PDF tiqme s surir coupv

GFK-0256

Buy GE Fanuc Series 90-30 NOW!

GE Fanuc Manual Series 90-30

MegaBasic Language Reference and Programmer’s
Guide Reference Manual

1-800-360-6802
sales@pdfsupply.com

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

FANUC

GE Fanuc Automation

Programmable Control Products

MegaBasic Language
Reference and
Programmer’s Guide

Reference Manual

GFK0256D September 1994

]] GFL-002
Warnings, Cautions, and Notes

as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in this
equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding
and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

© Copyright 1992 by Christopher Cochran.

Allrightsreserved. No part of this manul nor the software it covers may be reproduced
or copied in any form or by any means — graphic, electronic, magnetic, or mechanical,
including photocopying, recording, taping, or information retrieval systems — without
written permission from the author.

© Copyright 1992-1994 GE Fanuc Automation North Ameirca, Inc.
All Rights Reserved

Preface

MegaBasic is a powerful implementation of the BASIC language, which runs under
twelve different operating systems and a host of different hardware configurations. One
of the strengths of MegaBasic is that the language can be extended to support the
underlying hardware.

Content of this Manual

GFK-0256

Chapter 1. Introduction to MegaBasic: Provides an introduction to the MegaBasic
language.

Chapter 2. MegaBasic Commands: Describes all the MegaBasic commands. It is
organized into five sections: introduction, program entry and retrieval, editing and
alteration, execution control and debugging, and information and control.

Chapter 3. Representing and Manipulating Numbers: Describes the concepts and use
of numeric constants, variables, arrays, expressions, operators, functions, vector
processing, and floating point systems.

Chapter 4. Representing and Manipulating Strings: Describes strings and how to
represent and manipulate them in your programs.

Chapter 5. Data Definition and Assignment Statements: Describes statements which
define data structures and move computational results between variables.

Chapter 6. Program Control Statements: Describes program control statements which
allow you to change the course of execution to suit your processing requirements.

Chapter 7. 1/0 and System Interaction: Describes statements for accessing data files, for
character device input and output, and for interacting with external system processes
and services.

Chapter 8. User-Defined Subroutines: Describes concepts and techniques for building
and using subroutines.

Chapter 9. MegaBasic Built-in Function Library: Describes the built-in functions in
MegaBasic.

Chapter 10. Multiple Module Programs: Describes MegaBasic package concepts and
supporting statements.

Appendix A. Error Messages: Describes error types and messages reported by
MegaBasic.

Appendix B. Other Operating Systems: Describes how MegaBasic under other
operating systems differs from the MS-DOS implementation described in chapters 1
through 10 of this manual.

Appendix C. Utilities and Other Software: Describes programs external to MegaBasic
that perform functions useful to the development process.

Appendix D. Miscellaneous Information: Describes MegaBasic enhancements,
reserved words and characters, code conversion tables, converting non-integer
programs to use integers, and loading earlier programs.

Preface

Related PCM Publications

For more information, refer to these publications:

Series90™ ProgrammableCoprocessor Moduleand SupportSoftware User’s Manual

(GFK-0255): provides a general overview of the capabilities and operation of the Series

90 PCM modules.

Series90™ PCM Development Software (PCOP) User’s Manual (GFK-0487): describes
how to use the PCM development software (PCOP) to develop applications for the

PCM.

Series90™ Quick ReferenceGuide (GFK-0260): outlines the steps involved in installing

and operating the PCM.

Series90™ PCM Support Software (TERMF) Quick ReferenceGuide (GFK-0655): outlines

the steps involved in installing and operating TERMF

Series90™ PCM Development Software (PCOP) Quick ReferenceGuide (GFK-0657):

outlines the steps involved in installing and operating PCOP.

Series90 ™ -70 PCM Important Product Information (GFK-0351).
Series90™ PCM Programmer Important Product Information (GFK-0352).
Series90 ™ -30 PCM Important Product Information (GFK-0494).

Related Series 90 Publications

For more information, refer to these publications:
Series90 ™ -70 ProgrammableController InstallationManual (GFK-0262).

Logicmaster™ 90-70 Programming SoftwareUser’s Manual (GFK-0263).
Series90 ™ -70 ProgrammableControllerReference Manual (GFK-0265).
Series90 ™ -30 ProgrammableController InstallationManual (GFK-0356).
Series90™ -30/90-20 ProgrammableControllersReference Manual (GFK-0466).

Logicmaster™ 90 Series 90-30 and 90-20 Programming Software User’s Manual
(GFK-0467).

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Preface

We Welcome Your Comments and Suggestions

At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader’s Comment Card located on the next page.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alamm Master CIMSTAR Helpmate PROMACRO SeriesSix
CIMPLICITY GEnet Logicmaster Series One Series90
CIMPLICITY90-ADS Genius Modelmaster SeriesThree VuMaster
CIMPLICITYPowerTRAC Genius PowerTRAC ProLoop Series Five Workmaster

MegaBasicand MegaBasic Language Products are trademarks of Christopher Cochran.

Intel, 8080, 8085, 8086, 8088, 80186, 80286, 80386, 80486 are registered trademarks of Intel Corporation.
IBM, IBM-PC, PC-AT are registered trademarks of IBM, Inc.

Z80isaregistered trademark of ZILOG, Inc.

TurboDos-86 isaregistered trademark of Software 2000, Inc.

North Star isaregistered trademark of North Star Computers, Inc.

CPAM, CPM-86, MPAMM-86, and Concurrent-DOS are registered trademarks of Digital Research, Inc.

GFK-0256 Preface \%

Preface

vi MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Contents

Chapter 1 IntroductiontoMegaBasiC 1-1
Section 1. MegaBasic Components and Installation 1-3
Section 2: Running Programs from the Operating System 1-6
Section 3: Program DevelopmentOverview 1-8
Section 4: Lines, Statements and ProgramForm 1-10
Section 5: Namesand Identifiers 1-12
Section 6: The MegaBasic LineEditor 1-14
Chapter 2 MegaBasicCommandso i, 2-1
Section 1: Introduction To MegaBasicCommands 2-3
Section 2: Program Entry, Storage and Retrieval 2-11
Section 3: Editing and Alteration Commands 2-18
Section 4: Execution Control and DebuggingCommands 2-30
Section 5: Information and ControlCommands 2-40
Chapter 3 Representingand ManipulatingNumbers 3-1
Section 1: RepresentingNumbers, 3-2
Section 2: NumericConstants oiiuin.., 3-6
Section 3: NumericVariables, 3-8
Section 4: NUMErICAITaYS ..o v i 3-10
Section 5: Operatorsand EXpressions, 3-14
Section 6: NumericFunctions 3-23
Section 7: VeCtor Processing ..., 3-26
Section 8: IEEE Floating Point and 80x87 Math Support......... 3-35
GFK-0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual — vii

September 1994

Contents

Chapter 4 Representingand ManipulatingStrings 4-1
Section 1: Charactersand String Constants 4-2
Section 2: StringVariables i 4-4
Section 3: StrING AITAYSot 4-7
Section 4: String Operatorsand Expressions 4-10
Section 5: String Indexingand Substrings 4-19
Section 6: StringFunctions o 4-23
Chapter5 Data Definition and Assignment Statements 5-1
Section 1: Data Definition Statements 5-2
Section 2: Data Transformation and Assignment Statements 5-9
Section 3: Structured VariableFields 5-18
Section 4: PointerVariables. o oL 5-28
Chapter 6 ProgramControlStatements i 6-1
Section 1: GOTOs and Program Termination 6-2
Section 2: Condition Execution, 6-5
Section 3: Program Loops and IterationControl 6-13
Section 4: Error Trappingand Control 6-18
Chapter7 I/Oand System iInteraction 7-1
Section 1: Inputand Output Statements 7-3
Section 2: File ProcessingStatements 7-21
Section 3: System Interface Statements 7-43
Section4: Logical Interrupts 7-50
GFK-0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual — viii

September 1994

Contents

Chapter 8 User-DefinedSubroutines 8-1
Section 1: SubroutineStatements, 8-3
Section 2: Elements of Subroutines, 8-9
Section 3;: Typesof Subroutines 8-11
Section 4: Communicating with Subroutines 8-17
Section 5: Recursive Programmingcocvu.., 8-27
Chapter 9 MegaBasic Built-in FunctionLibrary 9-1
Section 1: ArithmeticFunctions, 9-4
Section 2: Mathematical Functions 9-9
Section 3: Character and Bit String Functions 9-12
Section 4: Fileand Device I/OFunctions..................... 9-25
Section 5: Utility and System Interface Functions 9-33
Chapter 10 Multiple ModulePrograms.. i, 10-1
Section 1: Overlay and Package Statements 10-3
Section 2: PackageDefinition 10-8
Section3:UsingPackagesco i, 10-11
Section 4: The Multi-Package Development Environment 10-21
Section 5: AssemblerPackages oo 10-25
AppendiX A ErrorMessages A-1
AppendixB OtherOperatingSystems i B-1
Section1: Xenix 386 SystemV B-2
Section 2: CP/M-86 On 8086/88 Machines B-4
GFK-0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual — ix

September 1994

Contents

Section 3: Concurrent DOSandMP/M-86 B-5
Section 4: TurboDO0S-86co i B-7
AppendixC Utilitiesand Other Software C-1
Section 1: Stand-Alone ProgramswithPGMLINK C-2
Section 2: Program CompactionwithCRUNCH C-4
Section 3: MegaBasic ConfigurationwithCONFIG C-6
Section 4: ScreenFlippingforDebugging C-11
Section 5: Real-Time Event ProcessingUtilities C-13
Section 6: Other Supplemental Packages C-16
Section 7: MegaBasicProducts C-17
AppendixD MiscellaneousInformation............... D-1
Section 1: Recent MegaBasicEnhancements D-2
Section 2: MegaBasic Reserved Words and Characters D-6
Section 3: ASCII Character Codes and Special Keys D-9
Section 4: Converting Floating Point Programsto Integer D-14
Section 5: Loading Programs from Earlier Z80 Versions D-16
GFK-0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual — X

September 1994

Chapter

GFK-0256

Introductionto MegaBasic

MegaBasic is a state-of-the-art high-performance BASICthat is specifically designed to
support large applications, real-time processing and fast execution. The MegaBasic
compiler further advances the speed of your programs so that they perform like
optimized PL/l, C or PASCALprograms, without giving up the string processing, vector
handling and other integrated high-level capabilities of extended BASIC. The primary
distinguishing features of MegaBasic can be summarized as:

o Full access to all available memory while imposing few artificial limitations to its use.
Program space, array space and string space independently have no fixed limits and
can change dynamically during execution.

O 80286/386 protected-mode version available that provides up to 16 megabytes of
memory for general program and data space under MS-DOSwith or without the
presence of a DOS-Extender.

O Integrated mode-less programming development environment requiring little in the
way of CPUand memory resources, while providing extensive built-in testing,
analysis and debugging support. Compiler available for accelerated execution speed
and global syntax verification.

0 The small size of MegaBasic makes it ideally suited for integration into ROM of small
machines in real-time applications. Custom versions for proprietary applications are
available by special arrangement.

o Arational syntax for commands, statements and functions that is easy to remember,
making reference to the manual less frequent.

o0 Provides all the expected program control structures, including FORIoops with
multiple ranges, WHILEand REPEATIoops, CASEstatements, multi-line IF statements,
multi-line procedures and functions with argument lists and varying numbers of
parameters during execution, local variables within subroutines, etc.

o Dynamic linking (at run-time) of user-routine sets called packages, specifically
designed to support very large modular applications that can exceed the capacity of
available memory (see Chapter 10, Section 1). Packages can access other packages as
needed.

o Support for true asynchronous event-driven processes, designed specifically for
multi-tasking, background processing, instrumentation and other real-time process
control applications (Chapter 7, Section 4). Full access to machine-level resources,
such as 170 ports, absolute memory addresses and INTerrupt calls with access to CPU
registers.

0 Support for IEEE/80x87 binary and 14-digit decimal (BCDrepresentation) floating
point, 32-bit integers, extended arithmetic and mathematical operations with

1-1

1-2

automatic selection of software vs. 80x87 math coprocessor in IEEE versions (Chapter 3,
Section 8). Multi-dimensional arrays of integers and real numbers have no set limit
on how much memory they can use (Chapter 3, Section 1).

0 Extended numeric assignment statements letting you assign values to variables
within numeric expressions and to perform increment, decrement or other
arithmetic operation on variables (e.g., X=2Z,Q/=D,Y*=M , etc.).

o Acomplete family of integrated arithmetic and mathematical vector operations for
dramatic reduction in both execution time and notational complexity for matrix
processing and other general sequential processing of integer and real numbers
(Chapter 3, Section 7).

O Field structures let you assign names and data types to specific regions within string
variables or other fields so you can later refer to these fields with pathnames and
access them as variables for any purpose (Chapter 5, Section 3).

O Supports pointer extraction and resolution on variables, arrays, strings, fields,
procedures and functions, similar to C or PASCALpointer capabilities but with better
dynamic support (Chapter 5, Section 4).

0O Extended, integrated library of character string and bit-string operations, including
pattern matching and search, re-ordering and rotation, format conversion, character
translation, set searching, enumeration, union, intersection and exclusion. Large
strings and string arrays supported and no garbage collection penalties (Chapter 4,
Section 1).

o True multi-level error trapping that lets you trap errors at any level or pass errors on
to higher level as needed (Chapter 6, Section 4).

0 Supports shared/exclusive open files and file region locking in network and multi-user
environments (Chapter 7, Section 2)

If you are reading this section for instructions on how to RUNa MegaBasic program and
have no interest in the details of actual programming, skip this section and move on to
Section 2 in this chapter.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Section 1:

MegaBasic Components and Installation

The MegaBasic software system comes with one user’s manual and a diskette containing

all the software components. Some of the more important files are described below:

MegaBasicdevelopment system for creating, testing, debugging and
RUNhing programs. Several different floating point BCDprecisionsand
IEEE binary real formatsare available. Standard precisionis 14-digit
BCDor 16-digit IEEE binary.

MegaBasic RUNtime system for optimized execution and reduced
RUN memory requirements, butwithout program development support.
Several differentfloating point precisionsare available.

BASIC

Programcompaction utility, with an option for code protection of fin-
ished programs using a ciphering or scrambling technique
(Appendix2, Section 2).

CRUNCH

CONFIG Utility foraltering various MegaBasicinternal parameters (see
Appendix C, Section 3).

MegaBasicprogram containing many useful general purpose subrou-

LIBRARY tines for use in your programs.
PCBASLIB MegaBasicprogram containing special purpose subroutines for the
IBM-PC environment (MS-DOSversions only).
Documentationfile containingadditional information not yet available
README in the MegaBasic manual. This file may or may not appear and its con-

tentswill vary depending on when the MegaBasic system was pur-
chased.

Documentation file containing acomplete listand description of every-
CONTENTS | thing on the diskette. See this file for specific information aboutany
files on the diskette that are not described above.

There may be some slight variation in the precise disk contents and spellings of the file
names; the above list is intended to be a rough guide rather than an exact table of
contents. This is because MegaBasic is supported on a wide variety of machines and
operating systems and the disk contents are much more likely to change over short
periods of time, as compared with the printed documentation.

Installing MegaBasic on Your Computer

GFK-0256

Before you install MegaBasic on your computer, be sure that the capabilities of the
machine satisfy the minimum requirements listed below:

o 8088, 8086, 80186, 80286, 80386 or 80486 Microprocessor running IBM PC-DOS
MS-DOS CP/M-86, TURBODQEoncurrent Dos, Xenix 386 or other operating system
supported by MegaBasic. MS-DOSversions require MS-DOSevision 3.0 or later.

O At least 128k bytes of free memory before loading MegaBasic.

0 CRT Console Screen and keyboard (a hard-copy console is not recommended). VGA

systems are recommended.

0 One or more disk drives (two or more recommended, one or more hard disks are
highly desirable).

Chapter 1 Introduction to MegaBasic

1-3

Additional equipment to further enhance MegaBasic capabilities includes larger disk
drives, up to 16 Megabyte of extended memory (accessible to Extended MegaBasic), a
high-speed printer and a letter quality printer.

If your computer has only floppy disk drives and no hard disk, MegaBasic installation
consists of the making working copies of the MegaBasic release disk(s) and then using
MegaBasic from those copies. However, hard disks make your life much easier and most
microcomputers how come equipped with hard disks providing anywhere from 20 to
1000 megabytes of storage.

The specific installation steps to follow will vary with the operating system you will be
using. The vast majority of MegaBasic users will, however, RUNMegaBasic under
MS-DOS Some releases of MegaBasic include a file named INSTALL that performsall
necessary MS-DOSMegaBasic installation tasks. These tasks can also be done manually in
releases without the INSTALL program, as follows:

O Create a new directory under the root directory named PGM, and copy all files from
your MegaBasic release diskette(s) into it.

o Place the PGM directory into the default search path, by modifying the PATH
command that should be in the autoexec.batfile in your root directory. This step lets
you use MegaBasic and your MegaBasic programs from whatever directory you
happen to be in when you RUNor work on them.

o Modify, as needed, the FILES command in your config.sys file to increase the open-file
capacity of the system up to at least 40.

You could perform all these tasks yourself, but the INSTALL program handles all the
details, which could take a while for a newcomer to MS-DOS All you have to do to RUN
INSTALL is insert the diskette into a drive and type:

INSTALL

After INSTALL completes, remove the diskette(s) and re-boot your computer, which
applies any new configuration to the running system. From then on, you can load
MegaBasic and access program files from the PGM directory without having to specify
any directory path names (regardless of the current default directory).

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

About This Manual

GFK-0256

We have confined this manual to only one purpose: a complete and accurate description
of all MegaBasic facilities, in which you can quickly find the material you need and get
on with your work. To this end, this manual has been organized into useful logical
sections as shown in the table of contents. To answer your questions on specific subjects,
an extensive index, with over 3800 entries, will direct you from the phrase you think of
to the pages you need to read. The subject matter is covered in depth, with all its
nuances, so that questions are answered rather than raised. We think you will
appreciate this approach, over an alphabetic organization that breaks up and scatters
related information arbitrarily about the manual.

This manual is a reference guide to the facilities provided by MegaBasic for creating,
modifying, debugging and running programs written in the MegaBasic programming
language. Itis not intended to be a tutorial manual and its emphasis is on your daily
needs over the long run, rather than your short term needs when you begin using
MegaBasic for the first time. Because of this, people unfamiliar with general BASIC
programming may wish to select a beginning BASIC programming guide to supplement
this manual for further clarification of BASIC structures and usage. A working
knowledge of your computer system and its operating system is assumed.

No book or set of documentation can do the learning for you. Computer software, more
than most subjects, is difficult at best to get across in print because it is a dynamic activity.
You would not attempt to learn to play the piano or ride a bicycle out of a book and you
should not expect to use any complex software tool by the manual alone. Try
everything, make lots of mistakes, play with each new feature that you are learning. After
all, you do have a powerful computer system sitting in front of you which you can use to
experiment with each of the facilities in MegaBasic.

Chapter 1 Introduction to MegaBasic 1-5

Section 2: Running Programs from the Operating System

1-6

MegaBasic is an executable file which you RUNby typing its file name from the console as a
direct command to the operating system. It must reside on one of the system disk drives
installed on your computer system in order to be executed. The specific command to
invoke MegaBasic merely consists of the file name containing MegaBasic followed by the
name of the file containing the BASIC program you wish to execute. File names are not
fixed entities and particular applications may have file names assigned which differ from
those stated in this manual. Assuming MegaBasic is contained in a file named BASIC and
your program is named MYPROGhe command to execute your program from the
operating system is as follows:

BASIC MYPROG

This command causes the operating system to load MegaBasic which in turn loads your
program file and then begins its execution. At that point your program takes over the
computer and proceeds with whatever it is programmed to do. The MYPRO@rogram file
contents must have previously been created by MegaBasic.

The MegaBasic Development Version

The standard distribution disk of MegaBasic includes several different configurations of
MegaBasic which can be divided into two fundamentally separate forms. The first form
is your primary development version that supports all phases of program development
such as program entry, saving to files, debugging, testing, etc. All of your time spent

developing software under MegaBasic is spent under this version, usually named BASIC
on the disk. The development environment provided by BASIC is entered using the

same command shown above but without the additional program file name, as follows:

BASIC

This operating system command puts you into the MegaBasic command level from
which you can enter program lines and MegaBasic commands. To leave BASIC and get
back to the operating system, type the MegaBasic command: BYE

The Runtime Version of MegaBasic

The second form of MegaBasic is a subset of the first which can RUNprograms, but does
not support any program development facilities. This second form, usually named RUN is
designed for the production environment in which only finished and debugged
programs are executed. RUNis about 30% smaller than the development version (saving
about 24k bytes), and up to 50% faster. RUNprovides even greater memory savings
because it compacts all programs (but not their data) it executes down to 50-80% of their
original size whenever they are loaded into memory. This compaction process consumes
less then a tenth of a second and is totally invisible to the user and the program.

RUNis executed exactly as described above except that RUNmust be typed in the
command instead of BASIC. Since it contains no development facilities and cannot even
list program source code, RUNis ideal for so-called turn-key systems which are sold to
end-users or distributed throughout an organization in executable form only. Programs
are therefore secure against unauthorized alteration and source code access. As a
licensed purchaser of MegaBasic, you can distribute RUNwith your programs to third
parties without any royalty or other licensing fees.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

As an additional security measure, a separate utility is provided to scramble the contents
of a program file. Such files may be executed using RUN but the development version
cannot even load them for listing, execution, or any other purpose. The scrambling
process is irreversible, making the program file useless for anything except its intended
use. Needless to say, scrambling your only copy of a particular program is not
recommended. The utility that performs this process, called CRUNCHSs described in
Appendix C, Section 2.

The PGMLINKutility provided with the RUNsystem can produce a stand-alone program
that combines your program with a copy of RUNinto one file so that it becomes
functionally indistinguishable from other utility programs or compiled software. This
utility is described in Appendix C, Section 1.

The MegaBasic Compiler

A compiler for creating execute-only versions of finished MegaBasic programs is
available as a separate option. It analyses your program for errors in syntax, argument
list formation and data type consistency and, if no errors are found, produces a program
that executes from 200% to 800% faster than the original. If any errors are found, the
compiler describes them with sufficient detail for you to correct them and re-compile the
program. Except for the much faster execution speed, compiled MegaBasic programs
operate identically to their interpreted counterparts with little or no increase in memory
requirements. The compiler operates on programs that have already been prepared
under the MegaBasic development system, and must be used in conjunction with that
system. For further information, see the documentation supplied with the MegaBasic
compiler.

Chapter 1 Introduction to MegaBasic 1-7

Section 3: Program Development Overview

1-8

To use the MegaBasic program development environment, type the BASIC command
described earlier, but omit the program file name. Without a program name, you
immediately ENTERInto the command mode of MegaBasic which under your direction
provides facilities to create and test programs. Only BASIC (the development version)
provides this command mode, while RUN(the runtime production version) does not.

The command mode provides a selection of over 20 commands, which you choose and
ENTERfrom the keyboard. Each command specifies a single task which MegaBasic
carries out immediately after accepting the command. The command set can be divided
into four logical groups:

O Program Entry & Retrieval

entering programs from the keyboard or from files, listing your programs on the
console or other devices, saving your programs to files.

O Editing & Alteration

Sequential line editing, global search and replace, identifier renaming, line
renumbering, line range deletion, rearranging program sections, merging program
modules from files into your current program.

o Execution Control & Debugging

Running and testing, debugging by breakpoint and single-step debugging,
interrupting and continuing execution, interactive examining and setting of program
data structures.

o Information and Control

Displaying program statistics, listing file directories, exiting back to the operating
system command level, switching between multiple programs in memory;,
displaying execution state.

After entering the MegaBasic command mode, the first thing you do is either key in a
program from the console or load an existing program from a file. To type new program
lines from the console, enter a line number (an integer from 0 to 65535), followed by a
sequence of program statements separated by semi-colons and terminated with a
carriage return. Lines may be up to 255 characters long. The line number tells
MegaBasic where to insert the new line into the current program. Therefore new lines
may be entered in any order, providing a simple way to insert changes at a later time.
See Chapter 1, Section 4 for further details on MegaBasic program format.

Any line typed with a valid line number is always inserted into the current program; if
there is no current program the line becomes the first program line. If the line number
duplicates a previously existing line number, that line is replaced with the new line. All
lines entered without line numbers are assumed to be commands or direct statements that
MegaBasic attempts to execute immediately regardless of their actual contents.
MegaBasic will inform you of lines which contain improper statements or commands
when they are typed for immediate action.

After entering or loading a program and making any desired changes, you can then run the
resulting program under interactive control of execution to check its correctness. If errors

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

are found, you can alter the program to correct the errors, and then repeat the process until
you are satisfied with program operation. At any stage of the development phase, the cur-
rent program may be saved on a disk file to safeguard your work from system failures or
your own blunders (e.g., power failures, mistaken revisions), or so that you may continue
work at a later time. On completion of your working program, save the final version on a
file to be executed as described in Section 2 of this chapter.

MegaBasic always maintains a file name in connection with your program. This file
name is the one used to load the program from the disk or the one used to save the
current program onto the disk. A program entered from scratch at the keyboard is

assigned the name unnamed.pgm.

MegaBasic keeps track of this file name for two reasons. First, you can save your
development work out to the file without having to remember its name yourself or to
type it correctly each time, which saves time and eliminates potentially destructive
mistakes. Secondly, MegaBasic lets you have as many as 64 programs in memory
simultaneously and the file name associated with each provides a name through which
they may be accessed at random. Each program source has its own workspace (in
memory) in which development activities may take place. This capability is extremely
powerful for large scale program development and execution purposes, but its detailed
description is beyond the scope of this section and will be covered later on in Chapter 10.

Chapter 1 Introduction to MegaBasic 1-9

Section 4. Lines, Statements and Program Form

1-10

MegaBasic programs consist of a series of typed lines beginning with a line number and
ending with a carriage return. Line numbers must be in the range 0 to 65535 and serve a
dual purpose. First, since MegaBasic continually keeps the program lines arranged in
ascending order, you can easily insert additional lines by typing them with appropriate
line numbers. Secondly, some MegaBasic statements refer to program steps by line
number, perhaps to repeatedly execute some group of statements or skip over undesired
statements. The simple example program below illustrates some of the buildingblocks
used to form programs:

100 REM *** This is a sample Program ***

110 INPUT “ENTER a number -- ",N; If N<=0 then Stop
120 Print N, N*N, Log(N), Tan(N), Sqgrt(N), Atn(N)

130 Goto 110

Line 100 contains a remark which describes the program to a human reader and is
ignored by MegaBasic when executed. Such remarks may appear anywhere in a
program to document program operation. Line 110 contains two statements, separated
from each other with a semicolon (;). The first statement causes the computer to display
the request ENTER a number—and accept a number from the user when he/she is ready to
type it in. The second statement on line 110 stops the program if the number entered is
less-than-or-equal-to zero. Line 120 goes on to display various computations on the
value entered, but only if the value is greater than zero. Line 130 causes the computer to
go back to line 110 and ask for another number, which repeats the whole process until
the number entered is not greater than zero.

Besides being numbered, the lines themselves may be up to 255 characters long and
consist of one or more statements (i.e.. you cannot have a line with no statements on it).
Statements are separated from one another in the line with semi-colons (;) and represent
the fundamental building blocks of MegaBasic programs. Statements in general begin
with a specific keyword followed by additional data parameters separated from one
another with commas (,). For example the PRINT statement above begins with the
keyword PRINT and it is followed by a list of things to be printed.

By themselves, statements perform simple and easily understood operations, but in
combination they can express procedures of unlimited complexity. MegaBasic
statements are grouped into six Chapters (Chapters 5 through 10), each beginning with a
summary of the statements they contain, followed by detailed descriptions of each
MegaBasic statement.

Program Line Continuation

Extra long lines, longer than 80 characters, will wrap-around to the next line on your
console. Usually this will break the line at an arbitrary and undesired place. To break up
your long lines anywhere you choose, type a line-feed (Ctrl-J or Ctrl-ENTER and
continue your line. Line-feeds are like carriage returns except that they do not terminate
the line, thus permitting one numbered program line to be folded into several physical
lines. Line-feeds are also useful as the last character of a program line (before the

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

carriage return) to insert empty blank lines for visually separating successive sections of
your program. A line-feed may be typed anywhere a space is permitted. No line may
be longer than 255 characters, regardless of line-feeds.

Program Line Numbers

In recent years there has been a move away from line numbers in BASIC programs.
Although programs without line numbers look cleaner, in some ways they tend to be
more difficult to develop and maintain. MegaBasic uses line numbers not because they
look great, but because they provide real functionality in the following areas:

O

O

O

Traditional GOTO,GOSUBNd DATAstatement references.
Reporting locations of errors in program execution and syntax.
Identifying program locations of error recovery routines.

Discriminating between program lines to be inserted and commands to be acted
upon right away.

Identifying line locations for program editing, e.g., insertions, deletions,
replacements and merging.

Identifying line ranges for block operations, e.g., block search, display, text
replacement, etc.

Reporting program source locations in cross-reference listings and analyses.

Facilitating program development on minimal terminals and over modem
communications lines to remote terminals.

Communicating program locations during conversations and exchanges between
programmers and software support people, e.g., over the telephone.

Line numbers do have there shortcomings, however. They take up valuable screen
space; they do look ugly; they make every line a potential target of a GOTO,GOSUBr
error trap. But, as the list above illustrates, line numbers provide functional capabilities
that cannot easily be duplicated by line labels or other more modern or high-tech solutions
to the same problems.

Chapter 1 Introduction to MegaBasic

1-11

Section 5: Names and Identifiers

1-12

Akey feature in MegaBasic is the way it lets you to assign meaningful names to any
program line, variable, function or subroutine. For example, the name CUBE_ROOIB
certainly more descriptive than FNR3 for a user-defined function that computes cube
roots. Names must conform to certain rules in order to be properly recognized. The
syntax of user-assigned names in MegaBasic is simple, reasonable and easy to
remember:

0 Names must begin with a letter (A-Z).
O Characters after the first must be letters (A-Z), digits (0-9), or underscores ().

o The last character of a name may be a dollar sign ($), a percent sign (%) or an
exclamation mark (!) to force the data type of the name to string, integer or floating
point, respectively. Other methods exist to declare the data type of a name without
such characters.

o Names may be from 1 to 250 characters in length and all characters participate in the
spelling and must be present in all references.

o Upper and lower case letters in names are treated identically.

O MegaBasic reserved words (e.g., FOR NEXT, READ, etc.) cannot be used for
user-assigned names. See Appendix D-2 for a complete list.

Examples of valid names are TOTAL!, X3, THIS_IS_A_NAME, and STRING$. Examples
of illegal names are 3X LABEL#, VAR, XSTR, and THIS&THAT. Underscores are

useful for breaking up longer names since spaces are not permitted. All charactersina
name are significant in recognizing the name, i.e., two names are different unless they
match exactly. Upper and lower case letters are treated identically so that you can type

names with or without the SHIFT key.

Line-labels are names which may optionally be typed at the beginning of any program
line (after the line number). Such lines may be referred to either by line number or by
name. For example, the following one line program prints all the integers from zero to
one hundred:

10 AGAIN: Print C; C = C+1,; If C<101 Then AGAIN

Notice the colon (:) after the AGAIN line-label. A colon must always follow each
line-label definition immediately without intervening spaces. Line label references are
never followed with a colon. The colon is required to clearly distinguish line-labels from
other named objects used in the program.

This example uses a variable named C which is displayed and incremented by the
program. Regardless of how you type in a program, when itis LISTed user-assigned
names always appear capitalized and MegaBasic reserved words appear in lower-case so
that you can see which are which. This is important because reserved words cannot be
employed as user-assigned names. Hence when you see one of your assigned names
spelled with any lower case letters, you will know that it is a reserved word, an error
that must be rectified by editing the program. This kind of editing is best performed
using the CHANGEommand (Chapter 2, Section 3).

Variables and functions with names ending in a dollar sign ($) are automatically string
variables and string functions. A percent sign (%) ending names of variables and

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

functions gives them an integer data type and an exclamation mark (!) forces a real
floating point type. You can assign data types to various letters so that variables and
functions with names beginning with those letters will automatically be defined with the
data type specified. This subject is covered further in Chapter 3, Section 1.

The NAMESommand (Chapter 2, Section 3) displays the user-assigned names in your
program. It is sometimes useful for finding occurrences of names which have been
misspelled or mistyped during the course of editing your program. Since the NAMES
display is alphabetically ordered, names which are similar tend to be together in the list
and it is generally a simple matter to visually scan the list to find similar but different
spellings.

If you do not correct such misspellings, each different spelling will refer to a different
program variable, function or procedure, and your program will not operate correctly.
Another way to detect such errors is by displaying a cross-reference listing of your
program, using the XREFcommand (Chapter 2, Section 5). This command finds all
references to each user-assigned name throughout your program. Since virtually all
names will be used in more than one place, any names that are only referred to once are
likely misspellings of other names. XREFshould be used for this purpose after you make
any major additions or alterations to your program, so that you can correct any
misspellings before you even begin testing your program again.

Chapter 1 Introduction to MegaBasic 1-13

Section 6: The MegaBasic Line Editor

Whenever you ENTERdata or program lines from the keyboard you are actually using
the MegaBasic line editor. This line editor lets you ENTERIines of text, and provides
editing services ranging from simple typing corrections to text insertion, searching, block
deletion and rearrangement. It provides a visually complete presentation of the line you
are modifying at every key stroke, while supporting virtually all video screens (i.e.
IBM-PC screens and generic terminals) without any configuration. This makes it suitable
for use over modem communication lines and a wide variety of hardware
configurations.

All editing functions are invoked by typing special control or function keys. Not all keys
perform editing functions and if accidentally struck will be rejected by the computer
with a warning beep. For the purpose of notation Ctrl- ? will denote a control character
where ? is some key.

If you don’t make any mistakes while typing an input entry, then all you have to do
when your input line is finished, is type the ENTER(or RETURNkey. You can easily
correct simple typing errors by backing up over the error with the BACKSFkey, type the
correct characters, then continue the input entry. In the pages that follow, we will
explain how to use other line editor control keys to insert text, delete and rearrange text
blocks, move the cursor, and search for characters.

Inserting Text

Some editors provide two different ways to input characters: insert mode and
replacement (or overwrite) mode. This forces you to remember at all times what mode
you are in. To make things easier, the MegaBasic editor is always in insert mode. This
means that whenever you type characters while inputting or editing a line, the
characters you type are always inserted into the line at the cursor location. To replace
characters in your line with a new sequence of characters, you have to delete the old
sequence then type the new sequence.

The cursor is the special screen symbol that indicates the location where the next
character will appear. Normally, this will be at the end of the line you are typing.
However, you can move the cursor to any point within the line you are editing, so that
subsequent characters you type will be inserted into the line instead of appended to the
end of it. Cursor repositioning is summarized on the next page.

When the cursor reaches the right margin of the screen and you continue to type more
characters, the cursor will wrap around to the next screen line below it and continue on.
This will generally break up your input entry in an arbitrary place. You can insert you
own line break anywhere in the line by typing a line-feed (down arrow or Ctrl-J). This
breaks the line, moving all text past the cursor down one line, and positions the cursor at
the beginning of the next screen row and enters a line-feed code (an ASCII 10) into the
input line.

Most input entries will be less than 80 characters and will generally fit completely on one
screen line. However, MegaBasic lets you type a line of up to 255 characters. Once this
limit has been reached, MegaBasic prevents you from entering any more characters and
beeps at you each time you try to insert a character. At that point you either have to
delete characters from the line to make room for more input, or enter the line the way it
is.

1-14 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Cursor Positioning

MegaBasic provides a variety of ways to move the cursor to a different location within
the current input line. Changing the cursor position does not alter the line in any way,
nor does the position affect the input entry when you type the ENTER(or RETURNkey to
terminate it. The only reason to move the cursor is so that a subsequent insertion or
deletion can take occur at the right place.

Two controls let you move the cursor left and right by one character (the left and right
arrow keys or Ctrl-L and Ctrl-A). Two other controls let you move the cursor left and
right by one word (Ctrl-left and Ctrl-right arrow keys or Ctrl-W and Ctrl-Q). A word in
this context is any sequence of letters and digits containing no other characters. Moving
left or right a word always leaves the cursor on the first character of the word. By typing
these keys repeatedly you can walk through the line to quickly locate the position where
you want to make a change. Two other controls let you move to the beginning of the
line (Home or Ctrl-F) or to the end of the line (End or Ctrl-G).

Another control, F2 (or Ctrl-S), lets you advance the cursor to the next occurrence of any
single character. After you type it, you must then type the character you wish to find. If
it exists, the cursor moves to that character in the line, if it does not exist, the cursor does
not move and a warning beep sounds. If you type this control twice, it will search for the
same character that it searched for the last time. When you search for a letter, you can
type it in upper or lower case regardless of the case of the letter sought.

An important aspect of entering and editing program lines is making sure that all your
parentheses and brackets are properly balanced. In complicated lines containing many
levels of parentheses, it can be difficult to see where each parenthetical sequence begins
and ends. Therefore, MegaBasic provides two keys to move the cursor between opening
and closing parentheses. F9 (or Ctrl-O) backs up the cursor to the preceding
parenthesis, bracket or brace. If the cursor is already on a closing parenthesis, bracket or
brace, it backs up to the opening parenthesis that matches it. F10 (or Ctrl-P) is the
reverse of F9, advancing the cursor to the next parenthesis, bracket or brace in the line.
If the cursor is already on an opening parenthesis, bracket or brace, it advances to the
closing parenthesis matching it. If no matching parenthesis exists in the line, the cursor
does not move and a warning beep sounds.

In order to promote the widest possible console compatibility, MegaBasic relies on only
the minimum possible set of console controls to position the cursor. Only one operation
requires any configuration: backing up the cursor to the previous line. This is controlled
by the Console Mode byte, which you can configure using the CONFIG utility program,
described in Appendix C, Section 3. If you have trouble with the line editor maintaining
the proper cursor position or observe any erratic behavior, consider trying a different
configuration.

Deleting Text

Deletion is always relative to the cursor position. BACKSP deletes the character to the
left of the cursor; DEL deletes the character at the cursor location. F6 (or Ctrl-V) deletes
all the characters from the cursor to the next word. F4 (or Ctrl-X) followed by a character
deletes from the cursor up to that character, or beeps if the character is not found in the
line. Typing this F4 twice deletes up to the next occurrence of the previous search
character. Ctrl-HOME deletes all characters to the left of the cursor; Ctrl-END deletes all
characters from the cursor position to the end of the line.

Chapter 1 Introduction to MegaBasic 1-15

Text Recovery and Rearrangement

MegaBasic provides a limited mechanism to recover text that you have deleted without
forcing you to type it back into the line. Every time you delete one or more characters
from the line, MegaBasic remembers those characters. If you make several deletions
from the same place in the line, MegaBasic remembers the entire sequence as one
deletion. You can recover this sequence of deleted characters by typing the Ctrl-U key.
The deleted characters are inserted into the line at the cursor location in effect when you
type Ctrl-U, leaving the cursor positioned after the insertion.

You can recover only the most recent sequence of contiguous deleted characters. For
example, if you delete 10 characters from the beginning of the line, and then move to the
end of the line and delete 5 characters, typing the Ctrl-U key recovers only the 5
characters; the 10 characters deleted from the beginning are lost. However, if you delete
the preceding 4 characters, then you delete the next 3 characters, all 7 characters are
remembered and may be recalled by typing Ctrl-U.

In addition to simple recovery from accidental deletion, you can also use this operation
to rearrange text within the line, or to move text from one line to another. First, delete
the text sequence you wish to move. Second, move the cursor to the location in the line
where you want to move the character sequence (being careful not to perform any other
deletions along the way). Third, type the Ctrl-U to insert the deleted characters back into
the line at the cursor location. If you are editing a MegaBasic program, you can use this
capability to delete a portion of one program line and insert it back into another program
line (as long as there are no other intervening deletions) . You can also type Ctrl-U
repeatedly to insert the same string into the line as many times as the line capacity
permits (255 characters maximum).

Accessing The Previous Input Line

To simplify entry of repetitive or similar input lines, you can access the previous input
entry by typing F5 (or Ctrl-R). This abandons any input you have already typed,
displays the previous line (called the old line) and positions the cursor in front of it. This
saves time when the computer requests successive entries that are identical or differ only
slightly. Furthermore, if you are editing the old line and make some irrecoverable
editing errors, you can type F5 (or Ctrl-R) to restore its original form so that you can start
over with the least amount of effort.

If the very first key typed to an input or command line entry is an editing control key
(rather than an ordinary input character), MegaBasic automatically restores the previous
input entry as the current entry before acting on the control typed. This implicit restore
operation makes the previous input entry easier to access, but you can only get it on the
first key typed.

Restoring previous input is frequently useful when you are entering commands and
program lines in the MegaBasic command level. You will find yourself typing successive
commands which differ from the previous command (the old line) by only one or two
characters, or to correct a mistake in a command just entered. Similarly, instances of
nearly identical sequential program lines are common. Your program may already
contain lines which nearly match a new line about to be entered into the program, and
by editing the old one and changing its line number, you can construct the new line with
minimal effort.

Accessing Any Prior Input Line

In addition to just the prior input line, MegaBasic also remembers all the most recent
lines of text entered through the console keyboard so that you can retrieve them

1-16 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

whenever you are entering a command or entering keyboard input. This is particularly
useful when you find yourself entering several different complicated commands or
inputs repeatedly, since you can avoid having to retype them each subsequent time.
MegaBasic only remembers one instance of each line entered and keeps them in a
most-recently-used order for convenient access. Lines that differ only in upper/lower
case and number of spaces are treated as the same line and only the most recent
rendition is remembered. Null lines (i.e., those without any characters) are never
retained.

You access previously entered lines by typing one of several control keys at any time
while you are entering a text line into MegaBasic (or into a MegaBasic program). PgDn
and PgUp keys move forward and backward through the line list; F5 returns to the
original line and Ctrl-D deletes the current line from the list. Once a line is accessed, you
can immediately begin editing it without any further keystrokes. At any time you can
discard your current line and start over on a different line by simply accessing another
line and continuing.

When accessing previous entries with PgUp and PgDn keys, the characters to the left of
the cursor are used as a matching criteria, selecting only the entries that begin with those
same characters. As each line is accessed, the cursor is left in the same position so that
you can step through different lines beginning with that sequence. A warning beep
indicates no entry begins with such a sequence. If the cursor is at the front of the line
(i.e., no characters to match), PgUp and PgDn keys step through every line.

The number of lines retained depends on how many lines fit into the previous line
buffer. This buffer defaults to 512 bytes, but you can change its size to any value from 0
to 4096 bytes by setting PARANR4) to the desired size at any time Setting the buffer size
to zero disables the previous line list capability altogether (except for the standard old line
buffer). Setting PARANR4) always clears the buffer of all lines, except for the most
recently entered line. Defining a larger or smaller buffer size causes the total available
memory space to decrease or increase accordingly.

If there is not enough room in the previous line list buffer for the next line being added
to it, MegaBasic makes room for it by deleting the oldest lines in the buffer until sufficient
room becomes available. If the line length exceeds the entire buffer capacity, the line will
not be added to the list. Therefore to use this capability effectively, your buffer size (as
defined by PARANP4) should be at least as large as the longest line you will ever want to
retain.

When you are modifying your program under the EDIT or ENTERcommand modes, the
entered source lines can quickly fill up the previous line buffer and displace some or all
of the prior command lines that you have typed. Therefore MegaBasic only remembers
the single most recent program source line that is entered while in these modes. If you
want to be able to access other such lines in later editing or input, you can always force
the current line into the buffer by typing Ctrl-B just before typing RETURNO enter the
line.

The EDIT$ function always returns the most recent line so far entered. Setting EDIT$
(e.g., EDIT$ = string), adds a new most-recent line to the line list. Setting EDIT$ several
times in succession adds several lines to the list, which can be useful for pre-loading the
buffer in preparation for a subsequent input entry.

Chapter 1 Introduction to MegaBasic 1-17

1-18

Editing Control Characters

The preceding discussion provides a complete explanation of the MegaBasic line editor,
it capabilities and the editing process in general. The table below summarizes all of the
editing control keys provided by MegaBasic.

For convenience, alternate keys are provided for most editing operations. In particular,
the editing and cursor controls provided by the IBM-PC and PCBASIC are represented
along with a generic control-character set that will work with any console terminal.
Control characters are typed by pressing a specific character while holding down the key
labelled CTRLonN the left of the keyboard (the SHIFT key may be up or down). The
IBM-PC set consists of function keys F1 through F10, the HOME END, TABkeys and the
cursor direction arrows (denoted Left, Right, Up and Down). These keys are supported
for the editing functions below only for IBM-PC compatible keyboards. Other keyboards
may appear to have these keys but the actual codes they generate may not be the same.
If the indicated action for a editing key cannot be completed by MegaBasic for any
reason, a warning beep is sounded.

The controls described below are line-oriented and their actions are confined solely to
the current line being input or edited. When you are editing program source code, each
line you are editing is under control of this line editor as a stand-alone line. There are
currently no controls that provide a full-screen editing facility within MegaBasic (e.g.,

you cannot move the cursor freely between separate program lines). A line may be
broken up into more than one screen line with line-feeds or by entering characters past
the end of the screen to cause a wrap-around to the next screen row. Although such a line
appears to be multiple lines, you should treat it as the single line that it is.

Character Operation

Right Movesthe cursor one column to the right or to the next line if a line-feed is encoun-

F1 tered. This does not modify the current line. A warning beep will sound if you are
Ctrl-A at the end of the line when you type this control.
Left Backs up the cursor one column to the left. This can be repeated to backspace

Ctrl-L all the way back to the beginning of the line. It also backs up through line-feeds
embedded in the line.

Backsp [Deletes the character to the left of the cursor. All remaining charactersin the line
Ctrl-H that follow are shifted left one column to close the gap. Line-feeds and TABS can
Rubout. | be deleted just like any other character

Del Deletes the character from the line at the cursor position and shifts all characters
Ctrl-z that follow it over one column to close the gap. The cursor does not move. Line-
feeds and TABS can be deleted just like any other character.

Word Operations

Ctrl-Right | Advances the cursor forward to the beginning of the next word in the current line,
F8 where word is defined as any contiguous sequence of letters and.6r digits. This key is

((::ttrll-(lg useful for quickly skip ping through the line to some point of interest.
r -

Ctrl-Left | Backs up in the line to the beginning of the previous word, where a word is defined

F7 as a contiguous sequence of letters and/6r dig its. If the cursor is in the middle of
Ctrl\w a word, it backs up to the be ginning of that word.
F6 Deletes all characters up to, but not including, the first character of the next word,

Ctrlv where word is defined as any contiguous sequence of letters and/6or digits. The text
to the right of the deletion moves over to the left to close the gap.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

GFK-0256

Searching Operations

Advancesthe cursor up to the character that you type immediate ly after this key.

F2 Upper and lower case letters are equivalent when searching. If the specified
Ctrl-S character is not in the remainder of the line a warning beep is sounded and the
cursor does not move. This is a two stroke sequence and typing F2 twice will
repeat the previous F2 search sequence.
Deletes all characters from the cursor position up to, but not in cluding, a specified
F4 character. Like F2 above, F4 is a two-stroke sequence and typing F4 twice will
Ctrl-X repeat the previous F4 deletion sequence.
Backs up the cursor to the preceding parenthesis, bracket or brace. If the cursor is
F9 already onaclosing parenthesis, bracket or brace, it backs up to the opening
Ctrl-O parenthesis that matches it.
Advances the cursor to the nextparenthesis, bracket or brace in the line. If the
F10 cursor is already on an opening parenthesis, bracket or brace, it advances to the
Ctrl-pP closing parenthesismatchingit.
Line Operations
End Advancesthe cursor to the end of the current line. Further input after this control
F3 will append to the end of the line.
Ctrl-G
Home Repositions the cursor to the beginning of the line, regardless of its currentlocation.
Ctrl-F
Ctrl-End | Deletes all characters from the cursor position all the way to the end of the line.
Ctrl-N
Ctrl-Home | Deletes all characters to the left of the cursor all the way back to the beginning of the
line.
Edit Control
ENTER Terminatesthe edit, moves the cursor to the end of the input line, adds the line to
RETURN | the previous line listand returns the entire line to process requesting the input.
Erases the line from the screen, abandons the line edit and terminates whatever
Ctrl-C processiscurrentlyunderway. This key does nothing during program execution if
Esc Ctrl-Cisdisabled.
When you are in the MegaBasic program EDIT mode, Ctrl-K will abandon the cur-
Up rent line you are editing and begin editing the line that immediately precedes it in
Ctrl-K the program. When you are in the ENTERnode (automatic line numbers), Ctrl-K
will abandon the current line being entered and go back to the previous line and let
you edit it.
Thisis an undeletekey. Itinserts the last contiguous sequence of deleted characters
Ctrl-U back into the line at the cursor position. Itis useful recover deleted characters or to
move or copy char acter sequences from one place to another, even between separate
entries.
Line Formatting
Down Forcesa line break during an input entry without terminating it. In MegaBasic, an
Linefeed | edited inputentry can be up to 255 characters long. Therefore this key lets you
Ctrl-J break long input entry into several physical lines by entering line-feeds into the
inputline.
Advances the cursor and any text that follows it over to the nextcolumn position
divisible by 8 (i.e. 8,16, 24,...). The key enters asingle character into the input string
TAB (an ASCII 9 code), rather than a series of spaces. Tabs are permitted in program
Ctrl-1 lines anywhere that spaces are permitted or as separators between numericinputs.

They are useful in program lines for indentation and other significant whitespace
without eating up the line capacity (255 characters maximum) the way spaces do.

Chapter 1 Introduction to MegaBasic

1-19

1-20

Previous Line Access

Replacesthe current line with the most recent entry matching the characters to the

PgUp left of the cursor. Typing this key repeatedly accesses earlier and earlier lines. Once
Ctrl-T the oldest line has been accessed, typing this key cycles back to the newest lineagain.
If the cursor is at the front of the line, every line is accessed.
Once you have sequenced through one or more lines using PgUp, this key lets you
PgDm go back the other way (i.e. to the line more recently entered than the one you have).
CtrpY Typing this key repeatedly accesses later and later lines. Once the newest line has
been accessed, typing this key cycles back to the oldest lineagain.
Deletes the currently selected line from the previous line list and accesses the next
Ctrl-D most recent line in the list. If the line list be comes empty a null line is presented for
editing. Ctrl-D does nothing but beep until a prior line has been selected with one
of the previous line access keys.
F5 Restores the original most-recent line as the current line being edited no matter
Ctrl-R where you are in the previous line list. The cursor is repositioned to the begin-
ning of the line, allowing you to resume editing.
Adds the current line in its present form to the previous line list, making it the
most-recently entered line. If the line was already in the line list, Ctrl-B merely
Ctrl-B moves it to the front of the list. This is the only way to add a line to the list without

terminating the input entry and is useful for saving the current line at some stage
that might be useful to recall at a later time.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Chapter

GFK-0256

MegaBasicCommands

In a sense, MegaBasic supports two languages: the underlying programming language
and the MegaBasic command language. The command language lets you control what
MegaBasic does in the command mode, while the programming language controls what
MegaBasic does in execution mode. This section describes all the MegaBasic commands

and it is organized into the following five subsections:

Introduction Explainsformation and syntax of commands, their argu-
ments and their use within MegaBasic workspaces.
ProgramEntry | Entering programs from the keyboard or fromfiles, listing
and your programs on the console or other devices, saving your
Retrieval programstofiles.
Sequential line editing, global search and replace, renaming
Editingand identifiers, renumbering lines, deleting line ranges,
Alteration rearranging programsections, merging program modules
from other files or workspaces into your currentprogram.
Execution Running, testing and debugging programs. Execution
Controland breakpointsand be setand cleared. Single-step debugging
Debugging lets you interrupt and continue executionand interactive-
ly examine and modify program datastructures.
Displayingprogramstatistics, listingfiledirectories, cross
Information reference reports, exiting back to the operating system com-
andControl mand level switching between multiple programsin
memory, displaying execution state

Chapter 2 gives information about the MegaBasic commands in general and the ideas
common to several or all of them. This includes such topics as the multiple workspace
environment, the notational conventions used to describe MegaBasic statement and

command syntax, device numbers, search strings, etc.

2-1

BASIC [<program> [<command tail>]]
BYE

CHANGE [<line range>],<search string>,<replacement>

CLEAR[{ DATAFREE}]

CONT

COPY «<starting line> [,<stepsize> [,<line range>]]
DEL <line range>

D U P L <starting line> [, <line range>]

EDIT [<starting line>] [, <search string>]

ENTER [<starting line> [,<stepsize>]]

LIST [#<device >,] [<line range>] [, <search string>]
LOAD <program file name list>

MERGE <program file name> [<source/dest specs>]
MOVE <starting line> [,<line range>]

NAME [#<device>] [<selector list>]

NAME <old label>, <new label>

REN [<starting line> [, <stepsize> [,<line range>]]
RUN [<line number or command tail>]

SAVE [<program file name>]

SHOW [#<device>][{ ACCESSOPEN SIZE}]
STAT [#<device>]

TRACE END

TRACE RET

TRACE [#<device>,][<line>]

TRACE [#<device>,] IF <logical exprn>

TRACE: <executable line of statements>

USE [<workspace name>]

XREF [#<device>]G<line range>][,<selectors>][by <mode>]

You can abbreviate several of the above command keywords to a specific two or three
character sequence for convenience. These abbreviations are as follows: CHANGHEs CH,
EDIT as ED ENTERas ENT, LIST as LI and TRACEas TR

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

Section 1: Introduction To MegaBasic Commands

GFK-0256

The command mode provides a selection of over two dozen commands, which perform
such things as loading and saving program files, modifying programs, displaying
information about the program state, running programs, etc. Each command specifies a
single task which MegaBasic performs after you type in the command. You can perform
any complex task, such as developing and debugging a MegaBasic program, by typing
individual commands, one by one, until there is nothing left to do.

Before describing the various MegaBasic commands, we will first explain the concepts
involved in forming commands and how to use them within the MegaBasic workspace
environment. Some of the things discussed in this introduction include specifying
program line ranges, output device channels, string search patterns, understanding
command and statement syntax notation, and program file names.

The Workspace Environment

MegaBasic permits up to 64 programs to reside in memory simultaneously. This unique
feature exists to support large-scale programs composed of a collection of independently
developed libraries which have controlled access to the subroutines and data defined
within the others. Chapter 10 describes all aspects of designing, implementing and
using program modules. During program development however, it is important to
understand the multi-program environment because it arises in a number of the
commands presented in this Chapter (LOAD SAVE USE STAT SHOVénd TRACE.
Understanding how you can work on, or just refer to, more than one program at the
same time can save you considerable time.

When you are working on your program, the kinds of activities that you do includes
things like entering program lines, editing program lines, testing and debugging, loading
and saving programs, etc. MegaBasic provides an environment for such activities by
maintaining your program as you change and mold it into whatever you desire. In
order to have a way of talking about this environment, we shall refer to it as a workspace.

We would not have to draw a distinction between an environment and a workspace if you
could only deal with one program at a time. However MegaBasic supports more than
one workspace simultaneously within the entire environment that it provides.
Supporting more than one workspace involves the following set of capabilities:

O Create the initial environment

o Create new workspaces by name

o Delete workspaces no longer needed

o Select a workspace by name for subsequent operations
o Show name and status information of each workspace

In order for you to create, delete or select a workspace you need a way to refer to a
particular workspace. Since we already associate file names with every program, those
same file names can also serve as workspace names. The act of loading a program from
afile gives its workspace its name. MegaBasic assigns the default workspace name
UNNAMED.pgm to the original workspace present when you begin a MegaBasic session.
It keeps this name until you type in a program and save it onto a file of a different name,
or load a program into it from a file.

Chapter 2 MegaBasic Commands 2-3

2-4

A multiple workspace environment is much like sitting in a swivel-chair inside a circle of
consoles, each one a window through which a separate program is accessible for
development work. At any given instant, you are facing one screen and your actions are
all directed toward the particular program source it contains. But at any time you can
easily turn to any other screen to work independently on its contents. MegaBasic of
course supports such activities using only one screen and is certainly more feasible than
all that hardware.

The USEcommand selects existing workspaces and creates new, empty workspaces. The
LOADcommand can also create a new workspace in the process of loading a program
from a file. The slow command lets you see what workspaces are currently present and
the nature of their contents. The CLEARcommand deletes the current workspace (and
its contents) or deletes all workspaces. MegaBasic automatically deletes workspaces
which do not contain any program lines.

Most MegaBasic commands will refer to workspace concepts to some degree and they
are therefore important to understand. As with many computer tools, their actual use is
much simpler than a description of their use, and you really need to try each of the
various commands out on your computer to get afeel for show they can support your
activities.

The user’s view of a multiple workspace environment hides all details which are not

immediately necessary for accomplishing the task at hand. Hence in the simple case,

where you are only interested in a single workspace, MegaBasic does not burden you
with extra options and other details relevant only in a multiple workspace context.

Syntactic Notation Used in This Manual

This manual uses special notation for specifying the syntax of MegaBasic commands,
statements and functions. Each command (or statement) consists of a sequence of typed
symbols. The symbols are of two varieties: those that you type exactly as specified, and
those that describe a generic item that can vary from one instance to another. Special
brackets are used to denote items that vary:

Notation In Syntax Descriptions

Enclosesa description of the item to be typed. For example,<line number>
<...> describesan item for which you substitute a specific program line number, and
<file name> is an item for which you type the actual name of a file.

Enclosesan item that is optional. For example [#] means that you may type an
optional Ib-sign (#) in that part of the statement or command, and [<sfring expres-
[] sion>] means you type an optional string expression. The [...]brackets may

e contain several items, in which case you either type all of them or omit them all.
You will also encounter bracketed items inside of outer brackets to indicate
optional items within larger items which are themselves optional.

Enclosesa list of items from which you choose one item. For example {STOP END
{. . } ON} means you type one of the words STOP, ENDor ON The {...} braces may
include <...> items as well.

All letters, digits and punctuation are otherwise typed exactly as they appear in the
command description. The actual bracket characters themselves (i.e., <>, { }and[])
are not typed into a command or statement, as they are shown simply to help describe
their syntax. However, there are a few places where brackets [] are specifically used in

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

statements (e.g., IF and STRUCTstatements, vectors, etc.), but each case isspecifically
documented to avoid confusion. When any of the special brackets (and any descriptions
they contain) are used to delineate syntax, they are shown in italics, otherwise they are
shown in normal or boldface to indicate literal usage. The following examples should
clarify how to type specific commands from their syntactic descriptions:

Syntax Description Example Use
RUN [<starting line>] Rlljﬁ';loo
EDIT
EDIT [<starting line> [,<string>]] EDIT1000
EDIT 150, find this
ENTER
ENTER [<starting line.> [,<step>]] ENTER100
ENTER 300, 20
CLEAR
CLEAR[DATA] CLEAR DATA

Command and Statement Form

Most MegaBasic commands (and statements) that require multiple arguments have the
form: <k eyword> <argument list>, where the keyword is the name of the command (or
statement), and the argument list may consist of strings, numbers, other keywords, etc.,
appropriate to that command. You must separate the listed arguments from one
another with commas, but no comma separates the keyword from the argument list. You
may insert any number of spaces or line-feeds within your entries to make commands
(and statements) more readable. MegaBasic ignores all such characters not enclosed
within quotes.

You must separate command keywords from their arguments with at least one space.
This is because you can name any program entities with arbitrary names, and running
command or statement keywords together with numbers or other identifiers creates
new names that MegaBasic cannot recognize. For example, LIST 1,$ is a command
which lists the entire program on the screen, but typing it as LIST1,$ is not valid because
the sequence LIST1 is not a command word, so MegaBasic thinks it is a user-assigned
word for some variable or procedure. Chapter 1, Section 5 describes the rules for naming
programming constructs (Chapter 1, Section 5).

Specifying 1/0 Devices

You can re-direct command output to somewhere other than the console screen by
specifying a optional # <device> inthe command . The # is necessary to indicate the
presence of a device (or open file) number. Forexample, #1 refers to the printer and you
can type the command LIST#1 to output your program on the printer. See Chapter 7,
Section 1 for additional details about the devices.

Referring to Program Lines

Commands often refer to specific program lines or to line ranges. A program line
location can be specified in several ways. An unsigned integer from 0 to 65535 refers to
the program line with that number appearing in front of it (rather than its absolute line

Chapter 2 MegaBasic Commands 2-5

sequence number). A dollar sign ($) refers to the last line of the program. A dot (.) refers
to the most recent line displayed by MegaBasic or edited. You can specify a line using any
of these three forms in line ranges or in any command where MegaBasic expects to see a
line number.

In executable program statements that refer to lines (e.g., GOTGtatements), you may
optionally refer to the intended line by line-label, if that line contains a line-label. You
cannot specify line-labels in MegaBasic commands for any purpose. Line-labels make
the program much more readable and easier to develop and maintain. Chapter 1,

Section 5 shows how to define and use line-labels and other named program entities.

Specifying Program Line Ranges

Many MegaBasic commands (e.g., LIST DEL, REN, DUPL, MOVE,CHANGE etc.) can
operate on a subrange of program lines, instead of acting upon the entire program. You
can specify a line range in any of the following ways:

O Omitting the line range altogether implies the range of all program lines (where
omitting it is allowed).

o Asingle line number to indicate a one-line range.

o Two line numbers separated by a dash (e.g., 100-999) specifies all lines with line
numbers at or above the first line number and on or below the second line number.

o Asingle line number followed by a dash (e.g.,100-) to indicate all lines from that line
to the end of the program.

o Asingle line number preceded by a dash to indicate all lines from the beginning of
the program up to the line number specified (e.g., -450).

o Two dots .. to indicate the previously specified line range or the range last modified
by MegaBasic. This line range is known as the current line range, a topic covered
greater detail below.

0 The name of a subroutine (i.e., FUNCor PROQ preceded by a dot (.) indicates the
entire range of lines containing that subroutine. For example the command
LIST.SUBR would list all the lines of a function or procedure named SUBR A
subroutine line range consists of all lines of the subroutine starting with its initial
DEFstatement, along with any immediately preceding REMark and DEFlines, up to
and including the line containing its terminating FUNCENDor PROCENDstatement.
REMarks that follow subroutines are not included. Incorrectly formed subroutines
(e.g., missing FUNCor PROCENDS or errors encountered in other DEFstatements
along the way may abort the command with an error message.

If you specify a line range in a command and no actual program lines fall within that
range, MegaBasic immediately terminates the command and displays the message: No
lines. See the LIST command (Chapter 2, Section 2) for more examples of specifying line
ranges.

Often, you may repeatedly specify the same line range for several commands in a row.
To make this easier, MegaBasic maintains a concept of a current line range and lets you
refer to this range using the dot-dot notation (..). The current line range is always either
the last <line range> that you specified with two line numbers (i.e., 100-199), or the
range of lines just created or modified by MegaBasic. You can type dot-dot in any
context that requires a <line range> to specify this range. For example the command
LIST .. will display the current line range on the console, the command EDIT.. will edit
only the lines within the current range, and REN100.5,.. will renumber the lines in
the current range by 5’s starting from 100.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

The REN, MOVE,COPYand DUPLcommands set the .. range to the range of program
lines that they affected. You can specify the .. notation in all commands that act on line
ranges. By experimenting with the .. notation you will find ways of using it to
streamline the process you go through to develop and maintain your program source.

Specifying Search Strings

Some commands (LIST, EDIT, CHANGJcan restrict their scope to lines which contain
a user-supplied character pattern called a search string. You can specify a search string
in such a command by simply typing the characters you wish to match. You only need
to surround a search string with quotes if the search string begins with a digit (0-9),
dash(-), Ib-sign (#) or period (.), or it contains commas, spaces or quotes. MegaBasic
supports two kinds of quotes (“““ and) which lets you include either quote character
within a search string (but not both). The search process excludes the line-number part
of a line from the search. Numeric searches will, however, pick up line number
references.

Letters in a search string may be in upper or lower case and still match the same set of
strings. Question marks (?) act as wild-card characters when used within search strings
(except as the first character). For example, the string TH??Ematches words like There,
those, tHeSe, Three, therefore, etc. A question mark (?) at the beginning of a search string
will only match a question mark, not any character.

Chapter 2 MegaBasic Commands

2-7

Search String Option Switches

You can append an additional parameter string to an EDIT, LIST or CHANGEommand
to enable or disable additional search capabilities. This optional argument consists of a
comma followed by one or more single-character option switches. Each option switch
character turns on or off a different feature. If you never specify an option string
argument, all options remain off (i.e., disabled). Once you switch an option on, it stays
on for all three commands until you explicitlyturn it off in a subsequent option string
(using the minus (-) option described below). All available option switch characters are
individually described below:

Search String Option Switches

Modifiesthe search so that the string patterns found must appear as complete words,
Wi i.e., matches within words or numbers are not considered a match. For example

with this option on, the string X only matches lines that contain X all by itself,
ignoring words such as XOR or MAX$. The W option is normally off when MegaBasic
startsup.

Defines the asterisk (*) or ampersand (&) as a special multi-charactemwild-card symbol
matching any number of characters when it appears in search strings. For example,
this*that matches any substring beginning with this and ending with that. More

* than one asterisk may appear in a search string to match arbitrary substrings in more
than one place. When this option is on, you cannot use this any-string symbolchar-
acter as an ordinary character in either search or replacement strings. Only one of
these special charactersis used for the above purpose: whichever one was most
recently selected is the one in effect. In the CHANGEommand, MegaBasicsub-
stitutes the text that matched each asterisk in the replacement string (i.e., macro
parametersubstitution).

Aleft-parenthesisturns on an option that causes the any-string wild-card character
(i.e., * or &) to include the entire contents of any parentheses encountered, i.e., with-
(outever breaking parenthesized expressions, function arguments or array subscript

expressions. For example with this option enabled, the search string (*,*,*) matches
any parenthesized argument list containing three or more arguments, even if the
outer parentheses contain other items inside parentheses.

A Ib-sign enables an option that expands the parameter substitution provided by the
any-string character (t or &) when used in the search and replacement strings of a
CHANGEommand. When an enabled, you can follow the any-string in the replace-
ment string with a digit to specify which any string character of the search string it
correspondsto. For example, thecommand CHANGE X(***),X(*2,*1,*3) has the
effect of swapping the 1st and 2nd subscript expressionsofarray X(). In other words,
you can refer to the strings matched by the 1st, 2nd and 3rd asterisk (orampersand)
in the search string in the replacement string as *1, * 2 and *3 (or &1, &2 and &3).
You can access up to nine such parameters(i.e., digits 1 through 9) in this manner.
This option affects only the CHANGIEommandand only if the any-string optionis
alsoenabled.

L turns on an option that displays every line altered by the CHANGEommand on the
console screen after modifying each line. MegaBasic lists each altered line only once,

L even if several changes were made to it. This option is particularly useful when you
are not verifying the changes. The L-option has no effect on LIST or EDIT commands.

Aminus sign in the option string causes all option characters that follow it to turn-off
their corresponding options instead of turning them on. For example the option string
— WL-(*# turnsonthe W and L options and turns off the (,;* and # options. Turning

off * or & turns off the any-string feature regardless of which of the two characters
was in effect.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Option strings are never quoted when they are actually typed. The example above
shows them quoted only for descriptive clarification. MegaBasic reports an Argument
Error if you type any other characters in an option string, except spaces. To further
enhance your understanding of the any-string character in search and replacement
string, a number of example CHANGEommands (abbreviated CH follow below. Each
example assumes that some previous command has turned on the (* # options.

Example Change
Command Result Accomplished

CHrem*, rem Deletes the text of all program remarks.

Inserts an additional subscript between the
first and second existing subscripts of all ref-
erences to array X(). Notice that quotes are
needed to allow commas to be part of the
string.

CH “X(*,*)”,“X(*,S,*)”

Deletes the second subscript expression from

CH X[* %) & (%] *3)"
(557 X(L*3) all references to array X().

Moves the leading parameter of function

CH™M(™ " n("2."1) fn() to the end of the list in all references.

Swap the first statement with the 3rd state-

G ke k3w '
e ment on every line.

Specifying Program File Names

MegaBasic stores programs on disk files managed by the operating system. These files
may be given any name which is legal in the host operating system. File names have
two parts: a primary name and a secondary name. Both are necessary for the file to be
properly identified. For example, you can save a program on a file named
PROGRAM1.XYZ, where PROGRAML1 is the primary name and XYZ is the secondary
name. To simplify matters however, you do not need to specify the secondary name of a
program file. When omitted, MegaBasic always supplies the default secondary name of
.pgm. Hence if you supply the name PROG (without a secondary name), you are really
specifying by default the file name PROG.pgm. Therefore you will not normally specify
the secondary portion of program file names, although doing so is possible for special
purposes.

In MegaBasic commands, program file names are always typed exactly as spelled and
without any quotes around them, although you must separate file names from the other
items typed in the command with spaces. In MegaBasic statements however, you
specify file names with string expressions and string constants in such expressions
require quotes around them, for example:

You do not quote the PROG1file name because LOADis a

LOADPROGIL command (nota statement).

. . You must quote the program name here because ACCESSs
ACCESS“PROG1 an executable statement and you give the file name as a
string expression.

GFK-0256 Chapter 2 MegaBasic Commands 2-9

If the file is not on the default drive, you must include the appropriate drive letter in the
file name. You specify the drive letter in front of the file name, separated by a colon (2).
File names and drive letters can be in upper or lower case with the same effect. For
example the following file names all refer to the same program file on drive B:

B:PROGRAM.pgm B:program.pgm b:pRoGrAm.PGM

Under operating systems that support them, you can specify file names with their
directory path. This provides access to files in directories other than the currently
selected directory. As with file names, you can spell path names in upper or lower case,
but MegaBasic converts any lower case characters to upper case internally. Path names
consist of a series of directory names, separated by slashes (/ or \), and with no
intervening spaces. MegaBasic converts forward slashes to backslashes before using the
name internally.

Any legal MS-DOSpathname is acceptable to MegaBasic. Hence the file ..\x refers to the
file named X in the directory just above the current directory. See your MS-DOS
operating system users manual for complete information about file pathnames and how
to specify them. If the last character of a pathname is a slash (/ or \), then MegaBasic
treats the string as the name of a directory instead of a file. Whenever MegaBasic cannot
find a pathname on the drive specified or implied, MegaBasic generates a Directory Not
Found Error. For more information about MS-DOSpathnames, consult your operating
system manual.

Controlling Command Output

Since you cannot usually read console listings and other displays as they fly by on the
screen, several keys may be struck to STOPthe display, step through it a line at a time,
re-start it, and terminate the listing process prematurely. These controls are summarized
below:

Alternates between pausing the display
Ctrl-SorSpace-Bar and re-starting it. When paused, you can
abort the current display process by sim-
ply typing another command.

Displays successive output lines, one for
CarriageRETURN or each key stroke. Effective only during a

Line-feed display pause. An output line may take up
more than one physical screen line.

TAB Displays the next 10 output lines of the
current display on each keystroke. Effec-
tive only during a pause.

Ctrl-C orESC Immediately terminates the listing.

You should, in particular, be prepared to press the space-bar immediately after giving the
LIST command if you are using a fast console screen.

2-10 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Program Entry, Storage and Retrieval

GFK-0256

This section describes the commands for entering your own program from the keyboard
and listing it back again on the screen or on the printer, and other commands for saving
your program on a disk file and loading it back again. The summary below provides a
brief synopsis of each command:

ENTER Automaticline number generation for programentry from
the keyboard. You may abbreviate ENTERas ENT

Generates listings of your program and outputs to the con-
LIST sole screen, the printer, a text file, or other 1/0 device. You
may abbreviate LIST as LI .

Displaysablock of program source code which immedi-
ENTERKEY | ately precedes the last line entered, listed, changed or
interrupted for quickreference purposes.

Loadsa program from a file into the currentworkspace or
into a new workspace. The file must contain a programin
binary format, as created by the SAVEcommand, or a pro-
gramin ASCII format, as created by an editor program.

LOAD

Saves your work onto a file for backup or later access using
SAVE the LOADcommand. SAVEwritesyour programina
memory-imagebinary format.

ENTER [<star ting line number>][,<stepsize>]

Although you can enter a single program line into the program by just typing its line
number and contents, the ENTERcommand provides automatic line numbers for a series of
new lines that you enter. You may optionally specify a starting number and stepsize,
arguments which default to the prior ENTERarguments or default to 10 on the first
ENTER The following examples illustrate the various options:

ENTER 10, 20, 30, 40, 50....
ENTER1200 1200,1210,1220,1230....
ENTER340,2 340, 342,344,346, 348, ...

After you type the ENTERcommand and press carriage RETURINMegaBasic presents the
first line number and waits for you to type a program line. After you finish typing the
line and terminating it with a carriage return, MegaBasic gives the next line number in
the sequence and you enter another line, and so on. To terminate the process, type a
CTRL-C or ESCat any point or a carriage return immediately after the automatic line
number appears. Since the last line you entered is always in the editing buffer, you can
use editing controls to use all or part of that line in constructing the current line,
potentially saving a significant amount of work.

You can backspace over the automatically generated line number and change it into any
number you desire. After you enter a line into the program, the next automatic line
number will be the number just entered plus the step-size specified by the ENTERcommand.
You can edit the current line number to re-direct the sequence of automatic line numbers
during program entry without typing additional ENTERcommands.

Chapter 2 MegaBasic Commands 2-11

2-12

If the automatically generated line number matches a program line that already exists,
MegaBasic displays its contents, positions the cursor on the first non-blank character
after the line number and lets you edit the line using the editing control keys described
in Chapter 1, Section 6. At that point you can edit the line, skip it by typing a carriage
RETURN or get out altogether by typing CTRL-C. If you edit or skip the line, MegaBasic
resumes the ENTERprocess with the next line number in the series. To correct
previously entered lines without leaving the ENTERmMode, type a CTRL-K during the
ENTERprocess to go back to the line preceding the one you are on.

MegaBasic does not perform any syntax checks on lines you enter into a program.
However, if you forget the closing quote on a string constant, MegaBasic automatically
adds one to the end of the line. Since this can potentially enclose unwanted characters
within the string (e.g., subsequent statements on the same line), MegaBasic provides a
warning message to indicate this action. Also, MegaBasic removes trailing semicolons
from any line that you enter.

LIST [#<dev>][<line range>][,<search$>][,<options>]

Provides a display or printout of your program. You can specify a variety of arguments
with the LIST command to direct the program LIST ing to files or different output
devices and to restrict the listing to only a portion of the entire program. All arguments
are optional and MegaBasic assumes specific default values when you omit them. Each
argument and its default value is summarized below:

Specifieswhere the program listing is to be sent. MegaBasic
uses the console (device #0) if you omit the <device>. You
may supply a device number to send the listing to the printer

<dev> (#1), to an open file, or to another output device. Be sure to
type a pound sign (#) in front of a device number to
distinguish itfromaline number.
Specifies the range of line numbersto LIST . Theentire pro-
<line gramis LIST ed when no line range is given. See the
range> discussionaboutspecifying program line rangeson

Chapter 2, Section 1.

Specifies a string of characters which must be present in each
line in the program listing. MegaBasic excludes all lines
<search$> | fromthe LISTing thatdo not contain the <search$>
specified. When you omit the <search$>, MegaBasicincludes
all linesinthe LISTing . See the discussion on specifying
search strings in Chapter 2, Section 1.

Specifies zero or more single-character switches that alter the
<options> way that MegaBasic conducts subsequent program line
searches. See the discussion on specifying option strings
back in Chapter 2, Section 1.

LIST is extremely flexible because of the many combinations possible. The following
examples illustrate possible LIST commands along with a description of what they do.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

GFK-0256

LIST List the entire program on the console.

LIST #1 List the entire program on the printer.

List line number 450. A line number all by itself specifies a
line range of one line.

LIST 300-675 List all lines with numbers in the range from 300 to 675,
inclusive.

LIST -500 Listall lines numbered 500 and lower. Omitting the lead-
) ing line number of a range but including the dash indi-
LIST 0-500 cates a range that begins with the first line of the program.

LIST 450

LIST 225 Listall lines numbered 225 and higher. By omitting the
- ending line number of a range but including the dash indi-
LIST 225-$ cates arange ending with the last line of the program.

LIST .-499 Lists all lines from the current line up line number 499.
LIST 100-. Listall lines from line number 100 up to and including the
currentline.
LIST.. List all lines of the current line range.

MegaBasic uses the optional string argument to search through the line range given and
list only those lines containing that string. You can include question marks (?) in the
search string to act as wild card characters that match any character (see the information
about this feature under the EDIT command in Chapter 2, Section 1). Upper and lower
case letters match as the same letters.

LISTREM Listall the REMarks in the program.

LISTDEFPROC Listall the procedure definitions in the program.

List to the printer all lines below 100 containing WRITE

LIST #1,0-99,write
statements.

List to the console all lines containing assignments to
LIST M?$= string variables having names 3 characters long that be-
gin with the letter M.

Listall lines containing TOT followed later in the same
LISTTOT&SUM,& | line by SUM. The & option switch turns & into a
symbol that matches zero or more characters.

You only need to specify the <device> number to direct the program listing to an output
device other than the console (device #0). Usually this would be the printer (device #1),
but may also be an opened file number. The resulting file contains pure text suitable for
subsequent LOADing and also for processing by other text file utilities (e.g., text editors
and formatters) which cannot handle the coded format of normal MegaBasic program
files. See Chapter 7, Section 1 for further details about text file processing.

MegaBasic maintains your programs in an encoded representation for highspeed
execution. The LIST command reconstructs readable program lines from this format as
the program LIST ing progresses. Therefore, the lines LISTed may not appear exactly
the way you typed them originally. In particular, MegaBasic always displays reserved
words (e.g., FOR, NEXT, READ, WRITE etc.) as capitalized with trailing lower case (e.g.,
For, Next, Read, Write, etc.), and displays all variable, function, procedure and label
names in all upper case. REMarks and quoted strings are always LISTed exactly the
way you typed them.

Chapter 2 MegaBasic Commands 2-13

Carriage Return

Typing a carriage return all by itself in the command mode has a special purpose. It will
display a block of program source which precedes the last line LISTed , edited, entered
or interrupted during program execution. For example if your program encounters an
error and aborts with one the various built-in error messages, you can immediately view
the region of the error by typing a carriage return. Likewise, if you have been editing a
group of lines for a while, you can view your work by getting out of the edit mode
(using CTRL-Cor ESQ and typing a carriage return. Typing additional carriage returns
will display successive lines that follow the initial group displayed.

To determine how many lines to display, MegaBasic scans backwards through the source
from the current line back to a line beginning with a REMark or preceded by a line-feed,
up to a maximum of 12 lines. In this manner, you can view the most recent logical group
of lines at the touch of a button (RETURNey). When MegaBasic reports an execution
error message with a line number, it sets the current line to that line number. This
permits rapid review of the source region leading up to the error.

SAVE [<pr ogram file name>]

Saves a program from memory out onto a file. If you omit the file name, the program in
the current workspace is written to a file bearing the name of that workspace. This is the
preferred way to SAVEa file because it avoids having to remember, type and spell
correctly the destination file name. In so doing, you can avoid spelling errors and back
up your work so easily that you will tend to save it more often, rather than put it off.

If you supply the SAVEcommand with a file name, MegaBasic first compares it with all
the currently defined workspace names. If it matches any one of them, MegaBasic
aborts the SAVEto prevent multiple workspaces with the same name. Otherwise,
MegaBasic saves the program in the current workspace to the file specified and renames
the workspace to that new name. The following examples illustrate each of the possible
forms of SAVE

Writes the current program onto the file specified. If the file
SAVEfilename | name extension is .PGMthen you need not type it. You
must specify the file name extension if it is not a .PGMfile.

Writes the current program onto the same file that it was
most recently LOAR:d from or SAVEdto. MegaBasic
supplies a default name of UNNAMED.pgnif you have
not yet assigned a name to the program.

SAVE

Writes the current program onto the same file name, but to
SAVEd: the specified drive. Notice the colon after the drive letter,
indicating the letter is a drive code, not a file name.

Writes the current program onto the same file name of a
SAVH:\path\ | differentdirectoryand/ordrive. Notice thatthe pathname
endsin aslash to indicate itisadirectory, not afile.

SAVE Savesthe program on the file specified by the complete file
. e pathname given. You can specify pathnames in any form
d:\path)\file | 3jj0wed by the operating system.

Regardless of how you specify the SAVEcommand or what workspace contents you are
saving, MegaBasic asks you to confirm your request with a yes/no response after
displaying the entire file name and indicating whether or not the file already exists in the

2-14 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

file directory. Answering N (for no) aborts all further SAVEaction. AnsweringY (for
yes) saves the program to the file indicated, which is automatically created if not already
present.

When there are modified programs in other workspaces and you give a SAVEcommand
without specifying any file name, MegaBasic asks you if you want to save all modified
workspaces. Answering no (N) causes the usual SAVEof the current workspace.
Answering yes (Y) causes MegaBasic to sequence through each unsaved, modified
workspace while letting you confirm or deny a SAVEon each one. This automatic SAVE
option is only requested if other workspaces containing modified programs are present.
To SAVEan unmodified program, you have to specify a file name in the SAVEcommand;
SAVEDby itself does nothing if no programs in memory have been modified.

The SAVEcommand detects when another user (in a multi-user operating system or
network) has modified a program file you are about to SAVEand issues a warning that
you are about to overwrite their changes. You are then given the opportunity to abort
the SAVEor go ahead with it. This check is performed ONLY when you are saving to
the file from which you LOADedthe program, i.e., a SAVEwith no arguments that uses
the previous LOADname.

Files written with the SAVEcommand are exact memory images of the program in its
internally encoded form. Therefore other programs such as editors and other text
processing software unaware of the program structure within the file cannot process
MegaBasic program files. Furthermore, earlier Z80 versions of MegaBasic cannot
execute these files as programs. Whenever you SAVEto an existing file, any program
that was loaded and converted from a text or other non-pgm format, MegaBasic informs
you that you are about to write your program in Binary Format, and requests your
confirmation. By answering N (for no), the SAVEis aborted. This extra confirmation is
not requested if the destination file is new.

The MS-DOSand Xenix 386 operating systems organizes files in a hierarchical structure
of files and subdirectories. To access a file, you must therefore specify a path of names
from the top of the hierarchy down to the desired file. MegaBasic supports pathnames
in any form acceptable to the host operating system. For example the file ../x refers to
the file named X in the directory just above the current directory. Consult your
operating system user’s manual for detailed information about how to use and specify
pathnames. You should also read the material in Appendix B, Section 1 of this manual
for some differences between MS-DOSand Xenix regarding the formation of correct file
and directory pathnames.

One word of caution is in order here. There have been various pathname management
utilitiesfor MS-DOSoperating system to allow programs which were never designed to
work in the pathname environment to use files in some or all subdirectories. Such
programs may make files in those subdirectories appear as if they exist in the current
directory. This can cause problems with MegaBasic or other programs that have been
properly designed to take full advantage of the pathname environment, as they can be
fooled into thinking that such files really do reside in the current directory. Therefore
avoid such programs when using MegaBasic. Although it may work, MegaBasic is in no
way guaranteed to work in systems that have such programs installed.

LOAD<pr ogram file name list>

Loads one or more program files into memory and displays their size and the date/time
of most recent modification. If no program is present in the current workspace,
MegaBasic loads the file into memory without further attention. If a program is already

GFK-0256 Chapter 2 MegaBasic Commands 2-15

2-16

present, MegaBasic lets you choose to either replace it with the incoming file, or else
preserve it and load the file into a new workspace. In either case, MegaBasic selects the
receiving workspace as the current workspace and assigns it the name of the file just
LOADed Using successive LOAD, you can bring into memory, one at a time, up to 64
programs simultaneously, limited of course to the amount of memory actually available
in your machine.

When you specify more than one program file in the LOADcommand, they are each
LOADedinto separate workspaces from the one you are in, and leaves you in the same
workspace from which you started. The file names must be separated from one another
in the LOADcommand with spaces.

Before erasing the contents of a workspace prior to loading another program into it,
MegaBasic looks to see if it contains original work which would be lost. If so, MegaBasic
informs you and gives you the opportunity to abort any further LOADaction. MegaBasic
never lets you destroy original, unsaved work without confirmation.

If the program file is not found in the directory implied in its name, MegaBasic searches
each of the subdirectories specified in the MS-DOSalternate PATH= list maintained by
the operating system, in order to find the program. See Chapter 10 for further details
about the file lookup order.

Wherever the program came from, MegaBasic retains its full drive and pathname so that
any subsequent SAVEcommands can write the program back to its original file and
directory no matter what the currently selected directory happens to be.

Loading Programs Stored in Text Format

MegaBasic programs are normally stored in a special coded form on the file.
Occasionally, you may have a text file containing program text from another system or
different dialect of that you wish to convert to the MegaBasic system. You can store
MegaBasic programs in ASCII text format, by simply LISTing the program source to
an open file number. This format can be processed by any text processing facilities
present on your computer system, and then LOADedback again as needed. To be
acceptable, a text file must conform to the following rules:

o Each line ends with a carriage return (ASCII 13). When a line-feed and a carriage
return appear in pairs, MegaBasic ignores the second character of the pair (discarding it)
and uses only the first character.

O MegaBasic ignores empty lines, i.e., lines consisting of only spaces and a carriage
return.

O MegaBasic reads text files to the end or until it reads an end of file mark (normally
an ASCII 26 code). You can specify a different code using PARAND) if the normal
ASCII 26 value is inappropriate.

O Lines do not have to begin with line numbers, but MegaBasic accepts them if they
appear. To lines without line numbers, MegaBasic automatically assigns line
numbers one greater than the previous line loaded. Hence a text file without any
line numbers will be automatically numbered: 1, 2, 3, and so on. MegaBasic uses line
numbers to decide how to order the lines as it loads them.

O Lines longer than 255 characters are broken into two or more lines of no more than
255 characters each. These resulting lines will likely require editing, due to the
arbitrary divisions imposed. You should therefore try to avoid such long lines
whenever possible.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

O The text file must not exceed 65535 bytes in length. Attempting to LOADfiles longer
than this will result in a Length Error.

o Upper and lower case do not matter, but MegaBasic will impose its own upper/lower
case conventions on the resulting program.

Program Version Control

To help you manage the various versions of your MegaBasic program, MegaBasic
automatically maintains a count of the number of times that you SAVEyour program.
This count is incremented each time you SAVEyour program and the program has
changed since the last time you saved it (i.e., redundant SAVES do not count). You can
access this count by opening the program file and reading the count word (16-bits) from
position 14 in the file:

Open #5,“program.pgm”; filepos(5) = 14;
Read #5,@count; close #5

Given two versions of a program, their counts can tell you which version is the most
recent one, regardless of their dates in the file directory. At any time, you can alter the
count field directly (using a WRITEstatement) for special purposes (but be sure you alter
nothing else around it). SAVEcounts will wrap around to zero after 65536 SAVESbut
such a number is not likely.

Chapter 2 MegaBasic Commands 2-17

Section 3: Editing and Alteration Commands

2-18

These are all the commands provided by MegaBasic to revise your program by editing
source lines, to make global substitutions, to merge programs from other files into the
current program, and other modifications. The following list summarizes them:

EDIT

Selects program lines by range and optional search string for
rapid editing and display. You can abbreviate EDIT as ED

CHANGE

Replacesonestring for another throughout a range of pro-
gram lines. One-at-a-time user-verify option,and wild-card
characters within the target string are available. You can
abbreviate CHANGEs CH

NAME

Instantlyrenames any user-assigned name (identifiers,
labels, etc.) as any new name. Itisalso able to display all
existingnamesorderedalphabetically. You can define vari-
ous selectors to restrict the names displayed to those with
certainattributes.

DEL

Deletes any range of program lines.

REN

Renumbers any range of lines to any other range with a fixed
increment. You can rearrange program blocks by re-

numbering them to the desired destination sequences. Mega-
Basic updates all line number references to renumbered lines.

MOVE

Moves any range of program lines to another starting line
number. Preserves the increments between the lines moved.
MegaBasic maintains line number references accordingly.

COPY

Creates a second copy of a range of program lines, renum-
bers it, then inserts it at another line number in the
program. MegaBasic updates line number references
within the copied lines.

DUPL

Duplicates any range of program lines and inserts them
into the program at any line number. DUPLpreserves the
increments between line numbers and maintains local line
numberreferences.

MERGE

Merges selected lines from a program file or workspace into
the current program by line number. You can specify the
starting line number where you want the merged lines to
go and source line ranges to merge. MERGIeplaces
existing lines with new lines wherever their line numbers
match.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

EDIT [<line range>][,<search string>][,<options>]

Lets you edit any sequence of lines in your program. MegaBasic displays each line and
positions the cursor at the beginning of the line (on the line number). You can then edit
this line using the editing control keys described in Chapter 1, Section 6. Only when you
type the ENTERKey (or carriage return) will MegaBasic accept this line and proceed to
the next one in the line range specified or implied. You may skip over a line, leaving it
unchanged, by typing a carriage return without making any changes. You can specify
several optional arguments to focus your efforts on the exact area of interest:

Specifies the range of lines that you wish to sequence
through for editing. Unlike all other commands that use
<line range> line ranges, a single line number implies the range of
lines from the number specified to the end of the
program.

Specifies asearch pattern that MegaBasic uses to filter
<sear ch strings> | outlinesthat you do not wish to edit. MegaBasic only
presents you with the lines that contain the search
string and excludesall others.

Specifies zero or more single-character switches that
alter the way MegaBasic conducts program line
<options> searches. See the earlier discussions in this Section for a
complete explanation of <options> (Chapter2,

Section 1) and <search strings> (Chapter 2, Section 1).

The editing process steps from line to line until you have edited the last line of the line
range, or until you type a CTRL-C or ESC or until you enter a new command. Anything
without a line number is considered a command and therefore if the first key you type
(after a line is presented) is not a digit or editing control character, edit mode exits
automatically and the character becomes the first character of the next command.
Whenever you exit the edit mode while a line is presented on the screen, MegaBasic
erases the line shown before accepting the next command. If you want to bring it back
and continue editing, use F5 or Ctrl-R

At any time during the EDIT mode you can type a Ctrl-K (up-arrow on some
terminals) to edit the line preceding the current line being shown. Repeated use of
Ctrl-K sequences backward through the program one line at a time. See Chapter 1,
Section 6 for a complete explanation of this key. To get the most out of the EDIT process,
you should understand the material presented in Chapter 1, Section 6.

If you specify the <search string>, MegaBasic will present only those program lines
(within the given line range) that contain the string specified. Upper and lower case
letters in the search string are equivalent. You must enclose the string with quotes (“*“ or
) if it contains any commas, significant leading or trailing blanks, or it begins with a
period (.), digit or dollar sign ($). When MegaBasic finds a line that contains a <search
string>, the entire line is displayed and the cursor is positioned in the line where the
<search string> was found. At that point you can edit the line or skip it by typing a
carriage return, after which MegaBasic skips to the next line containing the <search
string>.

For flexibility, your search string may contain special wild card characters that match any
character. This special character, a question mark (?), may appear anywhere in the
search string (except as the first character) and as many times as desired. With this
concept, the string A??= will match all assignment statements with variable identifiers 3

GFK-0256 Chapter 2 MegaBasic Commands 2-19

2-20

characters long beginning with the letter A. The following examples illustrate and
describe each of the various forms of the EDIT command:

EDIT Editthe program sequentially from the first line.
EDIT175 Edit sequentially from line 175 and on up.
EDIT200-299 Edit the lines in the 200 range and STOP
EDIT.subr Edit the lines in the function or procedure named SUBR
and STOP
EDIT“i,j” Editall lines containing the string i,|.
EDIT*" Editall lines containing a double quote ()

EDIT850,rem Edit lines containing rem numbered 850 and up.

EDIT300-499,read Edit lines containing the string read in the lines numbered
from 300 to 499.

EDIT M?27= Editall lines containing a five character sequence
o beginning with M and ending with =,

After editing a line and entering it, MegaBasic automatically presents you with the next
line that follows it in the line number sequence. Because of this, if you edit the line
number the edit will continue from that point in the program. You can re-start the
editing sequence anywhere in the program by simply typing an unused line number at
the desired starting point (followed by a carriage return). This normally deletes the line
there, so be sure that the number you select is not in use.

You can edit an executing program after you interrupt it with a CTRL-C. Afterward,
you can usually continue its execution from where you interrupted it. This may be
desirable when, during debugging your program, you discover a programming error
requiring a small correction. However, there are certain program lines which you cannot
alter without disrupting program continuability. When you edit such a line, MegaBasic
willinform you with the message: Program continuation no longer possible. Consult the
CONTcommand in Chapter 2, Section 4 for complete information about the effect of
program alteration on execution.

When an error occurs in a running program, MegaBasic places a copy of the line in
which the error occurred into the editing buffer. This lets you immediately examine and
modify the offending line after MegaBasic reports an error in it. MegaBasic does not
automatically display an erroneous line, but you can access it by typing the appropriate
previous line access control keys.

Whenever you enter new or edited lines into a program, MegaBasic does not, in general,
perform any syntax checks on the line. However, there are two corrective actions
MegaBasic takes automatically. If you forget the closing quote (’ or) on a string
constant, MegaBasic automatically adds one to the end of the line. Since this can
potentially enclose unwanted characters within the string (e.g., subsequent statements
on the same line), MegaBasic provides a warning message to indicate this action. Also,
since some users have a tendency to place a semicolon (;) at the end of a program line,
MegaBasic removes trailing semicolons from any line that you enter.

CHANGE[<range>,] <search$><replace> [<opts>]

Global search-and-replace may be done with the CHANGEommand, which replaces one
string with another everywhere or selectively within a line range. After you enter a
CHANGEommand, MegaBasic will request a yes or no response to the question: \erify?.
An no response causes an immediate replacement of all occurrences found. A yes

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

response tells MegaBasic to request confirmation of each replacement before actually
making any change. This allows you to individually control each replacement as it
happens. Upon completion of a CHANGEommand, MegaBasic displays the number of
changes made. The paragraphs below summarize the various CHANGEommand
arguments:

Specifies the range of lines that you wish to search and change.
<range> When you omit the <range>, CHANGIacts upon the entire
program.

Specifiesa string of characters that you want replaced by
another string. Lines which do not contain the search string

<search$> remain unchanged. Special characters can be used to match
any character or string of characters.
<replace> Specifiesthe string that you want to substitute for each
P instance of the <search$>.
Specifieszero or more single-character switches that alter the
<opts>

way MegaBasic conducts program line searches.

These arguments are fully described in Chapter 2, Section 1 and you should understand
this material in order to take full advantage of the CHANGEommand. When you
include wild-card characters in the <search$>, you should use the verify option to avoid
unintentional replacements. The following examples show various ways you can type
CHANGEommands:

Change the string this to the string that throughout

CHANGE this, that theprogram.

CHANGE*“A(i,j)",V() | Change A(i,j)to V(j)throughout the program.

CHANGEth??e,those | Change sequences that match th??eto those.

CHANGE100-199,x,y | Change xtoy in the line range 100 to 199.

CHANGES60, 23,-23 | Change 23 to -23 throughout line 560.

It is wise to use the verify option when you specify a numeric search string in a CHANGE
command. Short numbers can easily occur within longer numbers and unintentional
replacement can cause considerable work to repair. To a lesser degree, unintentional
replacement of sub-strings can occur with any search string, and for that reason you
should be careful using CHANGEWhen in doubt about what a search string will match,
you can always try it firstin a LIST command to see what matches before changing
your program.

CHANGEs a very general purpose tool that you can apply in a wide variety of situations.
However if you are changing line numbers or renaming user assigned names (e.g.,
variable or function names), you should employ the RENand NAMEommands for these
purposes instead of using the CHANGEommand. These special purpose tools not only
execute faster, but they perform their specific task automatically and completely. For
example, when RENchanges a line number, it also changes all references to that line
number, wherever they may be throughout the program (search strings do not even
access the line number portion of a program line). The NAMEcommand can rename a
variable | to J without changing all the other I's to J's that are not variables (e.g., in
remarks or string constants).

You can append an additional parameter string to a CHANGEommand, called option
switches, to enable or disable various additional search capabilities. This optional

GFK-0256 Chapter 2 MegaBasic Commands 2-21

2-22

argument consists of a comma followed by one or more single-character option switches.

Each option switch character turns on or off a different feature. Once you switch a
feature on, it stays on for the CHANGHEEDIT and LIST commands until you explicitly
turn it off in a subsequent option string. See Chapter 2, Section 1 for description of all
available option switch characters.

Two of the option switches let you define either the ampersand (&) or the asterisk (*) as
a special character in a <search string> that matches any string of characters. To assist
your understanding of this any-string character in search and replacement strings, a
number of example CHANGEommands follow below. Each example assumes that some
previous command has turned on the (, * and # options, and that you have read and
understood the option switch material presented back in Chapter 2, Section 1:

Removes the textfromall program

*
Changerem*,rem remarks.

Insertsan additional subscript between
the 1st and 2nd existingsubscriptsof
all referencestoarray X(). (Quotes
preserve the commas.)

Change“X(*,*)",“X(*,S,*)"

Deletes the 2nd subscript expression

Change®X(*,*,*)","X(*1,*3) fromall references to array X().

Moves the leading parameter of func-
Change“fn(*,*)”,“fn(*2,*1)” tion fn() to the end of the list in all
references.

Swap the 1st statement with the 3rd

*ekeke *QkD:Kkq-
Change*,, *3*2*1; statement on every line.

Append a copy of the 2nd statement
Change*;*;*,*1;%2;*3;*2 on the line to the end of the line, on
every line.

The important thing to understand from these examples is how to manipulate text by
specifying only its surrounding context. You should try out these techniques on some
practice source programs (without saving the results) to get a good feel for how they
work. When appropriate, any-string substitutions can replace many hours of editing
with a few minutes of effort.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

NAMES [#<device>,] [<selector LIST>]

Without any arguments NAMEnNvokes an alphabetical listing of all user-assigned names
used for variables, functions, procedures and line-labels. This allows a quick review of
the names you have assigned to all the objects in your program which you have defined.
Typographical errors in such names will generally appear near the correct spelling
because of the alphabetical ordering of the display. You can control long or overly rapid
displays using the same pause controls supported by the LIST command. You can
direct the NAMESisting to any output device or open file by specifying the #<device>
argument.

The NAMEcommand can also display the names of entities with specific attributes, by
listing the desired attributes as arguments to the NAMEEommand. For example, NAME
FUNCQwill display all the user-defined function names; NAMES FUNGwill display only
those functions which return a string result. The attribute selectors may be any from the

list.
FUNC User-defined functions of any data type
PROC User-definedprocedures
STRING Stringvariables,arraysand functions
DIM Variablescurrently defined as arrays
REAL Floating point variable and function names

INTEGERoOrINT | Integer variable and function names

STRUCT Structure fields of any type
SHARED Shared entities used in the currentprogram
GOTOor: Line label and line number references

Allselectorsfollowing NOTor a minus sign become de-

NOT or selectors,i.e.,matching items are omitted from the listing.

You can type any combination of selectors in any order after the NAMEeyword,
separated from one another by spaces. MegaBasic displays only those names that satisfy
all the selectors specified, for example:

NAMESHAREDS$ | Displaysall string functions in use by the current program which some

FUNC package has defined as SHARED
NAMEDIM$ Displays the names of all string arrayvariables.
NAME: Displays all the line labels in the program.
NAME$NOT FUNC | Displays any string name not a function and not dimensioned
DIM (i.e.,simplestringvariables).

N§¥§|N2T : Displaysall names except strings and line labels.
NAMEU\,LEEGER Displays the names of all integer functions
NAM EEI)II\:\-/II_EGER Displays the names of all integer arrays.

NAMESHARED Displays names of all floating point variables and functions which are
REAL currently declared SHARED

GFK-0256 Chapter 2 MegaBasic Commands 2-23

The NAMEcommand depends on the current data type defined by each name. To obtain
this information, MegaBasic processes all DEFstatements in when you type the NAME
command. If there are syntax errors in any DEFstatements then MegaBasic aborts the
NAMEcommand and reports the error found. Also, the names of arrays and the names
of SHAREDbjects defined in external packages will not be shown unless you have
executed the ACCESSstatements that bind the SHAREhames to their references. NAME
provides a count of the names it displays after listing them.

NAME <old name>, <new name>

By following the NAMEcommand with two names (of identifiers), separated with a
comma, MegaBasic will instantly rename all occurrences of the first name as the second
name throughout the program. An error message results if the first name does not
appear anywhere in the program or if the second name is already in use or if either
name is a MegaBasic reserved word. An error also occurs if you quoted either name like
a string; just specify the names as if you are typing them into your program.

This command is specifically designed for renaming identifiers and since it is not a string
match-and-substitute process, it will not affect REMarks or quoted strings which contain
similarly spelled character sequences. You cannot restrict NAMBo a line range and no
verify option is available (unlike the CHANGEommand). You can spell NAMEas either
NAMEBEor NAMEs

DEL <line range>

Deletes the specified line range from your program. A dollar sign ($) may used to
denote the last line of the program. Use DELfor block deletions rather than single line
deletions, because you can more easily delete a single line by typing its line number and
an immediate carriage RETURNi.e., an empty program line). For example DEL 30~399
deletes all lines in the 300 range. See the discussion on specifying line ranges back in
Chapter 2, Section 1.

REN [<star ting line>[,<stepsize> [<line range>]]]

Provides a general program renumbering facility that renumbers any range or subrange
of lines to any other range. MegaBasic does not permit renumbering that would cause
line interleaving or duplicate line numbers. However it does support rearrangement of
whole groups of lines as well as simple renumbering, given the appropriate command.
MegaBasic adjusts all references made to lines renumbered by the process, wherever
they may be throughout the program. Each of the arguments to RENis optional and
MegaBasic assumes specific default values for them when you omit them, as described
below:

Starting line number where you want the renumbered lines
<starting line> | to begin. Line number 10 is used if you omit this argument,
which renumbers the entire program by 10 from 10.

Increment between the renumbered lines and defaults to
<step size> |10ifomitted. It mustbe 1 or greater and it cannot be so
large that it forces any line number beyond 65535.

Range of lines to renumber in your program as they are
<line range> | before renumbering. If you omitthe <line range>, the
entire programisrenumbered.

2-24 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

All arguments are optional, but you have to omit them from right to left. The following
examples illustrate how you might apply the RENcommand:

REN Moves entire program to 10 by 10s.
REN 250 Moves entire program to 250 by 10s.
REN 375,5 Moves entire program to 375 by 5s.

Move lines numbered 2000 and up into the range 500 by

RENS500,12,2000-$ 125

REN200,3,800-899 | Move all lines in the 800 range to 200 by 3s.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic always properly updates references to renumbered lines throughout the
program. Line number references to nonexistent lines remain unchanged. The resulting
range of lines affected by any RENcommand will become the .. current line range (see
Chapter 2, Section 1).

MOVE [<star ting line>][, <line range>]

Moves lines from any range of line numbers to a new starting line number, while
maintaining the existing increments between the lines. Line number references to the
lines moved are automatically updated throughout the program as needed. Both of the
arguments to MOVEre optional and MegaBasic assumes specific default values for them
when you omit them, as described below:

Starting line number where you want the block of lines to be
<starting line> | and defaults to line 100 if you omit it (i.e., MOV Ewvithout
arguments moves the entire program to line 100).

The block of lines that you wish to move, prior to moving
them. When you omit this argument, MegaBasic moves the
entire program to the <starting line> specified. See the com-
plete discussion on specifying line ranges in Chapter 2,
Section 1.

<line range>

MOVHs like the RENcommand but without any line increment step size. The following
examples illustrate the variety of ways to type MOVEEommands:

MOVE Movethe entire program so that its first line starts at line
number100.
MOVE 4000 %g\(;e the entire program so that its first line begins at

MOVE 335, 450 Move line 450 to line number 335.

Move all program lines numbered 500 and up so that
MOVE 800, 500-$ the f_i rst of these begins at Ii_ne 800. This_form i_s
particularlyuseful for opening up holesin the line
number space for a new block of program lines.

MOVE 900, 300-399 | Move lines in the 300 range to the 900 range.

MegaBasic validates the implied operation that you request and aborts with an Out Of
Bounds Error to prevent overlapping line ranges or illegal line numbers. MegaBasic

GFK-0256 Chapter 2 MegaBasic Commands 2-25

2-26

properly updates references throughout the program to line numbers that have moved.
Line number references to non-existent lines remain unchanged. After a MOVE
command, the .. current line range, discussed in Chapter 2, Section 1, is the set of lines
moved.

COPY [<star ting line> [<step> [<line range>]]]

Copies all lines within one line range to a second empty line range, leaving the original
lines intact and unchanged. Line number references to both the original and the copy
are properly maintained. Each of the arguments to COPYis optional and MegaBasic
assumes specific default values for them when you omit them, as described below:

This is the starting line number where you want the new
block of lines to begin. MegaBasic assumes line number 10
for thisargument if you leave it off. Omitting italso implies
that you have also omitted the other arguments as well.

<starting line>

This specifies the increment or spacing between the copied
lines. It defaultsto 10 if you omit it. The step size must be 1
orgreater, and it cannot be so large that it forces the last line
number beyond 65535. MegaBasic traps both of these errors.

<step size>

This specifies the block of lines that you wish to copy, as
they are numbered before the copy. When you omit this
<line range> | argument, MegaBasic copies the entire program to the
<starting line> specified. See the complete discussion on
specifying line ranges in Chapter 2, Section 1.

COPYworks just like renumber, except that the original lines remains unchanged and a
renumbered copy appears elsewhere in the program. The following examplesillustrate
the various forms of COPY

COPY Copythe entire program to line 10, stepping by 10.

COPY10000 [Copy entire program to line 10000, stepping by 10.

COPY4000,5 | Copy entire program to line 4000, stepping by 5.

Copy line 475 to line number 350. The step size of 1 is super-
COPY350.1.475 | fluous because you are copying only one line. Editing line
475 to change its line number to 350 might be easier.

COPY Copy the lines in the 400 range to line 100, incrementing by
100,20,400-499 | 20 between lines.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic properly updates all line number references throughout the program to both
the original and the copied lines. Line number references to non-existent lines remain
unchanged.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

DUPL [<star ting line>][, <line range>]

Duplicates all program lines within a line range to a second empty line range, using the
same increments between the lines as the original. DUPLrelocates line number
references as needed. Each of the arguments to DUPLIs optional and MegaBasic
assumes specific default values when you omit them, as described below:

Destination line number of the new block. Omitting it

<starting line> | = - : h
g (i.e., noarguments) duplicates the entire program at line 10.

Specifies the source block range to duplicate. When you
omitthisargument, MegaBasic duplicates the entire
program to the <starting line> specified. Line range
specification is described on Chapter 2, Section 1.

<line range>

DUPLis like the COPYcommand without the line increment argument. The examples
below illustrate a variety of DUPLcommands:

DUPL Copiesthe entire program into line 100 with the same
inter-line step sizes.

DUPL 12000 Copieg of_the entire program at line 12000 with the
samelineincrements.

DUPL 1255, 425 425 Copie_s_line_425 online 12_55. _You can do the same thing
by editing line to change its line number to 1255.

DUPL500,200-$ Copies all lines 200 and up and put the first line to 500.

DUPL1200,800-999 | Copies lines within the 800 to 999 range to 1200.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic properly updates all line number references throughout the program to both
the original and the duplicate lines. Line number references to non-existent lines will
remain unchanged.

MERGE <pr ogram> [<source/destination specs>]

The MERGEommand provides a general facility for adding MegaBasic code lines from
other files or workspaces to your current program. It combines the lines of the two
programs according to their line numbers. Source lines with the same line numbers as
lines in the target program replace those target lines; source lines with differing line
numbers are inserted into the target program. Meaningless code may result from
overlapping and interleaving lines indiscriminately.

The <program> argument specifies the name of either a file or a workspace. If you
specify afile, it is brought into memory for the MERGBperation and removed upon
completion. If you specify a workspace name (i.e., the name of a program already in
memory), the MERGHEs performed without modifying its contents and the source
program remains in memory on completion.

Without any further arguments, the entire source program is merged into your target
program. However you can follow the <program> argument with one or more additional
arguments that specify where to put the merged lines into your target program and line
ranges to merge from the source program. You have to separate multiple specifications

GFK-0256 Chapter 2 MegaBasic Commands 2-27

from one another with a comma and each specification can take any of the following
forms:

Mergesall source lines into the target program start-

<start> . ; -
ing at the line number specified.

Mergessource lines from the range specified into the

<from>-<to> :
same line numbers of the target program.

Merges the source lines of the named subroutine
<subr name> (i.e., afunction or procedure name) into the same
line numbers of the target.

Mergessource lines from the range specified into the

<start>:<fr om>-<to> L .
target program at the starting line numberspecified.

Merges all source lines at or above the line specified
<start>:<fr om>- into the target program at the starting line number
specified. The dash (-) is optional.

Merges the source lines of the named subroutineinto
<start>:<subr name> | the target program at the starting line numberspeci-
fied.

For example, MERGIPROGL00:500-699, 200:SORT, CALCmerges lines 500 to 699
from program PROGnto the current program at line 100, all lines of subroutine SORT
into line 200 and all lines of subroutine CALCinto the same line numbers they already
have.

The <start> line number actually renumbers the incoming program lines so that they
begin on the line number you specified. MegaBasic accomplishes this by adding the
appropriate constant value to each and every line number and line reference so that the
beginning line number comes out as desired. This renumbering process affects neither
the current program nor the contents of the source program file you are merging.
MegaBasic does not proceed with any merge that would lead to line numbers greater
than 65535 and reports such acase as an Out Of Bounds Error.

Perhaps the most useful capability is the <subr name> specification, which lets you
merge procedures and functions from program files or other workspaces directly into
your program by name. When you specify this symbolic line range, MERGEearches the
source program for a procedure or function by that name. If found, the effective line
range specified consists of all lines of the subroutine starting with the initial DEF
statement, along with any immediately preceding REMark lines, up to and including the
line containing its terminating FUNCENDor PROCENDstatement. Failure to find the
named subroutine in this manner terminates MERGHRvith an appropriate error message.
REMarks that follow subroutines are not included. Incorrectly formed subroutines (e.g.,
missing FUNCPROCENDS or errors encountered in other DEFstatements along the way
may also terminate MERGE

Since you can specify multiple ranges and errors do terminate MERGBperation,
MegaBasic describes each range as it is being merged so that you can tell how far it
progressed if an error does occur. Each source/destination specification is processed and
completed from left to right as specified in the command and any error encountered will
immediately terminate further MERGprocessing.

Automatic Target Placement

Normally, the merged lines go into the specified target lines numbers, displacing
anything that resides there. Often however, this invites problems and mistakes when

2-28 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

you in the process of building a new program by pulling in blocks of code from other
programs.

By preceding any <start>:<source> specification with a plus sign (+), MegaBasic
searches for an available target range beginning at or above the <start> specified large
enough to hold the <source> lines. The target destination will always be a block of line
numbers beginning on a multiple of 100. If no <start> was specified, the search begins at
line 1000. An Out Of Bounds Error occurs if no available target region could be found.

GFK-0256 Chapter 2 MegaBasic Commands 2-29

Section 4: Execution Control and Debugging Commands

2-30

This section describes the MegaBasic commands that you use to run your program, test

for bugs, stop and examine some variables, continue where you left off with

single-stepping, resume until some condition becomes TRUEor FALSE, etc. The flexible
debugging environment provided for controlling and monitoring program execution
reduces the effort needed to fully develop software, so any extra effort you spend to

master these commands will quickly pay off with more productive testing and

debugging sessions.

commands:

The list below summarizes the execution and debugging

Direct
Statements

MegaBasicalways attempts to executeany line of MegaBasic
statements without a line number.

RUN

Clearsmemory, evaluates the static definitions (DEFstatements)
and begins program execution.

Ctrl-C

Abortsthe execution of any program in progress and puts you
into the command level. The program may be re-started later
againlater.

CONT

Re-startsaprogram that you previously interrupted with a
CTRL-C, or one that interrupted itself with a programmed
STORContinuation is possible even if you have modified the
program, changed variable values, saved iton afile, or performed
virtually any other command operation.

TRACE

Selects various options that show the progress and current state
of program execution at the program source level as execution
proceeds. TRACEprovides many dif ferent options and controls
for selective display and conditional invocation of executiontrac-
ing. TRACEmodes are set or reset on a workspace by workspace
basis.

CHECK

Quick check of the program in the current workspace for
common syntaxerrorslike wrong line numbers, improperly
formed loops, unbalanced parentheses, etc. CHECHKeportsall
errors atonce.

Executing Direct Statements

Whenever you type a line without a line number into MegaBasic at the command level,
MegaBasic will immediately execute it. If it is a command then MegaBasic performs that
command. But you can also type a program statement or line of statements and
MegaBasic will execute it immediately as if it were a command. This technique is called

direct statement execution.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

For instance you can interrupt a running program and display the contents of an array
before continuing. Or you may want to use MegaBasic as an intelligent calculator by
displaying complex numerical expression values. Direct execution is an important tool
for debugging programs, but you can also enter any statements directly simply to
experiment and learn about them. The following example illustrates how you might
display an entire text file on the screen with one direct statement:

Open #8,“TEXT";
While input(8); Input #8,L$; Print L$; Next

Direct FORWHILEand REPEATIoops execute properly only when you enter the entire
loop as one line. Direct expressions may access any built-in or user-defined functions,
GOSUBand procedures at any time. However if there are any syntax errors in a DEF
statement anywhere in the program, MegaBasic reports them for you to correct before
you can execute any direct statement. This is because MegaBasic performs a local
initialization of your program DEFinitions prior to executing direct statements.

GOTOgause a CONTinuation (see above) followed by a branch to the line number
specified. A direct RETURMIso CONTinues program execution, followed by a RETURN
from the current subroutine level (unless the program was not CONTinuable within a
subroutine). You can alter the contents of program variables, and such alterations carry
over to CONTinued execution.

Before executing a direct statement, MegaBasic scans your entire program for DEF
statements, so that it can satisfy any potential references in the direct statement to
user-defined function and procedure. MegaBasic reports any errors uncovered during
this process, and if there were any, terminates without executing the direct statement.
Therefore, don’t be surprised if an error message with a line number appears after you
enter a perfectly correct direct statement that doesn’t even use any functions or
procedures. Because of this DEFinition scan, you can type new user-defined functions
and procedures into your program and then immediately proceed to use them in direct
statements without ever running the program. This is especially useful for quick testing
of new definitions.

RUN [<line number or command tail>]

RUNSstarts program execution from scratch and can begin at the first program line or
from the optional <line> specified. RUNerases any data left over from prior runs or
direct statements before program execution commences. You will not usually specify the
optional line number, but it can be useful when the main program has several entry
points for testing or debugging purposes.

MegaBasic also lets you execute programs from the operating system command level.
You do this by typing the program name on the same line that invokes MegaBasic (e.g.,
BASIC PROGRAM as a command to the operating system). Also, your program can
access the portion of the operating system command that follows the name of
MegaBasic. You can append additional arguments in this command string, known as the
command tail, to pass a small amount of data to the program you are running, as in the
operating system command:

BASIC PROGRAM DATA1 DATA2

To make these parameters available to the program, MegaBasic stores all characters
following its name (e.g., PROGRAM ARG1 ARG into the edit buffer, which is accessible
using the EDIT$ function (Chapter 9, Section 4). Your program is responsible for
extracting such input parameters from the command line when its execution begins. To

GFK-0256 Chapter 2 MegaBasic Commands 2-31

2-32

test this extraction process from MegaBasic, you can type the argument sequence in a
RUNcommand (e.g., RUN ARG1 ARG2. When the program begins, this string will reside
in the edit buffer for subsequent access. This technique is useful for passing file names to
programs and for using MegaBasic programs in batch files.

Which ever workspace you are in when you give the RUNcommand becomes the main
program. Prior to beginning program execution, RUNperforms the following sequence
of operations:

0 The program residing in the currently selected workspace becomes the main
program. RUNerases all data currently defined by the main program all initialized
variable storage to free space. A No Program Error results when you type the RUN
and the current workspace is empty.

0 RUNmarks all temporary workspaces as free, and releases any data they own. This
consists of all unaltered packages brought into memory with INCLUDEor ACCESS
statements.

O RUNpreserves all packages that you LOADedinto memory along with any local data
they currently have defined, and it severs all ACCESSrelationships between them
and the current workspace. RUNpreserves the data defined by such packages so
that special purpose packages can remain available indefinitely (e.g., debugging
routines or completely independent programs).

0 The main program is set to permanent status (regardless of its prior status). The DEF
statements throughout the program are all initialized and then the program begins
execution.

A thorough understanding of the material presented in Chapter 10 is necessary for
effective development, testing and debugging of programs spanning more than one
workspace.

Ctrl-C

This is not a command, but a control key used for stopping whatever process is currently
underway: a sort of a panic button. When CTRL-C s struck during execution of a
program, it STOPSprogram execution like a STOPstatement, but can be trapped like an
error. This is useful during the debugging phase to see where execution is currently
happening or to immediately terminate an erroneous program.

When a program stops for any reason (i.e., ENDSTOPerrors), MegaBasic selects the
workspace of the program containing the line in which the stop took place. This is most
convenient for debugging purposes and eliminates the need for explicitly selecting
packages (via USB in many instances. MegaBasic displays the current package name at
the Ready prompt whenever it differs from the one selected at the last Ready prompt.

Your program can trap a CTRL-C interruption using an ERRSETstatement (Chapter 6,
Section 4) as a type 15 error. This provides a programmed response to a CTRL-C, instead
of interrupting execution. Also, the PARANL) statement (Chapter 9, Section 5) can
enable/disablethe CTRL-C apparatus during program execution. Since the CTRL-C
detection mechanism consumes all keyboard characters typed during execution,
disabling CTRL-C s useful for both preventing user intervention and permitting
one-at-a-time console character input.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

When you type a CTRL-C at the MegaBasic command level, it aborts the current entry
or command and then gives the Ready message, instead the STOPmessage. MegaBasic
generates the STOPmessage to indicate the interruption of a running program. The
CTRL-C break character provides this terminating effect only when you type it from the
console keyboard. It is just another control character when entered from any other
device. PARANL) also lets you use the CTRL-Break mechanism of MS-DOSto interrupt
program execution without consuming input typed during execution.

CONT

Resumes program execution after a CTRL-C or programmed STOP Error information
functions (e.g., ERRLINE ERRMSGStc.) are not restored and subsequently relate to the
CTRL-C instead of to some prior error. Between the STOPand a subsequent CONTinue,
you can execute direct statements without losing the ability to CONTinue. You can
access variables and OPENiles with direct statements while in the command level.
Regardless of what package workspace you are in when you type CONTMegaBasic
always switches to the workspace in which the STOPtook place, prior to resuming
execution.

You can also modify the program source to some degree without losing the ability to
CONTinue execution. This is powerful during the test and debugging phase of your
program development. You can insert new program lines to temporarily show certain
intermediate values and computations; you can locate and correct programming errors
then re-test them all during one run of the program.

CONTinuability can be lost if you modify certain key program lines. This includes
program lines that called GOSUBSprocedures or functions that are still active, the
beginning of loops and the line on which execution was interrupted. You can always
determine such lines by using the TRACERETcommand, which displays the entire active
RETURNpath. CONTinuation is also lost when a RENMOVEDUPLor COPYcommand
changes the sequence of any program lines. MegaBasic informs you that

CONTinuation was lost following any action on your part which blocks

CONTinuation . However it is always safe to insert additional lines into the program
without ever affecting CONTinuability

When your program is in a CONTinuable state, you can cause a continuation by typing
one of several executable direct statements, instead of the CONTcommand. These
statements are given below along with a description of what they do:

GOTO CONTinues execution at the program line specified by the GOTQtatement
(e.g., GOTQ50).

CONTinues atthe first statement following the most recent GOSUBr
PROCedre call. If nosuch calls are currently active, an Unexpected RETURNError

RETURN results. If your program is suspended inside a function, instead ofa GOSUBr
procedure, you must also supply a RETURNalue to avoid causing an error.
NEXT CONTinues atthe first statement following the current FORWHILEor REPEAT

loop. If no loops are currently active, an Unexpected NextError results.

GFK-0256 Chapter 2 MegaBasic Commands 2-33

Trace [#<device>][<line number list>]

The TRACEcommand provides an excellent environment for debugging MegaBasic
programs. You can invoke the TRACEmMode anytime you can type in the TRACE
command. TRACEoptions are all set/reset on a workspace by workspace basis and, as
with all other commands, TRACEcommands of all types affect only the program in the
current workspace. Hence with a multi-package program, you can selectively TRACE
one package without tracing everything, a common limitation in many symbolic
debugging systems.

Typing TRACHyy itself will put subsequent program execution into singlestep mode, in
which remaining unexecuted statements of the current program line are shown while
program execution freezes and waits for you to type a TRACEcontrol key. Typing TRACE
with a line number will assert the single-step mode when program execution reaches the
line number specified. TRACEcontrol keys are then used to manipulate subsequent
execution of your program and restrict what is actually traced on the screen. We will
describe these shortly.

You can specify up to eight line numbers to indicate where the single-stepping should
begin. With multiple line number breakpoints set, program execution proceeds
normally until MegaBasic encounters a statement on any of the specified lines. When
this happens, execution enters the single-step mode and MegaBasic clears all the
specified breakpoints. Multiple breakpoints are useful when you want execution to
break at any one of several places, but you do not know which one will be first.

You can direct the TRACEdisplay to a device other than the console by specifying the
device number immediately after the TRACEkeyword. However all TRACEcontrol
characters are always accepted from the console keyboard (device 0). When you omit
the device number from the TRACEcommand, MegaBasic uses the last device number
explicitly specified by a TRACEcommand, or device #0 if no device number was ever
supplied. Hence, once a device number is set, you do not need to specify it in each
subsequent TRACEcommand, except to select a new device number.

MegaBasic beeps if you enter an unknown TRACEcontrol character in the single-step
mode. If you single step through a LINK statement (Chapter 10, Section 1) execution
breaks at the first statement of the program (i.e., breaks on completion of segmentation
or overlay statements). Once invoked, the TRACEmNode persists until terminated with
the ESCcontrol or an untrapped error occurs during program execution.

Since TRACEmMode is set independently on each package, the display generated by the
SHOWommand indicates which packages are being TRACEdby placing an asterisk (*)
beside the package type of each package in active TRACEmNode.

A description of each of the TRACEkeys now follows. MegaBasic immediately acts upon
each key as you type it, rather than waiting for a carriage RETURNas the other
commands normally do.

2-34 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Execution Stepping Keys

Sp

Space-bar steps to the next program statement REPEATto observe statement-by-statement
execution.

Step to the next program statement at the same or higher level as the current statement
shown. A dash single-steps like the space-bar except that MegaBasic steps through
GOSUBSrocedures, functions and loops as if they are indivisible statements,

i.e., MegaBasic does not TRACEheir internal statements.

Step to the next program line—the one following the line currently shown.

Step to the next invocation of the currentstatement.

Step to the first statement outside the current subroutine or loop (GOSUBunction, proce-
dure, FORWHILEor REPEATIoops). This lets you ignore the remaining details ofany
loops or subroutines you happen to fall into while tracing your program.

Step to the statement following the next line number transfer, such as after a GOTOQ
GOSUBERRSETrap, etc. This lets you to skip uninteresting in-line sequences.

Step to the breakpointline—the program line at which the TRACEbegan after a TRACE
command, or the TRACRHine shown when you typed a B control (below).

Marks the currently shown TRACHine as the new breakpoint line and scrolls up one line to
indicate that you typed this command. After the TRACEhas continued on to other
program lines, you can step to the breakpoint line by typing the C control (above).

Step to the statement where the current TRACHF expressionbecomes TRUE. MegaBasic
executes at least one statement before re-asserting the single-step mode. TRACHF is de-
scribed in Chapter 2, Section 4.

Step to the statement where the current TRACHF expressionbecomes FALSE. MegaBasic
executes at least one statement before re-asserting the single-step mode.

Trace Control Keys

Esc

Permanently releases your program for normal, untraced execution. The only way to
reinstate the TRACEmMode is to interrupt your program with a CTRL-C, enter a new
TRACEcommand, then CONTinue program execution.

cctl

A CTRL-Cstops the program and enters the command mode, so that you can enter com-
mands and other direct statements. You can resume the TRACEmode using the
CONTinue or terminate the TRACBby enteringa TRACEENDcommand. ERRSE Ttate-
ments (Chapter 6, Section 4) will not trap a CTRL-C with TRACERN effect.

Invokes your own custom debugging command that you previously setup using the
TRACEcommand, as described on Chapter 2, Section 4.

Chapter 2 MegaBasic Commands

2-35

You can use CTRL-C to enter the command mode, execute commands or examine
program variables using direct statements, and then resume using the CONTinue
command. However, several TRACEfunction keys provide convenient, immediate
information about the state of your running application. These are described below:

Trace InformationKeys

A | Displaysthe active program control structures—same the TRACERET display
(Chapter 2, Section 4), except that the current DAT Aread pointer location is also shown.

= Displaysthe set of currently open files, including their names, open modes, file sizes and
current file positions- same as the SHOVOPENommand display (Chapter 2, Section 5).

S Displaysthe names, sizes and other statistics for all the present workspaces—same as the
SHOWbmmand display described in Chapter 2, Section 5.

Displays the contents of each variable that appears in the current TRACHine. Both the
name of the variable and its contents are shown. It displays strings in quotes with unprint-
Vv | ablecharacters shown as underscores. Itevaluates subscriptand indexing expressionsas
needed to access array or string elements. Since this invokes user defined functions in such
expressions, global function side-effects may affect subsequent programoperation.

When you type V in the TRACEmMode, MegaBasic evaluates each variable shown on the
line and displays it. However, you need to be careful about array or indexed string
variables that contain extended assignments or user-defined functions. For example,
consider the following statement:

X = ARRAY(l,let J+=1)

Every time that ARRAY() is evaluated, its J subscript is incremented. This occurs both
during execution and when TRACH with the V option. Since this modifies the program
execution state, the V option in such a case can and will interfere with subsequent
program execution. Likewise, references to user-defined functions needed to resolve
variable accesses can also change the execution state and interfere with later execution
(i.e., by modifying global variables).

In general, this difficulty cannot be detected and handled by MegaBasic. The only
defense against its potential interference with your program execution state is being
aware of the pitfalls and avoiding the TRACEV option when you know it can lead to
trouble.

Trace Breakpoint Pass Counts

Sometimes it is useful to delay the actual break until the breakpoint line has been
reached some specific number of times. This is called the breakpoint pass count and you
can specify a separate pass count on each line number breakpoint given in the TRACE
breakpoint LIST, for example:

TRACE 100:5, 850, 2035:415

This TRACEcommand asserts three breakpoint lines: 100, 850 and 2035. Notice that line
numbers 100 and 2035 are followed by a colon (:) and a number, i.e., the pass count.
When the program is executed, it executes normally until line 100 is reached 5 times, line
850 is reached once or line 2035 is reached 415 times. Pass counts can be any value from
1 to 65535. If the line contains more than one statement, each statement executed in that
line counts as one pass. For example if the TRACHine contains a long loop, the pass
count may actually be consumed during that loop even though the line was entered
only once.

2-36 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

TRACE[#<device>JIF <logical expression>

Defines a numeric expression that evaluates to TRUE(any non-zero value) or FALSE
(zero). After you begin or continue execution, your program will run normally (i.e., not
traced) until the expression becomes TRUEas a result of the changing program state. At
that point, MegaBasic enters the single-step TRACEmMode, so that you can control
subsequent TRACEoperations from there. You can specify a <logical expression> of any
complexity and it may employ user-defined functions if needed. For example, to begin
tracing when your program state makes the value of X equal to Y+Z, enter the following
command:

TRACE IF X=Y+Z

If, after single-stepping through your program, you wish to resume untraced execution
until the same logical expression is again TRUE type the X command in single-step
mode. To resume tracing when the condition becomes FALSE, type the Z TRACEcontrol.
If you desire a different TRACEcondition then you have to type a CTRL-C to get back to
the command mode, enter a new TRACHF command, then CONTinue program
execution.

Because MegaBasic evaluates the <logical expression> prior to executing each program
statement, complex expressions will slow down your program execution by some slight
but noticeable amount. MegaBasic reports errors in the <logical expression> as errorsin
the current program statement.

TRACE: <executable line of statements>

Stores an arbitrary direct statement for later retrieval and execution during the
single-step TRACEmode. Once set up, you can execute this direct statement from the
single-step mode merely by pressing colon (:), in place of one of the other TRACE
controls. One common application for this is the display of various program variable
values and intermediate results while you are TRACing the program. In such a case,
you might type a command such as:

TRACE: Print X,Y,Z, ,A$, |,B$, I,C$

After this command you could RUNor CONTinue your program with the TRACEmMode in
effect. From the single-step mode, you can execute the PRINT statement shown above
by simply typing a colon (:). If one executable line is not sufficient for your purposes,
define your own debugging subroutines, place them into your main program or a
separate shared workspace, then call these subroutines from the TRACE execution line.
This can save you a great deal of debugging time, since it lets you access custom
debugging procedures at the touch of a button. Additional keyboard input may be taken
to select one debugging action from a set of multiple choices; the possibilities are
endless.

TRACERET

This command displays the RETURNpath active at the time that the program stopped
(e.g., CTRL-C, STOPprogram error, etc.). The first line number shown will be the point
at which the program stopped. The RETURNpath goes all the way back to the first
subroutine call made from the main program.

MegaBasic describes each RETURNocation with the type of RETURNGOSUBfunction,
procedure, etc.) and the line number and subroutine name to which it RETURNS Each

GFK-0256 Chapter 2 MegaBasic Commands 2-37

2-38

description is shown on a separate line and since this can potentially be quite lengthy,
you can use any of the display-pause controls available under the LIST command (i.e.,
Space-bar, carriage RETURNCTRL-C). TRACERET operates only in the command mode
and has no effect on the dynamic TRACEmMode if set.

In addition to the subroutine RETURNNnformation, TRACERETalso displays all active
FOR WHILEand REPEATIoops and CASEstatement blocks, along with the line number
range they span, and all the nested ERRSETerror traps levels that have been set along
the way. If you suspect that a loop is not terminated where you think it should be, you
can STOPthe program inside the loop (e.g., by inserting a STOPstatement inside it) and
then give the TRACERETcommand to show its current active line number range.

You can also get the TRACERETdisplay from the single-step mode (i.e., without entering
the command mode) by typing the TRACEA key.

TRACEEND

Terminates the TRACEmMode from the command level. You can also terminate the
TRACBby typing the ESCkey when you are single-stepping. Program execution proceeds
without further interruption after turning off the TRACEand CONTinue execution.

CHECK [#<output device>]

To permit you to RUNand test partially complete programs, MegaBasic does not in any
way check the syntax of a program and insist that it be error-free before running it.
Instead, MegaBasic provides a CHECKkcommand for you to use whenever you wish to
check common coding errors. This command provides the following checks:

O Reports syntax errors in DEFstatements. Since DEFstatements provide information
vital to other CHECKIing activities, such errors terminate the CHECHKorocess. After
you correct all DEFstatement errors, CHECHKwill be able to complete the rest of its
analysis.

o Verifies all line number and line label references throughout the program to ensure
their target line actually exists. The errors found by this check may also include
certain references to procedures defined in other packages, so be aware of this when
CHECKHKreports an Undefined Name Error.

o Checks for proper nesting and termination of CASEblocks and FOR WHILEand
REPEATIoops, makes sure that they do not cross any FUNCor PROCdefinition
boundaries. CHECKreports errors for incorrect loop index variables, for
encountering a NEXTor CASEnot part of any preceding structure, or missing a
necessary BEGIN or ENDon a CASEstatement.

o Verifies that THENand ELSEclauses of single and multi-line IF statements are
nested properly and have left and right brackets properly balanced and present in
the right number. CHECkexamines all expression parenthesis pairs to ensure that
each one is properly balanced.

O Reports an user-defined function, procedure and line label names used in the wrong
context. For example, functions cannot appear at the beginning of a statement;
conversely procedure names must appear in front of the statement; line labels can
only appear in GOTOSGOSUBERRSETSetc. However, CHECKeannot usually
determine the correctness of undefined procedure, function and variable names
because their definitions may not be available until you execute the program
(because of external packages and unexecuted DIM statements).

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

0 CHECHKeports all errors found throughout the program all at once, regardless of
how many that might be (except for DEFS. However, it reports only the first error
of several on a line; you must correct the first error on the line before CHECHKwill
report any other errors it contains. You can control the display of long lists of error
messages with the pause-step-start keys as defined for the LIST command. You
cannot restrict the CHECKoperation to only a partial set of program lines.

You can redirect the error report to any device or open file by specifying the open
file/devicenumber (#1 is the printer). Omitting the device number is the same as
specifying #0, which outputs to the console screen. You can type a CTRL-C to abort the
error report at any time, and you can control the report output using the same pause
keys that the LIST command supports.

The CHECKcommand does not perform a complete, exhaustive analysis of program
syntax, but merely locates some of the more obvious errors in program formation.
Because of its simplicity, CHECKcan report errors that may not actually exist, particularly
bracketed [1 constructs that span multiple lines (resulting in a mistaken missing or
unexpectedbracket error). Bear in mind many program constructs cannot be verified
without actually executing them within their program context, hence a 100% syntax
checker is beyond the scope of the MegaBasic development system. For an exhaustive
100% CHECKon your program, compile it under the MegaBasic compiler which also
verifies all data types and argument LISTs as well. Remember to that errors can easily
occur within syntactically perfect programs, a problem that all programmers must
contend with when using any language.

CHECK [#<output device>] LIST

Just like CHECKexcept that it displays the program source lines that contain the reported
errors.

CHECK [#<output device>] EDIT

Just like CHECHKLIST , except you can edit each erroneous line as CHECHKinds them.
After you edit a line and type a carriage return, MegaBasic rech ecks the line and reports
any additional errors found before moving on to the next line. To skip a line without
correcting it, just type a carriage return in response to the line presented for editing.

GFK-0256 Chapter 2 MegaBasic Commands 2-39

Section 5: Information and Control Commands

Described in this section are the informative commands that provide displays of useful
information on your programs in memory;, statistics about current resource utilization,
state of program execution and current environment. It also discusses how to be in
several copies of MegaBasic simultaneously, and how to get out of MegaBasic when
finished with everything you are using it for. A quick summary follows below:

BYE

ExitsMegaBasic and goes back to the host operating system command level. BYEalso
exits a nested BASIC environment (see the BASIC command below) and goes
back to the prior environment.

STAT

Displaysa variety of useful information about your program, its execution state, and
thesupportingresourcesmaintained for general use.

SHOW

Displaysall currently defined workspaces by name along with information about their
content. Itcan also show the shared access relationships between the current work
space and all the others, information about all currently open files and sizes of
currently defined arraysand strings.

USE

Selects other workspaces by name for subsequent operations and creates new work-
spaces for programentry. Itcan also continuously cycle through all workspace
names so that you can select one without having to type its name.

XREF

Displaysa cross-reference index report for the program contained in current
workspace.

CLEAR

Deletes the current workspace and its contents, or only the variables currently defined.

It can optionally delete all workspaces or release all memory in use by program vari-
ables.

BASIC

Enters an independent nested environment for developing, testing, debugging or run-
ning other programs while temporarily suspending the current work underway.

BYE

Terminates MegaBasic and exits back to the operating system command level. Prior to
exiting, MegaBasic will request confirmation for any workspaces containing original
work that you have not yet saved on a file. If you previously invoked a BASIC

command (see below) BYE will exit from that instance of MegaBasic and RETURNo the

prior copy of MegaBasic. BYEis equivalent to DOSwithout any arguments.

STAT [#<device>]

Displays various sizes, states and other statistics about the current program and working

environment. The display is divided into two groups. First the overall global resources

are shown, which are then followed by statistics about the current program and
execution state. Display contents may change from one MegaBasic version to the next,
but they will generally cover the following topics:

o Overall number of memory bytes allocated to current processes Total memory
remaining, including memory allocated to freed packages Amount of space
remaining for evaluating expressions Total number of active named objects

(variables, functions, etc.) File buffer counts and space remaining on the default

drive

o Current workspace name and workspace count (if more,than one) Size of the
current program and size of its data (if any) Various statistics about the current
execution state States of various debugging and internal parameter settings.

2-40 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

SHOW [#<device>]

The SHOWommand displays a one line description of the contents in each workspace.
Each description includes the program name, the workspace contents type, the package
execution usage, package access count, the program size and how much data it currently
has initialized. The possible workspace types and execution usages are described below:

WorkspaceContentsTypes

Keep Package kept in memory until CLEARed(by virtue of being LOADed

Work Containsunsavedprogrammodifications

List Listable package temporarily broughtinby an ACCESSr INCLUDE

Binary | Assemblerpackage
Hidden | Unlistable package (i.e., scrambled by the CRUNCHtility)

Empty | No program lines (deleted if not the currentworkspace)

PackageExecutionUsage

The Main programis the first program loaded, or the most recent program selected
Main when the RUNcommand was typed, or the most recently LINKed (i.e., CHAINed)
programduring execution.

Free Completely unused and releasable as free memory as needed.

Uninit | Uninitialized package (no data, no ACCESSesetc.).

Access | Active, ACCEssible packagein a runningapplication.

Active package unreachable through any ACCES $ath from the main program,
e.g., an INCLUDEDpackage without being ACCESSedsee below).

Trans Active package in a transient state between being detachedand accessed.

Detach

Packages that are initialized with data and active for use, but are not accessible from the
main program, directly or indirectly (i.e., not on any ACCESSath from the main
program), are classified as Detached. This helps you see packages that are left floating
without any apparent use, but that otherwise remain active and initialized, consuming
memory until they are DISMISSed from all packages. For example, if two Detached
packages ACCESSach other, their epilogues will not be executed until some other
package DISMISSes them from each other. This is because epilogues are not executed
until all ACCESSesto them have been DISMISSed. Packages that are merely
INCLUDERD rather than ACCESSedare another example of a Detached package.

Because of the potentially large number of packages that applications may keep in
memory, SHOVWommands display the package names in alphabetically sorted order.
The currently selected workspace is marked with an arrow (>) in front of the name.

To assist debugging efforts, the SHOWisting places an asterisk (*) beside the program
type of programs with TRACEmMode active.

SHOW [#<device>] ACCESS [%]

Displays the ACCESSelationships currently in effect from all prior ACCESStatements.
Two viewpoints are shown: All workspaces accessible from the current workspace, and all
those which have access to this workspace.

To see this display for all packages in the active application, specify the optional asterisk
(*) at the end of the SHOVACCESSommand. Packages without any ACCESS

GFK-0256 Chapter 2 MegaBasic Commands 2-41

2-42

relationships with other packages are not shown. You can specify an optional output

device number to redirect the output. The ACCESStatement is described in Chapter 10.

SHOW [#<device>,] OPEN

Displaysinformation about each file currently oreN, including the oPeN file number its
read/write attributes setat OPEN time, the file name and drive, its shared/private access
attributes, its current byte size and the position of the currentread/write pointer. This
display is useful when testing and debugging programs which OPENand process files.
You can specify the optional device number to redirect the output of this command to a
device other than the console (device #0) or to an open text file.

SHOW [#<device>,] SIZE [<selector list>]

Displays the memory size allocated to active arrays and strings and totals for both all
numeric scalar variables and all pseudo variables (only as totals, not individually by name).
Variables that have not yet been defined are not shown. The listing is ordered
alphabetically and includes the number of memory bytes allocated, the name of the
variable and its type. The sum of the sizes shown is displayed at the end of the listing.

You can restrict the listing to only one variable type by including the desired type in the
command (e.g., SHOVSBIZE REAL SHOVSIZE STRING etc.) You may specify any of
the type names supported by the NAMESRommands, but only string or array variables
will be listed by SHOVBIZE . See the NAMEScommand for a description of this optional
<selector list>. As with the other SHOW@ptions, you can include a device number to
redirect the listing somewhere other than the console if you so desire.

USE [<workspace name>]

Selects a workspace for subsequent operations. Omitting the workspace name from the
USEcommand enables you to switch from package to package until you reach the one
you desire. You can control this with single keystrokes that perform the following
actions:

Space, | Sequencesforward to the next workspace name in ascendingalphabeticalorder. After
- orl the last one, it cycles back to the first workspace name again.

Backsp, | Sequences backward to the next workspace name in descendingalphabeticalorder.
~ort After the first one, it cycles back to the last workspace name again.

Home Goes to the lowest workspace hame in sequence.

End Goes to the highest workspace name in sequence.

Sequences forward to the next workspace name that was explicitlyLOADed
Tab - S] S
(i.e.,skipping packagestemporarily loaded by the applications).

Character | Skips to the next workspace whose name begins with the specified character.

Enter Selects the workspace name currently shown as the currentworkspace.

Ctrl-C Aborts the USEcommandwithoutchangingworkspaces.
orESC

When you specify a workspace name in the USEcommand, MegaBasic looks for it
among the current workspaces defined. If it finds it among those present in memory,
MegaBasic selects that workspace. If it does not find it, MegaBasic creates a new
workspace with the name given, subject to user confirmation, then selects it as the
current workspace.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

To minimize the number of unnecessary workspaces in memory at any given time,
MegaBasic automatically deletes workspaces that contain no program lines. This action
is taken only when you leave the empty workspace for another. Hence you cannot
create several empty workspaces and then go back to fill them in: you have to use them
immediately. Temporary workspaces that have been DISMISSed and represent free
memory are skipped by USE but you can switch to them by specifying their name.

XREF [#<device>][<line range>][,<selectors>][by <mode>]

Provides you with an instant cross-reference of all user-defined procedures, functions,
variables, GOTO’S and other line referencing used in your program. It displays each
name, label or line number followed by a list of all program locations that refer to each
(by line number or by subroutine name). XREFindicates references where the name is
DEFined or DIMensioned with an asterisk. XREFcommands may include four optional
parameters: an <output device number>, a <line range>, a <selector list> and a by

<mode> as summarized below:

Specifiesthe device number to which the cross-reference listing is sent. If you
omit the <device>, then XREFdisplays its report on the console. If the device
specified is not the console (device #0), MegaBasic inserts page breaks into the
XREFreport using form-feed characters (an ASCII 12) atappropriate places.

<device>

Specifies an optional line range to restrict the XREFreport to only names and line
numbers referenced at least once within the line range. This tells you where all
references to anything within this range are found throughout the program.
Omitting the <line range> impliestheentire program.

<line range>

Specifies a list of attributes that selects the kinds of objects that MegaBasic
<selectors> includes in the cross, reference listing. The selector list is identical to the
selectorlist used in the NAMESommand described on Chapter 2, Section 3.

Selects the how the references will be shown: by line shows line numbers, by name
by <mode> | showssubroutine names. When omitted, XREFdefaults to the most recent
<mode> specified or to by line if no previous XREFrequested.

XREFreports on the program maintained in the current workspace. Hence to generate
an XREFreport, you must first LOADyour program into a workspace. Then type XREF
followed by any desired device number and/or line range and terminate with a carriage
return. XREFimmediately begins generating its report as specified. To pause the display
(especially on the console screen), you can use any of the stop/start/step controls.

You can use XREFfrom the MegaBasic command level at any time. It does not use any
working storage, nor does it affect the contents of variables for a temporarily suspended
(CONTinuable) program. This makes it suitable for use even during a debugging
session.

GFK-0256 Chapter 2 MegaBasic Commands 2-43

2-44

You can restrict the cross-reference produced by XREFto names having certain specified
attributes. This lets you produce a cross-reference listing of, for example, only the
procedures, or only the string functions, or only the line labels and line numbers, to
quickly answer questions about your program under development without having to
XREFthe entire program, which could take a while for a large program. You do this by
listing the desired attributes as arguments to the XREFcommand in the same manner as
in the NAMESommand explained in Chapter 2, Section 3. For example, XREFFUNC
will cross-reference all the user-defined function names; XREF STRINGFUNGwill
cross-reference only those functions which return a string result. These attribute
selectors control which of the following 12 breakdowns are included in the listing:

Procedures Linelabels Linerefs
Real Functions Real Variables Real Fields
String Functions String Variables StringFields
Integer Functions Integer Variables IntegerFields

You can type any combination of selectors, separated by spaces, in any order after the
XREFkeyword. XREFdisplaysonly those names that satisfy all the selectors specified.
See the discussion in the manual on the NAMESommand for complete information
about how to use and specify attribute selectors.

XREFassumes the data type currently defined for each name, which may not always be
accurate if the program has not been run . For example, it shows references to SHARED
functions and procedures defined in other packages as variables unless prior program
execution has already defined them and bound them to the references in the current
program. Although fields appearing in DEFSTRUCTstatements are always shown in
XREFLIST ings, those defined in regular executable STRUCTstatements are shown as
ordinary variables unless those STRUCTstatements have been executed (i.e., by running
your program before your XREFlisting).

Finally, you can display the references either by line number or by subroutine name, by
appending either BY LINE or BYNAMBo any XREFcommand. If you omit the
BY-suffix , XREFdisplaysin the same mode it did the last time you entered an XREF
command, or by-line if no previous XREFcommand was typed. For example the
command XREFINTEGERBY NAMHKisplays the names of subroutines that refer to each
integer variable or integer function. Program references that are not within procedures
or functions (i.e.,they are in the main program, the prologue or epilogue, or in between
subroutines) are shown in the XREFdisplay as referenced by <main>. Multiple
references to a name within the same subroutine or line always show up in the XREF
listing as a single reference.

CLEAR

Deletes the program within the current workspace and then eliminates the workspace
altogether (unless it is the sole workspace). Afterward, MegaBasic switches to the next
workspace in the LOAD sequence. MegaBasic asks you if you want to clear all
workspaces or just the current workspace, to which you can answer yes or no.

CLEARDATA

Deletes all data currently defined within the selected workspace (variables, control
structures, etc.) and releases the memory resources allocated for them back for reuse.
Program CONTinuation is not possible after invoking this command. You can use

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

CLEAR DATA to prepare for a series of direct statements which are known to require
more memory resources than otherwise available. The RUNcommand does an implicit
CLEAR DATA at program initialization time, as does the LOAD command if there is not
sufficient memory left to load a program.

CLEARFREE

Deletes every program that is no longer in use. The SHOW command displays such
programs marked as FREE. MegaBasic normally deletes these programs only when it
needs the memory they occupy for other operations. Hence the only real reason for
using CLEAR FREE is to eliminate the extra clutter brought about by unneeded
workspaces left by prior program testing. CLEAR FREE is extremely conservative about
what it deletes, and, in particular, it will never remove anything containing unsaved
revisions or alter the execution state of a program in progress.

BASIC [<pr ogram command tail>]

Provides a completely separate copy of MegaBasic in which other activities may be
independently performed. You can invoke the BASIC command at any time in the
command level to instantly provide a sub-environment in which to run/develop
programs. This environment is completely isolated from the environment set up by
your prior invocation of BASIC, and hence you may perform any sequence of operations
you wish without fear of altering higher level environments. To return to the
environment from which you re-entered BASIC, simply type BYEor DOS Such a return
also occurs if a a program running in a sub-environment executes a DOSstatement.
MegaBasic frees all resources held by the sub-environment upon returning. All parent
environments are totally preserved right down to the current state of execution
CONTinuation

You can type an optional command tail on a BASIC command to run a program just as if
you were doing it from the operating system level. MegaBasic loads the program,
executes it and provides the remainder of the command tail to the program for
subsequent access. If the program terminates via a DOSstatement, it exits the
sub-environment and you will be back in the previous environment. Otherwise you will
remain in the new environment until you type a BYE command. At least 16K bytes of
free space must be available in order to invoke BASIC.

MegaBasic will provide all currently unallocated memory to the new sub-environment.
To this end, MegaBasic removes all programs not currently active or in use, and releases
the memory they occupy. The SHOWommand shows such programs as FREE (before
MegaBasic releases them).

GFK-0256 Chapter 2 MegaBasic Commands 2-45

Chapter

GFK-0256

Representing and Manipulating Numbers

MegaBasic supports two fundamentally different data representations: humbers and
strings. Chapter 3, Section 4 describes strings and how to represent and manipulate

them in your programs. Section 3 of this chapter describes in depth the concepts and use

of numeric constants, variables, arrays, expressions, operators, functions, vector
processing and floating point systems. It is organized into sections of increasing
complexity, and each depends somewhat upon understanding those that precede it:

Representing

Introductionto representing numbers within acomputer

Expressions

Numbers and choosing the mostappropriate numeric representation
forsolvingproblems.
Constants Representingfixed numericquantities.
Simple Representing single-value numeric quantitiesthatcan
Variables change during program execution.
Array Ordered sets of variable numeric quantities, organized in
Variables one or more dimensions.
Operators& Mathematical phrasesforcombining numericquantities

intocomputedresults.

Numeric User-defined and built-in symbols for combiningand
Functions transforming data.
Vector Processingentire arrays and arraycross-sectionsusing
Processing vector arithmeticexpressions and a variety of vector state-
ments.
IEEE Detailed description of the trade-offs between IEEE and
Floating BCDfloating point versions of MegaBasic. Topicsinclude
Point 80x87 math coprocessor supportalong with speed

comparisons.

3-1

Section 1: Representing Numbers

3-2

Numbers are fundamental to all computer applications. Even applications that appear
non-numeric, such as graphics and text processing and language translation, are
intensely arithmetic beneath the surface. Computers have evolved beyond their early
dedication to engineering and equation solving, into tools of creativity and thought
expansion, and yet they still thrive best in the medium of numbers and arithmetic.

When we attempt to classify numerical applications, an important distinction can be
made between applications involving whole numbers, i.e., numbers without any
decimals, and those applications where fractional quantities arise. For example, counting
applications usually involve only the whole numbers, while scientific and financial
applications are built upon fractions of time, dollars or other physical units. This
distinction is important because microcomputers can deal with whole numbers much
more efficiently than with fractional quantities. Hence, MegaBasic supports two
different internal representations of numbers, one exclusively for whole numbers, called
integer representation, and one for general numeric values (including whole numbers
and fractions) called floating point (or real number) representation.

All programs could be written with floating point representation exclusively. However, if
a program spends much of its effort performing essentially integer arithmetic, its
performance could significantly benefit by utilizing the more efficient integer
representation and operations wherever possible. The primary reason for supporting
integers in a computer language is that integer arithmetic is much faster than floating
point arithmetic and integer values use less memory. In the paragraphs that follow, we
will examine the strengths and weaknesses of both number representations (real and
integer), as well as how and why to choose one form over the other.

Floating Point Representation

Ideally, a computer should be able to deal with numbers of any size, no matter how
great or how small and possess absolute precision with thousands of decimal places.
However, even thousands of decimals cannot represent Sqrt(2) or pi exactly, and if they
could, they would devour all your memory resources. How wide a range and how much
precision do you really need? Since the answer to this question depends on you and the
problems you have to solve, MegaBasic supports a two types of floating point
representation with a variety of precisions.

Commercial or BCDMegaBasic, represents floating point numbers in BCDfloating point
format. This format can represent numbers 1093 or as small as 10-%3. Such a range
encompasses nearly all quantities ever arising from physical phenomena, sub-atomic to
cosmic. Scientific or IEEE MegaBasic represents floating point numbers in IEEE double
precision binary format. This format can represent an even wider numeric range than
BCDformat: as large as 10307 power or as small as 10~ 307 power.

This range is called the dynamic range of floating point numbers. If you perform a
calculation that exceeds this range, a numeric overflow error will occur, stopping your
program (a trappable error, however). This can easily occur from multiplying very large
numbers (e.g.,10%° *100), or from dividing a large number by a very small number (e.g.,
1030710 0). If your application has the potential for producing such errors, you must
provide error checking, error traps or other measures to ensure your program remains in
control after such errors occur.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Another property of floating point representation is its precision, or the maximum
number of decimals it can hold. BCDMegaBasic comes in any one of several precisions,
from 8 to 18 decimal digits (14-digit is standard), while IEEE MegaBasic provides
16-digit precision only. Any particular copy of MegaBasic supports only one precision of
floating point. If a number contains more decimal places than the precision of the
floating point representation, MegaBasic keeps only the upper, most significant digits
that fit and discards the rest. For example, 8-digit precision would represent the number
534.666666682 as 534.66667 (rounded). You would have to use precisions of 12 or more
digits to represent this number exactly in the machine. If precision is important in your
applications, be sure to use a version of MegaBasic that supports a precision of sufficient
size.

The number of memory bytes required by each floating point value depends on the
prevailing precision. IEEE floating point numbers always require 8 memory bytes for
each value. If P represents the number of BCDdigits precision, then the number of bytes
required is given by the expression: 1+P/2. You can find out the actual floating point
format provided by the running copy of MegaBasic from the PARAM(4) function.

BCDrepresentation, which stands for Binary Coded Decimal, internally represents
numbers in base-10, while IEEE binary floating point uses base-2. BCDfloating point
has two important advantages over binary floating point. First, software conversion
between BCDand ASCII display codes and back again is very efficient. Second, and most
importantly, BCDrepresents all decimal numbers within its maximum precision exactly,
without any round off or truncation errors. For example BCDrepresents the dollar figure
$24.95 exactly, while in binary floating point it would look something like
$24.95000000001 or $24.94999999999. This makes BCDparticularly useful in financial
applications, where all data is typically in decimal form and round-off errors are
unacceptable.

No matter what number base you use to represent numbers, there is always some
number that it cannot represent exactly. For example neither BCDnor binary floating
point can represent the fraction 2/3 exactly. But a base-3 numeric representation could
represent it exactly in only one digit (i.e., as .2). BCDfloating point requires about 12%
more memory than a binary representation with similar precision, but the advantages of
decimal arithmetic in many applications sometimes outweighs this disadvantage.

The prime advantage that IEEE binary floating point has over BCDis raw speed. Even
without a math chip, IEEE arithmetic is considerably faster than BCDarithmetic. For
more speed, particularly with transcendental functions, IEEE MegaBasic automatically
supports an In tel 80x87 math coprocessor if the host machine contains one. However, it
doesn’t make much difference whether add and subtract are done in BCD IEEE
software or in 80x87 hardware: they all take around the same amount of time. See
Chapter 4 for further details on the trade-offs between IEEE and BCDfloating point.

The computer language of BASIC originally supported numbers exclusively in floating
point to simplify its implementation and user interface within an educational
environment. To improve data processing efficiency, MegaBasic also includes an integer
data type. Of course, this means that you have to choose one representation over the
other for each number specified. Fortunately, this is easy because MegaBasic
automatically chooses floating point whenever you fail to explicitly choose integer
representation. Later on we will cover numeric type selection in detail.

You should select floating point representation over integer for values used in a floating
point operation, or for numbers with decimals, or for values outside the range of
permissible integer values (barring an integer representation). Avoid using floating point

Chapter 3 Representingand ManipulatingNumbers 3-3

3-4

values in array subscripts and string indexing (described later), or other places where
integer representation would suffice. If you do, there is no harm, but your program will
simply run more slowly than it could have with the proper integer declarations and
definitions within your program.

Many programs written using a BASIC that supports only floating point representation
usually contain portions which would run much faster using integers. You can usually
improve the performance of such programs by modifying them to take full advantage of
integer representation without much work. Appendix D, Section 4 contains a step-by-step
procedure that you can follow to convert such programs.

Integer Representation

MegaBasic can represent whole numbers in 32-bit binary integer representation as well as
in floating point representation. Integer representation of numbers is important in three
ways. First, integer arithmetic is many times faster than identical arithmetic performed
in floating point operations. Second, since the vast majority of numeric applications
require binary integers for loop counters, array subscripts and indexed string locations,
using numbers already represented in binary form eliminates the time consuming job of
converting floating point representation into binary representation (which MegaBasic
does automatically).

Third, integer representation is physically more compact than floating point. Integers
require four bytes per value while floating point requires 8 bytes per value (although it
varies from 5 to 10 bytes depending on the floating point precision). This allows larger
integer arrays with the same memory requirements as smaller floating point arrays.
Also, since most programs spend a great deal of time just moving numbers from one
place to another, a more compact numeric representation can also increase program
performance.

MegaBasic integers are more powerful than integers of many other microcomputer
languages because of its internal representation. MegaBasic represents integers
internally in what’s known as a 32-bit twos-complement signed integer, while some
systems use only a 16-bit version of the same thing. This will represent exactly all
integers in the range from minus 2,147,483,648 up to plus 2,147,483,647, instead of
—-32768 to +32767 with only 16 bits. With integers of this size, many applications which
would normally have to use floating point can easily use MegaBasic integers. For
example integers can represent dollar figures up to $21 million exactly with MegaBasic
integers (in pennies instead of dollar units).

Virtually all programming systems terminate with a fatal error whenever an integer
calculation produces, even temporarily, an integer value beyond the range of values that
the prevailing integer format can represent. Although the large range of 32-bit integers
diminishes this problem somewhat, it can still arise. MegaBasic solves this problem by
automatically detecting integer overflows while performing integer calculations and
then converting the integers to floating point to complete the intended operation. The
burden of detecting and recovering from this type of error is not a concern of the
programmer, since MegaBasic handles it automatically. Integer overflows in MegaBasic
can only occur when you try to use a value larger than a valid integer when only an
integer will suffice. For example, attempting to store such a value into an integer variable
will result in a numeric overflow error simply because it is not possible. This automatic
recovery from integer overflow is only supported by the MegaBasic interpreter; it is not
feasible to support under the MegaBasic compiler.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Numeric Type Declarations

To maintain compatibility with programs written under the standard assumption in
BASIC that all variables are real, all variables are real unless you specify otherwise. You
specify integers either by declaring the leading letters in names as integer (or real), or by
declaring specific names as integer (or real). To see at any time what is integer and what
is real, the NAMESNTEGERand NAMESREALcommands will show you (Chapter 2,
Section 3). The rules and syntax for type declarations are summarized in order of
decreasing precedence as follows:

Data Type Rules for Variables & Functions

O Any variable or function name that ends with a percent sign (%) will always be
integer. A type error occurs if you declare or DIMension any variable or function
with such a name as real. Similarly a dollar sign ($) and an exclamation mark (!)
can appear only as the last character of string and real names, respectively. This
rule overrides all the other rules that follow.

O You can declare numeric arrays directly in DIMension statements, as shown in
the following example:

Dim integer C(30,40), X(N), real L(N), ARRAY(10,10)

which declares C() and X() as integer arrays, L() and ARRAY() as real arrays. The
reserved words INTEGERand REAL cause all DIMension specifications that
follow in the list to be integer or real variables, or until a following REALor
INTEGERSspecifier appears in the list. In the same way, the word STRING
declares string variables in DIM statements.

O You can declare specific names of variables and functions as INTEGERor REAL
using DEFstatements such as:

DEF INTEGER X,VBL(),P

DEF INTEGER FUNC TOTAL(V1,V2)
DEF REAL A, ARRAY(), C1

DEF REAL FUNC SUM(V3,V4)

DEF STRING LINE(), MSG

DEF STRING FUNC UCASE(BUF$)

The empty parentheses () in the above DEFstatements indicate names which
you intend to be arrays. These specific declarations override any types specified
by letter. A Double-Definition Error results from declaring the same name as
having two different types. You must declare variable types explicitly to make
them different from the type implied by its leading letter.

O You can declare leading letters of identifiers as INTEGER REALor STRING A
variable or function name that begins with a declared letter will be become an
object of the type declared. Use a DEFstatement to declare letter types, as
illustrated below:

DEF INTEGER *“a, b, c, i-n”

where the string constant “a,b,c,i-n” specifies the leading letters of integer

variables and functions. The quotes are required, but commas and spaces within the
guotes are entirely optional. you can use upper and lower case letters for the same
effect. Variable and function names beginning with letters left undeclared wébbe

by default. Yoean similarly declare letters &EALor asSTRING. A double

definition error will occur if you attempt to explicitly declare the same letter as both
REALandINTEGER(in two separat®EF statements).

o If none of the above rules apply, then by default, MegaBasic creates the numeric
variable or function as real.

GFK-0256 Chapter 3 Representingand ManipulatingNumbers 3-5

Section 2: Numeric Constants

3-6

Numeric constants are the most obvious way to express numbers. Examples are: -1,
5675261, 4.536, 0, —11.111, 00934.2, etc. Constants may be signed or unsigned, but
MegaBasic treats constants like 1,435 as two separate numbers. The smallest numeric
value permitted in MegaBasic is 10”-63 using BCDand 107-307 using IEEE floating
point versions. Arithmetic operations producing smaller numbers than this always result
in zero (i.e., underflow produces a zero result). Constants must not contain any spaces or
commas within them: because such characters are used to separate numbers, they
would break a constant into multiple constants.

MegaBasic accepts a broad range of numeric notations which includes integers,
fixed-point, floating point and scientific notation for decimal numbers. It also supports
signed and unsigned integers in binary (base 2), octal (base 8) and hexadecimal (base 16).
These various forms are discussed below:

Numeric Notation

To specify ordinary decimal and integer constants, simply type their values with
whatever signs, digits and decimal are appropriate to the number desired. You can
include more than on sign in front of a number, but this is always redundant. For
example the following constants all have the same value: 99, +99, -99, +-+99. If the
number of digits exceeds the floating point precision, then MegaBasic rounds the value
to the nearest value fitting that precision. See the discussion about precision earlier in
Chapter 3, Section 1 for further details about this.

Numeric constants may have, at most, one decimal point. As stated earlier, no spaces,
commas or other non-numeric characters can appear within numbers. However, you can
precede or follow any constant with one or more spaces for the purpose of improving
readability or for separating the constant from other surrounding typed objects.

Exponential Notation

You can also specify numbers in so-called E-notation. Similar to scientific notation, this
format includes a scaling factor to indicate a power of ten multiplier. For example,
23.4104E-2 and .234104 are identical values with the first in E-notation. The E-XX
portion of the number specifies how far and what direction to shift the decimal place (+
for right and — for left). This representation becomes important when you specify
extremely large or small constants. For example the constants —20152E+42 and
3.3142E-19 would be too unwieldy and confusing with all the zeros needed to represent
them in standard notation.

Whatever the exponent portion of the constant is, the net magnitude of the number
must fall within the dynamic range for floating point numbers: IE-63 to IE+63 for BCD
and IE-307 to IE+307 for IEEE floating point. Constants smaller than the lower limit
evaluate to zero, while MegaBasic rejects constants beyond the upper limit and reports
an Out Of Bounds Error. If the exponent is a positive power of ten, the plus sign (+) is
optional. For example the constants 25E+17 and 25E17 are identical.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Binary, Octal and Hexadecimal Constants

The decimal number system (i.e., base 10) is certainly the most common notation used
for expressing numbers, but other number bases can be more appropriate in certain
applications. For example, applications involving bit-strings are greatly simplified when
you employ binary notation to express numeric constants (i.e., in base 2). MegaBasic
accepts numbers expressed in binary, octal, hexadecimal and decimal, wherever a
number is expected. To specify a constant in a non-decimal number bases, you must
abide by the following rules:

O You cannot specify non-decimal constants with E-notation or decimal points.
They can only be positive and negative integers.

O The last character of the constant must be one of several special letters that identify
the intended number base: letters H, B and O identify Hexadecimal, Binary and
Octal constants, respectively. Upper or lower case can be used but lower case is
more readable. Decimal is assumed for numbers that do not end with these letters.

O The constant must contain only those digits that are legal for the number base
used. Binary numbers can contain only the digits 0 and 1. Octal numbers can
contain the digits 0 to 7. Hexadecimal constants use digits 0 to 9 and letters Ato F
Hexadecimal constants must begin with a digit (0-9).

0 The range of values for the unsigned portion of integer constants is the same for
all number bases: 0 to 2147483647 (decimal), corresponding to: Oh to 7FFFFFFFh
(hex), Oo to 177777777770 (octal) or Ob t0 1111111111111111111111111111111b
(binary).

o If the highest bit of its 32-bit representation is set to one, then the integer will be
negative. For example OFFFFFFFFh and 377777777770 both represent the value
-1 (although using signs is more obvious).

Program Constants

Constants within programs represent fixed quantities for use in computations.
MegaBasic stores program constants in an internal table for fast access by your program.
If you specify the constant in E-notation, or it contains a decimal point, or it is too large
to fit integer representation, MegaBasic considers it a real (floating point) constant and
physically stores it in floating point representation exclusively.

MegaBasic stores constants in both floating point and integer representations if you
specified them as integers (i.e., no decimal points or E-notation) and they lie in the range
of 32-bit signed integers. This lets MegaBasic choose the most appropriate numeric
representation for the context of each expression providing the fastest possible access lo
the constant. For example MegaBasic accesses the constant 7243.0 exclusively in floating
point mode regardless of its surrounding context, but typed as 7243 (without the
decimal), MegaBasic accesses it as an integer or a real depending on the numeric context.

Input Constants

You can enter constants from the keyboard in response to requests from the computer as
directed by the program. When MegaBasic INPUTS constants into floating point variables,
you can enter any number representable in MegaBasic floating point. However if you
specify integer variables in an INPUT statement, you must enter numbers without any
decimals to the right of the decimal point and they must fall within the range of 32-bit
signed integer representation. The INPUT statement (Chapter 7, Section 1) checks for this
and rejects constants that are inappropriate for the variable specified to receive the value.

Chapter 3 Representingand ManipulatingNumbers 3-7

Section 3: Numeric Variables

3-8

Asin most other programming languages, numeric variables in MegaBasic provide the
means for storing numbers for later access. Variables represent numbers just as constants
do but with one big difference: they represent quantities that can change during
program execution. See Chapter 5, Section 2 for details on storing different values into
variables with assignment statements.

You identify numeric variables in your programs by a name spelled with one or more
characters. The first character must be a letter (A-Z) and subsequent characters must be
letters (A-Z), digits (0-9) or underscores (_). The following examples show how and how
not to spell numeric variable names:

LegalNumeric X, X2%, COUNTER, AMOUNT!,
VariableNames T68, LONG_VBL_NAME
Illegal Numeric 4X, R$,_NAME, BAD @ NAME,
VariableNames INTVAL#, XYZ#10, %N

Names may be any length up to 250 characters and all characters are necessary to
identify the name, i.e., two names must match exactly in order to refer to the same
numeric variable. You cannot use MegaBasic reserved words (e.g., FOR IF, READetc.)
as variable names. Upper and lower case letters always mean the same thing, and
MegaBasic displays letters in user-assigned names in upper case only. Chapter 1,
Section 5 discusses the use and construction of names in detail.

You can use numeric variable names in any context where one would normally specify a
number. Access to named objects in MegaBasic is extremely rapid and the length of a
name has no effect on execution speed or program size, no matter how many times the
name appears in the program source. There are several different kinds of numeric
variables and this manual refers to numeric variables as scalar variables, simple variables,
or just variables to distinguish them from array variables described later in Chapter 3,
Section 4.

If you access a variable before storing any value into it (by a READor assignment
statement), it will automatically contain the value of zero (0.00). However, you should
always explicitly initialize all variables before using them to promote clear program
structure and maintainability over time.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Integer vs. Real Variables

A variable stores a value in only one representation: either floating point or integer
representation. Therefore we refer to variables as either integer variables or floating
point (real) variables. When MegaBasic first creates a variable (i.e., when your program
accesses it the first time), it gives it a real type or an integer type, an attribute it retains
for the life of the program. This initial type selection is governed by the following rules:

o If the variable name ends in a percent sign (%) then it will always be an integer
variable; if the name ends with an exclamation mark (!) it will always be a real.

o If the variable name explicitly appears in a DEFINTEGERor DEFREAL
declaration statement, then MegaBasic creates it as an integer or real variable,
respectively.

o If the variable name begins with a letter that has been declared INTEGERor
REAL, then the variable will be a correspondingly integer or real variable.

o If none of the above rules apply, then MegaBasic creates a real variable by
default.

In summary, variables are floating point unless you specify otherwise in your program.
Chapter 3, Section 1 gives further details about type declarations and DEFINTEGERand
DEFREALstatements are fully described in Chapter 5, Section 1. Chapter 3, Section 1
also describes important differences and properties of both real and integer
representations that you should be aware of.

Chapter 3 Representingand ManipulatingNumbers

3-9

Section 4: Numeric Arrays

Another type of numeric variable is the array, which stores an ordered set of numbers
under one name. MegaBasic organizes an array as an ordered set of storage locations,
called elements, identified by a position number within the ordering. For example A(0),
A(1) and A(2) represent the first three elements of array A(). The parentheses indicate
that A() is an array and serve to contain the position of the desired element. Positions
range from zero by integers up to the size of the array. Arrays, as with all other
MegaBasic named objects, must have unique names. You name arrays and assign them
integer or real data types under the same rules as scalar variables.

You could imagine the array described above as a column of numbers with positions
numbered from zero down the side. Suppose that you had many such columns side by
side and that you numbered them from zero along the top. Such a structure is called a
2-dimensional array. By identifying the row and the column we can locate any element
of the group. For example A(1,J) refers to the element of A() in row (1) of column a),
where 1,J are simple variables containing the element position. By adding further levels
to this idea, 3 or higher dimension arrays can exist. An N-dimensional array requires N
position numbers, called subscripts, to uniquely specify an element in the array.

You can specify array subscripts as simple constants, variables or with any general
numeric expression. If the specified subscript is a non-integer value, MegaBasic will
truncate it (not round) to the next lower integer value. Real (floating point) subscripts are
internally converted into integer representation before they can be used to access the
array. There is a significant performance advantage in specifying array subscripts using
integer representation whenever possible, because MegaBasic performs no time
consuming real-to-integer conversions. This is especially true in arrays of two or more
dimensions and in compiled programs.

Dimensioning Numeric Arrays

In order for an array to exist, you have to explicitly create it in your program. This
requires that you specify its name, its type and the range of valid positions for each
dimension. You do this with the DIM statement, for example:

DIM VECTOR(50), MATRIX(12,15), CUBE(20,20,20)

This statement defines array VECTOR() as a 1-dimensional array with element positions
0-50, array MATRIX() as a 2-dimensional array with row positions 0-12 and column
positions 0-15, and array CUBE as a 3-dimensional array where all 3 dimensions have
21 positions numbered 0 to 20.

Dimension positions always begin at zero and continue up to and including the limit
specified for that particular dimension. An Array Subscript Error occurs if you attempt to
access a dimension position outside its range. One DIM statement can define one or
more arrays by simply listing their definitions one after another separated by commas.
MegaBasic initializes all new array elements to zero as part of time DIM process. If you
refer to an array before DIMensioning it, MegaBasic implicitly DIMensions itasa
small, 1-dimension array called a default array, which is described in more detail shortly.

Once you dimension an array, every reference to it must specify a subscript in each
dimension defined. MegaBasic report an error on a reference like MATRIX(3) to the

3-10 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

2-dimensional array example above. However you can DIMension the array again at
any time to change ib size or number of dimensions. If you do, MegaBasic erases it prior
contents and sets every element to zero. Using this mechanism, arrays can grow or
shrink depending on your program requirements. When arrays are made smaller the
unused memory space is available to the system for other uses.

Since the dimensions of arrays can vary during the execution of your program,
determining the current dimensions of a given array can be useful from time to time.
The DIM() built-in function (see p. 425) provides such information for any variable.
DIM(x) gives the number of dimensions of the variable X; DIM(X,I) gives the highest
position defined for dimension | of variable X counting the dimensions from left to right.

Default Arrays

For compatibility with other BASICS, whenever your program accesses an array element
from an array that does not yet exist, MegaBasic automatically creates small
1-dimensional array. MegaBasic normally creates such arrays, known as default arrays,
with 11 elements numbered 0 to 10, equivalent to DIMx910) . You can change this
default upper bound (of 10) by setting PARANL3) to any upper bound value from 0 to
1023 of your choice.

We strongly recommend that you do not write programs that rely upon default arrays
because this practice often complicates the test and debugging phase of developing such
programs. For example, by merely misspelling the name of an array in some reference to
it, MegaBasic will create a default array of that name if one does not already exist by that
name. You can turn off default array creation by setting PARAM(13) to a value of -1.
Any subsequent references to new, unDIMensioned arrays will cause an Undeclared
String Or Array Error, helpful in locating unintentional default array creations.

Maximum Array Size

Asin all computer languages, the amount of memory available to MegaBasic limits the
maximum size of new arrays. Within this constraint, however, MegaBasic supports much
larger arrays than most other microcomputer languages. You can compute the total
number of elements in an array by multiplying the position counts of each dimension.
For example an array specified by DIM ARRAY(2,10,8), has 297 elements, as computed
by (2+1)*(10+1)*(8+1) = 3*11*9 = 297, where the position count of a dimension is one
plus ib maximum subscript value. The memory space taken by an array is simply the
number of elements times the element size in bytes. The size of an array element varies
with the precision: size = precision/2+1 (IEEE reals are 8 bytes), while integer elements
are always 4 bytes each. Hence an integer array with 65500 elements requires 262000
bytes of memory.

You can create as many variables and arrays as you like as long as their combined
storage requirements do not exceed the installed memory in your machine. MS-DOS
based systems are limited to 640k bytes of addressable memory (16 megabytes in
Extended MegaBasic). The FREE() function, described in Chapter 9, Section 5, provides
information about the current memory available so that your program can automatically
limit the size of new arrays to match available resources.

MegaBasic supports arrays with any number of elements, as long as no one subscript is
higher than 65534. For example, DIM ARR(99,99,99) dimensions ARR() to three
dimensions of 100 positions each, or 1,000,000 elements total. To dimension
ARR(1000000) is not allowed, because the dimension extends higher than 65534. For

Chapter 3 RepresentingandManipulatingNumbers 3-11

performance and other reasons, several additional restrictions apply to arrays larger
than 65534 total elements:

O Pointers to array elements can only access the first 65534 elements. Pointers to
arrays (rather than to array elements) are unrestricted.

0 The value returned by INDEX after a vector MIN/MAX will wrap around through 0
if the result exceeds 65535.

O Vectors longer than 65535 elements cannot be indexed. Arrays larger than this
can be indexed, but only as array slices whose length does not exceed 65535
elements.

o Array slices whose successive elements are more than 65535 physical elements
apart are not permitted. For example, DIM ARR(10,100,1000) may be sliced as
ARR(*,*J) or ARR(l,*,*), but not as ARR(*,1~ because its successive elements
are over 100,000 elements apart.

Obviously, you must have enough memory to support whatever arrays you actually
dimension, which tops out around 540k in a 640k DOS machine. Protected-mode
versions of MegaBasic, such as Extended MegaBasic, have no 640k limitation and
support massive arrays of up to 16 megabytes.

Integer vs. Real Arrays

Aswith simple scalar variables, MegaBasic stores values of array elements in either real
or integer format. All elements of an array provide the same representation, and hence
arrays are either all integer or all real. MegaBasic gives arrays a real type or an integer
type when initially creating them (either by a DIM statement or by its first reference).
The following rules govern this initial type selection:

o If the array name ends in a percent sign (%) then it will always be an integer
array; if it ends with an exclamation mark (!) it will be a real array; if it ends with
adollar sign ($) is will always be a string array. It is an error to dimension an
array with conflicting data types.

o If its name follows the word INTEGERor REALin DIM statement list, then it
takes on that type. For example: DIM INTEGERX(100),Y(8,10),REAL
A(5,5,5)

o If you re-dimension an array that already exists and the DIM statement does not
declare the array as INTEGERor REAL then the new array will assume the same
numeric type as the old array it is replacing. If the DIM statement does declare
the numeric type, then that type (INTEGERor REAL will prevail.

o If the array name explicitly appears in a DEFINTEGERor DEFREALdeclaration
statement, then it will take that type.

o If the array name begins with a letter declared as INTEGERor REAL, then the
array will assume that type.

o If none of the above rules apply, then MegaBasic creates a floating point array,
by default.

In essence then, arrays are floating point unless you specify otherwise in your program.
If more than one of the above rules apply, the lower numbered rule always takes
precedence. For example, if you DIMension X() as a real array after declaring it an
integer array in a DEFINTEGERstatement, the DIM statement takes precedence and X()
becomes a real array.

3-12 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

When you re-dimension an array, the array type (integer or real) always changes to the
type specified by the DIM statement (e.g., DIM INTEGERX(); DIM REALX(); etc.). If the
DIM statement omits the word REALor INTEGER the array assumes the numeric type
already in effect by the prior DIM or DEFstatement. Only the MegaBasic interpreter lets
you change array types during execution; the compiler insists that array keep the same
type throughout program execution.

You will find further details about type declarations in Chapter 3, Section 1 (a few pages
back) and Chapter 5, Section 1 describes the DEFINTEGERand DEFREAL statements.
Chapter 3, Section 1 also describes important differences and properties of both real and
integer representations that you should be aware of.

Chapter 3 RepresentingandManipulatingNumbers 3-13

Section 5: Operators and Expressions

The fundamental computational structure in MegaBasic is the expression, which you
construct from data symbols and operation symbols, much like algebraic notation.
Expressions permit you to specify a number as a combination of other numbers. For
example (2+5)*3 represents 21 by arithmetically combining 2, 3 and 5. In general, you
can use numeric expressions wherever numbers are expected.

Data symbols can be constants (representing fixed quantities), variables (storing the data
used), functions (returning computation results), or sub-expressions. A sub-expression is
just another expression enclosed inside parentheses to group it as a computational unit.
The above expression contains the sub-expression (2+5) to represent the value of 7 in
the overall expression.

Operation symbols, called operators, are of two types: unary and binary. Unary
operators act on a single number to form a single result number. For example the unary
minus operator (=) causes negation of a value that follows it (e.g., —X). Binary operators
however act on two numbers to form one result. For example the binary plus operator
(+) forms the sum of two values (e.g., X+5).

To facilitate the discussion coming up, we will use the following nomenclature. Numbers
acted upon by an operator are called operands. The leading operand of a binary operator
is called the left operand and the trailing operand is called the right operand.

Operation Precedence

MegaBasic evaluates expressions by proceeding left to right, accumulating the result
with each operation as it goes. The various operators are not however applied with
equal priority. Take the following expression using addition (+) and multiplication (*) for
example:

2*3+7*8 evaluates as
(2*3) + (7*8) =6 + 56 = 62

A generally accepted practice of algebraic evaluation is that, in the absence of parentheses,
we should perform the multiplications before the additions. Hence we say that
multiplication takes precedence over addition. Similarly, MegaBasic applies a priority scale
to all operators to provide a reasonable order of operations that appear without
parentheses. However, you can force any order of evaluation as needed by surrounding a
sub-expression with parentheses (sub-expressions have the highest prior and take
precedence over all operators). For example, to evaluate the addition in the example
before the multiplications, just write it like this:

2*(3+7)*8evaluates as:
2*10*8=20*8 =160

The list below summarizes all the MegaBasic numeric operators in order of decreasing
precedence. When MegaBasic encounters operators of the same precedence level they
are evaluated from left to right.

3-14 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Priorityof Numeric Operations

18 | Evaluationof constants, variables, functions, sub-expressionsandstringcomparisons.

17 | Negation (-)

16 | Exponentiation (™)

15 | Multiplication (*), Division(/), Integer Division (DIV), modulo (MOand the multiple re-
ductionoperators(INT CEIL TRUNC ROUND)

14 | Combining value withsign (SGN

13 | Addition (+) and Subtraction (-)

12 | Bit-wise integer ones-complement (~)

11 | Bit-wise integer shift and rotate operators: << >> ><

10 | Bit-wise integer AND(&)

Bit-wise integer OR(|)

Bit-wise integer XOR (™)

MIN and MAXoperators (not the functions)

Numeric comparisons (= <><> <= >= IN)

Logicalcomplement(NOT)

Intersection (AND

Union (OR

Exclusive-OR(XORand Equivalence (EQV

RPINW|ARlO|O|(N|00]|©O©

Implication(IMP)

Operators on the same line have equal precedence and MegaBasic evaluates them from
left to right as encountered. An example of an expression involving only equal
precedence operators is:

X +Y — 3456.03 + ARRAY(J).

MegaBasic permits you to use either integer or real values wherever a number is
expected. Internally, MegaBasic usually operates on only one type or the other for any
particular operation and if you specify values in the wrong type, MegaBasic will convert
them to the right type. Since this conversion operation is somewhat time consuming,
your programs will run much faster if numeric values are always supplied in the form
(integer or real) most suited to the operation at hand. The descriptions of each operator
follow below and include the specific rules MegaBasic uses for integer and real
conversion.

Chapter 3 RepresentingandManipulatingNumbers 3-15

Arithmetic Operators

The arithmetic operators are the most familiar and simplest to describe. The left and
right operands around an arithmetic operator are simply combined algebraically into a
result value using the specified operation. MegaBasic includes the following operators:

A+B Computes the algebraic sum of Aand B.

A-B Computes the algebraic difference between A and B.

A*B Compute the product of A multiplied by B.

A/B Produces the real quotient of A divided by B, even if A, B or both are integer.

Raises A to the power of B. A0 is always 1, even if Ais 0. The left
A"NB argument may be negative for integer powers in the range from -32768 to
32767.

; Returns the truncated quotient of A divided by B. An integer resultis re-
AdivB - h
turned only if A and B are both integers.

Returns the smallest non-negative value which added to A produces
A modB | number divisible by B, sometimes called the remainder, and computes the
same result as the MOD() function (Chapter 9, Section 1).

These operators process only operands of the same type (i.e., both integer or both real).
If they differ in type, MegaBasic automatically converts one of them to the type of the
other, and the operation continues. The result of such an operation is always the same as
it would have been if performed in floating point only. Integer comparisons are faster
than floating point comparisons.

The divide operation (/) first converts any integer operands to real so that a floating
point divide can then yield a floating point quotient. To do an integer divide, you must
use the DIV operator (e.g., | DIV J) and supply two integer operands. When either or
both operand is real, the DIV operator performs a real DIV operation and truncate the
final quotient to an integer in real representation. DIV always performs an integer divide
when both operands are integer, resulting in an integer quotient.

Bit-Wise Integer Operators

Integers in MegaBasic consist of a sequence of 32 zeros and ones called bits and it can
often be useful to be able to manipulate the bits instead of the value they represent. The
kinds of things you might want to do include forcing a subset of bits to 1’s or O’s,.flip
their state between 0 and 1, shift all the bits up or down or rotate them around the
integer as if the integer formed a circle of bits.

3-16 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

MegaBasic supports seven operators providing bit-wise logical and shifting operations
on 32-bit integers: four logical operators for implementing bit-wise NOTAND ORand
XOR and three shift/rotation operators. These operators have an operator precedence just
below that of arithmetic plus and minus, and above the MIN and MAXoperators. Real
operands are always converted to 32-bit integers before the operation is applied and
every result is a 32-bit integer. All seven operators are summarized below in order of
decreasing relative precedence:

Bit-wise ones-complementof all bits in A (changes zeros to ones, ones to

~A
zeros). Thisis like the NOToperation on strings.

Performs an arithmetic left-shift on A by the number of bits specified
by B. This shifts zero-bits into the low end of the number as it is

A << B shifted left. The shift count may range from 0 to 65535, but over 31
will always give a zero result. Asingle left shift is equivalent to multi-
plying the number by 2, presuming that the top bit remains un-
changed, and is faster than an integer multiply by 2.

Performs an arithmetic right-shift on A by the number of bits

specified by B. This shifts the sign-bit into the high end of the

A >>B number as it is shifted right. The shift count may range from 0 to
65535, but over 31 will always give a 0 or -1 result, depending on

the sign of the left operand. A single arithmetic rightshift is equivalent
to dividing the number by 2 and is faster than an integer divide.

Rotates A by the number of bits specified by B. The rotation count
may be positive to rotate left or negative to rotate right. Rotations

A><B cause bits that fall off the end of the number to be rotated back into
the other end. This is similar to the way that ROTAT$) operates on
strings.

A&B Combines A and B using a bit-wise AND
A/B Combines A and B using a bit-wise OR
A M B Combines A and B using a bit-wise XOR

The magnitude of the shift and rotate counts has no effect on execution time, as these
operations are performed in one step rather than a bit at a time. The shift and rotate
operators have equal precedence (i.e., below — and above &).

Special Arithmetic Operators

Any comprehensive library of arithmetic operators should include not only the simple
and obvious operators, but it should also recognize a few simple combinations of
operators that commonly occur in a broad range of applications. MegaBasic provides
such combinations as built-in operators that are more compact, easier to program and
faster in execution than the original combination of operators.

A good case in point is the sign operator (SGN, which combines the sign of the right
operand with the value of the left operand. Without any extra facilities to perform this
simple computation, you would have to specify the expression: ABSQ(X)*ABS(Y) / Y.
Instead, using the SGNoperator, you can compute the same result as: X SGN Y. This not
only appears cleaner and more obvious, but it executes many times faster, due to its
internal implementation that doesn’t rely on multiplies and divides to do the work.

Chapter 3 RepresentingandManipulatingNumbers 3-17

3-18

Similarly; MegaBasic includes a number of special arithmetic operators that perform
certain simple tasks in a faster, more straight forward manner. Each of these is described
in the table that follows:

Computesthe value of A with the sign of B. The result value always has

A SGN B the same numeric type as the left operand (integer or real). For
example: 38 SGN-5 = -38, 38 SGN5 = 38, -38 SGN-5 = -38,
38 SGNb = 38.
Selects the MINimum or MAXimumvalue between the two operands,
AMINB for example: 2.3 MIN=-34.7 = —34.7, 23456 MAX45 = 2~456. This is
AMAXB faster than the more general MIN() and MAX() functions, which

also set the INDEX function value as a side-effect.

Computes the closest multiple of B to A. This is equivalent to the
AROUNDB | expression: ROUND(X/Y)*Y . For example: 135.4592 ROUNDI1 =
135.5,53474 ROUNIBO = 53450.

Computes the lowest multiple of B equal to or greater than A. Thisis

ACEILB equivalent to the expression: CEIL(X/Y)*Y . For example 354 CEIL
25 = 375.
AINTB Computesthe highest multiple of B equal to or less than A. Thisisequiva-

lent to the expression: INT(X/Y)*Y , for example 354 INT 25 is 350.

Computes the nearest multiple of B between A and zero. This is
ATRUNCB | equivalent to the expression TRUNC(X/Y)*Y , for example 27
TRUNG is 25, 27 TRUNG is -25.

The last four operators (i.e., ROUNDCEIL , INT and TRUNGQare the so-called multiple
reduction operators, which reduce a value to a nearby multiple of another number. Asin
the other arithmetic operators, MegaBasic automatically forces their operands to the
same type before the computation begins and produces a result of the same type. Also,
faster execution results when you can supply integer operands.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

GFK-0256

Logical Operators

MegaBasic provides logical operators to manipulate logic and evaluate logical

expressions, but they are unusual in that they do not use the full numeric value of their

operands. Instead, MegaBasic uses only the zero or non-zero characteristic of their value

instead of their whole value. Think of this property in terms of TRUEand FALSE, with

TRUEbeing non-zero and FALSEbeing zero.

The result of a logical operation is always an integer zero (0) or one (1) and reflects the
combination of two logical values into one logical result. NOTreverses the logical value

that follows it, i.e., NOT FALSEis TRUE(1) and NOT TRUEis FALSE(0). Notice that NOT
only has one operand, similar to the negation operator (-). Operands of logical

operators may have an integer or real type, but MegaBasic converts logical operands to

an integer 0 or 1 before before evaluating the logical operator. Each of the logical
operators are described in the table below:

Computesthe logical reverse of A, i.e., if Ais true (non-

NOT A PR
zero), false results; if A is false (zero), true results.

A AND B Results in true only when both A and B are also true.

AORB Resultsintrue only if A or B or both are true.
(Exclusive OR results in true only if one operand is TRUE

AXORB and the other is FALSE The expression AXORB is equivalent
to the expression(A AND NOT B) OR (NOT A AND B).
(Equivalence)results in true only if both operands are true or

AEQVB both are false. The expression A EQV B isequivalentto the
expression(A AND B) OR (NOT A AND NOT B).
(Implication)always results in true unless the left operand is

AIMP B true and the right operand is false. The expression A IMP B
isequivalent to the expressionNOT A OR B.

Chapter 3 Representingand ManipulatingNumbers

3-19

A useful way to understand logical operations is to list all possible logical inputs (i.e., the
operands) alongside their corresponding outputs (i.e., the results). This is usually quite
easy to do with logical operations because logic only deals with two values: true and false,
but not at all practical with real or integer operations because of the enormous number of
combinations. Such enumerations with logical values are called truth tables, an important
tool in applied logic. A truth table providing a complete definition of all MegaBasic
logical operators now follows:

Operator Left Right Logical
P Operand Operand Result
-- False True
NOT True False
False False False
True False False
AND False True False
True True True
False False False
True False True
OR False True True
True True True
False False False
True False True
XOR False True True
True True False
False False True
True False False
EQV False True False
True True True
False False True
True False False
IMP False True True
True True True

Ordering Terms For Faster Evaluation

Notice that in certain cases, the result of a logical operation is known by simply knowing
the logical value of the left operand, i.e., cases where the result is independent of the
right operand. These cases can be summarized as follows:

FALSE AND (any value) = FALSE
TRUE OR (any value) = TRUE
FALSE IMP (any value) = TRUE

During the course of evaluating logical expressions, MegaBasic may ignore the
right-operand (skip its evaluation) when any of the above identities holds. This is done
in order to evaluate expressions in the least possible amount of time. In some cases, the
time saved can actually lead to a program that runs many times faster. Take for instance
the expressions used in the following IF statements:

(a) If VALUE=1 and FUNCT(X,Y,Z)>Sqrt(RIS) then ...
(b) If VAL1 or VAL2 or VAL3 or VAL4 then ...
(c) If TEST=LIMIT and (VAL1 or VAL2 or VAL3) then ...

In case (a), when VALUEequals 1 it is necessary to evaluate the rest of the expression,
which involves a user-defined function named FUNCTand a square-root computation.

3-20 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

However if VALUEequals 0 (false), then the final result is known to be false, so
MegaBasic skips over the complicated right operand without having to evaluate it. As
this example shows, a many-fold speed improvement may result when the right
operand requires much more computation than the left, and the left operand is false.

In case (b), MegaBasic evaluates the expression from left to right and as soon it
encounters a true term, further evaluation is unnecessary. This is because true ORedwith
anything is still true. When connecting terms with the ORoperator, you can make it more
efficient if you arrange the terms so that the term most likely to be true is first, the next
most likely true term is second, and so on. You can optimize a similar ANDsequence by
ordering the terms in a similar manner (i.e., most likely false value first).

Case (c) is a combination of cases (a) and (b). The ORedsub-expression to the right of the
ANDis only evaluated if TESTequals LIMIT (on the left). However when evaluating it,
MegaBasic proceeds only until encountering a true term (among VAL1 or VAL2 or VAL3).
MegaBasic applies these optimizing identities at all levels of expression evaluation, no
matter how complex the expression.

Do not assume that this optimization is always performed, because different
implementations may or may not do it (e.g., the compiler does evaluate things
differently). We mention it here so that you can order your operands for the most
efficient processing and so that you do not depend on the right operand necessarily
being evaluated. Nor should you depend on the lack of evaluation of a right-operand,
even if the above conditions are met. Right-hand operands that affect the contents of
variables or other program-state conditions must be coded with the knowledge that they
may or may not need to be evaluated.

Logical Expressions In Arithmetic Calculations

Since logical expressions always evaluate to either zero (0) or one (1), you can use them
within numeric expressions for computational purposes which might not otherwise
appear to be logically oriented. In many instances, combining logical terms with numeric
terms can yield a faster computation or a more compact or convenient representation
than would otherwise be possible. You can sometimes eliminate IF statements with such
techniques, for example:

Example Logical Equivalent IF
Expression Statement
COUNT = COUNT+ If THIS or THAT
(THIS or THAT) then COUNT = COUNT+1
VALUE = LIMIT/(2+ IF X=Y AND 2>10
(X=Y AND Z>10)) then VALUE = LIMIT/3
else VALUE = LIMIT/2

Remember that the result of a logical operation is an integer result, never a real result.
You might want to consider the possible performance consequences of this depending
on the context. However such consequences only affect execution speed and are
logically transparent to the particular application involved.

When you employ logical operators for numerical purposes you must be aware of the
operator precedence involved, or you could easily produce meaningless results.
Although this is the case with expressions of any type, the range of operators in
MegaBasic is greater than is generally supported in most other languages. Therefore you
should experiment with unfamiliar operators in simple expressions to understand them
before applying them in complex situations.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-21

Comparison Operators

Comparison operators compare two numbers (integer, real or mixed) or two strings and
pass back the outcome of the comparison. You can compare an integer value with a real
value, but MegaBasic automatically forces them to the same type internally before
actually comparing them. A Type Error occurs if you attempt to compare a humber with a
string. When you perform a comparison, you are looking to see if some relationship
between the numbers is true or false. For example you may want to test whether one
number is equal to another number. The equality comparison returns true if they are
equal and false if not equal.

By convention, MegaBasic (like most other computer languages) represents logical
values with numbers: 1 means true and 0 means false, and represents such values in
integer format rather than in floating point. Logical values (true and false) are primarily
found in IF statements and WHILE or REPEATIoops to decide what the next step of the
program should be. Based upon the outcome of a comparison, your program can choose
one set of actions over another. However, logical operators can also be used within
arithmetic computations for their 0 or 1 value whenever desired. For example the
statement: COUNT=COUNT + (X>Y) adds 1 to COUNnly if X is greater than Y. All the
comparison operators are described in the table below:

A=B Returns a true if A and B are exactly equal, and false otherwise.
A<B Returns true if Ais less than (below) B, and false otherwise.
A>B Returns true if A is greater than (above) B, and false otherwise.

A<=B Returns true if A is less than or equal to (not above) B, and false otherwise.

A>=B Returns true if A is greater than or equal to (not below) B, and false
otherwise.

A<>B Returns true if A and B are not exactly equal, and false otherwise.

AINB Returnstrue if all 1-bits in A are also set to 1 in B, afadseotherwise.

You can compare two expressions results just as you compare simple values. The
operator precedence scale becomes important in such comparisons to reduce the need to
control operation order with parentheses in expressions involving many diverse
operators. The following expression illustrates such a calculation:

A+B*C>X*Y"ZORQ-R/S=A *BAND F*17<B +C

You can greatly improve the readability of expressions like this by carefully
inserting/deleting spaces between operators to make them stand out and by grouping
the operations with parentheses, as in:

(A+B*C)>(X*YZ) OR (Q-R/S=A*B) AND (F*17<B+C)

Since string comparisons also return 1 for TRUEand 0 for FALSE, you can use them
within larger numeric expressions as needed. For example the expression | + A$=SB$
computes the value I+1 if A$ and B$ are identical, or the value 1+0 if they are not. Refer
to Chapter 4, Section 4 for details on how MegaBasic compares strings.

3-22 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 6: Numeric Functions

Aswe have shown, numbers can be expressed as constants, variables and numeric
expressions. However they may also be expressed as results of special procedures called
functions. Functions are similar to array variables, in that they are referred to by name
and include additional information which affects the value that they represent. The
difference is that an array element merely accesses the value it holds, but a reference to a
function invokes a computation of the value symbolized by the function name. As with
constants and variables, functions may be combined with other values within numeric
expressions to calculate further results.

A function is a procedure which computes a result based upon data which you have
communicated to it. To identify each procedure, functions are assigned names just like
variables. To use a function, you merely type its name and its input data just as if you
were typing an array name and its subscript list. For example, consider the following
three function references:

| Sart(17) | Round(X,3) | Min(R+2,189,VALUE) |

First, we have the square-root of 17. Second, we specified a value equal to the contents of
X rounded to exactly three significant digits. Third, we access a value equal to the
minimum value specified among the expressions: R+2, 189, and VALUE Functions are
always of the same form:

<function name> (<argument list>)

Input information to the function is specified after its name, enclosed in parentheses, as
a list of numeric or string values called an argument list. Each input value is called an
argument and is specified using any general expression. The values computed by these
expressions are used by the function in forming its ultimate result. The number of
arguments and their type (string or numeric) depends on the particular function being
used. When more than one argument is present, they are separated from each other
with commas. Some functions have no arguments, and are specified with the function
name alone: no parentheses follow it.

MegaBasic possesses a library of over eighty built-in functions and also allows you to
create your own functions, written in MegaBasic statements. Chapter 9 provides a
complete description of all the built-in functions in MegaBasic and how to use them.
Defining your own functions is a somewhat more advanced topic that is thoroughly
covered in Chapter 8, Section 3. Refer to those subsections for more complete details. A
summary of the numeric functions now follows for quick reference.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-23

3-24

Summary of Arithmetic Functions

Int(X) highest integer not above X
Ceil(X) least integer not below X
Trunc(X) Xwithoutits fractional part
Mod(X,Y) remainder of X divided by Y
Frac(X) the fractional part of x
Round(X) Xrounded to the nearest integer
Round (X,P) Xroundedto P significant digits
Abs(X) absolute value of X
Sgn(X) 1 with the sign of X, 0 if X=0
Sgn(X,Y) Y with the sign of X
Max(X,Y,...) the maximum value among alist
Min(X,Y,...) the minimum value among a list
Index Secondary result of certain functions
Rnd(X) pseudorandomsequence
Integer(R) integer representation of R
Real(l) Real representation of |

Summary of Mathematical Functions

Sqrt(X) square-rootof X
Log(X) logarithm base 10 of X
Ln(X) logarithm base e of X
Exp(X) e to the power of X
Pi the constant pi
Sin(X) sine of X radians
Asin(X) arcsine of X
Cos(X) cosine of X
Acos(X) arccosine of X
Tan(X) tangent of X
Atn(X) arctangent of X
Poly (X,A,D) generalpolynomialevaluation

Because variables are created by default when encountered for the first time and not
DIMensionded , misspelled function names will result in variables being created under
those names. Such errors can be very difficult to diagnose because there is no way for
MegaBasic to detect the error. For example, SQRT(I) returns the square-root of I, and
SQR(I) returns the Ith element of array SQR() .

Two facilities exist in MegaBasic to aid the discovery of misspelled names. One is the
NAMESommands (Chapter 2, Section 3), which displays an alphabetical list of all
user-assigned names in the program. Unrecognized names that appear in this display
should be investigated. Mistyped variable and function names tend to be displayed in
close proximity to the correct spelling of the user-assigned name, due to the alphabetical
ordering of this display. The second debugging aid is the XREFcommand (Chapter 2,

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5), which displays all references to any name. Names that have only one
reference should be scrutinized as possible misspellings.

Integer vs. Real Functions

MegaBasic lets you to use either integer or real values wherever a number is desired.
Internally, MegaBasic usually requires one type or the other in order to process the
intended operation and if you specify values in the wrong type, MegaBasic will convert
them to the right type. Your programs will run faster if numeric values are always
supplied in the form (integer or real) most suited to the operation at hand. Implicit type
conversions involving the built-in functions are governed by the following
considerations:

o All transcendental functions, such as SQRT(), LOG(), SIN() , COS() ATN() ,
etc., use a real argument and return a real result. Other functions which always
return a real result include: Pl , POLY() , RND(), FRAC() and VAL() .

o A number of functions return a result of the same type as their argument(s).
These include: ROUND(), TRUNC(), CEIL() ,INT() ,ABS(),MOL) , SGN()
with two arguments, and MIN/MAX functions. The MIN/MAX functions return a
real result if any value in their argument list is real, otherwise they return an
integer result.

o All other MegaBasic numeric functions return integer results. Using them in
exclusively integer contexts will be faster than in combination with real values
(also called mixed-mode expressions).

Integer and Real Conversions

Two special functions are provided to force any expression value into real or integer
representation, regardless of the current type of the value. The REAL() function always
returns a real representation of its single numeric argument. The INTEGER) function
always returns an integer representation of its single numeric argument. A error will
result if you attempt to form an integer from a value too large to represent as a 32-bit
signed integer (i.e., above 2147483647 or below —2147483648). If a real value with places
to the right of the decimal is supplied to the INTEGER) function, the number will be
truncated to a whole number and then converted to an integer. Such truncation of real
values will always occur any time a non-integer real is converted to an integer
representation.

An integer value can be converted to a real value without precision loss in all floating
point precisions except 8-digit BCD in which integer values beyond 100 million (+-)
cannot fit within the floating point representation. Therefore the value is truncated to
contain only the leading 8 decimal digits of the integer. Values between 100 million and 1
billion will always be within 9 of the actual value; values over 1 billion will be within 99
of the original integer value after being converted to real. If your program never uses
integers of this size then 8-digit MegaBasic can be used without any difficulties.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-25

Section 7:

3-26

\ector Processing

MegaBasic supports an integrated family of vector processing capabilities. In the same
way that a string is a sequence of characters, a vector in MegaBasic is simply a sequence
of numbers. Vector operations are provided that allow you to manipulate vectors in
expressions (vector arithmetic), to potentially control thousands of operations in one
statement. Some BASICS provide a few matrix operations, but vector processing
techniques can be applied to implement any matrix operation, such as matrix inversion,
multiply, add, transpose, linear programming, etc., without restricting the language to
only those matrix operations that were included. Procedures for some of these
operations are implemented in LIBRARY.pgm included in the MegaBasic software set.

An algorithm implemented with vector operations can execute from 3 to 12 times faster
than the same algorithm implemented iteratively (i.e., looping through the individual
elements). This is because vector operations generally replace the innermost loops of
many algorithms with one or two single vector statements, where virtually all the
processing is concentrated, and the vector operations themselves are compiled
on-the-fly and executed, instead of interpreted.

Vector Variables

Several statements and functions are supported that provide a complete vector
processing facility in MegaBasic. To effectively use these constructs, you need to
understand how to specify vector variables and vector expressions. A vector variable is
defined as:

0 Any numeric scalar variable or single array element reference. This is the
shortest possible vector: a vector of length one.

O Anarray name without any subscript expression, representing a vector that
consists of all elements contained in the array, even if the array has more than
one dimension. In multi-dimensional arrays, the element order is the same as
the traversal by the following program:

Dim ARRAY(L,M,N)
ForI=0OtoL;ForJ=0toM; ForK-Oto N
Print ARRAY(1,J,K); Next K; Next J; Next |

In other words, we advance a subscript only after sequencing through all possible
combinations of all the subscripts to the right of it. This type of vector variable lets you
process any array as if it were one long list of numbers.

O Anarray slice, representing a vector consisting of all elements of the array that
intersect with a slice through one or more dimensions of the array. Array slices
are described below.

O Aconcatenated vector variable, which is a list of vector variables separated by
commas and surrounded by brackets. This type of vector expression is discussed
later on.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Specifying Array Slices

In a vector context you can access a series of array elements by specifying one of the
array subscripts with an asterisk to mean all elements contained in that dimension. For
example consider the array ARRAY20,30) consisting of 21 rows (0 to 20) and 31 columns
(0 to 30). The vector ARRAYiI,*) is the sequence of elements from row | spanning
ARRAYi,0), ARRAYI,1),..., ARRAYI,30). Likewise the vector ARRAY¥,)) is the sequence of
all elements in column J. Think of the asterisk as being a wild-card that means all possible
locations in that dimension. This notation is called an array slice, because it refers to all
the array elements intersected by a slice through an array.

You can specify more than one asterisk subscript, as long as they are adjacent to one
another in the subscript list. The following table illustrates various array slices using a
three-dimensional array to help you understand the meaning of the asterisk notation.
We will conceptualize this array as a stack of levels, each consisting of elements arranged
in rows and columns.

ARRAY (i j.K) Singleelement vector, using the value in column K of row J on

levell.
. The elements at all columns at the intersection of row plane J
ARRAY(i,j,*) and level planel.
. The elements in all rows at the intersection of column plane K
ARRAY (i,* k) P

and level planell.

The elements in all levels at the intersection of row plane Jand

ARRAY (*,j,k) column planeK.

The elements from all rows and columns on level I,

ARRAY (i,** i.e., aslice through the plane of one level.

The elements from column K on all rows in all levels, i.e., a

ARRAY (*,*,k) slice through the plane of one column.

Thisis illegal because the asterisks are not adjacent, and re-

ARRAY (*,),*) ported as an Array SubscriptError if you try it.

Allelements from the entire array. This is equivalent

ARRAY (*,%,* specifying the array name without any subscripts at all.

Scalar variables or arrays that have never been DIMensioned or created by default
cannot be referenced as a vector. Attempts to use such uninitialized variables in a vector
context will be reported as Out Of Context Errors.

Concatenated Vectors

As mentioned earlier, a vector variable can be specified as the concatenation of two or
more vectors, by enclosing the component vectors in brackets []. For example [X,Y,Z] is a
vector with three vector variables, forming a sequence of numbers consisting of the
three vectors placed end to end. The component vectors within brackets may have any
of the following forms:

o Ascalarvariable

O Anarray slice or an indexed array slice

0 Anunsubscripted array name

o Ascalar expression that does not begin with a user-definedidentifier

All components of a concatenated vector must have identical data types. In other words,
all components must be integers or all components must be floating point (real). A Data
Type Error is reported if this rule is violated.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-27

The last form lets you specify 1-element vector components using ordinary arithmetic
expressions. For MegaBasic to discriminate between such an expression and a vector
variable, the expression cannot begin with an identifier (e.g., you can surround scalar
expressions with parentheses). Hence scalar expressions considered valid include any
expression that begins with a numeric constant, a left parenthesis or a built-in MegaBasic
function. Components specified in this manner represent read-only values. If you store
data into a concatenated vector, any read-only components that it contains will be
treated as variables and modified accordingly. No error is reported for this condition;
you simply lose whatever value is stored there.

Vector Variable Indexing

In some situations, you may only want a portion or sub-sequence of a vector specified by
an array slice expression. Therefore MegaBasic lets you append an indexing expression
onto any array slice, much like the indexing expressions supported for string variables.
Unlike string indexing, a vector index position is zero-based (rather than one-based) and
you can only index vector variables: vector expressions and concatenated vectors cannot
be indexed. See Chapter 4, Section 5 for complete information about indexing strings.
The examples below show how index expressions are applied to array slices:

Indexing Vector Variables
ARRAY(*,1)(J,K) ElementsJ through K of column .
ARRAY (1,)(J) All elements in row | from position J to the end.
ARRAY (*,1)(K:L) L elements starting at position K of column 1.
ARRAY (1,%)(:L) The last L elements of row I.

Extended (or compound) index expressions are also fully supported, i.e., indexing an
already indexed vector. Note that you cannot index an array without any explicitasterisk
subscripts because MegaBasic assumes that the first parenthetical expression that follows
an array name must be a subscript expression, not an indexing expression. Unlike
indexed characters strings, indexed vectors must select at least one element; a null vector
is not allowed.

Vector Expressions

Computations involving vectors are expressed in much the same way as ordinary scalar
calculations. For example if X and Y are vectors, the expression (X+Y)/2 will produce a
result vector whose elements are the average of the corresponding elements in X and Y.
There is virtually no limit on expression complexity or parenthesis depth, and the
internal memory required during the computation is only slightly greater than that
required for a similar scalar computation.

Vector expressions are evaluated completely for the first element of every term of the
expression, followed by the second element of every term throughout the expression,
and so on through to the last element of each term. If the vectors of an expression differ
in length, then the shorter vectors will run out before the longer vectors are accessed.
When this happens, the shorter vectors simply wrap-around back to their first element
again, so that the expression computation can continue until the last element of the
longest vector has been processed.

For example the expression X+3 is the sum of a vector X and a constant. A constant is
really a vector of length one, so that when we evaluate this expression the constant
becomes, in effect, a constant vector of length equal to the length of X. Some other

3-28 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

important applications of this wrap-around idea will be shown later on, but for now the
important thing to understand is that a vector expression always produces a vector
result equal in length to its longest vector variable. You can control any wrap-around by
controlling the lengths of the vectors involved.

Vector Operators

Allthe standard MegaBasic arithmetic operators are supported in vector expressions.
Mixed-mode (i.e., integer and real) arithmetic is supported under the same rules as in
scalar arithmetic, including operator precedence relationships. Unlike scalar arithmetic, if
the result of an integer calculation exceeds the capacity of a 32-bit integer, a numeric
overflow error is reported, instead of converting the integer to floating point and
continuing on. If an error occurs during a vector computation, you can determine on
which element the error occurred using the INDEX function, which always returns the
number of correctly computed vector result elements.

All the logical operators (i.e., AND OR XOR EQVYIMP and NOT) and all the comparison
operators are supported. As in the scalar context, they return an integer 0 or 1 result, or
rather, a vector of 0’s and 1’s. Using these, the expression SUM(X>=10 and XC=30), for
example, computes the number of elements in vector X that lie in the range from 10 to
30.

Vector Functions

Allarithmetic functions (Chapter 9, Section 1) and mathematical functions (Chapter 9,
Section 2) are supported in a vector context, with the following exceptions:

ROUND() with two SGN() with two
arguments arguments
RND() with one argument POLY() function

Pi is supported as well as INDEX, which begins at zero and increments by one as the
vector expression sequences from element to element. INDEX can be used in a vector
expression as a running counter-vector, or after an error (such as divide by zero) to
determine the element that caused the error during the vector computation. The
dramatic speed improvement of vector operations over iterative implementation may be
reduced when transcendental functions are applied to vectors, simply because such
operations are dominated by computation.

None of the file and device I/0 functions are supported, nor are the utility and system
functions, except for INTEGER) and REAL(). When you apply a function to a vector
expression, each element of the expression result vector is transformed by the function
to produce a new vector of transformed elements. For example SQRTX+Y) returns a
vector consisting of the square root of the sum of the corresponding elements in vectors
X and Y. If you attempt to use any MegaBasic function that is not supported in a vector
context, an Out Of Context error will be reported.

Scalar Functions on Vectors

MegaBasic provides several functions that operate on a vector and return a scalar
numeric result (i.e., a single number) including MIN() , MAX(), SUM(), LEN() and
FIND() . These functions are used in normal expressions because they return a simple
numeric result. You cannot use them in vector expressions (i.e., they do not return vectors
of sums, lengths, minimum or maximum values).

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-29

o MIN() and MAX() on Vectors

MIN() and MAX() let you include vector expressions as argument from which
the MIN or MAXvalue is determined. You must precede vector expressions by the
VECreserved word in so that MegaBasic will evaluate it as a vector. The
argument list of vector and scalar expressions is scanned from left-to-right and
the MIN or MAXvalue is returned. Afterward, the INDEX function returns the
sequence position (one-based) of the value found, as if all scalars and vector
elements were scanned as one long list.

o SUM(vector exprn)

SUM() evaluates a vector expression and returns the sum of the resulting
elements. For example, the expression SUM(X*X) computes the sum of the
squares of each element of vector X. The word VECis not needed in SUM()
because it only operates on vectors.

o LEN(VEC vector exprn)

LEN() returns the length of a vector expression, i.e., its element count. The VEC
word is needed to indicate that a vector expression is coming up, not a string
expression. LEN() does not evaluate the vector expression; it only computes the
length of the longest vector term within the expression.

O FIND(VEC vector exprn)

FIND() locates the first non-zero element in an arbitrary vector expression,
returning either the index position found (zero-based), or -1 if all elements were
zero. For example, if all elements of X() are zero except for X(17) then FIND(VEC
X) returns 17. To locate a value in a vector satisfying some condition, specify the
condition as the vector expression, e.g., FIND(VEC X=99) or FIND(VEC X>20
AND X<30) . If you use vector indexing to limit FIND() for partial searches, the
position returned is relative to the region searched, rather than to the beginning
of the entire vector.

Vector Statements

The vector processing statements are simply enhancements of selected scalar processing
statements that already exist in MegaBasic. These include vector assignments and
swapping, printing, and file reads and writes. In each of these statements, you must
indicate that a vector operation is coming up, by preceding the operation with the
special reserved word VEC We will describe each of the vector statements in the
discussion that follows.

The INDEX function, referred to elsewhere in the discussion, returns the number of
processed elements at any point. It is often useful for setting vectors to an arithmetic
sequence.

Some vector operations can take a while to execute, depending primarily on the number
of elements to be computed and the complexity of the calculation. Heavy use of
transcendental functions on 100,000 elements without a math coprocessor can take quite
some time to complete. During this time, Ctrl-C is not recognized, causing a perceptible
delay between the time you type a Ctrl-C and the time your program stops.

3-30 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Vector Assignments

Virtually all vector processing is performed by vector assignment statements, which
have the form:

VEC <vector variable> = <vector expression>

The reserved word VECannounces a vector assignment is ahead, the <vector variable>
defines where to store the resulting vector, and the <vector expression> defines the
vector calculation to be performed.

The length of the vector variable dictates the extent to which the vector expression is
performed. For example in the vector assignment VEC X = 3, the constant 3 is a
one-element vector which is extended (or repeated) to match the length of vector
variable X. As another example, consider the following program fragment:

Dim X(100), Y(10);
Vec Y =index; Vec X =Y

First create two vectors (arrays), one with 101 elements and one with 11. Then assign the
INDEX function value to each element of Y(*). The INDEX function always returns the
number of successfully computed vector elements from any vector computation.
However within a vector expression, INDEX creates a vector consisting of an
incrementing series of integer values starting with zero.

Finally, we assign vector Y to vector X. Since Y is shorter than X, MegaBasic extends Y to
the length of X by repeatedly wrapping around to the beginning of Y each time it runs
out. This results in X containing 9 concatenate series of integers 0 to 10, finishing with 0
and 1 in elements 100 and 101. This automatic repetition can be useful in matrix
manipulation, as demonstrated by the assignment statement:

Vec M(*%) = M(*,*) + R(*)

where M(i, *) and R(*J are the same length
If M() and R() have the same number of columns, the statement above adds R(*) to
every row in M(). This implicit repetition means that you must be careful when setting
up vector operations to specify vectors of the appropriate lengths at all times. Just one
element too few or too many can easily produce invalid results that may be difficult to
detect, especially when other vector operations follow.

You also need to use care in applying the automatic repetition to avoid excessive
computation when doing simple things. If, for example, S is a scalar variable and X is a
10,000 element array, the statement VEC X - SQRT(S) would compute and store the
square root of S 10,000 times, a very time consuming and wasteful approach. It is much
more efficient to compute and save a complex result once, then store it into a vector as a
separate step.

A concatenated vector variable (enclosed in brackets [] as described earlier) may be the
target variable of a vector assignment, as in:

Vec [A,B,C,D] = X(*,J)

The vector expression result on the right is distributed among the variables on the left as
if they formed one continuous variable, even if any or all of the concatenated variables
are also vectors. If A, B, C and D are scalar variables, then they receive the first four
elements from column j of array X(). As always, the result vector is extended to match
the length of the receiving vector variable, which in this case is the combined length of
the concatenated variables.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-31

When the assigned vector variable also appears in the vector expression to the right of
the equals sign (=), remember that each element is computed and stored one at a time.
In particular, computing one element using the value of another element of the same
vector may not work. Consider the following example:

Vec X(*)(1) = X(*)

This assignment statement appears to assign the values from elements 0 and up to
element positions 1 and up, i.e., shift all element values up by one element. In fact, what
this really does is to copy the value of X(0) to all elements of the vector. This is because
later elements are stored using the results of earlier elements and vector calculations are
always done in ascending sequential order, resulting in the sequence: X(1)=X(0),
X(2)=X(1), X(3)=X(2), and so on. This computational property may be useful in certain
applications but in most cases specifying such assignments causes errors that may be
difficult to diagnose.

With careful application, however, you can take advantage of the sequential nature of
the vector computational process for special purposes. An important example of this is
converting a series of values into a cumulative series. The following program fragment
does just that

Vec X(*)(1) = X(*)(1) + X(*)

This computation first sets X(1) = X(1)+X(0), then sets X(2) = X(2)+X(1), and so on, so
that each resulting element is the sum of itself and all elements preceding it. We can also
convert this cumulative series back to is original incremental series using a similar
technique, as shown by the program fragment:

Vec Y = X; Vec X(*)(1) = Y(*)(1) — X(*)

In this case, we have to copy vector X to another vector so that the elements needed in
the calculation are not modified before they are used. The result is that each new
element X(i) = X(i) — X(i-1).

Swapping Vectors

In matrix applications, one frequently needs to exchange of the contents of two vectors,
such as in matrix transposition and matrix inversion procedures. This generally
time-consuming process can be performed using the SWAPstatement which is 7 to 12
times faster than a similar implementation using FOR..NEXT loops. For example, the
following routine transposes an N-by-N matrix using vector swaps:

Forl=0to N-1
Swap vec MATRIX(*,1)(1), MATRIX(1,*)(I)
Next |

This routine swaps the contents of each corresponding row and column. As shown
above, the VECreserved word must precede each pair of variables to be swapped, so as
to distinguish them from other scalar variables or strings to be swapped in the same
statement. As with all vector operations, the INDEX function returns the number of
elements processed after the operation has completed.

When you swap two vectors of different lengths, the process continues until the last
element of the longer vector has been swapped, and the shorter vector is re-started from
the beginning whenever it runs out of elements to swap. For example if you swap a
vector with a scalar (a vector with one element), the scalar is repeatedly swapped with
each element of the vector. The net effect of this is to insert the scalar value into the

3-32 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

vector, and move the extra value that falls off the end of the vector into the scalar variable.
A similar insertion occurs when a long vector is swapped with a short vector.

This capability can be useful in vector sorting, vector element rotation, element insertion
and deletion, and other manipulations on numerical arrays. It also means that you must
be careful when you specify a vector swap operation to ensure that the lengths of both
vectors are exactly correct, to avoid an unintended result.

Printing Vectors

You can PRINT the resulting elements of a vector expression by merely specifying the
vector expression, preceded by the reserved word VEC as any term of a PRINT
statement. Each value is printed with the appropriate format, just as if each element was
specified as a separate (scalar) expression, for example:

Print %“12f2,8i", Vec X(*,j)

This statement prints all the values from column j of array X() to the console, in a format
that alternates between 12F2 and 81. This capability eliminates the need for FOR..NEXT
loops for similar applications of PRINT. You can PRINT simple vector variables and vector
expressions of any complexity. The VECreserved word must precede each vector to be
PRINTed; expressions not marked in this way are assumed to be scalar expressions.

Writing Vectors to Files

Like the PRINT statement above, you can specify vector expressions in the output list of
a WRITEstatement. You must precede each such expression with the VECreserved word
to inform MegaBasic of your intentions. The vector elements are written to the disk file
in binary format (integer, IEEE real or BCDreal) and in the order they occur within the
result vector. If PARAM(11) has been used to change the floating point precision written
to files, each element will be converted to that precision as it is written. If a WRITEREAL
or WRITE INTEGER statement is being performed, the vector elements are converted to
the representation indicated as needed. You cannot specify the byte override ampersand
(&) or the word override at-sign (@) on vector write operations.

Reading Vectors from Files

You can read vectors from a file by specifying a vector variable in the input list of a READ
statement. You must precede each such variable with the VECreserved word. The vector
elements are read from the disk file in binary format (integer, IEEE real or BCDreal) into
sequential elements of the receiving vector. The number of values read is determined by
the length of the receiving vector variable. If PARAM(11) has been used to change the
floating point precision read from files, each element will be converted from that
precision to the internal precision of MegaBasic as it is read into the vector element. If a
READREALor READINTEGERstatement is being performed, the values of the type
indicated are read and, if necessary, converted to the numeric type of the vector variable
as they are stored. You cannot specify the byte override ampersand (&) or the word
override at-sign (@) on vector read operations. The non-file READstatement (for DATA
statements) does not support vectors.

Reading numeric vectors from files is 4 to 10 times faster when the vector elements
follow one another in memory (i.e., contiguous elements). A vector is contiguous if it is
the entire array or its rightmost subscript is an asterisk (*). Such a vector is still
contiguous after any indexing is applied. In this special but very common case, all the

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-33

elements are read directly into the vector in one disk operation, instead of a potentially
separate disk read for each element. Separate disk transfers are used whenever the read
involves precision conversions (i.e., PARAM.1 <> PARAM}), numeric type conversions
(i.e., from READREALor READINTEGER), or non-contiguous elements (e.g., VEC X(*,K),
Y(*,X]), etc.).

When the high-speed vector read is performed, the individual elements are not
validated in any way. Single-element reads employ a very simple validation of each
value read, but this is only of use when the file truly contains garbage. If an actual read
error occurs, such as reading past the end of the file, the INDEX function does NOT
return the number of correctly read elements because INDEX is updated after the disk
read has successfully completed.

3-34 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 8: IEEE Floating Point and 80x87 Math Support

MegaBasic is available in either of two fundamentally different floating point
representations: BCDfloating point, and IEEE double precision binary floating point.
Unlike the BCDMegaBasic, IEEE MegaBasic provides full 80x87 numeric processor
support. This version, called BASIC87 and RUN87 automatically detects the presence of
the numeric processor so that subsequent arithmetic operations can take full advantage
of its capabilities or emulate its functionality in software when not present.

BCDvs. IEEE Representation

Before jumping into what BASICS87 can do, it is instructive to contrast and compare the
two floating point representations supported by MegaBasic, i.e., BCDand IEEE. BCDQ
which stands for Binary Coded Decimal, is a representation format that packs two decimal
digits (i.e., 0 to 9) into an 8-bit memory value. A BCDfloating point number consists of a
series of these packed bytes followed by the byte containing the sign of the number and
a power of ten scaling factor that indicates the magnitude of the number. Under
MegaBasic this power spans —63 to 63, providing a numeric range from IE-63 to IE+63.
BCDfloating point representation has a number of advantages:

o All decimal numbers within the precision provided by the BCDformat are
represented exactly. For example, using 14-digit BCDformat you can represent
hundreds of billions of dollars to the penny without any round-off error. This
makes BCDwell suited for financial work or other applications where input
values must be represented exactly.

0 Numbers must ultimately be represented in display code or ASCII character
representation for both input from the keyboard and output to a printer or
screen. Converting between ASCII and BCDfloating point is very quick and
requires only a small amount of program code to perform it. On the other hand,
converting between ASCII and binary numeric representations is a much more
complex and time consuming task.

0 BCDnumbers can be read directly from hex dumps of files or memory without
any special conversion performed. This is of great assistance in certain types of
machine/assemblercode debugging.

Two disadvantages of BCDfloating point should be noted however. BCDis slightly less
efficient with storage than pure binary representation. This is because when two decimal
digits are packed into an 8-bit byte, a small part of each byte goes unused. For example 5
bytes can theoretically contain 12 digits of precision, but with BCDcoding they can only
hold 10 digits, two per byte. The second disadvantage is that hardware-assisted
computation for BCDformat is virtually non-existent and therefore BCDMegaBasic will
likely be limited to software-only arithmetic.

IEEE double precision format is a purely binary method for representing floating point

numbers. It consists of a 52-bit fractional part called the mantissa, an 11 bit power of two
scaling factor called the exponent, and one more bit for the sign. This representation has
three advantages over BCDformat:

o IEEE arithmetic implemented in software can be more efficient than BCD
arithmetic implemented in software, especially multiply and divide.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-35

o Hardware computational support for IEEE format is available on many fronts.
In 8088/86/286 applications, the Intel 80x87 chips provide this, and have
exceptional support for transcendental functions.

O IEEE binary representation provides the maximum storage efficiency possible.
Its 8 bytes provides enough precision to store 16 digits and an exponent that
supports a dynamic range from IE-308 up to IE308. In contrast, an 8-byte BCD
floating point number can hold 14 digits with a dynamic range from IE-63 to
IE63.

An important disadvantage to be remembered about IEEE double precision format is
that very few numbers with decimals can be represented exactly. For example 0.1 cannot
be represented exactly, just as 1/3 cannot be represented exactly under BCDformat.
However, this problem is more pervasive with IEEE format simply because decimal
numbers are the basis for nearly all input and output of numerical information, as well
as specification of numerical constants in programs. This does not mean that calculations
are any less accurate using IEEE format, just that, in many cases, the original decimal
data will contain small round-off errors after it is stored internally. Such round-off errors
are inherent in the IEEE representation, and are not bugs in software that supports it,
like BASIC87.

|[EEE/BCD Compatibility

BASICS87 is designed to run programs originally written under BCDMegaBasic without
any program changes. There are, however, a number of areas that you need to be aware
of which can potentially alter the outcome of certain operations. We consider all these
differences to be insignificant in the vast majority of applications. The issues are as
follows:

o When floating point variables are read from or written to data files directly, the
prevailing floating point representation is assumed: BCDversionsread/write
BCD IEEE versionsread/write [IEEE . PARAM(11) can be set to modify this
behavior, however, as we will discuss later on. IEEE values require the same
amount of memory/file space as floating point values under the 14-digit BCD
version: 8 bytes each.

O Operations that use knowledge of the internal BCDrepresentation will no longer
work correctly. The only way this can occur is by using EXAMand FILL
statements to access memory locations containing floating point numbers, or by
passing the memory address of these numbers to machine code subroutines
outside of MegaBasic. Very few programs will be affected by this incompatibility.

0 Results from complex calculations will have small differences in the
least-significant digit or two, so you should not rely on identical full-precision
results for your program to be correct. If you can run your application under
different precisions of BCDMegaBasic, then you should also be able to run it
under IEEE MegaBasic.

o Decimal numbers stored in IEEE floating point variables will not always be
represented exactly, the way they are in BCDvariables. This shows up in
FOR..NEXT loops with certain non-integral step sizes, sometimes causing the
loop to execute one less iteration than with BCDfloating point numbers.

0 The exponents of numbers formatted with E-notation require one more column
of width (for 3 digits instead of 2). This may result in an overflow of the field
width and no value will be shown. If this rare case is encountered, the field is
filled with asterisks (*) and the program continues on.

3-36 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

O The relative time to compute most floating point operations will differ under
IEEE and programs relying on such timing may require adjustment. A few
operations are slower under IEEE MegaBasic, such as ROUND(x,n) and
converting between ASCII and floating point, but most operations are much
faster.

o The RND() function generates a completely different sequence of random
numbers under IEEE than under BCD Results from programs using RND() run
under different versions will not match.

o The TYR) function is not able to reliably distinguish binary data from strings
and end-of-file marks (and never could). Therefore TYP() should not be used to
determine the next data type on files that contain binary data (such as IEEE
floating point, binary integers, etc.).

Floating Point Values on Files

By default, MegaBasic always read/writes floating point values using the precision and
representation used internally by the running version of MegaBasic. To allow different
precisions of MegaBasic to access the same data files, PARANLL1) has always been
available to control the precision assumption used when performing floating point file
transfers.

BASIC87 can read/write floating point values in any BCDprecision from 6 to 18 digits,
just like the BCDversions of MegaBasic. It can also transfer both IEEE double-precision
(standard) and IEEE single-precision formats. This can be done by setting PARANL1) to
one of the following values:

Selectssingle-precisionformat for all floating point transfers.
This is a4-byte representation that can store numbers with

1 about 6.5 digits of precision, ranging from 8.34E-37 to
3.37E38. Asmall conversion penalty isinvolved for each value
transferred.

Selectsthe standard double-precision format used internally to
hold and process IEEE floating point numbers. All 8 bytes of

2 the IEEE floating point number are transferred in this

format to maintain full precision. This is the fastest format to
transfer IEEE floatingpoint numbers between data files and
yourprogram.

Selects BCDfloating point format with the precision indicated.
Since only even numbers of digits are possible, odd values are
6-18 rounded up. The extratime it takes to convert between IEEE
and BCDformat as values are transferred between memory
and files should be considered when choosing BCDover
binarytransfers.

Values written in smaller precision or read in higher precision are rounded to the smaller
destination precision. Values too small to represent in the target precision are set to zero,
while values too large to represent will cause a numeric overflow error. Values written in
higher precision or read from lower precision values are padded with extra zeros as
needed.

Single-precision IEEE format is provided for applications that need to store
low-precision numbers as efficiently as possible, and for accessing available data files
written in that format. BCDformat is supported to allow access to existing data files
written by BCDversions of MegaBasic. A numeric overflow will occur if BCDvalues
larger than 10763 are written. BCDMegaBasic does nhot support the single/double
precision IEEE format.

GFK-0256 Chapter 3 RepresentingandManipulatingNumbers 3-37

PARANL1) normally defaults to the precision/format that the running copy of MegaBasic
uses to represent floating point numbers internally. For example under 14-digit BCDand
IEEE versions, PARANL1) equals 14 and 2, respectively. However its default value can be
modified permanently for any particular copy of MegaBasic using the CONFIG.pgm
utility.

PARANH) returnsthe numeric precision/format used internally by the running copy of
MegaBasic. Under IEEE versions it returns 2, and for the BCD versions it returns the
BCD precision (as in the above values for PARAM).

Software/Hardware Performance

Performance is the real reason for using IEEE floating point representation. BCD
add/subtract operationsare very efficient and remain competitive even against the
80X87 processors. However, all other areas of floating point processing exhibit obvious
gains when a math chip is used (e.g., multiply, divide and especially the transcendentals).

The degree of speed improvement you experience will vary with the system clock speed
and math chip type being used (e.g., an 80287 is faster than an 8087, but slower than an
80387). There are several different brands of math chip and their performance varies
widely. Because of this variation, certain internal operations may still run faster in
software than with math chip assistance.

Math chip presence is automatically detected by MegaBasic at start up. If not present, all
operations are performed strictly in software. The use of the math chip can be disabled
or enabled under program control so that you can test your software under both
environments without having to physically remove the chip or run your tests on a
different machine. To enable/ disable the math chip, use the following statements:

PARAM(20) =0 Disables all use of a numeric coprocessor.
PARAM(20) =1 Enables an 80X87 coprocessor if present.

PARANRO) can also be tested to determine if a math chip is being used. It will not,
however, return 1 if it is present, so you need to test it for a non-zero value instead of
one. This is because the value returned by PARANRO) is a composite value that indicates
the chip type (i.e., 8087, 80287 or 80387) and a measure of relative performance of the
existing chip as compared with the current CPUspeed. It is not possible to enable the
chip unless one is actually present in the machine. PARANRO) under BCD MegaBasic
always returns zero and cannot be set to anything else.

The accuracy of both the hardware and software transcendental functions is very good:
full 16-digit accuracy is maintained for all functions when using the math chip. The
software transcendental functions return results within 15-16 decimals for better than
99% of all arguments supplied. COg) and TAN) return an occasional result good to only
14 digits (for less than 1% of all arguments) . This reduction in accuracy occurs only for
arguments that are far outside the primary function domain (i.e., 0 to 2 pi for
trigonometric functions). In such cases, the argument itself is inherently less accurate, so
the reduced accuracy from the function is not significant.

In order to hide round-off errors in the least-significant digits of displayed floating point

values, numbers displayed in free-form format are shown rounded to 14 digits. You can

use E-notation or other fixed-point formats to see more digits of precision than this if you
need to.

3-38 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Chapter

GFK-0256

Representing and Manipulating Strings

MegaBasic possesses two fundamentally different data representations: numbers and
strings. Numbers and their associated operations are fully described in Chapter 4,
Section 3. Strings are series of adjacent characters (8-bit bytes) used to represent
anything from text to integers to arbitrary binary information. Their representation and
manipulation is fully discussed in this section which is grouped into the following
categories:

String Fixed strings for use in display, input or manipulation.
Constants Characters and the ASCII characters setis also covered.

Simple Character strings that can be altered during program
Variables execution.

String Arrays Ordered sets of variable strings organized by one or more

dimensions.
String Phrasesfor computationally transforming and combining
Expressions string objects into new strings. All string operators are
discussed.

Notational conventions for extractingandaccessing

StringIndexin . -
9 9 sub-sectionsoflargerstrings.

String User-defined and built-in symbols for combiningand
Functions transformingstrings.

Most typical business application programs spend much of their time dealing with
strings: word processing, mailing lists, report generation, command processing, record
processing, and formatting to name a few. Strings can represent binary information, text,
packed numbers or virtually any other data representation. MegaBasic has a carefully
chosen set of operations which when used in combination can efficiently perform all
string operations supported by other high-level computer languages (such as PL/1) with
exceptional string handling facilities. Becoming fluent in MegaBasic string handling
concepts can greatly simplify many of your non-numeric data processing applications.

4-1

Section 1: Characters and String Constants

4-2

The smallest quantity of information that can be represented or processed by a
computer is the bit, an abbreviation for binary digit. One bit can only represent two
values, one and zero, with which we can associate meanings such as: on/off; true/false,
yes/no, in/out, black/white, full/empty, etc. However if we combine two bits together, a total
of four values can be represented using all the possible combinations (i.e., 00, 01,10,11).
Each additional bit double the number of possible combinations that can be formed, and
hence the number of states that can be represented by the group.

By grouping 8 bits together as a unit, we can express 256 values, one for each of the
possible combinations. These 8-bit units, called bytes, are perfect for representing
characters because their 256 possible values is sufficient for assigning a different

value to each letter, each digit, each of the various punctuation marks

(e.g., 2'@#$%"&*()<>,.:“""";[1), and still have many left over for special purposes, such
as carriage returns, spaces, form-feeds, etc.

In order for such a character set to really be useful, everyone who uses it must agree on
the same characters for the same 8-bit values. After all, when you print the letter Q on
one device it should also be the letter Q on some other device. Therefore a standard
called the ASCII character set has been assigned to the series of 8-bit values so that
independently developed computing machinery can communicate characters with one
another.

Actually, there are a number of different standard character sets that exist, but ASCII is
the most commonly and widely accepted standard. Appendix D, Section 3 contains a
table of all ASCII characters alongside their corresponding 8-bit values (in binary,
decimal and hexadecimal). The TRANS() string function (Chapter 9, Section 3) can
convert strings of characters from one character set to another, should the need arise.

Awareness of the ASCII character set is of central importance when you compare strings
with one another using MegaBasic statements. In order to sort strings, for example, you
need to know if one string is less-than, greater-than or equal-to another string. The notion
of above and below depend of the internal values of characters rather than the
characters themselves.

However, individual characters cannot convey very much information. As you read this
sentence, notice that you are not reading one character at a time, but reading words or
even phrases of words as indivisible units of information. Characters are important but
larger chunks of information are much easier to handle, move around and manipulate.
Therefore in a programming language, character information is processed in
multi-character chunks called strings.

A string is a sequence of zero or more characters (8-bit bytes) treated as a single data
object. As with numerical quantities, strings may be expressed as constants, variables,
arrays, functions and string expressions. For example the string constant “This is a String”
is a string with 16 characters. The quotes are used to clearly separate the string
characters from those around it but are not actually part of the string. Without the
quotes, it would be difficult (if not impossible) to tell which characters are in the string
and which characters are outside the string.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

String constants typed into MegaBasic programs are always delineated using two double
guotes (“...”) or two single quotes (’..."), making it possible to include either quote
character (but not both) within a string constant. You must type quotes around string
constants within MegaBasic programs, but when a string is typed as input to a program
request you never put quotes around it unless the quotes are part of the string itself. It
would be very restrictive and cumbersome if you had to surround all your typed input
with quotes. The following MegaBasic program statement illustrates how you would
print a message on the screen using a string constant:

PRINT “This message goes on the screen without quotes.”

A string can have zero or more characters and although it may seem that a string with zero
characters would have little use, it actually occurs in string applications just like the
number zero occurs in numerical applications. Such an empty string is called a null string.
A null string constant in a MegaBasic program is typed simply as two quotes with no
characters in between (i.e., “““ or). Suppose that your program requests string input
from the keyboard and the operator types in nothing. Your program can simply compare
the input received with a null string and take the appropriate action. Remember that
spaces, like those between the words in this paragraph, are not null strings but actual
characters in a string. For example the string constant “ ” is a string consisting of three
characters, all spaces.

If you ever forget to include the terminating quote (“ or’) at the end of a string constant,
MegaBasic will automatically place one at the end of the line. This can be convenient
when you are typing a string constant as the last item of a line, since the second quote
need not be typed. However, if other terms or statements follow a string constant on the
same line, omitting the final quote causes all following characters to be included as part
of the string constant. Therefore, MegaBasic informs you that it added a missing quote
on programs edited or inserted into the program.

String constants are used in programs to represent fixed character sequences (usually
text) which are manipulated with other strings to form string results. This is analogous to
the use of numeric constants (Chapter 3, Section 2) in programs as fixed quantities. Since
string constants are typed from the keyboard, only the printable subset of ASCII
characters can be placed in them. If you type any control codes (values 0 to 31), the
MegaBasic line editor picks them up and uses them for various editing functions and
they never get into the string constant. However, string constants are not the only way
to express strings, as you will see in the sections that follow.

GFK-0256 Chapter 4 Representingand ManipulatingStrings 4-3

Section 2: String Variables

Character strings from zero to 65502 bytes long may be stored in string variables for later
retrieval by name. A variable name may appear anywhere that string data is acceptable.
By merely referring to any string variable by name, its entire contents are immediately
made available. String variable names must begin with a letter (A-Z), usually end with a
dollar sign ($), and contain any number of intervening letters (A-Z), digits (0-9) or
underscores (_). Names are discussed in-depth in Chapter 1, Section 5. The following
examples illustrate how and how not to spell string variable names:

Legal String A2$, S$, WORDS$, LONG_STRS,
Variable Names LINE2$, HEADING

Illegal String 5CHARSS, $A, TEXT%, TITLE!,
Variable Names STRING#, TYPE$$

Using a string variable name wherever string data is expected gives access to the data
stored in the variable. Assigning string data to a string variable replaces its previous
contents with the new string, a process that can be performed by assignment statements
(Chapter 5, Section 2), EXAMstatements (Chapter 7, Section 3), INPUT statements
(Chapter 7, Section 1), SWARtatements (Chapter 5, Section 2) and READstatements
(data Chapter 5, Section 1, file Chapter 7, Section 2). For example, the following short
program stores a message into a string variable named LINE$ and then prints the
contents of LINE$ on the screen:

10 LINES$ = “This message is stored in LINE$”
20 PRINT LINE$

Unlike string constants, the characters stored in string variables may assume the full 8-bit
ASCII character code range from 0 to 255. String variables in many computer languages
cannot store the entire range of 8-bit values (0 to 255), but the full range is vital to many
non-text applications. Bit-strings are a typical example of such an application, an
important tool which is described later in this section.

String variables in MegaBasic may be defined to hold any length string up to 65502
characters, as long as the available memory in your machine is sufficient. However since
strings are variable length objects, MegaBasic sets aside a memory area for each string
variable large enough to hold any string up to its defined maximum length. Unless you
explicitly define the maximum size for a new variable, MegaBasic will automatically
assign a maximum size of 80 characters, by default. You may assign your own maximum
string size using a DIMension statement like this:

DIM LINES$(50), BUF$(9999), CHAR$(1)

where LINE$ may store 0 to 50 bytes, BUF$may store 0 to 9999 bytes and CHARS can
store only 1 or 0 bytes. The same DIM statement can define one or more strings by listing
their definitions one after another, separated with commas as shown above. Both string
and numeric (array) variables may appear in the same DIM statement.

Newly DIMensioned strings are filled to their maximum length with spaces (ASCII 32).
This default may be altered at any time to any ASCII code from 0 to 255 using PARAM(7)
in Chapter 9, Section 5. The 80 character default length of undimensioned string
variables may be set to any value from 1 to 4095 using PARAM(12).

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Although default string variables are convenient, we recommend that you do not write
large programs that rely on them because they are often too large for small string
applications and this practice can complicate the test and debugging phase of
developing such programs. For example, by merely misspelling the name of an string in
some reference to it, MegaBasic will create a default string of that name if one does not
already exist. You can turn off default string creation by setting PARAM(12) to a value of
-1. Any subsequent references to new, unDIMensioned strings will cause an Undeclared
String Or Array Error, helpful in locating unintentional default string creations.

If you want a new string variable to contain zero characters (a null string) from the start,
simply assign a null string to it immediately after you create it, as shown in the example
below:

DIM STRING$(1000); STRINGS$ = *"

This creates a string variable named STRING$which is initially set to contain a null
string (), but has the capacity to hold up to 1000 characters.

DIMensioning a string variable already defined re-defines that variable to the new size
specified. Such an operation is useful for releasing unneeded memory back to the system
for further use, and to permit program control over the size of string and array variables.
Since DIMensioning always re-initializes strings (with the default ASCII code), all
previous contents of the variable are lost, as is also the case with numeric arrays.

String variable and function names do not have to end with a dollar sign ($), although
this is a standard practice that makes the data type of string variables, arrays and
functions more obvious when reading the program. Strings names can be declared in the
same manner as numeric variables (integer and real). The complete set of rules and
syntax for declaring names as string entities is presented on the next page. If, however,
you are new to MegaBasic, we recommend that you name all string entities with names
ending with a dollar sign ($) to avoid any additional complication during your initial
efforts in learning MegaBasic. Later on, you can experiment with and take advantage of
the other methods in MegaBasic for declaring string variables, arrays and functions.

Rules For Declaring String Names

Allvariables and user defined functions are, by default, floating point (real) unless you
specify otherwise. To declare a specific name to be a string, you can end its name with a
dollar sign ($), declare its leading letter as STRING, or by declaring it explicitly as
STRING Use the NAMESommand to see what names are string, integer and real. The
rules and syntax for type declarations are summarized in order of decreasing precedence
as follows:

0 Any variable or function name that ends with a dollar sign ($) will always name
a string object. A Type Error occurs if you attempt to declare or DIMension such
a name as real or integer.

o String arrays may be declared directly in DIMension statements, as shown in the
following example:

DIM STRING MSG(30,40), X(1000,50), BUFFER$(512)

which declares MSG() and x() as string arrays and BUFFER%as a simple string
variable. The words STRING INTEGERand REALcause all DIMension
specifications that follow in the list to be string, integer or real variables, until
another specifier is encountered.

GFK-0256 Chapter 4 Representingand ManipulatingStrings 4-5

4-6

o Specific names of variables and functions may be declared as STRING INTEGER

or REALusing DEFstatements such as:

DEF STRING LINE(),MSG

DEF STRING FUNC UCASE(BUF$)
DEF INTEGER X,Y,V(),P

DEF INTEGER FUNC TOTAL(V1,V2)
DEF REAL A,B,ARRAY (),C

DEF REAL FUNC SUM(V3,V4)

The empty parentheses () indicate names intended to be arrays. These
declarations override any types specified by letter. A Double Definition Error
results from declaring the same name with different types. This rule overrides
any data type associated with the leading letter of such names (see below).

O You can declare the data types by leading letter. A name beginning with a
declared letter will be become an object of the type declared. This is
accomplished using a DEFstatement such as:

DEF STRING “s-v, z”, INTEGER *“a, b, c, i-n”

where the string constant s-v, z specifies that names beginning with the letters
s,t,u,v and z will be strings and a,b,c,i-n specifies the leading letters of integers.
The quotes are required, but commas and spaces within the quotes are entirely
optional. Upper and lower case letters are treated as indistinguishable. A double
definition error will occur if you attempt to explicitly declare the same letter
with different data types.

o If none of the above rules apply, then, by default, the name will be assigned a
floating point (real) data type and cannot be a string.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Section 3: String Arrays

GFK-0256

Another type of string variable is the array, in which a group of string values can be
stored under one name. String arrays are organized as an ordered set of storage
locations, called array elements, that are identified by a position number within the
ordering. For example LINE$(0) , LINE$(1) and LINE$(2) represent the first three
string elements of array LINE$. Parentheses are used to indicate that LINE$ is an array
and serve to contain the position of the desired array element. The positions are
sequentially numbered from zero up to the size of the array.

The 1-dimensional array LINE$ above could act as storage for a list of lines of text,
collectively representing a page of text, giving you direct access to each line on the page
by its line (position) number. Suppose that we combine many such pages together into
one string array for access by page (position) number. This is called a 2-dimensional

array. By identifying the line and the page we can directly access any line in the volume.
For example LINE$(PAGE,ROW) refers to line ROWn page PAGE where PAGEand ROW
are simple variables specifying the array element positions. By adding further levels to
this idea, you can define and access string arrays with 3 or more dimensions. An
N-dimensional array requires N position numbers, called subscripts, to uniquely identify
an element position in the array.

DIMensioning String Arrays

In order for an array to exist it must be defined in your program prior to its use. The
definition of a string array must include its name, a maximum position for each
dimension subscript, and the string capacity of each of the array elements. Specify string
array DIMensions just like numeric arrays except that you must include the maximum
length of each array element as the last value of the DIMension list. Take the following
2-dimensional string array definition example:

DIM BUF$(7,20,16)

This defines a two-dimensional string with rows numbered 0 to 7, columns numbered 0
to 20 and individual string array elements having a capacity of O to 16 characters each.
You must always refer to BUF$with a subscript list to indicate a specific array element.
For example:

BUFS(, j) Acorrect reference to string elementat row |,
column).
BUF$(i) Too few subscripts is an error that stops the program.
BUF$ Omitting all subscriptsisalso a fatal error.
BUF$(i, j, k) Too many subscripts isalso an error.

If you specify the wrong number of subscripts in an array reference, as in the last three
examples above, MegaBasic will report an Array Subscript Error. When accessing string
array elements, specify only the array DIMension positions and leave off the length
parameter, which is given only when DIMensioning

You can re-DIMension the array at any time by re-defining it in another dimension
statement. All stored strings redefined in this manner are erased after such an operation
and re-initialized. Arrays can thus grow or shrink depending on your program

Chapter 4 Representingand ManipulatingStrings 4-7

4-8

requirements. When arrays are made smaller the unused memory space is available to
the system for other purposes. The following list summarizes some important aspects of
using string arrays:

O AnArray Subscript Error occurs if you attempt to access a dimension position
outside its defined range or use the wrong number of subscripts when accessing
it.

o Asingle DIM statement can define one or more arrays by simply listing their
definitions one after another separated by commas.

o Allarray elements are initialized the same way as simple strings.

O You cannot assign the same string variable name to both a string array and a
simple string variable. If you create a string array using the name of a simple
string variable that already exists, the simple variable and is contents will be
erased and the specified string array created under the same name.

o Allstring arrays must be defined explicitly, otherwise MegaBasic thinks they are
simple string variables instead of arrays.

o Array subscripts which are given as fractional quantities are truncated to the
next lower integer value (rather than rounded). For example
BUF$(3.723,0.201) is treated as BUF$(3,0) .

O For the best performance, you should employ integer expressions and variables
for array subscripts whenever possible. Floating point variables can be used, but
they will be converted internally to integer representation. Such conversions are
time-consuming by nature and best avoided if possible.

Since the dimensions of arrays can vary during the execution of your program,
determining the current dimensions of a given array can be useful from time to time.

The DIM() built-in function provides such information for any variable Chapter 9,
Section 5)DIM(S$) gives the number of dimensions of the varigifie DIM(S$,1) gives
the highest position defined for dimension | of varig®$e, counting the dimensions from left
to right.

Maximum String Array Size

Asin all computer languages, the amount of memory available to MegaBasic limits the
maximum size of new arrays. Within this constraint, however, MegaBasic supports much
larger arrays than most other microcomputer languages.

The number of elements in an array is computed by taking the product of the
dimensions. For example the BUF$array of the previous examples has 168 elements, as
computed by (7+1)*(20+1) =8 * 21 = 168. One is added to each dimension to obtain
the true position count of each dimension.

The memory space taken by a string array is simply the number of elements times the
element size in bytes. The size of a string array element is its dimensioned length (i.e.,
the last number in its DIM specification) plus 2 (for internal overhead). Hence the total
memory required by the BUF$array is 168 * (16+2) = 3024 bytes.

You can create as many variables and arrays as you like as long as their combined
storage requirements do not exceed the installed memory in your machine. MS-DOS
based systems are limited to 640k bytes of addressable memory (16 megabytes in
Extended MegaBasic). The FREE() function, described in Chapter 9, Section 5, provides
information about the current memory available so that your program can automatically
limit the size of new arrays to match available resources.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

MegaBasic supports arrays with any number of elements, as long as no one subscript is
higher than 65534. For example, DIM BUF$(99,99,99,4) dimensions BUF$() to three
dimensions of 100 positions each, or 1,000,000 elements total (6 bytes/element). To
dimension BUF$(1000000,4) is not allowed, because the dimension extends higher than
65534. For performance and other reasons, one restriction applies to string arrays larger
than 65534 total elements: pointers to array elements can only access the first 65534
elements. Pointers to arrays (rather than to array elements) are unrestricted.

Obviously, you must have enough memory to support whatever arrays you actually
dimension, which tops out around 540k in a 640k DOS machine. Protected-mode
versions of MegaBasic, such as Extended MegaBasic, have no 640k limitation and
support massive arrays of up to 16 megabytes.

Chapter 4 Representingand ManipulatingStrings

Section 4: String Operators and Expressions

Strings are manipulated and processed by combining them in phrases called string
expressions, similar to numeric expressions. String expressions permit you to specify a
string as a combination of other strings and are formed from string symbols and string
operations. Although the notation of string expressions looks similar to numeric
expressions, their operation is totally different. The example below combines two strings
together into a string result:

This string expression: | “ABCDE”+%12345”
evaluates to this result: | “ABCDE12345”

As you can see, the plus sign (+) has a different meaning depending on whether it is
being applied to numbers or to strings. A plus operator used with strings is called a
concatenation operator, because it is used to connect or concatenate two strings into a
longer string.

String symbols used in string expressions include string constants, string variables, string
functions (both user-defined and built-in) and string sub-expressions. A sub-expression is
actually a portion of a larger expression that has been surrounded by parentheses,
grouped as a computational unit.

String operations, called string operators, are of two types: unary and binary. Unary
operators act on a single string to form the result string. For example the NOToperator
preceding a string (e.g., NOT Z$) will produce a result string of the same length but with
each byte logically complemented. Binary operators however act on two strings situated
on either side of the operator to combine them in some fashion producing a result string,
as in the concatenation operator demonstrated above.

MegaBasic evaluates string expressions from left to right accumulating the results from
each operation as it goes. The various string operators are not however applied with
equal priority. Take for example the following string expression involving concatenation
(+) and string repetition (*) factors:

“ABC”*Z'I'“XyZ”*\?)

This expression repeats ABC twice and concatenates it to xyz repeated 3 times (i.e.,
ABCABCxyzxyzxyz). Since the string factors (*) are evaluated before the concatenation,
we say that such factors take precedence over concatenation (just like their numeric
multiplication takes precedence over addition). Similarly, all string operators have been
assigned to a priority scale that controls the order of operations when several
precedence levels are present in the same expression, much like the numeric operator
precedence ordering.

When required, you can override these default priorities by surrounding any operation
by parentheses to force its evaluation in the order of your choice. The example below
illustrates a situation where concatenation (+) is performed prior to a string repetition
factor:

(“ABC” + quZn) * 5

4-10 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

The concatenation in parentheses is evaluated first, followed by repeating its result five
times. The table below lists the various string operators in order of decreasing
precedence followed by a discussion of each.

String Operator Precedence

12 Evaluatestring constants, string variables, string
functionsand sub-expressions.

[N
[N

String Indexing (Chapter 4, Section 5)

=
o

String Repetition Factors (*)

String Concatenation (+), String Subtraction (=)

String Comparisons (= <> <= >= <> |IN)

LogicalComplement (NOT

MIN,MAX

MATCH

Intersection (AND

Union (OR

Exclusive-OR (XOR, Equivalence (EQV
Implication(IMP)

PN W OO N| O ©

This ordering is similar to that of numeric expressions except that strings have some
different operators. You can control the ordering of operations using appropriately
placed parentheses. Be careful using complex string expressions in string comparison
operations. The comparison operators are not really string operators since they produce
a numeric result (i.e., integer 0 for false, 1 for true). They are included in the table above
only to show their precedence within mixed mode expressions. It is the programmer’s
responsibility to ensure that mixed string and numeric expressions are sufficiently
parenthesized to resolve any inherent ambiguities.

String Concatenation

The simplest of the string operations is concatenation (+), which merely appends two
string operands together, end to end, in the order given. For example ABCDE+12345 =
ABCDE12345.

String Subtraction

ABS returns A$ with all instances of characters specified by B$ removed, for example:

Subtraction Operands Result String

“$34,564,194.37-" $,” “34564194.37”

“string functions” - “aeiou” “strng fnctns”
“thisisateststring”-“” “thisisateststring”

Removing extraneous characters from strings is a frequently needed operation that is
particularly tedious and slow using any other available means. This operator carries the
same precedence as the concatenation operator (+). For example A$+B$-C$ is
evaluated as (A$+B$)-C$. Note that the expression A$-B$-C$ is equivalent to
(A$-B$)-C$ and to A$—(B$+C$).

Chapter 4 Representingand ManipulatingStrings 4-11

One application of string subtraction is counting the occurrences of one character in a
string. To do this very efficiently, the LEN() function is used which computes the length
of a string. Using the LEN() function and string subtraction, the following example
computes the number of spaces contained in A$:

LEN(A$) — LEN(A$—" ")

which simply computes the difference in length between A$ with spaces and A$ with
spaces removed. Of course, this computation can be generalized to count occurrences of
any character or set of characters. Without string subtraction, this computation would
require a programmed loop that checks each character one at a time, taking 20 to 100
times longer.

String Repetition

Any term of a string expression may be repeated by following the term by a multiply
operator (*) and a numeric expression [e.g., ABC*(X+Y)] . First the factor is
evaluated (X+Y) , then the string is repeated by that many times. The repetition factor
expression needs parentheses surrounding it only if it contains more than one numeric
term, as in the example above. When only simple factors are used, no parentheses are
required, as in the string expression:

A$*X+B$*37+C$*23.

Any complex string expression may be multiplied by enclosing it in parentheses
followed by the desired multiplier [e.g., (A$+STR$(N)+“XYZ") * (R+2)] . Compound
nesting is permitted to virtually any depth. Typical applications of string multiplication
include dynamic formatting of strings in print statements, high-speed graphics, and
initialization of large strings.

Many computer languages provide string repetition as a separate function, which is not
nearly as convenient or intuitive as the MegaBasic string multiply. Other computer
languages include a separate function just to generate some fixed number of spaces (*“)
in a PRINT statement. To do this in MegaBasic you need only to include a space
multiplied the appropriate number of times (e.g.,” ”*N) whenever you need it in any
PRINT or other statement.

String expressions are always formed in MegaBasic’s control stack, which can rapidly
overflow when compound repetition factors build up enormous strings that exceed the
available memory space.

String MATCH Operator

A$MATCHBS compares A$ and B$ and generates a string of characters showing which
bytes match (with ASCII 255) and which bytes do not match (with ASCII 0). If the two
argument strings differ in length the longer one is truncated to the same length as the
shorter one before the operator is applied. A$ MATCHBS carries a precedence just above
the Boolean AND operator.

This operator is useful for creating masks which may then be used for selective overlay
and wild-card character matching algorithms. MATCHperforms a process which would
otherwise require a complicated loop of statements taking far longer to complete. It is
useful to those requiring special assistance in pattern matching applications, and should
be considered an advanced topic. No examples of its use will be given.

4-12 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

String MIN/MAX Operators

A$MIN B$ and A$ MAXBS$ are available as string operators which compare the
corresponding characters of A$ and B$ (as in MATCHabove) and return one string of the
same length consisting of the characters selected by the operation (MIN or MAX. For
example:

given. A$ = “012345” then: A$MinB$ “012210”

B$ = “543210” A$ Max B$ “543345”

Both Min and Max carry a precedence just above the Match operator described earlier.
One application for MIN and MAXis character range restriction. For example:

A$ max “ "*len(A$) will force all control charactersin A$ (ASCII 0-31) to spaces. This
expression uses a repetition factor on “ ”’, a topic discussed earlier.

Logical Operators in String Expressions

Logical string operators (NOT, AND OR XOR EQVand IMP) perform processes similar to
their function in numeric expressions, except that both operands and result are bit
strings. A bit string is simply a character string that is being used or interpreted as a
sequence of bits rather than as a sequence of characters. There is no physical difference
between character and bit strings and MegaBasic considers both as simply strings from
different points of view. There are always eight times as many bits as there are
characters in a string, because each character within a string consists of 8 bits.

By providing a repertoire of operations specifically designed for bit manipulation,
MegaBasic allows you to process character strings as bit strings. The logical string
operators act on each of the bits in a string, or the corresponding bits in two strings. For
example, NOTperforms a logical reversal on each bit of the operand string following it
(1s become 0s, 0s become 1s). Its result string is the same length as its operand.

The other logical string operators operate on two string operands, producing a string
result which is a logical combination of corresponding bits in the operands. If the
operand strings differ in length, the longer of the two will be truncated to the same
length as the shorter string before actually combining the operands. The same set of
logical operators already described for numeric operations (in Chapter 3, Section 5) are
also supported for bit string operations.

Each of the logical operators is defined in the table that follows. To illustrate how they
work, we will show the effect of each operator on all the possible combinations of two
bits (i.e., 00, 01,10,11). It is important to understand that logical operators combine all of
the corresponding bit-pairs of two strings (except for NOT) which means that one logical
operation is performed for every result bit. It is this simultaneous combination of all bits
of bit strings that gives these operators their speed and power.

GFK-0256 Chapter 4 Representingand ManipulatingStrings 4-13

4-14

Left Operand 0011
Right Operand 0101
NOT (right operand) 1010
AND 0001

OR 0111

XOR 0110

EQV 1001

IMP 1101

The zeros and ones are used only to illustrate bit values, but in actual practice, the
operands and the result are all (bit) strings.

As with numeric expressions, there are many different ways in which to express a given
logical combination. A number of equivalent logical expressions are described below to
further illustrate the logical operators as they are used in actual practice. Given that A3,
B$ and C$ contain bits strings of equal length which will be used as terms in the various
examples below.

(A$ AND NOT B$) OR
(@ A$ XOR B$ (NOT A$ AND B$)
A$ and B$) OR (NOT
(b) A$ EQV B$ (A$ AND)NOT (B$
(© A$ IMP B$ NOT A$ OR B$
(d) NOT (A$ AND B$) NOT A$ OR NOT B$
(e) NOT (A$ OR B$) NOT A$ AND NOT B$
A$ AND B$ OR
® A$ AND (B$ OR C$) 5i\sl; ANDSz:$
A$ OR B$) AND
(@) A$ OR B$ AND C$ (S%A$ OR23)

Examples (a) to (c) illustrates how you would compute the same result of the XOR EQV
and IMP operators using only NOTANDand OR As you can see, considerable effort is
saved by using XOR EOVand IMP when their particular computation is required.
Examples (d) and (e) are instances of DeMorgan’s Law, which is a rule for logically
converting ANDSto ORSor ORSto ANDSusing NOTIt is useful for reformulating logical
expressions into simpler forms. Example (f) shows how the logical expansions of AND
and ORterms is performed.

As we shall see, bit strings and their associated operations are ideally suited to
applications involving the processing of sets. A set is a collection of related items, such as
the set of all experiments for which we have data, or the set of all employees in a data
base. A given set must define which members are present in the set and which members
are absent. Suppose that we have a set of employee records that can possess up to 1000
members, numbered 0 to 999. Further, let us suppose that we wish to extract some
subsets, like the set of employees which are managers and the set of employees that
earn more than $50,000 per year.

Each of these subsets can be efficiently represented in your program as bit strings, in
which each potential set member is assigned a bit position within a bit string. If the bit
corresponding to a particular member is a one (1), then that member is present in the
set; absent members are similarly marked with zero bits. Letting EMPLY$ be our

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

employee set, MGR$ be the manager set, and RICHS$ be the set of employees making
more than $50,000, the following logical string expressions may have some use:

Logical Expression Resulting Set
MGR$ and RICH$ Set of managers who make more than $50,000
MGR$ and not RICH$ Set of managers who make less than $50,000
EMPLY$ and not MGR$ | Set of employees who are not managers
RICH$ and EMPLY$ Set of employees who make more than $50,000

Set of employees who are either managers or those
RICHS xor MGR$ who make more than $50,000 but not both

Since strings can be as large as 65502 bytes, you can represent sets with as many as
524016 possible members, one for each bit in the string (given enough memoryand/or
operational stack space). Sets are very general data structures which can be applied in
countless ways, and because the individual set operations are provided in the basic
instruction set of MegaBasic (as the logical string operators), they execute extremely fast.

Many applications in set processing and systems programming work require the ability
to turn bits on (set to 1), turn bits off (reset to 0) and flip their state (change 1s to 0s, Os to
1s), without affecting the other bits in the bit string. This can is done by applying a bit
selection string called a mask, which controls which bits to change and which bits to leave
unaffected. Given an arbitrary bit string named BITSTR$ and a selector bit string named
MASKS$ containing 1’s for selecting bits and 0’s for protecting bits, the following
expressions may be used to selectively alter bit strings:

Purpose Expression Example
Turningbits 0101 or 0012
ON BIT$ OR MASK$ - 0111
Turning bits BIT$ AND 0101 and not 0011
OFF NOT MASK$ = 0100
Switching 0101 xor 0011
bits BIT$ XOR MASK$ -0110

Other useful applications for bit vector operations include the following conversion from
lower case to upper case. It turns out that if you set bit5 of a character to the logical
combination of (NOTbit6 ANDbit5) then the resulting character will be upper case (see an
ASCII code chart to verify this as an exercise). This operation can be performed on an
entire string using the following string assignment statement:

U$ = NOT ROTATS$(L$ AND CHR$(64)~LEN(L$),1) AND L$

where L$ is the original string, U$ is the upper case result string, and LEN(), CHR$() and
ROTAT$() are string functions described in Chapter 9, Section 3. A similar statement may
be implemented to convert from upper case to lower case. If often required within your
program, this is best programmed as a user-defined string function (one-line function).

GFK-0256 Chapter 4 Representingand ManipulatingStrings 4-15

MegaBasic also includes several string functions designed specifically for bit string
processing. See Chapter 9, Section 3 for complete information on ROTAT$BIT, ORDand
CARDwhich are briefly summarized below:

ROTATS$() Rotates a bit string, left or right, by N bit positions.
BIT() Converts between numbers and bit strings.
ORD() Locate the first 1-bit within a bit position range.
Counts the number of 1-bits within a bit position
CARD) | range i

String Comparison Operators

Comparison operators are different from all the other string operators in that they give a
logical result instead of a string result. When you compare two strings, you are looking
to see if some relationship between the strings is TRUEor FALSE For example you may
want to test whether one string is equal to another string. The equality comparison
returns TRUEIf they are equal and FALSEIf not equal.

By convention, MegaBasic (like many other computer languages) represents logical
values with numbers: 1 means TRUEand 0 means FALSE These values of 0 and 1 are
internally represented in integer format instead of floating point, because integers can
be processed significantly faster. Although logical values (TRUEand FALSE) are primarily
used in IF statements and WHILE/REPEATIoops to decide what the next step of the
program should be, you can also specify a string comparison anywhere else that a
number is expected.

Strings can be compared using the same set of comparison relations that are provided
for comparing numbers. Each comparison operator compares its operands and returns
TRUEor FALSE (represented by an integer 1 or 0) to indicate the outcome of the
comparison. Both operands must be of the same data type (attempting to compare a
number with a string results in a Data Type Error). All the comparison operators are
described in the table below:

Equal _ | Returnsa TRUEf the left and right operands are exactly
q ~ | equal, and FALSEotherwise.
Less < Returns TRUET the left operand is less than (below) the
right operand, and FALSEotherwise.
Greater S Returns TRUBET the left operand is greater than (above)
the right operand, and FALSEotherwise.
Below or = Returns TRUE the left operand is less than or equal to
Equal ~ | (notabove) the right operand, and FALSEotherwise.
Greater .- Returns TRUET the left operand is greater than or equal
or Equal ~ | to(notbelow) the right operand, and FALSE other-
wise.
Not <> Returns TRUET the left and right operands are not
Equal exactly equal, and FALSEotherwise.
Returns TRUEf there are no 1-bits in the right operand
Subset IN that are not also 1-bits in the left operand. This is
really abit-string operator.

When strings are compared, the ASCII codes of corresponding characters are compared
from first to last until a difference is detected or the end of either string is encountered.

4-16 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

Strings are equal only if all characters are identical and both strings are of equal length. If
one string runs out before a difference is encountered, the longer string is taken as greater
than the shorter string. The following pairs of string constant comparisons illustrate some
of the subtle properties of string comparisons:

Upper case letters are assigned to a lower set of ASCII codes
than the lower case letters. If you want a comparison in
“AB” < “gp” | whichupperand lower case letters are treated the same, you
should convert the letters of both strings to one case before
comparingthem.

Spaces are greater than a null string. In fact, all strings are
greater than a null string, except another null string. Null
Wy strings do not have an official ASCII code because it is
not a character. But MegaBasic internally assigns the
value -1 to a null string for convenience and continuity.

These strings are not equal because they differ in length. In
“3a” < “gqaa” | suchacase, the shorter string is less than the longer string.
Strings must be identical in all respects to be considered
equal.

This istrue because a space character (“) has a lower ASCII
« 957« _25” | code than a minus character (-), which illustrates how
strings of numbers do not necessarily compare the same way
as their corresponding numeric comparison (i.e., 25 > -25).

It is important to remember that string comparisons give logical (0 or 1) results which
may be used anywhere that numbers are permitted, rather than string results like the
other string operators. Comparisons of expressions are supported as well comparisons of
simple values. The scale of operator precedence becomes important in such comparisons
to permit expressions involving arithmetic, logical and comparison operators with little
or no need for parentheses to group the various sub-operations. For example the
expression X + A$=B$ computes X+1 if A$=B$, or X+0 if A$<>B$. String comparison
operators always take precedence over arithmetic operators.

Exercise care when complex string expressions are supplied as comparison operands.
String operators look similar to numeric operators but their actions are totally different.
If you are not sure how MegaBasic will evaluate certain combinations of operators, you
can always supply extra parentheses to clarify and enforce the exact meaning that you
desire.

Changingthe Collating Sequence

Although the ASCII character set was originally designed with string sorting and
comparisons in mind, you may occasionally encounter applications requiring string sorts
and comparisons based upon a different character ordering or collating sequence.
MegaBasic accommodates this with the translate function (TRANS$in Chapter 9,

Section 3), a general purpose character conversion function which can map any
character to any other character throughout a string. Strings to be compared using a
non-ASCII ordering are first translated to the new character set and then compared
normally, as described above.

Bit-String Comparisons

If your application is using bit-strings, one common operation you may need is a test to
determine if one set is a subset of another set. The IN operator performs this function
which, for the expression A$ IN B3, returns TRUE(]) if every bit position in A$ that

Chapter 4 Representingand ManipulatingStrings 4-17

contains a 1 is also a one in each corresponding bit position of B$, and returns FALSE (0)
otherwise. In terms of operations on sets (represented by bit strings), A$ IN B$ tests to
see if the set A$ is a subset of set B$. Like all other string comparisons, IN returns an
integer result, rather than a string, where 1 means true and 0 means false.

If B$ is longer than A$, only the portion of B$ equal in length to A$ is compared. If A$ is
longer than B$, A$ IN B$ can only be true if all the extra characters of A$ have all zero
bits [i.e., bytes containing CHR$(0)] and all the others are IN B$. IN is a bit-string
operation generally used in combination with other bit operations, including: BIT() ,
ORD(), CARD(), ROTAT$(), NOT, ANDOR IMP, EQVand XOR

4-18 MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5: String Indexing and Substrings

GFK-0256

It is often desirable to access portions of strings, called substrings, rather than the whole
string. Most programming languages implement such access through special functions
like LEFT$() , MID$() , RIGHT$() and SUBSTR$(). MegaBasic uses a different method
to access substrings, called indexing, that is easier to learn, executes faster, requires less
typing and performs the job in a more general fashion.

By convention, we will refer to the left and right ends of a string (oriented horizontally)
as the beginning and end of the string respectively. String indexing is based on the idea
that each character in a string has a position relative to the beginning of the string. We
will assign the first character to be in position 1, the second character in position 2 and so
on to the end of the string. Any portion of a string can therefore be specified by a
position range within the defined positions of the string. For example if A$ is our string
and we wish to access positions 10 through 27, we would express this as follows:

A$(10,27)

As long as the length of A$ is 27 or more, this indexing expression accesses the 18
characters in A$ starting at the one in position 10. If A$ contains less than 27 characters,
MegaBasic will access all characters from position 10 to whatever the length of the string.
A null string results if A$ is less than 10 characters long. Any string constant, string
variable, string function or sub-expression may be the subject of an indexing expression.

Variations on this theme provide several other modes to specify substrings in different
ways having advantages over one another. Each of the string indexing modes is
discussed in the table below. The examples shown in the table use the variable A$ to
represent a general string expression to which the indexing expression is applied.

String Indexing Expressions

A3(1,J) refers to the substring starting at position 1 and

Interval AS(1.J) ending with the byte at position J.
Open A$(l) Refersto the substring consisting of all bytes from posi-
Ended tion I to the last byte of the string.
Position Refersto a string of length L starting with the byte
&L h A$(I:L) at position I. This is equivalent to A$(1, I+L-1)
engt using the interval method. A null string results if L=0.
Right AS(L) Refersto a string of length L taken from the end of A$.
Length ' Equivalent to A$(LEN(A$)-L+1:L).
Single A$(12) Refersto the single character substring in position | of
Byte ' string A$. Equivalentto A$(1,1) or A$(l:1).
Last Refersto the single character substring at the end of A$.
Byte AS() This follows from the preceding two indexingmodes

asaspecial case. Thisisequivalentto AS(LEN(A$)).

Given a string A$ (1,J), MegaBasic returns a null string whenever J is less than | (J=0 is
permitted) or | is greater than the length of A$. Also if the substring specified exceeds the
length of the stored string, only that portion which actually exists in the string will be
accessed. For example if A$ contains the string This is a String, then A$(9,1000), A$(9:100)
and A$(9) all refer to the same string: a String. An Out Of Bounds Error occurs if you
specify a starting position less than 1.

Chapter 4 Representingand ManipulatingStrings 4-19

4-20

Any string or string expression can be indexed, not just string variables. Just type your
index expression in parentheses immediately after the string expression and upon
evaluation, only the indexed substring of the expression result will be returned. Index
expressions have a higher precedence than any of the string operators, hence you must
surround the string expression to be indexed with parentheses if they contain multiple
terms, for example:

(A$ + B$ - C$)(1,9)

Without the parentheses around the expression A$+B$-C$, only the last term of the
expression (C$) would have been indexed. String constants can also be indexed, like any
other strings, and doing so has some important applications. Consider the following
example:

“JanFebMarAprMayJunJulAugSepOctNovDec”(1*3-2:3)

This string expression converts integers 1 to 12 into the corresponding names of the
month (i.e., their names abbreviated to three characters). This process of decoding a
number into some set of keywords or names is frequently required in interactive
software and report generators of all kinds. Indexing a string constant lets you do this in
one simple expression without any string variables or complicated loops to program.

Unlike the month abbreviations above, your keywords may not all be the same length, a
property required by this indexing application. To remedy this apparent deficiency,
insert some padding characters after each of the shorter keywords to force them all to the
same length. Then, index the string constant using that length and remove the padding
characters from the result using string subtraction (Chapter 4, Section 4) or the TRIM$()
function (Chapter 9, Section 3).

This technique depends on all the keywords fitting into a string constant, which must
itself fit within one program line (255 characters maximum). Longer lists of keywords
must be stored in a string variable of sufficient length and indexed in a similar manner.
You can also access longer lists by breaking them into several smaller string constants
that reside on different lines. You would then have to GOTQhe appropriate line before
performing the indexed access as described above.

Indexing String Arrays

String arrays may be indexed by following the array subscript expression with a string
indexing expression (a second set of parentheses). In such a case, you are gaining access
to a substring in an array element of a string array. String array elements are always
functionally identical to simple string variables in any context. For example:

CUBES$(1,J,K)(FIRST,LAST)

which specifies the string from position FIRST through LAST of the string element in
row | and column J on level K. When using string arrays, take care to keep the subscript
expressions and the index expressions separate in your mind as well as in your program.

Assigning Strings to Indexed String Variables

An indexed string variable may be the target of an assignment statement or any other
operation that moves data into a string variable. However such an assignment normally
only affects the indexed character positions within the indexed region specified and

cannot alter the overall length of the string (an exception to this follows shortly). Strings
moved into these positions are truncated (from the end) when too long to fit. Shorter strings

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994 GFK-0256

GFK-0256

are placed left justified into the indexed area, replacing only those characters in positions
required by the incoming string. Consider the following examples:

| A$(1,J) = “string” | Input B$(1:N) ‘ Read C$(:N) ‘

In the first example, the string constant overlays the string contained in the string
variable starting at position | on up to position J. If that region is too short then only the
left-most portion that fits will be stored. If the region is longer than the assigned string
then the right-most portion of the region itself will not be modified in any way. In the
second example, the INPUT statement can only affect the N positions of B$ starting at
position I. In the third example, the READstatement affects only the last N positions of
C$. It is also important to remember that the indexed region of a string variable includes
only positions that actually contain characters, and excludes any region beyond the
current end of the string (i.e., you cannot alter positions beyond the end of the string or
its length with indexed assignments).

Since the indexed assignment statement above does not fill out the entire indexed region
when the string assigned is too short, another type of string assignment is provided for
this purpose. By using == instead of = any positions to the right of the string that
remain unfilled are set to spaces (i.e., the current string fill character set by Param 7). This
assignment is described in Chapter 5, Section 2.

Another type of string assignment in MegaBasic lets you replace the entire contents of
an indexed region with another string exactly. If the string and the region are different
lengths, MegaBasic automatically shifts the characters that follow the region up or down
to exactly accommodate the string so that it exactly replaces the region indexed. This
method uses the := operator for the assignment instead of = or == and it is the only
indexed string assignment that can affect the overall length of the string variable content.
See Chapter 5, Section 3 for further information.

Extended String Indexing

Index expressions may be appended to any string representation, including another
indexed string. This flexibility permits several layers of indexing to be applied to the
same string, which can facilitate implementation of various hierarchical data structures
stored in large string variables. For example:

AS(L,I)(R :L)(T)

Each indexing expression is evaluated from left to right and is applied as a simple
indexing expression to the result substring of the prior indexing expression. Internally,
MegaBasic arithmetically evaluates the series of indexing expressions as a unit and only
then does it apply it to the string being indexed. This replaces many potentially
time-consuming string move operations with a simple binary arithmetic computation
that executes many times faster. At the cost of some arithmetic, this same example could
have been done with a single indexing expression as follows:

A$(1+R+T—2,MIN(J,I+R+L-2))

Not only does this approach execute more slowly, but it is not at all obvious what is
really going on. Extended string indexing simplifies certain kinds of operations but in the
vast majority of applications simple indexing should be all that is necessary.

Chapter 4 Representingand ManipulatingStrings 4-21

4-22

Be sure to specify each numeric value in an index expression using integer
representation (rather than floating point real) wherever possible. Real expressions may
of course be used in this context with entirely correct and identical results, but with a
slower response. Index expressions are always in integer form internally, and MegaBasic
will convert any real expressions encountered to integer representation every time they
are evaluated. When a non-integral index value is evaluated (e.g., 3.721 or 9.834),
MegaBasic reduces it to the next lower integer value (e.g., 3 or 8) rather than rounding it
as some other programming languages do.

MegaBasicLanguage Referenceand Programmer’s Guide Reference Manual - September 1994

GFK-0256

Section 6: String Functions

Aswe have shown, strings can be expressed as constants, variables and string
expressions. However they may also be expressed as results of special procedures called
functions. Functions are similar to array variables, in that they are referred to by name
and include additional information which affects the value that they represent. The
difference is that an array element merely accesses the value it holds, but a reference to a
function invokes a process which computes the string symbolized by the function name.
As with constants and variables, functions may be employed within string expressions to
represent any of the strings being combined by the expression.

A function is a process that computes a result based upon data which you have
communicated to it. To identify each process, functions are assigned names just like
variables. To use a function, you merely type its name and its input data just as if you
were typing an array name and its subscript list. For example, consider the following
three function references:

| TRIM$(LS) | REVS(L$) | STR$(V) |

The first function, TRIM$, removes any leading or trailing spaces from string L$ and
returns the intervening characters. The second function, REV$, returns the characters in
L$ in the opposite (revers