for advanced
systems level diagnostics, analysis, an instructions. UPTime exploits State Logic in three
different ways.

First, State Logic is used to follow the process through its different stages, testing for
likely malfunctions at each stage of the process.

The second use of State Logic is as an action specified for a Diagnostic. When the
Diagnostic trips, the designated Sequence performs some higher level analysis of why
the Diagnostic tripped or sends messages describing how to correct the problem.

The third use of State Logic is for Instructional Sequences that provide a method to
display desired information to the operator. A menu is automatically generated that
allows the operator to choose which Instructional Sequence to review.

2

2-5GFK-0833 Chapter 2 Diagnostic Strategy Overview

State Logic Theory

State Logic has its roots in Finite State Machine Theory, developed by nineteenth
century mathematicians. Because its philosophy is a natural fit to real–time systems,
Finite State Machines have become the strategy of choice in disciplines, such as
electronics and communications.

State Logic has been used for industrial control applications for many years. It has
always been recognized that diagnostics are a particular strength of the State Logic,
because the program inherently knows the current stage of the process and simply
checks for malfunctions that are possible during that stage.

The Concept of Finite States

The basic concept of State Logic is that a process can be defined as a series of states or
Steps. Each Step is defined by two components, operations that occur while that Step is
active and the transitions to other Steps.

Operations describe actions such as turning ON digital outputs, setting variable and
analog values, sending messages to an operator, or using a function.

“Make PartCount equal to 45.”

is an example of an UPTime program line describing the operation part of a Step. A Step
can perform an unlimited number of operations.

Transitions are a little more complicated since they are themselves defined by two
components, the condition causing the transition and the target Step.

“ If Part_In_Place switch in ON, go to Start_Conveyor Step.”

is an UPTime program line representing a transition of a Step. The “ IF” expression is the
condition controlling this transition and Start_Conveyor is the target Step. Other
conditions that can be tested are the status of the digital inputs, the values of variables
and analog inputs, elapsed time, etc. The target Step is the one which becomes active
when the condition is true.

A series of Steps in Finite State Machine science is called a State Machine. UPTime calls
each such group of Steps a TASK.

It is traditional to diagram Finite State Machines with circles and arrows. The actions of
a Step are written inside the circles. The arrows show the transitions with the condition
component of the transition written next to the arrow. The following unlabeled State
diagrams show two simple Finite State Machines or Tasks.

2

2-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Figure 2-1. State Diagrams

The Task may transition from one Step to any other Step in the Task depending on how
the instructions are specified by the system designer. There may be several transitions
described in one Step. Each Task is always in one and only one Step at any time. The
transfer from one Step to another does not consume any time, therefore outputs that are
ON in two successive Steps do not blink OFF during the transition.

Project: CHEMICAL PROCESS

Task: Make_Compound_5
Step: PowerUp

If the Manual_Switch is on and Start_Pushbutton
is pressed go to the Adding_Water Step.
Go to Adding_Water if Auto_Switch is on.

Step: Adding_Water
When Tank_Guage equals 35 gallons,
then go to the Adding_Chemicals Step.

Step: Adding_Chemicals
When the Chemical_Management Task is in the Emptying Step,
go to Check_Pump_2 Step.
When Tank_Guage equals 39 gallons,
send “Tank Filled” to operator_panel and go to the Mixing Step.

Step: Mixing
If hour is past 8 AM, Start_Sequence the exhaust_system.
If 20 seconds pass and the Mixer_Monitor
is less_than 100 rpms, go to the Wait_3 Step.
Go to the Cooking Step when Oven_Element is ON.

Step: Wait_3
Write “PROCESS SHUT DOWN BECAUSE MATERIAL IS TOO THICK”.
Go to PowerUp Step when Reset_Button is pushed.

Task Description in UPTime

2

2-7GFK-0833 Chapter 2 Diagnostic Strategy Overview

An important point is that Finite State Theory does not create or invent TASKS. TASKS
are already an inherent part of every process. Programming with a state language is
merely the act of describing the sub–systems of the process.

Processes have more than one sub–system so that State Logic programs usually have
more than one Task. Each Task executes concurrently or in parallel.

Developing State Logic Programs with UPTime
Developing State Logic programs can be characterized as entering a description of your
control system into a template. The template is the Finite Step Machine model built into
the Diagnostic Processor. UPTime is a tool and framework for entering that description
into the template.

State Logic Hierarchy
The State Logic organization has the following hierarchy of structures:

PROGRAM
SEQUENCE
TASK
STEP
STATEMENT
EXPRESSION

State Logic Hierarchy

Each State Logic program is composed of one or more Sequences, which are themselves
constituted of one or more Tasks. This same relationship carries throughout the
hierarchy except that a Step can be defined with no Statements.

TASK: Drill TASK NAME
Step: Drill_Advancing STEP NAME
After 3 seconds go to Starting_Drill_Motor Step. STATEMENT
When Fwd_Limit_Switch is tripped go to Retracting Step.
Go to Send_TimeOut_Message if 17 seconds pass.

Step: Retracting
When Home_Switch is tripped go to the Increment_Counter Step.
If 15 seconds have passed, write “TOO Long Retracting” to Operator.

Step: Increment_Counter
Add 1 to Parts_Count.
Write “Parts Count equals %Parts_Count” to operator_display.
If Parts_Count is less than 24 go to the PowerUp Step.
If Parts_Count is 24 go to the Send_Message_2 Step.

Step: Send_Message_1
Write “REPLACE DULL DRILL BIT” to message_board, go to Retracting Step.

Step: Send_Message_2
Send “RUN COMPLETED” to operator_display, go to New_Cycle Step.

TASK: Setup_DISPLAY
Step: Operator_Panel

Sample Task with Some Elements Labeled

2

2-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Sequences
There are three types of Sequences. Continuous Sequences start execution at powerup
and are used to follow the process through its different states of operation. Triggered
Sequences are a specified action of a Diagnostic and start operation when that
Diagnostic is tripped.

Instructional Sequences are used to provide information to the operator through a dumb
terminal or using the UPTime Debug mode. The Diagnostic Processor displays a menu
that lists all of the Instructional Sequences when “MENU?” is typed at the keyboard.
When one of these Sequences is selected it begins operation. Instructional Sequences
can also be started from a program Statement in another Sequence.

When a Sequence is started from another Sequence all of the Tasks start executing from
the first Step defined following the Task name. If a Task is in the middle of an operation
when started, it stops what it is doing and restarts at the beginning Step.

Tasks – A Collection of Steps
By design, a machine or process is a collection of Tasks that operate concurrently. A car
engine has an electrical system, a fuel system, a mechanical motion system, cooling
system, exhaust system and a starting system that, while independent in action, must be
coordinated in time for the engine to work. Similarly all industrial processes, machines
and systems contain several Tasks that are mutually exclusive in activity yet joined in
time.

Tasks execute concurrently, and every Task always has one and only one Step active at
any point in time. Only the instructions of the active Steps are executed, all other logic is
ignored.

Steps – The Building Blocks of a Task
�����
���������

Step: PowerUp
�� �����
�� �� ��� ����� �
����� ���� ��� �� �� 	�������
�����

Step: Lowering_Mixer
When the Mixer_Down_Switch is tripped,
then go to Mixing_Chemicals Step.
If 23 seconds have passed, go to the Lowering_Hang_Up Step.

Step: Mixing_Chemicals
If Mixer_Overload is tripped, go to Mixer_Overload Step.
When Mixer_Up_Motor is ON, go to Raising_Mixer.

Step: Raising_Mixer
If Mixer_Up_Motor is OFF, go to the Raising_Problem Step.
If Mixer_Up_Switch is tripped,
then go to Mix_Complete.

Step: Mix_Complete
When Can_At_Mix is off, add 1 to Batch_Count and go to PowerUp.

Five Step Task Example with a Single Step Highlighted

2

2-9GFK-0833 Chapter 2 Diagnostic Strategy Overview

In the automobile engine example we said an engine is viewed as a collection of Tasks;
Fuel System Task, Electrical System Task, Starting System Task and so on. Each of those
Tasks is further described as a precise set of Steps through which that Task will pass
while the engine operates.

The automobile engine’s Starting System Task has several possible Steps. For example
we know there is a Step in which the key is on, the engine is not running and the starter
motor is not cranking the engine over. We know there must be another Step in which
the key is in another position, the engine is not yet running but the starter motor is
cranking the engine over. There are also Steps in which the key is on, the engine is
running and the starter motor is no longer cranking the engine.

A Step can set outputs, send messages, perform calculations, and assign values to data
variables. Steps also describe transitions to other Steps. Only one Step is active and
executed in a Task at any time. If two Steps need to be active at the same time then a
concurrent Task is required.

Every Task must have at least one Step. When the Task starts execution, the Task goes to
the first Step following the Task name, which is the first Step in the execution sequence
of the Task. Thereafter, activity can move to any other Step based on the Statements in
the active Step.

Statement – The Command Set for Step Descriptions
The actions of a Step are described with a Statement or a collection of Statements. In
UPTime a Statement is a collection of Terms describing the desired actions for that Step.
Statements end with a period (.) and can be thought of as sentences, although
punctuation and proper grammar are not required.

Step: Raising_Mixer
Write “Mixer Moving” to Operator_Panel.
When the Mixer_Up_Switch is tripped, then go to Mix_Complete.

Example, UPTime Step with One complete Statement Highlighted

In UPTime, Statements are normal English words, phrases or sentences. In the
automobile engine Starting System example, we might find that to make a complete
description of the Starting System Task, the activities would have to be described in great
detail. A complete range of Statements is available that describes the full and possible
ranges of activity of a Step. There can be an unlimited number of Statements in a Step.

Expressions
There are two types of Expressions used in a Statement; Functional and Conditional.

Functional Expressions perform a specific action, including enabling or disabling
Diagnostics, starting another Sequence, turning on digital outputs, setting analog
outputs to values, performing calculations, setting variables to values, transferring to
another Step or communicating with other devices.

Conditional Expressions perform some decision making test which enables or prevents
execution of the functional Expression in the Statement. The conditions that can be
checked include digital point status, analog values, a read from a serial port, or status of
any system variable, including the current Step activity from other Tasks.

2

2-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Functional and Conditional Terms are listed below using typical UPTime terminology.

Functional Terms Conditional Terms

Actuate, Start, Turn on If, when
Go Read, get

Add, Subtract, Divide, etc.
Make, Set

Write
Enable_Diagnostic
Disable_Diagnostic

Start_Sequence
Start_PID, Stop_PID

Suspend_Task, Resume_Task
Perform

Scan Overview
In executing the diagnostic strategy, the Diagnostic Processor continuously cycles
through the steps of scanning the I/O, then scanning the control program, and finally
setting the outputs. These scans occur many times each second.

During the scan of the program, each instruction of the active Step of each Task is
executed once. Each Statement of a Step is executed in order from the first Statement to
the last unless a GO Term is encountered. As soon as a Go is executed, no more Terms in
this Step are scanned, and the scan moves to the active Step of the next Task.

When a Statement is executed, all conditional Terms are evaluated before implementing
the action described by the functional Terms. If any conditional Term is not satisfied or
false, the execution of this Statement is stopped, the functional Terms are not
implemented, and the scan resumes at the next Statement of the Step.

The Diagnostic Processor keeps a table of all digital outputs and flags which are set ON
during the program scan. Only the outputs set ON by one of the functional Terms in
one of the active Steps during the scan are set ON, all others are OFF. The real world
outputs and flags are set ON at the end of the scan. Therefore, an output does not go
OFF during the transition from one active Step to the next when that output is set ON in
both Steps.

This scan discussion is a general overview of the program and I/O parts of the scan. The
State Logic Programming chapter of this manual has a more detailed discussion of the
Diagnostic Processor scan procedure.

Communication Functions
The main function of the Diagnostic System is to provide information about the
controlled process and how to make adjustments and correct problems. The channel for
these communications is through the two serial ports. UPTime features simple methods
for sending and receiving information through the serial ports.

The first section of this chapter on Fill–in–the–Blank Diagnostics explained how to use
the Default and Custom Message actions. State Logic also provides simple ways to send
and receive serial information, the READ and WRITE terms.

2

2-11GFK-0833 Chapter 2 Diagnostic Strategy Overview

The Write Term allows characters to be written to any of the serial ports in the Diagnostic
Processor. These can be connected to operator interface terminals or smart panels to
present full screen displays or simple messages. The serial port might also be connected
to the UPTime host computer, which displays the programmed messages in the online
mode UPTime display.

The Read Term is used to bring serial information into the program. When a Read Term
is encountered in the execution of a Step, it is treated as a Conditional Term that isn’t
satisfied until a completed message is received from the serial port. A variable follows
the Read Term in the State Logic program. The variable can be any type, string or
numeric. That variable stores the data received in the serial port.

The Read Term can be used to communicate to any serial input device. This would
include operator interface devices such as terminals, smart panels, and personal
computers and also the UPTime Debug Mode. It would also include intelligent sensors
such as weigh scales, and the various smart pressure and flow transmitters now sold by
various manufactures.

Together the Read and Write Terms make communicating with the operator very
powerful yet simple. It also makes it easy to communicate with intelligent sensors,
controllers and other machines that populate the plant or factory.

Step: Wait_For_Command
Read Start_Command from Operator_Panel, then go to
the Start_Process Step.
If 20 seconds pass go to the Operator_Prompt Step.

Step: Operator_Prompt
Write “PLEASE SELECT BATCH AND START PROCESS” to
the Operator_Panel, then go to Wait_for_Command.

Step: Problem_Report
Write “PROCESS SHUT DOWN BECAUSE MATERIAL IS TOO THICK”.
Go to PowerUp Step when Reset_Button is pushed.

Step: Start_Process

Highlighted Communication Functions

Any one of the serial ports may also be set up for the CCM2 communications protocol.
Using this protocol enables the Diagnostic Processor to be a slave on a CCM2 network.
Typically the protocol is used to communicate with host computers running custom
software or, more commonly, graphical user interface software such as CIMPLICITY.

Control Capabilities
The Diagnostic System is designed to reduce process downtimes so its functions are
designed to analyze process malfunctions and provide helpful information to the
operator. There are times that some control functions are needed such as flashing an
alarm light or setting a bit in the CPU. In fact, the Diagnostic Processor does have a
complete set of control instructions so that the complete process could actually be
controlled by an UPTime program, although control is not the primary goal of this
product.

2

2-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Output OFF By Default
One of the features of control in State Logic is that the outputs are always OFF by
default. Therefore, an output that is ON in one Step, goes OFF after a Step transition if
the next Step does not also turn that output ON.

There are several advantages to this design. The programmer need not include any logic
for turning OFF outputs. He also does not need to decide which outputs need to be
turned OFF depending on which outputs have been turned ON in the past and which
logic path has been followed to the current stage of the process.

When analyzing a running system, it is not necessary to know the history of activities to
know which outputs should be ON. Merely inspecting the currently active Steps give a
complete list of all outputs that should presently be ON. If an output is not specified to
be ON in any of the active Steps, then it will be OFF.

Diagnostic Processor to CPU Communications
The Diagnostic Processor communicates with the CPU across the PLC backplane,
reading and writing to CPU memory locations. The State Logic program sets an output
ON when a Statement such as

Turn ON AlarmLight

is executed. The output name AlarmLight is attached to a %Q address that is connected
to the light.

In addition to %Q memory locations, many other discrete memory types can be
changed by the Diagnostic Processor, %M, %T, %G, and %I. Register values can also be
changed. The register types are %AI, %AQ, and %R. The %R registers can be defined to
be either integer or floating point values. Floating point register variables use 2 register
locations.

An important consideration when controlling CPU data with the Diagnostic Processor is
that the CPU always takes precedence should the CPU program and the Diagnostic
Processor attempt to control the same memory location. For example, if both processors
have %Q34 in their programs, the CPU program always controls %Q34 and any
Diagnostic Processor attempt to change %Q34’s value is ignored.

When a name is assigned to a memory location, that name is designated as either an
INPUT or an OUTPUT. If the Diagnostic Processor is to control that memory location,
turning on a bit or setting a register value, the name must be designated to be an
OUTPUT. Most names are designated to be INPUTs, since most of the time the
Diagnostic Processor is only checking the status of CPU data to follow the process being
controlled by the CPU.

3 section level 1 1
figure bi level 1
table_big level 1

3-1GFK-0833

Chapter 3 Creating A Diagnostic Strategy

This chapter presents the fundamental concepts of how to build a Diagnostic Strategy
with UPTime. Every designer develops his own style in using UPTime, in fact, UPTime
is designed to support and even to encourage personal or corporate program
development styles. Initially however, it is suggested that the following procedure be
followed in creating your first Diagnostic Strategy with UPTime.

Overview

The Diagnostic Strategy is composed of one or both of the two main structures,
Fill–in–the–Blank Diagnostics and State Logic programming. This chapter explains
features and benefits of each structure and how and when to use them to reduce system
downtime.

The Diagnostic Strategy should be thought of as a dynamic entity that evolves as more is
learned about the process being monitored. The Strategy should start out fairly simple
and then be expanded as it is learned which malfunctions are likely to occur and the
need for more information becomes apparent. Since a useful Diagnostic Strategy can be
created in a matter of hours using only Fill–in–the–Blank Diagnostics, many systems
start out with no programming.

Creating Diagnostics

The first step in creating the Diagnostic Strategy is to decide which I/O points, variables,
and Devices need to be monitored by Fill–in–the–Blank Diagnostics. Names for all of
these items are defined before the Diagnostics are created. Diagnostics should be
created for items that by themselves indicate a fault in the system or indicate a system
event of which the operator should be informed.

All that is required to create diagnostics is to fill in the provided forms. See the
Overview chapter for a detailed description of the forms.

The purpose of Fill–in–the–Blank Diagnostics is for simple point level response to
system events. These Diagnostics monitor I/O points and variable data and initiate a
specified activity when the monitored item reaches a specified value. A digital
Diagnostic can be configured to trigger an action if the monitored point is either ON,
OFF, or changes state. Analog and variable Diagnostics have both high and low limits
that trigger the Diagnostic if the data value is outside of those limits. A Device
Diagnostic checks the time that the Device takes to open or close.

3

3-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Diagnostics Only Strategy
For some applications all that is needed in the Diagnostic Strategy is a set of Diagnostics
and no programming. Users often use only Diagnostics for the first Diagnostic Strategies
put into service. Programming is easily added later to handle more complicated
situations.

Diagnostics are enabled or active by default. Only State Logic programming can disable
diagnostics, therefore the Diagnostics in a strategy with no programming are always
active. A Strategy that uses only Fill–in–the–Blank Diagnostics can be viewed as
several alarms that are always armed, ready to send a message when tripped.

Diagnostics vs. State Logic
State Logic can perform many of the same functions accomplished by Fill-in-the-Blank
Diagnostics. The State Logic Statement,

If OverspeedSwitch is ON, write “Overspeed switch tripped! Push Reset”.

does the same functions that a Diagnostic would that monitors the Overspeed Switch.

UPTime Debug Mode provides several helpful online tools using the Diagnostics. The
definition and current alarm status of each Diagnostic is available through the menu
options. Also available is a list of Diagnostics that are currently in an alarm state along
with the values that caused the alarm and the time that the alarm was tripped. One
other feature of the Debug Mode is that a history of Diagnostics that have been in the
alarm state is available showing when each alarm was set and when it was cleared.

Because of these online features, it is better to use Diagnostics than to try to accomplish
the same functions in State Logic Programming. In addition, Diagnostics execute a little
faster than State Logic program instructions, about 10% on average.

State Logic is used for much more complicated analysis than is possible with Diagnostics
alone. Try to set up Strategies to take advantage of both the online advantages of
Diagnostics and the powerful analysis tools of State Logic. Set up Diagnostics to monitor
digital points or variables controlled by the State Logic program. Therefore, the program
can perform some complicated analysis, then trip a Diagnostic so that the online
functions provide important information about the event.

Creating State Logic Sequences

As explained in the Overview chapter, there are three ways that State Logic is used in
the Diagnostic Strategy. Therefore, there are three different types of Sequences;
Continuous, Triggered, and Instructional.

One use of State Logic is to follow the process through its different stages of operations,
checking for the malfunctions that are possible during each stage. The type of Sequence
used for this purpose is the Continuous Sequence. As the name indicates these
Sequences execute their logic continuously from power up to power off.

The second use of State Logic is to perform some operation when a Diagnostic is
triggered. These Sequences normally do some analysis of the problem by checking I/O
and variable values and logically deducing the cause of the problem. Sequences that
perform this function are called Triggered Sequences. These Sequences do not start
execution until the associated Diagnostic is tripped and do not end execution until they
execute the End_Sequence keyword.

3

3-3GFK-0833 Chapter 3 Creating A Diagnostic Strategy

The third use of State Logic is to provide instruction routines displaying information
needed to correct a problem, perform some operation, or make some equipment
adjustments. The type of Sequence that is used for this purpose is the Instructional
Sequence. If the operator types <MENU?> at the keyboard connected to the serial port
designated the diagnostic port, then a menu listing all of the Instructional Sequences is
displayed. An Instructional Sequence only starts execution when it is selected from this
menu or when a command from another Sequence starts it.

All of the Tasks in a Sequence start and end execution at the same time. All Tasks start in
their beginning Step at the same time. Therefore, whether a Sequence starts as the
result of the keyword instruction, Start_Sequence, executed by another Sequence, or
because it is initiated by a Diagnostic, all Tasks in that Sequence start simultaneously.

A Sequence stops execution when the keyword instruction, Stop_Sequence, is executed
by another Task or when the keyword End_Sequence is executed within the Sequence.
In both cases all Tasks in the Sequence stop execution at the same time. When a
Sequence is stopped all Tasks are put into the Inactive Step. This is a Step that has no
Statements and that all Tasks have by default when the are created. All Triggered and
Instructional Sequences must have an End_Sequence instruction in at least one of the
Steps of one of the Tasks in the Sequence.

Creating Sequences to Follow System Operations (Continuous Sequences)

One way that State Logic is used to reduce downtime is for more involved systems level
analysis of malfunctions and detection of imminent breakdowns. The program is
created to follow the process through its different stages of operation checking for likely
malfunctions by enabling and disabling diagnostics or directly checking values with
programming at each stage. When a problem is detected, State Logic is then used to
deduce the cause, by investigating the values of the I/O and variables plus the current
Step of the Tasks of the process.

To create a Continuous Sequence, select Sequences from the Create menu and then
Diagnostic Sequences from the subsequent menu. Continuous Sequences are one of two
types of Diagnostic Sequences. All Diagnostic Sequences start out as Continuous
Sequences and then become Triggered Sequences when the Sequence is named as the
action of one of the Diagnostics.

Outline the Application
To follow the process in State Logic use a top down design strategy where the
components of the main problem are identified at the top level and then each of these
components is broken down into its separate parts. This decomposition of the problem
continues until the application is completely described. The State Logic model invites
top down design because of the hierarchy of its elements, Sequences, Tasks, States, and
Statements as described in the Overview chapter. There are several different formats to
aid in the top down design process including structure charts and structured flow charts,
but we use a simple outline approach.

Identify the Sequences

The goal of this step is to identify the Sequences and Tasks that follow the application.
We start at the highest level, decomposing the problem into its general components. See
the discussion on Sequences and Tasks in the previous chapter.

3

3-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Sequences and Tasks are used to describe the systems and sub–systems of the
application. Tasks all execute in parallel or concurrently. Sequences are a collection of
Tasks and generally represent higher level systems than Tasks. For example, each station
on a transfer line might be represented by a Sequence while independent systems or
parallel operations at a station would be represented by Tasks within a Sequence.

The separation of the process into Sequences and Tasks is quite arbitrary. Often
Strategies have only one Continuous Sequence with several Tasks describing all of the
systems of the process. There are commands though that start and stop Sequence
execution meaning that all Tasks within that Sequence start an stop at the same time.
Because of these commands, any group of Tasks that must be started and stopped
together should be grouped together in a Sequence.

Identify the Tasks

Think of the independent operations which must be accomplished to achieve goals of
the application. The natural separations of activity often become Tasks.

The goal is to decompose the problem into parts that can be defined as a series of I/O
operations. Any cycles which repeat even with some variations are prime candidates to
be Tasks. An important concept for identifying Tasks is that Tasks are a set of sequential
operations. Events which occur in parallel or concurrently should be in separate Tasks.

These main sections of the outline should be general descriptive phrases such as:

Boring Cylinder
Loading Boiler

Filling Vat
Retrieving Part

The goal is to just follow the application. Most of the independent Tasks are quite
obvious, others which require interaction with other Tasks are more difficult to identify
at first. This is usually a repetitive process where original efforts must be adjusted as the
outline progresses. As with most activities, proficiency increases with the number of
efforts.

Identify The Steps

Once the Tasks are determined, then the Steps of each Task should be identified. The
Steps use the condition of the inputs and outputs to know when the process is going to
another Step. The Steps form the sequence and are really a picture of how this piece of
the process (Task) should behave. See the discussion of Steps in the Overview chapter of
this manual.

3

3-5GFK-0833 Chapter 3 Creating A Diagnostic Strategy

At this point in the design stage the goal is to determine that the process can be followed
correctly with the chosen Task architecture. Simply give each Step a descriptive name
fitting the major attribute of the activity that takes place when that Step becomes active.
Typical Step names are:

Send Message
Add Water
Raise Drill

Start Motor

Step names identify the general action of the State. The specific actions and the
transitions are specified in the Statements.

Identify the Step Transition Statements

The goal at this stage of development is to program the changes from Step to Step.
Generally it is the outputs of the system which indicate that the process has change to a
new Step. Once the transitions are in place the program is a complete description of the
process detailing the sequence of output activity.

This part of the programming process is critical, because this description is the
foundation for entering diagnostic functions. If the proper foundation is achieved, the
adding of diagnostic functions becomes just a matter of identifying the possible faults
during each Step of the process. In addition one Task may check the active Step of
another to deduce the cause of a fault. Often this stage of programming requires a
change to the Steps and even the Tasks already identified, as the description of the
controlled process is refined.

Typical Statements for Step transitions are:

�� �������
������� �� ��� �� �� ��� �������������
����

�� ��� ��������� �� ��� �� �� ��� 	������
����

Identify the Diagnostic Statements

After the foundation of Tasks, Steps, and transitions are in place, the Statements
providing diagnostic functions are added in Steps where there is a potential problem
that must be monitored.

Diagnostic Statements can check digital conditions, variable and analog values, elapsed
time, and the current Step of another Task. These checks are used to determine if a fault
has occurred. Examples of diagnostic checks are:

If ForwardSwitch is ON, then . . .
If 3.5 seconds have passed, then . . .
If the Drill Task is in the Advancing Step, then . . .
If PartsCount is greater than PartsGoal, then . . .
If VatTemperature = 34.5 degrees Centigrade, then . . .
If InPosition is ON or Position < 34.5 and ManualSwitch is ON, then . � �

3

3-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

There are several actions that diagnostic Statements can accomplish. A message can be
sent to one of the serial ports notifying the operator of a problem and detailing a course
of action. Data can be tabulated such as keeping track of the number of times an event
occurs. Another Task can be started to perform some analysis of the cause of a problem.
Outputs can be controlled to signal the control program or to turn ON an alarm signal.

Start_Sequence OverloadAnalysis.
Write “Operation complete” to Operator.
Add 1 to PartsCount.
Turn ON AlarmLight.

Statements are often complete English sentences, since very specific operations are
specified at this level of the outline. In fact, feel free to specify Statements in any
comfortable format, but remember Statements always end with a period. Some
additional examples combine the Step actions with the transitions:

�� �� ����%�# �$ ���

(#�%� *�� � ���%�# $%&�� ��� �"� �#����# � %�� �#�� $(�%����

��� � $��! �$ ��'� ���"$��� %�� �! %! ���$� ��)�# �%�"�

�#�%� *
#��� ��% �$
&��� %! !"�#�%!#� %�� �! %! ��%#��%� �
#��� �%�"�

���� 	!��� � �#!� �"�#�%!#� %�� �! %! ��"!#% �%�"�

Program Scan

In the creation of Sequences it is important to understand that the Diagnostic Processor
operating system is a scanning system. The Statements of the active Steps are executed
once every scan cycle. The scan cycle starts at the start of the program, scanning the
active Step of every Task. During program execution there is always one and only one
Step active in each Task. The operating system completes a scan of the program many
times every second.

During the scan of the active Step of a Task, each Statement of the Step is scanned in the
order that it appears. Keep in mind that a Statement is a series of Terms terminated by a
period (.).

3

3-7GFK-0833 Chapter 3 Creating A Diagnostic Strategy

TASK 1
State 1

Statement 1
State 2

�

� Statement 1

� Statement 2

State 3
Statement 1

TASK 2
State 1
� Statement 1

� Statement 2

� Statement 3

State 2
Statement 1

TASK 3

Figure 3-1. Program Scan

The actions specified by Functional Terms are executed when the Functional Term is
scanned. Each Statement must have at least one Functional Term, Conditional Terms are
optional. If there are no Conditional Terms in a Statement, the Functional Terms are
always executed during each scan. When Conditional Terms accompany Functional
Terms in a Statement, the Functional Term is executed when all of the Conditional Terms
are satisfied. There are two types of conditional Terms (see the State Logic Programming
chapter).

Conditional Terms are satisfied as follows:

1. Read – When valid data is received at the appropriate channel.

2. If – When the conditional expression is TRUE.

To understand how Statements are scanned, assume that the Statement Conditional
Terms precede the Functional Terms and that the scan proceeds from left to right.

� Functional Term

� Satisfied Conditional Term Functional Term�

� Unsatisfied Conditional Term Functional Term

� Satisfied Conditional Term �Unsatisfied Conditional Term Functional Term

�

Figure 3-2. Statement Scan

3

3-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The Statements of a Step are executed in the order that they are written into the
program. Functional Terms of Statements with no Conditional Terms are always
executed. Conditional Terms in Statements control whether or not the Functional Terms
in those Statements are executed. If all of the Conditional Terms are satisfied, the
Functional Terms are executed. If any of the Conditional Terms are not satisfied and
Conditional Terms, the Functional Terms are not executed. For simplicity this rule
assumes that the Conditional Terms are ANDed together. See the State Logic
Programming chapter about combining Conditional Terms using the AND and OR
logical keywords.

The Statements are executed one at a time. In this manner every Statement of the active
Step is evaluated.

There are two types of Functional Terms that can prevent the execution of the rest of the
Statements in a Step. One is the Halt command which stops program execution. The
other is the “go to ...” command, which immediately causes another Step to become the
active Step. No Terms in a Step are scanned after a GO is scanned in that Step.

If Start_Pushbutton is pushed, go to Start_Up Step.
Write “Press Start Push Button Now!!”.
If 30 seconds have passed, go to the Restart_Buzzer Step.

This series of Statements causes the Start_Up Step to become the active Step when the
input represented by Start_Pushbutton name is true. When GO Term is scanned, all
Terms or Statements following this Term are not executed and at the next controller
cycle, the scan of this Task starts at the first Statement of the Start_Up Step.

During the program scan any changes to variables are made immediately. Therefore, a
variable change in one Task is visible by the rest of the program during the same scan.
On the other hand, digital I/O and Flag and analog values are made at the end of the
scan. Therefore, if one Task makes a change to the condition of a digital output or Flag,
the condition cannot be tested by another Task until the next scan through the program.

Writing The Program
When the outline is completed, the UPTime program is almost completely written. The
finished program is very close to the outline.

There may be some changes to the outline because of some naming conventions for how
Task, Step, and some other names are entered into the program. UPTime can not
provide for the full expressiveness of the English language so some of the sentence
constructions may have to be changed, although many alternative structures and the
ability to make custom changes to UPTime are provided. Also, the outline is in a general
format with no specific reference to the actual I/O of the system so that the wording of
the outline usually becomes more specific in the program.

To write the program the Tasks, Steps, and Statements of the outline are entered into the
project using the UPTime editor which is available whenever UPTime is in Create Mode.
Another part of creating the program is specifying I/O names and circuit configurations.
Defining the I/O may be done before, after, or during the writing of the program.

3

3-9GFK-0833 Chapter 3 Creating A Diagnostic Strategy

Using English Names in the UPTime Program

When you start a new program, UPTime asks for the name of the first Task. After the
name is entered, UPTime starts the program for you by writing the Task keyword
followed by a colon and the Task name. UPTime also writes the first Step name,
“PowerUp” into the program. Tasks, Steps, I/O points and variables can all be assigned
English names. Names can be as brief and code like or as descriptive as you wish.

Clever, descriptive names that fit well to the primary attribute of that Step activity are
strongly encouraged. This will pay dividends in future program modifying, clear
documentation and easier troubleshooting.

Further, good descriptive names will enhance the quality of the automatic diagnostics
that can be created by linking Task, Step and I/O names together for automatic
diagnostic output information.

Each name can have up to a twenty characters. These characters may be letters,
numbers, or the underscore character (_). Names must begin with a letter. The name
must be a continuous string of characters, ie., no spaces are allowed.

Because UPTime uses the space character as a way to tell where one word ends and the
next begins, as we normally do in written English, a name can not contain a space. To
construct a multiple word name for descriptive purposes the designer should use the
underscore character (_) to separate words or use uppercase to start every new word.

 Table_Movement
 TableMovement

Naming Sequences

Sequence names are arbitrary. It is suggested that Sequence names be descriptive of the
activity they represent. This descriptive use of names means clearer documentation and
the ability to create automatic diagnostic output messages by combining Task, Step and
I/O names to make complete messages.

Naming Tasks

Many Sequences have only one Task, therefore UPTime automatically names the first
Task of a Sequence the same name as the Sequence except that an underscore (_) is
added to the end of the Sequence name.

A Task may be added to the program by using the “Add a New Task” option from the
Add Menu or just typing in the Task keyword followed by a colon and the Task name.
Each Task is assigned a name as it is built and each Task must have a unique name. This
name appears at the beginning of every Task. Every time the designer wants to refer to
the Task using UPTime such as in writing other Tasks, during debugging or during
diagnostics development, the English Task name should be used.

Naming Steps

Each Task contains one or more Steps. Similar to Tasks, a name is assigned to every Step
of the program either through the Add menu or directly into the program using the
UPTime editor. Once assigned, these names are used when performing any functions
associated with Steps while using UPTime.

3

3-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

While every Task in a controller must have a unique name to differentiate it from the
others, Steps in different Tasks may have the same name. All Steps within one common
Task must have a unique name, but a Step in one Task can be named the same as one in a
different Task.

As with Tasks, names chosen for the Steps should be descriptive. By using combinations
of words that describe something unique to the Step, such as the action performed or
function of the Step, the program becomes self documenting. Using descriptive names
makes it possible for people other than the original designer to use and modify a
sequence at a later date with minimum learning time spent trying to understand the
program.

Naming I/O Circuits, Variables, and Internal Flags

Each input and output from and to the field enters and leaves the controller through
some particular hardware card. A name is given to each of these I/O points. All
references to I/O circuits use the assigned name.

Names are also used for variables and internal flags. All names must be unique. For
example, a variable must not have the same name as a Step or a flag must not use the
name of a Task. The only exception to this rule is that Steps in different Tasks may use
duplicate names.

The English name should be descriptive and can be made up of several words attached
by the underscore character. UPTime allows the user to define I/O points or other name
other elements of the program at any time during the programming process.

In addition to defining the name using UPTime, I/O and register data can be identified
by just directly referring to the CPU memory address. Therefore, %I34 can be used
directly without defining any name just by entering I34 in the blank for the name.

Another way to identify I/O and register data is to use the same nicknames used in the
Logicmaster 90 programming package to create the Relay Ladder Logic program. When
UPTime needs the address for names used in the Strategy, one of the places it checks is a
nickname file created by Logicmaster 90 to locate the I/O address. Therefore, if the
nickname, REV_LS, has been attached to %I35 in Logicmaster, UPTime knows to use
that same address location when that name is found in the Diagnostic Strategy. See the
State Logic Programming chapter for detailed information on creating and locating the
Logicmaster nickname file.

Statement Structures

The greatest difference between the outline and the UPTime program is in the
expression of the Statements. This section describes how to express the Statements in an
UPTime program.

 Step: Drill_Advancing

 If the Fwd_Solenoid is on and 3 seconds pass, go to StartingMotor Step.
 When Fwd_Limit_Switch is tripped go to the Retracting Step.
 If 17 seconds pass, go to the Send_Message Step.

Example UPTime Step with Three Statements

3

3-11GFK-0833 Chapter 3 Creating A Diagnostic Strategy

Most Steps consist of several Statements, some that monitor I/O and variable values,
checking for possible malfunctions that are likely when this Step is active. Other
Statements describe what action is to happen while the Task is in that Step, what
conditions will cause a transfer, and to what Step the Task transfers to. With UPTime
these Statements are written in descriptive English generally but not necessarily
consistent with the rules of English grammar. Statements are short sentences or phrases
that describe the desired actions in a way that anyone can read and understand. A
Statement always ends with a period just as a sentence does in English.

Constructing Statements

There are two types of Terms in a Statement, functional indicating some action taken
and conditional indicating some test for decision making.

After 3 seconds pass go to the Running Step.
Actuate StartFlag, if Start_Switch is on.
Write “Parts Run Complete” to User_Panel.

Statement examples with Functional Terms highlighted.

After 3 seconds pass go to Running Step.
Actuate StartFlag, if Start_Switch is on.
Open Vent when temperature is greater than 100 degrees.

Statement example with Conditional Terms highlighted.

Functional Terms describe an action to perform when they are reached in the execution
of a Task. Conditional Terms describe a condition that needs to be evaluated to decide
whether the Functional Terms in the Statement should be executed at this time.

A Functional Term, such as “turn_on Motor_A” or “close the Red_Clamp”, generally has a
verb that describes the action such as, “turn_on”, “close”, plus a variable name or I/O
name, such as “Motor_A”, “Red_Clamp”.

Terms are combined to form Statements. Most Statements will be a sentence or a phrase.
A Statement may be entirely made up of a Functional Term such as “Turn_on the
Automatic_Mode_Lite.”. A Statement can also be a combination of Functional Terms
such as “Turn_on the Automatic_Mode_Lite and the Main_Conveyor.”. Often a
Statement is a combination of a Conditional Term and a Functional Term such as “If
Motor_A is on turn_on the Automatic_Mode_Lite and start Main_Conveyor.”.

Every Statement must always have at least one Functional Term. A Statement can
contain more than one Conditional Term, or a Conditional Term that is a combination of
conditions, such as “If Motor_A is on and the Red_Clamp is closed” or “If Motor_A and
Main_Conveyor is on”. There may be many Functional and Conditional Terms in a
Statement.

Using Keywords, Synonyms and Filler Words

Keywords are the words in a Statement that UPTime recognizes as instructions to
perform some function. Keyword can be words that cause an action, such as the word
“actuate” when applied to a contact output. Or they can cause a conditional comparison
such as the word “if”, or be part of the comparison such as the symbol “>”.

3

3-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

UPTime comes with default keywords assigned. Some of these keywords also have
synonyms defined. Using a synonym in the program is the same as using a keyword. A
detailed list of all the keywords appears in the State Logic Programming chapter along
wit a description of each one.

UPTime also comes with several filler words such as “the” or “a” defined. Filler words
have no meaning to the program. The sole purpose of filler words is to make program
Statements more readable and understandable. The user can place filler words
anywhere in the Statement. Commas and other punctuation may also be used for clarity
without effecting program execution. The only punctuation which has meaning is the
period (.) and the exclamation mark (!). The exclamation mark is used to document or
add comments to the program.

Keywords are the vocabulary of UPTime and together with filler words make it possible
to easily write understandable descriptions that are the program. This vocabulary may
be changed to suit any desired convention. All of the keywords, synonyms, and filler
words may be changed. UPTime can therefore be configured so that the program is
written in a foreign language.

A menu based window function allows the user to make these assignments at any time
during an UPTime programming session. In addition, another menu based window
function allows the user to see a list of all synonyms previously assigned and to select
one to enter into the program.

Use the flexibility to create a language that fits the terminology of the industry, or plant,
etc. where UPTime is to be used. The written UPTime programs become even clearer to
all involved with operating and maintaining the plant as they use the English names for
the process points and the local terminology for the actions and descriptions.

Using Variables

Statements can change and test variable values. At times the application requires
responses to values other than those represented by real field sensors. Examples of this
might be the number of parts built during a shift, the flow through a pipe calculated
based upon the pressure drop across the pipe, the style of part being built this
production run, etc.

Items stored in variables are the results of calculations, totals that are being accumulated
over time, something that must be remembered from one time period to the next, and
constants that may be changed or tuned. Each variable is assigned a name during
program development.

All variables are can be accessed globally, that is, once created each variable is available
to be shared between all Tasks and all Steps within Tasks. One Step may assign a value
to the variable and another Step (or the same Step at a later time period) uses the value
of the variable in making a decision. Once a variable is assigned a value, that variable
maintains that value until a program Statement assigns a new value to that variable.

When using UPTime to write programs, monitor running controllers, or to generate
diagnostics, the user needs to only refer to the variable by its English name. Remember
that choosing descriptive names for variables helps to make the program self
documenting.

The different variable types are listed below:

3

3-13GFK-0833 Chapter 3 Creating A Diagnostic Strategy

Integer Variables

This type of variable represents a whole number from +32767 to –32768. Integer
variables have many uses including counts, menu choices, and item quantities.

Integer variables can also be used as logical variables, or variables that have
only two possible values, either 1 or 0. Variables used in this manner can be
thought of as true or false, on or off, etc. Using integer variables in this
manner differs from using flags, since flags are ON only when a Step
turning them On is active. On the other hand a variable maintains its value
independent of which Step is active.

Internal Flag

Internal flags are variables that act like digital outputs, but do not produce any physical
output from the controller. An internal flag can be set true by a Step in one Task and
then checked by a Step in another Task. These flags can be used to coordinate the
actions of different independent Tasks.

An internal flag is like a digital output in that if an active Step is not setting it true the
controller will automatically turn it OFF.

Floating Point Variable

This variable type is used to store numbers that are not whole numbers or numbers
outside the range of integer variables.

String Variable

This variable type stores a collection or “string” of characters. These characters can be
any alpha numeric or control character represented by an ASCII code. This type of
variable is a little more complicated and is used mainly in accepting inputs or creating
outputs to serial communication devices.

Character Variable

Character variables store one single ASCII character. This type of variable is especially
useful for operator interfaces when the operator must enter a single character.

Time Variables

The time variables are used to view the values of the Real Time Clock. The time
variables are second, minute, hour, day, day of the week, and month. Use these
variables to check the current time.

3

3-14 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Creating Diagnostic Action Sequences (Triggered Sequences)

Triggered Sequences are almost identical to continuous Sequences; they are created the
same way and use the same instructions. The only difference is that a Triggered
Sequence is specified as an action for a Diagnostic and starts execution only when the
Diagnostic is tripped.

To create a Triggered Sequence, select the “Sequences” option from the Create Menu and
then the “Diagnostic Sequences” option from the following menu, just as you would
when creating a Continuous Sequence. A Triggered Sequence actually starts out as a
Continuous Sequence and then becomes a Triggered Sequence when it is specified as an
action in a Diagnostic form.

Creating Interactive Informational Sequences (Instructional Sequences)

To create an Instructional Sequence select the “Sequences” option from the Create Menu
and then the “Instructional Sequence” option from the following menu. The purpose of
these Sequences is to provide an interactive way of providing information to a display
connected the serial port designated to be the diagnostics port. Some of the uses of
these Sequences are to provide information about the cause and correction of a
malfunction, a series of steps to be followed to perform some procedure such as
calibrating sensors or doing preventive maintenance, and many other possible types of
information to help the equipment operator or technician such as important phone
numbers or normal operating parameters such as normal pressures and temperatures.

Instructional Sequences are almost identical to the other Sequence types except that all
Instructional Sequence names appear on the instruction menu displayed when
<MENU?> is typed on the keyboard. That keyboard is connected to the serial port that
is designated to be the diagnostic port. The Sequence begins execution when its name is
selected from the menu. The Instructional Sequence can also be started by a
Start_Sequence keyword instruction executed in another Sequence.

The purpose of Instructional Sequences is to provide interactive information. The
keyword instructions WRITE and READ can be used to send and receive serial
information. Another keyword, When_Done_Next_Step, is specially designed for these
Sequences, providing more interactive capabilities. This keyword can also be used in
any of the other Sequence types. The When_Done_Next_Step instruction causes the
text:

Enter R to Repeat Last Step, S to Stop, and C to Continue:

to be displayed on the screen.

Normally a Step in an Instructional Sequence has a Write term that sends information
to a serial display. The Step also may have a Read term to receive information typed
at the keyboard so that the operator can direct the flow of information. The
When_Done_Ne xt_Step keyword also gives the operator control of the display of
information. He may repeat the execution of the Step which redisplays the information,
stop the Instructional Sequence which redisplays the menu of all Instructional
Sequences, or he may proceed to the next Step in the Sequence.

4 section level 1 1
figure bi level 1
table_big level 1

4-1GFK-0833

Chapter 4 Tutorial

This chapter presents a step by step procedure for creating a control strategy for a
specific real world application. Follow along with the descriptions duplicating each
keyboard entry on your own computer. Upon completion of this chapter, you should
have a basic knowledge of using the Diagnostic System to reduce downtime in your own
system.

To best understand this tutorial, you should first read the chapters titled Overview and
Creating a Diagnostic Strategy.

Tutorial Overview

This chapter provides a step by step examples of creating a Diagnostic Strategy for a real
world application. The tutorial is designed for you to follow along with your own copy
of UPTime connected to a Diagnostic Processor. It is assumed that you have a working
knowledge of Logicmaster, but there are step by step instructions for completing the few
Logicmaster tasks in this tutorial.

Lesson Preview

This tutorial is split into six separate lessons. The lessons start out very simple and
progressively become more involved.

LESSON 1: Single Diagnostic – describes the fundamental procedures for creating
and executing Diagnostic Strategies.

LESSON 2: Several Diagnostics – explains the different types of Diagnostics and
introduces the Digital Device structure.

LESSON 3: Simple State Logic Programming – Introduce fundamentals of creating
and executing State Logic programming in the Diagnostic Strategy.

LESSON 4: Complete State Logic Example – Demonstrates the different capabilities
of State Logic programming used together with Diagnostics.

LESSON 5: Triggered Sequence Example – Demonstrates State Logic programming
triggered by a Diagnostic and how deductive analysis is performed with
State Logic Programming.

LESSON 6: Instructional Sequence Example – Demonstrates the creation and uses
of Instructional Sequences.

4

4-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Tutorial Procedure

Disk #2 of the UPTime distribution disks provides files containing the different stages of
the development of the Diagnostic Strategy for the Drill Station application. In addition,
disk #2 also has the relay ladder logic program that is designed to control this
application. The ladder logic is stored in the file DRILL.SDE.

Some of the UPTime project files include a Sequence that exercises the ladder logic
control program running in the CPU. With this simulation Sequence, the ladder logic
control program and the Diagnostic Strategy can execute without being connected to
any real world inputs. The simulation Sequence controls inputs so that the ladder logic
program executes as if connected to a real machine.

The simulation is also set up to allow the user to create malfunctions to demonstrate the
Diagnostic Strategy responses. The user causes these malfunctions by forcing flags ON
by using the UPTime Debug Mode. The simulation Sequence creates faults when a flag
is turned ON.

4

4-3GFK-0833 Chapter 4 Tutorial

The Sample Application

4

4-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Figure 4-1. Tutorial Application

The lessons of this tutorial are designed for a drill station. As described in the Overview
section, State Logic encourages decomposition of a project into smaller and smaller
problems to solve. Envision that this station is only one of several stations on a transfer
line. The other stations would be monitored by other Sequences in the Diagnostic
Strategy. The Sequences described in these lessons all refer to only the drill station.

Indexing Conveyor

At this drill station there is an indexing conveyor that properly positions a part before it
is drilled. This conveyor starts operation by waiting for a part to be loaded at the starting
end of the conveyor. A switch indicates when a part has been loaded onto the conveyor.

Once a part is loaded onto the conveyor the conveyor motor starts running, moving the
part into position at the drill. A switch indicates when the part is in place, causing the
conveyor motor to stop. The part is now drilled and when the drill bit clears the part as
it is being retracted, the conveyor motor starts again, moving the part to the unloading
position. When the part trips the switch at the unloading position, the conveyor stops.
When the part is removed, the process repeats.

4

4-5GFK-0833 Chapter 4 Tutorial

Cutting Lubrication System

There is also a lubrication system to lubricate the cutting action of the drill bit. A
solenoid controls the delivery of the lubricant and a pump delivers the lubricant. The
level of the lubricant reservoir is indicated by an analog signal.

The lubrication system has a pump and a spray solenoid. When the the drill is
advancing toward the part the pump comes on and stays on until the bit clears the part
when being retracted. The solenoid comes ON when the bit starts to feed into the part
so that there is lubricant available when the part is being drilled.

Drill

The movement of the drill is controlled by the feed/retract motor. There are motor
contacts that control the speed and direction of the motor. For lowering the drill toward
the part there is both an advancing output to move drill to the part and a feed output to
move the drill into the part at a feeding speed.

Switches detect the location of the drill. The positions detected are fully retracted, full
depth and the feed position for when the drill bit first makes contact with the part.

There is also an auto/manual/off switch that controls whether the feed operation is done
automatically or manually. If the operation is done automatically, the drill starts feeding
into the part and continues until the full depth switch is tripped.

If the operation is to be done manually, the feed motor stops when the bit makes contact
with the part. The drill feeds into the part whenever the feed pushbutton is pressed.
When the full depth switch is tripped, the drill retracts automatically. The manual mode
only has effect during the feeding operation. The feed motor has a torque feed back that
indicates the torque force that the feed motor is exerting to feed the bit into the part.

There is a spindle motor that turns the drill bit. There is an overload contact indicating
when the motor experiences an overload condition.

Clamp

When the conveyor places the part in the proper location, it is clamped in place for the
drilling operation. The clamp is controlled by a solenoid valve and there are two other
switches that indicate when the clamps are open or closed.

The clamp is a critical maintenance item for this station. The number of open/close
cycles is a good measure of when the clamp needs to be maintained. For this application
there must be notification of when the critical number of clamp cycles have been
reached.

Set up Series 90–70 System for the Lessons

For the following lessons, a control system is simulated by executing a ladder logic
program in the CPU while the Diagnostic Processor simulates real world input changes
from State Logic programming. These programs are included on your UPTime
distribution disk #2.

4

4-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Series 90–70 System Setup
Use the Logicmaster 90 software package to configure your system and load the
provided ladder logic program. Follow these steps:

 1. After starting Logicmaster, select the configuration package, key <F2>.

 2. Create a new program folder for this tutorial by entering a folder name.

 3. Set up the configuration of each chassis slot to match the hardware used in your PLC system,
<F1> key. Configure the Diagnostic Processor module as a PCM and the Configuration Mode as
PCM CFG. Press <Esc> when completed.

 4. When the configuration is complete exit the configuration package.

 5. Enter the Programmer Package by pressing <F1>. Then select the folder that you just created in
the Configuration Package.

 6. Select Program Display/Edit <F1>

 7. Select More <F9>

 8. Select Include <F4>

 9. Now put UPTime disk 2 into drive A and enter the ladder logic program file name selected from
the table above as follows: A:\DRILL. This operation loads the ladder logic program.

10. Press <Enter> and the DRILL.SDE program file is now part of the Logicmaster folder you are
working with.

11. Press <Esc> then <F9> for Utilities. Now press <F2> to Store from Programmer to PLC.

12. Press <Enter> to start the store operation. Press <Y> to questions about changing the program
in the CPU.

13. Press <Alt+R> to start the PLC program running.

The CPU is now set up for this tutorial.

UPTime Orientation and Setup
After installing UPTime, following the instructions in the getting started section of this
manual, make the logged directory \UPTIME\S90–70 and type UPTIME at the DOS
prompt. The first screen shows the logo including the current version number.

The next screen shows the standard appearance of most UPTime displays. The top bar
displays the project name and the bottom bar displays the major active keys and their
functions. The main window displays menus and forms and serves as the editor screen
when creating State Logic programming.

The main menu is now displayed on your screen. This menu provides access to
UPTime’s two modes, Create Mode where the Diagnostic Strategy is created offline and
Debug Mode for online operations where real time values and Diagnostic conditions are
displayed.

UPTime is a menu driven program which means that most of the available operations
are chosen from a series of menus. The bar at the bottom now describes how to use the
menu. Use the up and down arrow keys to move the highlight bar to the desired choice
then press <Enter>. Selections can also be made by pressing the highlighted letter of
the desired choice or pressing a hot key without selecting any menus. Hot keys are
shown next to some of the options on the menus and are listed in the Menus and Keys
Chapter of this manual.

The instruction bar also indicates that pressing <Esc> cancels the operation and that
pressing <F1> enters the HELP system. The function of these keys is consistent
throughout the program. Selections from all menus are made the same way.

4

4-7GFK-0833 Chapter 4 Tutorial

Pressing <F1> always provides help information on the current operation, therefore it
is referred to as a context sensitive help system. While the help screen is displayed,
pressing <F1> again displays functions which may be executed by pressing other
function keys. Some help screens display instructions on how to view additional help
screens. To return from the help screens press <Esc>.

Select the “Create” option from the menu to start creating the Diagnostic Strategy for the
drill station application described above.

LESSON 1 – Creating a Simple Diagnostic Strategy
This lesson demonstrates the procedures for both the creation and execution of the
simplest Diagnostic Strategies, a single Digital Diagnostic. First a Digital Point is named
and then a Diagnostic for that point is created by filling in the blanks of the form.

The main menu for the Create Mode is now displayed. This menu is the gateway to all
Diagnostic Strategy creation functions. The first action is to create a new Diagnostic
Strategy, referred to as a project in UPTime. Select the “PROJECT” option from the
menu and then “Make a New Project” from the next menu. Enter the project name,
DRILL. UPTime then asks for the CPU model being used in the system. Hit any key and
select from the list of possible choices. UPTime now creates a new Diagnostic Strategy
named DRILL.

The first Strategy is very simple, using only one Fill–in–the–Blank Diagnostic. This
Diagnostic monitors the overload contact from the spindle motor.

UPTime refers to all I/O points by a name so first a name must be attached to the I/O
point connected to the spindle motor overloaded contact.

Define a Digital Point
Select the “VARIABLES” option from the menu and then the “Digital Points” option from
the subsequent menu. UPTime states that there are no digital points defined so select
“YES” to define one.

A form is provided to define a digital name. In the first blank enter the name as follows,
SpindleMotorOverload. Notice that name separations are simulated using uppercase
letters where a new word would normally start. Press the <Enter> key when the name
is typed in. UPTime is actually not case sensitive.

The next blank in the form is now highlighted, so press <Enter> again to list the types
of digital points that can be defined. Select %I from the list.

The next blank specifies the address number for this definition. Enter 20 for this number.
The next blank is set to INPUT and should not be changed for this example. Now as the
bottom bar indicates, to save this information and exit the form press <F9>. The name
definition is displayed by itself in a list. Press <Esc> to return to the starting menu. The
name SpindleMotorOverload can now be used anywhere in the Diagnostic Strategy to
refer to the %I10 memory location.

Create a Fill–in–the–Blank Diagnostic
Now select “DIAGNOSTICS” from the menu. The next menu lists the four Diagnostic
types. Select the “Digital Diagnostic” option.

Tell UPTime that you want to create one when it reports that there are no Diagnostics
defined. A form is displayed to create the Diagnostic.

4

4-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Figure 4-2. Digital Diagnostic Form

The first blank to fill in is for the Name. The Diagnostic uses the name to locate which
point to monitor. The ’>>’ character next to the name blank indicates that UPTime
displays a list of names that have been defined for this type of Diagnostic, when the
<Ins> key is pressed. Press <Ins> and select the name just defined,
SpindleMotorOverload.

The next blank indicates what condition of the point causes the Diagnostic to go to the
alarm state. Press any key to display a list of possibilities. Select ON from the list so that
this Diagnostic trips when the spindle motor overload is ON.

The last blank selects the action that the Diagnostic initiates when it is tripped. Press any
key to display the possibilities. Select the “Default Message” option which causes the
Diagnostic Processor to automatically construct and display a message when the
Diagnostic is tripped.

Save the data entered by pressing <F9> or just <Enter> when the form is completed.
Press <Esc> to return to the menu.

Send Diagnostic Strategy to Diagnostic Processor
The first Diagnostic Strategy is now complete, so the next step is to direct UPTime to
translate the project to a format understood by the Diagnostic Processor and then send
the translated project to the Diagnostic Processor. Connect the serial ports of the
UPTime host computer with the Diagnostic Processor serial port. Use the serial cable
and grey adapter included with UPTime.

From the PROJECT menu select the “Translate and Download Project to the Processor”
option. Notice the hot key for this option is <Alt+F2>. If these keys are pressed from
the previous menu, you need not use the project menu to make this selection.

UPTime asks whether to search for undefined words, select “NO”. After some work,
UPTime displays a screen of statistics about this project. There should be one digital
point listed. Press any key to go online, or in other words enter Debug Mode.

4

4-9GFK-0833 Chapter 4 Tutorial

Introduction to Debug Mode

Debug Mode is used for online interaction with the Diagnostic Processor. The two
functions of Debug Mode are to monitor execution of the Diagnostic Strategy and to
control the Diagnostic System.

Items that the Debug Mode monitors are the state of Diagnostics, values of I/O and
variables, the execution of the State Logic program, the list of alarms (tripped
Diagnostics), a history of past alarms, current I/O definitions, and PLC Fault tables.

The Debug mode controlling functions are controlling (running, halting, and
configuring) the Diagnostic Processor, forcing I/O and changing variable values,
changing the current Step of a Task in the program and clearing PLC faults.

Debug Mode Screen
At the top of the screen is the familiar bar displaying the name of the project. As in the
Program Mode the bottom bar shows the current use of some of the more important
function keys. <F10> returns UPTime to Create Mode for editing the project. Notice
that the help system continues to be accessed by pressing <F1>, and that the <F3> key
brings up the main menu for this mode.

Terminal Log
There is a window below the top bar titled “Terminal Log”. Any messages sent by the
Diagnostic Processor are displayed in this window. There are several different types of
messages that are sent to the terminal log.

When UPTime is connected to the serial Port designated to be the Diagnostic Message
Port, messages from Diagnostics appear in the terminal log. All programmed Write
Terms which send messages to the serial port that connects to UPTime are displayed in
the Terminal Log. These messages may be operator instructions or menus for the
operator to enter information into the program.

All runtime error messages are written into the terminal log with the time that the event
occurs. This is an important record of events for troubleshooting or debugging a
program. The Terminal Log also displays responses to the Debug Mode commands
(Display, Change, and Force). This record also includes a time stamp for each function
call.

The first message is displayed at the top of this window with the next messages
appearing below the previous ones. The oldest messages scroll out the top of the
window when the window fills. Messages scrolled off the screen are not lost but can still
be viewed by pressing the up arrow key. After scrolling, you must press <End> to exit
the scroll mode and again have access to the Debug Mode menu.

Error and Status Windows
There are two windows on the line below the Terminal Log window. The one on the left
displays any run time error messages such as a divide by zero message or a buffer
overflow message. Notice that the error message is cleared by pressing <Ctrl + R>.
The smaller window on the right displays the current status of the controller, ie. running
or halted. The status window also indicates if there are any items forced.

4

4-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Executing the Simple Diagnostic Strategy
Back to our first Diagnostic Strategy which has just been downloaded to the Diagnostic
Processor. Lets run the project (Diagnostic Strategy). Press <F3> to access the menu
then select “Project”. Now select “Run the Program in the Processor”.

The Diagnostic Strategy is now executing, constantly monitoring the Spindle Motor
Overload contact. Notice the Status window indicates the processor is RUNNING. If
this contact ever goes ON, the Diagnostic trips, sending a message to the screen.

Make the Diagnostic Trigger
To make the Diagnostic go to the alarm state, force the SpindleMotorOverload input ON
by following these steps. Press <F3>, then select “Force” from the menu and then the
“Set or Modify Force List” from the next set of options. The screen now displays the
Force List. As the keys listed in the bottom bar indicates, press <Ins> to add an item to
the list. Now select the “Digital Points” option, and then select SpindleMotorOverload
which is the only item in the list of Digital Points. Choose the “ON” option which adds
the item to the list, and then press <Esc>. Notice the Status window indicates that an
item is being forced.

The Diagnostic Processor automatically constructs and displays the message when the
Diagnostic trips. The parts of the message for a digital Diagnostic from left to right are
whether the message indicates an alarm or clearing an alarm already set, the date and
time of the event, the type of Diagnostic, and the name of the digital point. This same
message appears if some other display device such as a dumb terminal is attached to the
Diagnostic Message Port.

Debug Mode Diagnostic Functions
There are several Debug Mode functions dedicated to providing real time and historical
information about the state of the Diagnostics. These functions are all accessed from the
menu so press <F3> to start. Select the “Diagnostics” option and then “Digital
Diagnostic Display” from the next menu and then the Diagnostic name,
SpindleMotorOverload.

A window displays information about the Diagnostic configuration and the current
value of the Diagnostic I/O point being monitored. Your screen should show that the
digital value is “FORCED ON”. Hit <Esc> twice to return to the terminal log screen.

Select “ALARM” from the menu and then “Display Current Alarm List” from the next set
of options. This option lists all of the Diagnostics that are currently in an alarm state.
The information displayed shows the date and time the Diagnostic was tripped, the
name of the item being monitored, and the value causing the diagnostic to trip. Hit
<Esc> to return to the terminal log screen.

Clear the force condition on the Digital Point, SpindleMotorOverload, by selecting the
“Clear All Forces” option after selecting “FORCE” from the menu. The Diagnostic
Processor constructs another message that is displayed in the terminal log screen
showing that the alarm has been cleared. Look at the alarm list again to see that there
are currently no alarms to view.

Select “ALARM” from the menu again and then choose the “Display Current Histogram”
option. The Diagnostic Processor maintains a record of Diagnostic changes. Every time
a Diagnostic trips or clears an entry this histogram logs that event. The histogram also
logs each time the project is started or halted. The most current events are displayed at
the top of the list.

4

4-11GFK-0833 Chapter 4 Tutorial

Congratulations, you have just created and run your first Diagnostic Strategy. When
creating Diagnostic Strategies, it is a good practice to start out simple and move slowly
toward more complicated efforts as you learn more about the Diagnostic System and the
information you need to know about your own application.

LESSON 2 – Adding More Diagnostics
You can create a Diagnostic for every I/O and variable defined for an application. In this
lesson we add a Diagnostic for each of the other Diagnostic types.

Press the <F10> key to go from Debug Mode back to Create Mode. For this lesson add
the data elements in the following table to the DRILL project created in the previous
lesson.

Name Type Address

FeedTorque Analog Channel %AI1

ClampCycles Integer Variable N/A

ClampSolenoid Digital Point %Q2

ClampOpen Digital Point %I6

ClampClosed Digital Point %I5

Analog Diagnostic
First define the analog channel, FeedTorque, by selecting the “Analog Channels” option
from the VARIABLES menu. Fill in the blanks for the name, type, and number as shown
in the table above. Select Input for the Input or Output blank.

When defining the analog channel, UPTime asks whether to scale the channel. UPTime
automatically scales the raw data to engineering units. For this example enter YES to the
scaling option and enter A/D or D/A values to be a LOW of 0 and HIGH of 32767 and
engineering units of 0 and 500. These scaling values mean that the full range of torque
in the sensor, which might be a 4 – 20ma signal and is converted to a number in the
range of 0 to 32767 by the analog module, actually indicates real world values of from 0
to 500 foot–lbs. References to scaled analog values are floating point values. References
to unscaled channels are integer values.

Now create an analog Diagnostic using FeedTorque for the analog name. The analog
Diagnostic form allows both high and low limits to be specified and allows floating
point values for the limits. Enter 125 for the high limit and 4 for the low limit. For the
High Limit action select “DEFAULT MESSAGE” and “CUSTOM MESSAGE” for the low
limit action.

Press <F9> to save the data. UPTime provides a window to enter the custom message
for the low limit action. Enter the following text:

“ There is no torque on the Feed Motor. The drive chain may be broken or may
have come off the sprocket.”

Variable Diagnostic
Now define the variable ClampCycles that stores the number of open and close cycles of
the clamp for predictive/preventive maintenance purposes. The value of this variable is
controlled by State Logic programming and is explained in a subsequent lesson.

4

4-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Create the variable thru the VARIABLES menu by selecting “Numeric Variable” and then
selecting “Integer” for the data type. The form for defining the variable has a blank for
the name and another for the “Save Over Halt” option. This option specifies whether
the value in the variable should be maintained whenever the processor goes through a
run cycle whether stopped from Debug Mode or because of a power failure. Select “Y”
for this option.

Next create the Variable Diagnostic selecting Integer for the type and using ClampCycles
as the integer name. The Variable Diagnostic also has a high and low limit. Enter 22000
for the high limit and 0 as the low limit.

For the actions select “CUSTOM MESSAGE” for the high limit and “NONE” for the low
limit action. The NONE selection means the diagnostic does not trip when the value is
less than the low limit. For the custom message for the high limit action enter the
following text:

Clamp maintenance past due. Number of clamp cycles since last maintenance is
%ClampCycles – maximum allowed: 20000.

This text demonstrates how variable values can be used in a custom message. When the
message is displayed, the value of the variable following the per cent sign (%) is inserted
at the variable location. Both numeric and character variable can be used. See the
section describing the WRITE term in the State Logic Programming chapter of this
manual.

Device Diagnostic

A Device is a unique higher level UPTime structure that treats a group of Digital Points
as one entity. A Device has many uses but is designed primarily to represent
mechanisms that cycle between two states and usually includes some travel from one
state to the other.

Devices usually have two digital outputs, each causing the mechanism to go to a specific
state. Normally Devices include two inputs, each signalling that the mechanism’s travel
from one state to another is complete. A Device Diagnostic monitors the time that it
takes for the mechanism to change state once the forcing output starts the change. The
Device Diagnostic can also be set up to trigger every time the mechanism reaches either
state.

Mechanisms that can be represented by the Device structure are presses, hydraulic rams,
motors, and clamps. This structure is very flexible and can therefore be used for several
purposes. It is not necessary to use an output for the point causing a change or use an
input for points that detect the change, in fact any of the different types of digital points
can be used for any of the points that define the Device. The same digital point can be
used more than once in the Device definition. Use Devices and the Device Diagnostic
when the time from the point that one digital point changes state until another digital
point changes state is critical.

4

4-13GFK-0833 Chapter 4 Tutorial

Define the Digital Points

In this application the Device is used to represent the clamp. The first step in defining
this Device is to define the digital points connected to the clamp.

Define ClampSolenoid, ClampOpen, and ClampClosed as shown in the table above. In
the digital definition form the Input or Output blank is used to indicate whether the
ladder logic program in the CPU controls that point or the Diagnostic Processor controls
the point. Normally the CPU controls all digital points and the Diagnostic Processor
only monitors the points, therefore digital points are usually defined as inputs. Even the
%Q points are considered to be inputs to the Diagnostic Processor since the points are
only viewed not changed.

The Diagnostic Processor does have complete control capabilities, and it does make sense
to use the Diagnostic Processor to flash alarm lights or set a communication bit for the
CPU. For these cases the digital points are defined as outputs.

Define the Device

To define this Device select “Digital Devices” from the VARIABLES menu . Fill in the
blanks as shown in the following screen display.

Figure 4-3. Defining the Clamp Device

The text under each digital point, “Actuate When ON/OFF” or “Complete When
ON/OFF”, is used to indicate which condition of the digital point starts the operation or
signals the completion. When that text is highlighted pressing any key except <Enter>
changes the ON/OFF indication. Notice that ClampSolenoid is used to start both the
open and close cycles. When the solenoid is ON, the clamp closes. The clamp opens
when the solenoid goes OFF.

4

4-14 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Define the Diagnostic
Fill in the Device Diagnostic form for the Clamp diagnostic as shown in the following
screen capture.

Figure 4-4. Defining Clamp Device Diagnostic

Notice that there are four possible actions for the Device Diagnostic. The CUSTOM
MESSAGE text for the Close Failed action is displayed.

Execute the Strategy

Now execute this strategy in the Diagnostic Processor. First translate and download the
project, using the <Alt + F2> hot key. When you reach Debug Mode run the project.

Now use the force option as in the previous lesson to force the analog channel
FeedTorque to 130 to demonstrate the default message constructed by the Diagnostic
Processor for the analog high limit action.

To demonstrate the action for the ClampCycle variable Diagnostic, change the variable
value to 22000. From the menu select “CHANGE”, then “Numeric Variables”, and select
ClampCycles, and then enter 22000. The first message records the change command
and the time the command was invoked. The next message is the custom message for
the high limit action of this Diagnostic. This message demonstrates inserting variable
values in the message, by embedding the ClampCyles value in this message.

Finally demonstrate the operation of the clamp Device Diagnostic. The failed to open
action already has tripped, since the ClampSolenoid is OFF by default and the open
complete point did not go ON within 4 seconds. The failed to open action shows the
Device default message, now displayed in the Terminal Log screen.

Now use the FORCE function to force the ClampSolenoid ON. After 4 seconds the
failed to close custom message is displayed.

4

4-15GFK-0833 Chapter 4 Tutorial

Creating State Logic Continuous Sequences

This section describes the preparation for the State Logic programming sections. State
Logic Sequences are used for more complex analysis and functions than available with
the Fill–in–the–blank Diagnostics. See the Overview and Creating a Diagnostic
Strategy chapters of the manual for descriptions and directions for creating the three
types of Sequences (Continuous, Triggered, and Instructional). The section after this one
continues the lessons with lesson 3.

Outline the Application

The first step in creating the Continuous Sequences is to decompose the application into
its separate systems which operate in parallel (at the same time). This level of
decomposition gives us the highest level of the outline of this application.

Identify the Sequences and Tasks
Most Sequences have only one Task. Most Tasks are identified easily as the natural
systems or sub–systems of the application. For situations where it is not clear where to
divide the application into different Sequences, look to the parallel and sequential
aspects of the application and the diagnostic functions that must be accomplished.
Events that occur one after the other belong in the same Task, but an event that occurs at
the same time as another event belongs in a different Task.

The Sequences for this application each have only one Task. The top level outline for this
application is naturally broken down into the four systems:

I. Indexing Conveyor Operation

II. Drill Bit Lubrication System

III. Drill Operation

IV. Clamp Cycles

4

4-16 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Identify the Steps of the Tasks
The goal of this phase of development is to follow the system through its states of
operation so that there is one Step for every state of the system. When the real world
system changes state the State Logic Task should also change its current Step. Right now
the goal is to follow the states of the application so that there is a framework from which
to add Diagnostic functions as they are needed.

I. Indexing Conveyor Operation

A. Loading Station Waiting

B. Moving Part to Drill

C. Part At Drill

D. Moving Part to Unload Station

E. Unloading Station Waiting

II. Drill Bit Lubrication System

A. Lubrication System is OFF

B. Lubrication System is Ready

C. Lubricating

III. Drill Operation

A. Waiting for Part to Arrive

B. Drill Advancing

C. Feeding

D. Stopped Feeding

E. Retracting Drill

F. Drill Retracted

IV. Clamp

A. Clamp ON

B. Clamp OFF

Identify the Transition Statements
As a general rule, the outputs of a system indicate a change from one Step of a process to
another. There are times when inputs must also be used, but generally monitor the
outputs of the control program to detect when the process changes to another step. The
errors or faults of the system are indicated by comparing the inputs and times to normal
or expected conditions. For example, after the Conveyor motor comes on it is expected
that the PartAtLoad switch goes off in 1.5 seconds. If the switch does not respond as
expected, there is a fault in the system.

First program only the Step transitions so that Tasks just follow the process, and do not
attempt to do any diagnostic testing. After the transitions are programmed, the result is
a framework or outline of the application that is a direct representation of the process
being controlled. Once the framework is in place diagnostic checks are added, checking
for likely faults at different Steps of the process. The first part of this section shows the
Tasks programmed just to follow the application.

4

4-17GFK-0833 Chapter 4 Tutorial

���� �����

Step: ClampOFF
�� ����
������� �� 	�� �� �� ����	��

Step: ClampON
�� ����
������� �� 	��� �� �� ����	���

Clamp Task

This is a very simple Task that describes a very simple apparatus. The output controlling
the clamp is always in one and only one of these two Steps.

Task: INDEXING_CONVEYOR_

Step: WaitingToStart
If ConveyorMotor is ON, go to MovingToDrill Step.

Step: MovingToDrill
If ConveyorMotor is OFF, go to PartAtDrill Step.

Step: PartAtDrill
If ConveyorMotor is ON, go to MovingToUnload Step.

Step: MovingToUnload
If CoveyorMotor is OFF, go to WaitingToStart.

Indexing Conveyor Task

This Task is a good example of the power of State Logic. Because of its sequential nature,
the State Logic program keeps track of the Step of the process, providing a lot more
information than just knowing the status of the I/O of the system. The process can be in
more than one state with the same state of the I/O.

4

4-18 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

����� �
�		�

Step: WaitingForPart
If RapidAdvanceOutput is ON, go to Advancing Step.

Step: Advancing
If FeedAdvanceOutput is ON, go to Feeding Step.
If FeedPosition is ON, go to StoppedFeeding.

Step: Feeding
If FeedAdvanceOutput is OFF, go to StoppedFeeding Step

Step: StoppedFeeding
If FeedAdvanceOutput is ON, go to Feeding Step.
If RetractOutput is ON, go to Retraccting Step.

Step: Retracting
If RetractingOutput is OFF, go to WaitingForPart.

Drill Task

This Task demonstrates how the process may branch, with different Steps being an
active part of the process at different times. During the feeding cycle there is provision
for the manual mode where the feed speed contact to the feed/retract motor is cycled
OFF and ON in response to the feed pushbutton, but again only outputs are used to
indicate when another Step of the process is active.

The Advancing Step shows a situation where inputs are used to sense a change to a
different Step of the process. Inputs must be used in this case to detect whether the
system is in the feed position, but feeding has not started, because either the manual
switch is ON or there is some fault in the system. In most cases though ouputs are all
that must be monitored.

Task: Drill_Bit_Lubricate_

Step: LubricationOff
If LubricationPump is ON, go to LubSystemReady Step.

Step: LubSystemReady
If LubricationSolenoid is ON, go to Lubricating Step.
If LubricationPump is OFF, go to LubricationOff.

Step: Lubricating
If LubricationSolenoid is OFF, go to LubSystemReady Step.
If LubricationPump is OFF, go to LubricationOff.

Drill Bit Lubrication Task

This is a simple Task that cycles with the lubrication system. If the pump is ON the
system is ready, and if the solenoid is ON the system is lubricating.

4

4-19GFK-0833 Chapter 4 Tutorial

Identify the Diagnostic Statements
Once the Tasks, Steps, and transitions are in place, Statements to perform diagnostic
functions are added for the Steps where you want to watch for problems that are
anticipated.

The outputs have been used to establish how the process transitions from Step to Step,
how the inputs, time, variable values, and the knowing the active Steps of other Tasks
are used to detect abnormal operation or other important conditions.

Once an anticipated condition is detected one of several functional terms are used to
take the desired action. A message can be sent to one of the serial ports, a variable value
can be changed, a digital or analog output can be changed, the active Step of another
Task can be changed, or a specialty function can be executed. Another option is to go to
another Step to accomplish some operation then return to the Steps that normally follow
the process operation.

Examples of diagnostic Statements testing for different conditions and demonstrating
different operations follow:

If ForwardLimitSwitch is OFF, write “Chassis stuck in forward position”.
If StationOperation Task is in the Completed Step, add 1 to PartCount.
If 37.5 seconds have passed, turn on the TimeDelayFlag.
If TankTemperature + 45 > OptimalTemperature * 2, go to OverTemp Step.

LESSON 3 – Create State Logic Programming
 (Continuous Sequences)

In this lesson one very simple Task is created and executed. The State Logic simulation
of the drill station is used to demonstrate the execution of the simple Task. This section
introduces the UPTime editor, specifically designed to create State Logic programming.
Also downloading the project and online interaction with the program is introduced.

Load Simulation Program
The lessons using State Logic programming are designed to execute with the ladder logic
program that is already loaded into the CPU. The lessons rely on that program to be
cycling through its logic. Since the PLC is not connected to any real world I/O, the
distribution disks have an UPTime project that simulates the real world inputs. The
project, called DRIL–SIM, has a Sequence that controls the inputs of the ladder logic
program so that it behaves as if connected to a real world drill station. This project also
includes all of the Diagnostics created in the previous lessons.

The simulation project is first loaded into UPTime and then the State Logic lessons are
added to this project. Follow these steps to load the simulation project into UPTime:

1. From the Create Mode main menu select “PROJECT”.
2. Place distribution disk #2 into drive A.
3. Select “New Path/Drive for Projects” from the PROJECT menu.
4. Enter A:\ in the box provided.
5. Select the PROJECT menu again and then “Retrieve a Project from Disk” option.
6. Select the project named DRIL–SIM from the list.

4

4-20 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The simulation project is now loaded to make the ladder logic program execute its logic.
The lessons now add to this project. All of the simulation is in the SIMULATION
Sequence.

Add and Execute a Sequence

First add the CLAMP Sequence to the simulation project. To add the Clamp Sequence
first select “SEQUENCES” from the Create Mode Menu, then select “Diagnostic
Sequences” from the next menu.

There is the Sequence for process simulation displayed in the list of Sequences. As the
bottom bar indicates to add a Sequence press the <Ins> key, then for the Sequence
name type in CLAMP. Select NO for the Restart in Last Step option. Enter ClampOff
for the name of the first Step, and then just press <Enter> without entering any data for
the Max Time option.

Using the Editor
We have now entered the UPTime editor. The editor provides many word processor
functions, as the bottom bar shows, the editor menu for accessing these functions is
available by pressing the <F3> key. One Sequence at a time is edited. Its name is
displayed in the top bar. Text typed in is entered at the cursor position.

The Task and first Step name are entered automatically. There is nothing magical about
this text, as it could have been entered directly from the keyboard and can be changed at
any time.

Enter the rest of the Sequence as follows:

����� ���	
�

Step: ClampOFF
If ClampSolenoid is ON, Add 1 to ClampCycles and go to ClampON.

Step: ClampON
If ClampSolenoid is OFF, go to ClampOFF.

To the framework Steps shown earlier has been added a counter function to maintain
the number of times the clamp has closed. This data is used by the ClampCycles variable
diagnostic created earlier to indicate when it is time to perform maintenance on the
clamp.

Download Project
The next step is to download the project to the Diagnostic Processor. First exit the editor
by pressing <F3> and then selecting the “RETURN” option from the menu. Now select
the “PROJECT” option from the Create Mode menu. From the Project menu select the
“Translate and Download Project to the Processor” option.

UPTime asks whether to search for undefined words, select “YES”. UPTime now looks
through the program trying to find any words that are not filler words, keywords or
defined names. There are no undefined words, so UPTime completes the download.

4

4-21GFK-0833 Chapter 4 Tutorial

Debug Mode
Now go to Debug Mode after the statistics screen is displayed. To observe the Clamp
Sequence execute first create a monitor table.

1. Press<F3> for the menu and then select “MONITOR”. Choose the “Add a New
Monitor Table” option, and then enter CLAMP as the name for the table.

2. The next display shows a list of the different types of data that can be entered into
the table. Select “Task’s Current Step” and then CLAMP from the list of Tasks.

3. Now press <Esc> to bring up the data type list again. This time select “Digital
Points” and then ClampSolenoid from the list of digital points.

4. Press <Esc>, then Numeric Variables, then select ClampCycles. Now press
<Esc> 4 times to return to the Terminal Log screen. The monitor table now
displays the value of those items.

Run the project and watch the values change as the State Logic simulation Sequence
causes the ladder logic program to cycle through its program. Create a monitor table to
watch the critical elements of the program, especially the current Steps of the Tasks.

LESSON 4 – Add Diagnostic Logic to Framework Logic

This lesson demonstrates several methods of implementing diagnostic testing in
continuous Sequences. All of the Tasks displayed earlier that provided the framework of
following the drill station application are added to in this lesson.

From the distribution disk number 2 load in the project named DRILL2. This project
includes the continuous Sequences with diagnostic Statements as listed below, plus
several added Diagnostics, and all of the Diagnostics created in the first 2 lessons.

Load this project into UPTime and then check the different elements of this Diagnostic
Strategy as it is described below each Task listing.

4

4-22 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Indexing Conveyor
Task: INDEXING_CONVEYOR_

Step: WaitingToStart
If ConveyorMotor is ON, go to MovingToDrill Step.
If 8 seconds have passed, go to the Delayed Step.

Step : Delayed
Turn on PartDelayed.
If ConveyorMotor is ON, go to MovingToDrill Step.

Step: MovingToDrill
Enable_Diagnostic PartAtLoad.
If ConveyorMotor is OFF, go to PartAtDrill Step.

Step: PartAtDrill
Enable_Diagnostic PartAtDrill.
If ConveyorMotor is ON, go to MovingToUnload Step.

Step: MovingToUnload Max_Time 8
If ConveyorMotor is OFF, go to WaitingToStart.

To the framework Task listed in a previous section have been added several Statements
to perform diagnostic checks for the different stages of the process. The two new
Diagnostics that have been added for this Task are listed in the following table:

Table 4-1. New Diagnostics for Indexing Conveyor

Name Class Address Type

PartDelayed Digital %M50 ON

PartAtLoad Digital %I11 ON

Part Delayed
This Diagnostic and the Delayed Step demonstrate using a Digital point as a flag to trip a
Diagnostic. The Diagnostic is continuously monitoring the point and is tripped when
the State Logic program sets the flag.

If the conveyor waits 8 seconds for a part, the Diagnostic sends a message out the serial
port and an entry is made in the alarm list and the alarm histogram. It may be that there
is a mechanical reason for the delay or that an operator is not doing their job, in either
case a record is made that the drill station has been delayed due to a lack of parts.

The %M digital point is used as a flag to trip the Diagnostic. Notice that this digital point
is defined as an output, since its value is controlled by the Diagnostic Processor. Also
note that there is no logic to turn OFF this point. Since outputs are OFF by default, this
point goes OFF when the Task changes to a Step that is not turning the point ON.

PartAtLoad
Using this Diagnostic demonstrates how Diagnostics are enabled when needed and
disabled when not needed. The State Logic program is following the application and
controls the Diagnostic at the correct Step of the process.

4

4-23GFK-0833 Chapter 4 Tutorial

After the conveyor starts moving the part to the drill, the PartAtLoad Diagnostic is
enabled. This Diagnostic informs the operator in the event that a part is placed in the
load position before the conveyor system is ready for the next part. This Diagnostic is
Disabled just after the Task transitions to the WaitingToLoad Step, when a new part is
expected to be loaded.

Max_Time Diagnostic
The last Step of this Task demonstrates the Max_Time built in time out function. This
function is created by following a Step name with the Max_Time keyword followed by
the maximum number of seconds that that Step should be active.

In this case the maximum amount of time that it should take for the part to move from
the drill to the unload position is 8 seconds. If it takes longer, a message is sent to the
terminal log saying that the Indexing_Conveyor_ Task was too long in the
MovingToUnload Step.

Drill

Task: Drill_

Step: WaitingForPart
If RapidAdvanceOutput is ON, go to Advancing Step.

Step: Advancing
If FeedAdvanceOutput is ON, go to Feeding Step.
If FeedPosition is ON, go to StoppedFeeding.
If 0.5 seconds and RetractPosition is ON,

write “The Retract Switch has not gone OFF!

Possible causes are:
1. Switch is defective.
2. Drive Belt is Broken.
3. Drive Belt Jumped off of the Pulley.” to OperatorPanel.

Step: Feeding
Enable_Diagnostic LubOFF.
If FeedAdvanceOutput is OFF, go to StoppedFeeding Step.

Step: StoppedFeeding
If FeedAdvanceOutput is ON, go to Feeding Step.
If RetractOutput is ON, go to Retracting Step.
If 5 seconds,

write “Drill in manual mode. Press pushbutton to feed.”
to OperatorPanel.

Step: Retracting
Disable_Diagnostic LubOFF.
If RetractingOutput is OFF, go to WaitingForPart.

The Advancing and StoppedFeeding Steps of the Drill_ Task demonstrate State Logic
programming used to send a diagnostic message out a serial port. The second Statement
in the Advancing Step tests for the case that the switch indicating the drill in the retract

4

4-24 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

position has not gone off when expected. The message lists three possible causes for the
problem. The WRITE term in the StoppedFeeding Step indicates that the drill is in
manual mode and is waiting for the feed pushbutton to be pressed in order to continue.

Messages can be sent to either serial port by specifying the name of the port after the
message. All text within the double quotes is sent formated just as it appears in the
program. The message from the WRITE term is displayed of the screen, but there is no
indication in the alarm list or the histogram that this condition exists. If UPTime is
connected to the Diagnostic Processor, the message is displayed in the Terminal Log
where the message is captured for future review.

There is one added Diagnostic for this Task, LubricationOFF. The digital point for this
Diagnostic is set by the Bit_Lubrication Task everytime the lubrication system is OFF, but
the Diagnostic is enabled and disabled by the Drill_ Task. The use of this Diagnostic
shows how to check on conditions in another system of the process.

Drill Bit Lubrication System

Task: Bit_Lubrication_

Step: StartUp
If LubricationPump is ON, go to LubSystemReady Step.

Step: LubricationOff
Disable_Diagnostic LubricantLevel.
If LubricationPump is ON, go to LubSystemReady Step.
If 2 seconds have passed, turn on LubOFF.

Step: LubSystemReady
Enable_Diagnostic LubricantLevel.
If LubricationSolenoid is ON, go to Lubricating Step.
If LubricationPump is OFF, go to LubricationOff.

Step: Lubricating
If LubricationSolenoid is OFF, go to LubSystemReady Step.
If LubricationPump is OFF, go to LubricationOff.

This sequence demonstrates activating a Diagnostic when it is needed and disabling it
when its messages are not meaningful and would clutter up the alarm lists. The flag
LubOFF is also used to indicate to another Task when the Lubrication System is off. This
flag is checked by a Diagnsotic that is enabled by the Drill_ Task.

Execute DRILL2 Diagnostic Strategy

Download this project to the processor and start it running. The simulation Sequence
provides a means for creating alarm situations for the Diagnostics and diagnostic
programming demonstrated in this project.

4

4-25GFK-0833 Chapter 4 Tutorial

The following list displays the names of flags that cause the simulation Sequence to
cause a system fault. They cause faults, force these flags ON one at a time then observe
how the Diagnostic System responds.

Flag Description

DelayLoad Causes part to be delayed arriving to the load position on the
conveyor

LoadON Causes PartAtLoad switch to stay ON when ����� �� ������

RetractStuckON Causes the RetractPosition switch to stay ON ���� ����� is
advancing.

LubricantLowFlag Causes the lubrication level to be –20 which is ��� ������ ��
������� ��� ������������� ���������� �� ��� ��� ������ ���
��� ������ ����� ������� ������� �� ���� ��� � �����

ManualModeFlag Causes manual mode switch to be ON. After ��������� �� ���
���� ��������� ��� ����� ����� ��� ��� ��������� �� � �������
����� �������� ��� �����
�� ���� ���� �������� ���� ��� ����!
�����

FeedFlag Simulates the feed pushbutton being pressed. ���� ���� ����
�� 	�� ��� ���� ��������� �� ���� 	��
�� ���� ���� ��������
���� ��� ���������������

LESSON 5 – Triggered Sequence

This lesson introduces the triggered Sequences. This Sequence type starts execution
when a Diagnostic triggers and the action of that Diagnostic is specified to be the
SEQUENCE.

This Sequence shows a typical use of State Logic to analyze the cause of a problem. By
knowing the process, the programmer can create deductive programming that uses I/O
status, serial interaction with the operator, the current Step of Tasks, and other data
items to deduce the cause of a fault.

For this lesson use the DRILL3 project from disk 2 of the UPTime distribution disks. The
Sequence added in this lesson triggers off of the FeedTorque Diagnostic created in lesson
2. The only difference between a Continuous Sequence and a Triggered Sequence is that
the Triggered Sequences start execution when triggered by a Diagnostic, and Triggered
Sequences must have an End_Sequence keyword in one of its Steps.

4

4-26 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

(.@8� ����-#*�&(#&%)�-

Step: Initialization
!6;6:B: 2C29 � 	��

�< &2=<?A#C2?A<?>B2

Step: ReportOverTorque
+?6A2 G(<< :B05 A<?>B2 <; ���� !#(#&� A< #=2?.A<?$.;29

�3 B/?60.A6<;- (.@8 6@ 6; A52 B/?60.A6<;#33 'A2=�

4< A< A52 B/?60.A6<;$B:=#33 'A2=

�3 B/?60.A6<; 2C29 6@ � !6;6:B: B/ 2C29 4< A< B/?60.A6<; <D

�< A< �5208 B/�0A6<; 'A2=

Step: LubricationLow
+?6A2 G B/?60.A6<; &2@2?C<6? 6@ #+�� A< #=2?.A<?$.;29

�< A< �6;6@521

Step: CheckLubAction
+?6A2 G�@ 9B/?60.A6<; 39<D6;4 <; 1?699 /6A� �,�"�� A< #=2?.A<?$.;29

&2.1 &2@=<;@2 3?<: #=2?.A<?$.;29 .;1 4< A< �5208&2@=<;@2

Step: CheckResponse
�3 &2@=<;@2 � G"� 4< A< "<FF92�9<4421

�3 &2@=<;@2 � G,� 4< A< �6A�B99

+?6A2 G�;C.961 &2@=<;@2 	 (?E �4.6;���& �� A< #=2?.A<?$.;29 .;1

4< A< �5208 B/�0A6<;

Step: NozzleClogged
+?6A2 �

�?6996;4 .0A6<; ;<A 9B/?60.A21� "<FF92 6@ 09<4421

'A<= �?699 'A.A6<; #=2?.A6<; .;1 �92.; .;1 �17B@A "<FF92��

A< #=2?.A<?$.;29

�< A< �6;6@521

Step: LubricationPumpOff
+?6A2 �

 B/?60.A6<; $B:= 6@ ;<A ?B;;6;4��

�5208 A52@2 6A2:@�

�
 #C2?9<.1 �;A2?9<08

&2@2A �BAA<; 6@ /256;1 :<A<? @A.?A2?

 �6?0B6A /?2.82? � 6; :.6; =.;29

�3 /?2.82? A?6=@ .3A2? ?2@2A 0.99 :.6;A2;.;02 .A �����

A< #=2?.A<?$.;29

�< A< �6;6@521

Step: BitDull
+?6A2 G#C2? (<?>B2 0<;16A6<; 0.B@21 /E 1B99 /6A

(E=2 �!�")�� .;1 =?2@@ ��;A2?� 3<? 6;@A?B0A6<; 96@A

'2920A A52 &�$ ��� �?699 ��(<=A6<; 3<? 6;@A?B0A6<;@
�

A< #=2?.A<?$.;29

�< A< �6;6@521

'A2=� �6;6@521

�3 �221(<?>B2 � �� A52; 4< A< 2;1

'A2=� �;1

�;1-'2>B2;02

4

4-27GFK-0833 Chapter 4 Tutorial

After this Sequence is added to the project, it is listed as a Continuous Sequence. When
the FEED_OVERTORQUE Sequence is named as the action for the FeedTorque
Diagnostic high limit action, this Sequence becomes a Triggered Sequence.

Download and run this project and force on the following flags ON to create fault
conditions. Each flag sets the FeedTorque analog value to be 130 which causes the
Diagnostic to trip when the drill is feeding.

For some flags other conditions are created to indicate other problems in the system.
Respond to questions when the Sequence prompts for some information. The Sequence
deduces the problem and informs the operator. The prompt to type MENU? is
prompting the user to call up the Instructional Sequences which are not available in this
program but are added in the next lesson.

Clear the force to allow the program to continue running normally.

���� ��������
	

HighTorqueLowLub Makes the analog channel value for the lubricant level be
too low.

HighTorqueLubOff Makes the lubrication level go to –280 which is low enough
for the control program to turn off the lubrication pump.
This fault shows the proper division between control and
diagnostics. The critical situation is handled by the control-
ler, but the Diagnostic System notifies what caused the
system to stop.

HighTorque This flag just causes the FeedTorque to be high.

LESSON 6 – Instructional Sequences

This section demonstrates the creation and execution of Instructional Sequences. These
Sequences are created the same way that the other Sequences are created and the same
keywords are available for use in both. To start entering an Instructional Sequence,
select SEQUENCES from the menu then Instructional Sequences.

What makes Instructional Sequences different is how they start execution. When in the
UPTime Debug mode or from a dumb terminal, a menu of all Instructional Sequences is
displayed on the screen when <MENU?> is entered at the keyboard. From this menu
any one of the Instructional Sequences can be started. Instructional Sequences may also
be started by other Sequences by using the Start_Sequence keyword.

To use the Instructional Sequences load in the project DRILL4. This project includes the
Instruction Sequence listed below in addition to all of the Diagnostic Strategy created in
the previous lessons. When this project is running and the Debug Mode Terminal Log
screen is displayed, type MENU? at the keyboard to start the Instruction menu.

4

4-28 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The three Instructional Sequences used in this program are displayed in the following
sections.

��!�� �
��
�	�������
��

�"���
�" ��#�"���

� �"� $���!

�
�� ����
���
� ������
� �����

1. Turn OFF Lubrication Pump
2. Move Lubrication Drum 3tR to Drill Station Area Red Square
3. Remove Reservoir Cover
4. Insert Delivery Hose
5. Use Hand Pump to Fill to Green Line
6. Remove Hose
7. Replace Cover
8. Start Lubrication Pump

” to OperatorPanel.

 End_Sequence.

The Filling_Reservoir instrctions just present a list of steps to be performed. Notice the
End_Sequence keyword at the end of this Sequence. Each Triggered and Instructional
Sequence must have this keyword somewhere in that Sequence. When this keyword is
executed, all of the Tasks in the Sequence stop execution and go to the Inactive Step.

Task: REPLACE_DRILL_BIT_
Step: CheckDrillCycles

If DrillCycles < 200 go to BitDullEarly.
Go to StartReplacement.

Step: BitDullEarly
Write “Drill bit is dull in fewer operations than expected.

Check the following:
1. Lubrication System
2. Feed Rate

Report Incident to Shift Foreman” to OperatorPanel.

Write “Press any key then <Enter> to Acknowledge this message
and display replacement procedure.” to OperatorPanel.

Read Acknowledge then go to StartReplacement.

Step: StartReplacement
Write ”

Follow these Steps for Bit Replacement:

1. Set Stop Switch
2. Remove Bit By Pulling Release Locking Handle
3. Find New Bit in Locker 13.
4. Insert Bit and Secure Locking Handle” to OperatorPanel.

Write “Drill Bit Replacement Procedure Complete!” to OperatorPanel.
DrillCycles = 0.

End_Sequence.

4

4-29GFK-0833 Chapter 4 Tutorial

This Task shows how different instructions are given depending on some test of data
stored in the PLC system. If the number of drill operations on the bit is lower than a
minimum expected, the operator is given some special instructions. In both cases the
normal replacement procedure is provided.

Task: CLAMP_MAINTENANCE_
Step: StartMaintenance

Write “%CLS
There are three steps for maintaining the clamp:

1. Disassembly
2. Lubrication
3. Assembly

” to OperatorPanel.

When_Done_Next_Step.

Step: Disassembly
Write ”

DISASSEMBLY

1. Remove pivot pin snap rings.
2. Punch pivot pins from.
3. Remove return springs.
4. Remove clamp jaws.
” to OperatorPanel.

When_Done_Next_Step.

Step: Lubrication
Write ”

LUBRICATION

1. Liberally coat pivot pins with MOLY–L UB 2–4D.
2. Use SUPER–GEL grease gun on zerks under clamps.” to OperatorPanel.

When_Done_Next_Step.

Step: Assembly
Write ”

ASSEMBLY

1. Use alignment tool to position clamp jaws.
2. Use small port–a–press to push pivot pins in place.
3. Connect return springs.” to OperatorPanel.

When_Done_Next_Step.

Step: ResetCycleCount
ClampCycles = 0.
End_Sequence.

The Instructions for maintaining the clamp demonstrate using each Step of the Sequence
to describe a Step in the procedure. The When_Done_Next_Step keyword is used to
give the user control of displaying the Steps of the procedure. When this keyword is
executed, a prompt is displayed asking whether to proceed, repeat the last Step, or end
the instructions.

5 section level 1 1
figure bi level 1
table_big level 1

5-1GFK-0833

Chapter 5 Diagnostic Processor

This chapter focuses on the Diagnostic Processor. The hardware features are described
in detail, and there is a section that describes how the Diagnostic Processor interacts with
the Series 90–70 control system. Other sections describe setup options and how the
State Logic program scan works.

Diagnostic Processor Description

The Diagnostic Processor is a module which inserts into a Series 90–70 PLC chassis.
This module has the State Engine operating system to execute Diagnostic Strategies
composed of Fill–in–the–Blank Diagnostics and State Logic programming, produced
by the UPTime programming software package.

The Diagnostic Processor exists together with a CPU module in the Series 90 PLCs. The
CPU executes a Relay Ladder Logic Program at the same time the Diagnostic Processor is
executing a Diagnostic Strategy. The Diagnostic Processor manipulates the CPU
memory space and the CPU controls the I/O during its normal cycle of operations. More
than one Diagnostic Processor can be installed in one Series 90–70 PLC system.

Physical Description

The Diagnostic Processor occupies a single slot in the Series 90–70 rack, communicating
with the PLC CPU over the backplane to perform its many control functions. The
Diagnostic Processor controls and accesses CPU I/O, register, and system data. The
Diagnostic Processor has control capabilities, but the system is designed with the
expectation that the CPU does almost all of the control.

5

5-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

a45253

Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

Î
Î
Î
Î
Î
Î

LOCAL RACK CONFIGURATION

P
S

C
P
U

D
P

Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

CPU RACK

P
S

C
P
U

B
T
M Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

EXPANSION RACK

P
S

B
R
M

D
P

Figure 5-1. Diagnostic Processor in Series 90–70 Chassis

The 90–70 Diagnostic Processor uses a 12.5 mHz 80C186 microprocessor and has two
serial ports that can be either RS–232 or RS–422/485. One port is designated the
programming port, to be used to communicate with UPTime. One of the ports is also
designated to be the Diagnostic Message Port, used to display messages generated by
Diagnostics. One of the serial ports may also be configured to be a CCM port,
communicating to a host computer using the CCM protocol. The Diagnostic Message
Port and the Programming Port may be the same serial port, but the CCM port must be a
different port from both the Diagnostic Port and the Programming Port. See the section
in this chapter on Serial Communications for more information on using the serial ports.

There are three LED indicators located at the top front edge of the Diagnostic Processor.
The top LED is the status indicator for the Diagnostic Processor. During power–up this
LED flashes while the Diagnostic Processor is running its diagnostic checks. If this LED
is off, either the power is off, there is some hardware malfunction of the Diagnostic
Processor, or there is no CPU present in the Series 90–70 PLC system. When the LED is
on, the Diagnostic Processor is functioning normally.

5

5-3GFK-0833 Chapter 5 Diagnostic Processor

a45129

ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
ÎÎ
ÎÎ

OPTION CONNECTOR

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ

ÎÎ
ÎÎ

ÎÎ
ÎÎ

Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î

STATUS

PORT
1

PORT
2

RESET

BATTERY
CONNECT

Figure 5-2. Series 90-70 Diagnostic Processor

The Diagnostic Processor comes with a battery to maintain memory when power is
removed. This is a lithium battery which is installed as shown in the Diagnostic
Processor drawings. When the battery reaches a low charge, this condition is reported to
the PLC fault table.

Each Diagnostic Processor also comes with a Reset switch. When the reset button is
pressed for less than 5 seconds, the Diagnostic Processor behaves as if power was lost
momentarily. The program begins operation if the Diagnostic Processor is setup for
auto–r un operations, otherwise the Diagnostic Processor is in HALT mode. If the reset
switch is pressed for more than 5 seconds, then the Diagnostic Processor memory is
initialized and the program must be reloaded.

Operational Description

The Diagnostic Processor uses areas in the CPU memory for I/O references and Register
values. The Diagnostic Processor and the CPU communicate this information over the
PLC backplane.

The Diagnostic Processor addresses contiguous blocks of the CPU memory space for
most of the different memory types (%I, %Q, %AI, %AQ, %M, %G, %T, %R, %S, %SA,
%SB, %SC). These blocks can be mapped to any section of the available CPU memory
space for each type of memory used.

5

5-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

When a Ladder Logic control program and a Diagnostic Strategy are running at the
same time, the State Logic and Ladder Logic programs should not be controlling the
same outputs. The Diagnostic Processor cannot control an output that is being
controlled by the CPU, since the 90–70 CPU always takes precedence when both
processors are controlling the same outputs.

All of the outputs used in the State Logic program should be selected to be contiguous if
system response time is important. Outputs being non–contiguous cause the scan rate
to increase significantly.

Installation and Maintenance

This section describes how to install the Diagnostic Processor into a Series 90 PLC rack.
There is also a section describing maintenance considerations.

Selecting the Right Slot

The Diagnostic Processor can be installed in any unused slot in any rack of the Series 90
PLC if the following rules are followed:

1. Configuration created by Logicmaster must match the physical location of the
modules. Configuration faults are logged in the PLC fault table.

2. For the 90–70 Diagnostic Processor all the slots between the Diagnostic Processor
and CPU must be occupied. If any slots between are empty the Diagnostic
Processor cannot communicate with the CPU.

Inserting the Diagnostic Processor

Follow these steps to insert the Diagnostic Processor into the Series 90 rack:

1. Power down the Series 90–70 PLC system

2. Locate the desired rack and slot.

3. Slide the 90–70 Diagnostic Processor completely into the slot.

4. Press down firmly to lock the module in place, but do not use excessive force.

5. Power up the PLC rack. The Status LED flashes during power–up diagnostics.
The LED comes on steady when the Diagnostic Processor is ready for operations.

Configuration

Use the Logicmaster 90 configuration software to add the Diagnostic Processor to the
Series 90 I/O configuration. This software is used to describe the modules present in the
PLC racks. Rack and slot location and other features for each module are entered by
completing setup screens that describe the modules in a rack.

5

5-5GFK-0833 Chapter 5 Diagnostic Processor

Figure 5-3. Sample Logicmaster Configuration Screen

From the main menu of the Logicmaster 90 configuration software, press I/O <F1>.
The screen displays a representation of the modules in a rack. To add an Diagnostic
Processor to the configuration, highlight the desired slot, then press Other <F8> and
then PCM <F1>.

Now press Zoom <F10> to view the current configuration. Press <Enter> to enter the
highlighted catalog number and display the PCM detail screen.

Now set the Configuration Mode to NONE for the 90–70 Diagnostic Processor. First
highlight the Config Mode option and repeatedly press the <Tab> key until PCM CFG
is displayed on the screen. The serial ports are under program control and the
parameters are initialized by the Diagnostic Processor.

Now press the <Esc> key to save the configuration and return to the rack display. The
display should now show a PCM in the correct slot. Send the configuration to the PLC
CPU and the configuration is complete.

During program execution the CPU must be in run mode with the outputs enabled. Use
LM90 to set the status of the CPU before executing the State Logic program.

Battery
The Diagnostic Processor comes with a 3 volt lithium battery (IC697ACC701) to maintain
memory through a power cycle. If the battery charge becomes low, a fault is set in the
fault table. These faults can be monitored by the State Logic program.

To replace the battery, connect the new battery to the extra set of battery connections
then disconnect the old battery. A Product Safety Data Sheet for the battery is available.
Order from GE Fanuc using number GFK–0633.

5

5-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Troubleshooting

This chapter provides procedures for diagnosing Diagnostic Processor (Diagnostic
Processor) problems. If these procedures do not solve the problem, contact the GE
Fanuc Hotline (1–800–828–5747) for assistance.

Status LED is not ON Steady

1. Check that power is supplied to the I/O rack housing the Diagnostic Processor.
Try removing and reinstalling the Diagnostic Processor.

2. Cycle power to the Diagnostic Processor, then press the reset button for more than
5 seconds.

3. Turn the power OFF and disconnect the battery and short the Diagnostic Processor
battery terminal connection points to clear the Diagnostic Processor. Reconnect
the battery, turn ON power again, and reset the Diagnostic Processor.

4. Check that the CPU is functioning properly by checking its “OK” LED.

5. Check that there are no empty slots between the CPU and the Diagnostic
Processor. If there are empty slots, the Status LED blinks continuously.

6. If the Status LED is still not ON, try to download a program from UPTime. If you
can connect with the Diagnostic Processor and download a program, then the
Status LED is faulty.

7. If you get a message that UPTime cannot connect to the processor, then check the
fault table in the CPU using Logicmaster 90. If there is a fault “Bad or missing
module”, then the Diagnostic Processor is faulty and must be returned for repairs.

8. If there is no fault then contact the GE Fanuc Hotline for assistance.

Reset Blinks Port 1 or Port 2 LED
If the Port 1 and Port 2 LEDs have an alternating blinking pattern, then the Logicmaster
90 or CPU firmware is out of date with the Diagnostic Processor firmware. Get updated
versions of the Logicmaster software and/or the CPU firmware

Serial Communication Problems
This section is split into two parts, communication problems to UPTime and problems
with other serial devices.

5

5-7GFK-0833 Chapter 5 Diagnostic Processor

Communications Problems with UPTime

1. Check that the serial cable used conforms to one of the types specified for
communications to the Diagnostic Processor ports. Check that the cable is firmly
secured at both ends.

2. When there is a communications problem, a message indicating problems
connecting to the processor is displayed together with some options. Select the
“Change Host Comm Port Settings” option to check the computer port being used
and the baud rate. The default Diagnostic Processor baud rate is 19,200.

3. The Diagnostic Processor programming port may have been changed. UPTime
must be connected to the designated programming port. The default
programming port is Port 1 but can be changed by UPTime. Make sure the serial
cable is connected to the current programming port.

4. The Diagnostic Processor serial port configuration may have been changed. These
parameters can only be changed by Statements using the Set_Commport
keyword in the State Logic program. Reset the Diagnostic Processor to return the
Diagnostic Processor serial port parameters to their default state. If the program is
set up to start running automatically and the program continues to change the
serial port parameters after the reset switch is pressed, turn off the power to the
Diagnostic Processor, remove the battery, and short the Diagnostic Processor
battery leads to reset the Diagnostic Processor.

5. Port 2 of the 90–70 Diagnostic Processor is an RS–422/485 port and Port 1 is an
RS–232 port. Make sure that the host computer serial port setup matches the
Diagnostic Processor port for RS–232–RS–422/485 option.

6. If there is still no communication between the Diagnostic Processor and UPTime
then call the GE Fanuc Hotline for assistance.

Communications Problems with Another Serial Device

1. Check that the serial cable used conforms to one of the types specified for
communications to the Diagnostic Processor ports. Check that the cable is firmly
secured at both ends.

2. Make sure that the serial port parameters of the serial device match the settings of
the Diagnostic Processor. The default settings of the Diagnostic Processor are 19,200
baud rate, 8 data bits, 1 stop bits, and no parity.

3. Make sure the RS–422/485–RS–232 standards are the same for Diagnostic
Processor and the serial device.

4. When connecting a device to the programming port, make sure that you exit
UPTime normally before disconnecting from the Diagnostic Processor.

5. If there are still problems contact the GE Fanuc Hotline for assistance.

Serial Communications

Serial communications with the Diagnostic Processor (Diagnostic Processor) is provided
through one of the two serial ports. Each of these ports can send and receive serial data
independent from the other. Each of these ports on the 90–70 Diagnostic Processor may
be either an RS–232 or an RS–422/485 port.

5

5-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

UPTime must communicate with the Diagnostic Processor through the programming
port. Either port can be the programming port, but port one is the default programming
port. When UPTime is not connected to the Diagnostic Processor, the programming port
can be used to communicate with some other serial device. To properly set the
programming port to communicate with another device, exit UPTime normally before
disconnecting from the Diagnostic Processor.

Either of these ports may also be a CCM port. The CCM port uses the GE Fanuc CCM2
protocol for all communications. This protocol is used for connecting the Diagnostic
Processor with a host computer which collects data and changes data in the Diagnostic
Processor. Typical CCM uses are connecting to a graphical user interface program or for
custom host interaction with the Diagnostic Processor.

The Diagnostic Processor is always a slave to the host, ie. all communications are
initiated by the host computer. The Diagnostic Processor may be one of several devices
on a CCM network. The CCM port is always the port that is not designated as the
programming port. The CCM port is a normal RS–232 or RS–422/485 port when CCM
communications are not enabled.

Serial Port Setup
There are several serial port configuration options. Some of these options are set using
UPTime, and others can only be set by an executing State Logic program.

UPTime Options

The options available in the UPTime menus to change the configuration of the
Diagnostic Processor serial ports are displayed below.

Change Programming Port
	������������� ��
 ����

��� ��
 ������� ������

��� ��� ��������� ������ �� ���� ����

Serial Options Set by UPTime

Each of these options is set in the Diagnostic Processor Configuration Menu selected
from the Debug Mode Project Menu in UPTime.

Designating the Programming Port

The programming port is the State Processor serial port to which UPTime is connected.
If UPTime is not connected to the programming port, the Diagnostic Processor cannot
communicate to these software packages.

Port one is the default programming port. To change the programming port select the
“Diagnostic Processor Configuration” option from the Debug Mode PROJECT menu and
make the selection from the provided form.

Designating the Diagnostic Port

The Diagnostic Port is the serial port where all messages are sent from Diagnostics that
have been tripped. The Diagnostic Port and the programming port can be the same
port, but the Diagnostic port and the CCM port cannot be the same when CCM protocol
is enabled.

5

5-9GFK-0833 Chapter 5 Diagnostic Processor

Port one is the default Diagnostic Port. To change the Diagnostic Port select the
“Diagnostic Processor Configuration” option from the Debug Mode PROJECT menu and
then make the selection from the provided form.

CCM2 Protocol Serial Port

CCM2 protocol is a standard open communications protocol defined by GE Fanuc. The
Diagnostic Processor acts as a slave in a master–to–slave architecture. The remote
master computer must poll to retrieve data from the Diagnostic Processor. All
communications are initiated by the host.

The CCM2 protocol defines the message structure, framing, error checking and
handling, and timing for all message types. At the lower physical level, the serial port of
the Diagnostic Processor is electrically RS–232 and can be configured for any Baud rate,
parity, and stop bits desired via a command in the program executing in the Diagnostic
Processor. Use the Set_Commport keyword in the UPTime program followed by the
parameters, to configure the port so that CCM2 communications port electrically
matches the serial port of the master computer.

Either of the 2 serial ports can be a CCM2 Communications port. The CCM port is
always the port that is not the programming port. When the CCM protocol is used, the
Diagnostic Message Port and the Programming Port must be the same port since neither
can be the same port as the CCm Port.

Enabling CCM2 Communication

Both serial ports are normally normal serial ports using no communications protocol. To
use the CCM2 communications protocol on the CCM port, the CCM2 Communications
must be enabled. To enable CCM2 Communications select the “Diagnostic Processor
Configuration” option from the Debug Mode PROJECT menu.

There are other CCM2 options on this menu. The CCM2 options available are:

Enable CCM Protocol Port
Disable CCM Protocol Port
Set CCM Protocol Station Address

The Diagnostic Processor using CCM2 only recognizes and responds to messages sent to
its address, which may be any number from 1 to 89. The default address will be 1 and
the User should assign a Station Address to match the number the Remote Master
expects. The Station Address should be validated or assigned before CCM2 protocol
communications are enabled.

If the “Disable” function is chosen, all CCM2 communications are immediately
discontinued, even if in the middle of a message, and all inputs on that serial port are
taken to be ASCII character inputs that will be handled as appropriate to the current
Diagnostic Processor program execution.

Programmable Setup Options

On power up the serial port parameters are set to their default settings. These settings
may be changed by using the Set_Commport programming keyword in the control
program. The Set_Commport keyword and parameters must be executed by the control
program to change the serial port settings. Just changing the parameters in the UPTime
serial communications setup form does not automatically change these settings.

5

5-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

After the Diagnostic Processor serial port parameters are set, UPTime automatically
enters the Set_Commport instruction into the program when the following selections
are made. Select the LIST option from the program mode menu; then select the
Communication Ports option. Highlight the appropriate port and press <Enter>.
UPTime prompts whether to enter the port name only or enter reconfiguration data.
After selecting Enter Reconfiguration Data, the Set_Commport keyword plus the
instructions to change the serial port parameters are entered into the UPTime program.

These options affect the Diagnostic Processor serial port configuration only, not the
UPTime serial port setup. The option to change the UPTime host computer serial port
configuration is available only when there is some problem connecting UPTime to the
Diagnostic Processor. The only options which can be changed on the UPTime serial port
configuration are selecting COM1 or COM2 and changing the baud rate.

Table 5-1. Serial Port Parameters

��
�����
 �����	��

�"4% �"3& ���	� �	��

���
��

����

	���

�"3" �*32 �� � /1

�"1*38 �5&.� �%%� �/.&

�3/0 �*32 	� ���� /1 �

�&20/.% 3/
�"$+20"$&

�."#,&%
�*2"#,&%

�3/0 1".2-*3
/. �&$&*5&

�."#,&%
�*2"#,&%

�&$&*5&1
�,6"82 �.

�."#,&%
�*2"#,&%

�*.& �&&% �'3&1
�"11*"(& �&341.

�."#,&%
�*2"#,&%

�43/ �$)/ �."#,&%
�*2"#,&%

!���!���
�1/3/$/,

�."#,&%
�*2"#,&%

�.% /' �&22"(&
�"11*"(&

�&7 ��
��)"1"$3&1 �&341.�

Serial Cables

The Diagnostic Processor is designed to work with two GE Fanuc standard serial cables.
One cable is the Mini Converter Kit that comes with the Diagnostic Processor. The other
is the PCM to IBM–PC cable. Use the RS–422/485 serial cables if RS–422/485
communications are used.

5

5-11GFK-0833 Chapter 5 Diagnostic Processor

Mini Converter Kit

UPTime comes with a serial cable kit that can be used to both connect the CPU with
Logicmaster and to connect the Diagnostic Processor with UPTime running on an IBM
PC. This cable kit comes with three adapters:

Table 5-2. Mini Converterr Kit Adapters

9–pin Male to 15–pin Male CPU Port HE693SNP232

9–pin Male to 25–pin Male Diagnostic Processor
Ports 1 or 2

AD232/1–2

9–pin Male to 25–pin Female IBM PC COM 2 HE693XTADP

The cable provided in the kit is terminated with two 9–pin connectors. One of the
adapters connects the 9–pin serial cable to the 15–pin serial port on the CPU
(HE693SNP232), another adapter connects the serial cable to the 25–pin female serial
ports on the Diagnostic Processor (AD232/1–2), and the third adapter can be used to
connect to a 25–pin port on the IBM computer running Logicmaster 90 or
UPTime(HE693XTADP).

Other Cable Options

Other cables that work with the Diagnostic Processor are the IBM–AT cable,
IC697CBL702, and the Workmaster II or PS/2 cable, IC697CBL705. The connector on the
Diagnostic Processor end can be made to be a right angle connector, so that the
Diagnostic Processor front cover can be closed and the cable brought out the side of the
Diagnostic Processor or through the bottom of the Series 90–70 chassis.

1
2
3
4
7
8
5

DCD
RD
TD

DTR
RTS
CTS
GND

PIN

SHLD
TD
RD
DCD
CTS
DTR
GND

1
2
3
8
5

20
7

PIN

PCM

a42832

25– PIN
MALE

25– PIN
FEMALE

9– PIN
MALE

PC–AT

9– PIN
FEMALE

Î
ÎÎÎ
Î
ÎÎ
ÎÎ
Î
ÎÎ
Î
Î
ÎÎ

Î
ÎÎÎ
Î
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
Î
ÎÎ
ÎÎÎ

SLP

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

a45088Î
Î3PL

4PL

PC–AT

RS–232
(DEFAULT PORT)

IC690CBL702

Figure 5-4. IBM PC–AT to Diagnostic Processor Cable

SLP

a45089

2
3
4
5
8
9
7

TD
RD

RTS
CTS
DCD
DTR
GND

PIN PIN

25– PIN
FEMALE

25– PIN
MALE

WORKMASTER II
AND

IBM PS/2

25– PIN
FEMALE

RD
TD
CTS
DTR
DCD
SHLD
GND

3
2
5

20
8
1
7

Î
Î
Î
Î
Î

Î
Î
Î
ÎÎÎ
ÎÎ
Î
ÎÎ

Î
Î
Î
Î
Î

Î
Î
Î
ÎÎÎ
ÎÎ
Î
ÎÎ

25– PIN
MALE

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ

a45093

ÎÎ
ÎÎ3PL

4PL

WORKMASTER II

RS–232
(DEFAULT PORT)

IC690CBL705

SLP

Figure 5-5. Workmaster II or PS/2 to Diagnostic Processor Cable

5

5-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Custom Made Cables

If you want to make your own cable to connect to some serial device, use the drawing of
the Diagnostic Processor pin assignments and the cable connection drawings in the
previous section for the required connections. Hardware flow control lines must be used
when communicating with the Diagnostic Processor using RS–232. The flow control
lines are not used for RS–422/485 communications.

ÎÎÎ
ÎÎÎ
ÎÎÎ

ÎÎÎ
ÎÎÎ
ÎÎÎ

a42734
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RS–232 DTR

RS–485 SD (B)

RS–485 RTS (B)

RS–485 CTS (B’)

TERMINATION (RD)

RS–485 RD (B’)

SHIELD

RS–232 TD

RS–232 RD

RS–232 RTS

RS–232 CTS

NO CONNECTION

SIGNAL GROUND

RS–232 DCD

RS–485 SD (A)

RS–485 RTS (A)

RS–485 CTS (A’)

TERMINATION (CTS)

RS–485 RD (A’)

2

1

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

14

Figure 5-6. Serial Port Assignments for Series 90-70 Diagnostic Processor

NOTE: In the drawing above, the SD (Send Data) and RD (Receive Data) connections
are the same as TXD and RXD used in other terminologies. (A) and (B) are the same as
– and +. A’ and B’ denote inputs, and A and B denote outputs.

Diagnostic Processor/CPU Interface

UPTime programs execute in the Diagnostic Processor. The Diagnostic Processor is a
module with the State Engine operating system imbedded, that plugs into one of the
slots of a Series 90–70 PLC chassis. The CPU is the direct interface to the I/O and other
VME products used in the control system. The Diagnostic Processor accesses the CPU
memory to use the system I/O and communicate to other VME modules.
Communication between the Diagnostic Processor and CPU is across the Series 90–70
backplane.

This section describes the CPU memory accessed by the Diagnostic Processor, the
different communication methods, and how to set up your system.

CPU Memory Accessed by the Diagnostic Processor
UPTime programs access discrete and register types of memory stored in the CPU.
Discrete types are bit oriented being either ON or OFF (1 or 0). The discrete types
accessed by the Diagnostic Processor are %I, %Q, %M, %T, %G, %S, %SA, %SB, %SC.
The following table describes each of the discrete memory types.

5

5-13GFK-0833 Chapter 5 Diagnostic Processor

Table 5-3. Discrete Memory Types

Memory Reference Reference Description

%I Real world discrete inputs. These locations store the
status of the inputs following the last scan of the inputs
by the CPU of the system.

%Q Real world discrete outputs. These locations store the
status of the outputs. The CPU updates the real world
outputs during its normal execution cycle.

%M Internal discrete references. These references are used
to store intermediate conditions used in the logic deci-
sions in the program.

%T Temporary internal references.

%G Global Data references. This data can be shared be-
tween multiple devices using the Genius Communica-
tions Module to communicate over a Genius commu-
nications bus.

%S, %SA, %SB, %SC System Status references. References system fault in-
formation.

Register memory types store a value using sixteen bits of memory space. The types of
register storage are R Registers(%R), analog inputs (%AI), and analog outputs (%AQ).
These register types are described in the following table.

Table 5-4. Register Memory Types

%R Stores a value in sixteen bits. State Logic Program Register Variables
access these memory locations. A Register Variable can be either an
integer or floating point value. Floating point values use 2 %R regis-
ters. The write and read terms can also access these locations for
character values.

%AI Real world analog inputs. These locations store the value of the in-
puts following the last scan of analog values.

%AQ Real world analog outputs. The CPU transfers these values to the
analog outputs during the normal execution cycle.

State Logic program references to CPU memory locations are user selected names that
are identified by the memory type and a number representing the storage location, ie.
Q14.

Input/Output Memory Designation

Every CPU memory location used in the Diagnostic Processor program is specified to be
either an input or an output to the State Logic program. Output memory locations can
be changed (WRITTEN) or used (READ) by a State Logic program, but inputs can only
be read. Therefore, if the State Logic program is going to change a memory location, it
must be defined as an output, but if the Ladder Logic program in the CPU is going to
change the memory location, it must be defined as an input for the State Logic program.
 The CPU and Diagnostic Processor cannot both change the same memory locations.

5

5-14 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Any communication between a State Logic program and a Ladder Logic program
requires that an output to one program must be an input to the other. Therefore %Q’s
which are outputs to the CPU may be used as inputs to the State Logic program logic
and %I’s, normally inputs to the CPU may be changed and thus are actually outputs to
the State Logic program. The Diagnostic Processor cannot change %I memory locations
that are mapped to the actual input modules in the configuration.

An important consideration in assigning inputs and outputs is to try to have all the
outputs together in a contiguous block. Any non–contiguous outputs has an adverse
affect on system response times. UPTime issues a warning during translation, if there
are any non–contiguous outputs. Generally non–contiguous inputs do not affect scan
times unless the input designations vary greatly. It is good general practice to keep
inputs also grouped together for best response times.

Diagnostic Processor Memory Capacities
The CPU selection determines the I/O and register ranges that can be accessed by the
Diagnostic Strategy program. UPTime generates different programs depending on the
type of CPU selected (731/732, 771/772, or 781/782).

In many cases the State Logic program cannot access the full range of memory locations
provided by the CPU of the system. The locations that the Diagnostic Processor can
access form a continuous block anywhere within the range provided by the selected
CPU. The block of addresses can be adjusted anywhere within the capacity of the CPU
used.

Table 5-5. 90-70 CPU and Diagnostic Processor I/O and Register Capacity

731/732 771/772 781/782 Diagnostic
Processor

%I 512 2048 12288 1024

%Q 512 2048 12288 1024

%AI 8K 8K 8K 256

%AQ 8K 8K 8K 256

%T 256 256 256 256

%M 2048 4096 12288 2000

%G 1280 1280 1280 1280

%S 128 128 128 128

%SA 128 128 128 128

%SB 128 128 128 128

%SC 128 128 128 128

%R 16K 16K 16K 2048

CPU Selection
The CPU selection determines the discrete and register ranges that can be accessed by
the control program. UPTime generates different control programs depending on the
type of CPU selected (731/732, 771/772, or 781/782).

5

5-15GFK-0833 Chapter 5 Diagnostic Processor

Whenever a new project is created, UPTime asks for the CPU type. The CPU type can be
changed at any time with the “PLC Type” option from the DEFINE menu. The different
programs depending on the selected type are created when the program is translated.

Programs configured for one CPU can be run in a system that has the selected CPU or
more advanced CPU. A program configured for 781/782 CPU can run only on that CPU.
A program configured as 771/772 can run on that CPU or the 781/782 CPU. Program
configured for a 731/732 CPU can run in a system with any CPU.

The State Logic program can access a set number of points for each of the I/O types and
registers. These points must form a continuous block anywhere within the range of the
selected CPU. To assign a range for the discretes or registers, select the “PLC I/O
Ranges” option from the Define menu. Fill in the form which specifies the base or
lowest number for the Diagnostic Processor block.

For example, if the base number selected for %AI is 201, the 256 %AIs that the Diagnostic
Processor can access start from 201 and end at 456 in the %AI storage tables of the CPU.

Clearing Outputs at Power Up

Much of the discrete memory in the CPU is retentive, meaning that its value is saved
when power is lost, because the memory is battery backed. These discrete locations
must be cleared when power is first applied to the system, otherwise outputs that were
ON when power was lost may go ON when power is back on again.

This situation is not an issue for most systems since critical control outputs are usually
controlled by the CPU ladder logic program. If remaining ON at power on is a problem,
add a rung using the FST_SCN contact to clear the outputs controlled by the Diagnostic
Processor.

Diagnostic Processor Scan Considerations

The Diagnostic Processor operating system is a scanning system. There are several steps
that are executed in sequence to complete a scan. These steps are continuously repeated
while the Diagnostic Processor is in operation. One of the steps executed when the
Diagnostic Processor is running a program is the scan of the program. The first section
below discusses all of the steps executed for each scan cycle and the next section
discusses the program scan step.

Steps of the Scan Cycle

These are the steps that the Diagnostic Processor executes each scan cycle:

1. Character Input Service

The Diagnostic Processor retrieves messages that have completely received from the
serial ports and dispatches them. These messages may be inputs to READ terms or
UPTime commands.

2. Real Time Clock

The Diagnostic Processor updates the current time registers from the Real Time
Clock.

5

5-16 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

3. Transfer Digital I/O

Inputs are written from the CPU to the Diagnostic Processor Input Image Table.
Outputs written from Diagnostic Processor Output Image Table to PCIM and then
the output image table is cleared.

4. Transfer Analog I/O:

Analog output values are sent to the CPU and input values are read from the CPU
when the update time for a block of analog channels has elapsed. High speed
analog channels are updated every scan.

5. Program is Scanned

If there is any programming, the active Step of every Task is scanned. The
Diagnostic Processor looks to the Input Image Table for tests of digital inputs. Digital
outputs that are to be ON are set in the output image table, outputs test ON only
when verification that the output is ON is received back from the block. Variable
values are updated immediately and flags set ON are not tested as true until the
next scan.

6. Diagnostics are Checked

If there are any Diagnostics, the triggering setpoints are checked against the current
values. If any Diagnostics trigger, the specified action is initiated.

7. Service CCM Messages

If there is a completed message received from the CCM serial port, that command is
executed.

8. PID Update

PID Loops are updated when the update time period for the loop is completed.

Program Scan

The program scan starts at the start of the program, scanning the active Step of every
Task. During program execution there is always one and only one Step active in each
Task. The operating system completes a scan of the program tens and maybe hundreds
of times every second.

During the scan of the active Step of a Task, each Statement of the Step is scanned in the
order that it appears. Keep in mind that a Statement is a series of Terms terminated by a
period (.).

5

5-17GFK-0833 Chapter 5 Diagnostic Processor

TASK 1
State 1

Statement 1
State 2

�

�Statement 1

�Statement 2

State 3
Statement 1

TASK 2
State 1
� Statement 1

�Statement 2

�Statement 3

State 2
Statement 1

TASK 3

Figure 5-7. Program Scan

The actions specified by Functional Terms are executed when the Term is scanned. Each
Statement must have at least one Functional Term, Conditional Terms are optional. If
there are no Conditional Terms in a Statement, the Functional Terms are always executed
during each scan. When Conditional Terms accompany Functional Terms in a Statement,
the Functional Term is executed when all of the Conditional Terms are satisfied. There
are four types of conditional Terms (see the reference section).

Conditional Terms are satisfied as follows:

1. Read – When valid data is received at the appropriate ��������

2. Wait – When the elapsed time that the Step has been active exceeds the
stated value.

3. If – When the conditional expression is TRUE.

4. For/Until – When the conditional expression is FALSE.

To understand how Statements are scanned, assume that the Statement Conditional
Terms precede the Functional Terms and that the scan proceeds from left to right.

� Functional Term

� Satisfied Conditional Term Functional Term�

� Unsatisfied Conditional Term Functional Term

� Satisfied Conditional Term �Unsatisfied Conditional Term Functional Term

�

Figure 5-8. Statement Scan

5

5-18 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The Statements of a Step are executed in the order that they are written into the
program. Functional Terms of Statements with no Conditional Terms are always
executed. Conditional Terms in Statements control whether or not the Functional Terms
in those Statements are executed. If all of the Conditional Terms are satisfied, the
Functional Terms are executed. If any of the Conditional Terms are not satisfied, none of
the Functional Terms are executed.

The Statements are executed one at a time. In this manner every Statement of the active
Step is evaluated.

There are two types of Functional Terms that can prevent the execution of the rest of the
Statements in a Step. One is the Halt command which stops program execution. The
other is the “go to ...” command, which immediately causes another Step to become the
active Step.

For example:

If Start_Pushbutton is pushed, go to Start_Up Step.

causes the Start_Up Step to become the active Step when the process input represented
by Start_Pushbutton is true. All Terms or Statements following this Statement are not
executed, and at the next Diagnostic Processor cycle, the scan of this Task starts at the
first Statement of the Start_Up Step.

During the program scan any changes to variable and analog values are made
immediately. Therefore, a variable change in one Task is visible by the rest of the
program during the same scan. On the other hand, digital I/O and Flag conditions are
made at the end of the scan. Therefore, if one Task makes a change to the condition of a
digital output or Flag, the condition cannot be tested by another Task until the next scan
through the program.

Analog Scaling and Update Rates

Analog modules transfer raw numerical integer values to PLCs. Each increment
represents a step on the full range for the module. Some normal ranges of raw analog
values are 0 to 4095 or –32768 to 32767. These raw values represent some real world
values.

For example, a scale might have a range of 0 to 50 pounds actually sending an analog
signal of 0 – 5 volts to an analog module. The module converts the analog signal to an
integer value in the range of 0 to 4095. If the scale detects 25 pounds, it sends a 2.5 volt
signal to the analog module which converts the voltage to a number, 2047.

You can have UPTime do the conversions of raw analog values to real world engineering
units for you. After each analog channel is defined, UPTime asks if you want to scale this
channel. If the answer is YES, a form is displayed which accepts four values which
specify how the scaling is done.

The D/A and A/D values are the raw values and the engineering units are the converted
values. Two scaling points where the conversion of A/D or D/A value to engineering
value is known are specified. In the example of the scale the low scaling point values are
0 for the A/D or D/A and 0 for the engineering units. The high point is 4095 for the A/D
or D/A and 50 for the engineering units. After these points are specified, the Diagnostic
Processor can convert any other raw value to the correct real world value so that a raw
value of 2047 is converted to 25 for use in the State Logic program.

5

5-19GFK-0833 Chapter 5 Diagnostic Processor

When analog channels are scaled, the Diagnostic Processor converts the raw analog
values to floating point numbers. Since floating point operations use a lot of time, the
analog values and their conversion to floating point values are not updated every scan.
Conversely, unscaled analog channels are always updated every scan.

The Diagnostic Processor uses a default scheme of scanning the analog channels at 1/10
second intervals. To inspect or change this scheme choose the “Series 90 Scan Rates”
from the DEFINE menu.

Use this option to change UPTime’s default analog scanning scheme. A form is provided
to show how the analog channels are scanned. There are 8 columns and 10 rows. The
entry in each one of the 80 locations represents a block of 8 analog channels.

Each 1/10 of a second a collection of analog channels are scanned. The entries in each
row represent the blocks of channels that are scanned for that 1/10 second time interval.
There are 8 columns each representing a block of 8 channels, so that up to 84 analog
channels can be scanned every 1/10 second. If a block is to be scanned every interval or
10 times a second, then that block must appear once in every row of the form.

There are 4 data entry locations at the top of the form. To enter values into the form, fill
in these data entry locations for the Time Entry (Row), Block Entry (Column), Type and
Number. Item is entered into the form when the Number value is entered.

Other Diagnostic Processor Setup Options

Run–time Error Setup

The are several errors which may occur during execution of the State Logic program
such as divide by zero or integer overflow or perform function errors. Run–time errors
are divided into critical and non–critical categories.

The default response of the Diagnostic Processor is to halt the program when a critical
error occurs and to continue program execution after a non–critical error. These
responses may be changed through options on the Debug Mode PROJECT menu.

Automatically Start Program Execution

By default the Diagnostic Processor powers up in the Halted mode. The Diagnostic
Processor can be set up to automatically start running the program when power comes
on.

To set up the Diagnostic Processor to automatically execute the program on power up,
select the “Diagnostic Processor Configuration” option from the Debug Mode PROJECT
menu. When set to automatically run the program, the previous settings of other
Diagnostic Processor setup options are also invoked on power up, including
programming port, CCM Enables, CCM Station Number, Error Response Setup, and
Simulation Mode Status.

5

5-20 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Simulation Mode

The Diagnostic Processor can be put in Simulation Mode through the option on the
Debug Mode PROJECT menu. When this mode is active the Diagnostic Processor is
completely disconnected from the real world I/O; the Diagnostic Processor does not
change any outputs and does not look at any of the inputs.

This mode is useful to debug a new program before connecting the I/O or for
troubleshooting a machine problem without interacting with I/O points. The Diagnostic
Processor set to this mode executes the program.

Make the program execute as desired by using the CHANGE option to change current
Steps of the Tasks, variable values, and analog values. Use the FORCE option to change
I/O or flag status. Changes can also be made by using the VIEW option to display the
English program. Put the cursor on a name to display the current value, then a new
value may be entered.

Setting the System Clock

The CPU has a clock that maintains the current month, day, day of the week, hour,
minute, and second. These values are always available through the System Variables
Month, Day, Day_of_Week, Hour, Minute, and Second.

The clock cannot be changed from the Diagnostic Processor. The time must be changed
in the CPU using Logicmaster 90. After the time has been changed in the CPU, restart
the Diagnostic Processor to transfer the new time to the Diagnostic Processor.

6 section level 1 1
figure bi level 1
table_big level 1

6-1GFK-0833

Chapter 6 UPTime Menus and Keys

This chapter describes the UPTime menu options and keystroke functions. Only those
menu options that are not immediately apparent are explained. The keystroke section
lists general key usage, plus hot keys and miscellaneous key functions.

UPTime Menu System

This section goes through the UPTime menu system, explaining aspects of the menus
that are not immediately apparent from the display. First discused are the Create Mode
menus, then the Debug Mode, and finally the Setup menu is explained.

Create Mode
The UPTime Create Mode is a highly specialized editor and compiler designed to create
a Diagnostic Strategy composed of both Fill–in–the–Blank Diagnostics and State Logic
programming. This section explains all of the menu selections available in the UPTime
Create Mode. The top level Create Mode menu has options of DIAGNOSTICS,
SEQUENCES, VARIABLES, DEFINE, PROJECT, and QUIT.

Diagnostics
This option is the gateway to creating all Diagnostics. The next menu displays all of the
Diagnostic types, Analog, Digital, Variable, and Device. From these selections a list of the
particular type is displayed. When the list is displayed it may be changed by adding
other Diagnostics of that type, editing an existing Diagnostic, or deleting a Diagnostic.
See the bottom banner of the display for the keystrokes to accomplish these functions
when the list is displayed.

Sequences

This option is the gateway to the creation of all Sequences. The menu displayed when
this option is chosen has two selections, Diagnostic Sequences and Instructional
Sequences. When one of these selections is chosen a list of all Sequence names of that
type are displayed. From this list Sequences can be added, deleted, edited, renamed,
and a list of the Diagnostics that start a Triggered Sequence can be displayed.

Sequence Editor

When adding or editing a Sequence, the UPTime editor is invoked. The editor is used to
edit one Sequence at a time.

6

6-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The editor is a specialized word processor that is designed to create State Logic
Sequences. The editor menu is invoked by pressing <F3>. This menu provides many
word processing functions and specialized operations for creating State Logic
programming.

Add

All of the ADD options are used to add program lines to the English text through the use
of fill–in–the–blanks forms. The ADD options always enter text into the program.
This text is no different from text entered from the keyboard and may be edited as other
text is edited.

The Add option is the gateway for creating the Perform functions. As with the other
Add operations, a form is provided and when completed the text for the function call is
inserted into the program at the current cursor location.

Sequences

This option is used to change the Sequence being edited or just view other Sequence
names. Both Instructional and Diagnostic Sequences are accessed.

List

The List option is used to view and change lists of user defined names for I/O points,
variables, PID Loops, Communication Ports, and Internal Flags. The predefined lists of
Keywords, Filler Words, Math Functions, PID Parameters and System Time Variables are
also available from the List option. All of the lists may be modified except the Math
Functions, Time Variables, and PID Parameters. The List option is also useful for
selecting a name and entering it into the program at the current cursor location.

When the list option is selected, the LIST menu is displayed showing all of the categories
of names. After selecting a name category, the bottom banner displays the keys available
to perform different functions with the LIST (<Ins> Add to List, Delete from
List, <Enter> Write the Name into the Program, or <–>> Edit the Name and/or
Configuration Data).

All UPTime lists except the keyword list are displayed in alphabetical order. To find a
entry on the list start entering the letters of the entry. After a letter is entered, UPTime
finds the first entry starting with that letter. When the next letter is entered, UPTime
highlights the first entry starting with those two letters. Use this procedure to help
locate items on the list.

List – Communication Ports

The option on the LIST menu that requires some explanation is the Communications
Ports option. Use this option to change communication port names and parameters, to
enter a Communications Port Name into the program at the current cursor location, or to
enter a Statement into the program that changes the serial port parameter settings when
the Statement is executed.

The program Statement that changes the serial port parameters uses the Set_Commport
keyword. In order for the communications port parameters to be changed, the
Statement using the Set_Commport keyword must be executed by the program. To
enter the Statement to change the serial port parameters press the right arrow key to

6

6-3GFK-0833 Chapter 6 UPTime Menus and Keys

edit the parameters in a form. When finished press <Enter>, then select the “Insert
Reconfiguration Data for Port” option. UPTime now enters the instructions into the
program. Remember that just changing the parameter form does not change the port
setup, but the Set_Commport Statement must be executed in the program.

Define

The first option on this menu defines the word at the cursor. This option displays the
definition of that word if it is already defined. This is a very useful option to quickly find
how a word is defined in the program. Notice the hot key for this option is <F4>.

The next option searches the whole program identifying any words that UPTime does
not understand. UPTime provides this same procedure for the error check and
download operations.

The Series 90 I/O Scan Rates allows the update times for analog channels to be changed.
See the discussion of this option in the State Logic Programming chapter of this manual.

The Communications port option enables the serial port names to be changed and setup
parameters to be viewed, but does not allow the configuration setup to be changed.

The PLC Type option provides a place for the CPU model to be selected. Hit any key to
get a list of the CPU models to choose from.

The PLC I/O Ranges is used to select the part of CPU memory accessed by the
Diagnostic Processor. See the Diagnostic Processor chapter in this manual for a
discussion of I/O range selection.

Find

These functions move the cursor around in the English text quickly and allow single and
global replacements of text. The start of another Task and the location of the last
translator error can also be found with these functions.

Text

This option provides typical word processing block functions. When selected this option
allows a section of text to be highlighted. When the block is selected, a list of four
functions is displayed to manipulate the block; Copy, Move, Remove, and Copy Several
Times. To do cut and paste operations select a block and remove it, then select the block
option and without highlighting any text hit enter and then the Copy option. The
Removed text is entered at the cursor location.

Return

This option just returns to the top Create Mode level with the menu displayed.

Variables
This option is the gateway for creation and maintenance of most of the State Logic
variables, including Analog Channels, Digital Points, Register Variables, Numeric
Variables, and Digital Devices. Other sections describe the use and creation of these
variables.

Define
The Series 90 I/O Scan Rates allows the update times for analog channels to be changed.
See the discussion of this option in the State Logic Programming chapter of this manual.

6

6-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The Communications port option enables the serial port names to be changed and setup
parameters to be viewed, but does not allow the configuration setup to be changed.

The PLC Type option provides a place for the CPU model to be selected. Hit any key to
get a list of the CPU models to choose from.

The PLC I/O Ranges is used to select the part of CPU memory accessed by the
Diagnostic Processor. See the Diagnostic Processor chapter in this manual for a
discussion of I/O range selection.

UPTime comes with Default Messages already defined, but the message for each type of
Diagnostic Action can be changed through this menu option. Select the option and then
the type of Diagnostic Action from the list displayed. The current message is displayed
and can be edited in the provided window. The message can be up to 80 characters long.

Project
This menu contains project management functions needed to manipulate the files that
make up a project. There are functions that act upon the entire project such as retrieve
and save as well as functions to utilize portions of a project such as import. The function
of most of the options on this menu are clear, but some options do need some more
explanation.

Save and Copy

The save function saves only changes to the current Sequence, so changing the path and
saving the project does not work for making a new copy of the project, since some of the
Sequences are not copied. To make a new copy of the project use the COPY function.

Set Path/Drive to Logicmaster Nickname File

When this path is defined, UPTime checks this file for any undefined names when it
cannot find a name in its own files. For this option enter the drive, directory and
filename.

Download vs. Translate and Download

If the project has been changed, it must be translated before it is downloaded. If a
changed project is just downloaded, a message is displayed notifying that the project in
UPTime is more recent than the one in the Processor. Downloading a project that is
already translated is faster than going through the translate and download operation.

Print Project Data

This option is used to create documentation for the current Diagnostic Strategy.

UPTime provides excellent self documenting features that are easily selected and printed
from a Project Print Setup screen. To get into the Project Print Setup screen select <F3>
from the Program mode of UPTime. From the menu select “Project” and then “Print”
from the next menu. The following screen appears:

6

6-5GFK-0833 Chapter 6 UPTime Menus and Keys

Header/Footer

The Header entry is printed on the top of each page of documentation. The footer entry
is printed on the bottom of each page of documentation. Type the desired header and
footer information in the highlighted box. The Header and Footer will accept up to 40
characters of information.

Directing the Output

The “Output To:” option specifies where the documentation is to be sent. If “Printer” is
entered for this option, the documentation is sent to the printer connected to the parallel
port. UPTime interprets any other name entered for this option to be a file name and
the selected documentation options are sent to a disk to be stored in a file.

Documentation Options

This section describes each of the documentation options and shows a sample of the
documentation produced when the option is selected. The Up and Down arrow keys
are used to move the highlighted cursor to the options. To have a selection printed with
the documentation package type a <Y> next to the option to be printed or a <N> to
suppress a selection from being printed. Actually pressing any other key causes the form
to toggle the display between Y and N for the highlighted option. For the “Number of
Copies” and lines per page options type in the appropriate number. Press <ENTER>
after selecting the number of packages to print. Press <F9> to start printing the
documentation out the host computer’s parallel port.

6

6-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

English Code

The Sequence text is printed when this option is selected. The name of the project and
the date and time that the program was last modified is printed at the top of the page. A
page number is printed at the bottom of the page. An example is listed below:

English Code Project: DRILL4 Last Modified: 6–15–93 11:59
Sequence: INDEXING_CONVEYOR

Task: INDEXING_CONVEYOR_
Step: WaitingToSTart

Disable_Diagnostic PartAtLoad.
If ConveyorMotor is ON, go to MovingToDrill Step.
If 8 seconds have passed, go to the Delayed Step.

Step: Delayed
Turn on PartDelayed.
If ConveyorMotor is ON, go to MovingToDrill Step.

Step: MovingToDrill
Enable_Diagnostic PartAtLoad.
If ConveyorMotor is OFF, go to PartIsAtDrill Step.

Step: PartIsAtDrill
If ConveyorMotor is ON, go to MovingToUnload Step.

Step: MovingToUnload Max_Time 8
If ConveyorMotor is OFF, go to WaitingToStart.

Page 6

English Code

I/O Map

The I/O Map is a list of all of the names of CPU memory types defined in the State Logic
program. The types included are %I, %Q, %AI, %AQ, %T, %M, %G, %S, %SA, %SB,
%SC, and %R. The defined names are listed in numerical order according to type. The
reference number address for each name is also listed as follows.

Data List

The data list option prints all of the names of data elements that have been defined in
the program. The data list groups the names according to the type of element and each
group is listed in alphabetical order. The types are listed in the following table:

6

6-7GFK-0833 Chapter 6 UPTime Menus and Keys

Digital Point Name
Analog Channel Name
Floating Point Variable

Integer Variable
String Variable

Character Variable
Internal Flag

Types of Data Elements Included in Data List

Task / Step List

The Task / Step option prints each Task name of the program followed by all of the Step
names in that Task. This listing produces a good overview of the process especially
when the Task and Step names are descriptive of the operation performed.

Cross Reference List

The Cross Reference List produces a list of all the data elements of the program.
Indented below each element is printed every Task/Step combination where that
element is used in the program.

This print out is a valuable tool when debugging or troubleshooting a program. An
example of a Cross Reference List is shown below:

CCM Protocol Listing

The “CCM Protocol Listing” option on the print setup form produces data for use in
communicating to the State Engine using the CCM protocol. This protocol is typically
used by host computers and computers running Graphical User Interface (GUI)
programs to extract or change information in the State Engine. The CCM information
printed lists the CCM type, the CCM type number, and the CCM number of the
elements of the UPTime program.

Diagnostic List

This option lists all of the Diagnostics defined in the project. All of the selections of the
Diagnostic are listed including name, type, limits, custom messages, and action.

Devices List

This opption lists all of the devices defined in the project. All of the parameters are listed
in the printout.

Sequence Name List

Thsi option lists all of the Sequence names. The Sequence type is also specified.

Quit
This option exits the Create Mode so that the main menu is again displayed.

6

6-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Debug Mode
The Debug Mode displays messages from the Diagnostic Processor and provides
functions to monitor and control the execution of the Diagnostic Strategy running in the
Diagnostic Processor.

Before starting the Debug Mode, UPTime compares the date and time of the last
changes the program with the date and time of the program in the Diagnostic Processor.
If the program in the Diagnostic Processor is not the same version as the one in UPTime,
an error message is displayed. The version of the program used by UPTime must match
the version of the one in the Diagnostic Processor.

The Debug Mode menu is accessed by pressing <F3>. The following sections describe
each of the menu options.

Project
These functions are used to manage the Diagnostic Processor, manage program
execution (start or stop or simulation mode), manage serial ports and logs, change
Diagnostic Processor configuration, and download a new program. The options
requiring explanation are described below.

Start Printer Output

This function allows the user to send all of the data, that is displayed in the terminal log,
out to a printer attached to the parallel port (LPT1). When the printer log is active, the
word PRINT appears in the top bar of the screen. If there is a printer error, the printer
log is no longer active and an error message is displayed. To stop the printer log select
that option from the menu.

Activate Log File Output

This function allows the data sent to the terminal log to also be sent to a disk file with a
user given name of up to 8 characters. The log file name is given an extension of .LOG.
The log file is limited in size to 100K bytes. When the file size reaches 100k the logging
of data is terminated.

Diagnostic Processor Configuration

This option is used to set up the Diagnostic Processor. Several setup options are
displayed on the following menu. Make the selection and then press <F9> to send the
new configuration to the processor.

Enable/Disable CCM Protocol Port

The CCM port is the one not designated to be the programming port. When enabled,
the CCM port responds to commands using the CCM protocol. The default state of the
CCM port is disabled. See the Series 90–70 State Logic Control System section of this
manual for more information of the serial ports.

Set CCM Protocol Station Address

Setting the CCM station number for the Diagnostic Processor, gives the Diagnostic
Processor a number in the range 1 – 89. The Diagnostic Processor then only responds to
commands using the specified station address.

6

6-9GFK-0833 Chapter 6 UPTime Menus and Keys

Enable/Disable Automatic Program Execution on Power Up

The default Diagnostic Processor response to power up is to be in halt mode. If
automatic execution is enabled, the program starts running automatically when power is
applied to the system. The Diagnostic Processor configurations active when power was
lost are still active when automatic execution is enabled. These options include serial
port setups, error handling configuration, CCM setup, and programming port
designation.

Error Handling Setup

There are two classes of run–time errors generated by the Diagnostic Processor; critical
and non–critical. This option allows the Diagnostic Processor to be configured to either
halt the program or continue running when an error in either one of these two classes
occurs.

When this option is chosen, the first the response to critical and next to non–critical
errors is chosen. This setup may be changed at any time.

Change Programming Port

This option allows serial port chosen to be the programming port to be changed. The
programming port is the one that connects the Diagnostic Processor to UPTime. The
default programming port is port 1.

Enter the number of the port that is the new programming port. If the programming
port is changed, the current connection between the Diagnostic Processor and UPTime is
no longer valid. UPTime must now be connected to the new port.

Change Diagnostic Message Port

This option allows the serial port chosen to be the Diagnostic Message Port to be
changed. The Diagnostic Port is the one that displays any messages generated by
Diagnostics that are tripped. The default Diagnostic Port is port 1.

Simulation Mode

When the Diagnostic Processor is in Simulation Mode, it does not communicate with the
I/O. The Diagnostic Processor does execute its program, but there is no transfer of inputs
or outputs. To test a program in Simulation Mode, digital I/O and flags may be forced
and analog variable values may be changed. The current Step of a Task may also be
changed.

Automatic Execution

This options is used to control whether the Diagnostic Strategy starts execution when
power is applied to the system. If this selection is not enabled the Strategy starts up
HALTED.

Enable 422/485 Serial Ports

The last two options configure the serial ports for RS422/485 operation. If these options
are set to NO the ports operate as RS 232 ports.

6

6-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Download Project to the Processor

Use this option to download a new program to the Diagnostic Processor. First the option
to select a new directory is presented and then a list of projects from the current
directory. Select the project to be downloaded to the Diagnostic Processor. A new
project cannot be downloaded when the program is running. When the program is
running, UPTime asks whether to stop the program or cancel the download.

Communication Port Reset

The communication port may become disabled by improper data transfer or noise on the
serial cable so this function is available to reset the port and restore communications
with the Diagnostic Processor.

Diagnostics
Use this option to view the Diagnostic definitions. A list of Diagnostic types is displayed
and a form displays the definition plus the current values of the diagnostic variable.

Monitor
Monitor is an on–going display of the current values of all the selected elements. Up to
6 elements may be included in a monitor table at any time and up to 10 monitor tables
may be defined. Monitor tables have user given names of up to 30 characters each.
Spaces can be part of a Monitor Table name. To quickly move from one monitor table to
another use the <Tab> and <Shift + Tab> keys.

View
The view option is used to display information about Sequences including the English
text, the current status, and can also be used to start an Instructional Sequence. In
addition, the current Step of every Task, Digital Device definitions, and System Status
can be displayed.

While viewing the English text, the current value of a name can be displayed by putting
the cursor on the word and pressing <F4>.

Trace
The Trace is a very useful debugging tool. A Trace display shows the most recent
program Step transitions. This option allows the user to display the history of Step
transitions on the screen for all Tasks or selected Tasks. The most recent transitions
appear at the top of the screen. There are functions available for searching for a string of
characters in the Trace.

Force
These functions allow a user to force Digital points and Internal Flags and analog
channels. Forced items remain in the forced state independent of real world conditions
or program actions. The only way that a forced condition changes is for the force option
to be used again to either change the forced value or clear the force. Once the force is
cleared, outputs go to whatever conditions specified by the program and inputs go to
whatever value is set by the CPU. The Force function does not affect the values stored in
the CPU unless the variable is defined as an output.

6

6-11GFK-0833 Chapter 6 UPTime Menus and Keys

Alarm
This option displays alarm information about the Diagnostics. The Alarm List shows all
Diagnostics that are currently tripped or in the alarm state including the time of the
event. The Histogram display shows a history of Diagnostics being tripped and then
cleared plus when the Diagnostic Strategy started or halted execution and the times of
these events. The previously uploaded histogram can be displayed or saved in a file.
The histogram shows the most recent events at the top of the list.

Display
The display function displays the current value of the selected element together with the
current time in the Terminal Log. When the type of data to display is selected, a list of
names of that type are displayed. Select the name to display from this list.

Change
The change function allows the user to enter a new value for the selected item. After the
new value is entered, it is sent to the Diagnostic Processor immediately. Also the change
is reported to the Terminal Log together with the current time. One of the things that
can be changed is the current Step of a Task.

PID Loops
This option appears on the debug main menu only if the program has defined a PID
loop. Choose this option to tune a PID loop while the process is running. To tune a PID
loop, change the parameters displayed.

PLC I/O
This option is used to view definitions of program names referring to CPU memory
locations. Analog point, discrete point, and register variable definitions are all displayed
using this option.

Fault
Use this option to display and clear both PLC and I/O faults. When the option to display
a fault table is displayed that table is then displayed on the screen. To clear a fault table,
just select that option from the menu.

The display lists the current time, the last time faults were cleared, total number of faults
in the table, and faults since the last time faults were cleared.

The PLC Faults Table displays general system faults for different slots in the Series 90–70
chassis. The I/O Fault Table displays specific circuit faults. Both tables list the date and
time of the fault.

Setup
Use this option to configure the UPTime software package. By changing the maximum
number of Variables and Steps, the amount of memory required to execute UPTime is
changed. To use UPTime at the maximum settings, use DOS 5 or better with DOS
loaded HIGH, and delete all uneeded TSR programs and device drivers. It is
recommended that the lowest maximums are used to increase the software performance
and use the least amount of memory.

6

6-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The other option of the setup form is a password for UPTime. If a password is entered, it
must be used when starting UPTime. If the password is not entered, UPTime does not
execute.

Keyboard Definitions

Table 6-1. Function Key Definitions

Key Functions

<K ey> <Alt + Key> <Ctrl + Key> <Shift + Key>

<F1> Help Toggle Insert
Overtype Mode

Project Error Help

<F2> Save File to Disk Send to Controller Retrieve from Disk Check for Errors

<F3> Menu

<F4> Define / View
Current Word

Define All
Undefined Words

<F5> Find / Replace
Next

Find Text Replace Text Replace All

<F6> Add Step Add Task

<F7> Go to Another
Task

Last Project Error

<F8> Mark a Block Copy a Block Move Block Remove a Block

<F9> Save/Exit Form Change Frame/
Loop in Form

<F10> Toggle Program/
Debug Modes

6

6-13GFK-0833 Chapter 6 UPTime Menus and Keys

Table 6-2. Hot Key Definitions

Key Function Mode

<Ctrl + D> List Digital Points Program/Debug

<Ctrl + A> List Analog Channels Program/Debug

<Ctrl + N> List Numeric Variables Program/Debug

<Ctrl + S> List String/Character Variables Program/Debug

<Ctrl + Q> Quit Current Mode Program/Debug

<Ctrl + K> List Keywords Program

<Ctrl + W> List Filler Words Program

<Ctrl + P> List PID Loops Program

<Ctrl + U> Undelete the last Deleted Block, ie. Paste. Program

<Ctrl + R> Communication Port Reset in Debugger Debug

<Ctrl + V> View English in Debugger Debug

<Ctrl + E> Enable Monitor Display in Debugger Debug

<Ctrl + F> Force Table Debug

<Ctrl + T> Trace Upload/Display Debug

Table 6-3. Miscellaneous Key Definitions

Key Functions

<K ey> <Ctrl + key>

<Insert> Add/Paste

<Delete> Remove/Cut Character/Item

<Home> Left side of Screen/Field

<End> Right side of Screen/Field

<Pg Up> Scroll Up Top of Project / List / Menu

<Pg Down> Scroll Down End of Project / List / Menu

<Up> Up 1 Line/Field

<Down> Down 1 Line/Field

<Left> Left 1 Character/Field

<Right> Right 1 Character/Field

<Tab> Insert 4 spaces / Next Item in a
List/Menu

<Enter> Carriage Return / Select Item

<Esc> Cancel Operation

7 section level 1 1
figure bi level 1
table_big level 1

7-1GFK-0833

Chapter 7 Fill-in-the-Blank Diagnostics

This chapter describes how to create, control, and monitor Diagnostics. The different
Diagnostic types are explained with reference to the different forms for creating each
type. Also explained are the debug mode functions used to view Diagnostic definitions
and create a record of alarms.

Creating Diagnostics

Diagnostics are created by entering information into an UPTime form. The first blank in
the form is the name of the item being monitored. The next information specifies the
conditions causing the Diagnostic to trigger. The last type of information indicates the
action to take when the Diagnostic trips.

Name Blank in Diagnostic Forms

Names are defined before being used in a Diagnostic form. A name identifies an I/O
point or variable memory location. The name can be one defined in UPTime, a
nickname defined in Logicmaster 90-70 for the Ladder Logic program, or a direct
memory reference such as R12 to represent the %R12 register.

UPTime Names
A name defined in UPTime can be up to 20 characters, either letters or numbers and the
underscore character (_), but UPTime names must start with a letter. UPTime displays a
list of names defined for the type of data used in this Diagnostic, when the <Ins> key is
pressed and the cursor is in the name blank. This function is available if a blank in any
UPTime form displays the double greater–than signs (>>).

A name can be selected from the list by highlighting the desired name and pressing the
<Enter> key. To quickly locate a name on the list type in the first letter of the name, and
UPTime highlights the first name starting with that letter. Typing in the second letter
locates the first name starting with these two letters.

7

7-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Logicmaster Names

To use nicknames defined in Logicmaster 90–70 follow these steps:

1. Create a nickname file using the Logicmaster print functions:

From the Logicmaster Programming Package
Select “Print” <F10> from the main menu
Select “Logic” <F4> from the print function menu
Select to have only the Variable Table printed
Set Port to FILE by hitting the <Tab> key until that option appears
Enter the file name

2. Tell UPTime where to find the file

Select “Project” from the main menu
������ ��� ��������� �� 	���������
������ �����

����� ��� ������ ���������� �� ������� �� ��� ���� ������ �� ���� �

3. Finally just use the Logicmaster Nicknames in Diagnostics or State Logic just as
UPTime names are used.

When UPTime searches for the definition of a name, it first looks for names defined in
UPTime. If the name is not found, UPTime searches the Logicmaster file of nicknames to
identify the name.

Default nicknames used with the status bits, %s, %SA, %SB, %SC can also be used such
as FST_SCN for the first scan bit, %S1 or LOW_BAT for the low battery indicator, %SA11.
See the file DEFNICK is the \UPTIME\S90–70 directory for a full list of default status bit
nicknames available.

Direct Memory Reference

Both Diagnostics and State Logic programming can use direct references to the CPU
memory location. The memory types that can be accessed are %I, %Q, %AI, %AQ, %R,
%M, %G, %T, %S, %SA, %SB, and %SC. For example Q23 refers the digital output
memory location %Q23.

Wherever a name would normally be used, a direct memory reference is allowed.
UPTime creates an internal name in its name table when a direct memory reference is
encountered. If Q23 is specified, UPTime creates a name Q23 and assigns it to %Q23 in
its tables. UPTime checks that there is not another name for that memory location
before making the assignment.

Triggering Value Blank in Diagnostic Forms

The blanks in the Diagnostic forms for specifying the value that causes the Diagnostic to
go to the alarm state are different for the different types.

Analog Diagnostic

Analog Diagnostic forms have both a high limit and a low limit blank. The Diagnostic is
in alarm state when the analog value is outside these limits.

7

7-3GFK-0833 Chapter 7 Fill-In-The-Blank Diagnostics

The form allows a floating point value to be specified for the high limit and low limit
values. If an analog point has been scaled, the Diagnostic Processor represents the
analog value in floating point format. If the analog channel has not been scaled, the
values used for the high and low limits must be integer values between –32768 and
+32767. See the section titled Analog Scaling and Update Rates in the State Logic
Programming chapter of this manual.

If high or low limits are specified using floating point values in Diagnostic that refers to
an unscaled analog channel, an error is displayed when the project is translated. The
same error is displayed if an integer is out of range.

Digital Diagnostic
Digital Diagnostics can be configured to trip when the digital point goes ON, OFF, or
every time the point changes state. Move the cursor to the blank and hit any key, then
UPTime displays the three options. Select one of the options from the list.

Variable Diagnostic
Variable Diagnostics can monitor either Register variables which are stored in the CPU
or variables stored in the Diagnostic Processor called Numeric Variables. When creating
a Variable Diagnostic, UPTime first asks whether the data type is integer or floating
point. Both CPU and Diagnostic Processor variables can be either integer or floating
point values.

If the data type of the variable is integer, the high limit and low limit blanks accept only
integer data from –32,768 to +32,767. UPTime indicates an error if an illegal value is
entered.

If the data type is floating point, the high and low limit blanks allow for floating point
data to be entered. There can be 6 digits to the left of the decimal point and two to the
right.

Device Diagnostic
The triggering values for the Device Diagnostic is a time value. The two blanks in this
form specify the maximum allotted time for the device to open and to close. See the
description of the Device Structure in the Diagnostic Strategy Overview chapter of this
manual.

This time is specified in seconds and can be any value between 1 and 65535 seconds,
which is a little over 18 hours. For longer times use the Variable Diagnostic in
conjunction with the Time_Counter Perform Function.

A timer starts when the open digital point is in the state which starts the open or close
function. If the open complete or close complete signal is not received before the
allotted time, the Diagnostic trips.

7

7-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Action Blank

The action blank of the Diagnostic forms specifies what the Diagnostic Processor does
when the Diagnostic trips. There are three possible actions:

Default Message
Custom Message

Sequence

The Digital Diagnostic has only one action blank, but the others all have more than one
action blank. Variable and analog Diagnostics have two actions, one for the high limit
and the other for the low limit. The Device form provides four blanks, two for exceeding
the time for opening and closing and two that trigger when the Device either opens or
closes.

Default Message
If Default Message is the chosen action, the Diagnostic Processor automatically
constructs a complete message indicating why the Diagnostic tripped, the element being
monitored, and for some types the current value and the limit value.

The Default Message text can be modified by selecting the “Default Message Text”
option from the Define menu. The modified text can be any string of characters up to 80
characters in length.

Custom Message
When Custom Message is the chosen action, UPTime provides a window where any
message up to 128 characters can be entered. The message can also include variable and
I/O values and control characters within the message. To include analog and variable
values, use the element’s name in the message, preceded by the per cent sign (%).
Instead of the name the Diagnostic Processor prints out the value of the named item.

Sequence
If Sequence is the selected action, UPTime prompts for the name of the Sequence. When
the Diagnostic trips, the Diagnostic Processor starts that Sequence executing. The
Sequence is created as a Continuous Sequence, but it becomes a Triggered Sequence
when specified as an action of a Diagnostic. See the discussions of Sequences in the
chapters describing the Diagnostic Strategy in this manual.

Triggered Sequences must have an End_Sequence instruction in one of the Steps. When
this keyword is executed all of the Tasks in the Sequence go to the inactive Step. If a
Sequence is already executing when a Diagnostic action tries to start it executing, no
action is taken. There are two ways that a Sequence can be stopped, the End_Sequnce
instruction executed from within the Sequence or the Stop_Sequence instruction
executed in another Sequence.

7

7-5GFK-0833 Chapter 7 Fill-In-The-Blank Diagnostics

Controlling Diagnostics with State Logic

Diagnostics are active or enabled by default. Often it is necessary to disable a Diagnostic
so that frivolous alarms are not reported when they are not wanted. For example a
Diagnostic might be set up to monitor for low hydraulic pressure, but such an alarm
would be a nuisance when the machine were first starting up and the hydraulic pressure
is expected to be low.

State Logic programming is used to disable and reenable Diagnostics. The keywords that
control the Diagnostic status are DISABLE_DIAGNOSTIC and ENABLE_DIAGNOSTIC.
These keywords are followed by the name of the Diagnostic being controlled.

Once a Diagnostic is enabled or disabled, it stays in that state until another Statement
changes its state. Therefore the status of a Diagnostic does not change simply because a
Task changes Steps.

If a Diagnostic Strategy is composed of Diagnostics only with no programming, all of the
Diagnostics are always active. Therefore no programming is required to activate
Diagnostics if they have not been previously disabled.

Online Diagnostic Features

The Debug Mode features using the Diagnostics display Diagnostic definitions, list
Diagnostics that are in alarm status and presents a history of when Diagnostics went
into alarm and when the alarm was cleared.

Terminal Log

One of the main uses of Diagnostics is to display information that it has tripped in the
form of messages sent out a serial port. When UPTime is connected to the Diagnostic
Port, the messages are displayed in the Terminal Log which is the main display screen of
the Debug Mode. A message is sent to the Diagnostic port each time the Diagnostic
tripped and each time the alarm conditions is cleared.

All of the messages displayed are saved even though the messages have scrolled off the
screen. To display scrolled messages press the <Up> key. These messages can also be
logged as they occur to a disk file and/or to a printer connected to the parallel port, LPT1.
These messages can be displayed by any serial display device such as dumb terminals
and marquee displays.

Menu Options

The DIAGNOSTICS menu option displays Diagnostic definitions and the current values
of key Diagnostic elements. This function displays any of the four types of Diagnostics.

The ALARM menu option displays alarm information about Diagnostics. The Alarm List
shows the Diagnostics that are currently in the alarm state. The list includes the date
and time that the Diagnostic was tripped and the type of alarm.

7

7-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Figure 7-1. Alarm List Display

The Alarm Histogram provides a history of when Diagnostics tripped and when they
cleared. Included in this list are the times that the program started and stopped
executing. The most recent events are displayed at the top of the list.

Figure 7-2. Histogram Display

8 section level 1 1
figure bi level 1
table_big level 1

8-1GFK-0833

Chapter 8 State Logic Programming

This chapter describes the details of creating the State Logic programming part of the
Diagnostic Strategy. The detailed information describes how to use the State Logic
structure and the English keywords, filler words, names, references to I/O, programming
PID Loops, grammatical rules, and Perform functions.

Program Structure
There is a hierarchy in the structure of the State Logic program. Each program is divided
into one or more Sequences, and each Sequence may have one or more Tasks, each Task
is divided into one or more Steps, etc. The figure below lists each element of the
hierarchy in descending order of significance.

Program
Sequence

Task
Step

Statement
Expression

Term
Word

UPTime Program Hierarchy

This hierarchy of Sequences, Tasks, Steps, and Statements are explained in the Overview
and Creating a Diagnostic Strategy chapters of this manual. There may be many Tasks
all executing simultaneously. Each Step is described by one or more Statements and
each Statement consists of Expressions. Expressions are constructed from Terms which
are composed of words.

The UPTime editor is invoked when a Sequence is edited. One Sequence is edited at a
time. To edit or create a Sequence select “Sequences” from the main menu and then the
type of Sequence to edit

When editing a Sequence each Task begins with the keyword, Task, followed by a colon
then a Task Name.

Task: Assembly

Each Task includes all of the Steps from the start of the Task to the beginning of the next
Task.

Similarly, each Step begins with the keyword, Step, followed by a colon then a Step
Name.

8

8-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

���� ���	���

Each Step includes all of the Statements from the start of the Step to the beginning the
next Step. There is no limit to the number of Statements in a Step.

Statements, like English sentences, are terminated by a period. The first Statement of a
Step begins right after the Step name and includes all of the expressions appearing
before the period.

There are two types of expressions: Conditional and Functional. Functional expressions
describe some action that the Diagnostic Processor executes. Conditional expressions
describe a condition which must be true for the functional expression in the statement to
be executed. Expressions consist of one or more Terms which may be combined with
logical (AND/OR) operators.

Terms express the fundamental actions and status tests of the program. Terms are built
from words.

All words are classified into one of three categories: Keywords, Names, and Filler words.
All filler words are ignored by UPTime when the program is translated, therefore the
keywords and names are the only important words in a Term. Words are separated by
spaces.

UPTime comes with a full set of keywords which are the instructions that get executed
when the program is running. The programmer can change the keywords an add
synonyms for each keyword. The set of filler words can be similarly changed.

Names are words that the programmer defines to represent I/O points, variables, Tasks,
Steps, or Devices. Names can be up to 20 characters long and must start with a letter but
may contain both letters, numbers and the underscore character (_).

Language Notational Conventions

In the following sections there are several examples of how to use the various State
Logic expressions. In addition there is a description of the different ways to use the
expressions plus an extensive representation of all of the possible combinations of uses.

There are so many different combinations possible that it is necessary to use some
notational conventions to rigorously define all of the possible structures. This notational
representation is for those who need to know exactly how the different terms can be
used, for most programmers the verbal description that accompanies the notational
representation is sufficient. Use whichever description works best for you, most
programmers use both.

�������� �
��� ����� ��#"����

� � � �������� ���� "���� ��� �� �����

{ % � �������� ���� "���� ��# �� ����� ��

� � � �������� � ������� ������� ��� �� � ���

$ �
����� �� �� �� ��� �� ��� ������ �� �� �� ��# �� !��� � ��� ���� �

� � � 	��!� ����� ���� ���

Table 8-1. Language Structure Notational Conventions

8

8-3GFK-0833 Chapter 8 State Logic Programming

The State Logic hierarchy terms described in the previous section are now specified
using these notational conventions.

Program = { <Sequence> }

A program is one or more Sequences.

Sequence = { <Task> }

A Sequence is one or more Tasks.

Task = Task: <Task Name> [Startin_Last_Step] { <Step> }

A Task is the keyword Task followed by a colon, then a Task name and one or more
Steps. The keyword Start_In_Last_Step is optional and would follow the Task Name.

Step = Step: <Step Name> [Max_Time Numeric Constant][{ <Statement> }]

A Step is the keyword Step followed by a colon, then a Step name and optionally one or
more Statements. A Step does not require any Statements. Optionally the Max_Time
keyword followed by a number may follow the Step name.

Statement = ([<Conditional Expression>] <Functional Expression>) |
(<F unctional Expression> [<Conditional Expression>])

Every Statement must have a Functional Expression and may or may not have a
Conditional Expression. The Conditional Expression may come before or after the
Functional Expression.

Functional Expressions

Functional Expressions are composed of one or more Functional Terms. There is no limit
to the number of Functional Terms used in a functional expression.

Functional Expression = { Functional Term }

Functional Terms describe any action or changes in the diagnostic system; enabling or
disabling Diagnostics, starting and stopping Sequence execution, turning on outputs,
sending messages out a serial port, making a new Step the active Step of a Task, setting
analog output values, and changing variable values, setting serial port parameters,
starting and stopping PID loop execution, and doing specialized Perform functions are
the operations controlled by Functional Terms.

8

8-4 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Functional Term = < Control Sequences Term > |
< Control Diagnostics Term > |
< Turn On Discrete Term > |
< Assign Values Term > |
< Change Active Steps Term > |
< Send Serial Information Term > |
< PID Control Term > |
< Change Serial Port Configuration Term > |
< Execute Perform Functions Term > |
WhenDone_Next_Step

Controlling Sequences
There are three keywords that are used to control Sequences. Start_Sequence and
Stop_Sequence are used to control one Sequence from another. The End_Sequence
keyword is used to control the Sequence that the keyword is in. Every Triggered and
Instructional Sequence must have an End_Sequence keyword in one of its Steps.

Control Sequences Term = (Star_tSequence <Sequence Name>) |
(Stop_Sequence < Sequence Name >) |
End_Sequence

� Start_Sequence AssemblyMonitor.

� Stop_Sequence CrusherAlarms

� End_Sequence.

Controlling Diagnostics
The Fill–in–the–Blank Diagnostics are active when the project starts running, but they
may be made inactive and reactivated by programming Statements. Once a Diagnostic
has been enabled or disabled, it remains in that State until the execution of another
control term changes its state. A disabled Diagnostic never goes to an alarm state or
causes any actions to occur.

������� ���������� ���� � � 	������������� ����������
��� � �

���������������� �����������
�� ��

� Enable_Diagnostic FeedTorque.

� Disable_Diagnostic HydraulicPressure.

Turning ON Discrete (Actuate Term)

The Actuate Term is used to turn on Digital I/O Points and Internal Flags. This Term
starts with the keyword Actuate followed by one or more discrete names.

Turn On Discrete Term = Actuate { <Digital I/O Name> |
< Internal Flag Name > }

8

8-5GFK-0833 Chapter 8 State Logic Programming

� Actuate the Ready_Light.

� Start Pump_1 and Pump_2.

� Energize Clamp_1, Clamp_2, Clamp_3 and Clamp_Flag.

Assigning Values (Make, Math–Assignment, Set_Bit/Clear_Bit)

To assign values use the Make Term, Math–Assignment Terms, Set_Bit/Clear_Bit Terms.
These Terms assign values to variables and analog I/O points.

	$$�� ���&�$ ��#� � � ���� ��#� � '

� ��%��	$$�� �� % ��#� � '

� ��%�
�%�����#�
�% ��#� �

Make Term

The Make Term is used to assign a value to a variable or analog I/O point. The Term
starts with the keyword Make and is followed by a variable or analog name, the
keyword equal, then a number or a calculated value.

Make Term = Make < Numeric Assignment Term > |
< Character Assignment Term > |
< String Assignment Term>

�&��#�� 	$$�� �� % ��#� � � ��&��#�� ��#����� ����� ' �	 ��!� �� ����� '

 ��� ���&���

�"&�� � �&��#�� ���&� �

���#��%�# 	$$�� �� % ��#� � ����#��%�# ��#����� ����� �"&�� ����#��%�# ���&��

String Assignment Term = <String Variable Name> equal <String Value>

� Make Flow_Setpoint equal 25.

� Make Valve_Control = 67.89.

� Make Total_Defects equal Temperature_Failures + Stress_Failures.

� Make Output_String equal “Enter setpoint now”.

� Make Test_Character = ’$’.

� Make Tank_Level_PID Bias equal 34.456.

See the section “Calculated Values” for a description of how to do mathematical
calculations.

8

8-6 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Math–Assignment Term

This Term does a simple arithmetic operation on a variable value then assigns the new
value to the variable. The four terms are add, subtract, multiply, and divide.

��������������� ���� � � ��� ���� � #

� ������ ���� � #

� � �����" ���� � #

�
�!��� ���� �

The Add Term is the keyword Add followed by a number or variable name then a
variable name.

��� ���� � ��� � � � ����� 	������� � # � �������� ����� �

� �������� ���� �

� Add 1 to Parts_Count

� Add Second_Shift_Parts_Count to Total_Parts_Count

The Subtract Term is the keyword Subtract followed by a number or numeric variable
name then a variable name.

 ������ ���� � ������ � � � ����� 	������� � # � �������� ���� � �

� �������� ���� �

� Subtract 2.78 from Starting_Value

� Subtract Tare_Weight from Test_Weight.

The Multiply Term is the keyword Multiply followed by a variable name then a number
or variable name.

� �����" ���� � � �����" � �������� ���� �

� � � ����� 	������� � # � �������� ���� � �

� Multiply Parts_Lost by 2

� Multiply Machine_Strokes by Strokes_Per_Cycle

The Divide Term is the keyword Divide followed by a variable name then a number or
variable name.

�!��� ���� �
�!��� � �������� ���� �

� � � ����� 	������� � # � �������� ���� � �

� Divide Right_Side_Length by 4.5

� Divide Box_Volume by Volume_Adjustment

8

8-7GFK-0833 Chapter 8 State Logic Programming

Set_Bit/Clear_Bit Term
The Set_Bit/Clear_Bit Term is used to change individual bit values of an integer variable.
The Set_Bit or Clear_Bit keyword is used followed by the variable name and then the
zero based bit number to be changed.

��#���#�	���!���# ��!� � � ��#��# % 	���!��# �

���#���! ��!����� ���� ���#���! $���!�

� Set_Bit Transfer_Status 2.

� Clear_Bit Tac_Register 4.

Changing Active Steps Term

There are three ways of changing the active Step of a Task. A Task can change its own
Step, change the active Step of another Task min the same Sequence, or cause a Task in
the same Sequence to become inactive or resume its previous active Step.

	����� �#�� ��!� � �
� ��#�� ���� � %

� ���� ���"� ���� � $�� ��#�� ���� � %

� � �$"�������"� % ��"$�����"� � ���"� ����

The GO term is the means by which a Task transitions to another Step. Only the Go and
the Step name are mandatory, all other words are optional. The Go may appear in any
Statement, but there may only be one Go per Statement. As soon as a GO term is
executed, no other terms in the Statement and no other Statements in the Step are
executed.

� Go to the Forward_Motion Step.

Tasks control other Tasks by merely setting the Task to a new Step value.

� Put the Assembly_Control Task into the Emergency_Stop Step.

In this example, put is a synonym for make and into is a synonym for equal. This
operation may only be performed on a Task in the same Sequence.

The Suspend_Task and Resume_Task Keywords are also used to change the current Step
of a Task. The Suspend_Task keyword puts the named Task into the Inactive Step. The
operating system gives every Task a Step named Inactive. When a Task is in the Inactive
Step, this Task performs no activity and the only way to exit this Step is for another Task
to change its current Step. The inactive Step can also be used with the GO keyword.

The Resume_Task keyword causes the named Task to go to the Step that was active
before being suspended. Resume_Task and Suspend_Task only operate on Tasks in the
same Sequence.

� If Water_Level is above 45.5 feet then Suspend_Task Fill_Tank.

� If Water_Level is below 43.8 feet Resume_Task Fill_Tank.

8

8-8 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Sending Character Data (Write Term)
The Write Term is the keyword Write followed by data to send inside double quotes.
Optionally a communications port name or R–Register numbers may be specified
following the data to be sent. If no port name or R–Register is specified the data is sent
to the programming port.

���
����� ���� ���� � ����� � �
����� ����� � ����� ����� �

	�	������� ���������

� Write “Push Start Button” to Operator_Control.

� Write “ERROR Number 16” to R_Register 10.

The data is directed to either serial port which is named or to a series of R_Registers. If
the data is directed to R_Registers the string of characters are stored in the Series 90
register reference table beginning at the %R register number which follows the
R_Register keyword. In the example above the characters in the string, “ERROR
Number 16”, are stored in successive bytes starting at %R10.

The serial data can be a mixture of typed text, variable values, ASCII control characters,
and formatting characters.

The typed text are any characters entered directly from the keyboard. The text may
include carriage returns so that several lines can be entered in one Write Term. Multiple
line messages can be formatted in the program exactly as they appear on an terminal
screen.

�"�$� �

�!����� �!�"�$ " ���

�� 	����� � ��&�#
�$�

�� 	����� $�� 	%""��$ ����

�� ������ �$�"$%! �" ���%"�

�� ��#$�"$ $�� �" ��##�

$ �!�"�$ "�������

The menu from this Write Term appears on the operator screen just as it does in the
program. The display on the operator screen is as follows:

�!����� �!�"�$ " ���

�� 	����� � ��&�#
�$�

�� 	����� $�� 	%""��$ ����

�� ������ �$�"$%! �" ���%"�

�� ��#$�"$ $�� �" ��##�

The limit of the number of characters between the quotes is 512, which is about 7 full (80
character) lines of text.

Variable values are sent out the port by preceding a variable name with a “%”.

� Write “Current parts count is %Part_Count.” to Operator_Terminal.

8

8-9GFK-0833 Chapter 8 State Logic Programming

If Part_Count is 10 at the time the Write Term is sent, this Statement displays the
following line on the screen connected to the port named Operator_Terminal.

Current parts count is 10.

Formatting Characters that are used with the Write Term follow:

%NOCRLF – Write Terms always send a carriage return line feed pair
�%""%,!$� ��� #�((���	 �(�) !(�%'#�))!$� ���)*'� (*&&'�((�() �(�

)�'#!$�)!$� � �'��)�'(

���� � (�$�(� ��''!��� '�)*'$ "!$� ���� � �'��)�' &�!'

������� � � $*#��' %� ��''!��� '�)*'$� "!$� ����(

��� � "��') � ��'��$� (�$�(
� ��''!��� '�)*'$� "!$� ����(

�������� � � $*#��' %� (&���(

������ � � � ���� � �'��)�' �%') � +�"*� !$) � .��� !((�$)

��� � � � ���� � �'��)�' �%') � �-����!#�" +�"*� � !((�$)

� The “|” character is used to place two words together without any spaces in
between them. For example, “%Pressurepsi” would look like one long variable
name to UPTime and would yield an error message. But “%Pressure|psi” would
yield the desired result of the value directly followed by the character string, “psi”.

� To send a double quote sign use “%#22” or “%CHR(34)”. To send per cent sign use
“%%”. All other keyboard characters are sent by simply typing them between the
quotes.

PID Loops Control Terms (Start_PID, Stop_PID)

PID Loop control Statements start with the keywords Start_PID or Stop_PID, followed
by the PID Loop Name. If stopping a PID loop, a value which sets the value of the
control variable can follow the PID loop name.

��� ���� ������� 	�� � ��
�� ��� 	�� � ���� ��� 	��

Start PID Term = Start_PID <PID Loop Name>

Stop PID Term = Stop_Pid <PID Loop Name> [with <Numeric Constant>]

� Start_PID Oven_1.

� Stop_PID KILN5 with 456.29.

8

8-10 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Change Serial Port Configuration Term
The Term to change the configuration of a serial port is the Set_Commport keyword
followed by a port name and then a list of parameters and their values.

����� ������ ������ ��� � ������������ �����
����

���������� ��� � 	����

This Functional Term is automatically entered into the program by using the
“Communication Ports” option on the LIST menu. Select the port and press the right
arrow key “–>” to change the configuration options. When configuration is complete,
select the “Insert Reconfiguration Data for the Port” option from the next menu. The
entire Term is entered into the program at the current cursor location.

Perform Function Term
This Term is the Perform keyword followed by the function name, the keyword with
and then a list of parameters and values.

������� � ������ ��� � ������� �� ������
����

!��� ���������� ��� � 	����

This Term is entered automatically by UPTime at the end of the Step where the cursor is
located. First select the “Add” option from the menu, then the “Add a Perform Function”
option. Fill in the blanks that are displayed after selecting the function desired.

When_Done_Next_Step
This keyword must occur in a Statement by itself, ie. with no other terms in that
Statement. This keyword is most often used in Instructional Sequences to allow the user
to interact with the program displaying the Steps of an instruction.

When this term is executed, the following prompt is displayed:

Enter R to repeat, S to Stop, or C to continue –>

The user has control of whether to have the current step of instructions repeated, stop
the sequence of instructions, or continue with the next Step of the program. If continue
to the next Step is selected, the Step below the current one in the program is executed.

Conditional Expressions

Conditional Expressions are used for receiving information in a serial port and for
testing a value or status. The Functional Expression in a Statement is executed only if the
Conditional Expression in the Statement is true. The usual action that is dependent on a
conditional is a transition to another Step.

����������� �"�������� � � ��� ����������� � #

� ��������� ��� � ����������� �

8

8-11GFK-0833 Chapter 8 State Logic Programming

Test Conditional

The test conditional starts with the keyword, If, and is followed by one of the four types
of Test Conditional Terms. The keyword NOT can precede the conditional term. Several
Conditional Terms can be joined by the AND and OR keywords. The AND Terms have
lower precedence and are therefore executed first. The order of execution can be
changed by use of parenthesis and parenthesis can be nested.

��#$ 	 ���$� ��� � �� � �� � �	 ���$� ��� ��"��

�' � �� (�
� � �� � �	 ���$� ��� ��"��) �

The type of Conditional Test Terms are Digital, Timer, Relational, and Current Step.

	 ���$� ��� ��"� � �
���$�� 	 ���$� ���� (

�����" 	 ���$� ���� (

�����$� ��� 	 ���$� ���� (

�	%""��$ �$�! 	 ���$� ����

Digital Conditional
The Digital Conditional Term tests the status of digital I/O circuits, digital devices, and
internal flags. This term is a discrete name followed by the keyword ON or OFF.

���$�� 	 ���$� ��� � ��
���$�� ��� ����(����� ����(�
�&��� �����

�' ��
 (���

 ��
���$�� ��� ����(����� ����(�
�&��� �����) �

(ON | OFF)

� The following notational conventions are used throughout this section to rigorously
define the required structure:

� If Forward_Limit_Switch is on . . .

� If Part_Ready_Flag is off . . .

Several digitals can be specified in the same expression joined by AND or OR keywords
as follows:

� If Top_Limit_Switch or Bottom_Limit_Switch and Counter_Weight_Switch are
OFF . . .

The ANDs have a lower precedence and are therefore executed first.

Timer Conditional Term
The Timer Conditional is a number or variable followed by the keyword SECONDS.
The timer has a resolution of 1/100 of a second and the number used to indicate the
number of seconds can be a floating point number.

����" 	 ���$� ��� � � �%��"�� 	 �#$��$� (���$���" ��"����� ���� � #�� ��#

8

8-12 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

� If 3.76 seconds have passed, then . . .

An integer variable can also be used to specify the number of seconds. The value of the
variable indicates the number of hundredths of a second, so

that a value of 100 would indicate a time of 1 second.

� If Wait_Time seconds, then . . .

Timers always refer to the amount of time that the Step has been active. A common
mistake is to assume that the timer starts when it is scanned.

� If Track_Monitor is ON and 5.3 seconds have passed . . .

The timer above refers to the time that the Step has been active and is not influenced by
the condition of the Track_Monitor.

The timer number must be in the range of 0.01 to 600.00 seconds or 10 minutes. When
using an integer variable, the variable value must be between 0 and 32767.

There are several ways to make a timer that uses a period of time greater than 10
minutes. The common methods use Step transitions to reset a Step timer.

Step: Heater_On_One_Hour
Actuate Vat_Heater.
If Ten_Minute_Counter is >= 6, go to Start_Process Step.
Wait 600 seconds then go to Timer_Counter Step.

Step: Timer_Counter
Add 1 to Ten_Minute_Counter and go to Heater_On_One_Hour Step.

Relational Conditional Term
Relational Terms test a variable or analog values. The Term is a value, followed by a
relational operator, then another value. The values tested can be numbers, calculations,
variable names, and analog names.

��������� ���
����� � ������� 	���������
���� �

<Character Relational Term> |
<String Relational Term>

 �����	 ��������� ���� � ������� ������ �	��������� ��������� ������� ������

 �����	��� ��������� ���� � ��������� ������ ������ � ���������� ��������� ������

8

8-13GFK-0833 Chapter 8 State Logic Programming

������ ��������� 	�� � ������� �	�
� ����� � ���
����� ������� �	�
 �

� If Parts_Count = 500 . . .

� If Flow_Meter_Input is above Flow_High_Limit . . .

� If Canister_Pressure – Atmosphere <= Pressure_Limit – Safety_Margin . . .

� If String_Entry equal “Formula 1” . . .

� If Test_Char not_equal ’@’ . . .

See the section, Mathematical Calculations, for a discussion on how to use calculations.

Current Step Conditional Term
The Current Step Conditional is a Task Name followed by the keywords EQUAL or
Not_Equal and then a Step Name. This conditional is used to test the current Step of
another Task. This term can test the current Step of any other Task whether or not the
other Task is in another Sequence.

������ ��� ����������� � �	��� ����

(equal | not_equal)
<Step Name>

� If Pump_Monitor Task is in the Backwash Step . . .

Complex Conditionals
Conditionals can be preceded by the NOT keyword and several can be joined by the
AND or OR keywords and parenthesis can be used to change order of evaluation.

� If Hydraulic_Pump_Control Task is in the Over_Pressure Step or Hydraulic_Pressure
is above 23.56

� If 1 seconds and not Temperature_Setpoint greater than 4.67 / Settling_Value

� If Spin_Drive is ON and (Pour_Ladle is not_in Pouring Step or not Mold_Number
above 67

Character Input Conditional

The syntax for this conditional is the keyword READ followed by a variable name. This
conditional is true when a character input message is completed. The character input is
stored in the variable listed.

Optionally this conditional can specify the port from which the input is received. If this
option is used the keyword FROM follows the variable name and then a
communications port name is listed.

Another option is to receive the input from R Registers of CPU. The syntax for this
option is again to use the keyword from followed by the keyword R_Register then the
starting register number, the keyword for and then the number of registers to read.
When using this option, the variable receiving the data must be a string variable. Each
byte of the R_Registers read is stored in the string variable.

8

8-14 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

������ �� ���! � ���� ��������� 	����

 ���� �����!���� ����
�� 	���� "

 �������� �� ������ �� 	!����� ���

 ��� ���� 	!�������

� Read Menu_Choice from Operator_Station . . .

� Read Error_String from R_Register 46 for 20 R_Registers . . .

The first example reads data into the variable named, Menu_Choice, from the
communications port named Operator_Station. The second example reads 40 characters
into the string variable, Error_String, from the 20 CPU R Registers starting at %R46.

A GO Functional Term must always follow the character input conditional and there
cannot be any other Terms in the Statement. If two character input conditionals for the
same port are written in the same Step it is unknown which conditional receives a
message from the port.

The types of variables used with the Read are:

������� �����	���

�������� ����� �����	���

������ �����	���

����
��� �����	���

If the type of data received does not match the variable type, the input is ignored and
the conditional is not satisfied. An example of invalid data is entering string of
characters to a numeric variable.

The input is completed and the conditional is true, when an end of message character is
received at the port. The default end of message character is the carriage return, so that
normally the input is completed when the <Enter> key is pressed. The end of message
character may be changed by the Set_Commport Functional Expression.

Input to a character variable is complete as soon as one character is received, so that a
character is stored and the GO executed as soon as any character is received.

IMPORTANT: Character variables cannot be used to receive input through the
programming port when connected to UPTime. Character variables work well if some
other serial device is connected to the programming port or the other port also.

The Words of the State Logic Program

All words in State Logic programming fall into one of three categories, keywords, names,
and filler words. Names are defined by the user and there a set of predefined keywords
and filler words. The keywords and filler words can be changed by the user.

Names
Names are used to refer to I/O points, variables, memory locations, serial ports, digital
devices, flags, Sequences, Tasks, and Steps. A name may be define in UPTime before,
during, or after program development. Nicknames used in the ladder logic program
and direct memory references may also be used.

8

8-15GFK-0833 Chapter 8 State Logic Programming

UPTime Names
A name defined in UPTime can be up to 20 characters, either letters or numbers and the
underscore character (_) but must start with a letter. A name can be defined through
many menu options. The VARIABLES option from the Create Mode main menu and the
LIST and DEFINE menus from the Sequence editor. UPTime can search for any
undefined words so they can be defined one at a time when highlighted.

A name can be selected from the list by highlighting the desired name and pressing the
<Enter> key. To quickly locate a name on the list type in the first letter of the name, and
UPTime highlights the first name starting with that letter. Typing in the second letter
locates the first name starting with these two letters.

Logicmaster Names
To use nicknames defined in Logicmaster 90–70 follow these steps:

1. Create a nickname file using the Logicmaster print functions:
From the Logicmaster Programming Package
Select “Print” <F10> from the main menu
Select “Logic” <F4> from the print function menu
Select to have only the Variable Table printed
Set Port to FILE by hitting the <Tab> key until that option appears
Enter the file name

2. Tell UPTime where to find the file
Select “Project” from the main menu
Select “Set Path/Drive to Logicmaster Nickname File”
Enter the drive, directory, and file name of the file created in step 1

3. Finally just use the Logicmaster Nicknames in Diagnostics or State Logic just as
UPTime names are used.

When UPTime searches for the definition of a name, it first looks for names defined in
UPTime. If the name is not found, UPTime searches the Logicmaster file of nicknames to
identify the name.

Default nicknames used with the status bits, %s, %SA, %SB, %SC can also be used, such
as FST_SCN for the first scan bit, %S1 or LOW_BAT for the low battery indicator, %SA11.
See the file DEFNICK in the \UPTIME\S90–70 directory, for a full list of default status bit
nicknames available.

Direct Memory Reference
Both Diagnostics and State Logic programming can use direct references to the CPU
memory location. The memory types that can be accessed are %I, %Q, %AI, %AQ, %R,
%M, %G, %T, %S, %SA, %SB, and %SC. For example Q23 refers the digital output
memory location %Q23.

Wherever a name would normally be used, a direct memory reference is allowed.
UPTime creates an internal name in its name table when a direct memory reference is
encountered. If Q23 is specified, UPTime creates a name Q23 and assigns it to %Q23 in
its tables. UPTime checks that there is not another name for that memory location
before making the assignment.

8

8-16 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Keywords

This section displays the set of Keywords supplied with UPTime. Up to 10 synonyms
may be added for each Keyword. The Default Keyword may also be changed. The
Keywords are broken into four categories, Conditional terms, Functional terms,
Operators and miscellaneous words that modify the meaning of a Statement. In the
following tables the default keyword is displayed in bold print with some suggested
synonyms in normal print.

Table 8-2. Conditional Terms

Keyword, Synonyms Meaning / � Examples

If, When Test conditions and values, actions executed when test returns TRUE
condition.
� When the Forward_Limit_Switch is ON, go . . .
� If Count is > 1, go . . .

For, Until Test conditions and values, actions are executed when the test returns a
False condition.
� Actuate Stop_Light until Parts_Count = 23.
� Turn on Alarm_Light for 2 seconds then go to Reset.

Read Get input from comm port or CPU Registers, must be used with GO
term.
� Read Name from Port_1 then go Display_Name.
� Read Status_String from R_Register 69 for 23
 R_Registers, then go to Display_Status Step.

Wait Time Delay, must be used with GO term.
� Wait 2.34 seconds then go to Restart Step.

8

8-17GFK-0833 Chapter 8 State Logic Programming

Table 8-3. Functional Terms

Keyword, Synonyms Meaning / � Examples

Energize, Start,
Actuate, Turn, Run,
Open, Turn_On

Turn on a Digital Point(s)
� Start Conveyor_Motor.
� Energize Forward_Solenoid.
� Actuate Backwash_Pump, and

Backwash_Pump_Light.

Add Add a value to a variable
� Add 2 to Count.

Divide Divide a variable by a value
� Divide Count by 2.

Go Make another Step the Active Step
� If Switch1 is On, go to the Motion Step.

Halt Stop the process immediately
� If Alarm is On, Halt.

Make, Put, Place, Set Assignment operator initiator
� Make Total = 56.

Multiply Multiply a variable by a value
� Multiply Count by 2.

Perform, Execute Invoke an UPTime “Perform” function
� Perform Display_Date_Time with...

Set_Commport Change comm port settings while running
� Set_Commport Port_1 with Baud_Rate=9600, Data_Bits=8, Parity=N,

Stop_Bits=2, Auto_Echo=Y, Xon_Xoff=Y, Receiver_On=N,
End_of_Message_Char=h0d.

Start_PID Invoke a PID Loop
� Start_PID Main_Loop.

Step Identifies the Name of State Logic Steps
�Step: PowerUp
� go to the Motion Step.

Stop_PID Halt a PID Loop and set the output value.
� Stop_PID Main_Loop with 234.5.

Subtract Subtract a value from a variable
� Subtract 1 from Count.

Task Identifies the Name of State Logic Tasks
� Task: Main
� If the Main Task is in the PowerUp Step, go...

Set_Bit Set a condition TRUE or a bit of a 16 bit integer value to 1
� Set_Bit Flowmeter_Counter HSC_OUTPUT_ENABLE.
� Set_Bit Integer_Variable_1 0.

Clear_Bit Set a condition FALSE or a bit of a 16 bit integer value to 0
� Clear_Bit Resolver_Counter HSC_RESET_PRELOAD.
� Clear_Bit Integer_Variable_2 15.

Suspend_Task Stop the execution of a Task – no Step is active.
� If Level > alarm, Suspend_Task Automatic.

8

8-18 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Table 8-3. Functional Terms (continued)

Keyword, Synonyms Meaning / � Examples

Resume_Task Restart the execution of a task – the Step that was active when the Task
was suspended is made the active Step.
� If Level < alarm, Resume_Task Automatic.

Write Send data out the comm port
� Write “Error Message” to Operator_Console.

Start_Sequence Start all Tasks in the named Sequence running in their first Step.
� Start_Sequence FaultAnalysis.

Stop_Seqeunce Put all Tasks into the Inactive Step in the named Sequence.
� Stop_Sequence ReportFaults.

End_Sequence Causes all Tasks in the current Sequence to go to the Inactive Step.
� End_Sequence.

When_Done_Next_Step Writes a prompt for the user to asks that the last instruction be
repeated, continue to next Step in the program, or stop the Instructional
Sequence.
� When_Done_Next_Step.

8

8-19GFK-0833 Chapter 8 State Logic Programming

Table 8-4. Mathematical Operators

Keyword, Synonyms Meaning / � Examples Precedence

() Parentheses – Used to group terms to change order of
operation. Up to 18 levels of parentheses are permitted.
Parentheses may be used in mathematical expressions and
with relational conditional terms.

1

ARCTAN(exp) Arctangent:
where –65535 <= exp <= 65535
� Make Overlay = ARCTAN(Hyp * 2).

2

COS(exp) Cosine:
where –65535 <= exp <= 65535
� Make Near = COS(Test_Value).

2

EXP(exp) e to a power:
� Make Inverse = EXP(Transfer)

2

LN(exp) Natural logarithm (base e):
� Make Test_Value = LN(Input – 3.4)

2

RANDOM Random number generator:
Generates a random number (0 – 1)
� Make Simulated_Inp = Set * Random

2

SQRT(exp) Square Root:
� Make Out_Pot = SQRT(Flow_Meter).

2

SIN(exp) Sine:
where –65535 <= exp <= 65535
� Make Vector1 = SIN(Strain_Gauge).

2

TAN(exp) Tangent:
 where –65535 <= exp <= 65535
� Make Slope = TAN(TRIM * In_Flow).

2

^ Exponential Operator
� Make Count = Amount ^ 2.

2

%, Modulus Modulus Operator – integer operands only
� If Count % 5 = 0, go...

3

*, Times Multiplication Operator
� Make Count = Amount * 2.

3

/, Divided_By Division Operator
� Make Count = Amount / 2.

3

+ , Plus Addition Operator
� Make Count = Amount + 2.

4

– , Minus Subtraction Operator
� Make Count = Amount – 2.

4

Bitwise_And AND bits operator
� Value = Code Bitwise_And Mask.

4

Bitwise_Or OR bits operator
� Setup = Code Bitwise_Or Mask.

4

= , Is, Equal, Equals,
Into

Assignment Operator
� Make Count = 5,

5

8

8-20 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Table 8-5. Relational Operators

Keyword, Synonyms Meaning / � Examples Precedence

= , Is, Equal, Equals,
Into

Comparison Operator
� If Count = 5, go...

5

< , Less, Under Less than Operator
� If Count < 5, go...

5

<= , =< Less then or equal to Operator
� If Count <= 5, go...

5

> , Greater, Above,
More

Greater than Operator
� If Count > 5, go...

5

>= , => Greater than or equal to Operator
� If Count >= 5, go...

5

<> , Not_equal Not Equal Operator
� If Count <> 5, go...

5

AND AND Operator for Conditional and Functional Terms
� If Count > 5 AND Top_Switch is ON
� Actuate Pump_5 AND Pump_6.

7

OR OR Operator for Relational 8

Conditional Terms Only
� If Vat < 98 degrees OR Fuel < 12

NOT NOT Operator for Relational Conditional Terms Only
� If NOT Inlet_Pressure > 100 psi

6

8

8-21GFK-0833 Chapter 8 State Logic Programming

Table 8-6. Miscellaneous Keywords

Keyword, Synonyms Meaning / � Examples

AM Time Suffix
� If Time is past 3:00 AM, go...

Friday Day of week number 5
� If day_of_week = Friday, go...

From Used in “Read” Terms to identify a port name.
� Read Name from Port_1 then go to the Stretch Step.

Max_Time Used to set the maximum time diagnostic for a Step
� Step: PowerUp Max_Time 2.5

Monday Day of week number 1
� If day_of_week = Monday, go...

Not Logical “NOT” in a conditional expression
� If not (Count > 1 or Count < 10), go...

Off, False,
Not_True,Not_Tripped

Test for Digital I/O for not set state
� If Switch1 is Off, go...

On, True, Tripped Test for Digital I/O for set state
� If Switch1 is On, go...

Or Logical “OR” in a conditional expression
� If Count > 1 or Count < 10, go...

Inactive Name of the Step in Which No Actions Occur
� Put the Manual Task into the Inactive Step.

PM Time suffix
� If Time is past 3:00 PM, go...

Saturday Day of week number 6
� If day_of_week = Saturday, go...

Seconds Used for comparison in a “Wait” Term
� Wait 3.2 seconds, go...
� If 3.2 seconds have passed, go...

Sunday Day of week number 7
� If day_of_week = Sunday, go...

Thursday Day of week number 4
� If day_of_week = Thursday, go...

Tuesday Day of week number 2
� If day_of_week = Tuesday, go...

Wednesday Day of week number 3
� If day_of_week = Friday, go...

With Prefix for data that is needed by a function
� Stop_PID Kiln_Temperature with 45.679
� Perform Get_User_Input with Clear_Screen = Y...

R_Register Used to indicate %R registers in the Read Term
� Read Status_String from R_Register 69 for 23 R_Registers

8

8-22 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Filler Words
Filler words have no functionality, ie. they do not change the meaning of any of the
statements in which they appear. Filler words are only used to increase the clarity of the
English text. For example, “go to the Motion Step” looks better and sounds better than
“go Motion”. To some programmers, however, typing fewer words is better.

Perform Functions

The Perform functions implement operations which are more complicated than the
common State Language Terms. UPTime presents a form which has a template of
information that is entered by the programmer. When this form is completed UPTime
enters the English text for the proper execution of the function.

The Step where a Perform function appears should usually be structured so that the
Perform is executed for only one scan. A common error in using Performs, is that the
program is structured such that it is executed several times, ie. each time the Step is
scanned.

Perform functions are Functional Terms and must be the only Terms in the Statement.

Table Functions
The set of table functions (individual descriptions to follow) allow the User to perform
several functions using data in a table or array type fashion.

Tables in General
All of these functions work on the same tables or arrays of data. A Table is a two
dimensional array of values that can be either floating point numbers (float), integer
numbers (integer), sequence of characters (string) or binary numbers (digital I/O status).
Every element of that table must be of the same type and when the Table is defined the
type of variable is established.

There can be a maximum number of 100 Tables, each assigned a unique number from 1
to 100. These tables can be of any size determined by the number of rows and columns
assigned to them until the maximum amount of memory allocated for Table use is
consumed. There is 20K bytes of memory reserved for use with table functions.

A Table must first be defined before it can be used. This is done using the four Table
Define functions. The Swap_Table_Value functions named Swap_Table_Value_Int,
Swap_Table_Value_Float, Swap_Table_Value_Dig, and Swap_Table_Str allow the User to
either write a value from a variable of the same type into a Table element, or read a value
from a Table element into a variable of the same type.

The Init_Table functions named Init_Table_Integer, Init_Table_Float, and
Init_Table_Digital allow the user to store multiple values into a Table at one time. There
is no initialization function for a string table. The Copy_Table_To_Table function allows
the User to copy one Table’s value into another Table.

All Table functions check to make certain that when a Table is selected for use, it fits the
definition that has been previously creates. Thus a Swap_Value to a Table defined as

8

8-23GFK-0833 Chapter 8 State Logic Programming

integer must have an integer variable, or both Tables selected in a Copy_Table_To_Table
must be of the same type, or a Swap_Value cannot refer to a row number for a table that
is greater than the total number of rows defined for that Table.

In the event of misuse of the functions being detected either UPTime will produce an
error at download time or (and this is most likely) an error message will be generated at
run time.

It should be noted for all the Table functions the row number comes first followed by the
column number.

Define_Table
The User must define every Table he Uses with this function. When this function is
selected from the Perform menu, a menu will display the following for the User to select:

� ������������� ��� ���� � ���� ���� � �� ���

#����������� ��� �#�� �� !�������� �
 ��� �������� � ��� ������� �� 	 ��� ������ �

��� ������� ������ �� ��� ���� ��������

� ����������"� ��� � ���� �� ��"� �� ��� �����

� ����������� ��� ��� � ���� �� ��� ���

��!��!�� ���!������� ��������� "������ ��� ���� ��� �� �� ��!�� ���� �� � ������ �

�#���

At Diagnostic Processor run time, a non–critical error with a message will be generated
if the Table number specified has already been defined. The Table will not be re–defined
and the original definition will be retained. To avoid this error, the User should place this
function in a Step that only executes once.

The only other non–critical run time error that can occur is if the table number specified
is greater than 100.

Entering and Retrieving Table Values
There are four Swap_Table_Value functions that are exactly the same except they work
on the three different types of Tables.

Swap_Table_Value_Int
��������	�����	����

��������	�����	���

��������	�����	����

These functions allow the User to write a value from a variable of the same type into a
Table element or to read a value from a Table element to a variable. There are four
distinct functions of different types so that UPTime can check to make sure the variable
named is of the same type as the Table specified.

8

8-24 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

When the User selects one of these functions from the Perform menu the following
information will be requested:

�#��� ����"���� "�� ���� �#��� � �� � "� ���

&��������� �"��� "�� "&�� �� ��� �"��� �� �� ��� � � �� % �"�� "� �� �� '
�� ��� %�"� � ������� "� "��� � $��#� � �� "�� "���� ��� �����
�" �� "�� $� ������ ��� � "� ��"� "�� $��#� �� "�� $� ����� ��"�
"�� "�����

��%��#��� "�� �% �#��� �� "�� ������" "� �� ��� � �� � % �""�� ��"�

��#����#��� "�� ���#�� �#��� �� "�� ������" "� �� ��� � �� � % �""��
��"�

�� ����� "�� ���� �� "�� $� ����� "� �� #!�� "� !"� � "�� ���� $��#� �# '
��� � ��� � ��" "�� $��#� �# ��� � % �"�

The Diagnostic Processor will generate run time critical errors if the Table selected does
not match the type of Swap being used or if the row and column numbers are out of
range for the selected Table.

Initializing Tables
The three Init_Table functions allow the User to set values for multiple elements in a
Table at one time. There are three distinct functions of different types so that UPTime
can check to make sure the variable named is of the same type as the Table specified.
There is no initialization function for String Tables.

Init_Table_Int
Init_Table_Flt
Init_Table_Dig

When the User selects one of these functions from the Perform menu the following
information will be requested:

Number_of_table the Table number from 1 to 100

��%��#��� "�� �% �#��� �� "�� �� !" ������" %�� � "�� $��#�! ��!"��
� � "� �� !"� ��

��#����#��� "�� ���#�� �#��� �� "�� �� !" ������" %�� � "�� $��#�!
��!"�� � � "� �� !"� ��

�#��� ����$��#�! "�� �#��� �� $��#�! "��" %��� �� !"� �� �� "�� �����%���
���!��#"�$� ���� ������"!

���#��� � ���!"��" � "�� ���� �� � $� ����� ��� "�� !��� "&�� �! "��
����� "� �� !"� �� �� "�� �� !" ���� ������" ����"����� �& "��
��%��#��� ���
��#����#���

���#��� � ���!"��" � "�� ���� �� � $� ����� ��� "�� !��� "&�� �! "��
����� "� �� !"� �� �� "�� �� !" ���� ������" ��"� "�� ����
������" ����"����� �& "�� ��%��#��� ���
��#����#���

 ��

 ��

���#���	 � ���!"��" � "�� ���� �� � $� ����� ��� "�� !��� "&�� �! "��
����� "� �� !"� �� �� "�� ��!" ���� ������" ����"����� �& "��
��%��#��� ���
��#����#���

8

8-25GFK-0833 Chapter 8 State Logic Programming

There can be up to 28 values initialized with each individual function and they can begin
at any Table element location. Each column element of a row is filled in before the next
value is placed in the next row.

The Diagnostic Processor will generate run time critical errors if the Table selected does
not match the type of Swap being used or if the row and column numbers are out of
range for the selected Table or if the number of values added to the starting element
position would go beyond the last element defined for the Table.

Copy_Table_To_Table

The Copy_Table_To_Table function allows the User to copy one Table’s values into
another Table. The Tables must be of the same type and the Table that the values are
copied from must have a less or equal number of rows and columns than the other Table.

The Table’s elements will be copied into the corresponding Table’s elements. If the first
has less rows or columns than the second, then the elements that do not exist in the first
Table will be left unchanged in the second Table.

When the User selects one of these functions from the Perform menu the following
information will be requested:

Table_To_Copy_From the number of the Table from which the values will be
����	�� ��� ��� ����	� ��� ����� ����	� ���� �	 	��

���� ��	 ���	� ���	 ��	���
�	�

Table_To_Copy_Into the number of the Table the values will be written �����

The Diagnostic Processor will generate run time critical errors if the two Tables selected
are not the same type or if the Table to copy from is larger than the other Table.

Table Uses

There are many uses for the Table functions. As an example, the Table functions are
valuable in applications where the set up of parameters varies depending on the product
under manufacture on the process line. Batch process recipes or flexible manufacturing
assembly lines are examples.

The UPTime program can be written using English name variables for parameters
throughout with statements such as:

If Oven_temp_1 is greater than Melting_point ...

used throughout the program description of the process. Then in a Step, lets call it the
Select_Product Step, by using the Swap_Table_Value_Flt function, the variable
Melting_Point can be made equal to one of the elements of Table 1, where Table 1
contains the parameters for this particular product run.

Using the Init_Table_Float, Tables containing parameters for each style of product that
can be made on the line can be initialized. When the Operator selects a style of product
in the Select_Product_Style Step, the Copy_Table_To_Table function can be used to move
those parameters into Table 1, the Table in which Melting_Point finds its values for this
style and product run.

8

8-26 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

BCD I/O Representation

General

At times input and output devices are used for data entry or display that use BCD
representation. Thumb wheel switches and LCD displays are possible examples.

The devices are connected either to digital inputs or digital outputs where 4 hardware
inputs or outputs represent 1 digit of the display. The display or switch then uses a
binary code representation from 0 to 9. There are 16 total possibilities (4 outputs or
inputs represent 2 to the 4th or 16 possible combinations), and the remaining 6 are used
for such things as minus sign, decimal point and null or space character on a display.

The two functions, BCD_In_Conversion and Output_BCD_Conversion allow the User to
designate a series of consecutive digital inputs or outputs to be treated as if they are
groups of 4 BCD digits. The functions then translate between the I/O and either
Diagnostic Processor integer or float variables.

BCD_In_Convert

The BCD_In_Convert translates between a series of digital inputs and an integer or float
variable. The User specifies the name of the first digital input in the series and the
number of BCD digits (4 inputs per digit) that represent the variable. The User also
specifies the type of variable and the name of the variable to store the converted value.

The inputs will be taken in hardware consecutive order, and the number of digits can be
on more than one block or card as long as the cards have consecutive addresses. The
User only need define with an English name the first digital input and initialize the
blocks or cards involved.

BCD uses the standard binary representation for the numerical digits 0 to 9. There is no
true standard for the minus sign or decimal point character. Therefore the function has
the provision for the User to optionally specify the hexadecimal number, #A, #B, #C,
#D, #E, or #F, (where # means hexadecimal number to UPTime), that is the pattern for
these two characters.

The function parameters are:

Starting_input the English name of the first digital input in the string of
consecutive inputs that form the BCD digits

� ������������������ ��� � ���� �� ��� ������� ��� � ���� �� ������� ��� �� �� ���
������ "��� �� � ����� ��� � ���� �� �������

������������ ��� ���� �� ��� !������� �� ����� ��� ���������� !�� �

���������$�� ��� �$�� �� !������� ������ ������� �� �����

�� �������������� � ��#�������� � ���� ���� � �� 	 ���� ��!�� ��� ������� ��� �
����� ���� ��� �� �� �������%�� �� ��� ��� � �����

����������������� � ��#�������� � ���� ���� � �� 	 ���� ��!�� ��� ������� ��� �
����� ���� ��� �� �� �������%�� �� ��� ������� ������ ���� ���
��� � ���� ��� ������� ����� ��� ��������� � ��� � ���� ��� ��
��������� "���� � � ������� ������ � � �� � ������� ����� ��
��������� ��� ��� � ���� � �� ���� �� ����������

8

8-27GFK-0833 Chapter 8 State Logic Programming

Output_BCD_Convert
The Output_BCD_Convert translates between a an integer or float variable and a series
of digital outputs. The User specifies the name of the first digital output in the series and
the number of BCD digits (4 outputs per digit) that represent the variable. The User also
specifies the type of variable and the name of the variable where the value to be
converted is stored.

The outputs are in hardware consecutive order, and the number of digits can be on more
than one block or card as long as the cards have consecutive addresses. The User only
need define with an English name the first digital output and initialize the blocks or
cards involved.

BCD uses the standard binary representation for the numerical digits 0 to 9. There is no
true standard for the minus sign or decimal point or null (space) character. Therefore the
function has the provision for the User to optionally specify the hexadecimal number,
#A, #B, #C, #D, #E, or #F, (where # means hexadecimal number to UPTime), that is
the pattern for these three characters.

The function parameters are:

Starting_output the English name of the first digital output in the string of
consecutive outputs that form the BCD digits – all of the other
outputs used must be defined

�#��� �����	
�����"! "�� �#��� �� �	
 ����"!� ��� �#��� �� ����"�� �#"�#"! �� "��
!" ��� %��� �� � "���! "�� �#��� �� ����"!�

�� ���������� "�� ���� �� "�� $� ����� "��" �! "� �� " ��!��"�� ��� �#"�#"

�� ������"'�� "�� "'�� �� $� ����� ��"�� � �� ��"��� � � �� ����"

��#!�!������""� � � ��&�������� �#��� � �� � "� � "��" ��$�! "�� ��""� � �� �
����" "��" !��#�� �� ������(�� �! "�� ���#! !����

�#������ ��"� ���" � ��&�������� �#��� � �� � "� � "��" ��$�! "�� ��""� � �� �
����" "��" !��#�� �� ������(�� �! "�� �#�� � !���� ��� ��"� �

�����������"���" � ��&�������� �#��� � �� � "� � "��" ��$�! "�� ��""� � �� �
����" "��" !��#�� �� ������(�� �! "�� ������� ����"�

�#��� ������������ "�� �#��� �� ������� ����"!� "�� ����"! "� "�� ���" �� "�� �������
����"� "��" !��#�� �� �#"�#"� ��"�� �� "�� �#��� ������������
�� ���"� �! #!�� "��� "��
�����������"���" �! ��" ��"����� ���
�#!" ��!� �� #!���

Note: if the value is too large to display in the Number_of_BCD_digits specified, but
there is enough room for all the digits to the left of the decimal point, those digits will be
displayed and no error will be generated. If there is not enough digits for all the
numbers to the left of the decimal point, the display will not be output and a
non–critical error will be generated.

Shift_Register
The Shift_Register function allows the User to shift values from one integer variable to
another by a User selected number of bits.

The User can define up to 28 integer variables and connect them together to form a shift
register. The User then can shift the contents of each variable by a selected number of
bits (up to 64) to the right or left.

8

8-28 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The User can choose to have the shift behave in a circular fashion where the bits from
the variable farthest to the right shift to the farthest variable to the left. Or the shift can
be a fill type shift where the bits fall off the end and do not circle back to the first integer.
In the case of a fill type shift, the User can choose the value (0 or 1) that is placed in the
locations left empty by the shift.

If more than 28 integers are to be connected, two shift registers can be cascaded by
having variable_28 of the first shift be the same as variable_1 of the next shift.

The User defined function parameters are:

Number_of_bits the number of bits to shift the registers, 0 to 63

���!������!��� ��!��� � ����! ��
 ��� ���!� ��� �����!��� �� !�� ���!�

�%������ ���! ��!��� � ��� ����"��� �� 	 ��� ����� ��� $�% !�� ���! $��� ��! $��� !��
�� ! #������� � ��������

	����#��"� ��!��� � �� �� ��� #��"� !��! $��� �� ������ �� !�� ��! �� !�� #�������
!��! ��#� ���� ���!�� �� � 	 �� ���� !%�� ���!� �� ������� �� �
����"��� ���!�

���������� !�� ���� �� !�� ��� ! ��!���� #������� ��� !�������� !�� #�������
���!�� ! !� !�� ���! �� !�� ���! ���� !���

���������� !�� ���� �� !�� ����� ��!���� #������� �� !�� ���! ���� !���

 ��

 ��

����������� !�� ���� �� !�� ��!� �� �� ! ��!���� #������� ��� !�������� !��
#������� ���!�� ! !� !�� ����! �� !�� ���! ���� !���

Note: only Variable_1 must exist, all others are optional.

String Manipulation

The String_Manipulation function allows the User to perform various functions upon a
string variable. String variables can be up to 80 characters long and often are used for
inputting data from an ASCII oriented device such as a bar code reader, or outputting to
a similar device such as a scale or robot.

General
In many cases the 80 characters is not one piece of data but a series of sub–strings each
containing unique data. Thus the ability to extract the sub–strings, convert the data to
integer or float and store in a variable and store a sub–string into a larger string is
sometimes needed.

The string manipulation function is in reality several functions in one. The User defines
the name of the string to be manipulated and the number of the starting and ending
character, if a sub–string within that string is of interest. The start and end must be less
than 80 , the first character is number 1, and the start must be smaller than the end or a
run time error is generated.

The User also defines the type of manipulation (see following sections) and a reference
variable that is used by the operation. The parameters defined by the User for the
function are:

8

8-29GFK-0833 Chapter 8 State Logic Programming

String_name the name of the string to manipulate

�$�"$����"��$�"��%� $�� �%���" �� $�� #$�"$��� ���"��$�" %#�� �� $�� #$"���� ��� ��"#$
���"��$�" �# �

������"��$�"��%� $�� �%���" �� $�� ������ ���"��$�" %#�� �� $�� #$"���� ��� ��#$
���"��$�" �# ���

� �"�$��� � ���"��$�" ���� $��$ ������# $�� � �"�$��� $� �� �"��"��� �#��
�����'��� #��$��� ��" ������$����

����"�����&�"����� $�� ���� �� $�� "���"���� &�"����� $� �� %#�� �� $��# ���� %��)
$���� ��� &�"����� $(� "�!%�"�� �� ���# �� $�� � �"�$��� ���
$�� 	�����#$�� "���##�" ����"�$�# � �"�$���� �""�" �� � ��#��$��
���%"#�

���"������"��$�" $�� ���� �� � ���"��$�"���"����� �" $�� ��$%�� ���"��$�" $� ��
��$���� �($��# � �"�$���� ���# �# �� � $����� �"���$�" '����
���(����# $� �� ��$�"�� '��� $�� ��$�� ��� � �"�$��� �# ���#���

Operations

E for Extract
If the Operation character is an E, the function will extract the sub–string defined by the
starting and ending characters and copy those ASCII character numbers to the string
variable named in the Reference_variable.

s For store in sub–string
If the Operation character is an ’s’, the function will use the string variable named in the
Reference_variable as a sub–string, and store those ASCII characters in the sub–string
defined by the starting and ending character numbers. The characters in the string
named as the Reference_value will be stored until the end of that string is reached or
until the last character number in the main string is reached.

I for extract and convert to Integer
If the Operation character is an I, the function will extract the sub–string defined by the
starting and ending character numbers and convert those ASCII characters into an
integer value and store that value at the integer variable named in the
Reference_variable.

i For Convert integer To ASCII And Store In String
If the Operation character is an i, the function will convert the value stored at the integer
variable named in the Reference_variable to ASCII and store that value into the
sub–string location defined by the starting and ending character numbers.

F for extract and convert to Float
If the Operation character is a F, the function will extract the sub–string defined by the
starting and ending character numbers and convert those ASCII characters into a float
value and store that value at the float variable named in the Reference_variable.

f For Convert float To ASCII And Store In String
If the Operation character is a f, the function will convert the value stored at the float
variable named in the Reference_variable to ASCII and store that value into the
sub–string location defined by the starting and ending character numbers.

8

8-30 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

C for Concatenate
If the Operation character is a C, the function will concatenate or add the string of
characters named in Reference_variable to the main string. The resulting main string can
not exceed 80 characters, so the addition of the Reference_variable characters will be
truncated at that time.

L for string Length
If the Operation character is an L, the function will calculate the number of characters in
the string, and put that number into the integer variable named by Reference_variable.

M for Match the Given Character with a Character in the String
If the operation character is an M, the function matches the character in the
Search_Character parameter to the first character in the sub–string designated by
starting character and ending character values. The position of the first match is
returned in the Reference_Variable.

Errors in General
The functions check to make sure when conversions to or from ASCII are performed
that legal values will result and produce errors if they do not.

Specialized Perform Functions
All off the above functions have specific parameters which are passed to the function.
These parameters are all chosen by filling in similar forms which specify parameter type
and whether or not it is required. The following performs have unique ways that the
operations are specified.

Display Date and Time
This function displays the current date and time in the desired format. After choosing
this option a form is displayed to enter the Name of the Step that is created, the format
of the display, the communications port to send the information and the Step to branch
to after the operation is completed.

Get User Input
This function enters program text used to retrieve information through a
communications port. A form is displayed for entering the following options:

� Current Step – Name of the Step that is created.

� Clear Screen – Option of clearing the screen before the prompt is displayed.

� Screen Message – Prompt telling operator to enter some information.

� Input Variable – Variable that stores the input

� Comm Port – Which port is used.

� Branch To Step – Step that becomes active when this process is completed.

User Menu
This function will display a menu of up to 10 items and then wait for the user to enter a
selection. If the selection is valid, it will branch to desired Step for that selection. This is
very useful when creating a user interface for the Diagnostic Strategy.

8

8-31GFK-0833 Chapter 8 State Logic Programming

Miscellaneous Programming Operations

This section discusses several different aspects of using Variables in State Logic
programming. There is also a list of grammatical rules and a discussion of PID loops.

The VARIABLES option on the menu is used to define most of the variable types. The
topics discussed here are numeric data types, variable types, and mathematical
calculations.

Numerical Data Types

There are two numerical data types integer and floating point. Integer data is limited to
the range of –32768 to 32767. Floating point data is limited to the range of +/–1.2E–38
to +/–3.4E+38 with an effective precision of seven decimal digits.

Integer constants are whole numbers in the range –32768 to 32767. Integer constants
can be specified in hexadecimal format by preceding the number with ’#’, ie, #77FF.
Floating point constants are numbers using decimal points, numbers outside the range
for integers, or numbers using scientific notation.

Data types maybe mixed freely within expressions. If any of the operations in an
expression require floating point notation, all of the data elements are converted to
floating point values. If a floating point value is assigned to a variable of integer variable
type, the floating point value is converted to an integer value observing the following
rules:

1. All values are rounded to the nearest number.

2. Values outside the integer range are clipped to –32768 or +32767.

Floating point operations require more time to perform than integer operations.
Therefore, refrain from floating point operations as much as possible if response time is
critical to your application.

The data type of analog values is floating point. The data type of time values (seconds,
minutes, etc.) is integer.

Numeric Value � <Numeric Constant> |
<Calculation> |
<Numeric Variable Name> |
<Analog I/O Name> |
<PID Value>

��
��
��	� � � �&��#�� ���&� � � �"�#�%!# � � �&��#�� ���&� � (

� �'$%�� �& �%�! $ � � � �&��#�� ���&� � �

������ �����	�� � ��� (��� (��� (������ (���� (
�� (� (���	��

�����	� ������� � ���!�%� � �!� % �&���#� (�� %���# �&���#�

8

8-32 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

��� 	
��� � ��
	 ���� ���� ��
	 ������!�� ��#"����

��
�
���� 	
��� � � ������!�� �������� ��� � $ � �������!��� �

����� 	
��� � ��!���� �������� ��� � $

“ � ������!�� �!���� � � � �� !� �� ������!��

Variables

Variables are used to store changeable information in memory. All variables are
identified by a unique name that is assigned to a specific memory location. Each variable
can be configured so that its value is saved when the program stops or be initialized
every time the program is started. There are four main categories of variables, numeric,
character, digital, and device. Calculations may refer to the value stored in any of the
numeric variables.

Analog Channels
Analog Variables: The values of analog I/O channels connected to the PLC
system and stored in the %AI and %AQ CPU memory locations. Analog variables may
be scaled in UPTime so that engineering units are used instead of the raw data. The
scaling option is selected when the analog variable is defined. Unscaled analog variables
use the raw values used by the analog modules. Scaled values are floating point values
while unscaled channels are integer values.

Digital Points
Digital points store only one bit of information as either ON or OFF. These variables are
all stored in the CPU of the system. The types of digital points are %I, %Q, %M, %G,
%T, %S, %SA, %SB, %SC.

Except for the status bits (%Sx), which must all be inputs, digital points can be either
inputs or outputs. If the Diagnostic Processor controls the value of these points they
must be defined as outputs. If some other device, such as the CPU or an input module,
changes the value of these points, then they must be defined as inputs.

State Logic digital outputs are always OFF by default. A Digital output is only ON when
a Statement in an active Step is turning it ON.

Another digital variable is the internal flag. These variables are stored in the Diagnostic
Processor and are used to communicate a status condition from one Task of the State
Logic program to another. Internal flags are defined when the Sequence editor is in use.
Press <F3> for the menu and then select the LIST option and then the “Internal Flags”
option. Flags can also be defined when searching for undefined words.

8

8-33GFK-0833 Chapter 8 State Logic Programming

Register Variables

These variables are stored in the %R registers in the CPU of the system. The Register
Variables can be configured to be either integer or floating point values. An integer type
uses one %R register and floating point type uses 2 %R registers. The Diagnostic
Processor accesses these values across the PLC backplane.

Register Variables can be either inputs or outputs, as can other variables stored in the
CPU. Designated Register Variables as outputs only if the State Logic program changes
that register value, otherwise the variable must be defined as an input. Register
Variables defined as outputs cannot be written to be the WRITE term.

Numeric Variables

Integer and Floating Point Variables are stored in the Diagnostic Processor, therefore
these variables are not designated to be inputs or outputs. When used in calculations,
the variable types may be mixed freely. If an integer variable stores a floating point
value the fractional part of the number is truncated. If a number outside the range of an
integer values is assigned to an Integer Variable, a math overflow run–time error
results.

Floating point calculations are slower than calculations with integer values. When the
types are mixed, the calculation is done as a floating point calculation.

Digital Device Variables

A Device is a unique higher level UPTime structure that treats a group of Digital Points
as one entity. A Device has many uses but is designed primarily to represent
mechanisms that cycle between two states and usually including some travel from one
state to the other.

Devices usually have two digital outputs, each causing the mechanism to go to a specific
state. Normally Devices include two inputs, each signalling that the mechanism’s travel
from one state to another is complete. A Device Diagnostic monitors the time that it
takes for the mechanism to change state once the forcing output starts the change. The
Device Diagnostic can also be setup to trigger every time the mechanism reaches either
state.

Mechanisms that can be represented by the Device structure are presses, hydraulic rams,
motors, and clamps. This structure is very flexible and can therefore be used for several
purposes. It is not necessary to use an output for the point causing a change or use an
input for points that detect the change, in fact any of the different types of digital points
can be used for any of the points that define the Device. The same digital point can be
used more than once in the Device definition. Use Devices and the Device Diagnostic
when the time from the point that one digital point changes state until another digital
point changes state is critical.

A Device is defined by filling in the blanks in a form. The Device is given a name by
filling in the name blank. The Device terminology is designed to describe an implement
that opens and closes. The blanks for the two outputs are labeled Open Actuate and
Close Actuate, and the blanks for the two inputs are labeled Open Complete and Close
Complete.

8

8-34 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Names must be defined before used in the form. The same naming capabilities are used
in the Device form as in the Diagnostic forms. A name can is attached to an I/O point by
using UPTime menus and forms. A list of defined digital points appears when the
<Ins> key is pressed. The name blank may also be a direct memory address
specification such as I76 or Q45, or a name may be a nickname used in Logicmaster
when the Ladder Logic program controlling the process was created.

In the Device form there is a normally open or normally closed designation under the
blank for each I/O name. For outputs this designation says “Actuate When On” or
“Actuate When Off”, and for the inputs the designation says “Complete When On” or
“Complete When Off”. The “Actuate When Off” designation is used for the many
mechanisms that start the operation when the output is Off.

Besides being used in the Device Diagnostic, devices can also be used in the State Logic
program. The program can test whether the Device is ON or OFF as in the following
Statement referring to a Clamp defined as a Device:

If the Clamp is ON, . . .

ASCII Variables
The ASCII variable types are Character, String, and Register. Character variables store
one character and use one byte of memory. String variables store up to 80 characters
and use 80 bytes of memory. String variables store any characters including control
characters. To use a control character in a string variable, enter the per cent character
(%) followed by the pound sign character (#) and then two digits that are the
hexadecimal number for that control character. For example:

Make Test_String equal “abc%#1Bxyz”.

is an assignment to a string variable that stores the characters a, b, and c then the escape
character and then x, y, and z.

The %R registers can also be used to store character information in the CPU. Use the
WRITE term to send characters to the %R Register locations and the READ term to
retrieve characters from those locations. Two characters are stored in every %R register.
See the sections describing the READ and WRITE terms in this manual.

DO NOT WRITE to register locations used as Register Variables and designated as
outputs. UPTime overwrites values in the output Register Variables every scan.

Time Variables
The CPU has a clock that maintains the current month, day, day of the week, hour,
minute, and second. These values are always available to the Diagnostic Processor
through the Time Variables Month, Day, Day_of_Week, Hour, Minute, and Second.

These variables represent an integer values that may be used by program statements or
accessed using the DISPLAY debug mode menu option. These are READ–ONLY values
that cannot be change from the Diagnostic Processor. To change the clock settings use
Logicmaster to change the time values in the CPU.

8

8-35GFK-0833 Chapter 8 State Logic Programming

CAUTION: Any changes to the Time Variables while the program is running, may
affect the execution of any timing Statements currently active in the program.

The current time values may also be saved using the Time Variables:

Make Start_Hour = Hour, Start_Minute = Minute, and Start_Second = Second.

Use this flexible method of saving the current time to create any type of elapsed time
timer needed. Subtract the saved variables from the current Time Variables to get the
elapsed time.

Number_Of_Hours = Hour – Start_Hour.

This Statement gives the number of hours that the clock has changed since the
Start_Hour variable has been set. Be careful to account effects of other Time variable
rollover, such as minutes going from 59 to 00.

Mathematical Calculations

Calculations may use any of the Numeric variables, Register Variables, Analog Channels,
and Time Variables. Calculations in Functional Expressions use any of the operators on
the right side of the EQUAL sign and assign a value to the variable on the left side of the
sign. In Conditional Expressions a numeric calculation may be used on either side of a
comparison operator.

Mathematical calculations are used in Functional Terms as in this assignment Term:

��!� �$ #(�&��$' ($# � ��'(��$' ($# � ��$&+�&���&�'')&� � �	
���

and in Conditional Terms as in this comparison term:

�� ��*�#�������# ()�� �����)&&�#(��#�"�� � 	
�� �$ ($ ��%$' ($# �(�%�

Numerical expressions may be much more complicated using any of the operators in
any order and nested in parenthesis to change order of evaluation or make the
expression more readable. Up to 18 levels of parenthesis may be used.

Calculations Using Analog Channels

Calculations can use analog channels as values in any calculation. A calculated value can
also be directly assigned to an analog output channel. The following Statements use
analog channels (underlined) in calculations.

If TankLevelSetpoint + 13.5 < TankLevel * 2, then go to the Restart Step.

Make MotorSpeed = Demand * SIN(CurrentLoad).

8

8-36 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Operator Precedence
Operators are executed according to the precedence listed in the operator keyword
table. The operators with the lowest precedence number are executed first. Operators
with the same precedence are executed left to right. Use parenthesis to change the order
of execution.

Grammatical Rules

 � ����� ������
 ������	� ��
 ������	������ ������	� ���� ���� �� ��
�������	�

������
 �� ��� �� ��� ������

� The When_Done_Next_Step keyword must be the only word in the Statement.
� Every Task must begin with the word “Task:” followed by the Task name.
� Every Step must begin with the word “Step:” followed by the Step name.
� Every Statement must end with a period (“.”).
� Only one “Go” is allowed per Statement, but there may be several in a Step.
� If a “Read” Term is used in a Statement, it must be accompanied by a “Go” in the

same Statement. There may be no other Terms in the Statement.
� Only one “Read” is allowed per Step.
� A “Perform” function must be the only Term in a Statement.

PID Loops
The Adatek Diagnostic Processor provides the capabilities of modulating control through
the use of the PID algorithm. Each Adatek Diagnostic Processor provides the User with
up to ten PID algorithms that are continuously executed at User selected time intervals.
These PID algorithms can be connected to field inputs and outputs, or interconnected in
cascaded and other fashions to implement the User’s desired strategy.

Those who are already familiar with traditional PID control, might want to skip the PID
Algorithm Philosophy section and go directly to the PID Summary section. The PID
Summary section is a summary of the features available with the Diagnostic System and
is probably the only section that those familiar with PID loops need read. For those Users
needing or wanting a more detailed discussion, the PID Algorithm Philosophy section
provides the details.

PID Algorithm Philosophy
The Adatek Diagnostic Processor PID employs a traditional algorithm that compares a
setpoint with a process variable to generate an error signal. The error signal is acted
upon by any or all of three parts; proportional, integral, or derivative, and the resulting
output is the action that should be taken by the process actuator.

Each of the three parts has a tuning constant associated with it that can be adjusted to
affect how the control action occurs. The Proportional part or term uses the Gain tuning
constant. Its result is simply the product of the error, the difference between the process
input and the setpoint, multiplied by the Gain. It is an instantaneous value that changes
as the error changes.

The Integral term uses the Reset tuning constant. Its result is an accumulation of the
product of the error signal times the Reset over time. Even though an error signal is
currently zero value, the integral portion may provide a result because previous error
signals have accumulated.

8

8-37GFK-0833 Chapter 8 State Logic Programming

The Derivative term uses the Rate tuning constant. The derivative term’s result
immediately allows an error signal to have its full effect, then returns the term’s value to
zero as time goes on. The amount of the Derivative term output for a given error and
the rate it decays is affected by the value of the Rate tuning constant.

The total output of the PID is the sum of the results of the three terms. Figure 1 shows a
simplified diagram of the algorithm. Typically the Proportional and Integral terms are
used more often alone without Derivative because this provides a more stable control
performance. The Derivative term allows more anticipation and quick response, but at a
penalty of possible over response and undesirable process disturbances.

Setpoint

Input

Propor tional
Term

Integral
Termn

�

�

�

�

� Derivative
Term

Σ�

�

�

� Gain

Bias

Output� Σ �

�

When the process variable differs from the setpoint, such as at the time of a step change
in the setpoint, the proportional term immediately causes the output of the loop to
change. As time passes the integral term integrates the output in the same direction. The
action of the processor hopefully brings the process variable closer to the setpoint. This
causes the error to become smaller and decreases the proportional term, but the integral
term continues to increase as it adds on the error signal over time.

Ultimately the process variable equals the setpoint and the error is zero causing the
proportional term’s value to be zero. In addition, the integral portion is no longer
changing because the error is zero, therefore the output remains constant equal to the
value the integral term accumulated. Any changes in process variable or setpoint cause
an error and the processor will integrate to adjust the output to bring the system to
equilibrium.

The addition of the derivative term, makes the output react more extremely when the
error is first detected. Then as a function of the Rate tuning constant, this reaction decays
out allowing the integral term to bring the system into balance and remove the error.

Simple PID Loop

Many applications only require a simple PID loop to achieve the desired control results.
A process variable represented by an analog input is compared with a setpoint with the
output of the PID loop being directly sent to a field actuator by means of an analog
output.

To set up this simple loop, the User needs only choose the “Define PID” function from
the “Define” menu in UPTime. The User then enters the name of the analog input, the
name of the analog output, and the various initial settings for the tuning constants.

The setpoint and tuning constants can be changed while the process is on line by using
the “Tuning” function in the Debug mode of UPTime.

8

8-38 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Complex PID Control

In some cases a more complex strategy using PID algorithms may be desired. Rather
than the output of the PID going directly to an analog output, a cascaded PID strategy
can be used in which the output of one PID goes to the input of another PID.

Process Variable 1

Setpoint 1

Process Variable 2 Manual/Auto
Station

PID 1
PID 2

�

� �

�
� �

In this example PID 1 compares process variable PV1 with the desired setpoint. The
output is then fed into PID 2 as a setpoint and is compared with process variable PV2.
Generally the second PID (PID 2) called the downstream PID, will be tuned to have a
faster response time. It will act first to move the output quickly in the right direction, and
then the slower acting upstream PID will act to integrate out the error between the
control variable and its desired setpoint.

The PID algorithm can use an analog input as its input, as in the case of PID 1 or any
floating point variable. In the case of PID 2, the input to PID 2 can be defined as the
output of PID 1. Likewise the setpoint can be a constant, or a named variable or as in this
case, an analog input. To set this strategy just use the “PID Define” menu and name the
input and setpoint.

Bumpless Transfer

Figure 2 also shows a Manual/Auto station between the PID output and the actual
analog output card. This station allows the User to place the station in Manual, and then
by means of Raise and Lower pushbuttons, change the actual value of the Manual/Auto
output. In the Auto mode, the value of the Manual/Auto station is equal to the output of
the PID.

When the M/A station is in Manual, the station value can and usually will be forced to a
value other than one that will make the setpoint equal the process variable input. If the
PID followed its normal operation, the integral term would continue to integrate
because of the error signal between the process variable and setpoint. This would leave a
difference between the PID output, which is the Auto input to the M/A station, and the
actual M/A output. Then when Auto mode is selected, this difference would cause a
jump or bump in the M/A output. This would upset the process and is desirable to avoid.

To prevent this bump from happening, the PID needs to have another mode of
operation besides its automatic mode. In this mode, called tracking, the PID output will
be maintained at what ever value it is set to, such as the M/A output in this example. The
PID will not perform its normal arithmetic, but will instead set itself so that when
tracking is removed, the PID output gradually goes to the proper value and avoids the
bump. This is called bumpless transfer.

Each of the ten PID algorithms have logical signals associated with them that use the
name Track_Mode and the actual PID name. As an example, if the User named the first
PID algorithm Tank_Level then the logical signal would be called Tank_Level
Track_Mode. When Track_Mode is made true, then the PID automatically discontinues
its normal algorithm, and begins tracking its output and preparing for bumpless transfer.

8

8-39GFK-0833 Chapter 8 State Logic Programming

The User can set the Track_Mode variable from any active Step. Using this variable, the
User can create any tracking strategy he desires.

Anti–R eset Windup
Using a cascaded PID strategy can cause the User some subtle problems. In the example
shown in Figure 2, if PID 2 has reached its maximum and PID 1 still has an error signal
because the setpoint does not equal PV1, then PID 1 would continue to integrate. The
output of PID 1 would continue to increase, but it would have no affect on PID 2 since it
is already at its maximum. However when the error signal of PID 1 reversed direction
and caused PID 1 to begin integrating in the opposite direction, PID 1 would have to
integrate below the threshold value it was when PID 2 reached its maximum before it
would have any affect on PID 2. This excess amount of output PID 1 has accumulated is
commonly referred to as reset windup.

The upstream loop, PID 1, needs to be prevented from winding up. An input called
Block_Up will transfer the PID algorithm into a mode such that it will not integrate in
the Up, towards 100%, direction. This is called anti–reset windup.

The PID will still be able to integrate down if the error signal reverses direction. That is,
if the process variable is less than the setpoint the PID will not integrate up. If the
process variable becomes greater than the setpoint the PID will integrate down. The
Block_Down input works exactly opposite.

In the case of Figure 2, if the setpoint for PID 1 is greater than PV1, PID 1 output will
continually increase. This is the setpoint for PID 2 and assume it is already greater than
PV2 and PID 2 has reached its high limit. There is no profit in PID 1 output getting larger
since PID 2 can not respond to its demand, PID 2 is already at its limit. Therefore the
User should set the PID_1 Block_Up input true and stop the PID from winding up
further.

Then when either PV2 increases or the high limit on PID 2 is changed which will allow
further action by PID 2, the PID_1 Block_Up input can be set false and PID 1 can resume
integrating. Or if PV1 rises above the setpoint in response to the control action, PID 1
will begin integrating the output of PID 1 in the lower direction which is permissible.
When PID 1 output falls below the input PV2 into the downstream PID 2, PID 2 will
integrate down below its high limit and remove PID_1 Block_Up and return the
complete loop to normal.

Using the Block_Up and Block_Down inputs any amount of cascading of PIDs can be
accomplished without reset windup occurring and with bumpless transfers from one
mode to another.

Tuning and Scaling
The Gain, Reset, and Rate constants can be adjusted to obtain the desired PID
performance, such as speed of response and over shoot. In addition, each PID has a high
limit and low limit that can be set to limit the output to less than its full range when
desired. These limits automatically employ anti–reset windup.

Within the PID algorithm, all signals are treated as being 0 to 100%. Each input and the
output and the high low limits, have scaling constants associated with them. Values
given for this parameter are converted to a percentage of the range specified by the
scaling constants.

If these constants are left blank at programming time, that input is assumed to be
already 0 to 100%. Values given for this parameter are assumed to be a percentage which
has already been scaled.

8

8-40 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

By using the scaling factors, the output can be scaled to have a live 0, that is go from
–100% to +100%. This is a valuable tool at times when cascading PIDs and the
upstream PID needs the ability to overcome and move the downstream PID across its
full range.

PID Summary
The Adatek state engine provides up to ten PID algorithms. Each algorithm is identical
and can be executed at User selected time intervals with the minimum interval being 1
second. The PID algorithms can each be independent or can be cascaded together with
the output of one PID becoming the input to another. Each PID features built in
bumpless transfer and anti–reset windup features.

Each PID is initialized in the Program mode of UPTime using either the LIST or DEFINE
option from the program mode menu. PID Loops are tuned on–line in the Debug
mode. Each PID loop is given an alpha numeric name which can be up to twenty
characters in length. All references to the PID loop use this name.

To start a PID Loop use the Start_PID keyword. For example the statement:

Start_PID Tank_Level.

starts the PID Loop name Tank_Level.

To stop a PID Loop use the Stop_PID keyword. For example the Statement:

Stop_PID Tank_Level with 10.

stops the PID Loop named Tank_Level and sets the output to 10.

PID Parameters

Each PID loop is defined by the values of several parameters. These parameters are
initialized when the PID loop is first defined, and can be changed by program
statements during program execution or through the tuning forms provided in debug
mode. The program refers to these parameters by specifying the name of the PID loop
followed by the parameter keyword. For example, the UPTime program statement:

Make Tank_Level Setpoint = 45.

sets the setpoint of PID loop named Tank_Level to 45.

The following table lists each of the parameters with a description and keyword to
identify the parameter in an UPTime program statement.

8

8-41GFK-0833 Chapter 8 State Logic Programming

Table 8-7. PID Loop Parameters

Parameter Keyword Description

Action Direct or
Inverse

Loop_Action Set to D or I to make PID integrate from 0 toward 100% if
the setpoint> process variable (direct acting) or process
variable > setpoint (inverse acting.)

Update Time Update Time interval between updates for this PID.

Gain Gain Gain for the PID

Reset Reset Reset constant for this PID

Rate Rate Rate constant for this PID

Setpoint Setpoint Name of the variable acting as setpoint or a value to use
as the initial value.

Setpoint
Max Scale

SP_Max Engineering unit value for 100% scale or blank to use
100%

Setpoint Min Scale SP_Min Engineering unit value for 0% scale or blank to use 0%

Process Variable Process_Var Name of the process variable

Process Var
Max Scale

PV_Max Engineering unit value for 100% scale or blank to use
100%

Process Var
Min Scale

PV_Min Engineering unit value for 0% scale or blank to use 0%

Control Variable Control_Var The output of the PID loop – analog output channel or
floating point variable.

Control Var
Max Scale

CV_Max Engineering unit value for 100% scale or blank to use
100%

Control Var
Min Scale

CV_Min Engineering unit value for 0% scale or blank to use 0%

Bias Bias Amount to be added to the Output

High Limit High_Limit Maximum allowable value for the Output

High Limit
Max Scale

HL_Max Engineering unit value for 100% scale or blank to use
100%

High Limit
Min Scale

HL_Min Engineering unit value for 0% scale or blank to use 0%

Low Limit Low_Limit Minimum allowable value for the Output.

Low Limit
Max Scale

LL_Max Engineering unit value for 100% scale or blank to use
100%

Low Limit
Min Scale

LL_Min Engineering unit value for 0% scale or blank to use 0%

There are also PID status and command bits associated with each PID loop. These bits
indicate information about the status of the PID loop or may be used to control the PID
loop. To use these bits in an UPTime program, the PID name is used followed by the
keyword for the bit.

The UPTime statement:

If Tank_Level High_Limit_Status is true, go to Manual_Mode Step.

makes Manual_Mode the active Step of the Task if the output of Tank_Level PID loop is
at the high limit value.

8

8-42 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

The UPTime statement:

Set_Bit Tank_Level Track_Mode.

makes the Tank_Level PID loop tack the output so that there is no error signal.

Table 8-8. PID Command and Status Bits

Status or
Command Bit

Keyword Description

Block Up Block_Up When this bit is set, the PID does not integrate up for a
positive error signal. Used for Anti_Reset Windup.

Block Down Block_Down When this bit is set, the PID does not integrate down
for a negative error signal. Used for Anti_Reset Wind-
up.

Track Mode Track_Mode When this bit is set, the PID tracks the output so that
no error is calculated. Used for a bumpless transfer to
automatic mode.

High Limit Status High_Limit_Status When this bit is set, the PID output has reached the
high limit parameter or Block_Up for this PID is true.
This is a read–only bit.

Low Limit Status Low_Limit_Status When this bit is set, the PID output has reached the
low limit parameter value or Block_Down is true for
this PID loop. This is a read–only bit.

PID Inputs

There are 5 inputs to the PID algorithm. Two of the inputs are the process variable and
setpoint. These are either analog inputs or calculated real variables such as the output of
another PID. The setpoint can also be a constant which can be adjusted on line from the
PID tuning menu available in the UPTime Debug Mode.

The two analog inputs, process variable and setpoint, are treated as 0 to 100% signals
inside the algorithm for mathematical purposes. Each input and output has a maximum
and minimum scale parameter associated with it. When the User programs the PID, he
sets the minimum engineering unit which will correspond to 0% and the maximum
engineering unit that will correspond to 100% for that input. The PID algorithm will
internally scale the inputs, generating a percentage of the scaling range before they are
used. If the minimum and maximum scale parameters are left blank, the algorithm
assumes that input is a percentage already scaled 0 to 100%.

The other three inputs are digital values and can be used to implement complex control
strategies. They can be actuated by any active Step of a Task. They have been assigned
names based upon the PID Loop with which they are associated. These names are
Track_Mode, Block_Up and Block_Down. These inputs are controlled with the Set_Bit
and Clear_Bit keywords.

If a PID Loop is named Tank_Level then the UPTime program statement:

 Set_Bit Tank_Level Track_Mode.

puts PID loop Tank_Level into tracking mode.

8

8-43GFK-0833 Chapter 8 State Logic Programming

The Track_Mode input when set, puts the PID loop into a track mode where the output
is not changed by the PID, and the algorithm is set up to perform a bumpless transfer
when the Track_Mode input goes back to being false. This signal would be used with a
Manual/Automatic station to obtain Manual/Auto bumpless transfer.

The other two inputs, PID_Block_Up and PID_Block_Down limit the PID loop to
integrating in only one direction and tracking in the other direction. For example, when
Block_Up is true, the PID is allowed to integrate down, towards zero, when the error
signal, the difference between setpoint and process variable, is negative. If the error
signal is positive however, the output will not change and the integral portion will not be
allowed to wind up. Block_Down works exactly opposite.

These two inputs can be used to provide Anti–Reset Windup when one PID is cascaded
into another PID. If during the course of operation the down stream PID reaches the
point it can no longer integrate in response to the upstream PID’s output, as when it
reaches full scale, then any further integrating of the upstream PID would be counter
productive. These inputs can stop that excess integration in the counter productive
direction while allowing immediate response in the opposite direction which is the
direction that will have an affect on the down stream PID.

Using the Track, Block_Up and Block_Down signals allow the User to build very
sophisticated controls. If all that is needed is a simple single loop controller, these inputs
can be ignored. A more detailed discussion of these inputs and their use is in the PID
Algorithm Philosophy Section.

PID Output

The PID outputs consist of a floating point value output that can either be assigned
directly to an analog output, or to a floating point variable for use such as the input to
another PID or in some calculation. Internal to the PID, the output’s range is 0 to 100%.
Like the inputs, the output also has a scaling constant that allows the User to set the
maximum and minimum scale. This allows the User to make the output be a –100% to
+100% controller, or any other engineering units desired. If the maximum and
minimum scale constants are left blank, the PID output is 0 to 100%.

The other three outputs are digital variables that indicate the status of the PID algorithm.
They are Track_Mode, HL_Status and LL_Status. The two limit outputs are true when
either the PID has reached its limit or the Block_Up or Block_Down inputs are true.

The outputs may be used in the UPTime program by specifying the PID name followed
by the appropriate keyword. For example, the UPTime program statement:

If Tank_Level LL_Status is true, go to the Reset Step.

makes Reset the active Step of this task.

Tuning Constants

The PID algorithm also has several adjustable tuning constants. These include the Gain,
Reset and Rate, the high limit and low limit, and a bias value. The bias is a value that is
added to the output at all times and can be used to insure a minimum output from the
PID.

The high and low limits set maximum and minimum values, within the scale maximum
and minimum, that the loop output will not exceed. When these limits are reached, the

8

8-44 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

appropriate status output is set, and anti–reset windup techniques automatically go into
affect for that PID.

Every PID also can be selected to be either a direct acting or inverse acting loop. This is a
parameter selected at programming time. A direct acting loop will integrate from 0 to
100% if the setpoint is greater than the process variable. A reverse acting loop will
integrate from 0 to 100% when the process variable is greater than the setpoint. All other
features are exactly the same whether the PID is in the direct or inverse mode.

The following is a summary of User selected values. These values are all entered in the
PID Loop Configuration form displayed for initializing a PID loop. PID loops are
initialized in program mode using the LIST and DEFINE options from the program
mode menu.

Language Structure Summary

Notational Conventions

The following notational conventions are used throughout this section to rigorously
define the required structure:

Table 8-9. Language Structure Notational Conventions

Underline – Identifies Keywords

[] – Encloses terms which are optional

{ } – Encloses terms which may be repeated

< > – Encloses a generic description of a term

| – Indicates that either the term before or after may be used at
 this point.

() – Group Terms Together

Program Hierarchy

Term Syntax

Program { <Sequence> }

Sequence { <Task> }

Task Task: <Task Name> [StartIn_Last_Step]{ <Step> }

Step Step: <Step Name> [Max_Time <Numeric Constant>][{ <Statement>}]

Statement ([<Conditional Expression>] <Functional Expression>)
(<Functional Expression> [<Conditional Expression>])

8

8-45GFK-0833 Chapter 8 State Logic Programming

Functional Structures

Term Syntax

Functional Expression { Functional Term }

Functional Term Functional Term =< Control Sequences Term > |
< Control Diagnostics Term > |
< Turn On Discrete Term > |
< Assign Values Term > |
< Change Active Steps Term > |
< Send Serial Information Term > |
< PID Control Term > |
< Change Serial Port Configuration Term > |
< Execute Perform Functions Term > |
When_Done_Next_Step

Turn On Discrete Term Actuate { <Digital I/O Name> |
< Internal Flag Name > }

Assign Values Term < Make Term > |
< Math–Assignment Term > |
< Set_Bit/Clear_Bit Term >

Make Term Make (< Numeric Assignment Term > |
< Character Assignment Term > |
< String Assignment Term>)

Numeric Assignment Term (<Numeric Variable Name> | <Analog I/O Name>)
equal < Numeric Value >

Character Assignment Term <Character Variable Name> equal <Character Value>

String Assignment Term <String Variable Name> equal <String Value>

Math–Assignment Term < Add Term > |
< Subtract Term > |
< Multiply Term > |
< Divide Term >

Add Term Add (< Numeric Constant > | < Variable Name>)
< Variable Name >

Subtract Term Subtract (< Numeric Constant > | < Variable Name >
)

< Variable Name >

Multiply Term Multiply < Variable Name >
(< Numeric Constant > | < Variable Name

>)

Divide Term Divide < Variable Name >
(< Numeric Constant > | < Variable Name >)

Set_Bit/Clear_Bit Term (Set_Bit | Clear_Bit)
(<Integer Variable Name>
<Integer Number>)

Change Step Term (Go <Step Name>) |
(Make <Task Name> equal <Step Name>) |
((Suspend_Task | Resume_Task) <Task Name>

8

8-46 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Functional Structures (continued)

Term Syntax

Send Serial Data Term Write” <Serial Data> ”
[<Port Name> | R_Register <Number>]

PID Loop Control Term <Start PID Term> | <Stop PID Term>

Start PID Term Start_PID <PID Loop Name>

Stop PID Term Stop_Pid <PID Loop Name>
[with <Numeric Constant>]

Port Configuration Term Set_Commport <Port Name> <Parameter Value List>

Perform Function Term Perform <F unction Name>
with <Parameter/Value List>

Control Sequences Term (Start_Sequence<Sequence Name>) |
(Stop_Sequence < Sequence Name >) |
End_Sequence

Control Diagnostics Term (Enable_Diagnostic <Diagnostic Name>) |
(Disable_Diagnostic <Diagnostic_Name >)

8

8-47GFK-0833 Chapter 8 State Logic Programming

Conditional Structures

Term Syntax

Conditional Expression < Test Conditional > |
< Character Input Conditional >

Character Input Read <Variable Name>
[from <Communications Port Name> |
(R_Register <Register Number> for Integer Number>)]

Test Conditional If [NOT] <Conditional Term>
[{ (OR | AND) [NOT] <Conditional Term> }]

Conditional Term <Digital Test Conditional> |
<T imer Test Conditional> |
<Relational Test Conditional> |
<Cur rent Step Test Conditional>

Digital Test Conditional (<Digital I/O Name> | <Flag Name> | <Device Name>)
[{ (AND | OR)
(<Digital I/O Name> | <Flag Name> | <Device Name>) }]
(ON | OFF)

Timer Conditional (<Numeric Constant>|<Integer Variable Name>)
seconds

Current Step Conditional <Task Name> (equal | not_equal)
<Step Name>

Relational Test Conditional <Numeric Relational Term> |
<Character Relational Term> |
<String Relational Term>

Numeric Relational Term <Numeric Value> <Relational Operator>
<Numeric Value>

Character Relational Term <Character Value>
(equal | notequal) <Character Value>

String Relational Term <String Value>
(equal | notequal) <String Value >

8

8-48 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Value Expressions

Term Syntax

Numeric Value <Numeric Constant> |

<Calculation> |

<Numeric Variable Name> |

<Analog I/O Name> |

<PID Value>

Calculation (< Numeric Value > < Operator >

< Numeric Value >) |

< System Functions > (< Numeric Value >)

System Functions SIN | COS | TAN | ARCTAN | SQRT | EXP | LN |RANDOM

Numeric Constant <Floating Point Number> | <Integer Number>

PID Value <PID Loop Name> <PID Parameter Keyword>

Character Value < Character Variable Name > | ‘ <Character> ’

String Value <String Variable Name > |

“ < Character String > ” – Up to 80 characters

A

A-1GFK-0833

Appendix A Specifications

This sections has specifications for the Diagnostic Processor Module, and the UPTime
software. In addition are lists of standards met by the Diagnostic System and the I/O
and register capabilities of the Diagnostic System.

Table A-1. UPTime Specifications

Sequences 254

Tasks 254

Steps Per Task 255

Maximum Number of Variables 3000

Maximum Number of Steps 2500

Statements per Step Unlimited

Devices 100

Integer Variables (range –32768 to +32767) 1000

Floating Point Variables (range +/– 1.175494E–38 to
+/– 3.402823E+38)

1000

String Variables 100

String Variable Size 80 Characters

Character Variables 64

PID Loops 10

Internal Flags 80

Number of Timers Unlimited

Timer Resolution 1/100 second

Number of Characters per Write Term 512

Step Changes Listed in Trace Display 80

Histogram Size 255 Entries

Force Table Size 32

Monitor Table Size 6 Entries

Monitor Tables 10

A

A-2 Series 90-70 Diagnostic System User’s Guide – July 1993 GFK-0833

Table A-2. Diagnostic Processor Specifications

Serial Ports 2 RS–232/422/485

Memory Backup Battery 3 Volt Lithium

Battery Shelf Life 10 years

Battery Memory Retention with Power OFF 6 months nominal

Operating Temperature 0 to 60oC

Storage Temperature –40 to 85oC

Humidity (non–condensing) 5–95%

Vibration 3.5 mm, 5–9 Hz:

1.0 G 9–150 Hz

Shock 15 G’s 11 msec

Table A-3. Meets or Exceeds these Standards

IEC 485, 380

JIS C 0912,
JIS C 0911

DIN 435, 380

UL 508, 1012

CSA C22.2 No. 142,

C22.2

NEMA/ICS 2–230.40

ANSI/IEE C–37.90A–1978

VDE 805, 806, 871–877

FCC 15J Part A

VME Supports VME
Standard C.1

A

GFK-0833 A-3Appendix A Specifications

Table A-4. 90-70 Diagnostic Processor I/O and Register Specifications

731/732 771/772 781/782 Diagnostic
Processor

%I 512 2048 12288 1024

%Q 512 2048 12288 1024

%AI 8K 8K 8K 256

%AQ 8K 8K 8K 256

%T 256 256 256 256

%M 2048 4096 12288 2000

%G 1280 1280 1280 1280

%S 128 128 128 128

%SA 128 128 128 128

%SB 128 128 128 128

%SC 128 128 128 128

%R 16K 16K 16K 2048

Index

Index-1GFK-0833

A
Action, 2-3 , 7-4

Add, 8-6 , 8-17 , 8-45

Addition, 8-19

ALARM, 3-2 , 7-5

Alarm, 6-11

Alarm List, 4-10 , 6-11 , 7-5

AM, 8-21

Analog, 4-11

Analog Channels, 8-32

Analog Diagnostic, 7-2

Analog Scaling, 5-18

AND, 8-11 , 8-20 , 8-47

Anti–Reset Windup, 8-39

ARCTAN, 8-19

ASCII Variables, 8-34

Automatic Execution, 6-9

Automatically Execute, 5-19

B
Battery, 5-3 , 5-5

BCD, 8-26

Bitwise_And, 8-19

Bitwise_Or, 8-19

Bumpless Transfer, 8-38

C
Calculations, 8-35

CCM, 5-2 , 5-8 , 5-9

CCM Port, 6-8

CCM Protocol Listing, 6-7

Character, 8-34

Character Variables, 3-13 , 8-14

Clear_Bit, 8-7 , 8-17 , 8-45

Clock, 5-20

Communication Functions, 2-10

Conditional, 3-11 , 8-2 , 8-10

Conditional Terms, 5-17

Configuration, 4-6 , 5-4 , 5-19 , 6-8

Continuous Sequence, 3-2 , 3-3 , 4-15

Control Capabilities, 2-11

COS, 8-19

CPU, 2-12 , 5-1 , 5-3 , 5-12 , 5-14 , 6-4 , 8-14

Create Mode, 6-1

Cross Reference List, 6-7

Custom Message, 2-3 , 7-4

D
Data List, 6-6

Date, 8-30

Day, 5-20 , 8-34

Day of the week, 5-20

Day_of_Week, 8-34

Debug Mode, 3-2 , 4-9 , 4-21 , 6-8

Default Message, 2-3 , 7-4

Define_Table, 8-23

DEFNICK, 7-2

Device, 2-3 , 4-12

Device Diagnostic, 2-4 , 4-12 , 7-3

Devices List, 6-7

Diagnostic Forms, 2-4 , 7-1

Diagnostic List, 6-7

Diagnostic Message Port, 6-9

Diagnostic Port, 5-2 , 5-8

Diagnostic Processor, 1-1 , 2-12

Diagnostic Strategy, 1-1 , 3-1

Diagnostics, 3-1 , 6-1 , 7-1 , 8-4

Digital Device, 8-33

Digital Diagnostic, 7-3

Digital Points, 8-32

DISABLE_DIAGNOSTIC, 7-5 , 8-4 , 8-46

Discrete, 5-12

Divide, 8-6 , 8-17 , 8-45

Division, 8-19

DOS, 1-3

Download, 4-20 , 6-4 , 6-10

Index

Index-2 GFK-0833

E
Editor, 4-20

ENABLE_DIAGNOSTIC, 7-5 , 8-4 , 8-46

End_Sequence, 3-3 , 8-4 , 8-18 , 8-46

Energize, 8-17

EQUAL, 8-13 , 8-19 , 8-47

Error, 4-9 , 6-9

Error Setup, 5-19

EXP, 8-19

Exponential, 8-19

Expressions, 2-9 , 8-2

F
Fault Table, 5-3 , 5-5 , 6-11

Fault Tables, 4-9

Fill–In–The–Blank, 8-4

Fill–In–The–Blank Diagnostics, 2-1 , 3-1 ,
6-1

Fill–In–The_Blank Diagnostics, 4-7

Filler Words, 3-11 , 8-2 , 8-14 , 8-22

Finite States, 2-5 , 2-7

Floating Point, 5-13

Floating Point Variable, 3-13 , 8-14

For, 8-13

Force, 6-10

Formatting, 8-9

Friday, 8-21

FROM, 8-13 , 8-21

Function Key, 6-12

Functional, 3-11 , 8-2 , 8-45

Functional Expressions, 8-3

Functional Terms, 5-17

G
GO, 2-10 , 8-7 , 8-14 , 8-17 , 8-36 , 8-45

Grammatical Rules, 8-36

Greater Than, 8-20

H
Halt, 8-17

Hardware Requirements, 1-3

HELP, 1-4 , 4-7

Hierarchy, 8-1

Histogram, 4-10 , 6-11 , 7-6

History, 3-2

Hot Key, 4-6 , 6-13

Hour, 5-20 , 8-34

I
I/O Map, 6-6

If, 8-11

Inactive, 8-21

INPUT, 2-12

Input/Output, 5-13

Installation, 1-4

Instructional Sequences, 3-3 , 3-14 , 4-27

Integer Variables, 3-13 , 8-14

Internal Flag, 3-13

K
Keywords, 3-11 , 8-2 , 8-14 , 8-16

L
Less Than, 8-20

List, 6-2

LN, 8-19

Log, 6-8

Logicmaster, 2-2 , 4-6 , 5-4 , 5-20 , 6-4 , 7-2 ,
8-15

M
Make, 8-5 , 8-17 , 8-45

Mathematical Calculations, 8-35

Max_Time, 8-21

Memory, 5-12

Index

Index-3GFK-0833

Minute, 5-20 , 8-34

Modulus, 8-19

Monday, 8-21

Monitor, 6-10

Month, 5-20 , 8-34

Multiplication, 8-19

Multiply, 8-6 , 8-17 , 8-45

N
Names, 2-2 , 3-9 , 7-1 , 8-2 , 8-14

Nicknames, 2-2 , 6-4 , 7-2 , 8-15

NOT, 8-11 , 8-20 , 8-21 , 8-47

NOT_EQUAL, 8-13 , 8-20 , 8-47

Numerical Data Types, 8-31

Numerical Variables, 8-33

O
Off, 8-21

On, 8-21

Operator Precedence, 8-36

OR, 8-11 , 8-20 , 8-21 , 8-47

OUTPUT, 2-12

P
Password, 6-12

Perform, 8-10 , 8-17 , 8-22 , 8-36 , 8-46

PID, 8-9 , 8-36 , 8-48

PID Parameters, 8-40

PLC, 2-12

PLC I/O Ranges, 5-15

PLC Type, 5-15

PM, 8-21

Power Up, 5-15 , 5-19 , 6-9

Print, 6-4

Printer Log, 6-8

Programming Port, 5-8 , 6-9

R
R_Registers, 8-13 , 8-21 , 8-46

RANDOM, 8-19

READ, 8-13 , 8-34 , 8-36 , 8-47

Register, 5-12 , 8-8 , 8-34

Register Variables, 8-33

Reset Switch, 5-3

Resume_Task, 8-7 , 8-18 , 8-45

S
Saturday, 8-21

Scaling, 4-11 , 8-39

Scan, 2-10 , 3-6 , 5-15

Second, 8-34

SECONDS, 5-20 , 8-11 , 8-21 , 8-47

Sequences, 2-3 , 2-8 , 3-2 , 3-3 , 4-15 , 7-4 ,
8-3 , 8-44

Serial Cables, 1-3 , 5-7 , 5-10

Serial Communication, 5-6

Serial Port, 5-2 , 5-7 , 5-8 , 6-2 , 6-9 , 8-10

Serial Port Parameters, 5-9

Set_Bit, 8-7 , 8-17 , 8-45

Set_Commport, 5-7 , 5-9 , 6-2 , 8-10 , 8-17 ,
8-46

Setup, 6-11

Shift_Register, 8-27

Simulation Mode, 5-20 , 6-9

SIN, 8-19

Slot, 5-4

SQRT, 8-19

Start_PID, 8-9 , 8-17 , 8-46

Start_Sequence, 3-3 , 8-4 , 8-18 , 8-46

State Diagrams, 2-6

State Logic, 2-4 , 3-2

State Logic Hierarchy, 2-7

State Logic Theory, 2-5

Statements, 2-9 , 3-5 , 3-10 , 4-16 , 5-17 , 8-2
, 8-3 , 8-44

Steps, 2-9 , 3-4 , 8-2 , 8-3 , 8-17 , 8-44

Index

Index-4 GFK-0833

Stop_PID, 8-9 , 8-17 , 8-46

Stop_Sequence, 8-4 , 8-18 , 8-46

String, 8-28 , 8-34

String Variables, 3-13 , 8-14

Subtract, 8-6 , 8-17 , 8-45

Subtraction, 8-19

Sunday, 8-21

Suspend_Task, 8-7 , 8-17 , 8-45

T
TAN, 8-19

Tasks, 2-7 , 2-8 , 3-4 , 4-16 , 8-1 , 8-3 , 8-17 ,
8-44

Technical Support, 1-4

Terminal Log, 4-9 , 7-5

Thursday, 8-21

Time, 8-30

Time Variables, 3-13 , 8-34

Timer, 8-11

Trace, 6-10

Transition, 2-5 , 3-5

Translate, 6-4

Triggered Sequences, 3-2 , 3-14 , 4-25

Tuesday, 8-21

Tuning, 8-39

Tuning Constants, 8-43

U
UNINSTALL, 1-4

Update Rates, 5-18

User Input, 8-30

User Menu, 8-30

V
Variable Diagnostic, 7-3

Variables, 3-12 , 8-8 , 8-31 , 8-32

View, 6-10

W
Wednesday, 8-21

When_Done_Ne xt_Step, 4-29 , 8-10 , 8-18 ,
8-36

With, 8-21

Words, 8-2 , 8-14

WRITE, 8-8 , 8-18 , 8-34 , 8-46

	gfk0833.pdf
	Chapter 1 Getting Started
	Overview
	How to Use this Manual
	Notational Conventions:
	Brief Description of the Manual Sections
	UPTime Hardware Requirements
	Serial Cable
	Mini–Converter Kit
	Mini Converter Kit Adapters
	UPTime Installation
	Getting Help

	Chapter 2 Diagnostic Strategy Overview
	Fill-in-the-Blank Diagnostics
	Diagnostic Names
	UPTime Names
	Logicmaster Nicknames
	Direct Memory Reference
	Triggering Value
	Actions
	Default Message
	Custom Message
	Sequence
	The Device Structure
	Creating a Device
	The Device Diagnostic

	State Logic
	State Logic Theory
	The Concept of Finite States
	Developing State Logic Programs with UPTime
	State Logic Hierarchy
	Sequences
	Tasks – A Collection of Steps
	Steps – The Building Blocks of a Task
	Statement – The Command Set for Step Descriptions
	Expressions
	Scan Overview
	Communication Functions
	Control Capabilities
	Output OFF By Default
	Diagnostic Processor to CPU Communications

	Chapter 3 Creating A Diagnostic Strategy
	Overview
	Creating Diagnostics
	Diagnostics Only Strategy
	Diagnostics vs. State Logic

	Creating State Logic Sequences
	Creating Sequences to Follow System Operations (Continuous Sequences)
	Outline the Application
	Writing The Program
	Creating Diagnostic Action Sequences (Triggered Sequences)
	Creating Interactive Informational Sequences (Instructional Sequences)

	Chapter 4 Tutorial
	Tutorial Overview
	Lesson Preview
	Tutorial Procedure

	The Sample Application
	Indexing Conveyor
	Cutting Lubrication System
	Drill
	Clamp

	Set up Series 90–70 System for the Lessons
	Series 90–70 System Setup
	UPTime Orientation and Setup

	LESSON 1 – Creating a Simple Diagnostic Strategy
	Define a Digital Point
	Create a Fill–in–the–Blank Diagnostic
	Send Diagnostic Strategy to Diagnostic Processor
	Introduction to Debug Mode
	Debug Mode Screen
	Terminal Log
	Error and Status Windows
	Executing the Simple Diagnostic Strategy
	Make the Diagnostic Trigger
	Debug Mode Diagnostic Functions

	LESSON 2 – Adding More Diagnostics
	Analog Diagnostic
	Variable Diagnostic
	Device Diagnostic
	Define the Digital Points
	Define the Device
	Define the Diagnostic
	Execute the Strategy

	Creating State Logic Continuous Sequences
	Outline the Application
	Identify the Sequences and Tasks
	Identify the Steps of the Tasks
	Identify the Transition Statements
	Identify the Diagnostic Statements

	LESSON 3 – Create State Logic Programming (Continuous Sequences)
	Load Simulation Program
	Add and Execute a Sequence
	Using the Editor
	Download Project
	Debug Mode

	LESSON 4 – Add Diagnostic Logic to Framework Logic
	Indexing Conveyor
	Part Delayed
	PartAtLoad
	Max_Time Diagnostic
	Drill
	Drill Bit Lubrication System
	Execute DRILL2 Diagnostic Strategy

	LESSON 5 – Triggered Sequence
	LESSON 6 – Instructional Sequences

	Chapter 5 Diagnostic Processor
	Diagnostic Processor Description
	Physical Description
	Operational Description
	Installation and Maintenance
	Selecting the Right Slot
	Inserting the Diagnostic Processor
	Configuration
	Battery
	Troubleshooting
	Status LED is not ON Steady
	Reset Blinks Port 1 or Port 2 LED
	Serial Communication Problems
	Serial Communications
	Serial Port Setup
	Serial Cables

	Diagnostic Processor/CPU Interface
	CPU Memory Accessed by the Diagnostic Processor
	Input/Output Memory Designation
	Diagnostic Processor Memory Capacities
	CPU Selection
	Clearing Outputs at Power Up

	Diagnostic Processor Scan Considerations
	Steps of the Scan Cycle
	Program Scan
	Analog Scaling and Update Rates

	Other Diagnostic Processor Setup Options
	Run–time Error Setup
	Automatically Start Program Execution
	Simulation Mode
	Setting the System Clock

	Chapter 6 UPTime Menus and Keys
	UPTime Menu System
	Create Mode
	Diagnostics
	Variables
	Define
	Project
	Quit
	Debug Mode
	Project
	Diagnostics
	Monitor
	View
	Trace
	Force
	Alarm
	Display
	Change
	PID Loops
	PLC I/O
	Fault
	Setup

	Keyboard Definitions

	Chapter 7 Fill-in-the-Blank Diagnostics
	Creating Diagnostics
	Name Blank in Diagnostic Forms
	UPTime Names
	Logicmaster Names
	Direct Memory Reference
	Triggering Value Blank in Diagnostic Forms
	Analog Diagnostic
	Digital Diagnostic
	Variable Diagnostic
	Device Diagnostic
	Action Blank
	Default Message
	Custom Message
	Sequence

	Controlling Diagnostics with State Logic
	Online Diagnostic Features
	Terminal Log
	Menu Options

	Chapter 8 State Logic Programming
	Program Structure
	Language Notational Conventions
	Functional Expressions
	Controlling Sequences
	Controlling Diagnostics
	Turning ON Discrete (Actuate Term)
	Assigning Values (Make, Math–Assignment, Set_Bit/Clear_Bit)
	Make Term
	Math–Assignment Term
	Set_Bit/Clear_Bit Term
	Changing Active Steps Term
	Sending Character Data (Write Term)
	PID Loops Control Terms (Start_PID, Stop_PID)
	Change Serial Port Configuration Term
	Perform Function Term
	When_Done_Next_Step

	Conditional Expressions
	Test Conditional
	Digital Conditional
	Timer Conditional Term
	Relational Conditional Term
	Current Step Conditional Term
	Complex Conditionals
	Character Input Conditional

	The Words of the State Logic Program
	Names
	UPTime Names
	Logicmaster Names
	Direct Memory Reference
	Keywords
	Filler Words

	Perform Functions
	Table Functions
	Tables in General
	Define_Table
	Entering and Retrieving Table Values
	Initializing Tables
	Copy_Table_To_Table
	Table Uses
	BCD I/O Representation
	General
	BCD_In_Convert
	Output_BCD_Convert
	Shift_Register
	String Manipulation
	General
	Operations
	Specialized Perform Functions
	Display Date and Time
	Get User Input
	User Menu

	Miscellaneous Programming Operations
	Numerical Data Types
	Variables
	Analog Channels
	Digital Points
	Register Variables
	Numeric Variables
	Digital Device Variables
	ASCII Variables
	Time Variables
	Mathematical Calculations
	Calculations Using Analog Channels
	Operator Precedence
	Grammatical Rules
	PID Loops
	PID Algorithm Philosophy
	PID Summary

	Language Structure Summary
	Program Hierarchy
	Functional Structures
	Conditional Structures
	Value Expressions

	Appendix A Specifications
	Index

