
GE Fanuc Manual Series 90-30

1-800-360-6802
sales@pdfsupply.com

GFK-0256

Buy GE Fanuc Series 90-30 NOW!

MegaBasic Language Reference and Programmer’s
Guide Reference Manual

Copyright 2013 PDFsupply.com All Rights Resevered

http://www.pdfsupply.com/automation/ge-fanuc/series-90-30

ÎÎ

GE Fanuc Automation

Programmable Control Products

MegaBasic
 Language

Reference and
Programmer’s Guide

Reference Manual

GFK-0256D September 1994

GFL–002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in this
equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding
and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

� Copyright 1992 by Christopher Cochran.

All rights reserved. No part of this manul nor the software it covers may be reproduced
or copied in any form or by any means – graphic, electronic, magnetic, or mechanical,
including photocopying, recording, taping, or information retrieval systems – without
written permission from the author.

� Copyright 1992-1994 GE Fanuc Automation North Ameirca, Inc.
All Rights Reserved

iii GFK-0256

Preface

MegaBasic is a powerful implementation of the BASIC language, which runs under
twelve different operating systems and a host of different hardware configurations. One
of the strengths of MegaBasic is that the language can be extended to support the
underlying hardware.

Content of this Manual
Chapter 1. Introduction to MegaBasic: Provides an introduction to the MegaBasic
language.

Chapter 2. MegaBasic Commands: Describes all the MegaBasic commands. It is
organized into five sections: introduction, program entry and retrieval, editing and
alteration, execution control and debugging, and information and control.

Chapter 3. Representing and Manipulating Numbers: Describes the concepts and use
of numeric constants, variables, arrays, expressions, operators, functions, vector
processing, and floating point systems.

Chapter 4. Representing and Manipulating Strings: Describes strings and how to
represent and manipulate them in your programs.

Chapter 5. Data Definition and Assignment Statements: Describes statements which
define data structures and move computational results between variables.

Chapter 6. Program Control Statements: Describes program control statements which
allow you to change the course of execution to suit your processing requirements.

Chapter 7. I/O and System Interaction: Describes statements for accessing data files, for
character device input and output, and for interacting with external system processes
and services.

Chapter 8. User-Defined Subroutines: Describes concepts and techniques for building
and using subroutines.

Chapter 9. MegaBasic Built-in Function Library: Describes the built-in functions in
MegaBasic.

Chapter 10. Multiple Module Programs: Describes MegaBasic package concepts and
supporting statements.

Appendix A. Error Messages: Describes error types and messages reported by
MegaBasic.

Appendix B. Other Operating Systems: Describes how MegaBasic under other
operating systems differs from the MS-DOS implementation described in chapters 1
through 10 of this manual.

Appendix C. Utilities and Other Software: Describes programs external to MegaBasic
that perform functions useful to the development process.

Appendix D. Miscellaneous Information: Describes MegaBasic enhancements,
reserved words and characters, code conversion tables, converting non-integer
programs to use integers, and loading earlier programs.

Preface

iv MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Related PCM Publications

For more information, refer to these publications:

Series 90� Programmable Coprocessor Module and Support Software User’s Manual
(GFK-0255): provides a general overview of the capabilities and operation of the Series
90 PCM modules.

Series 90� PCM Development Software (PCOP) User’s Manual (GFK-0487): describes
how to use the PCM development software (PCOP) to develop applications for the
PCM.

Series 90� Quick Reference Guide (GFK-0260): outlines the steps involved in installing
and operating the PCM.

Series 90� PCM Support Software (TERMF) Quick Reference Guide (GFK-0655): outlines
the steps involved in installing and operating TERMF.

Series 90� PCM Development Software (PCOP) Quick Reference Guide (GFK-0657):
outlines the steps involved in installing and operating PCOP.

Series 90�-70 PCM Important Product Information (GFK-0351).

Series 90� PCM Programmer Important Product Information (GFK-0352).

Series 90�-30 PCM Important Product Information (GFK-0494).

Related Series 90 Publications

For more information, refer to these publications:

Series 90�-70 Programmable Controller Installation Manual (GFK-0262).

Logicmaster� 90-70 Programming Software User’s Manual (GFK-0263).

Series 90�-70 Programmable Controller Reference Manual (GFK-0265).

Series 90�-30 Programmable Controller Installation Manual (GFK-0356).

Series 90� -30/90-20 Programmable Controllers Reference Manual (GFK-0466).

Logicmaster� 90 Series 90-30 and 90-20 Programming Software User’s Manual
(GFK-0467).

Preface

vPreface GFK-0256

We Welcome Your Comments and Suggestions
At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader ’s Comment Card located on the next page.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master CIMSTAR Helpmate PROMACRO Series Six
CIMPLICITY GEnet Logicmaster Series One Series 90
CIMPLICITY 90-ADS Genius Modelmaster Series Three VuMaster
CIMPLICITY PowerTRAC Genius PowerTRAC ProLoop Series Five Workmaster

MegaBasic and MegaBasic Language Products are trademarks of Christopher Cochran.
Intel, 8080, 8085, 8086, 8088, 80186, 80286, 80386, 80486 are registered trademarks of Intel Corporation.
IBM, IBM-PC, PC-AT are registered trademarks of IBM, Inc.
Z80 is a registered trademark of ZILOG, Inc.
TurboDos-86 is a registered trademark of Software 2000, Inc.
North Star is a registered trademark of North Star Computers, Inc.
CP/M, CP/M-86, MP/M-86, and Concurrent-DOS are registered trademarks of Digital Research, Inc.

Preface

vi MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Contents

viiGFK–0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual –
September 1994

Chapter 1 Introduction to MegaBasic 1-1 .

Section 1: MegaBasic Components and Installation 1-3

Section 2: Running Programs from the Operating System 1-6

Section 3: Program Development Overview 1-8

Section 4: Lines, Statements and Program Form 1-10

Section 5: Names and Identifiers 1-12 .

Section 6: The MegaBasic Line Editor 1-14 .

Chapter 2 MegaBasic Commands 2-1 .

Section 1: Introduction To MegaBasic Commands 2-3

Section 2: Program Entry, Storage and Retrieval 2-11

Section 3: Editing and Alteration Commands 2-18

Section 4: Execution Control and Debugging Commands 2-30

Section 5: Information and Control Commands 2-40

Chapter 3 Representing and Manipulating Numbers 3-1 .

Section 1: Representing Numbers 3-2 .

Section 2: Numeric Constants 3-6 .

Section 3: Numeric Variables 3-8 .

Section 4: Numeric Arrays 3-10 .

Section 5: Operators and Expressions 3-14 .

Section 6: Numeric Functions 3-23 .

Section 7: Vector Processing 3-26 .

Section 8: IEEE Floating Point and 80x87 Math Support 3-35

Contents

viiiGFK–0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual –
September 1994

Chapter 4 Representing and Manipulating Strings 4-1 .

Section 1: Characters and String Constants 4-2

Section 2: String Variables 4-4 .

Section 3: String Arrays 4-7 .

Section 4: String Operators and Expressions 4-10

Section 5: String Indexing and Substrings 4-19 .

Section 6: String Functions 4-23 .

Chapter 5 Data Definition and Assignment Statements 5-1

Section 1: Data Definition Statements 5-2 .

Section 2: Data Transformation and Assignment Statements 5-9

Section 3: Structured Variable Fields 5-18 .

Section 4: Pointer Variables 5-28 .

Chapter 6 Program Control Statements 6-1 .

Section 1: GOTOs and Program Termination 6-2

Section 2: Condition Execution 6-5 .

Section 3: Program Loops and Iteration Control 6-13

Section 4: Error Trapping and Control 6-18 .

Chapter 7 I/O and System Interaction 7-1 .

Section 1: Input and Output Statements 7-3 .

Section 2: File Processing Statements 7-21 .

Section 3: System Interface Statements 7-43 .

Section 4: Logical Interrupts 7-50 .

Contents

ixGFK–0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual –
September 1994

Chapter 8 User-Defined Subroutines 8-1 .

Section 1: Subroutine Statements 8-3 .

Section 2: Elements of Subroutines 8-9 .

Section 3: Types of Subroutines 8-11 .

Section 4: Communicating with Subroutines 8-17

Section 5: Recursive Programming 8-27 .

Chapter 9 MegaBasic Built-in Function Library 9-1 .

Section 1: Arithmetic Functions 9-4 .

Section 2: Mathematical Functions 9-9 .

Section 3: Character and Bit String Functions 9-12

Section 4: File and Device I/O Functions 9-25 .

Section 5: Utility and System Interface Functions 9-33

Chapter 10 Multiple Module Programs 10-1 .

Section 1: Overlay and Package Statements 10-3

Section 2: Package Definition 10-8 .

Section 3: Using Packages 10-11 .

Section 4: The Multi-Package Development Environment 10-21

Section 5: Assembler Packages 10-25 .

Appendix A Error Messages A-1 .

Appendix B Other Operating Systems B-1 .

Section 1: Xenix 386 System V B-2 .

Section 2: CP/M-86 On 8086/88 Machines B-4 .

Contents

xGFK–0256D MegaBasic Language Reference and Programmer’s Guide Reference Manual –
September 1994

Section 3: Concurrent DOS and MP/M-86 B-5 .

Section 4: TurboDos-86 B-7 .

Appendix C Utilities and Other Software C-1 .

Section 1: Stand-Alone Programs with PGMLINK C-2

Section 2: Program Compaction with CRUNCH C-4

Section 3: MegaBasic Configuration with CONFIG C-6

Section 4: Screen Flipping for Debugging C-11 .

Section 5: Real-Time Event Processing Utilities C-13

Section 6: Other Supplemental Packages C-16 .

Section 7: MegaBasic Products C-17 .

Appendix D Miscellaneous Information D-1 .

Section 1: Recent MegaBasic Enhancements D-2

Section 2: MegaBasic Reserved Words and Characters D-6

Section 3: ASCII Character Codes and Special Keys D-9

Section 4: Converting Floating Point Programs to Integer D-14

Section 5: Loading Programs from Earlier Z80 Versions D-16

1

Restarts for autonumbers that do not restart in each
chapter.
figure bi level 1, reset
table_big level 1, reset
chap_big level 1, reset1
app_big level 1, resetA
figure_ap level 1, reset
table_ap level 1, reset
figure level 1, reset
table level 1, reset

these restarts must be in the header frame of chapter 1.
a:ebx, l 1 resetA
a:obx:l 1, resetA
a:bigbx level 1 resetA
a:ftr level 1 resetA
c:ebx, l 1 reset1
c:obx:l 1, reset1
c:bigbx level 1 reset1
c:ftr level 1 reset1

Reminders for autonumbers that need to be restarted
manually (first instance will always be 4)
let_in level 1: A. B. C.
letter level 1:A.B.C.
num level 1: 1. 2. 3.
num_in level 1: 1. 2. 3.
rom_in level 1: I. II. III.
roman level 1: I. II. III.
steps level 1: 1. 2. 3.

1-1GFK-0256

Chapter 1 Introduction to MegaBasic

MegaBasic is a state-of-the-art high-performance BASIC that is specifically designed to
support large applications, real-time processing and fast execution. The MegaBasic
compiler further advances the speed of your programs so that they perform like
optimized PL/l, C or PASCAL programs, without giving up the string processing, vector
handling and other integrated high-level capabilities of extended BASIC. The primary
distinguishing features of MegaBasic can be summarized as:

� Full access to all available memory while imposing few artificial limitations to its use.
Program space, array space and string space independently have no fixed limits and
can change dynamically during execution.

� 80286/386 protected-mode version available that provides up to 16 megabytes of
memory for general program and data space under MS-DOS, with or without the
presence of a DOS-Extender.

� Integrated mode-less programming development environment requiring little in the
way of CPU and memory resources, while providing extensive built-in testing,
analysis and debugging support. Compiler available for accelerated execution speed
and global syntax verification.

� The small size of MegaBasic makes it ideally suited for integration into ROMs of small
machines in real-time applications. Custom versions for proprietary applications are
available by special arrangement.

� A rational syntax for commands, statements and functions that is easy to remember,
making reference to the manual less frequent.

� Provides all the expected program control structures, including FOR loops with
multiple ranges, WHILE and REPEAT loops, CASE statements, multi-line IF statements,
multi-line procedures and functions with argument lists and varying numbers of
parameters during execution, local variables within subroutines, etc.

� Dynamic linking (at run-time) of user-routine sets called packages, specifically
designed to support very large modular applications that can exceed the capacity of
available memory (see Chapter 10, Section 1). Packages can access other packages as
needed.

� Support for true asynchronous event-driven processes, designed specifically for
multi-tasking, background processing, instrumentation and other real-time process
control applications (Chapter 7, Section 4). Full access to machine-level resources,
such as l/O ports, absolute memory addresses and INTerrupt calls with access to CPU

registers.

� Support for IEEE/80x87 binary and 14-digit decimal (BCD representation) floating
point, 32-bit integers, extended arithmetic and mathematical operations with

1

1-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

automatic selection of software vs. 80x87 math coprocessor in IEEE versions (Chapter 3,
Section 8). Multi-dimensional arrays of integers and real numbers have no set limit
on how much memory they can use (Chapter 3, Section 1).

� Extended numeric assignment statements letting you assign values to variables
within numeric expressions and to perform increment, decrement or other
arithmetic operation on variables (e.g., X+=Z,Q/=D,Y*=M , etc.).

� A complete family of integrated arithmetic and mathematical vector operations for
dramatic reduction in both execution time and notational complexity for matrix
processing and other general sequential processing of integer and real numbers
(Chapter 3, Section 7).

� Field structures let you assign names and data types to specific regions within string
variables or other fields so you can later refer to these fields with pathnames and
access them as variables for any purpose (Chapter 5, Section 3).

� Supports pointer extraction and resolution on variables, arrays, strings, fields,
procedures and functions, similar to C or PASCAL pointer capabilities but with better
dynamic support (Chapter 5, Section 4).

� Extended, integrated library of character string and bit-string operations, including
pattern matching and search, re-ordering and rotation, format conversion, character
translation, set searching, enumeration, union, intersection and exclusion. Large
strings and string arrays supported and no garbage collection penalties (Chapter 4,
Section 1).

� True multi-level error trapping that lets you trap errors at any level or pass errors on
to higher level as needed (Chapter 6, Section 4).

� Supports shared/exclusive open files and file region locking in network and multi-user
environments (Chapter 7, Section 2)

If you are reading this section for instructions on how to RUN a MegaBasic program and
have no interest in the details of actual programming, skip this section and move on to
Section 2 in this chapter.

1

1-3GFK-0256 Chapter 1 Introduction to MegaBasic

Section 1: MegaBasic Components and Installation

The MegaBasic software system comes with one user’s manual and a diskette containing
all the software components. Some of the more important files are described below:

BASIC
MegaBasic development system for creating, testing, debugging and
RUNning programs. Several different floating point BCD precisions and
IEEE binary real formats are available. Standard precision is 14-digit
BCD or 16-digit IEEE binary.

RUN
MegaBasic RUN time system for optimized execution and reduced
memory requirements, but without program development support.
Several different floating point precisions are available.

CRUNCH Program compaction utility, with an option for code protection of fin-
ished programs using a ciphering or scrambling technique
(Appendix 2, Section 2).

CONFIG Utility for altering various MegaBasic internal parameters (see
Appendix C, Section 3).

LIBRARY MegaBasic program containing many useful general purpose subrou-
tines for use in your programs.

PCBASLIB MegaBasic program containing special purpose subroutines for the
IBM-PC environment (MS-DOS versions only).

README

Documentation file containing additional information not yet available
in the MegaBasic manual. This file may or may not appear and its con-
tents will vary depending on when the MegaBasic system was pur-
chased.

CONTENTS
Documentation file containing a complete list and description of every-
thing on the diskette. See this file for specific information about any
files on the diskette that are not described above.

There may be some slight variation in the precise disk contents and spellings of the file
names; the above list is intended to be a rough guide rather than an exact table of
contents. This is because MegaBasic is supported on a wide variety of machines and
operating systems and the disk contents are much more likely to change over short
periods of time, as compared with the printed documentation.

Installing MegaBasic on Your Computer

Before you install MegaBasic on your computer, be sure that the capabilities of the
machine satisfy the minimum requirements listed below:

� 8088, 8086, 80186, 80286, 80386 or 80486 Microprocessor running IBM PC-DOS,

MS-DOS, CP/M-86, TURBODOS, Concurrent Dos, Xenix 386 or other operating system
supported by MegaBasic. MS-DOS versions require MS-DOS revision 3.0 or later.

� At least 128k bytes of free memory before loading MegaBasic.

� CRT Console Screen and keyboard (a hard-copy console is not recommended). VGA
systems are recommended.

� One or more disk drives (two or more recommended, one or more hard disks are
highly desirable).

1

1-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Additional equipment to further enhance MegaBasic capabilities includes larger disk
drives, up to 16 Megabyte of extended memory (accessible to Extended MegaBasic), a
high-speed printer and a letter quality printer.

If your computer has only floppy disk drives and no hard disk, MegaBasic installation
consists of the making working copies of the MegaBasic release disk(s) and then using
MegaBasic from those copies. However, hard disks make your life much easier and most
microcomputers now come equipped with hard disks providing anywhere from 20 to
1000 megabytes of storage.

The specific installation steps to follow will vary with the operating system you will be
using. The vast majority of MegaBasic users will, however, RUN MegaBasic under
MS-DOS. Some releases of MegaBasic include a file named INSTALL that performs all
necessary MS-DOS MegaBasic installation tasks. These tasks can also be done manually in
releases without the INSTALL program, as follows:

� Create a new directory under the root directory named PGM, and copy all files from
your MegaBasic release diskette(s) into it.

� Place the PGM directory into the default search path, by modifying the PATH
command that should be in the autoexec.bat file in your root directory. This step lets
you use MegaBasic and your MegaBasic programs from whatever directory you
happen to be in when you RUN or work on them.

� Modify, as needed, the FILES command in your config.sys file to increase the open-file
capacity of the system up to at least 40.

You could perform all these tasks yourself, but the INSTALL program handles all the
details, which could take a while for a newcomer to MS-DOS. All you have to do to RUN

INSTALL is insert the diskette into a drive and type:

INSTALL

After INSTALL completes, remove the diskette(s) and re-boot your computer, which
applies any new configuration to the running system. From then on, you can load
MegaBasic and access program files from the PGM directory without having to specify
any directory path names (regardless of the current default directory).

1

1-5GFK-0256 Chapter 1 Introduction to MegaBasic

About This Manual

We have confined this manual to only one purpose: a complete and accurate description
of all MegaBasic facilities, in which you can quickly find the material you need and get
on with your work. To this end, this manual has been organized into useful logical
sections as shown in the table of contents. To answer your questions on specific subjects,
an extensive index, with over 3800 entries, will direct you from the phrase you think of
to the pages you need to read. The subject matter is covered in depth, with all its
nuances, so that questions are answered rather than raised. We think you will
appreciate this approach, over an alphabetic organization that breaks up and scatters
related information arbitrarily about the manual.

This manual is a reference guide to the facilities provided by MegaBasic for creating,
modifying, debugging and running programs written in the MegaBasic programming
language. It is not intended to be a tutorial manual and its emphasis is on your daily
needs over the long run, rather than your short term needs when you begin using
MegaBasic for the first time. Because of this, people unfamiliar with general BASIC

programming may wish to select a beginning BASIC programming guide to supplement
this manual for further clarification of BASIC structures and usage. A working
knowledge of your computer system and its operating system is assumed.

No book or set of documentation can do the learning for you. Computer software, more
than most subjects, is difficult at best to get across in print because it is a dynamic activity.
You would not attempt to learn to play the piano or ride a bicycle out of a book and you
should not expect to use any complex software tool by the manual alone. Try
everything, make lots of mistakes, play with each new feature that you are learning. After
all, you do have a powerful computer system sitting in front of you which you can use to
experiment with each of the facilities in MegaBasic.

1

1-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Running Programs from the Operating System

MegaBasic is an executable file which you RUN by typing its file name from the console as a
direct command to the operating system. It must reside on one of the system disk drives
installed on your computer system in order to be executed. The specific command to
invoke MegaBasic merely consists of the file name containing MegaBasic followed by the
name of the file containing the BASIC program you wish to execute. File names are not
fixed entities and particular applications may have file names assigned which differ from
those stated in this manual. Assuming MegaBasic is contained in a file named BASIC and
your program is named MYPROG, the command to execute your program from the
operating system is as follows:

BASIC MYPROG

This command causes the operating system to load MegaBasic which in turn loads your
program file and then begins its execution. At that point your program takes over the
computer and proceeds with whatever it is programmed to do. The MYPROG program file
contents must have previously been created by MegaBasic.

The MegaBasic Development Version

The standard distribution disk of MegaBasic includes several different configurations of
MegaBasic which can be divided into two fundamentally separate forms. The first form
is your primary development version that supports all phases of program development
such as program entry, saving to files, debugging, testing, etc. All of your time spent
developing software under MegaBasic is spent under this version, usually named BASIC

on the disk. The development environment provided by BASIC is entered using the
same command shown above but without the additional program file name, as follows:

BASIC

This operating system command puts you into the MegaBasic command level from
which you can enter program lines and MegaBasic commands. To leave BASIC and get
back to the operating system, type the MegaBasic command: BYE

The Runtime Version of MegaBasic

The second form of MegaBasic is a subset of the first which can RUN programs, but does
not support any program development facilities. This second form, usually named RUN, is
designed for the production environment in which only finished and debugged
programs are executed. RUN is about 30% smaller than the development version (saving
about 24k bytes), and up to 50% faster. RUN provides even greater memory savings
because it compacts all programs (but not their data) it executes down to 50-80% of their
original size whenever they are loaded into memory. This compaction process consumes
less then a tenth of a second and is totally invisible to the user and the program.

RUN is executed exactly as described above except that RUN must be typed in the
command instead of BASIC. Since it contains no development facilities and cannot even
list program source code, RUN is ideal for so-called turn-key systems which are sold to
end-users or distributed throughout an organization in executable form only. Programs
are therefore secure against unauthorized alteration and source code access. As a
licensed purchaser of MegaBasic, you can distribute RUN with your programs to third
parties without any royalty or other licensing fees.

1

1-7GFK-0256 Chapter 1 Introduction to MegaBasic

As an additional security measure, a separate utility is provided to scramble the contents
of a program file. Such files may be executed using RUN, but the development version
cannot even load them for listing, execution, or any other purpose. The scrambling
process is irreversible, making the program file useless for anything except its intended
use. Needless to say, scrambling your only copy of a particular program is not
recommended. The utility that performs this process, called CRUNCH, is described in
Appendix C, Section 2.

The PGMLINK utility provided with the RUN system can produce a stand-alone program
that combines your program with a copy of RUN into one file so that it becomes
functionally indistinguishable from other utility programs or compiled software. This
utility is described in Appendix C, Section 1.

The MegaBasic Compiler

A compiler for creating execute-only versions of finished MegaBasic programs is
available as a separate option. It analyses your program for errors in syntax, argument
list formation and data type consistency and, if no errors are found, produces a program
that executes from 200% to 800% faster than the original. If any errors are found, the
compiler describes them with sufficient detail for you to correct them and re-compile the
program. Except for the much faster execution speed, compiled MegaBasic programs
operate identically to their interpreted counterparts with little or no increase in memory
requirements. The compiler operates on programs that have already been prepared
under the MegaBasic development system, and must be used in conjunction with that
system. For further information, see the documentation supplied with the MegaBasic
compiler.

1

1-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Program Development Overview

To use the MegaBasic program development environment, type the BASIC command
described earlier, but omit the program file name. Without a program name, you
immediately ENTER into the command mode of MegaBasic which under your direction
provides facilities to create and test programs. Only BASIC (the development version)
provides this command mode, while RUN (the runtime production version) does not.

The command mode provides a selection of over 20 commands, which you choose and
ENTER from the keyboard. Each command specifies a single task which MegaBasic
carries out immediately after accepting the command. The command set can be divided
into four logical groups:

� Program Entry & Retrieval

entering programs from the keyboard or from files, listing your programs on the
console or other devices, saving your programs to files.

� Editing & Alteration

Sequential line editing, global search and replace, identifier renaming, line
renumbering, line range deletion, rearranging program sections, merging program
modules from files into your current program.

� Execution Control & Debugging

Running and testing, debugging by breakpoint and single-step debugging,
interrupting and continuing execution, interactive examining and setting of program
data structures.

� Information and Control

Displaying program statistics, listing file directories, exiting back to the operating
system command level, switching between multiple programs in memory,
displaying execution state.

After entering the MegaBasic command mode, the first thing you do is either key in a
program from the console or load an existing program from a file. To type new program
lines from the console, enter a line number (an integer from 0 to 65535), followed by a
sequence of program statements separated by semi-colons and terminated with a
carriage return. Lines may be up to 255 characters long. The line number tells
MegaBasic where to insert the new line into the current program. Therefore new lines
may be entered in any order, providing a simple way to insert changes at a later time.
See Chapter 1, Section 4 for further details on MegaBasic program format.

Any line typed with a valid line number is always inserted into the current program; if
there is no current program the line becomes the first program line. If the line number
duplicates a previously existing line number, that line is replaced with the new line. All
lines entered without line numbers are assumed to be commands or direct statements that
MegaBasic attempts to execute immediately regardless of their actual contents.
MegaBasic will inform you of lines which contain improper statements or commands
when they are typed for immediate action.

After entering or loading a program and making any desired changes, you can then run the
resulting program under interactive control of execution to check its correctness. If errors

1

1-9GFK-0256 Chapter 1 Introduction to MegaBasic

are found, you can alter the program to correct the errors, and then repeat the process until
you are satisfied with program operation. At any stage of the development phase, the cur-
rent program may be saved on a disk file to safeguard your work from system failures or
your own blunders (e.g., power failures, mistaken revisions), or so that you may continue
work at a later time. On completion of your working program, save the final version on a
file to be executed as described in Section 2 of this chapter.

MegaBasic always maintains a file name in connection with your program. This file
name is the one used to load the program from the disk or the one used to save the
current program onto the disk. A program entered from scratch at the keyboard is
assigned the name unnamed.pgm.

MegaBasic keeps track of this file name for two reasons. First, you can save your
development work out to the file without having to remember its name yourself or to
type it correctly each time, which saves time and eliminates potentially destructive
mistakes. Secondly, MegaBasic lets you have as many as 64 programs in memory
simultaneously and the file name associated with each provides a name through which
they may be accessed at random. Each program source has its own workspace (in
memory) in which development activities may take place. This capability is extremely
powerful for large scale program development and execution purposes, but its detailed
description is beyond the scope of this section and will be covered later on in Chapter 10.

1

1-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Lines, Statements and Program Form

MegaBasic programs consist of a series of typed lines beginning with a line number and
ending with a carriage return. Line numbers must be in the range 0 to 65535 and serve a
dual purpose. First, since MegaBasic continually keeps the program lines arranged in
ascending order, you can easily insert additional lines by typing them with appropriate
line numbers. Secondly, some MegaBasic statements refer to program steps by line
number, perhaps to repeatedly execute some group of statements or skip over undesired
statements. The simple example program below illustrates some of the building blocks
used to form programs:

100 REM *** This is a sample Program ***

110 INPUT “ENTER a number -- ”,N; If N<=0 then Stop

120 Print N, N*N, Log(N), Tan(N), Sqrt(N), Atn(N)

130 Goto 110

Line 100 contains a remark which describes the program to a human reader and is
ignored by MegaBasic when executed. Such remarks may appear anywhere in a
program to document program operation. Line 110 contains two statements, separated
from each other with a semicolon (;). The first statement causes the computer to display
the request ENTER a number—and accept a number from the user when he/she is ready to
type it in. The second statement on line 110 stops the program if the number entered is
less-than-or-equal-to zero. Line 120 goes on to display various computations on the
value entered, but only if the value is greater than zero. Line 130 causes the computer to
go back to line 110 and ask for another number, which repeats the whole process until
the number entered is not greater than zero.

Besides being numbered, the lines themselves may be up to 255 characters long and
consist of one or more statements (i.e.. you cannot have a line with no statements on it).
Statements are separated from one another in the line with semi-colons (;) and represent
the fundamental building blocks of MegaBasic programs. Statements in general begin
with a specific keyword followed by additional data parameters separated from one
another with commas (,). For example the PRINT statement above begins with the
keyword PRINT and it is followed by a list of things to be printed.

By themselves, statements perform simple and easily understood operations, but in
combination they can express procedures of unlimited complexity. MegaBasic
statements are grouped into six Chapters (Chapters 5 through 10), each beginning with a
summary of the statements they contain, followed by detailed descriptions of each
MegaBasic statement.

Program Line Continuation

Extra long lines, longer than 80 characters, will wrap-around to the next line on your
console. Usually this will break the line at an arbitrary and undesired place. To break up
your long lines anywhere you choose, type a line-feed (Ctrl-J or Ctrl-ENTER) and
continue your line. Line-feeds are like carriage returns except that they do not terminate
the line, thus permitting one numbered program line to be folded into several physical
lines. Line-feeds are also useful as the last character of a program line (before the

1

1-11GFK-0256 Chapter 1 Introduction to MegaBasic

carriage return) to insert empty blank lines for visually separating successive sections of
your program. A line-feed may be typed anywhere a space is permitted. No line may
be longer than 255 characters, regardless of line-feeds.

Program Line Numbers

In recent years there has been a move away from line numbers in BASIC programs.
Although programs without line numbers look cleaner, in some ways they tend to be
more difficult to develop and maintain. MegaBasic uses line numbers not because they
look great, but because they provide real functionality in the following areas:

� Traditional GOTO, GOSUB and DATA statement references.

� Reporting locations of errors in program execution and syntax.

� Identifying program locations of error recovery routines.

� Discriminating between program lines to be inserted and commands to be acted
upon right away.

� Identifying line locations for program editing, e.g., insertions, deletions,
replacements and merging.

� Identifying line ranges for block operations, e.g., block search, display, text
replacement, etc.

� Reporting program source locations in cross-reference listings and analyses.

� Facilitating program development on minimal terminals and over modem
communications lines to remote terminals.

� Communicating program locations during conversations and exchanges between
programmers and software support people, e.g., over the telephone.

Line numbers do have there shortcomings, however. They take up valuable screen
space; they do look ugly; they make every line a potential target of a GOTO, GOSUB or
error trap. But, as the list above illustrates, line numbers provide functional capabilities
that cannot easily be duplicated by line labels or other more modern or high-tech solutions
to the same problems.

1

1-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5: Names and Identifiers

A key feature in MegaBasic is the way it lets you to assign meaningful names to any
program line, variable, function or subroutine. For example, the name CUBE_ROOT is
certainly more descriptive than FNR3 for a user-defined function that computes cube
roots. Names must conform to certain rules in order to be properly recognized. The
syntax of user-assigned names in MegaBasic is simple, reasonable and easy to
remember:

� Names must begin with a letter (A-Z).

� Characters after the first must be letters (A-Z), digits (0-9), or underscores (_).

� The last character of a name may be a dollar sign ($), a percent sign (%) or an
exclamation mark (!) to force the data type of the name to string, integer or floating
point, respectively. Other methods exist to declare the data type of a name without
such characters.

� Names may be from 1 to 250 characters in length and all characters participate in the
spelling and must be present in all references.

� Upper and lower case letters in names are treated identically.

� MegaBasic reserved words (e.g., FOR, NEXT, READ, etc.) cannot be used for
user-assigned names. See Appendix D-2 for a complete list.

Examples of valid names are TOTAL!, X3, THIS_IS_A_NAME, and STRING$. Examples
of illegal names are 3X LABEL#, VAR, XSTR, and THIS&THAT. Underscores are
useful for breaking up longer names since spaces are not permitted. All characters in a
name are significant in recognizing the name, i.e., two names are different unless they
match exactly. Upper and lower case letters are treated identically so that you can type
names with or without the SHIFT key.

Line-labels are names which may optionally be typed at the beginning of any program
line (after the line number). Such lines may be referred to either by line number or by
name. For example, the following one line program prints all the integers from zero to
one hundred:

10 AGAIN: Print C; C = C+1; If C<101 Then AGAIN

Notice the colon (:) after the AGAIN line-label. A colon must always follow each
line-label definition immediately without intervening spaces. Line label references are
never followed with a colon. The colon is required to clearly distinguish line-labels from
other named objects used in the program.

This example uses a variable named C which is displayed and incremented by the
program. Regardless of how you type in a program, when it is LISTed user-assigned
names always appear capitalized and MegaBasic reserved words appear in lower-case so
that you can see which are which. This is important because reserved words cannot be
employed as user-assigned names. Hence when you see one of your assigned names
spelled with any lower case letters, you will know that it is a reserved word, an error
that must be rectified by editing the program. This kind of editing is best performed
using the CHANGE command (Chapter 2, Section 3).

Variables and functions with names ending in a dollar sign ($) are automatically string
variables and string functions. A percent sign (%) ending names of variables and

1

1-13GFK-0256 Chapter 1 Introduction to MegaBasic

functions gives them an integer data type and an exclamation mark (!) forces a real
floating point type. You can assign data types to various letters so that variables and
functions with names beginning with those letters will automatically be defined with the
data type specified. This subject is covered further in Chapter 3, Section 1.

The NAMES command (Chapter 2, Section 3) displays the user-assigned names in your
program. It is sometimes useful for finding occurrences of names which have been
misspelled or mistyped during the course of editing your program. Since the NAMES

display is alphabetically ordered, names which are similar tend to be together in the list
and it is generally a simple matter to visually scan the list to find similar but different
spellings.

If you do not correct such misspellings, each different spelling will refer to a different
program variable, function or procedure, and your program will not operate correctly.
Another way to detect such errors is by displaying a cross-reference listing of your
program, using the XREF command (Chapter 2, Section 5). This command finds all
references to each user-assigned name throughout your program. Since virtually all
names will be used in more than one place, any names that are only referred to once are
likely misspellings of other names. XREF should be used for this purpose after you make
any major additions or alterations to your program, so that you can correct any
misspellings before you even begin testing your program again.

1

1-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 6: The MegaBasic Line Editor

Whenever you ENTER data or program lines from the keyboard you are actually using
the MegaBasic line editor. This line editor lets you ENTER lines of text, and provides
editing services ranging from simple typing corrections to text insertion, searching, block
deletion and rearrangement. It provides a visually complete presentation of the line you
are modifying at every key stroke, while supporting virtually all video screens (i.e.
IBM-PC screens and generic terminals) without any configuration. This makes it suitable
for use over modem communication lines and a wide variety of hardware
configurations.

All editing functions are invoked by typing special control or function keys. Not all keys
perform editing functions and if accidentally struck will be rejected by the computer
with a warning beep. For the purpose of notation Ctrl- ? will denote a control character
where ? is some key.

If you don’t make any mistakes while typing an input entry, then all you have to do
when your input line is finished, is type the ENTER (or RETURN) key. You can easily
correct simple typing errors by backing up over the error with the BACKSP key, type the
correct characters, then continue the input entry. In the pages that follow, we will
explain how to use other line editor control keys to insert text, delete and rearrange text
blocks, move the cursor, and search for characters.

Inserting Text

Some editors provide two different ways to input characters: insert mode and
replacement (or overwrite) mode. This forces you to remember at all times what mode
you are in. To make things easier, the MegaBasic editor is always in insert mode. This
means that whenever you type characters while inputting or editing a line, the
characters you type are always inserted into the line at the cursor location. To replace
characters in your line with a new sequence of characters, you have to delete the old
sequence then type the new sequence.

The cursor is the special screen symbol that indicates the location where the next
character will appear. Normally, this will be at the end of the line you are typing.
However, you can move the cursor to any point within the line you are editing, so that
subsequent characters you type will be inserted into the line instead of appended to the
end of it. Cursor repositioning is summarized on the next page.

When the cursor reaches the right margin of the screen and you continue to type more
characters, the cursor will wrap around to the next screen line below it and continue on.
This will generally break up your input entry in an arbitrary place. You can insert you
own line break anywhere in the line by typing a line-feed (down arrow or Ctrl-J). This
breaks the line, moving all text past the cursor down one line, and positions the cursor at
the beginning of the next screen row and enters a line-feed code (an ASCII 10) into the
input line.

Most input entries will be less than 80 characters and will generally fit completely on one
screen line. However, MegaBasic lets you type a line of up to 255 characters. Once this
limit has been reached, MegaBasic prevents you from entering any more characters and
beeps at you each time you try to insert a character. At that point you either have to
delete characters from the line to make room for more input, or enter the line the way it
is.

1

1-15GFK-0256 Chapter 1 Introduction to MegaBasic

Cursor Positioning

MegaBasic provides a variety of ways to move the cursor to a different location within
the current input line. Changing the cursor position does not alter the line in any way,
nor does the position affect the input entry when you type the ENTER (or RETURN) key to
terminate it. The only reason to move the cursor is so that a subsequent insertion or
deletion can take occur at the right place.

Two controls let you move the cursor left and right by one character (the left and right
arrow keys or Ctrl-L and Ctrl-A). Two other controls let you move the cursor left and
right by one word (Ctrl-left and Ctrl-right arrow keys or Ctrl-W and Ctrl-Q). A word in
this context is any sequence of letters and digits containing no other characters. Moving
left or right a word always leaves the cursor on the first character of the word. By typing
these keys repeatedly you can walk through the line to quickly locate the position where
you want to make a change. Two other controls let you move to the beginning of the
line (Home or Ctrl-F) or to the end of the line (End or Ctrl-G).

Another control, F2 (or Ctrl-S), lets you advance the cursor to the next occurrence of any
single character. After you type it, you must then type the character you wish to find. If
it exists, the cursor moves to that character in the line, if it does not exist, the cursor does
not move and a warning beep sounds. If you type this control twice, it will search for the
same character that it searched for the last time. When you search for a letter, you can
type it in upper or lower case regardless of the case of the letter sought.

An important aspect of entering and editing program lines is making sure that all your
parentheses and brackets are properly balanced. In complicated lines containing many
levels of parentheses, it can be difficult to see where each parenthetical sequence begins
and ends. Therefore, MegaBasic provides two keys to move the cursor between opening
and closing parentheses. F9 (or Ctrl-O) backs up the cursor to the preceding
parenthesis, bracket or brace. If the cursor is already on a closing parenthesis, bracket or
brace, it backs up to the opening parenthesis that matches it. F10 (or Ctrl-P) is the
reverse of F9, advancing the cursor to the next parenthesis, bracket or brace in the line.
If the cursor is already on an opening parenthesis, bracket or brace, it advances to the
closing parenthesis matching it. If no matching parenthesis exists in the line, the cursor
does not move and a warning beep sounds.

In order to promote the widest possible console compatibility, MegaBasic relies on only
the minimum possible set of console controls to position the cursor. Only one operation
requires any configuration: backing up the cursor to the previous line. This is controlled
by the Console Mode byte, which you can configure using the CONFIG utility program,
described in Appendix C, Section 3. If you have trouble with the line editor maintaining
the proper cursor position or observe any erratic behavior, consider trying a different
configuration.

Deleting Text

Deletion is always relative to the cursor position. BACKSP deletes the character to the
left of the cursor; DEL deletes the character at the cursor location. F6 (or Ctrl-V) deletes
all the characters from the cursor to the next word. F4 (or Ctrl-X) followed by a character
deletes from the cursor up to that character, or beeps if the character is not found in the
line. Typing this F4 twice deletes up to the next occurrence of the previous search
character. Ctrl-HOME deletes all characters to the left of the cursor; Ctrl-END deletes all
characters from the cursor position to the end of the line.

1

1-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Text Recovery and Rearrangement
MegaBasic provides a limited mechanism to recover text that you have deleted without
forcing you to type it back into the line. Every time you delete one or more characters
from the line, MegaBasic remembers those characters. If you make several deletions
from the same place in the line, MegaBasic remembers the entire sequence as one
deletion. You can recover this sequence of deleted characters by typing the Ctrl-U key.
The deleted characters are inserted into the line at the cursor location in effect when you
type Ctrl-U, leaving the cursor positioned after the insertion.

You can recover only the most recent sequence of contiguous deleted characters. For
example, if you delete 10 characters from the beginning of the line, and then move to the
end of the line and delete 5 characters, typing the Ctrl-U key recovers only the 5
characters; the 10 characters deleted from the beginning are lost. However, if you delete
the preceding 4 characters, then you delete the next 3 characters, all 7 characters are
remembered and may be recalled by typing Ctrl-U.

In addition to simple recovery from accidental deletion, you can also use this operation
to rearrange text within the line, or to move text from one line to another. First, delete
the text sequence you wish to move. Second, move the cursor to the location in the line
where you want to move the character sequence (being careful not to perform any other
deletions along the way). Third, type the Ctrl-U to insert the deleted characters back into
the line at the cursor location. If you are editing a MegaBasic program, you can use this
capability to delete a portion of one program line and insert it back into another program
line (as long as there are no other intervening deletions) . You can also type Ctrl-U
repeatedly to insert the same string into the line as many times as the line capacity
permits (255 characters maximum).

Accessing The Previous Input Line
To simplify entry of repetitive or similar input lines, you can access the previous input
entry by typing F5 (or Ctrl-R). This abandons any input you have already typed,
displays the previous line (called the old line) and positions the cursor in front of it. This
saves time when the computer requests successive entries that are identical or differ only
slightly. Furthermore, if you are editing the old line and make some irrecoverable
editing errors, you can type F5 (or Ctrl-R) to restore its original form so that you can start
over with the least amount of effort.

If the very first key typed to an input or command line entry is an editing control key
(rather than an ordinary input character), MegaBasic automatically restores the previous
input entry as the current entry before acting on the control typed. This implicit restore
operation makes the previous input entry easier to access, but you can only get it on the
first key typed.

Restoring previous input is frequently useful when you are entering commands and
program lines in the MegaBasic command level. You will find yourself typing successive
commands which differ from the previous command (the old line) by only one or two
characters, or to correct a mistake in a command just entered. Similarly, instances of
nearly identical sequential program lines are common. Your program may already
contain lines which nearly match a new line about to be entered into the program, and
by editing the old one and changing its line number, you can construct the new line with
minimal effort.

Accessing Any Prior Input Line
In addition to just the prior input line, MegaBasic also remembers all the most recent
lines of text entered through the console keyboard so that you can retrieve them

1

1-17GFK-0256 Chapter 1 Introduction to MegaBasic

whenever you are entering a command or entering keyboard input. This is particularly
useful when you find yourself entering several different complicated commands or
inputs repeatedly, since you can avoid having to retype them each subsequent time.
MegaBasic only remembers one instance of each line entered and keeps them in a
most-recently-used order for convenient access. Lines that differ only in upper/lower
case and number of spaces are treated as the same line and only the most recent
rendition is remembered. Null lines (i.e., those without any characters) are never
retained.

You access previously entered lines by typing one of several control keys at any time
while you are entering a text line into MegaBasic (or into a MegaBasic program). PgDn
and PgUp keys move forward and backward through the line list; F5 returns to the
original line and Ctrl-D deletes the current line from the list. Once a line is accessed, you
can immediately begin editing it without any further keystrokes. At any time you can
discard your current line and start over on a different line by simply accessing another
line and continuing.

When accessing previous entries with PgUp and PgDn keys, the characters to the left of
the cursor are used as a matching criteria, selecting only the entries that begin with those
same characters. As each line is accessed, the cursor is left in the same position so that
you can step through different lines beginning with that sequence. A warning beep
indicates no entry begins with such a sequence. If the cursor is at the front of the line
(i.e., no characters to match), PgUp and PgDn keys step through every line.

The number of lines retained depends on how many lines fit into the previous line
buffer. This buffer defaults to 512 bytes, but you can change its size to any value from 0
to 4096 bytes by setting PARAM(24) to the desired size at any time Setting the buffer size
to zero disables the previous line list capability altogether (except for the standard old line
buffer). Setting PARAM(24) always clears the buffer of all lines, except for the most
recently entered line. Defining a larger or smaller buffer size causes the total available
memory space to decrease or increase accordingly.

If there is not enough room in the previous line list buffer for the next line being added
to it, MegaBasic makes room for it by deleting the oldest lines in the buffer until sufficient
room becomes available. If the line length exceeds the entire buffer capacity, the line will
not be added to the list. Therefore to use this capability effectively, your buffer size (as
defined by PARAM(24) should be at least as large as the longest line you will ever want to
retain.

When you are modifying your program under the EDIT or ENTER command modes, the
entered source lines can quickly fill up the previous line buffer and displace some or all
of the prior command lines that you have typed. Therefore MegaBasic only remembers
the single most recent program source line that is entered while in these modes. If you
want to be able to access other such lines in later editing or input, you can always force
the current line into the buffer by typing Ctrl-B just before typing RETURN to enter the
line.

The EDIT$ function always returns the most recent line so far entered. Setting EDIT$

(e.g., EDIT$ = string), adds a new most-recent line to the line list. Setting EDIT$ several
times in succession adds several lines to the list, which can be useful for pre-loading the
buffer in preparation for a subsequent input entry.

1

1-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Editing Control Characters

The preceding discussion provides a complete explanation of the MegaBasic line editor,
it capabilities and the editing process in general. The table below summarizes all of the
editing control keys provided by MegaBasic.

For convenience, alternate keys are provided for most editing operations. In particular,
the editing and cursor controls provided by the IBM-PC and PC BASIC are represented
along with a generic control-character set that will work with any console terminal.
Control characters are typed by pressing a specific character while holding down the key
labelled CTRL on the left of the keyboard (the SHIFT key may be up or down). The
IBM-PC set consists of function keys F1 through F10, the HOME, END, TAB keys and the
cursor direction arrows (denoted Left, Right, Up and Down). These keys are supported
for the editing functions below only for IBM-PC compatible keyboards. Other keyboards
may appear to have these keys but the actual codes they generate may not be the same.
If the indicated action for a editing key cannot be completed by MegaBasic for any
reason, a warning beep is sounded.

The controls described below are line-oriented and their actions are confined solely to
the current line being input or edited. When you are editing program source code, each
line you are editing is under control of this line editor as a stand-alone line. There are
currently no controls that provide a full-screen editing facility within MegaBasic (e.g.,
you cannot move the cursor freely between separate program lines). A line may be
broken up into more than one screen line with line-feeds or by entering characters past
the end of the screen to cause a wrap-around to the next screen row. Although such a line
appears to be multiple lines, you should treat it as the single line that it is.

Character Operation
Right

F1
Ctrl-A

Moves the cursor one column to the right or to the next line if a line-feed is encoun-
tered. This does not modify the current line. A warning beep will sound if you are
at the end of the line when you type this control.

Left
Ctrl-L

Backs up the cursor one column to the left. This can be repeated to backspace
all the way back to the beginning of the line. It also backs up through line-feeds
embedded in the line.

Backsp
Ctrl-H

Rubout .

Deletes the character to the left of the cursor. All remaining characters in the line
that follow are shifted left one column to close the gap. Line-feeds and TABS can
be deleted just like any other character

Del
Ctrl-Z

Deletes the character from the line at the cursor position and shifts all characters
that follow it over one column to close the gap. The cursor does not move. Line-
feeds and TABS can be deleted just like any other character.

Word Operations
Ctrl-Right

F8
Ctrl-Q
Ctrl-E

Advances the cursor forward to the beginning of the next word in the current line,
where word is defined as any contiguous sequence of letters and/or digits. This key is
useful for quickly skip ping through the line to some point of interest.

Ctrl-Left
F7

Ctrl-W

Backs up in the line to the beginning of the previous word, where a word is defined
as a contiguous sequence of letters and/or dig its. If the cursor is in the middle of
a word, it backs up to the be ginning of that word.

F6
Ctrl-V

Deletes all characters up to, but not including, the first character of the next word,
where word is defined as any contiguous sequence of letters and/or digits. The text
to the right of the deletion moves over to the left to close the gap.

1

1-19GFK-0256 Chapter 1 Introduction to MegaBasic

Searching Operations

F2
Ctrl-S

Advances the cursor up to the character that you type immediate ly after this key.
Upper and lower case letters are equivalent when searching. If the specified
character is not in the remainder of the line a warning beep is sounded and the
cursor does not move. This is a two stroke sequence and typing F2 twice will
repeat the previous F2 search sequence.

F4
Ctrl-X

Deletes all characters from the cursor position up to, but not in cluding, a specified
character. Like F2 above, F4 is a two-stroke sequence and typing F4 twice will
repeat the previous F4 deletion sequence.

F9
Ctrl-O

Backs up the cursor to the preceding parenthesis, bracket or brace. If the cursor is
already on a closing parenthesis, bracket or brace, it backs up to the opening
parenthesis that matches it.

F10
Ctrl-P

Advances the cursor to the next parenthesis, bracket or brace in the line. If the
cursor is already on an opening parenthesis, bracket or brace, it advances to the
closing parenthesis matching it.

Line Operations
End
F3

Ctrl-G

Advances the cursor to the end of the current line. Further input after this control
will append to the end of the line.

Home
Ctrl-F

Repositions the cursor to the beginning of the line, regardless of its current location.

Ctrl-End
Ctrl-N

Deletes all characters from the cursor position all the way to the end of the line.

Ctrl-Home Deletes all characters to the left of the cursor all the way back to the beginning of the
line.

Edit Control
ENTER

RETURN
Terminates the edit, moves the cursor to the end of the input line, adds the line to
the previous line list and returns the entire line to process requesting the input.

Ctrl-C
Esc

Erases the line from the screen, abandons the line edit and terminates whatever
process is currently underway. This key does nothing during program execution if
Ctrl-C is disabled.

Up
Ctrl-K

When you are in the MegaBasic program EDIT mode, Ctrl-K will abandon the cur-
rent line you are editing and begin editing the line that immediately precedes it in
the program. When you are in the ENTER mode (automatic line numbers), Ctrl-K
will abandon the current line being entered and go back to the previous line and let
you edit it.

Ctrl-U
This is an undelete key. It inserts the last contiguous sequence of deleted characters
back into the line at the cursor position. It is useful recover deleted characters or to
move or copy char acter sequences from one place to another, even between separate
entries.

Line Formatting
Down

Linefeed
Ctrl-J

Forces a line break during an input entry without terminating it. In MegaBasic, an
edited input entry can be up to 255 characters long. Therefore this key lets you
break long input entry into several physical lines by entering line-feeds into the
input line.

TAB
Ctrl-l

Advances the cursor and any text that follows it over to the next column position
divisible by 8 (i.e. 8,16, 24,...). The key enters a single character into the input string
(an ASCII 9 code), rather than a series of spaces. Tabs are permitted in program
lines anywhere that spaces are permitted or as separators between numeric inputs.
They are useful in program lines for indentation and other significant white space
without eating up the line capacity (255 characters maximum) the way spaces do.

1

1-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Previous Line Access

PgUp
Ctrl-T

Replaces the current line with the most recent entry matching the characters to the
left of the cursor. Typing this key repeatedly accesses earlier and earlier lines. Once
the oldest line has been accessed, typing this key cycles back to the newest line again.
If the cursor is at the front of the line, every line is accessed.

PgDm
Ctrp-Y

Once you have sequenced through one or more lines using PgUp, this key lets you
go back the other way (i.e. to the line more recently entered than the one you have).
Typing this key repeatedly accesses later and later lines. Once the newest line has
been accessed, typing this key cycles back to the oldest line again.

Ctrl-D
Deletes the currently selected line from the previous line list and accesses the next
most recent line in the list. If the line list be comes empty a null line is presented for
editing. Ctrl-D does nothing but beep until a prior line has been selected with one
of the previous line access keys.

F5
Ctrl-R

Restores the original most-recent line as the current line being edited no matter
where you are in the previous line list. The cursor is repositioned to the begin-
ning of the line, allowing you to resume editing.

Ctrl-B

Adds the current line in its present form to the previous line list, making it the
most-recently entered line. If the line was already in the line list, Ctrl-B merely
moves it to the front of the list. This is the only way to add a line to the list without
terminating the input entry and is useful for saving the current line at some stage
that might be useful to recall at a later time.

2

2-1GFK-0256

Chapter 2 MegaBasic Commands

In a sense, MegaBasic supports two languages: the underlying programming language
and the MegaBasic command language. The command language lets you control what
MegaBasic does in the command mode, while the programming language controls what
MegaBasic does in execution mode. This section describes all the MegaBasic commands
and it is organized into the following five subsections:

Introduction
Explains formation and syntax of commands, their argu-
ments and their use within MegaBasic workspaces.

Program Entry
and

Retrieval

Entering programs from the keyboard or from files, listing
your programs on the console or other devices, saving your
programs to files.

Editing and
Alteration

Sequential line editing, global search and replace, renaming
identifiers, renumbering lines, deleting line ranges,
rearranging program sections, merging pro gram modules
from other files or workspaces into your current program.

Execution
Control and
Debugging

Running, testing and debugging programs. Execution
breakpoints and be set and cleared. Single-step debugging
lets you interrupt and continue execution and interactive-
ly examine and modify program data structures.

Information
and Control

Displaying program statistics, listing file directories, cross
reference reports, exiting back to the operating system com-
mand level switching between multiple programs in
memory, displaying execution state

Chapter 2 gives information about the MegaBasic commands in general and the ideas
common to several or all of them. This includes such topics as the multiple workspace
environment, the notational conventions used to describe MegaBasic statement and
command syntax, device numbers, search strings, etc.

2

2-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

BASIC [<program> [<command tail>]]

BYE

CHANGE [<line range>],<search string>,<replacement>

CLEAR [{ DATA FREE }]

CONT

COPY <starting line> [,<stepsize> [,<line range>]]

DEL <line range>

D U P L <starting line> [, <line range>]

EDIT [<starting line>] [, <search string>]

ENTER [<starting line> [,<stepsize>]]

LIST [#<device >,] [<line range>] [, <search string>]

LOAD <program file name list>

MERGE <program file name> [<source/dest specs>]

MOVE <starting line> [,<line range>]

NAME [#<device>] [<selector list>]

NAME <old label>, <new label>

REN [<starting line> [, <stepsize> [,<line range>]]

RUN [<line number or command tail>]

SAVE [<program file name>]

SHOW [#<device>][{ ACCESS OPEN SIZE}]

STAT [#<device>]

TRACE END

TRACE RET

TRACE [#<device>,][<line>]

TRACE [#<device>,] IF <logical exprn>

TRACE: <executable line of statements>

USE [<workspace name>]

XREF [#<device>]G<line range>][,<selectors>][by <mode>]

You can abbreviate several of the above command keywords to a specific two or three
character sequence for convenience. These abbreviations are as follows: CHANGE as CH,
EDIT as ED, ENTER as ENT, LIST as Ll and TRACE as TR.

2

2-3GFK-0256 Chapter 2 MegaBasic Commands

Section 1: Introduction To MegaBasic Commands

The command mode provides a selection of over two dozen commands, which perform
such things as loading and saving program files, modifying programs, displaying
information about the program state, running programs, etc. Each command specifies a
single task which MegaBasic performs after you type in the command. You can perform
any complex task, such as developing and debugging a MegaBasic program, by typing
individual commands, one by one, until there is nothing left to do.

Before describing the various MegaBasic commands, we will first explain the concepts
involved in forming commands and how to use them within the MegaBasic workspace
environment. Some of the things discussed in this introduction include specifying
program line ranges, output device channels, string search patterns, understanding
command and statement syntax notation, and program file names.

The Workspace Environment

MegaBasic permits up to 64 programs to reside in memory simultaneously. This unique
feature exists to support large-scale programs composed of a collection of independently
developed libraries which have controlled access to the subroutines and data defined
within the others. Chapter 10 describes all aspects of designing, implementing and
using program modules. During program development however, it is important to
understand the multi-program environment because it arises in a number of the
commands presented in this Chapter (LOAD, SAVE, USE, STAT, SHOW, and TRACE).
Understanding how you can work on, or just refer to, more than one program at the
same time can save you considerable time.

When you are working on your program, the kinds of activities that you do includes
things like entering program lines, editing program lines, testing and debugging, loading
and saving programs, etc. MegaBasic provides an environment for such activities by
maintaining your program as you change and mold it into whatever you desire. In
order to have a way of talking about this environment, we shall refer to it as a workspace.

We would not have to draw a distinction between an environment and a workspace if you
could only deal with one program at a time. However MegaBasic supports more than
one workspace simultaneously within the entire environment that it provides.
Supporting more than one workspace involves the following set of capabilities:

� Create the initial environment

� Create new workspaces by name

� Delete workspaces no longer needed

� Select a workspace by name for subsequent operations

� Show name and status information of each workspace

In order for you to create, delete or select a workspace you need a way to refer to a
particular workspace. Since we already associate file names with every program, those
same file names can also serve as workspace names. The act of loading a program from
a file gives its workspace its name. MegaBasic assigns the default workspace name
UNNAMED.pgm to the original workspace present when you begin a MegaBasic session.
It keeps this name until you type in a program and save it onto a file of a different name,
or load a program into it from a file.

2

2-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

A multiple workspace environment is much like sitting in a swivel-chair inside a circle of
consoles, each one a window through which a separate program is accessible for
development work. At any given instant, you are facing one screen and your actions are
all directed toward the particular program source it contains. But at any time you can
easily turn to any other screen to work independently on its contents. MegaBasic of
course supports such activities using only one screen and is certainly more feasible than
all that hardware.

The USE command selects existing workspaces and creates new, empty workspaces. The
LOAD command can also create a new workspace in the process of loading a program
from a file. The slow command lets you see what workspaces are currently present and
the nature of their contents. The CLEAR command deletes the current workspace (and
its contents) or deletes all workspaces. MegaBasic automatically deletes workspaces
which do not contain any program lines.

Most MegaBasic commands will refer to workspace concepts to some degree and they
are therefore important to understand. As with many computer tools, their actual use is
much simpler than a description of their use, and you really need to try each of the
various commands out on your computer to get a feel for show they can support your
activities.

The user’s view of a multiple workspace environment hides all details which are not
immediately necessary for accomplishing the task at hand. Hence in the simple case,
where you are only interested in a single workspace, MegaBasic does not burden you
with extra options and other details relevant only in a multiple workspace context.

Syntactic Notation Used in This Manual

This manual uses special notation for specifying the syntax of MegaBasic commands,
statements and functions. Each command (or statement) consists of a sequence of typed
symbols. The symbols are of two varieties: those that you type exactly as specified, and
those that describe a generic item that can vary from one instance to another. Special
brackets are used to denote items that vary:

Notation In Syntax Descriptions

 <...>
Encloses a description of the item to be typed. For example, <line number>
describes an item for which you substitute a specific program line number, and
<file name> is an item for which you type the actual name of a file.

 [...]

Encloses an item that is optional. For example [#] means that you may type an
optional Ib-sign (#) in that part of the statement or command, and [<sfring expres-
sion>] means you type an optional string expression. The [...] brackets may
contain several items, in which case you either type all of them or omit them all.
You will also encounter bracketed items inside of outer brackets to indicate
optional items within larger items which are themselves optional.

 {...}
Encloses a list of items from which you choose one item. For example {STOP END
ON} means you type one of the words STOP, END or ON. The {...} braces may
include <...> items as well.

All letters, digits and punctuation are otherwise typed exactly as they appear in the
command description. The actual bracket characters themselves (i.e., < >, { } and [])
are not typed into a command or statement, as they are shown simply to help describe
their syntax. However, there are a few places where brackets [] are specifically used in

2

2-5GFK-0256 Chapter 2 MegaBasic Commands

statements (e.g., IF and STRUCT statements, vectors, etc.), but each case is specifically
documented to avoid confusion. When any of the special brackets (and any descriptions
they contain) are used to delineate syntax, they are shown in italics, otherwise they are
shown in normal or boldface to indicate literal usage. The following examples should
clarify how to type specific commands from their syntactic descriptions:

Syntax Description Example Use

 RUN [<starting line>]
RUN

RUN 200

EDIT [<starting line> [,<string>]]
EDIT

EDIT 1000
EDIT 150, find this

ENTER [<starting line.> [,<step>]]
ENTER

ENTER 100
ENTER 300, 20

 CLEAR [DATA]
CLEAR

CLEAR DATA

Command and Statement Form

Most MegaBasic commands (and statements) that require multiple arguments have the
form: <k eyword> <argument list>, where the keyword is the name of the command (or
statement), and the argument list may consist of strings, numbers, other keywords, etc.,
appropriate to that command. You must separate the listed arguments from one
another with commas, but no comma separates the keyword from the argument list. You
may insert any number of spaces or line-feeds within your entries to make commands
(and statements) more readable. MegaBasic ignores all such characters not enclosed
within quotes.

You must separate command keywords from their arguments with at least one space.
This is because you can name any program entities with arbitrary names, and running
command or statement keywords together with numbers or other identifiers creates
new names that MegaBasic cannot recognize. For example, LIST 1,$ is a command
which lists the entire program on the screen, but typing it as LIST1,$ is not valid because
the sequence LIST1 is not a command word, so MegaBasic thinks it is a user-assigned
word for some variable or procedure. Chapter 1, Section 5 describes the rules for naming
programming constructs (Chapter 1, Section 5).

Specifying I/0 Devices

You can re-direct command output to somewhere other than the console screen by
specifying a optional # <device> in the command . The # is necessary to indicate the
presence of a device (or open file) number. For example, #1 refers to the printer and you
can type the command LIST#1 to output your program on the printer. See Chapter 7,
Section 1 for additional details about the devices.

Referring to Program Lines

Commands often refer to specific program lines or to line ranges. A program line
location can be specified in several ways. An unsigned integer from 0 to 65535 refers to
the program line with that number appearing in front of it (rather than its absolute line

2

2-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

sequence number). A dollar sign ($) refers to the last line of the program. A dot (.) refers
to the most recent line displayed by MegaBasic or edited. You can specify a line using any
of these three forms in line ranges or in any command where MegaBasic expects to see a
line number.

In executable program statements that refer to lines (e.g., GOTO statements), you may
optionally refer to the intended line by line-label, if that line contains a line-label. You
cannot specify line-labels in MegaBasic commands for any purpose. Line-labels make
the program much more readable and easier to develop and maintain. Chapter 1,
Section 5 shows how to define and use line-labels and other named program entities.

Specifying Program Line Ranges

Many MegaBasic commands (e.g., LIST DEL, REN, DUPL, MOVE, CHANGE, etc.) can
operate on a subrange of program lines, instead of acting upon the entire program. You
can specify a line range in any of the following ways:

� Omitting the line range altogether implies the range of all program lines (where
omitting it is allowed).

� A single line number to indicate a one-line range.

� Two line numbers separated by a dash (e.g., 100-999) specifies all lines with line
numbers at or above the first line number and on or below the second line number.

� A single line number followed by a dash (e.g.,100-) to indicate all lines from that line
to the end of the program.

� A single line number preceded by a dash to indicate all lines from the beginning of
the program up to the line number specified (e.g., -450).

� Two dots .. to indicate the previously specified line range or the range last modified
by MegaBasic. This line range is known as the current line range, a topic covered
greater detail below.

� The name of a subroutine (i.e., FUNC or PROC) preceded by a dot (.) indicates the
entire range of lines containing that subroutine. For example the command
LIST.SUBR would list all the lines of a function or procedure named SUBR. A
subroutine line range consists of all lines of the subroutine starting with its initial
DEF statement, along with any immediately preceding REMark and DEF lines, up to
and including the line containing its terminating FUNC END or PROC END statement.
REMarks that follow subroutines are not included. Incorrectly formed subroutines
(e.g., missing FUNC or PROC ENDS) or errors encountered in other DEF statements
along the way may abort the command with an error message.

If you specify a line range in a command and no actual program lines fall within that
range, MegaBasic immediately terminates the command and displays the message: No
lines. See the LIST command (Chapter 2, Section 2) for more examples of specifying line
ranges.

Often, you may repeatedly specify the same line range for several commands in a row.
To make this easier, MegaBasic maintains a concept of a current line range and lets you
refer to this range using the dot-dot notation (..). The current line range is always either
the last <line range> that you specified with two line numbers (i.e., 100-199), or the
range of lines just created or modified by MegaBasic. You can type dot-dot in any
context that requires a <line range> to specify this range. For example the command
LIST .. will display the current line range on the console, the command EDIT.. will edit
only the lines within the current range, and REN100.5,.. will renumber the lines in
the current range by 5’s starting from 100.

2

2-7GFK-0256 Chapter 2 MegaBasic Commands

The REN, MOVE, COPY and DUPL commands set the .. range to the range of program
lines that they affected. You can specify the .. notation in all commands that act on line
ranges. By experimenting with the .. notation you will find ways of using it to
streamline the process you go through to develop and maintain your program source.

Specifying Search Strings

Some commands (LIST, EDIT, CHANGE) can restrict their scope to lines which contain
a user-supplied character pattern called a search string. You can specify a search string
in such a command by simply typing the characters you wish to match. You only need
to surround a search string with quotes if the search string begins with a digit (0-9),
dash(-), lb-sign (#) or period (.), or it contains commas, spaces or quotes. MegaBasic
supports two kinds of quotes (““ and ”) which lets you include either quote character
within a search string (but not both). The search process excludes the line-number part
of a line from the search. Numeric searches will, however, pick up line number
references.

Letters in a search string may be in upper or lower case and still match the same set of
strings. Question marks (?) act as wild-card characters when used within search strings
(except as the first character). For example, the string TH??E matches words like There,
those, tHeSe, Three, therefore, etc. A question mark (?) at the beginning of a search string
will only match a question mark, not any character.

2

2-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Search String Option Switches

You can append an additional parameter string to an EDIT, LIST or CHANGE command
to enable or disable additional search capabilities. This optional argument consists of a
comma followed by one or more single-character option switches. Each option switch
character turns on or off a different feature. If you never specify an option string
argument, all options remain off (i.e., disabled). Once you switch an option on, it stays
on for all three commands until you explicitly turn it off in a subsequent option string
(using the minus (–) option described below). All available option switch characters are
individually described below:

Search String Option Switches

 W
Modifies the search so that the string patterns found must appear as complete words,
i.e., matches within words or numbers are not considered a match. For example
with this option on, the string X only matches lines that contain X all by itself,
ignoring words such as XOR or MAX$. The W option is normally off when MegaBasic
starts up.

*
&

Defines the asterisk (*) or ampersand (&) as a special multi-character wild-card symbol
matching any number of characters when it appears in search strings. For example,
this*that matches any substring beginning with this and ending with that. More
than one asterisk may appear in a search string to match arbitrary substrings in more
than one place. When this option is on, you cannot use this any-string symbol char-
acter as an ordinary character in either search or replacement strings. Only one of
these special characters is used for the above purpose: whichever one was most
recently selected is the one in effect. In the CHANGE command, MegaBasic sub-
stitutes the text that matched each asterisk in the replacement string (i.e., macro
parameter substitution).

(

A left-parenthesis turns on an option that causes the any-string wild-card character
(i.e., * or &) to include the entire contents of any parentheses encountered, i.e., with-
out ever breaking parenthesized expressions, function arguments or array subscript
expressions. For example with this option enabled, the search string (*,*,*) matches
any parenthesized argument list containing three or more arguments, even if the
outer parentheses contain other items inside parentheses.

#

A lb-sign enables an option that expands the parameter substitution provided by the
any-string character (t or &) when used in the search and replacement strings of a
CHANGE command. When an enabled, you can follow the any-string in the replace-
ment string with a digit to specify which any string character of the search string it
corresponds to. For example, the command CHANGE X(*,*,*),X(*2,*1,*3) has the
effect of swapping the 1st and 2nd subscript expressions of array X(). In other words,
you can refer to the strings matched by the 1st, 2nd and 3rd asterisk (or ampersand)
in the search string in the replacement string as *1, * 2 and *3 (or &1, &2 and &3).
You can access up to nine such parameters (i.e., digits 1 through 9) in this manner.
This option affects only the CHANGE command and only if the any-string option is
also enabled.

L
L turns on an option that displays every line altered by the CHANGE command on the
console screen after modifying each line. MegaBasic lists each altered line only once,
even if several changes were made to it. This option is particularly useful when you
are not verifying the changes. The L-option has no effect on LIST or EDIT commands.

 _
A minus sign in the option string causes all option characters that follow it to turn-off
their corresponding options instead of turning them on. For example the option string
WL-(*# turns on the W and L options and turns off the (,* and # options. Turning
off * or & turns off the any-string feature regardless of which of the two characters
was in effect.

2

2-9GFK-0256 Chapter 2 MegaBasic Commands

Option strings are never quoted when they are actually typed. The example above
shows them quoted only for descriptive clarification. MegaBasic reports an Argument
Error if you type any other characters in an option string, except spaces. To further
enhance your understanding of the any-string character in search and replacement
string, a number of example CHANGE commands (abbreviated CH) follow below. Each
example assumes that some previous command has turned on the (* # options.

Example Change
Command Result Accomplished

CH rem*, rem Deletes the text of all program remarks.

 CH “X(*,*)”, “X(*,S,*)”

Inserts an additional subscript between the
first and second existing subscripts of all ref-
erences to array X(). Notice that quotes are
needed to allow commas to be part of the
string.

 CH “X(*,*,*)”,“X(*1,*3)” Deletes the second subscript expression from
all references to array X().

 CH “fn(*,*)”, “fn(*2,*1)” Moves the leading parameter of function
fn() to the end of the list in all references.

 CH “*;*;*;”,“*3;*2*1;” Swap the first statement with the 3rd state-
ment on every line.

Specifying Program File Names

MegaBasic stores programs on disk files managed by the operating system. These files
may be given any name which is legal in the host operating system. File names have
two parts: a primary name and a secondary name. Both are necessary for the file to be
properly identified. For example, you can save a program on a file named
PROGRAM1.XYZ, where PROGRAM1 is the primary name and XYZ is the secondary
name. To simplify matters however, you do not need to specify the secondary name of a
program file. When omitted, MegaBasic always supplies the default secondary name of
.pgm. Hence if you supply the name PROG (without a secondary name), you are really
specifying by default the file name PROG.pgm. Therefore you will not normally specify
the secondary portion of program file names, although doing so is possible for special
purposes.

In MegaBasic commands, program file names are always typed exactly as spelled and
without any quotes around them, although you must separate file names from the other
items typed in the command with spaces. In MegaBasic statements however, you
specify file names with string expressions and string constants in such expressions
require quotes around them, for example:

 LOAD PROG1 You do not quote the PROG1 file name because LOAD is a
command (not a statement).

 ACCESS “PROG1”
You must quote the program name here because ACCESS is
an executable statement and you give the file name as a
string expression.

2

2-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

If the file is not on the default drive, you must include the appropriate drive letter in the
file name. You specify the drive letter in front of the file name, separated by a colon (:).
File names and drive letters can be in upper or lower case with the same effect. For
example the following file names all refer to the same program file on drive B:

B:PROGRAM.pgm B:program.pgm b:pRoGrAm.PGM

Under operating systems that support them, you can specify file names with their
directory path. This provides access to files in directories other than the currently
selected directory. As with file names, you can spell path names in upper or lower case,
but MegaBasic converts any lower case characters to upper case internally. Path names
consist of a series of directory names, separated by slashes (/ or \), and with no
intervening spaces. MegaBasic converts forward slashes to backslashes before using the
name internally.

Any legal MS-DOS pathname is acceptable to MegaBasic. Hence the file ..\x refers to the
file named X in the directory just above the current directory. See your MS-DOS
operating system users manual for complete information about file pathnames and how
to specify them. If the last character of a pathname is a slash (/ or \), then MegaBasic
treats the string as the name of a directory instead of a file. Whenever MegaBasic cannot
find a pathname on the drive specified or implied, MegaBasic generates a Directory Not
Found Error. For more information about MS-DOS pathnames, consult your operating
system manual.

Controlling Command Output

Since you cannot usually read console listings and other displays as they fly by on the
screen, several keys may be struck to STOP the display, step through it a line at a time,
re-start it, and terminate the listing process prematurely. These controls are summarized
below:

Ctrl-S or Space-Bar
Alternates between pausing the display
and re-starting it. When paused, you can
abort the current display process by sim-
ply typing another command.

Carriage RETURN or
Line-feed

Displays successive output lines, one for
each key stroke. Effective only during a
display pause. An output line may take up
more than one physical screen line.

 TAB Displays the next 10 output lines of the
current display on each keystroke. Effec-
tive only during a pause.

Ctrl-C or ESC Immediately terminates the listing.

You should, in particular, be prepared to press the space-bar immediately after giving the
LIST command if you are using a fast console screen.

2

2-11GFK-0256 Chapter 2 MegaBasic Commands

Section 2: Program Entry, Storage and Retrieval

This section describes the commands for entering your own program from the keyboard
and listing it back again on the screen or on the printer, and other commands for saving
your program on a disk file and loading it back again. The summary below provides a
brief synopsis of each command:

 ENTER
Automatic line number generation for program entry from
the keyboard. You may abbreviate ENTER as ENT.

LIST
Generates listings of your program and outputs to the con-
sole screen, the printer, a text file, or other I/O device. You
may abbreviate LIST as LI .

ENTER KEY
Displays a block of program source code which immedi-
ately precedes the last line entered, listed, changed or
interrupted for quick reference purposes.

 LOAD

Loads a program from a file into the current workspace or
into a new workspace. The file must contain a program in
binary format, as created by the SAVE command, or a pro-
gram in ASCII format, as created by an editor program.

SAVE
Saves your work onto a file for backup or later access using
the LOAD command. SAVE writes your program in a
memory-image binary format.

ENTER [<star ting line number>][,<stepsize>]

Although you can enter a single program line into the program by just typing its line
number and contents, the ENTER command provides automatic line numbers for a series of
new lines that you enter. You may optionally specify a starting number and stepsize,
arguments which default to the prior ENTER arguments or default to 10 on the first
ENTER. The following examples illustrate the various options:

ENTER 10, 20, 30, 40, 50,...

ENTER 1200 1200, 1210, 1220, 1230,...

ENTER 340,2 340, 342, 344, 346, 348,...

After you type the ENTER command and press carriage RETURN, MegaBasic presents the
first line number and waits for you to type a program line. After you finish typing the
line and terminating it with a carriage return, MegaBasic gives the next line number in
the sequence and you enter another line, and so on. To terminate the process, type a
CTRL-C or ESC at any point or a carriage return immediately after the automatic line
number appears. Since the last line you entered is always in the editing buffer, you can
use editing controls to use all or part of that line in constructing the current line,
potentially saving a significant amount of work.

You can backspace over the automatically generated line number and change it into any
number you desire. After you enter a line into the program, the next automatic line
number will be the number just entered plus the step-size specified by the ENTER command.
You can edit the current line number to re-direct the sequence of automatic line numbers
during program entry without typing additional ENTER commands.

2

2-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

If the automatically generated line number matches a program line that already exists,
MegaBasic displays its contents, positions the cursor on the first non-blank character
after the line number and lets you edit the line using the editing control keys described
in Chapter 1, Section 6. At that point you can edit the line, skip it by typing a carriage
RETURN, or get out altogether by typing CTRL-C. If you edit or skip the line, MegaBasic
resumes the ENTER process with the next line number in the series. To correct
previously entered lines without leaving the ENTER mode, type a CTRL-K during the
ENTER process to go back to the line preceding the one you are on.

MegaBasic does not perform any syntax checks on lines you enter into a program.
However, if you forget the closing quote on a string constant, MegaBasic automatically
adds one to the end of the line. Since this can potentially enclose unwanted characters
within the string (e.g., subsequent statements on the same line), MegaBasic provides a
warning message to indicate this action. Also, MegaBasic removes trailing semicolons
from any line that you enter.

LIST [#<dev>,][<line range>][,<search$>][,<options>]

Provides a display or printout of your program. You can specify a variety of arguments
with the LIST command to direct the program LIST ing to files or different output
devices and to restrict the listing to only a portion of the entire program. All arguments
are optional and MegaBasic assumes specific default values when you omit them. Each
argument and its default value is summarized below:

 <dev>

Specifies where the program listing is to be sent. MegaBasic
uses the console (device #0) if you omit the <device>. You
may supply a device number to send the listing to the printer
(#1), to an open file, or to another output device. Be sure to
type a pound sign (#) in front of a device number to
distinguish it from a line number.

<line
range>

Specifies the range of line numbers to LIST . The entire pro-
gram is LIST ed when no line range is given. See the
discussion about specifying program line ranges on
Chapter 2, Section 1.

<sear ch$>

Specifies a string of characters which must be present in each
line in the program listing. MegaBasic excludes all lines
from the LISTing that do not contain the <search$>
specified. When you omit the <search$>, MegaBasic includes
all lines in the LISTing . See the discussion on specifying
search strings in Chapter 2, Section 1.

<options>
Specifies zero or more single-character switches that alter the
way that MegaBasic conducts subsequent program line
searches. See the discussion on specifying option strings
back in Chapter 2, Section 1.

LIST is extremely flexible because of the many combinations possible. The following
examples illustrate possible LIST commands along with a description of what they do.

2

2-13GFK-0256 Chapter 2 MegaBasic Commands

LIST List the entire program on the console.

LIST #1 List the entire program on the printer.

 LIST 450
List line number 450. A line number all by itself specifies a
line range of one line.

LIST 300-675 List all lines with numbers in the range from 300 to 675,
inclusive.

 LIST -500
LIST 0-500

List all lines numbered 500 and lower. Omitting the lead-
ing line number of a range but including the dash indi-
cates a range that begins with the first line of the program.

 LIST 225-
LIST 225-$

List all lines numbered 225 and higher. By omitting the
ending line number of a range but including the dash indi-
cates a range ending with the last line of the program.

LIST .-499 Lists all lines from the current line up line number 499.

LIST 100-. List all lines from line number 100 up to and including the
current line.

LIST .. List all lines of the current line range.

MegaBasic uses the optional string argument to search through the line range given and
list only those lines containing that string. You can include question marks (?) in the
search string to act as wild card characters that match any character (see the information
about this feature under the EDIT command in Chapter 2, Section 1). Upper and lower
case letters match as the same letters.

LIST REM List all the REMarks in the program.

LIST DEF PROC List all the procedure definitions in the program.

 LIST #1,0-99,write List to the printer all lines below 100 containing WRITE
statements.

LIST M?$=
List to the console all lines containing assignments to
string variables having names 3 characters long that be-
gin with the letter M.

LIST TOT&SUM,&
List all lines containing TOT followed later in the same
line by SUM. The & option switch turns & into a
symbol that matches zero or more characters.

You only need to specify the <device> number to direct the program listing to an output
device other than the console (device #0). Usually this would be the printer (device #1),
but may also be an opened file number. The resulting file contains pure text suitable for
subsequent LOADing and also for processing by other text file utilities (e.g., text editors
and formatters) which cannot handle the coded format of normal MegaBasic program
files. See Chapter 7, Section 1 for further details about text file processing.

MegaBasic maintains your programs in an encoded representation for highspeed
execution. The LIST command reconstructs readable program lines from this format as
the program LIST ing progresses. Therefore, the lines LISTed may not appear exactly
the way you typed them originally. In particular, MegaBasic always displays reserved
words (e.g., FOR, NEXT, READ, WRITE, etc.) as capitalized with trailing lower case (e.g.,
For, Next, Read, Write, etc.), and displays all variable, function, procedure and label
names in all upper case. REMarks and quoted strings are always LISTed exactly the
way you typed them.

2

2-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Carriage Return

Typing a carriage return all by itself in the command mode has a special purpose. It will
display a block of program source which precedes the last line LISTed , edited, entered
or interrupted during program execution. For example if your program encounters an
error and aborts with one the various built-in error messages, you can immediately view
the region of the error by typing a carriage return. Likewise, if you have been editing a
group of lines for a while, you can view your work by getting out of the edit mode
(using CTRL-C or ESC) and typing a carriage return. Typing additional carriage returns
will display successive lines that follow the initial group displayed.

To determine how many lines to display, MegaBasic scans backwards through the source
from the current line back to a line beginning with a REMark or preceded by a line-feed,
up to a maximum of 12 lines. In this manner, you can view the most recent logical group
of lines at the touch of a button (RETURN key). When MegaBasic reports an execution
error message with a line number, it sets the current line to that line number. This
permits rapid review of the source region leading up to the error.

SAVE [<pr ogram file name>]

Saves a program from memory out onto a file. If you omit the file name, the program in
the current workspace is written to a file bearing the name of that workspace. This is the
preferred way to SAVE a file because it avoids having to remember, type and spell
correctly the destination file name. In so doing, you can avoid spelling errors and back
up your work so easily that you will tend to save it more often, rather than put it off.

If you supply the SAVE command with a file name, MegaBasic first compares it with all
the currently defined workspace names. If it matches any one of them, MegaBasic
aborts the SAVE to prevent multiple workspaces with the same name. Otherwise,
MegaBasic saves the program in the current workspace to the file specified and renames
the workspace to that new name. The following examples illustrate each of the possible
forms of SAVE:

SAVE filename
Writes the current program onto the file specified. If the file
name extension is .PGM then you need not type it. You
must specify the file name extension if it is not a .PGM file.

 SAVE

Writes the current program onto the same file that it was
most recently LOADed from or SAVEd to. MegaBasic
supplies a default name of UNNAMED.pgm if you have
not yet assigned a name to the program.

SAVEd:
Writes the current program onto the same file name, but to
the specified drive. Notice the colon after the drive letter,
indicating the letter is a drive code, not a file name.

SAVE d:\path\
Writes the current program onto the same file name of a
different directory and/or drive. Notice that the pathname
ends in a slash to indicate it is a directory, not a file.

 SAVE
d:\path;\file

Saves the program on the file specified by the complete file
pathname given. You can specify pathnames in any form
allowed by the operating system.

Regardless of how you specify the SAVE command or what workspace contents you are
saving, MegaBasic asks you to confirm your request with a yes/no response after
displaying the entire file name and indicating whether or not the file already exists in the

2

2-15GFK-0256 Chapter 2 MegaBasic Commands

file directory. Answering N (for no) aborts all further SAVE action. Answering Y (for
yes) saves the program to the file indicated, which is automatically created if not already
present.

When there are modified programs in other workspaces and you give a SAVE command
without specifying any file name, MegaBasic asks you if you want to save all modified
workspaces. Answering no (N) causes the usual SAVE of the current workspace.
Answering yes (Y) causes MegaBasic to sequence through each unsaved, modified
workspace while letting you confirm or deny a SAVE on each one. This automatic SAVE
option is only requested if other workspaces containing modified programs are present.
To SAVE an unmodified program, you have to specify a file name in the SAVE command;
SAVE by itself does nothing if no programs in memory have been modified.

The SAVE command detects when another user (in a multi-user operating system or
network) has modified a program file you are about to SAVE and issues a warning that
you are about to overwrite their changes. You are then given the opportunity to abort
the SAVE or go ahead with it. This check is performed ONLY when you are saving to
the file from which you LOADed the program, i.e., a SAVE with no arguments that uses
the previous LOAD name.

Files written with the SAVE command are exact memory images of the program in its
internally encoded form. Therefore other programs such as editors and other text
processing software unaware of the program structure within the file cannot process
MegaBasic program files. Furthermore, earlier Z80 versions of MegaBasic cannot
execute these files as programs. Whenever you SAVE to an existing file, any program
that was loaded and converted from a text or other non-pgm format, MegaBasic informs
you that you are about to write your program in Binary Format, and requests your
confirmation. By answering N (for no), the SAVE is aborted. This extra confirmation is
not requested if the destination file is new.

The MS-DOS and Xenix 386 operating systems organizes files in a hierarchical structure
of files and subdirectories. To access a file, you must therefore specify a path of names
from the top of the hierarchy down to the desired file. MegaBasic supports pathnames
in any form acceptable to the host operating system. For example the file ../x refers to
the file named X in the directory just above the current directory. Consult your
operating system user’s manual for detailed information about how to use and specify
pathnames. You should also read the material in Appendix B, Section 1 of this manual
for some differences between MS-DOS and Xenix regarding the formation of correct file
and directory pathnames.

One word of caution is in order here. There have been various pathname management
utilities for MS-DOS operating system to allow programs which were never designed to
work in the pathname environment to use files in some or all subdirectories. Such
programs may make files in those subdirectories appear as if they exist in the current
directory. This can cause problems with MegaBasic or other programs that have been
properly designed to take full advantage of the pathname environment, as they can be
fooled into thinking that such files really do reside in the current directory. Therefore
avoid such programs when using MegaBasic. Although it may work, MegaBasic is in no
way guaranteed to work in systems that have such programs installed.

LOAD <pr ogram file name list>

Loads one or more program files into memory and displays their size and the date/time
of most recent modification. If no program is present in the current workspace,
MegaBasic loads the file into memory without further attention. If a program is already

2

2-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

present, MegaBasic lets you choose to either replace it with the incoming file, or else
preserve it and load the file into a new workspace. In either case, MegaBasic selects the
receiving workspace as the current workspace and assigns it the name of the file just
LOADed. Using successive LOADS, you can bring into memory, one at a time, up to 64
programs simultaneously, limited of course to the amount of memory actually available
in your machine.

When you specify more than one program file in the LOAD command, they are each
LOADed into separate workspaces from the one you are in, and leaves you in the same
workspace from which you started. The file names must be separated from one another
in the LOAD command with spaces.

Before erasing the contents of a workspace prior to loading another program into it,
MegaBasic looks to see if it contains original work which would be lost. If so, MegaBasic
informs you and gives you the opportunity to abort any further LOAD action. MegaBasic
never lets you destroy original, unsaved work without confirmation.

If the program file is not found in the directory implied in its name, MegaBasic searches
each of the subdirectories specified in the MS-DOS alternate PATH= list maintained by
the operating system, in order to find the program. See Chapter 10 for further details
about the file lookup order.

Wherever the program came from, MegaBasic retains its full drive and pathname so that
any subsequent SAVE commands can write the program back to its original file and
directory no matter what the currently selected directory happens to be.

Loading Programs Stored in Text Format

MegaBasic programs are normally stored in a special coded form on the file.
Occasionally, you may have a text file containing program text from another system or
different dialect of that you wish to convert to the MegaBasic system. You can store
MegaBasic programs in ASCII text format, by simply LISTing the program source to
an open file number. This format can be processed by any text processing facilities
present on your computer system, and then LOADed back again as needed. To be
acceptable, a text file must conform to the following rules:

� Each line ends with a carriage return (ASCII 13). When a line-feed and a carriage
return appear in pairs, MegaBasic ignores the second character of the pair (discarding it)
and uses only the first character.

� MegaBasic ignores empty lines, i.e., lines consisting of only spaces and a carriage
return.

� MegaBasic reads text files to the end or until it reads an end of file mark (normally
an ASCII 26 code). You can specify a different code using PARAM(9) if the normal
ASCII 26 value is inappropriate.

� Lines do not have to begin with line numbers, but MegaBasic accepts them if they
appear. To lines without line numbers, MegaBasic automatically assigns line
numbers one greater than the previous line loaded. Hence a text file without any
line numbers will be automatically numbered: 1, 2, 3, and so on. MegaBasic uses line
numbers to decide how to order the lines as it loads them.

� Lines longer than 255 characters are broken into two or more lines of no more than
255 characters each. These resulting lines will likely require editing, due to the
arbitrary divisions imposed. You should therefore try to avoid such long lines
whenever possible.

2

2-17GFK-0256 Chapter 2 MegaBasic Commands

� The text file must not exceed 65535 bytes in length. Attempting to LOAD files longer
than this will result in a Length Error.

� Upper and lower case do not matter, but MegaBasic will impose its own upper/lower
case conventions on the resulting program.

Program Version Control

To help you manage the various versions of your MegaBasic program, MegaBasic
automatically maintains a count of the number of times that you SAVE your program.
This count is incremented each time you SAVE your program and the program has
changed since the last time you saved it (i.e., redundant SAVES do not count). You can
access this count by opening the program file and reading the count word (16-bits) from
position 14 in the file:

Open #5,“program.pgm”; filepos(5) = 14;
Read #5,@count; close #5

Given two versions of a program, their counts can tell you which version is the most
recent one, regardless of their dates in the file directory. At any time, you can alter the
count field directly (using a WRITE statement) for special purposes (but be sure you alter
nothing else around it). SAVE counts will wrap around to zero after 65536 SAVES, but
such a number is not likely.

2

2-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Editing and Alteration Commands

These are all the commands provided by MegaBasic to revise your program by editing
source lines, to make global substitutions, to merge programs from other files into the
current program, and other modifications. The following list summarizes them:

 EDIT
Selects program lines by range and optional search string for
rapid editing and display. You can abbreviate EDIT as ED.

CHANGE
Replaces one string for another throughout a range of pro-
gram lines. One-at-a-time user-verify option, and wild-card
characters within the target string are available. You can
abbreviate CHANGE as CH.

 NAME

Instantly renames any user-assigned name (identifiers,
labels, etc.) as any new name. It is also able to display all
existing names ordered alphabetically. You can define vari-
ous selectors to restrict the names displayed to those with
certain attributes.

DEL Deletes any range of program lines.

 REN

Renumbers any range of lines to any other range with a fixed
increment. You can rearrange program blocks by re-
numbering them to the desired destination sequences. Mega-
Basic updates all line number references to renumbered lines.

MOVE
Moves any range of program lines to another starting line
number. Preserves the increments between the lines moved.
MegaBasic maintains line number references accordingly.

COPY
Creates a second copy of a range of program lines, renum-
bers it, then inserts it at another line number in the
program. MegaBasic updates line number references
within the copied lines.

DUPL
Duplicates any range of program lines and inserts them
into the program at any line number. DUPL preserves the
increments between line numbers and maintains local line
number references.

MERGE

Merges selected lines from a program file or workspace into
the current program by line number. You can specify the
starting line number where you want the merged lines to
go and source line ranges to merge. MERGE replaces
existing lines with new lines wherever their line numbers
match.

2

2-19GFK-0256 Chapter 2 MegaBasic Commands

EDIT [<line range>][,<search string>][,<options>]

Lets you edit any sequence of lines in your program. MegaBasic displays each line and
positions the cursor at the beginning of the line (on the line number). You can then edit
this line using the editing control keys described in Chapter 1, Section 6. Only when you
type the ENTER key (or carriage return) will MegaBasic accept this line and proceed to
the next one in the line range specified or implied. You may skip over a line, leaving it
unchanged, by typing a carriage return without making any changes. You can specify
several optional arguments to focus your efforts on the exact area of interest:

<line range>

Specifies the range of lines that you wish to sequence
through for editing. Unlike all other commands that use
line ranges, a single line number implies the range of
lines from the number specified to the end of the
program.

 <sear ch strings>
Specifies a search pattern that MegaBasic uses to filter
out lines that you do not wish to edit. MegaBasic only
presents you with the lines that contain the search
string and excludes all others.

<options>

Specifies zero or more single-character switches that
alter the way MegaBasic conducts program line
searches. See the earlier discussions in this Section for a
complete explanation of <options> (Chapter 2,
Section 1) and <search strings> (Chapter 2, Section 1).

The editing process steps from line to line until you have edited the last line of the line
range, or until you type a CTRL-C or ESC, or until you enter a new command. Anything
without a line number is considered a command and therefore if the first key you type
(after a line is presented) is not a digit or editing control character, edit mode exits
automatically and the character becomes the first character of the next command.
Whenever you exit the edit mode while a line is presented on the screen, MegaBasic
erases the line shown before accepting the next command. If you want to bring it back
and continue editing, use F5 or Ctrl-R .

At any time during the EDIT mode you can type a Ctrl-K (up-arrow on some
terminals) to edit the line preceding the current line being shown. Repeated use of
Ctrl-K sequences backward through the program one line at a time. See Chapter 1,
Section 6 for a complete explanation of this key. To get the most out of the EDIT process,
you should understand the material presented in Chapter 1, Section 6.

If you specify the <search string>, MegaBasic will present only those program lines
(within the given line range) that contain the string specified. Upper and lower case

letters in the search string are equivalent. You must enclose the string with quotes (““ or
”) if it contains any commas, significant leading or trailing blanks, or it begins with a
period (.), digit or dollar sign ($). When MegaBasic finds a line that contains a <search
string>, the entire line is displayed and the cursor is positioned in the line where the
<search string> was found. At that point you can edit the line or skip it by typing a
carriage return, after which MegaBasic skips to the next line containing the <search
string>.

For flexibility, your search string may contain special wild card characters that match any
character. This special character, a question mark (?), may appear anywhere in the
search string (except as the first character) and as many times as desired. With this
concept, the string A??= will match all assignment statements with variable identifiers 3

2

2-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

characters long beginning with the letter A. The following examples illustrate and
describe each of the various forms of the EDIT command:

EDIT Edit the program sequentially from the first line.

EDIT 175 Edit sequentially from line 175 and on up.

EDIT 200-299 Edit the lines in the 200 range and STOP.

 EDIT .subr Edit the lines in the function or procedure named SUBR
and STOP.

EDIT “i,j” Edit all lines containing the string i,j.

EDIT ‘“’ Edit all lines containing a double quote (”)

EDIT 850,rem Edit lines containing rem numbered 850 and up.

 EDIT 300-499,read Edit lines containing the string read in the lines numbered
from 300 to 499.

 EDIT M???= Edit all lines containing a five character sequence
beginning with M and ending with =.

After editing a line and entering it, MegaBasic automatically presents you with the next
line that follows it in the line number sequence. Because of this, if you edit the line
number the edit will continue from that point in the program. You can re-start the
editing sequence anywhere in the program by simply typing an unused line number at
the desired starting point (followed by a carriage return). This normally deletes the line
there, so be sure that the number you select is not in use.

You can edit an executing program after you interrupt it with a CTRL-C. Afterward,
you can usually continue its execution from where you interrupted it. This may be
desirable when, during debugging your program, you discover a programming error
requiring a small correction. However, there are certain program lines which you cannot
alter without disrupting program continuability. When you edit such a line, MegaBasic
will inform you with the message: Program continuation no longer possible. Consult the
CONT command in Chapter 2, Section 4 for complete information about the effect of
program alteration on execution.

When an error occurs in a running program, MegaBasic places a copy of the line in
which the error occurred into the editing buffer. This lets you immediately examine and
modify the offending line after MegaBasic reports an error in it. MegaBasic does not
automatically display an erroneous line, but you can access it by typing the appropriate
previous line access control keys.

Whenever you enter new or edited lines into a program, MegaBasic does not, in general,
perform any syntax checks on the line. However, there are two corrective actions
MegaBasic takes automatically. If you forget the closing quote (’ or ”) on a string
constant, MegaBasic automatically adds one to the end of the line. Since this can
potentially enclose unwanted characters within the string (e.g., subsequent statements
on the same line), MegaBasic provides a warning message to indicate this action. Also,
since some users have a tendency to place a semicolon (;) at the end of a program line,
MegaBasic removes trailing semicolons from any line that you enter.

CHANGE [<range>,] <search$>,<replace> [,<opts>]

Global search-and-replace may be done with the CHANGE command, which replaces one
string with another everywhere or selectively within a line range. After you enter a
CHANGE command, MegaBasic will request a yes or no response to the question: Verify?.
An no response causes an immediate replacement of all occurrences found. A yes

2

2-21GFK-0256 Chapter 2 MegaBasic Commands

response tells MegaBasic to request confirmation of each replacement before actually
making any change. This allows you to individually control each replacement as it
happens. Upon completion of a CHANGE command, MegaBasic displays the number of
changes made. The paragraphs below summarize the various CHANGE command
arguments:

<range>
Specifies the range of lines that you wish to search and change.
When you omit the <range>, CHANGE acts upon the entire
program.

 <search$>

Specifies a string of characters that you want replaced by
another string. Lines which do not contain the search string
remain unchanged. Special characters can be used to match
any character or string of characters.

 <replace>
Specifies the string that you want to substitute for each
instance of the <search$>.

 <opts>
Specifies zero or more single-character switches that alter the
way MegaBasic conducts program line searches.

These arguments are fully described in Chapter 2, Section 1 and you should understand
this material in order to take full advantage of the CHANGE command. When you
include wild-card characters in the <search$>, you should use the verify option to avoid
unintentional replacements. The following examples show various ways you can type
CHANGE commands:

CHANGE this, that
Change the string this to the string that throughout
the program.

CHANGE “A(i,j)”,V(j) Change A(i,j) to V(j) throughout the program.

CHANGE th??e,those Change sequences that match th??e to those.

CHANGE 100-199,x,y Change x to y in the line range 100 to 199.

CHANGE 560, 23, -23 Change 23 to -23 throughout line 560.

It is wise to use the verify option when you specify a numeric search string in a CHANGE
command. Short numbers can easily occur within longer numbers and unintentional
replacement can cause considerable work to repair. To a lesser degree, unintentional
replacement of sub-strings can occur with any search string, and for that reason you
should be careful using CHANGE. When in doubt about what a search string will match,
you can always try it first in a LIST command to see what matches before changing
your program.

CHANGE is a very general purpose tool that you can apply in a wide variety of situations.
However if you are changing line numbers or renaming user assigned names (e.g.,
variable or function names), you should employ the REN and NAME commands for these
purposes instead of using the CHANGE command. These special purpose tools not only
execute faster, but they perform their specific task automatically and completely. For
example, when REN changes a line number, it also changes all references to that line
number, wherever they may be throughout the program (search strings do not even
access the line number portion of a program line). The NAME command can rename a
variable I to J without changing all the other I’s to J’s that are not variables (e.g., in
remarks or string constants).

You can append an additional parameter string to a CHANGE command, called option
switches, to enable or disable various additional search capabilities. This optional

2

2-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

argument consists of a comma followed by one or more single-character option switches.
Each option switch character turns on or off a different feature. Once you switch a
feature on, it stays on for the CHANGE, EDIT and LIST commands until you explicitly
turn it off in a subsequent option string. See Chapter 2, Section 1 for description of all
available option switch characters.

Two of the option switches let you define either the ampersand (&) or the asterisk (*) as
a special character in a <search string> that matches any string of characters. To assist
your understanding of this any-string character in search and replacement strings, a
number of example CHANGE commands follow below. Each example assumes that some
previous command has turned on the (, * and # options, and that you have read and
understood the option switch material presented back in Chapter 2, Section 1:

 Change rem*, rem
Removes the text from all program
remarks.

 Change “X(*,*)”, “X(*,S,*)”

Inserts an additional subscript between
the 1st and 2nd existing subscripts of
all references to array X(). (Quotes
preserve the commas.)

 Change “X(*,*,*)”, “X(*1,*3)”
Deletes the 2nd subscript expression
from all references to array X().

Change “fn(*,*)”, “fn(*2,*1)”
Moves the leading parameter of func-
tion fn() to the end of the list in all
references.

 Change *;*;*;, *3;*2;*1;
Swap the 1st statement with the 3rd
statement on every line.

Change *;*;*, *1;*2;*3;*2
Append a copy of the 2nd statement
on the line to the end of the line, on
every line.

The important thing to understand from these examples is how to manipulate text by
specifying only its surrounding context. You should try out these techniques on some
practice source programs (without saving the results) to get a good feel for how they
work. When appropriate, any-string substitutions can replace many hours of editing
with a few minutes of effort.

2

2-23GFK-0256 Chapter 2 MegaBasic Commands

NAMES [#<device>,] [<selector LIST>]

Without any arguments NAME invokes an alphabetical listing of all user-assigned names
used for variables, functions, procedures and line-labels. This allows a quick review of
the names you have assigned to all the objects in your program which you have defined.
Typographical errors in such names will generally appear near the correct spelling
because of the alphabetical ordering of the display. You can control long or overly rapid
displays using the same pause controls supported by the LIST command. You can
direct the NAMES listing to any output device or open file by specifying the #<device>
argument.

The NAME command can also display the names of entities with specific attributes, by
listing the desired attributes as arguments to the NAME command. For example, NAME
FUNC will display all the user-defined function names; NAME $ FUNC will display only
those functions which return a string result. The attribute selectors may be any from the
list.

FUNC User-defined functions of any data type

PROC User-defined procedures

STRING String variables, arrays and functions

DIM Variables currently defined as arrays

REAL Floating point variable and function names

INTEGER or INT Integer variable and function names

STRUCT Structure fields of any type

SHARED Shared entities used in the current program

GOTO or: Line label and line number references

 NOT or” All selectors following NOT or a minus sign become de-
selectors, i.e.,matching items are omitted from the listing.

You can type any combination of selectors in any order after the NAME keyword,
separated from one another by spaces. MegaBasic displays only those names that satisfy
all the selectors specified, for example:

NAME SHARED $
FUNC

Displays all string functions in use by the current program which some
package has defined as SHARED.

NAME DIM $ Displays the names of all string array variables.

NAME: Displays all the line labels in the program.

NAME $ NOT FUNC
DIM

Displays any string name not a function and not dimensioned
(i.e., simple string variables).

NAME NOT :
STRING Displays all names except strings and line labels.

NAME INTEGER
FUNC Displays the names of all integer functions

NAME INTEGER
DIM Displays the names of all integer arrays.

NAME SHARED
REAL

Displays names of all floating point variables and functions which are
currently declared SHARED.

2

2-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The NAME command depends on the current data type defined by each name. To obtain
this information, MegaBasic processes all DEF statements in when you type the NAME
command. If there are syntax errors in any DEF statements then MegaBasic aborts the
NAME command and reports the error found. Also, the names of arrays and the names
of SHARED objects defined in external packages will not be shown unless you have
executed the ACCESS statements that bind the SHARED names to their references. NAME
provides a count of the names it displays after listing them.

NAME <old name>, <new name>

By following the NAME command with two names (of identifiers), separated with a
comma, MegaBasic will instantly rename all occurrences of the first name as the second
name throughout the program. An error message results if the first name does not
appear anywhere in the program or if the second name is already in use or if either
name is a MegaBasic reserved word. An error also occurs if you quoted either name like
a string; just specify the names as if you are typing them into your program.

This command is specifically designed for renaming identifiers and since it is not a string
match-and-substitute process, it will not affect REMarks or quoted strings which contain
similarly spelled character sequences. You cannot restrict NAME to a line range and no
verify option is available (unlike the CHANGE command). You can spell NAME as either
NAME or NAMEs.

DEL <line range>

Deletes the specified line range from your program. A dollar sign ($) may used to
denote the last line of the program. Use DEL for block deletions rather than single line
deletions, because you can more easily delete a single line by typing its line number and
an immediate carriage RETURN (i.e., an empty program line). For example DEL 30~399
deletes all lines in the 300 range. See the discussion on specifying line ranges back in
Chapter 2, Section 1.

REN [<star ting line>[,<stepsize> [,<line range>]]]

Provides a general program renumbering facility that renumbers any range or subrange
of lines to any other range. MegaBasic does not permit renumbering that would cause
line interleaving or duplicate line numbers. However it does support rearrangement of
whole groups of lines as well as simple renumbering, given the appropriate command.
MegaBasic adjusts all references made to lines renumbered by the process, wherever
they may be throughout the program. Each of the arguments to REN is optional and
MegaBasic assumes specific default values for them when you omit them, as described
below:

<starting line>
Starting line number where you want the renumbered lines
to begin. Line number 10 is used if you omit this argument,
which renumbers the entire program by 10 from 10.

<step size>
Increment between the renumbered lines and defaults to
10 if omitted. It must be 1 or greater and it cannot be so
large that it forces any line number beyond 65535.

<line range>
Range of lines to renumber in your program as they are
before renumbering. If you omit the <line range>, the
entire program is renumbered.

2

2-25GFK-0256 Chapter 2 MegaBasic Commands

All arguments are optional, but you have to omit them from right to left. The following
examples illustrate how you might apply the REN command:

REN Moves entire program to 10 by 10s.

REN 250 Moves entire program to 250 by 10s.

REN 375,5 Moves entire program to 375 by 5s.

 REN 500,12,2000-$
Move lines numbered 2000 and up into the range 500 by
12s.

REN 200,3,800-899 Move all lines in the 800 range to 200 by 3s.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic always properly updates references to renumbered lines throughout the
program. Line number references to nonexistent lines remain unchanged. The resulting
range of lines affected by any REN command will become the .. current line range (see
Chapter 2, Section 1).

MOVE [<star ting line>][, <line range>]

Moves lines from any range of line numbers to a new starting line number, while
maintaining the existing increments between the lines. Line number references to the
lines moved are automatically updated throughout the program as needed. Both of the
arguments to MOVE are optional and MegaBasic assumes specific default values for them
when you omit them, as described below:

<starting line>
Starting line number where you want the block of lines to be
and defaults to line 100 if you omit it (i.e., MOVE without
arguments moves the entire program to line 100).

 <line range>

The block of lines that you wish to move, prior to moving
them. When you omit this argument, MegaBasic moves the
entire program to the <starting line> specified. See the com-
plete discussion on specifying line ranges in Chapter 2,
Section 1.

MOVE is like the REN command but without any line increment step size. The following
examples illustrate the variety of ways to type MOVE commands:

 MOVE Move the entire program so that its first line starts at line
number 100.

 MOVE 4000 Move the entire program so that its first line begins at
4000.

MOVE 335, 450 Move line 450 to line number 335.

 MOVE 800, 500-$

Move all program lines numbered 500 and up so that
the first of these begins at line 800. This form is
particularly useful for opening up holes in the line
number space for a new block of program lines.

MOVE 900, 300-399 Move lines in the 300 range to the 900 range.

MegaBasic validates the implied operation that you request and aborts with an Out Of
Bounds Error to prevent overlapping line ranges or illegal line numbers. MegaBasic

2

2-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

properly updates references throughout the program to line numbers that have moved.
Line number references to non-existent lines remain unchanged. After a MOVE
command, the .. current line range, discussed in Chapter 2, Section 1, is the set of lines
moved.

COPY [<star ting line> [,<step> [,<line range>]]]

Copies all lines within one line range to a second empty line range, leaving the original
lines intact and unchanged. Line number references to both the original and the copy
are properly maintained. Each of the arguments to COPY is optional and MegaBasic
assumes specific default values for them when you omit them, as described below:

<starting line>

This is the starting line number where you want the new
block of lines to begin. MegaBasic assumes line number 10
for this argument if you leave it off. Omitting it also implies
that you have also omitted the other arguments as well.

<step size>

This specifies the increment or spacing between the copied
lines. It defaults to 10 if you omit it. The step size must be 1
or greater, and it cannot be so large that it forces the last line
number beyond 65535. MegaBasic traps both of these errors.

<line range>

This specifies the block of lines that you wish to copy, as
they are numbered before the copy. When you omit this
argument, MegaBasic copies the entire program to the
<starting line> specified. See the complete discussion on
specifying line ranges in Chapter 2, Section 1.

COPY works just like renumber, except that the original lines remains unchanged and a
renumbered copy appears elsewhere in the program. The following examples illustrate
the various forms of COPY:

COPY Copy the entire program to line 10, stepping by 10.

COPY 10000 Copy entire program to line 10000, stepping by 10.

COPY 4000,5 Copy entire program to line 4000, stepping by 5.

COPY 350.1.475
Copy line 475 to line number 350. The step size of 1 is super-
fluous because you are copying only one line. Editing line
475 to change its line number to 350 might be easier.

COPY
100,20,400-499

Copy the lines in the 400 range to line 100, incrementing by
20 between lines.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic properly updates all line number references throughout the program to both
the original and the copied lines. Line number references to non-existent lines remain
unchanged.

2

2-27GFK-0256 Chapter 2 MegaBasic Commands

DUPL [<star ting line>][, <line range>]

Duplicates all program lines within a line range to a second empty line range, using the
same increments between the lines as the original. DUPL relocates line number
references as needed. Each of the arguments to DUPL is optional and MegaBasic
assumes specific default values when you omit them, as described below:

 <starting line> Destination line number of the new block. Omitting it
 (i.e., no arguments) duplicates the entire program at line 10.

 <line range>

Specifies the source block range to duplicate. When you
omit this argument, MegaBasic duplicates the entire
program to the <starting line> specified. Line range
specification is described on Chapter 2, Section 1.

DUPL is like the COPY command without the line increment argument. The examples
below illustrate a variety of DUPL commands:

 DUPL Copies the entire program into line 100 with the same
inter-line step sizes.

 DUPL 12000 Copies of the entire program at line 12000 with the
same line increments.

 DUPL 1255, 425 425 Copies line 425 on line 1255. You can do the same thing
by editing line to change its line number to 1255.

DUPL 500, 200-$ Copies all lines 200 and up and put the first line to 500.

DUPL 1200, 800-999 Copies lines within the 800 to 999 range to 1200.

MegaBasic always validates the implied operation that you request and aborts with an
Out Of Bounds Error to prevent overlapping line ranges or illegal line numbers.
MegaBasic properly updates all line number references throughout the program to both
the original and the duplicate lines. Line number references to non-existent lines will
remain unchanged.

MERGE <pr ogram> [<source/destination specs>]

The MERGE command provides a general facility for adding MegaBasic code lines from
other files or workspaces to your current program. It combines the lines of the two
programs according to their line numbers. Source lines with the same line numbers as
lines in the target program replace those target lines; source lines with differing line
numbers are inserted into the target program. Meaningless code may result from
overlapping and interleaving lines indiscriminately.

The <program> argument specifies the name of either a file or a workspace. If you
specify a file, it is brought into memory for the MERGE operation and removed upon
completion. If you specify a workspace name (i.e., the name of a program already in
memory), the MERGE is performed without modifying its contents and the source
program remains in memory on completion.

Without any further arguments, the entire source program is merged into your target
program. However you can follow the <program> argument with one or more additional
arguments that specify where to put the merged lines into your target program and line
ranges to merge from the source program. You have to separate multiple specifications

2

2-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

from one another with a comma and each specification can take any of the following
forms:

 <start> Merges all source lines into the target program start-
ing at the line number specified.

 <fr om>-<to> Merges source lines from the range specified into the
same line numbers of the target program.

<subr name>
Merges the source lines of the named subroutine
(i.e., a function or procedure name) into the same
line numbers of the target.

 <start>:<fr om>-<to> Merges source lines from the range specified into the
target program at the starting line number specified.

<start>:<fr om>-
Merges all source lines at or above the line specified
into the target program at the starting line number
specified. The dash (-) is optional.

<start>:<subr name>
Merges the source lines of the named subroutine into
the target program at the starting line number speci-
fied.

For example, MERGE PROG 100:500-699, 200:SORT, CALC merges lines 500 to 699
from program PROG into the current program at line 100, all lines of subroutine SORT
into line 200 and all lines of subroutine CALC into the same line numbers they already
have.

The <start> line number actually renumbers the incoming program lines so that they
begin on the line number you specified. MegaBasic accomplishes this by adding the
appropriate constant value to each and every line number and line reference so that the
beginning line number comes out as desired. This renumbering process affects neither
the current program nor the contents of the source program file you are merging.
MegaBasic does not proceed with any merge that would lead to line numbers greater
than 65535 and reports such a case as an Out Of Bounds Error.

Perhaps the most useful capability is the <subr name> specification, which lets you
merge procedures and functions from program files or other workspaces directly into
your program by name. When you specify this symbolic line range, MERGE searches the
source program for a procedure or function by that name. If found, the effective line
range specified consists of all lines of the subroutine starting with the initial DEF
statement, along with any immediately preceding REMark lines, up to and including the
line containing its terminating FUNC END or PROC END statement. Failure to find the
named subroutine in this manner terminates MERGE with an appropriate error message.
REMarks that follow subroutines are not included. Incorrectly formed subroutines (e.g.,
missing FUNC/ PROC ENDS) or errors encountered in other DEF statements along the way
may also terminate MERGE.

Since you can specify multiple ranges and errors do terminate MERGE operation,
MegaBasic describes each range as it is being merged so that you can tell how far it
progressed if an error does occur. Each source/destination specification is processed and
completed from left to right as specified in the command and any error encountered will
immediately terminate further MERGE processing.

Automatic Target Placement
Normally, the merged lines go into the specified target lines numbers, displacing
anything that resides there. Often however, this invites problems and mistakes when

2

2-29GFK-0256 Chapter 2 MegaBasic Commands

you in the process of building a new program by pulling in blocks of code from other
programs .

By preceding any <start>:<source> specification with a plus sign (+), MegaBasic
searches for an available target range beginning at or above the <start> specified large
enough to hold the <source> lines. The target destination will always be a block of line
numbers beginning on a multiple of 100. If no <start> was specified, the search begins at
line 1000. An Out Of Bounds Error occurs if no available target region could be found.

2

2-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Execution Control and Debugging Commands

This section describes the MegaBasic commands that you use to run your program, test
for bugs, stop and examine some variables, continue where you left off with
single-stepping, resume until some condition becomes TRUE or FALSE, etc. The flexible
debugging environment provided for controlling and monitoring program execution
reduces the effort needed to fully develop software, so any extra effort you spend to
master these commands will quickly pay off with more productive testing and
debugging sessions. The list below summarizes the execution and debugging
commands:

Direct
Statements

MegaBasic always attempts to execute any line of MegaBasic
statements without a line number.

 RUN Clears memory, evaluates the static definitions (DEF statements)
and begins program execution.

 Ctrl-C Aborts the execution of any program in progress and puts you
into the command level. The program may be re-started later
again later.

CONT

Re-starts a program that you previously interrupted with a
CTRL-C, or one that interrupted itself with a programmed
STOP. Continuation is possible even if you have modified the
program, changed variable values, saved it on a file, or performed
virtually any other command operation.

TRACE

Selects various options that show the progress and current state
of program execution at the program source level as execution
proceeds. TRACE provides many dif ferent options and controls
for selective display and conditional invocation of execution trac-
ing. TRACE modes are set or reset on a workspace by workspace
basis.

CHECK
Quick check of the program in the current workspace for
common syntax errors like wrong line numbers, improperly
formed loops, unbalanced parentheses, etc. CHECK reports all
errors at once.

Executing Direct Statements

Whenever you type a line without a line number into MegaBasic at the command level,
MegaBasic will immediately execute it. If it is a command then MegaBasic performs that
command. But you can also type a program statement or line of statements and
MegaBasic will execute it immediately as if it were a command. This technique is called
direct statement execution.

2

2-31GFK-0256 Chapter 2 MegaBasic Commands

For instance you can interrupt a running program and display the contents of an array
before continuing. Or you may want to use MegaBasic as an intelligent calculator by
displaying complex numerical expression values. Direct execution is an important tool
for debugging programs, but you can also enter any statements directly simply to
experiment and learn about them. The following example illustrates how you might
display an entire text file on the screen with one direct statement:

Open #8,“TEXT”;
While input(8); Input #8,L$; Print L$; Next

Direct FOR, WHILE and REPEAT loops execute properly only when you enter the entire
loop as one line. Direct expressions may access any built-in or user-defined functions,
GOSUBS and procedures at any time. However if there are any syntax errors in a DEF
statement anywhere in the program, MegaBasic reports them for you to correct before
you can execute any direct statement. This is because MegaBasic performs a local
initialization of your program DEFinitions prior to executing direct statements.

GOTOs cause a CONTinuation (see above) followed by a branch to the line number
specified. A direct RETURN also CONTinues program execution, followed by a RETURN
from the current subroutine level (unless the program was not CONTinuable within a
subroutine). You can alter the contents of program variables, and such alterations carry
over to CONTinued execution.

Before executing a direct statement, MegaBasic scans your entire program for DEF
statements, so that it can satisfy any potential references in the direct statement to
user-defined function and procedure. MegaBasic reports any errors uncovered during
this process, and if there were any, terminates without executing the direct statement.
Therefore, don’t be surprised if an error message with a line number appears after you
enter a perfectly correct direct statement that doesn’t even use any functions or
procedures. Because of this DEFinition scan, you can type new user-defined functions
and procedures into your program and then immediately proceed to use them in direct
statements without ever running the program. This is especially useful for quick testing
of new definitions.

RUN [<line number or command tail>]

RUN starts program execution from scratch and can begin at the first program line or
from the optional <line> specified. RUN erases any data left over from prior runs or
direct statements before program execution commences. You will not usually specify the
optional line number, but it can be useful when the main program has several entry
points for testing or debugging purposes.

MegaBasic also lets you execute programs from the operating system command level.
You do this by typing the program name on the same line that invokes MegaBasic (e.g.,
BASIC PROGRAM as a command to the operating system). Also, your program can
access the portion of the operating system command that follows the name of
MegaBasic. You can append additional arguments in this command string, known as the
command tail, to pass a small amount of data to the program you are running, as in the
operating system command:

BASIC PROGRAM DATA1 DATA2

To make these parameters available to the program, MegaBasic stores all characters
following its name (e.g., PROGRAM ARG1 ARG2) into the edit buffer, which is accessible
using the EDIT$ function (Chapter 9, Section 4). Your program is responsible for
extracting such input parameters from the command line when its execution begins. To

2

2-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

test this extraction process from MegaBasic, you can type the argument sequence in a
RUN command (e.g., RUN ARG1 ARG2). When the program begins, this string will reside
in the edit buffer for subsequent access. This technique is useful for passing file names to
programs and for using MegaBasic programs in batch files.

Which ever workspace you are in when you give the RUN command becomes the main
program. Prior to beginning program execution, RUN performs the following sequence
of operations:

� The program residing in the currently selected workspace becomes the main
program. RUN erases all data currently defined by the main program all initialized
variable storage to free space. A No Program Error results when you type the RUN
and the current workspace is empty.

� RUN marks all temporary workspaces as free, and releases any data they own. This
consists of all unaltered packages brought into memory with INCLUDE or ACCESS
statements.

� RUN preserves all packages that you LOADed into memory along with any local data
they currently have defined, and it severs all ACCESS relationships between them
and the current workspace. RUN preserves the data defined by such packages so
that special purpose packages can remain available indefinitely (e.g., debugging
routines or completely independent programs).

� The main program is set to permanent status (regardless of its prior status). The DEF
statements throughout the program are all initialized and then the program begins
execution.

A thorough understanding of the material presented in Chapter 10 is necessary for
effective development, testing and debugging of programs spanning more than one
workspace.

Ctrl-C

This is not a command, but a control key used for stopping whatever process is currently
underway: a sort of a panic button. When CTRL-C is struck during execution of a
program, it STOPS program execution like a STOP statement, but can be trapped like an
error. This is useful during the debugging phase to see where execution is currently
happening or to immediately terminate an erroneous program.

When a program stops for any reason (i.e., END, STOP, errors), MegaBasic selects the
workspace of the program containing the line in which the stop took place. This is most
convenient for debugging purposes and eliminates the need for explicitly selecting
packages (via USE) in many instances. MegaBasic displays the current package name at
the Ready prompt whenever it differs from the one selected at the last Ready prompt.

Your program can trap a CTRL-C interruption using an ERRSET statement (Chapter 6,
Section 4) as a type 15 error. This provides a programmed response to a CTRL-C, instead
of interrupting execution. Also, the PARAM(1) statement (Chapter 9, Section 5) can
enable/disable the CTRL-C apparatus during program execution. Since the CTRL-C
detection mechanism consumes all keyboard characters typed during execution,
disabling CTRL-C is useful for both preventing user intervention and permitting
one-at-a-time console character input.

2

2-33GFK-0256 Chapter 2 MegaBasic Commands

When you type a CTRL-C at the MegaBasic command level, it aborts the current entry
or command and then gives the Ready message, instead the STOP message. MegaBasic
generates the STOP message to indicate the interruption of a running program. The
CTRL-C break character provides this terminating effect only when you type it from the
console keyboard. It is just another control character when entered from any other
device. PARAM(1) also lets you use the CTRL-Break mechanism of MS-DOS to interrupt
program execution without consuming input typed during execution.

CONT

Resumes program execution after a CTRL-C or programmed STOP. Error information
functions (e.g., ERRLINE, ERRMSGS, etc.) are not restored and subsequently relate to the
CTRL-C instead of to some prior error. Between the STOP and a subsequent CONTinue ,
you can execute direct statements without losing the ability to CONTinue. You can
access variables and OPEN files with direct statements while in the command level.
Regardless of what package workspace you are in when you type CONT, MegaBasic
always switches to the workspace in which the STOP took place, prior to resuming
execution.

You can also modify the program source to some degree without losing the ability to
CONTinue execution. This is powerful during the test and debugging phase of your
program development. You can insert new program lines to temporarily show certain
intermediate values and computations; you can locate and correct programming errors
then re-test them all during one run of the program.

CONTinuability can be lost if you modify certain key program lines. This includes
program lines that called GOSUBS, procedures or functions that are still active, the
beginning of loops and the line on which execution was interrupted. You can always
determine such lines by using the TRACE RET command, which displays the entire active
RETURN path. CONTinuation is also lost when a REN, MOVE, DUPL or COPY command
changes the sequence of any program lines. MegaBasic informs you that
CONTinuation was lost following any action on your part which blocks
CONTinuation . However it is always safe to insert additional lines into the program
without ever affecting CONTinuability .

When your program is in a CONTinuable state, you can cause a continuation by typing
one of several executable direct statements, instead of the CONT command. These
statements are given below along with a description of what they do:

 GOTO CONTinues execution at the program line specified by the GOTO statement
(e.g., GOTO 150).

RETURN

CONTinues at the first statement following the most recent GOSUB or
PROCedure call. If no such calls are currently active, an Unexpected RETURN Error
results. If your program is suspended inside a function, instead of a GOSUB or
procedure, you must also supply a RETURN value to avoid causing an error.

 NEXT CONTinues at the first statement following the current FOR, WHILE or REPEAT
loop. If no loops are currently active, an Unexpected Next Error results.

2

2-34 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Trace [#<device>][<line number list>]

The TRACE command provides an excellent environment for debugging MegaBasic
programs. You can invoke the TRACE mode anytime you can type in the TRACE
command. TRACE options are all set/reset on a workspace by workspace basis and, as
with all other commands, TRACE commands of all types affect only the program in the
current workspace. Hence with a multi-package program, you can selectively TRACE
one package without tracing everything, a common limitation in many symbolic
debugging systems.

Typing TRACE by itself will put subsequent program execution into singlestep mode, in
which remaining unexecuted statements of the current program line are shown while
program execution freezes and waits for you to type a TRACE control key. Typing TRACE
with a line number will assert the single-step mode when program execution reaches the
line number specified. TRACE control keys are then used to manipulate subsequent
execution of your program and restrict what is actually traced on the screen. We will
describe these shortly.

You can specify up to eight line numbers to indicate where the single-stepping should
begin. With multiple line number breakpoints set, program execution proceeds
normally until MegaBasic encounters a statement on any of the specified lines. When
this happens, execution enters the single-step mode and MegaBasic clears all the
specified breakpoints. Multiple breakpoints are useful when you want execution to
break at any one of several places, but you do not know which one will be first.

You can direct the TRACE display to a device other than the console by specifying the
device number immediately after the TRACE keyword. However all TRACE control
characters are always accepted from the console keyboard (device 0). When you omit
the device number from the TRACE command, MegaBasic uses the last device number
explicitly specified by a TRACE command, or device #0 if no device number was ever
supplied. Hence, once a device number is set, you do not need to specify it in each
subsequent TRACE command, except to select a new device number.

MegaBasic beeps if you enter an unknown TRACE control character in the single-step
mode. If you single step through a LINK statement (Chapter 10, Section 1) execution
breaks at the first statement of the program (i.e., breaks on completion of segmentation
or overlay statements). Once invoked, the TRACE mode persists until terminated with
the ESC control or an untrapped error occurs during program execution.

Since TRACE mode is set independently on each package, the display generated by the
SHOW command indicates which packages are being TRACEd by placing an asterisk (*)
beside the package type of each package in active TRACE mode.

A description of each of the TRACE keys now follows. MegaBasic immediately acts upon
each key as you type it, rather than waiting for a carriage RETURN as the other
commands normally do.

2

2-35GFK-0256 Chapter 2 MegaBasic Commands

Execution Stepping Keys

 Sp Space-bar steps to the next program statement. REPEAT to observe statement-by-statement
execution.

 -

Step to the next program statement at the same or higher level as the current statement
shown. A dash single-steps like the space-bar except that MegaBasic steps through
GOSUBS, procedures, functions and loops as if they are indivisible statements,
i.e., MegaBasic does not TRACE their internal statements.

N Step to the next program line—the one following the line currently shown.

R Step to the next invocation of the current statement.

 ^
Step to the first statement outside the current subroutine or loop (GOSUB, function, proce-
dure, FOR, WHILE or REPEAT loops). This lets you ignore the remaining details of any
loops or subroutines you happen to fall into while tracing your program.

 T Step to the statement following the next line number transfer, such as after a GOTO,
GOSUB, ERRSET trap, etc. This lets you to skip uninteresting in-line sequences.

 C Step to the breakpoint line—the program line at which the TRACE began after a TRACE
command, or the TRACE line shown when you typed a B control (below).

 B
Marks the currently shown TRACE line as the new breakpoint line and scrolls up one line to
indicate that you typed this command. After the TRACE has continued on to other
program lines, you can step to the breakpoint line by typing the C control (above).

 X
Step to the statement where the current TRACE IF expression becomes TRUE. MegaBasic
executes at least one statement before re-asserting the single-step mode. TRACE IF is de-
scribed in Chapter 2, Section 4.

 Z Step to the statement where the current TRACE IF expression becomes FALSE. MegaBasic
executes at least one statement before re-asserting the single-step mode.

Trace Control Keys

 Esc
Permanently releases your program for normal, untraced execution. The only way to
reinstate the TRACE mode is to interrupt your program with a CTRL-C, enter a new
TRACE command, then CONTinue program execution.

Cctl

A CTRL-C stops the program and enters the command mode, so that you can enter com-
mands and other direct statements. You can resume the TRACE mode using the
CONTinue or terminate the TRACE by entering a TRACE END command. ERRSET state-
ments (Chapter 6, Section 4) will not trap a CTRL-C with TRACE in effect.

 : Invokes your own custom debugging command that you previously setup using the
TRACE: command, as described on Chapter 2, Section 4.

2

2-36 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

You can use CTRL-C to enter the command mode, execute commands or examine
program variables using direct statements, and then resume using the CONTinue
command. However, several TRACE function keys provide convenient, immediate
information about the state of your running application. These are described below:

Trace InformationKeys

 A Displays the active program control structures—same the TRACE RET display
(Chapter 2, Section 4), except that the current DATA read pointer location is also shown.

 F Displays the set of currently open files, including their names, open modes, file sizes and
current file positions- same as the SHOW OPEN command display (Chapter 2, Section 5).

 S Displays the names, sizes and other statistics for all the present workspaces—same as the
SHOW command display described in Chapter 2, Section 5.

 V

Displays the contents of each variable that appears in the current TRACE line. Both the
name of the variable and its contents are shown. It displays strings in quotes with unprint-
able characters shown as underscores. It evaluates subscript and indexing expressions as
needed to access array or string elements. Since this invokes user defined functions in such
expressions, global function side-effects may affect subsequent program operation.

When you type V in the TRACE mode, MegaBasic evaluates each variable shown on the
line and displays it. However, you need to be careful about array or indexed string
variables that contain extended assignments or user-defined functions. For example,
consider the following statement:

X = ARRAY(l,let J+=1)

Every time that ARRAY() is evaluated, its J subscript is incremented. This occurs both
during execution and when TRACEd with the V option. Since this modifies the program
execution state, the V option in such a case can and will interfere with subsequent
program execution. Likewise, references to user-defined functions needed to resolve
variable accesses can also change the execution state and interfere with later execution
(i.e., by modifying global variables).

In general, this difficulty cannot be detected and handled by MegaBasic. The only
defense against its potential interference with your program execution state is being
aware of the pitfalls and avoiding the TRACE V option when you know it can lead to
trouble.

Trace Breakpoint Pass Counts

Sometimes it is useful to delay the actual break until the breakpoint line has been
reached some specific number of times. This is called the breakpoint pass count and you
can specify a separate pass count on each line number breakpoint given in the TRACE
breakpoint LIST , for example:

TRACE 100:5, 850, 2035:415

This TRACE command asserts three breakpoint lines: 100, 850 and 2035. Notice that line
numbers 100 and 2035 are followed by a colon (:) and a number, i.e., the pass count.
When the program is executed, it executes normally until line 100 is reached 5 times, line
850 is reached once or line 2035 is reached 415 times. Pass counts can be any value from
1 to 65535. If the line contains more than one statement, each statement executed in that
line counts as one pass. For example if the TRACE line contains a long loop, the pass
count may actually be consumed during that loop even though the line was entered
only once.

2

2-37GFK-0256 Chapter 2 MegaBasic Commands

TRACE [#<device>J IF <logical expression>

Defines a numeric expression that evaluates to TRUE (any non-zero value) or FALSE
(zero). After you begin or continue execution, your program will run normally (i.e., not
traced) until the expression becomes TRUE as a result of the changing program state. At
that point, MegaBasic enters the single-step TRACE mode, so that you can control
subsequent TRACE operations from there. You can specify a <logical expression> of any
complexity and it may employ user-defined functions if needed. For example, to begin
tracing when your program state makes the value of X equal to Y+Z, enter the following
command:

TRACE IF X=Y+Z

If, after single-stepping through your program, you wish to resume untraced execution
until the same logical expression is again TRUE, type the X command in single-step
mode. To resume tracing when the condition becomes FALSE, type the Z TRACE control.
If you desire a different TRACE condition then you have to type a CTRL-C to get back to
the command mode, enter a new TRACE IF command, then CONTinue program
execution.

Because MegaBasic evaluates the <logical expression> prior to executing each program
statement, complex expressions will slow down your program execution by some slight
but noticeable amount. MegaBasic reports errors in the <logical expression> as errors in
the current program statement.

TRACE: <executable line of statements>

Stores an arbitrary direct statement for later retrieval and execution during the
single-step TRACE mode. Once set up, you can execute this direct statement from the
single-step mode merely by pressing colon (:), in place of one of the other TRACE
controls. One common application for this is the display of various program variable
values and intermediate results while you are TRACing the program. In such a case,
you might type a command such as:

TRACE: Print X,Y,Z, I,A$, I,B$, I,C$

After this command you could RUN or CONTinue your program with the TRACE mode in
effect. From the single-step mode, you can execute the PRINT statement shown above
by simply typing a colon (:). If one executable line is not sufficient for your purposes,
define your own debugging subroutines, place them into your main program or a
separate shared workspace, then call these subroutines from the TRACE: execution line.
This can save you a great deal of debugging time, since it lets you access custom
debugging procedures at the touch of a button. Additional keyboard input may be taken
to select one debugging action from a set of multiple choices; the possibilities are
endless.

TRACE RET

This command displays the RETURN path active at the time that the program stopped
(e.g., CTRL-C, STOP, program error, etc.). The first line number shown will be the point
at which the program stopped. The RETURN path goes all the way back to the first
subroutine call made from the main program.

MegaBasic describes each RETURN location with the type of RETURN (GOSUB, function,
procedure, etc.) and the line number and subroutine name to which it RETURNs. Each

2

2-38 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

description is shown on a separate line and since this can potentially be quite lengthy,
you can use any of the display-pause controls available under the LIST command (i.e.,
Space-bar, carriage RETURN, CTRL-C). TRACE RET operates only in the command mode
and has no effect on the dynamic TRACE mode if set.

In addition to the subroutine RETURN information, TRACE RET also displays all active
FOR, WHILE and REPEAT loops and CASE statement blocks, along with the line number
range they span, and all the nested ERRSET error traps levels that have been set along
the way. If you suspect that a loop is not terminated where you think it should be, you
can STOP the program inside the loop (e.g., by inserting a STOP statement inside it) and
then give the TRACE RET command to show its current active line number range.

You can also get the TRACE RET display from the single-step mode (i.e., without entering
the command mode) by typing the TRACE A key.

TRACE END

Terminates the TRACE mode from the command level. You can also terminate the
TRACE by typing the ESC key when you are single-stepping. Program execution proceeds
without further interruption after turning off the TRACE and CONTinue execution.

CHECK [#<output device>]

To permit you to RUN and test partially complete programs, MegaBasic does not in any
way check the syntax of a program and insist that it be error-free before running it.
Instead, MegaBasic provides a CHECK command for you to use whenever you wish to
check common coding errors. This command provides the following checks:

� Reports syntax errors in DEF statements. Since DEF statements provide information
vital to other CHECKing activities, such errors terminate the CHECK process. After
you correct all DEF statement errors, CHECK will be able to complete the rest of its
analysis.

� Verifies all line number and line label references throughout the program to ensure
their target line actually exists. The errors found by this check may also include
certain references to procedures defined in other packages, so be aware of this when
CHECK reports an Undefined Name Error.

� Checks for proper nesting and termination of CASE blocks and FOR, WHILE and
REPEAT loops, makes sure that they do not cross any FUNC or PROC definition
boundaries. CHECK reports errors for incorrect loop index variables, for
encountering a NEXT or CASE not part of any preceding structure, or missing a
necessary BEGIN or END on a CASE statement.

� Verifies that THEN and ELSE clauses of single and multi-line IF statements are
nested properly and have left and right brackets properly balanced and present in
the right number. CHECK examines all expression parenthesis pairs to ensure that
each one is properly balanced.

� Reports an user-defined function, procedure and line label names used in the wrong
context. For example, functions cannot appear at the beginning of a statement;
conversely procedure names must appear in front of the statement; line labels can
only appear in GOTOS, GOSUBS, ERRSETS, etc. However, CHECK cannot usually
determine the correctness of undefined procedure, function and variable names
because their definitions may not be available until you execute the program
(because of external packages and unexecuted DIM statements).

2

2-39GFK-0256 Chapter 2 MegaBasic Commands

� CHECK reports all errors found throughout the program all at once, regardless of
how many that might be (except for DEFS). However, it reports only the first error
of several on a line; you must correct the first error on the line before CHECK will
report any other errors it contains. You can control the display of long lists of error
messages with the pause-step-start keys as defined for the LIST command. You
cannot restrict the CHECK operation to only a partial set of program lines.

You can redirect the error report to any device or open file by specifying the open
file/device number (#1 is the printer). Omitting the device number is the same as
specifying #0, which outputs to the console screen. You can type a CTRL-C to abort the
error report at any time, and you can control the report output using the same pause
keys that the LIST command supports.

The CHECK command does not perform a complete, exhaustive analysis of program
syntax, but merely locates some of the more obvious errors in program formation.
Because of its simplicity, CHECK can report errors that may not actually exist, particularly
bracketed [1 constructs that span multiple lines (resulting in a mistaken missing or
unexpected bracket error). Bear in mind many program constructs cannot be verified
without actually executing them within their program context, hence a 100% syntax
checker is beyond the scope of the MegaBasic development system. For an exhaustive
100% CHECK on your program, compile it under the MegaBasic compiler which also
verifies all data types and argument LISTs as well. Remember to that errors can easily
occur within syntactically perfect programs, a problem that all programmers must
contend with when using any language.

CHECK [#<output device>] LIST

Just like CHECK, except that it displays the program source lines that contain the reported
errors.

CHECK [#<output device>] EDIT

Just like CHECK LIST , except you can edit each erroneous line as CHECK finds them.
After you edit a line and type a carriage return, MegaBasic rech ecks the line and reports
any additional errors found before moving on to the next line. To skip a line without
correcting it, just type a carriage return in response to the line presented for editing.

2

2-40 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5: Information and Control Commands

Described in this section are the informative commands that provide displays of useful
information on your programs in memory, statistics about current resource utilization,
state of program execution and current environment. It also discusses how to be in
several copies of MegaBasic simultaneously, and how to get out of MegaBasic when
finished with everything you are using it for. A quick summary follows below:

BYE
Exits MegaBasic and goes back to the host operating system command level. BYE also
exits a nested BASIC environment (see the BASIC command below) and goes
back to the prior environment.

STAT Displays a variety of useful information about your program, its execution state, and
the supporting resources maintained for general use.

SHOW
Displays all currently defined workspaces by name along with information about their
content. It can also show the shared access relationships between the current work
space and all the others, information about all currently open files and sizes of
currently defined arrays and strings.

USE
Selects other workspaces by name for subsequent operations and creates new work-
spaces for program entry. It can also continuously cycle through all workspace
names so that you can select one without having to type its name.

 XREF Displays a cross-reference index report for the program contained in current
workspace.

CLEAR
Deletes the current workspace and its contents, or only the variables currently defined.
It can optionally delete all workspaces or release all memory in use by program vari-
ables.

BASIC Enters an independent nested environment for developing, testing, debugging or run-
ning other programs while temporarily suspending the current work underway.

BYE
Terminates MegaBasic and exits back to the operating system command level. Prior to
exiting, MegaBasic will request confirmation for any workspaces containing original
work that you have not yet saved on a file. If you previously invoked a BASIC
command (see below) BYE will exit from that instance of MegaBasic and RETURN to the
prior copy of MegaBasic. BYE is equivalent to DOS without any arguments.

STAT [#<device>]

Displays various sizes, states and other statistics about the current program and working
environment. The display is divided into two groups. First the overall global resources
are shown, which are then followed by statistics about the current program and
execution state. Display contents may change from one MegaBasic version to the next,
but they will generally cover the following topics:

� Overall number of memory bytes allocated to current processes Total memory
remaining, including memory allocated to freed packages Amount of space
remaining for evaluating expressions Total number of active named objects
(variables, functions, etc.) File buffer counts and space remaining on the default
drive

� Current workspace name and workspace count (if more,than one) Size of the
current program and size of its data (if any) Various statistics about the current
execution state States of various debugging and internal parameter settings.

2

2-41GFK-0256 Chapter 2 MegaBasic Commands

SHOW [#<device>]

The SHOW command displays a one line description of the contents in each workspace.
Each description includes the program name, the workspace contents type, the package
execution usage, package access count, the program size and how much data it currently
has initialized. The possible workspace types and execution usages are described below:

Workspace Contents Types

Keep Package kept in memory until CLEARed (by virtue of being LOADed

Work Contains unsaved program modifications

List Listable package temporarily brought in by an ACCESS or INCLUDE

Binary Assembler package

Hidden Unlistable package (i.e., scrambled by the CRUNCH utility)

Empty No program lines (deleted if not the current workspace)

Package Execution Usage

Main
The Main program is the first program loaded, or the most recent program selected
when the RUN command was typed, or the most recently LINKed (i.e., CHAINed)
program during execution.

Free Completely unused and releasable as free memory as needed.

Uninit Uninitialized package (no data, no ACCESSes, etc.).

Access Active, ACCEssible package in a running application.

 Detach Active package unreachable through any ACCESS path from the main program,
e.g., an INCLUDED package without being ACCESSed (see below).

Trans Active package in a transient state between being detached and accessed.

Packages that are initialized with data and active for use, but are not accessible from the
main program, directly or indirectly (i.e., not on any ACCESS path from the main
program), are classified as Detached. This helps you see packages that are left floating
without any apparent use, but that otherwise remain active and initialized, consuming
memory until they are DISMISSed from all packages. For example, if two Detached
packages ACCESS each other, their epilogues will not be executed until some other
package DISMISSes them from each other. This is because epilogues are not executed
until all ACCESSes to them have been DISMISSed . Packages that are merely
INCLUDED, rather than ACCESSed, are another example of a Detached package.

Because of the potentially large number of packages that applications may keep in
memory, SHOW commands display the package names in alphabetically sorted order.
The currently selected workspace is marked with an arrow (>) in front of the name.

To assist debugging efforts, the SHOW listing places an asterisk (*) beside the program
type of programs with TRACE mode active.

SHOW [#<device>,] ACCESS [*]

Displays the ACCESS relationships currently in effect from all prior ACCESS statements.
Two viewpoints are shown: All workspaces accessible from the current workspace, and all
those which have access to this workspace.

To see this display for all packages in the active application, specify the optional asterisk
(*) at the end of the SHOW ACCESS command. Packages without any ACCESS

2

2-42 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

relationships with other packages are not shown. You can specify an optional output
device number to redirect the output. The ACCESS statement is described in Chapter 10.

SHOW [#<device>,] OPEN

Displays information about each file currently OPEN, including the OPEN file number its
read/write attributes set at OPEN time, the file name and drive, its shared/private access
attributes, its current byte size and the position of the current read/write pointer. This
display is useful when testing and debugging programs which OPEN and process files.
You can specify the optional device number to redirect the output of this command to a
device other than the console (device #0) or to an open text file.

SHOW [#<device>,] SIZE [<selector list>]

Displays the memory size allocated to active arrays and strings and totals for both all
numeric scalar variables and all pseudo variables (only as totals, not individually by name).
Variables that have not yet been defined are not shown. The listing is ordered
alphabetically and includes the number of memory bytes allocated, the name of the
variable and its type. The sum of the sizes shown is displayed at the end of the listing.

You can restrict the listing to only one variable type by including the desired type in the
command (e.g., SHOW SIZE REAL, SHOW SIZE STRING, etc.) You may specify any of
the type names supported by the NAMES commands, but only string or array variables
will be listed by SHOW SIZE . See the NAMES command for a description of this optional
<selector list>. As with the other SHOW options, you can include a device number to
redirect the listing somewhere other than the console if you so desire.

USE [<workspace name>]

Selects a workspace for subsequent operations. Omitting the workspace name from the
USE command enables you to switch from package to package until you reach the one
you desire. You can control this with single keystrokes that perform the following
actions:

Space,
→ or ↓

Sequences forward to the next workspace name in ascending alphabetical order. After
the last one, it cycles back to the first workspace name again.

Backsp,
← or ↑

Sequences backward to the next workspace name in descending alphabetical order.
After the first one, it cycles back to the last workspace name again.

Home Goes to the lowest workspace name in sequence.

End Goes to the highest workspace name in sequence.

Tab Sequences forward to the next workspace name that was explicitly LOADed
 (i.e., skipping packages temporarily loaded by the applications).

Character Skips to the next workspace whose name begins with the specified character.

Enter Selects the workspace name currently shown as the current workspace.

Ctrl-C
or ESC

Aborts the USE command without changing workspaces.

When you specify a workspace name in the USE command, MegaBasic looks for it
among the current workspaces defined. If it finds it among those present in memory,
MegaBasic selects that workspace. If it does not find it, MegaBasic creates a new
workspace with the name given, subject to user confirmation, then selects it as the
current workspace.

2

2-43GFK-0256 Chapter 2 MegaBasic Commands

To minimize the number of unnecessary workspaces in memory at any given time,
MegaBasic automatically deletes workspaces that contain no program lines. This action
is taken only when you leave the empty workspace for another. Hence you cannot
create several empty workspaces and then go back to fill them in: you have to use them
immediately. Temporary workspaces that have been DISMISSed and represent free
memory are skipped by USE, but you can switch to them by specifying their name.

XREF [#<device>,][<line range>][,<selectors>][by <mode>]

Provides you with an instant cross-reference of all user-defined procedures, functions,
variables, GOTO’S, and other line referencing used in your program. It displays each
name, label or line number followed by a list of all program locations that refer to each
(by line number or by subroutine name). XREF indicates references where the name is
DEFined or DIMensioned with an asterisk. XREF commands may include four optional
parameters: an <output device number>, a <line range>, a <selector list> and a by
<mode> as summarized below:

<device>

Specifies the device number to which the cross-reference listing is sent. If you
omit the <device>, then XREF displays its report on the console. If the device
specified is not the console (device #0), MegaBasic inserts page breaks into the
XREF report using form-feed characters (an ASCII 12) at appropriate places.

<line range>

Specifies an optional line range to restrict the XREF report to only names and line
numbers referenced at least once within the line range. This tells you where all
references to anything within this range are found throughout the program.
Omitting the <line range> implies the entire program.

<selectors>
Specifies a list of attributes that selects the kinds of objects that MegaBasic
includes in the cross, reference listing. The selector list is identical to the
selector list used in the NAMES command described on Chapter 2, Section 3.

by <mode>
Selects the how the references will be shown: by line shows line numbers, by name
shows subroutine names. When omitted, XREF defaults to the most recent
<mode> specified or to by line if no previous XREF requested.

XREF reports on the program maintained in the current workspace. Hence to generate
an XREF report, you must first LOAD your program into a workspace. Then type XREF
followed by any desired device number and/or line range and terminate with a carriage
return. XREF immediately begins generating its report as specified. To pause the display
(especially on the console screen), you can use any of the stop/start/step controls.

You can use XREF from the MegaBasic command level at any time. It does not use any
working storage, nor does it affect the contents of variables for a temporarily suspended
(CONTinuable) program. This makes it suitable for use even during a debugging
session.

2

2-44 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

You can restrict the cross-reference produced by XREF to names having certain specified
attributes. This lets you produce a cross-reference listing of, for example, only the
procedures, or only the string functions, or only the line labels and line numbers, to
quickly answer questions about your program under development without having to
XREF the entire program, which could take a while for a large program. You do this by
listing the desired attributes as arguments to the XREF command in the same manner as
in the NAMES command explained in Chapter 2, Section 3 . For example, XREF FUNC
will cross-reference all the user-defined function names; XREF STRING FUNC will
cross-reference only those functions which return a string result. These attribute
selectors control which of the following 12 breakdowns are included in the listing:

Procedures Line labels Line refs

Real Functions Real Variables Real Fields

String Functions String Variables String Fields

Integer Functions Integer Variables Integer Fields

You can type any combination of selectors, separated by spaces, in any order after the
XREF keyword. XREF displays only those names that satisfy all the selectors specified.
See the discussion in the manual on the NAMES command for complete information
about how to use and specify attribute selectors.

XREF assumes the data type currently defined for each name, which may not always be
accurate if the program has not been run . For example, it shows references to SHARED
functions and procedures defined in other packages as variables unless prior program
execution has already defined them and bound them to the references in the current
program. Although fields appearing in DEF STRUCT statements are always shown in
XREF LIST ings , those defined in regular executable STRUCT statements are shown as
ordinary variables unless those STRUCT statements have been executed (i.e., by running
your program before your XREF listing).

Finally, you can display the references either by line number or by subroutine name, by
appending either BY LINE or BY NAME to any XREF command. If you omit the
BY-suffix , XREF displays in the same mode it did the last time you entered an XREF
command, or by-line if no previous XREF command was typed. For example the
command XREF INTEGER BY NAME displays the names of subroutines that refer to each
integer variable or integer function. Program references that are not within procedures
or functions (i.e.,they are in the main program, the prologue or epilogue, or in between
subroutines) are shown in the XREF display as referenced by <main>. Multiple
references to a name within the same subroutine or line always show up in the XREF
listing as a single reference.

CLEAR

Deletes the program within the current workspace and then eliminates the workspace
altogether (unless it is the sole workspace). Afterward, MegaBasic switches to the next
workspace in the LOAD sequence. MegaBasic asks you if you want to clear all
workspaces or just the current workspace, to which you can answer yes or no.

CLEAR DATA

Deletes all data currently defined within the selected workspace (variables, control
structures, etc.) and releases the memory resources allocated for them back for reuse.
Program CONTinuation is not possible after invoking this command. You can use

2

2-45GFK-0256 Chapter 2 MegaBasic Commands

CLEAR DATA to prepare for a series of direct statements which are known to require
more memory resources than otherwise available. The RUN command does an implicit
CLEAR DATA at program initialization time, as does the LOAD command if there is not
sufficient memory left to load a program.

CLEAR FREE

Deletes every program that is no longer in use. The SHOW command displays such
programs marked as FREE. MegaBasic normally deletes these programs only when it
needs the memory they occupy for other operations. Hence the only real reason for
using CLEAR FREE is to eliminate the extra clutter brought about by unneeded
workspaces left by prior program testing. CLEAR FREE is extremely conservative about
what it deletes, and, in particular, it will never remove anything containing unsaved
revisions or alter the execution state of a program in progress.

BASIC [<pr ogram command tail>]

Provides a completely separate copy of MegaBasic in which other activities may be
independently performed. You can invoke the BASIC command at any time in the
command level to instantly provide a sub-environment in which to run/develop
programs. This environment is completely isolated from the environment set up by
your prior invocation of BASIC, and hence you may perform any sequence of operations
you wish without fear of altering higher level environments. To return to the
environment from which you re-entered BASIC, simply type BYE or DOS. Such a return
also occurs if a a program running in a sub-environment executes a DOS statement.
MegaBasic frees all resources held by the sub-environment upon returning. All parent
environments are totally preserved right down to the current state of execution
CONTinuation .

You can type an optional command tail on a BASIC command to run a program just as if
you were doing it from the operating system level. MegaBasic loads the program,
executes it and provides the remainder of the command tail to the program for
subsequent access. If the program terminates via a DOS statement, it exits the
sub-environment and you will be back in the previous environment. Otherwise you will
remain in the new environment until you type a BYE command. At least 16K bytes of
free space must be available in order to invoke BASIC.

MegaBasic will provide all currently unallocated memory to the new sub-environment.
To this end, MegaBasic removes all programs not currently active or in use, and releases
the memory they occupy. The SHOW command shows such programs as FREE (before
MegaBasic releases them).

3

3-1GFK-0256

Chapter 3 Representing and Manipulating Numbers

MegaBasic supports two fundamentally different data representations: numbers and
strings. Chapter 3, Section 4 describes strings and how to represent and manipulate
them in your programs. Section 3 of this chapter describes in depth the concepts and use
of numeric constants, variables, arrays, expressions, operators, functions, vector
processing and floating point systems. It is organized into sections of increasing
complexity, and each depends somewhat upon understanding those that precede it:

Representing
Numbers

Introduction to representing numbers within a computer
and choosing the most appropriate numeric representation
for solving problems.

Constants Representing fixed numeric quantities.

Simple
Variables

Representing single-value numeric quantities that can
change during program execution.

Array
Variables

Ordered sets of variable numeric quantities, organized in
one or more dimensions.

Operators &
Expressions

Mathematical phrases for combining numeric quantities
into computed results.

Numeric
Functions

User-defined and built-in symbols for combining and
transforming data.

Vector
Processing

Processing entire arrays and array cross-sections using
vector arithmetic expressions and a variety of vector state-
ments.

IEEE
Floating

Point

Detailed description of the trade-offs between IEEE and
BCD floating point versions of MegaBasic. Topics include
80x87 math coprocessor support along with speed
comparisons.

3

3-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Representing Numbers

Numbers are fundamental to all computer applications. Even applications that appear
non-numeric, such as graphics and text processing and language translation, are
intensely arithmetic beneath the surface. Computers have evolved beyond their early
dedication to engineering and equation solving, into tools of creativity and thought
expansion, and yet they still thrive best in the medium of numbers and arithmetic.

When we attempt to classify numerical applications, an important distinction can be
made between applications involving whole numbers, i.e., numbers without any
decimals, and those applications where fractional quantities arise. For example, counting
applications usually involve only the whole numbers, while scientific and financial
applications are built upon fractions of time, dollars or other physical units. This
distinction is important because microcomputers can deal with whole numbers much
more efficiently than with fractional quantities. Hence, MegaBasic supports two
different internal representations of numbers, one exclusively for whole numbers, called
integer representation, and one for general numeric values (including whole numbers
and fractions) called floating point (or real number) representation.

All programs could be written with floating point representation exclusively. However, if
a program spends much of its effort performing essentially integer arithmetic, its
performance could significantly benefit by utilizing the more efficient integer
representation and operations wherever possible. The primary reason for supporting
integers in a computer language is that integer arithmetic is much faster than floating
point arithmetic and integer values use less memory. In the paragraphs that follow, we
will examine the strengths and weaknesses of both number representations (real and
integer), as well as how and why to choose one form over the other.

Floating Point Representation

Ideally, a computer should be able to deal with numbers of any size, no matter how
great or how small and possess absolute precision with thousands of decimal places.
However, even thousands of decimals cannot represent Sqrt(2) or pi exactly, and if they
could, they would devour all your memory resources. How wide a range and how much
precision do you really need? Since the answer to this question depends on you and the
problems you have to solve, MegaBasic supports a two types of floating point
representation with a variety of precisions.

Commercial or BCD MegaBasic, represents floating point numbers in BCD floating point
format. This format can represent numbers 1063 or as small as 10–63. Such a range
encompasses nearly all quantities ever arising from physical phenomena, sub-atomic to
cosmic. Scientific or IEEE MegaBasic represents floating point numbers in IEEE double
precision binary format. This format can represent an even wider numeric range than
BCD format: as large as 10307 power or as small as 10– 307 power.

This range is called the dynamic range of floating point numbers. If you perform a
calculation that exceeds this range, a numeric overflow error will occur, stopping your
program (a trappable error, however). This can easily occur from multiplying very large
numbers (e.g.,1035 *1040), or from dividing a large number by a very small number (e.g.,
1030/10– 50). If your application has the potential for producing such errors, you must
provide error checking, error traps or other measures to ensure your program remains in
control after such errors occur.

3

3-3GFK-0256 Chapter 3 Representing and Manipulating Numbers

Another property of floating point representation is its precision, or the maximum
number of decimals it can hold. BCD MegaBasic comes in any one of several precisions,
from 8 to 18 decimal digits (14-digit is standard), while IEEE MegaBasic provides
16-digit precision only. Any particular copy of MegaBasic supports only one precision of
floating point. If a number contains more decimal places than the precision of the
floating point representation, MegaBasic keeps only the upper, most significant digits
that fit and discards the rest. For example, 8-digit precision would represent the number
534.666666682 as 534.66667 (rounded). You would have to use precisions of 12 or more
digits to represent this number exactly in the machine. If precision is important in your
applications, be sure to use a version of MegaBasic that supports a precision of sufficient
size.

The number of memory bytes required by each floating point value depends on the
prevailing precision. IEEE floating point numbers always require 8 memory bytes for
each value. If P represents the number of BCD digits precision, then the number of bytes
required is given by the expression: 1+P/2. You can find out the actual floating point
format provided by the running copy of MegaBasic from the PARAM(4) function.

BCD representation, which stands for Binary Coded Decimal, internally represents
numbers in base–10, while IEEE binary floating point uses base–2. BCD floating point
has two important advantages over binary floating point. First, software conversion
between BCD and ASCII display codes and back again is very efficient. Second, and most
importantly, BCD represents all decimal numbers within its maximum precision exactly,
without any round off or truncation errors. For example BCD represents the dollar figure
$24.95 exactly, while in binary floating point it would look something like
$24.95000000001 or $24.94999999999. This makes BCD particularly useful in financial
applications, where all data is typically in decimal form and round-off errors are
unacceptable.

No matter what number base you use to represent numbers, there is always some
number that it cannot represent exactly. For example neither BCD nor binary floating
point can represent the fraction 2/3 exactly. But a base–3 numeric representation could
represent it exactly in only one digit (i.e., as .2). BCD floating point requires about 12%
more memory than a binary representation with similar precision, but the advantages of
decimal arithmetic in many applications sometimes outweighs this disadvantage.

The prime advantage that IEEE binary floating point has over BCD is raw speed. Even
without a math chip, IEEE arithmetic is considerably faster than BCD arithmetic. For
more speed, particularly with transcendental functions, IEEE MegaBasic automatically
supports an In tel 80x87 math coprocessor if the host machine contains one. However, it
doesn’t make much difference whether add and subtract are done in BCD, IEEE
software or in 80x87 hardware: they all take around the same amount of time. See
Chapter 4 for further details on the trade-offs between IEEE and BCD floating point.

The computer language of BASIC originally supported numbers exclusively in floating
point to simplify its implementation and user interface within an educational
environment. To improve data processing efficiency, MegaBasic also includes an integer
data type. Of course, this means that you have to choose one representation over the
other for each number specified. Fortunately, this is easy because MegaBasic
automatically chooses floating point whenever you fail to explicitly choose integer
representation. Later on we will cover numeric type selection in detail.

You should select floating point representation over integer for values used in a floating
point operation, or for numbers with decimals, or for values outside the range of
permissible integer values (barring an integer representation). Avoid using floating point

3

3-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

values in array subscripts and string indexing (described later), or other places where
integer representation would suffice. If you do, there is no harm, but your program will
simply run more slowly than it could have with the proper integer declarations and
definitions within your program.

Many programs written using a BASIC that supports only floating point representation
usually contain portions which would run much faster using integers. You can usually
improve the performance of such programs by modifying them to take full advantage of
integer representation without much work. Appendix D, Section 4 contains a step-by-step
procedure that you can follow to convert such programs.

Integer Representation

MegaBasic can represent whole numbers in 32-bit binary integer representation as well as
in floating point representation. Integer representation of numbers is important in three
ways. First, integer arithmetic is many times faster than identical arithmetic performed
in floating point operations. Second, since the vast majority of numeric applications
require binary integers for loop counters, array subscripts and indexed string locations,
using numbers already represented in binary form eliminates the time consuming job of
converting floating point representation into binary representation (which MegaBasic
does automatically).

Third, integer representation is physically more compact than floating point. Integers
require four bytes per value while floating point requires 8 bytes per value (although it
varies from 5 to 10 bytes depending on the floating point precision). This allows larger
integer arrays with the same memory requirements as smaller floating point arrays.
Also, since most programs spend a great deal of time just moving numbers from one
place to another, a more compact numeric representation can also increase program
performance.

MegaBasic integers are more powerful than integers of many other microcomputer
languages because of its internal representation. MegaBasic represents integers
internally in what’s known as a 32-bit twos-complement signed integer, while some
systems use only a 16-bit version of the same thing. This will represent exactly all
integers in the range from minus 2,147,483,648 up to plus 2,147,483,647, instead of
–32768 to +32767 with only 16 bits. With integers of this size, many applications which
would normally have to use floating point can easily use MegaBasic integers. For
example integers can represent dollar figures up to $21 million exactly with MegaBasic
integers (in pennies instead of dollar units).

Virtually all programming systems terminate with a fatal error whenever an integer
calculation produces, even temporarily, an integer value beyond the range of values that
the prevailing integer format can represent. Although the large range of 32-bit integers
diminishes this problem somewhat, it can still arise. MegaBasic solves this problem by
automatically detecting integer overflows while performing integer calculations and
then converting the integers to floating point to complete the intended operation. The
burden of detecting and recovering from this type of error is not a concern of the
programmer, since MegaBasic handles it automatically. Integer overflows in MegaBasic
can only occur when you try to use a value larger than a valid integer when only an
integer will suffice. For example, attempting to store such a value into an integer variable
will result in a numeric overflow error simply because it is not possible. This automatic
recovery from integer overflow is only supported by the MegaBasic interpreter; it is not
feasible to support under the MegaBasic compiler.

3

3-5GFK-0256 Chapter 3 Representing and Manipulating Numbers

Numeric Type Declarations
To maintain compatibility with programs written under the standard assumption in
BASIC that all variables are real, all variables are real unless you specify otherwise. You
specify integers either by declaring the leading letters in names as integer (or real), or by
declaring specific names as integer (or real). To see at any time what is integer and what
is real, the NAMES INTEGER and NAMES REAL commands will show you (Chapter 2,
Section 3). The rules and syntax for type declarations are summarized in order of
decreasing precedence as follows:

Data Type Rules for Variables & Functions
� Any variable or function name that ends with a percent sign (%) will always be

integer. A type error occurs if you declare or DIMension any variable or function
with such a name as real. Similarly a dollar sign ($) and an exclamation mark (!)
can appear only as the last character of string and real names, respectively. This
rule overrides all the other rules that follow.

� You can declare numeric arrays directly in DIMension statements, as shown in
the following example:

Dim integer C(30,40), X(N), real L(N), ARRAY(10,10)

which declares C() and X() as integer arrays, L() and ARRAY() as real arrays. The
reserved words INTEGER and REAL cause all DIMension specifications that
follow in the list to be integer or real variables, or until a following REAL or
INTEGER specifier appears in the list. In the same way, the word STRING
declares string variables in DIM statements.

� You can declare specific names of variables and functions as INTEGER or REAL
using DEF statements such as:

DEF INTEGER X,VBL(),P
DEF INTEGER FUNC TOTAL(V1,V2)
DEF REAL A, ARRAY(), C1
DEF REAL FUNC SUM(V3,V4)
DEF STRING LINE(), MSG
DEF STRING FUNC UCASE(BUF$)

The empty parentheses () in the above DEF statements indicate names which
you intend to be arrays. These specific declarations override any types specified
by letter. A Double-Definition Error results from declaring the same name as
having two different types. You must declare variable types explicitly to make
them different from the type implied by its leading letter.

� You can declare leading letters of identifiers as INTEGER, REAL or STRING. A
variable or function name that begins with a declared letter will be become an
object of the type declared. Use a DEF statement to declare letter types, as
illustrated below:

DEF INTEGER “a, b, c, i–n”

where the string constant “a,b,c,i–n” specifies the leading letters of integer
variables and functions. The quotes are required, but commas and spaces within the
quotes are entirely optional. you can use upper and lower case letters for the same
effect. Variable and function names beginning with letters left undeclared will be real
by default. You can similarly declare letters as REAL or as STRING. A double
definition error will occur if you attempt to explicitly declare the same letter as both
REAL and INTEGER (in two separate DEF statements).

� If none of the above rules apply, then by default, MegaBasic creates the numeric
variable or function as real.

3

3-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Numeric Constants

Numeric constants are the most obvious way to express numbers. Examples are: –1,
5675261, 4.536, 0, –11.111, 00934.2, etc. Constants may be signed or unsigned, but
MegaBasic treats constants like 1,435 as two separate numbers. The smallest numeric
value permitted in MegaBasic is 10^–63 using BCD and 10^–307 using IEEE floating
point versions. Arithmetic operations producing smaller numbers than this always result
in zero (i.e., underflow produces a zero result). Constants must not contain any spaces or
commas within them: because such characters are used to separate numbers, they
would break a constant into multiple constants.

MegaBasic accepts a broad range of numeric notations which includes integers,
fixed-point, floating point and scientific notation for decimal numbers. It also supports
signed and unsigned integers in binary (base 2), octal (base 8) and hexadecimal (base 16).
These various forms are discussed below:

Numeric Notation

To specify ordinary decimal and integer constants, simply type their values with
whatever signs, digits and decimal are appropriate to the number desired. You can
include more than on sign in front of a number, but this is always redundant. For
example the following constants all have the same value: 99, +99, –99, +–+99. If the
number of digits exceeds the floating point precision, then MegaBasic rounds the value
to the nearest value fitting that precision. See the discussion about precision earlier in
Chapter 3, Section 1 for further details about this.

Numeric constants may have, at most, one decimal point. As stated earlier, no spaces,
commas or other non-numeric characters can appear within numbers. However, you can
precede or follow any constant with one or more spaces for the purpose of improving
readability or for separating the constant from other surrounding typed objects.

Exponential Notation

You can also specify numbers in so-called E-notation. Similar to scientific notation, this
format includes a scaling factor to indicate a power of ten multiplier. For example,
23.4104E–2 and .234104 are identical values with the first in E-notation. The E-XX
portion of the number specifies how far and what direction to shift the decimal place (+
for right and – for left). This representation becomes important when you specify
extremely large or small constants. For example the constants –.20152E+42 and
3.3142E–19 would be too unwieldy and confusing with all the zeros needed to represent
them in standard notation.

Whatever the exponent portion of the constant is, the net magnitude of the number
must fall within the dynamic range for floating point numbers: lE–63 to lE+63 for BCD
and lE–307 to lE+307 for IEEE floating point. Constants smaller than the lower limit
evaluate to zero, while MegaBasic rejects constants beyond the upper limit and reports
an Out Of Bounds Error. If the exponent is a positive power of ten, the plus sign (+) is
optional. For example the constants 25E+17 and 25E17 are identical.

3

3-7GFK-0256 Chapter 3 Representing and Manipulating Numbers

Binary, Octal and Hexadecimal Constants

The decimal number system (i.e., base 10) is certainly the most common notation used
for expressing numbers, but other number bases can be more appropriate in certain
applications. For example, applications involving bit-strings are greatly simplified when
you employ binary notation to express numeric constants (i.e., in base 2). MegaBasic
accepts numbers expressed in binary, octal, hexadecimal and decimal, wherever a
number is expected. To specify a constant in a non-decimal number bases, you must
abide by the following rules:

� You cannot specify non-decimal constants with E-notation or decimal points.
They can only be positive and negative integers.

� The last character of the constant must be one of several special letters that identify
the intended number base: letters H, B and O identify Hexadecimal, Binary and
Octal constants, respectively. Upper or lower case can be used but lower case is
more readable. Decimal is assumed for numbers that do not end with these letters.

� The constant must contain only those digits that are legal for the number base
used. Binary numbers can contain only the digits 0 and 1. Octal numbers can
contain the digits 0 to 7. Hexadecimal constants use digits 0 to 9 and letters A to F.
Hexadecimal constants must begin with a digit (0-9).

� The range of values for the unsigned portion of integer constants is the same for
all number bases: 0 to 2147483647 (decimal), corresponding to: Oh to 7FFFFFFFh
(hex), Oo to 177777777770 (octal) or Ob to 1111111111111111111111111111111b
(binary).

� If the highest bit of its 32-bit representation is set to one, then the integer will be
negative. For example OFFFFFFFFh and 37777777777o both represent the value
–1 (although using signs is more obvious).

Program Constants

Constants within programs represent fixed quantities for use in computations.
MegaBasic stores program constants in an internal table for fast access by your program.
If you specify the constant in E-notation, or it contains a decimal point, or it is too large
to fit integer representation, MegaBasic considers it a real (floating point) constant and
physically stores it in floating point representation exclusively.

MegaBasic stores constants in both floating point and integer representations if you
specified them as integers (i.e., no decimal points or E-notation) and they lie in the range
of 32-bit signed integers. This lets MegaBasic choose the most appropriate numeric
representation for the context of each expression providing the fastest possible access lo
the constant. For example MegaBasic accesses the constant 7243.0 exclusively in floating
point mode regardless of its surrounding context, but typed as 7243 (without the
decimal), MegaBasic accesses it as an integer or a real depending on the numeric context.

Input Constants

You can enter constants from the keyboard in response to requests from the computer as
directed by the program. When MegaBasic INPUTS constants into floating point variables,
you can enter any number representable in MegaBasic floating point. However if you
specify integer variables in an INPUT statement, you must enter numbers without any
decimals to the right of the decimal point and they must fall within the range of 32-bit
signed integer representation. The INPUT statement (Chapter 7, Section 1) checks for this
and rejects constants that are inappropriate for the variable specified to receive the value.

3

3-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Numeric Variables

As in most other programming languages, numeric variables in MegaBasic provide the
means for storing numbers for later access. Variables represent numbers just as constants
do but with one big difference: they represent quantities that can change during
program execution. See Chapter 5, Section 2 for details on storing different values into
variables with assignment statements.

You identify numeric variables in your programs by a name spelled with one or more
characters. The first character must be a letter (A-Z) and subsequent characters must be
letters (A-Z), digits (0-9) or underscores (_). The following examples show how and how
not to spell numeric variable names:

Legal Numeric
Variable Names

X, X2%, COUNTER, AMOUNT!,
T68, LONG_VBL_NAME

 Illegal Numeric
Variable Names

4X, R$,_NAME, BAD @ NAME,
INTVAL#, XYZ#10, %N

Names may be any length up to 250 characters and all characters are necessary to
identify the name, i.e., two names must match exactly in order to refer to the same
numeric variable. You cannot use MegaBasic reserved words (e.g., FOR, IF , READ, etc.)
as variable names. Upper and lower case letters always mean the same thing, and
MegaBasic displays letters in user-assigned names in upper case only. Chapter 1,
Section 5 discusses the use and construction of names in detail.

You can use numeric variable names in any context where one would normally specify a
number. Access to named objects in MegaBasic is extremely rapid and the length of a
name has no effect on execution speed or program size, no matter how many times the
name appears in the program source. There are several different kinds of numeric
variables and this manual refers to numeric variables as scalar variables, simple variables,
or just variables to distinguish them from array variables described later in Chapter 3,
Section 4.

If you access a variable before storing any value into it (by a READ or assignment
statement), it will automatically contain the value of zero (0.00). However, you should
always explicitly initialize all variables before using them to promote clear program
structure and maintainability over time.

3

3-9GFK-0256 Chapter 3 Representing and Manipulating Numbers

Integer vs. Real Variables

A variable stores a value in only one representation: either floating point or integer
representation. Therefore we refer to variables as either integer variables or floating
point (real) variables. When MegaBasic first creates a variable (i.e., when your program
accesses it the first time), it gives it a real type or an integer type, an attribute it retains
for the life of the program. This initial type selection is governed by the following rules:

� If the variable name ends in a percent sign (%) then it will always be an integer
variable; if the name ends with an exclamation mark (!) it will always be a real.

� If the variable name explicitly appears in a DEF INTEGER or DEF REAL
declaration statement, then MegaBasic creates it as an integer or real variable,
respectively.

� If the variable name begins with a letter that has been declared INTEGER or
REAL, then the variable will be a correspondingly integer or real variable.

� If none of the above rules apply, then MegaBasic creates a real variable by
default.

In summary, variables are floating point unless you specify otherwise in your program.
Chapter 3, Section 1 gives further details about type declarations and DEF INTEGER and
DEF REAL statements are fully described in Chapter 5, Section 1. Chapter 3, Section 1
also describes important differences and properties of both real and integer
representations that you should be aware of.

3

3-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Numeric Arrays

Another type of numeric variable is the array, which stores an ordered set of numbers
under one name. MegaBasic organizes an array as an ordered set of storage locations,
called elements, identified by a position number within the ordering. For example A(0),
A(1) and A(2) represent the first three elements of array A(). The parentheses indicate
that A() is an array and serve to contain the position of the desired element. Positions
range from zero by integers up to the size of the array. Arrays, as with all other
MegaBasic named objects, must have unique names. You name arrays and assign them
integer or real data types under the same rules as scalar variables.

You could imagine the array described above as a column of numbers with positions
numbered from zero down the side. Suppose that you had many such columns side by
side and that you numbered them from zero along the top. Such a structure is called a
2-dimensional array. By identifying the row and the column we can locate any element
of the group. For example A(I,J) refers to the element of A() in row (I) of column a),
where I,J are simple variables containing the element position. By adding further levels
to this idea, 3 or higher dimension arrays can exist. An N-dimensional array requires N
position numbers, called subscripts, to uniquely specify an element in the array.

You can specify array subscripts as simple constants, variables or with any general
numeric expression. If the specified subscript is a non-integer value, MegaBasic will
truncate it (not round) to the next lower integer value. Real (floating point) subscripts are
internally converted into integer representation before they can be used to access the
array. There is a significant performance advantage in specifying array subscripts using
integer representation whenever possible, because MegaBasic performs no time
consuming real-to-integer conversions. This is especially true in arrays of two or more
dimensions and in compiled programs.

Dimensioning Numeric Arrays

In order for an array to exist, you have to explicitly create it in your program. This
requires that you specify its name, its type and the range of valid positions for each
dimension. You do this with the DIM statement, for example:

DIM VECTOR(50), MATRIX(12,15), CUBE(20,20,20)

This statement defines array VECTOR() as a 1-dimensional array with element positions
0–50, array MATRIX() as a 2-dimensional array with row positions 0–12 and column
positions 0–15, and array CUBE as a 3-dimensional array where all 3 dimensions have
21 positions numbered 0 to 20.

Dimension positions always begin at zero and continue up to and including the limit
specified for that particular dimension. An Array Subscript Error occurs if you attempt to
access a dimension position outside its range. One DIM statement can define one or
more arrays by simply listing their definitions one after another separated by commas.
MegaBasic initializes all new array elements to zero as part of time DIM process. If you
refer to an array before DIMensioning it, MegaBasic implicitly DIMensions it as a
small, 1-dimension array called a default array, which is described in more detail shortly.

Once you dimension an array, every reference to it must specify a subscript in each
dimension defined. MegaBasic report an error on a reference like MATRIX(3) to the

3

3-11GFK-0256 Chapter 3 Representing and Manipulating Numbers

2-dimensional array example above. However you can DIMension the array again at
any time to change ib size or number of dimensions. If you do, MegaBasic erases it prior
contents and sets every element to zero. Using this mechanism, arrays can grow or
shrink depending on your program requirements. When arrays are made smaller the
unused memory space is available to the system for other uses.

Since the dimensions of arrays can vary during the execution of your program,
determining the current dimensions of a given array can be useful from time to time.
The DIM() built-in function (see p. 425) provides such information for any variable.
DIM(x) gives the number of dimensions of the variable X; DIM(X,I) gives the highest
position defined for dimension I of variable X counting the dimensions from left to right.

Default Arrays

For compatibility with other BASICS, whenever your program accesses an array element
from an array that does not yet exist, MegaBasic automatically creates small
1-dimensional array. MegaBasic normally creates such arrays, known as default arrays,
with 11 elements numbered 0 to 10, equivalent to DIMx910) . You can change this
default upper bound (of 10) by setting PARAM(13) to any upper bound value from 0 to
1023 of your choice.

We strongly recommend that you do not write programs that rely upon default arrays
because this practice often complicates the test and debugging phase of developing such
programs. For example, by merely misspelling the name of an array in some reference to
it, MegaBasic will create a default array of that name if one does not already exist by that
name. You can turn off default array creation by setting PARAM(13) to a value of –1.
Any subsequent references to new, unDIMensioned arrays will cause an Undeclared
String Or Array Error, helpful in locating unintentional default array creations.

Maximum Array Size

As in all computer languages, the amount of memory available to MegaBasic limits the
maximum size of new arrays. Within this constraint, however, MegaBasic supports much
larger arrays than most other microcomputer languages. You can compute the total
number of elements in an array by multiplying the position counts of each dimension.
For example an array specified by DIM ARRAY(2,10,8), has 297 elements, as computed
by (2+1)*(10+1)*(8+1) = 3*11*9 = 297, where the position count of a dimension is one
plus ib maximum subscript value. The memory space taken by an array is simply the
number of elements times the element size in bytes. The size of an array element varies
with the precision: size = precision/2+1 (IEEE reals are 8 bytes), while integer elements
are always 4 bytes each. Hence an integer array with 65500 elements requires 262000
bytes of memory.

You can create as many variables and arrays as you like as long as their combined
storage requirements do not exceed the installed memory in your machine. MS-DOS
based systems are limited to 640k bytes of addressable memory (16 megabytes in
Extended MegaBasic). The FREE() function, described in Chapter 9, Section 5, provides
information about the current memory available so that your program can automatically
limit the size of new arrays to match available resources.

MegaBasic supports arrays with any number of elements, as long as no one subscript is
higher than 65534. For example, DIM ARR(99,99,99) dimensions ARR() to three
dimensions of 100 positions each, or 1,000,000 elements total. To dimension
ARR(1000000) is not allowed, because the dimension extends higher than 65534. For

3

3-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

performance and other reasons, several additional restrictions apply to arrays larger
than 65534 total elements:

� Pointers to array elements can only access the first 65534 elements. Pointers to
arrays (rather than to array elements) are unrestricted.

� The value returned by INDEX after a vector MIN/MAX will wrap around through 0
if the result exceeds 65535.

� Vectors longer than 65535 elements cannot be indexed. Arrays larger than this
can be indexed, but only as array slices whose length does not exceed 65535
elements.

� Array slices whose successive elements are more than 65535 physical elements
apart are not permitted. For example, DIM ARR(10,100,1000) may be sliced as
ARR(*,*,J) or ARR(I,*,*), but not as ARR(*,I~ because its successive elements
are over 100,000 elements apart.

Obviously, you must have enough memory to support whatever arrays you actually
dimension, which tops out around 540k in a 640k DOS machine. Protected-mode
versions of MegaBasic, such as Extended MegaBasic, have no 640k limitation and
support massive arrays of up to 16 megabytes.

Integer vs. Real Arrays

As with simple scalar variables, MegaBasic stores values of array elements in either real
or integer format. All elements of an array provide the same representation, and hence
arrays are either all integer or all real. MegaBasic gives arrays a real type or an integer
type when initially creating them (either by a DIM statement or by its first reference).
The following rules govern this initial type selection:

� If the array name ends in a percent sign (%) then it will always be an integer
array; if it ends with an exclamation mark (!) it will be a real array; if it ends with
a dollar sign ($) is will always be a string array. It is an error to dimension an
array with conflicting data types.

� If its name follows the word INTEGER or REAL in DIM statement list, then it
takes on that type. For example: DIM INTEGERX(100),Y(8,10),REAL
A(5,5,5)

� If you re-dimension an array that already exists and the DIM statement does not
declare the array as INTEGER or REAL, then the new array will assume the same
numeric type as the old array it is replacing. If the DIM statement does declare
the numeric type, then that type (INTEGER or REAL) will prevail.

� If the array name explicitly appears in a DEF INTEGER or DEF REAL declaration
statement, then it will take that type.

� If the array name begins with a letter declared as INTEGER or REAL, then the
array will assume that type.

� If none of the above rules apply, then MegaBasic creates a floating point array,
by default.

In essence then, arrays are floating point unless you specify otherwise in your program.
If more than one of the above rules apply, the lower numbered rule always takes
precedence. For example, if you DIMension X() as a real array after declaring it an
integer array in a DEF INTEGER statement, the DIM statement takes precedence and X()
becomes a real array.

3

3-13GFK-0256 Chapter 3 Representing and Manipulating Numbers

When you re-dimension an array, the array type (integer or real) always changes to the
type specified by the DIM statement (e.g., DIM INTEGER x(); DIM REAL x(); etc.). If the
DIM statement omits the word REAL or INTEGER, the array assumes the numeric type
already in effect by the prior DIM or DEF statement. Only the MegaBasic interpreter lets
you change array types during execution; the compiler insists that array keep the same
type throughout program execution.

You will find further details about type declarations in Chapter 3, Section 1 (a few pages
back) and Chapter 5, Section 1 describes the DEF INTEGER and DEF REAL statements.
Chapter 3, Section 1 also describes important differences and properties of both real and
integer representations that you should be aware of.

3

3-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5: Operators and Expressions

The fundamental computational structure in MegaBasic is the expression, which you
construct from data symbols and operation symbols, much like algebraic notation.
Expressions permit you to specify a number as a combination of other numbers. For
example (2+5)*3 represents 21 by arithmetically combining 2, 3 and 5. In general, you
can use numeric expressions wherever numbers are expected.

Data symbols can be constants (representing fixed quantities), variables (storing the data
used), functions (returning computation results), or sub-expressions. A sub-expression is
just another expression enclosed inside parentheses to group it as a computational unit.
The above expression contains the sub-expression (2+5) to represent the value of 7 in
the overall expression.

Operation symbols, called operators, are of two types: unary and binary. Unary
operators act on a single number to form a single result number. For example the unary
minus operator (–) causes negation of a value that follows it (e.g., –X). Binary operators
however act on two numbers to form one result. For example the binary plus operator
(+) forms the sum of two values (e.g., X+5).

To facilitate the discussion coming up, we will use the following nomenclature. Numbers
acted upon by an operator are called operands. The leading operand of a binary operator
is called the left operand and the trailing operand is called the right operand.

Operation Precedence

MegaBasic evaluates expressions by proceeding left to right, accumulating the result
with each operation as it goes. The various operators are not however applied with
equal priority. Take the following expression using addition (+) and multiplication (*) for
example:

2 * 3 + 7 * 8 evaluates as :
(2*3) + (7*8) = 6 + 56 = 62

A generally accepted practice of algebraic evaluation is that, in the absence of parentheses,
we should perform the multiplications before the additions. Hence we say that
multiplication takes precedence over addition. Similarly, MegaBasic applies a priority scale
to all operators to provide a reasonable order of operations that appear without
parentheses. However, you can force any order of evaluation as needed by surrounding a
sub-expression with parentheses (sub-expressions have the highest prior and take
precedence over all operators). For example, to evaluate the addition in the example
before the multiplications, just write it like this:

2 * (3 + 7) * 8 evaluates as:
2 * 10 * 8 = 20 * 8 = 160

The list below summarizes all the MegaBasic numeric operators in order of decreasing
precedence. When MegaBasic encounters operators of the same precedence level they
are evaluated from left to right.

3

3-15GFK-0256 Chapter 3 Representing and Manipulating Numbers

Priority of Numeric Operations
18 Evaluation of constants, variables, functions, sub-expressions and string comparisons.

17 Negation (–)

16 Exponentiation (^)

15 Multiplication (*), Division (/), Integer Division (DIV), modulo (MOD) and the multiple re-
duction operators (INT CEIL TRUNC ROUND)

14 Combining value with sign (SGN)

13 Addition (+) and Subtraction (–)

12 Bit-wise integer ones-complement (~)

11 Bit-wise integer shift and rotate operators: << >> ><

10 Bit-wise integer AND (&)

9 Bit-wise integer OR (|)

8 Bit-wise integer XOR (^^)

7 MIN and MAX operators (not the functions)

6 Numeric comparisons (= <><> <= >= IN)

5 Logical complement (NOT)

4 Intersection (AND)

3 Union (OR)

2 Exclusive-OR (XOR) and Equivalence (EQV)

1 Implication (IMP)

Operators on the same line have equal precedence and MegaBasic evaluates them from
left to right as encountered. An example of an expression involving only equal
precedence operators is:

X + Y – 3456.03 + ARRAY(J).

MegaBasic permits you to use either integer or real values wherever a number is
expected. Internally, MegaBasic usually operates on only one type or the other for any
particular operation and if you specify values in the wrong type, MegaBasic will convert
them to the right type. Since this conversion operation is somewhat time consuming,
your programs will run much faster if numeric values are always supplied in the form
(integer or real) most suited to the operation at hand. The descriptions of each operator
follow below and include the specific rules MegaBasic uses for integer and real
conversion.

3

3-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Arithmetic Operators

The arithmetic operators are the most familiar and simplest to describe. The left and
right operands around an arithmetic operator are simply combined algebraically into a
result value using the specified operation. MegaBasic includes the following operators:

A + B Computes the algebraic sum of A and B.

A - B Computes the algebraic difference between A and B.

A * B Compute the product of A multiplied by B.

A / B Produces the real quotient of A divided by B, even if A, B or both are integer.

A ^ B
Raises A to the power of B. A^0 is always 1, even if A is 0. The left
argument may be negative for integer powers in the range from –32768 to
32767.

 A div B Returns the truncated quotient of A divided by B. An integer result is re-
turned only if A and B are both integers.

A mod B
Returns the smallest non-negative value which added to A produces
number divisible by B, sometimes called the remainder, and computes the
same result as the MOD() function (Chapter 9, Section 1).

These operators process only operands of the same type (i.e., both integer or both real).
If they differ in type, MegaBasic automatically converts one of them to the type of the
other, and the operation continues. The result of such an operation is always the same as
it would have been if performed in floating point only. Integer comparisons are faster
than floating point comparisons.

The divide operation (/) first converts any integer operands to real so that a floating
point divide can then yield a floating point quotient. To do an integer divide, you must
use the DIV operator (e.g., I DIV J) and supply two integer operands. When either or
both operand is real, the DIV operator performs a real DIV operation and truncate the
final quotient to an integer in real representation. DIV always performs an integer divide
when both operands are integer, resulting in an integer quotient.

Bit-Wise Integer Operators

Integers in MegaBasic consist of a sequence of 32 zeros and ones called bits and it can
often be useful to be able to manipulate the bits instead of the value they represent. The
kinds of things you might want to do include forcing a subset of bits to 1’s or O’s,.flip
their state between 0 and 1, shift all the bits up or down or rotate them around the
integer as if the integer formed a circle of bits.

3

3-17GFK-0256 Chapter 3 Representing and Manipulating Numbers

MegaBasic supports seven operators providing bit-wise logical and shifting operations
on 32-bit integers: four logical operators for implementing bit-wise NOT, AND, OR and
XOR, and three shift/rotation operators. These operators have an operator precedence just
below that of arithmetic plus and minus, and above the MIN and MAX operators. Real
operands are always converted to 32-bit integers before the operation is applied and
every result is a 32-bit integer. All seven operators are summarized below in order of
decreasing relative precedence:

 �~ A Bit-wise ones-complement of all bits in A (changes zeros to ones, ones to
zeros). This is like the NOT operation on strings.

 A << B

Performs an arithmetic left-shift on A by the number of bits specified
by B. This shifts zero-bits into the low end of the number as it is
shifted left. The shift count may range from 0 to 65535, but over 31
will always give a zero result. A single left shift is equivalent to multi-
plying the number by 2, presuming that the top bit remains un-
changed, and is faster than an integer multiply by 2.

 A >> B

Performs an arithmetic right-shift on A by the number of bits
specified by B. This shifts the sign-bit into the high end of the
number as it is shifted right. The shift count may range from 0 to
65535, but over 31 will always give a 0 or –1 result, depending on
 the sign of the left operand. A single arithmetic rightshift is equivalent
to dividing the number by 2 and is faster than an integer divide.

A >< B

Rotates A by the number of bits specified by B. The rotation count
may be positive to rotate left or negative to rotate right. Rotations
cause bits that fall off the end of the number to be rotated back into
the other end. This is similar to the way that ROTAT$() operates on
strings.

A & B Combines A and B using a bit-wise AND.

A/B Combines A and B using a bit-wise OR.

A ^^ B Combines A and B using a bit-wise XOR.

The magnitude of the shift and rotate counts has no effect on execution time, as these
operations are performed in one step rather than a bit at a time. The shift and rotate
operators have equal precedence (i.e., below – and above &).

Special Arithmetic Operators

Any comprehensive library of arithmetic operators should include not only the simple
and obvious operators, but it should also recognize a few simple combinations of
operators that commonly occur in a broad range of applications. MegaBasic provides
such combinations as built-in operators that are more compact, easier to program and
faster in execution than the original combination of operators.

A good case in point is the sign operator (SGN), which combines the sign of the right
operand with the value of the left operand. Without any extra facilities to perform this
simple computation, you would have to specify the expression: ABSQ(X)*ABS(Y) / Y.
Instead, using the SGN operator, you can compute the same result as: X SGN Y. This not
only appears cleaner and more obvious, but it executes many times faster, due to its
internal implementation that doesn’t rely on multiplies and divides to do the work.

3

3-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Similarly, MegaBasic includes a number of special arithmetic operators that perform
certain simple tasks in a faster, more straight forward manner. Each of these is described
in the table that follows:

 A SGN B

Computes the value of A with the sign of B. The result value always has
the same numeric type as the left operand (integer or real). For
example: 38 SGN –5 = –38, 38 SGN 5 = 38, –38 SGN –5 = –38,
38 SGN 5 = 38.

A MIN B
A MAX B

Selects the MINimum or MAXimum value between the two operands,
for example: 2.3 MIN–34.7 = –34.7, 23456 MAX 45 = 2~456. This is
faster than the more general MIN() and MAX() functions, which
also set the INDEX function value as a side-effect.

A ROUND B
Computes the closest multiple of B to A. This is equivalent to the
expression: ROUND(X/Y)*Y . For example: 135.4592 ROUND .1 =
135.5, 53474 ROUND 50 = 53450.

A CEIL B
Computes the lowest multiple of B equal to or greater than A. This is
 equivalent to the expression: CEIL(X/Y)*Y . For example 354 CEIL
25 = 375.

 A INT B Computes the highest multiple of B equal to or less than A. This is equiva-
lent to the expression: INT(X/Y)*Y , for example 354 INT 25 is 350.

A TRUNC B
Computes the nearest multiple of B between A and zero. This is
equivalent to the expression TRUNC(X/Y)*Y , for example 27
TRUNC 5 is 25, –27 TRUNC 5 is –25.

The last four operators (i.e., ROUND, CEIL , INT and TRUNC) are the so-called multiple
reduction operators, which reduce a value to a nearby multiple of another number. As in
the other arithmetic operators, MegaBasic automatically forces their operands to the
same type before the computation begins and produces a result of the same type. Also,
faster execution results when you can supply integer operands.

3

3-19GFK-0256 Chapter 3 Representing and Manipulating Numbers

Logical Operators

MegaBasic provides logical operators to manipulate logic and evaluate logical
expressions, but they are unusual in that they do not use the full numeric value of their
operands. Instead, MegaBasic uses only the zero or non-zero characteristic of their value
instead of their whole value. Think of this property in terms of TRUE and FALSE, with
TRUE being non-zero and FALSE being zero.

The result of a logical operation is always an integer zero (0) or one (1) and reflects the
combination of two logical values into one logical result. NOT reverses the logical value
that follows it, i.e., NOT FALSE is TRUE (1) and NOT TRUE is FALSE (0). Notice that NOT
only has one operand, similar to the negation operator (–). Operands of logical
operators may have an integer or real type, but MegaBasic converts logical operands to
an integer 0 or 1 before before evaluating the logical operator. Each of the logical
operators are described in the table below:

 NOT A Computes the logical reverse of A, i.e., if A is true (non-
zero), false results; if A is false (zero), true results.

A AND B Results in true only when both A and B are also true.

A OR B Results in true only if A or B or both are true.

A XOR B
(Exclusive OR) results in true only if one operand is TRUE
and the other is FALSE. The expression A XOR B is equivalent
to the expression (A AND NOT B) OR (NOT A AND B).

A EQV B
(Equivalence) results in true only if both operands are true or
both are false. The expression A EQV B is equivalent to the
expression (A AND B) OR (NOT A AND NOT B).

A IMP B
(Implication) always results in true unless the left operand is
true and the right operand is false. The expression A IMP B
is equivalent to the expression NOT A OR B .

3

3-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

A useful way to understand logical operations is to list all possible logical inputs (i.e., the
operands) alongside their corresponding outputs (i.e., the results). This is usually quite
easy to do with logical operations because logic only deals with two values: true and false,
but not at all practical with real or integer operations because of the enormous number of
combinations. Such enumerations with logical values are called truth tables, an important
tool in applied logic. A truth table providing a complete definition of all MegaBasic
logical operators now follows:

 Operator Left
Operand

Right
Operand

Logical
Result

 NOT
-- False

True
True
False

 AND

False
True
False
True

False
False
True
True

False
False
False
True

 OR

False
True
False
True

False
False
True
True

False
True
True
True

 XOR

False
True
False
True

False
False
True
True

False
True
True
False

 EQV

False
True
False
True

False
False
True
True

True
False
False
True

 IMP

False
True
False
True

False
False
True
True

True
False
True
True

Ordering Terms For Faster Evaluation

Notice that in certain cases, the result of a logical operation is known by simply knowing
the logical value of the left operand, i.e., cases where the result is independent of the
right operand. These cases can be summarized as follows:

FALSE AND (any value) = FALSE

TRUE OR (any value) = TRUE

FALSE IMP (any value) = TRUE

During the course of evaluating logical expressions, MegaBasic may ignore the
right-operand (skip its evaluation) when any of the above identities holds. This is done
in order to evaluate expressions in the least possible amount of time. In some cases, the
time saved can actually lead to a program that runs many times faster. Take for instance
the expressions used in the following IF statements:

(a) If VALUE=1 and FUNCT(X,Y,Z)>Sqrt(RlS) then ...

(b) If VAL1 or VAL2 or VAL3 or VAL4 then ...

(c) If TEST=LIMIT and (VAL1 or VAL2 or VAL3) then ...

In case (a), when VALUE equals 1 it is necessary to evaluate the rest of the expression,
which involves a user-defined function named FUNCT and a square-root computation.

3

3-21GFK-0256 Chapter 3 Representing and Manipulating Numbers

However if VALUE equals 0 (false), then the final result is known to be false, so
MegaBasic skips over the complicated right operand without having to evaluate it. As
this example shows, a many-fold speed improvement may result when the right
operand requires much more computation than the left, and the left operand is false.

In case (b), MegaBasic evaluates the expression from left to right and as soon it
encounters a true term, further evaluation is unnecessary. This is because true ORed with
anything is still true. When connecting terms with the OR operator, you can make it more
efficient if you arrange the terms so that the term most likely to be true is first, the next
most likely true term is second, and so on. You can optimize a similar AND-sequence by
ordering the terms in a similar manner (i.e., most likely false value first).

Case (c) is a combination of cases (a) and (b). The ORed sub-expression to the right of the
AND is only evaluated if TEST equals LIMIT (on the left). However when evaluating it,
MegaBasic proceeds only until encountering a true term (among VAL1 or VAL2 or VAL3).
MegaBasic applies these optimizing identities at all levels of expression evaluation, no
matter how complex the expression.

Do not assume that this optimization is always performed, because different
implementations may or may not do it (e.g., the compiler does evaluate things
differently). We mention it here so that you can order your operands for the most
efficient processing and so that you do not depend on the right operand necessarily
being evaluated. Nor should you depend on the lack of evaluation of a right-operand,
even if the above conditions are met. Right-hand operands that affect the contents of
variables or other program-state conditions must be coded with the knowledge that they
may or may not need to be evaluated.

Logical Expressions In Arithmetic Calculations

Since logical expressions always evaluate to either zero (0) or one (1), you can use them
within numeric expressions for computational purposes which might not otherwise
appear to be logically oriented. In many instances, combining logical terms with numeric
terms can yield a faster computation or a more compact or convenient representation
than would otherwise be possible. You can sometimes eliminate IF statements with such
techniques, for example:

Example Logical
Expression

Equivalent IF
Statement

 COUNT = COUNT+
(THIS or THAT)

If THIS or THAT
then COUNT = COUNT+1

 VALUE = LIMIT/(2+
(X=Y AND Z>10))

IF X=Y AND Z>10
then VALUE = LIMIT/3
else VALUE = LIMIT/2

Remember that the result of a logical operation is an integer result, never a real result.
You might want to consider the possible performance consequences of this depending
on the context. However such consequences only affect execution speed and are
logically transparent to the particular application involved.

When you employ logical operators for numerical purposes you must be aware of the
operator precedence involved, or you could easily produce meaningless results.
Although this is the case with expressions of any type, the range of operators in
MegaBasic is greater than is generally supported in most other languages. Therefore you
should experiment with unfamiliar operators in simple expressions to understand them
before applying them in complex situations.

3

3-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Comparison Operators

Comparison operators compare two numbers (integer, real or mixed) or two strings and
pass back the outcome of the comparison. You can compare an integer value with a real
value, but MegaBasic automatically forces them to the same type internally before
actually comparing them. A Type Error occurs if you attempt to compare a number with a
string. When you perform a comparison, you are looking to see if some relationship
between the numbers is true or false. For example you may want to test whether one
number is equal to another number. The equality comparison returns true if they are
equal and false if not equal.

By convention, MegaBasic (like most other computer languages) represents logical
values with numbers: 1 means true and 0 means false, and represents such values in
integer format rather than in floating point. Logical values (true and false) are primarily
found in IF statements and WHILE or REPEAT loops to decide what the next step of the
program should be. Based upon the outcome of a comparison, your program can choose
one set of actions over another. However, logical operators can also be used within
arithmetic computations for their 0 or 1 value whenever desired. For example the
statement: COUNT=COUNT + (X>Y) adds 1 to COUNT only if X is greater than Y. All the
comparison operators are described in the table below:

A = B Returns a true if A and B are exactly equal, and false otherwise.

A < B Returns true if A is less than (below) B, and false otherwise.

A > B Returns true if A is greater than (above) B, and false otherwise.

A <= B Returns true if A is less than or equal to (not above) B, and false otherwise.

A >= B Returns true if A is greater than or equal to (not below) B, and false
otherwise.

A <> B Returns true if A and B are not exactly equal, and false otherwise.

A IN B Returns true if all 1-bits in A are also set to 1 in B, and false otherwise.

You can compare two expressions results just as you compare simple values. The
operator precedence scale becomes important in such comparisons to reduce the need to
control operation order with parentheses in expressions involving many diverse
operators. The following expression illustrates such a calculation:

A + B * C > X * Y ^ Z OR Q – R / S = A * B AND F *17 < B + C

You can greatly improve the readability of expressions like this by carefully
inserting/deleting spaces between operators to make them stand out and by grouping
the operations with parentheses, as in:

(A+B*C)>(X*Y^Z) OR (Q–R/S=A*B) AND (F*17<B+C)

Since string comparisons also return 1 for TRUE and 0 for FALSE, you can use them
within larger numeric expressions as needed. For example the expression I + A$=SB$
computes the value I+1 if A$ and B$ are identical, or the value I+0 if they are not. Refer
to Chapter 4, Section 4 for details on how MegaBasic compares strings.

3

3-23GFK-0256 Chapter 3 Representing and Manipulating Numbers

Section 6: Numeric Functions

As we have shown, numbers can be expressed as constants, variables and numeric
expressions. However they may also be expressed as results of special procedures called
functions. Functions are similar to array variables, in that they are referred to by name
and include additional information which affects the value that they represent. The
difference is that an array element merely accesses the value it holds, but a reference to a
function invokes a computation of the value symbolized by the function name. As with
constants and variables, functions may be combined with other values within numeric
expressions to calculate further results.

A function is a procedure which computes a result based upon data which you have
communicated to it. To identify each procedure, functions are assigned names just like
variables. To use a function, you merely type its name and its input data just as if you
were typing an array name and its subscript list. For example, consider the following
three function references:

Sqrt(17) Round(X,3) Min(R+2,189,VALUE)

First, we have the square-root of 17. Second, we specified a value equal to the contents of
X rounded to exactly three significant digits. Third, we access a value equal to the
minimum value specified among the expressions: R+2, 189, and VALUE. Functions are
always of the same form:

<function name> (<argument list>)

Input information to the function is specified after its name, enclosed in parentheses, as
a list of numeric or string values called an argument list. Each input value is called an
argument and is specified using any general expression. The values computed by these
expressions are used by the function in forming its ultimate result. The number of
arguments and their type (string or numeric) depends on the particular function being
used. When more than one argument is present, they are separated from each other
with commas. Some functions have no arguments, and are specified with the function
name alone: no parentheses follow it.

MegaBasic possesses a library of over eighty built-in functions and also allows you to
create your own functions, written in MegaBasic statements. Chapter 9 provides a
complete description of all the built-in functions in MegaBasic and how to use them.
Defining your own functions is a somewhat more advanced topic that is thoroughly
covered in Chapter 8, Section 3. Refer to those subsections for more complete details. A
summary of the numeric functions now follows for quick reference.

3

3-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Summary of Arithmetic Functions

Int(X) highest integer not above X

Ceil(X) least integer not below X

Trunc(X) X without its fractional part

Mod(X,Y) remainder of X divided by Y

Frac(X) the fractional part of x

Round(X) X rounded to the nearest integer

Round (X,P) X rounded to P significant digits

Abs(X) absolute value of X

Sgn(X) 1 with the sign of X, 0 if X=0

Sgn(X,Y) Y with the sign of X

Max(X,Y,...) the maximum value among a list

Min(X,Y,...) the minimum value among a list

Index Secondary result of certain functions

Rnd(X) pseudo random sequence

Integer(R) integer representation of R

Real(I) Real representation of I

Summary of Mathematical Functions

Sqrt(X) square-root of X

Log(X) logarithm base 10 of X

Ln(X) logarithm base e of X

Exp(X) e to the power of X

Pi the constant pi

Sin(X) sine of X radians

Asin(X) arcsine of X

Cos(X) cosine of X

Acos(X) arccosine of X

Tan(X) tangent of X

Atn(X) arctangent of X

Poly (X,A,D) general polynomial evaluation

Because variables are created by default when encountered for the first time and not
DIMensionded , misspelled function names will result in variables being created under
those names. Such errors can be very difficult to diagnose because there is no way for
MegaBasic to detect the error. For example, SQRT(I) returns the square-root of I, and
SQR(I) returns the Ith element of array SQR() .

Two facilities exist in MegaBasic to aid the discovery of misspelled names. One is the
NAMES commands (Chapter 2, Section 3), which displays an alphabetical list of all
user-assigned names in the program. Unrecognized names that appear in this display
should be investigated. Mistyped variable and function names tend to be displayed in
close proximity to the correct spelling of the user-assigned name, due to the alphabetical
ordering of this display. The second debugging aid is the XREF command (Chapter 2,

3

3-25GFK-0256 Chapter 3 Representing and Manipulating Numbers

Section 5), which displays all references to any name. Names that have only one
reference should be scrutinized as possible misspellings.

Integer vs. Real Functions

MegaBasic lets you to use either integer or real values wherever a number is desired.
Internally, MegaBasic usually requires one type or the other in order to process the
intended operation and if you specify values in the wrong type, MegaBasic will convert
them to the right type. Your programs will run faster if numeric values are always
supplied in the form (integer or real) most suited to the operation at hand. Implicit type
conversions involving the built-in functions are governed by the following
considerations:

� All transcendental functions, such as SQRT() , LOG() , SIN() , COS() ATN() ,
etc., use a real argument and return a real result. Other functions which always
return a real result include: PI , POLY() , RND() , FRAC() and VAL() .

� A number of functions return a result of the same type as their argument(s).
These include: ROUND(), TRUNC(), CEIL() , INT() , ABS() , MOD () , SGN()
with two arguments, and MIN/MAX functions. The MIN/MAX functions return a
real result if any value in their argument list is real, otherwise they return an
integer result.

� All other MegaBasic numeric functions return integer results. Using them in
exclusively integer contexts will be faster than in combination with real values
(also called mixed-mode expressions).

Integer and Real Conversions

Two special functions are provided to force any expression value into real or integer
representation, regardless of the current type of the value. The REAL() function always
returns a real representation of its single numeric argument. The INTEGER() function
always returns an integer representation of its single numeric argument. A error will
result if you attempt to form an integer from a value too large to represent as a 32-bit
signed integer (i.e., above 2147483647 or below –2147483648). If a real value with places
to the right of the decimal is supplied to the INTEGER() function, the number will be
truncated to a whole number and then converted to an integer. Such truncation of real
values will always occur any time a non-integer real is converted to an integer
representation.

An integer value can be converted to a real value without precision loss in all floating
point precisions except 8-digit BCD, in which integer values beyond 100 million (+–)
cannot fit within the floating point representation. Therefore the value is truncated to
contain only the leading 8 decimal digits of the integer. Values between 100 million and 1
billion will always be within 9 of the actual value; values over 1 billion will be within 99
of the original integer value after being converted to real. If your program never uses
integers of this size then 8-digit MegaBasic can be used without any difficulties.

3

3-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 7: Vector Processing

MegaBasic supports an integrated family of vector processing capabilities. In the same
way that a string is a sequence of characters, a vector in MegaBasic is simply a sequence
of numbers. Vector operations are provided that allow you to manipulate vectors in
expressions (vector arithmetic), to potentially control thousands of operations in one
statement. Some BASICS provide a few matrix operations, but vector processing
techniques can be applied to implement any matrix operation, such as matrix inversion,
multiply, add, transpose, linear programming, etc., without restricting the language to
only those matrix operations that were included. Procedures for some of these
operations are implemented in LIBRARY.pgm included in the MegaBasic software set.

An algorithm implemented with vector operations can execute from 3 to 12 times faster
than the same algorithm implemented iteratively (i.e., looping through the individual
elements). This is because vector operations generally replace the innermost loops of
many algorithms with one or two single vector statements, where virtually all the
processing is concentrated, and the vector operations themselves are compiled
on-the-fly and executed, instead of interpreted.

Vector Variables

Several statements and functions are supported that provide a complete vector
processing facility in MegaBasic. To effectively use these constructs, you need to
understand how to specify vector variables and vector expressions. A vector variable is
defined as:

� Any numeric scalar variable or single array element reference. This is the
shortest possible vector: a vector of length one.

� An array name without any subscript expression, representing a vector that
consists of all elements contained in the array, even if the array has more than
one dimension. In multi-dimensional arrays, the element order is the same as
the traversal by the following program:

Dim ARRAY(L,M,N)
For l = O to L; For J = O to M; For K– O to N
Print ARRAY(I,J,K); Next K; Next J; Next I

In other words, we advance a subscript only after sequencing through all possible
combinations of all the subscripts to the right of it. This type of vector variable lets you
process any array as if it were one long list of numbers.

� An array slice, representing a vector consisting of all elements of the array that
intersect with a slice through one or more dimensions of the array. Array slices
are described below.

� A concatenated vector variable, which is a list of vector variables separated by
commas and surrounded by brackets. This type of vector expression is discussed
later on.

3

3-27GFK-0256 Chapter 3 Representing and Manipulating Numbers

Specifying Array Slices

In a vector context you can access a series of array elements by specifying one of the
array subscripts with an asterisk to mean all elements contained in that dimension. For
example consider the array ARRAY(20,30) consisting of 21 rows (0 to 20) and 31 columns
(0 to 30). The vector ARRAY(i,*) is the sequence of elements from row I spanning
ARRAY(i,0), ARRAY(i,1),..., ARRAY(i,30). Likewise the vector ARRAY(*,j) is the sequence of
all elements in column J. Think of the asterisk as being a wild-card that means all possible
locations in that dimension. This notation is called an array slice, because it refers to all
the array elements intersected by a slice through an array.

You can specify more than one asterisk subscript, as long as they are adjacent to one
another in the subscript list. The following table illustrates various array slices using a
three-dimensional array to help you understand the meaning of the asterisk notation.
We will conceptualize this array as a stack of levels, each consisting of elements arranged
in rows and columns.

 ARRAY(i,j,k)
Single element vector, using the value in column K of row J on
level I.

 ARRAY(i,j,*)
The elements at all columns at the intersection of row plane J
and level plane I.

 ARRAY(i,*,k)
The elements in all rows at the intersection of column plane K
and level plane I.

 ARRAY(*,j,k)
The elements in all levels at the intersection of row plane J and
column plane K.

 ARRAY(i,*,*)
The elements from all rows and columns on level I,
i.e., a slice through the plane of one level.

 ARRAY(*,*,k)
The elements from column K on all rows in all levels, i.e., a
slice through the plane of one column.

 ARRAY(*,j,*)
This is illegal because the asterisks are not adjacent, and re-
ported as an Array Subscript Error if you try it.

 ARRAY(*,*,*)
All elements from the entire array. This is equivalent
specifying the array name without any subscripts at all.

Scalar variables or arrays that have never been DIMensioned or created by default
cannot be referenced as a vector. Attempts to use such uninitialized variables in a vector
context will be reported as Out Of Context Errors.

Concatenated Vectors

As mentioned earlier, a vector variable can be specified as the concatenation of two or
more vectors, by enclosing the component vectors in brackets []. For example [X,Y,Z] is a
vector with three vector variables, forming a sequence of numbers consisting of the
three vectors placed end to end. The component vectors within brackets may have any
of the following forms:

� A scalar variable

� An array slice or an indexed array slice

� An unsubscripted array name

� A scalar expression that does not begin with a user-defined identifier

All components of a concatenated vector must have identical data types. In other words,
all components must be integers or all components must be floating point (real). A Data
Type Error is reported if this rule is violated.

3

3-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The last form lets you specify 1-element vector components using ordinary arithmetic
expressions. For MegaBasic to discriminate between such an expression and a vector
variable, the expression cannot begin with an identifier (e.g., you can surround scalar
expressions with parentheses). Hence scalar expressions considered valid include any
expression that begins with a numeric constant, a left parenthesis or a built-in MegaBasic
function. Components specified in this manner represent read-only values. If you store
data into a concatenated vector, any read-only components that it contains will be
treated as variables and modified accordingly. No error is reported for this condition;
you simply lose whatever value is stored there.

Vector Variable Indexing

In some situations, you may only want a portion or sub-sequence of a vector specified by
an array slice expression. Therefore MegaBasic lets you append an indexing expression
onto any array slice, much like the indexing expressions supported for string variables.
Unlike string indexing, a vector index position is zero-based (rather than one-based) and
you can only index vector variables: vector expressions and concatenated vectors cannot
be indexed. See Chapter 4, Section 5 for complete information about indexing strings.
The examples below show how index expressions are applied to array slices:

Indexing Vector Variables

ARRAY(*,I)(J,K) Elements J through K of column I.

ARRAY(I,*)(J) All elements in row I from position J to the end.

ARRAY(*,I)(K:L) L elements starting at position K of column I.

ARRAY(I,*)(:L) The last L elements of row I.

Extended (or compound) index expressions are also fully supported, i.e., indexing an
already indexed vector. Note that you cannot index an array without any explicit asterisk
subscripts because MegaBasic assumes that the first parenthetical expression that follows
an array name must be a subscript expression, not an indexing expression. Unlike
indexed characters strings, indexed vectors must select at least one element; a null vector
is not allowed.

Vector Expressions

Computations involving vectors are expressed in much the same way as ordinary scalar
calculations. For example if X and Y are vectors, the expression (X+Y)/2 will produce a
result vector whose elements are the average of the corresponding elements in X and Y.
There is virtually no limit on expression complexity or parenthesis depth, and the
internal memory required during the computation is only slightly greater than that
required for a similar scalar computation.

Vector expressions are evaluated completely for the first element of every term of the
expression, followed by the second element of every term throughout the expression,
and so on through to the last element of each term. If the vectors of an expression differ
in length, then the shorter vectors will run out before the longer vectors are accessed.
When this happens, the shorter vectors simply wrap-around back to their first element
again, so that the expression computation can continue until the last element of the
longest vector has been processed.

For example the expression X+3 is the sum of a vector X and a constant. A constant is
really a vector of length one, so that when we evaluate this expression the constant
becomes, in effect, a constant vector of length equal to the length of X. Some other

3

3-29GFK-0256 Chapter 3 Representing and Manipulating Numbers

important applications of this wrap-around idea will be shown later on, but for now the
important thing to understand is that a vector expression always produces a vector
result equal in length to its longest vector variable. You can control any wrap-around by
controlling the lengths of the vectors involved.

Vector Operators

All the standard MegaBasic arithmetic operators are supported in vector expressions.
Mixed-mode (i.e., integer and real) arithmetic is supported under the same rules as in
scalar arithmetic, including operator precedence relationships. Unlike scalar arithmetic, if
the result of an integer calculation exceeds the capacity of a 32-bit integer, a numeric
overflow error is reported, instead of converting the integer to floating point and
continuing on. If an error occurs during a vector computation, you can determine on
which element the error occurred using the INDEX function, which always returns the
number of correctly computed vector result elements.

All the logical operators (i.e., AND, OR, XOR, EQV, IMP and NOT) and all the comparison
operators are supported. As in the scalar context, they return an integer 0 or 1 result, or
rather, a vector of 0’s and 1’s. Using these, the expression SUM(X>=10 and XC=30), for
example, computes the number of elements in vector X that lie in the range from 10 to
30.

Vector Functions

All arithmetic functions (Chapter 9, Section 1) and mathematical functions (Chapter 9,
Section 2) are supported in a vector context, with the following exceptions:

ROUND() with two
arguments

SGN() with two
arguments

RND() with one argument POLY() function

Pi is supported as well as INDEX, which begins at zero and increments by one as the
vector expression sequences from element to element. INDEX can be used in a vector
expression as a running counter-vector, or after an error (such as divide by zero) to
determine the element that caused the error during the vector computation. The
dramatic speed improvement of vector operations over iterative implementation may be
reduced when transcendental functions are applied to vectors, simply because such
operations are dominated by computation.

None of the file and device l/O functions are supported, nor are the utility and system
functions, except for INTEGER() and REAL(). When you apply a function to a vector
expression, each element of the expression result vector is transformed by the function
to produce a new vector of transformed elements. For example SQRT(X+Y) returns a
vector consisting of the square root of the sum of the corresponding elements in vectors
X and Y. If you attempt to use any MegaBasic function that is not supported in a vector
context, an Out Of Context error will be reported.

Scalar Functions on Vectors

MegaBasic provides several functions that operate on a vector and return a scalar
numeric result (i.e., a single number) including MIN() , MAX() , SUM() , LEN() and
FIND() . These functions are used in normal expressions because they return a simple
numeric result. You cannot use them in vector expressions (i.e., they do not return vectors
of sums, lengths, minimum or maximum values).

3

3-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� MIN() and MAX() on Vectors

MIN() and MAX() let you include vector expressions as argument from which
the MIN or MAX value is determined. You must precede vector expressions by the
VEC reserved word in so that MegaBasic will evaluate it as a vector. The
argument list of vector and scalar expressions is scanned from left-to-right and
the MIN or MAX value is returned. Afterward, the INDEX function returns the
sequence position (one-based) of the value found, as if all scalars and vector
elements were scanned as one long list.

� SUM(vector exprn)

SUM() evaluates a vector expression and returns the sum of the resulting
elements. For example, the expression SUM(X*X) computes the sum of the
squares of each element of vector X. The word VEC is not needed in SUM()
because it only operates on vectors.

� LEN(VEC vector exprn)

LEN() returns the length of a vector expression, i.e., its element count. The VEC
word is needed to indicate that a vector expression is coming up, not a string
expression. LEN() does not evaluate the vector expression; it only computes the
length of the longest vector term within the expression.

� FIND(VEC vector exprn)

FIND() locates the first non-zero element in an arbitrary vector expression,
returning either the index position found (zero-based), or –1 if all elements were
zero. For example, if all elements of X() are zero except for X(17) then FIND(VEC
X) returns 17. To locate a value in a vector satisfying some condition, specify the
condition as the vector expression, e.g., FIND(VEC X=99) or FIND(VEC X>20
AND X<30) . If you use vector indexing to limit FIND() for partial searches, the
position returned is relative to the region searched, rather than to the beginning
of the entire vector.

Vector Statements

The vector processing statements are simply enhancements of selected scalar processing
statements that already exist in MegaBasic. These include vector assignments and
swapping, printing, and file reads and writes. In each of these statements, you must
indicate that a vector operation is coming up, by preceding the operation with the
special reserved word VEC. We will describe each of the vector statements in the
discussion that follows.

The INDEX function, referred to elsewhere in the discussion, returns the number of
processed elements at any point. It is often useful for setting vectors to an arithmetic
sequence.

Some vector operations can take a while to execute, depending primarily on the number
of elements to be computed and the complexity of the calculation. Heavy use of
transcendental functions on 100,000 elements without a math coprocessor can take quite
some time to complete. During this time, Ctrl-C is not recognized, causing a perceptible
delay between the time you type a Ctrl-C and the time your program stops.

3

3-31GFK-0256 Chapter 3 Representing and Manipulating Numbers

Vector Assignments

Virtually all vector processing is performed by vector assignment statements, which
have the form:

VEC <vector variable> = <vector expression>

The reserved word VEC announces a vector assignment is ahead, the <vector variable>
defines where to store the resulting vector, and the <vector expression> defines the
vector calculation to be performed.

The length of the vector variable dictates the extent to which the vector expression is
performed. For example in the vector assignment VEC X = 3, the constant 3 is a
one-element vector which is extended (or repeated) to match the length of vector
variable X. As another example, consider the following program fragment:

Dim X(100), Y(10);
Vec Y = index; Vec X = Y

First create two vectors (arrays), one with 101 elements and one with 11. Then assign the
INDEX function value to each element of Y(*). The INDEX function always returns the
number of successfully computed vector elements from any vector computation.
However within a vector expression, INDEX creates a vector consisting of an
incrementing series of integer values starting with zero.

Finally, we assign vector Y to vector X. Since Y is shorter than X, MegaBasic extends Y to
the length of X by repeatedly wrapping around to the beginning of Y each time it runs
out. This results in X containing 9 concatenate series of integers 0 to 10, finishing with 0
and 1 in elements 100 and 101. This automatic repetition can be useful in matrix
manipulation, as demonstrated by the assignment statement:

Vec M(*,*) = M(*,*) + R(*)
where M(i, *) and R(*J are the same length

If M() and R() have the same number of columns, the statement above adds R(*) to
every row in M(). This implicit repetition means that you must be careful when setting
up vector operations to specify vectors of the appropriate lengths at all times. Just one
element too few or too many can easily produce invalid results that may be difficult to
detect, especially when other vector operations follow.

You also need to use care in applying the automatic repetition to avoid excessive
computation when doing simple things. If, for example, S is a scalar variable and X is a
10,000 element array, the statement VEC X - SQRT(S) would compute and store the
square root of S 10,000 times, a very time consuming and wasteful approach. It is much
more efficient to compute and save a complex result once, then store it into a vector as a
separate step.

A concatenated vector variable (enclosed in brackets [] as described earlier) may be the
target variable of a vector assignment, as in:

Vec [A,B,C,D] = X(*,J)

The vector expression result on the right is distributed among the variables on the left as
if they formed one continuous variable, even if any or all of the concatenated variables
are also vectors. If A, B, C and D are scalar variables, then they receive the first four
elements from column j of array X(). As always, the result vector is extended to match
the length of the receiving vector variable, which in this case is the combined length of
the concatenated variables.

3

3-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

When the assigned vector variable also appears in the vector expression to the right of
the equals sign (=), remember that each element is computed and stored one at a time.
In particular, computing one element using the value of another element of the same
vector may not work. Consider the following example:

Vec X(*)(1) = X(*)

This assignment statement appears to assign the values from elements 0 and up to
element positions 1 and up, i.e., shift all element values up by one element. In fact, what
this really does is to copy the value of X(0) to all elements of the vector. This is because
later elements are stored using the results of earlier elements and vector calculations are
always done in ascending sequential order, resulting in the sequence: X(1)=X(0),
X(2)=X(1), X(3)=X(2), and so on. This computational property may be useful in certain
applications but in most cases specifying such assignments causes errors that may be
difficult to diagnose.

With careful application, however, you can take advantage of the sequential nature of
the vector computational process for special purposes. An important example of this is
converting a series of values into a cumulative series. The following program fragment
does just that

Vec X(*)(1) = X(*)(1) + X(*)

This computation first sets X(1) = X(1)+X(0), then sets X(2) = X(2)+X(1), and so on, so
that each resulting element is the sum of itself and all elements preceding it. We can also
convert this cumulative series back to is original incremental series using a similar
technique, as shown by the program fragment:

Vec Y = X; Vec X(*)(1) = Y(*)(1) – X(*)

In this case, we have to copy vector X to another vector so that the elements needed in
the calculation are not modified before they are used. The result is that each new
element X(i) = X(i) – X(i–1).

Swapping Vectors

In matrix applications, one frequently needs to exchange of the contents of two vectors,
such as in matrix transposition and matrix inversion procedures. This generally
time-consuming process can be performed using the SWAP statement which is 7 to 12
times faster than a similar implementation using FOR..NEXT loops. For example, the
following routine transposes an N-by-N matrix using vector swaps:

For l = O to N–1
Swap vec MATRIX(*,I)(I), MATRIX(I,*)(I)
Next I

This routine swaps the contents of each corresponding row and column. As shown
above, the VEC reserved word must precede each pair of variables to be swapped, so as
to distinguish them from other scalar variables or strings to be swapped in the same
statement. As with all vector operations, the INDEX function returns the number of
elements processed after the operation has completed.

When you swap two vectors of different lengths, the process continues until the last
element of the longer vector has been swapped, and the shorter vector is re-started from
the beginning whenever it runs out of elements to swap. For example if you swap a
vector with a scalar (a vector with one element), the scalar is repeatedly swapped with
each element of the vector. The net effect of this is to insert the scalar value into the

3

3-33GFK-0256 Chapter 3 Representing and Manipulating Numbers

vector, and move the extra value that falls off the end of the vector into the scalar variable.
A similar insertion occurs when a long vector is swapped with a short vector.

This capability can be useful in vector sorting, vector element rotation, element insertion
and deletion, and other manipulations on numerical arrays. It also means that you must
be careful when you specify a vector swap operation to ensure that the lengths of both
vectors are exactly correct, to avoid an unintended result.

Printing Vectors

You can PRINT the resulting elements of a vector expression by merely specifying the
vector expression, preceded by the reserved word VEC, as any term of a PRINT
statement. Each value is printed with the appropriate format, just as if each element was
specified as a separate (scalar) expression, for example:

Print %“12f2,8i”, Vec X(*,j)

This statement prints all the values from column j of array X() to the console, in a format
that alternates between 12F2 and 8I. This capability eliminates the need for FOR..NEXT
loops for similar applications of PRINT. You can PRINT simple vector variables and vector
expressions of any complexity. The VEC reserved word must precede each vector to be
PRINTed ; expressions not marked in this way are assumed to be scalar expressions.

Writing Vectors to Files

Like the PRINT statement above, you can specify vector expressions in the output list of
a WRITE statement. You must precede each such expression with the VEC reserved word
to inform MegaBasic of your intentions. The vector elements are written to the disk file
in binary format (integer, IEEE real or BCD real) and in the order they occur within the
result vector. If PARAM(11) has been used to change the floating point precision written
to files, each element will be converted to that precision as it is written. If a WRITE REAL
or WRITE INTEGER statement is being performed, the vector elements are converted to
the representation indicated as needed. You cannot specify the byte override ampersand
(&) or the word override at-sign (@) on vector write operations.

Reading Vectors from Files

You can read vectors from a file by specifying a vector variable in the input list of a READ
statement. You must precede each such variable with the VEC reserved word. The vector
elements are read from the disk file in binary format (integer, IEEE real or BCD real) into
sequential elements of the receiving vector. The number of values read is determined by
the length of the receiving vector variable. If PARAM(11) has been used to change the
floating point precision read from files, each element will be converted from that
precision to the internal precision of MegaBasic as it is read into the vector element. If a
READ REAL or READ INTEGER statement is being performed, the values of the type
indicated are read and, if necessary, converted to the numeric type of the vector variable
as they are stored. You cannot specify the byte override ampersand (&) or the word
override at-sign (@) on vector read operations. The non-file READ statement (for DATA
statements) does not support vectors.

Reading numeric vectors from files is 4 to 10 times faster when the vector elements
follow one another in memory (i.e., contiguous elements). A vector is contiguous if it is
the entire array or its rightmost subscript is an asterisk (*). Such a vector is still
contiguous after any indexing is applied. In this special but very common case, all the

3

3-34 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

elements are read directly into the vector in one disk operation, instead of a potentially
separate disk read for each element. Separate disk transfers are used whenever the read
involves precision conversions (i.e., PARAM 11 <> PARAM 4), numeric type conversions
(i.e., from READ REAL or READ INTEGER), or non-contiguous elements (e.g., VEC X(*,K),
Y(*,*J), etc.).

When the high-speed vector read is performed, the individual elements are not
validated in any way. Single-element reads employ a very simple validation of each
value read, but this is only of use when the file truly contains garbage. If an actual read
error occurs, such as reading past the end of the file, the INDEX function does NOT
return the number of correctly read elements because INDEX is updated after the disk
read has successfully completed.

3

3-35GFK-0256 Chapter 3 Representing and Manipulating Numbers

Section 8: IEEE Floating Point and 80x87 Math Support

MegaBasic is available in either of two fundamentally different floating point
representations: BCD floating point, and IEEE double precision binary floating point.
Unlike the BCD MegaBasic, IEEE MegaBasic provides full 80x87 numeric processor
support. This version, called BASIC87 and RUN87, automatically detects the presence of
the numeric processor so that subsequent arithmetic operations can take full advantage
of its capabilities or emulate its functionality in software when not present.

BCD vs. IEEE Representation

Before jumping into what BASICS87 can do, it is instructive to contrast and compare the
two floating point representations supported by MegaBasic, i.e., BCD and IEEE . BCD,
which stands for Binary Coded Decimal, is a representation format that packs two decimal
digits (i.e., 0 to 9) into an 8-bit memory value. A BCD floating point number consists of a
series of these packed bytes followed by the byte containing the sign of the number and
a power of ten scaling factor that indicates the magnitude of the number. Under
MegaBasic this power spans –63 to 63, providing a numeric range from lE–63 to lE+63.
BCD floating point representation has a number of advantages:

� All decimal numbers within the precision provided by the BCD format are
represented exactly. For example, using 14-digit BCD format you can represent
hundreds of billions of dollars to the penny without any round-off error. This
makes BCD well suited for financial work or other applications where input
values must be represented exactly.

� Numbers must ultimately be represented in display code or ASCII character
representation for both input from the keyboard and output to a printer or
screen. Converting between ASCII and BCD floating point is very quick and
requires only a small amount of program code to perform it. On the other hand,
converting between ASCII and binary numeric representations is a much more
complex and time consuming task.

� BCD numbers can be read directly from hex dumps of files or memory without
any special conversion performed. This is of great assistance in certain types of
machine/assembler code debugging.

Two disadvantages of BCD floating point should be noted however. BCD is slightly less
efficient with storage than pure binary representation. This is because when two decimal
digits are packed into an 8-bit byte, a small part of each byte goes unused. For example 5
bytes can theoretically contain 12 digits of precision, but with BCD coding they can only
hold 10 digits, two per byte. The second disadvantage is that hardware-assisted
computation for BCD format is virtually non-existent and therefore BCD MegaBasic will
likely be limited to software-only arithmetic.

IEEE double precision format is a purely binary method for representing floating point
numbers. It consists of a 52-bit fractional part called the mantissa, an 11 bit power of two
scaling factor called the exponent, and one more bit for the sign. This representation has
three advantages over BCD format:

� IEEE arithmetic implemented in software can be more efficient than BCD
arithmetic implemented in software, especially multiply and divide.

3

3-36 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� Hardware computational support for IEEE format is available on many fronts.
In 8088/86/286 applications, the Intel 80x87 chips provide this, and have
exceptional support for transcendental functions.

� IEEE binary representation provides the maximum storage efficiency possible.
Its 8 bytes provides enough precision to store 16 digits and an exponent that
supports a dynamic range from lE–308 up to lE308. In contrast, an 8-byte BCD
floating point number can hold 14 digits with a dynamic range from lE–63 to
lE63.

An important disadvantage to be remembered about IEEE double precision format is
that very few numbers with decimals can be represented exactly. For example 0.1 cannot
be represented exactly, just as 1/3 cannot be represented exactly under BCD format.
However, this problem is more pervasive with IEEE format simply because decimal
numbers are the basis for nearly all input and output of numerical information, as well
as specification of numerical constants in programs. This does not mean that calculations
are any less accurate using IEEE format, just that, in many cases, the original decimal
data will contain small round-off errors after it is stored internally. Such round-off errors
are inherent in the IEEE representation, and are not bugs in software that supports it,
like BASIC87 .

IEEE/BCD Compatibility

BASIC87 is designed to run programs originally written under BCD MegaBasic without
any program changes. There are, however, a number of areas that you need to be aware
of which can potentially alter the outcome of certain operations. We consider all these
differences to be insignificant in the vast majority of applications. The issues are as
follows:

� When floating point variables are read from or written to data files directly, the
prevailing floating point representation is assumed: BCD versions read/write
BCD, IEEE versions read/write IEEE . PARAM(11) can be set to modify this
behavior, however, as we will discuss later on. IEEE values require the same
amount of memory/file space as floating point values under the 14-digit BCD
version: 8 bytes each.

� Operations that use knowledge of the internal BCD representation will no longer
work correctly. The only way this can occur is by using EXAM and FILL
statements to access memory locations containing floating point numbers, or by
passing the memory address of these numbers to machine code subroutines
outside of MegaBasic. Very few programs will be affected by this incompatibility.

� Results from complex calculations will have small differences in the
least-significant digit or two, so you should not rely on identical full-precision
results for your program to be correct. If you can run your application under
different precisions of BCD MegaBasic, then you should also be able to run it
under IEEE MegaBasic.

� Decimal numbers stored in IEEE floating point variables will not always be
represented exactly, the way they are in BCD variables. This shows up in
FOR..NEXT loops with certain non-integral step sizes, sometimes causing the
loop to execute one less iteration than with BCD floating point numbers.

� The exponents of numbers formatted with E-notation require one more column
of width (for 3 digits instead of 2). This may result in an overflow of the field
width and no value will be shown. If this rare case is encountered, the field is
filled with asterisks (*) and the program continues on.

3

3-37GFK-0256 Chapter 3 Representing and Manipulating Numbers

� The relative time to compute most floating point operations will differ under
IEEE and programs relying on such timing may require adjustment. A few
operations are slower under IEEE MegaBasic, such as ROUND(x,n) and
converting between ASCII and floating point, but most operations are much
faster.

� The RND() function generates a completely different sequence of random
numbers under IEEE than under BCD. Results from programs using RND() run
under different versions will not match.

� The TYP() function is not able to reliably distinguish binary data from strings
and end-of-file marks (and never could). Therefore TYP() should not be used to
determine the next data type on files that contain binary data (such as IEEE
floating point, binary integers, etc.).

Floating Point Values on Files

By default, MegaBasic always read/writes floating point values using the precision and
representation used internally by the running version of MegaBasic. To allow different
precisions of MegaBasic to access the same data files, PARAM(11) has always been
available to control the precision assumption used when performing floating point file
transfers.

BASIC87 can read/write floating point values in any BCD precision from 6 to 18 digits,
just like the BCD versions of MegaBasic. It can also transfer both IEEE double-precision
(standard) and IEEE single-precision formats. This can be done by setting PARAM(11) to
one of the following values:

1

Selects single-precision format for all floating point transfers.
This is a 4-byte representation that can store numbers with
about 6.5 digits of precision, ranging from 8.34E–37 to
3.37E38. A small conversion penalty is involved for each value
transferred.

 2

Selects the standard double-precision format used internally to
hold and process IEEE floating point numbers. All 8 bytes of
the IEEE floating point number are transferred in this
format to maintain full precision. This is the fastest format to
transfer IEEE floating point numbers between data files and
your program.

 6-18

Selects BCD floating point format with the precision indicated.
Since only even numbers of digits are possible, odd values are
rounded up. The extra time it takes to convert between IEEE
and BCD format as values are transferred between memory
and files should be considered when choosing BCD over
binary transfers.

Values written in smaller precision or read in higher precision are rounded to the smaller
destination precision. Values too small to represent in the target precision are set to zero,
while values too large to represent will cause a numeric overflow error. Values written in
higher precision or read from lower precision values are padded with extra zeros as
needed.

Single-precision IEEE format is provided for applications that need to store
low-precision numbers as efficiently as possible, and for accessing available data files
written in that format. BCD format is supported to allow access to existing data files
written by BCD versions of MegaBasic. A numeric overflow will occur if BCD values
larger than 10^63 are written. BCD MegaBasic does not support the single/double
precision IEEE format.

3

3-38 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

PARAM(11) normally defaults to the precision/format that the running copy of MegaBasic
uses to represent floating point numbers internally. For example under 14-digit BCD and
IEEE versions, PARAM(11) equals 14 and 2, respectively. However its default value can be
modified permanently for any particular copy of MegaBasic using the CONFlG.pgm
utility.

PARAM(4) returns the numeric precision/format used internally by the running copy of
MegaBasic. Under IEEE versions it returns 2, and for the BCD versions it returns the
BCD precision (as in the above values for PARAM 11).

Software/Hardware Performance

Performance is the real reason for using IEEE floating point representation. BCD
add/subtract operations are very efficient and remain competitive even against the
80X87 processors. However, all other areas of floating point processing exhibit obvious
gains when a math chip is used (e.g., multiply, divide and especially the transcendentals).

The degree of speed improvement you experience will vary with the system clock speed
and math chip type being used (e.g., an 80287 is faster than an 8087, but slower than an
80387). There are several different brands of math chip and their performance varies
widely. Because of this variation, certain internal operations may still run faster in
software than with math chip assistance.

Math chip presence is automatically detected by MegaBasic at start up. If not present, all
operations are performed strictly in software. The use of the math chip can be disabled
or enabled under program control so that you can test your software under both
environments without having to physically remove the chip or run your tests on a
different machine. To enable/ disable the math chip, use the following statements:

PARAM(20) = 0 Disables all use of a numeric coprocessor.

PARAM(20) = 1 Enables an 80X87 coprocessor if present.

PARAM(20) can also be tested to determine if a math chip is being used. It will not,
however, return 1 if it is present, so you need to test it for a non-zero value instead of
one. This is because the value returned by PARAM(20) is a composite value that indicates
the chip type (i.e., 8087, 80287 or 80387) and a measure of relative performance of the
existing chip as compared with the current CPU speed. It is not possible to enable the
chip unless one is actually present in the machine. PARAM(20) under BCD MegaBasic
always returns zero and cannot be set to anything else.

The accuracy of both the hardware and software transcendental functions is very good:
full 16-digit accuracy is maintained for all functions when using the math chip. The
software transcendental functions return results within 15-16 decimals for better than
99% of all arguments supplied. COS() and TAN() return an occasional result good to only
14 digits (for less than 1% of all arguments) . This reduction in accuracy occurs only for
arguments that are far outside the primary function domain (i.e., 0 to 2 pi for
trigonometric functions). In such cases, the argument itself is inherently less accurate, so
the reduced accuracy from the function is not significant.

In order to hide round-off errors in the least-significant digits of displayed floating point
values, numbers displayed in free-form format are shown rounded to 14 digits. You can
use E-notation or other fixed-point formats to see more digits of precision than this if you
need to.

4 section level 1 1
figure bi level 1
table_big level 1

4-1GFK-0256

Chapter 4 Representing and Manipulating Strings

MegaBasic possesses two fundamentally different data representations: numbers and
strings. Numbers and their associated operations are fully described in Chapter 4,
Section 3. Strings are series of adjacent characters (8-bit bytes) used to represent
anything from text to integers to arbitrary binary information. Their representation and
manipulation is fully discussed in this section which is grouped into the following
categories:

String
Constants

Fixed strings for use in display, input or manipulation.
Characters and the ASCII characters set is also covered.

Simple
Variables

Character strings that can be altered during program
execution.

 String Arrays Ordered sets of variable strings organized by one or more
dimensions.

 String
Expressions

Phrases for computationally transforming and combining
string objects into new strings. All string operators are
discussed.

 String Indexing Notational conventions for extracting and accessing
sub-sections of larger strings.

String
Functions

User-defined and built-in symbols for combining and
transforming strings.

Most typical business application programs spend much of their time dealing with
strings: word processing, mailing lists, report generation, command processing, record
processing, and formatting to name a few. Strings can represent binary information, text,
packed numbers or virtually any other data representation. MegaBasic has a carefully
chosen set of operations which when used in combination can efficiently perform all
string operations supported by other high-level computer languages (such as PL/1) with
exceptional string handling facilities. Becoming fluent in MegaBasic string handling
concepts can greatly simplify many of your non-numeric data processing applications.

4

4-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Characters and String Constants

The smallest quantity of information that can be represented or processed by a
computer is the bit, an abbreviation for binary digit. One bit can only represent two
values, one and zero, with which we can associate meanings such as: on/off; true/false,
yes/no, in/out, black/white, full/empty, etc. However if we combine two bits together, a total
of four values can be represented using all the possible combinations (i.e., 00, 01,10,11).
Each additional bit double the number of possible combinations that can be formed, and
hence the number of states that can be represented by the group.

By grouping 8 bits together as a unit, we can express 256 values, one for each of the
possible combinations. These 8-bit units, called bytes, are perfect for representing
characters because their 256 possible values is sufficient for assigning a different
value to each letter, each digit, each of the various punctuation marks
(e.g., ?!@#$%^&*()<>,.:“’’’;[]), and still have many left over for special purposes, such
as carriage returns, spaces, form-feeds, etc.

In order for such a character set to really be useful, everyone who uses it must agree on
the same characters for the same 8-bit values. After all, when you print the letter Q on
one device it should also be the letter Q on some other device. Therefore a standard
called the ASCII character set has been assigned to the series of 8-bit values so that
independently developed computing machinery can communicate characters with one
another.

Actually, there are a number of different standard character sets that exist, but ASCII is
the most commonly and widely accepted standard. Appendix D, Section 3 contains a
table of all ASCII characters alongside their corresponding 8-bit values (in binary,
decimal and hexadecimal). The TRAN$() string function (Chapter 9, Section 3) can
convert strings of characters from one character set to another, should the need arise.

Awareness of the ASCII character set is of central importance when you compare strings
with one another using MegaBasic statements. In order to sort strings, for example, you
need to know if one string is less-than, greater-than or equal-to another string. The notion
of above and below depend of the internal values of characters rather than the
characters themselves.

However, individual characters cannot convey very much information. As you read this
sentence, notice that you are not reading one character at a time, but reading words or
even phrases of words as indivisible units of information. Characters are important but
larger chunks of information are much easier to handle, move around and manipulate.
Therefore in a programming language, character information is processed in
multi-character chunks called strings.

A string is a sequence of zero or more characters (8-bit bytes) treated as a single data
object. As with numerical quantities, strings may be expressed as constants, variables,
arrays, functions and string expressions. For example the string constant “This is a String”
is a string with 16 characters. The quotes are used to clearly separate the string
characters from those around it but are not actually part of the string. Without the
quotes, it would be difficult (if not impossible) to tell which characters are in the string
and which characters are outside the string.

4

4-3GFK-0256 Chapter 4 Representing and Manipulating Strings

String constants typed into MegaBasic programs are always delineated using two double
quotes (“...”) or two single quotes (’...’), making it possible to include either quote
character (but not both) within a string constant. You must type quotes around string
constants within MegaBasic programs, but when a string is typed as input to a program
request you never put quotes around it unless the quotes are part of the string itself. It
would be very restrictive and cumbersome if you had to surround all your typed input
with quotes. The following MegaBasic program statement illustrates how you would
print a message on the screen using a string constant:

PRINT “This message goes on the screen without quotes.”

A string can have zero or more characters and although it may seem that a string with zero
characters would have little use, it actually occurs in string applications just like the
number zero occurs in numerical applications. Such an empty string is called a null string.
A null string constant in a MegaBasic program is typed simply as two quotes with no
characters in between (i.e., ““ or ”). Suppose that your program requests string input
from the keyboard and the operator types in nothing. Your program can simply compare
the input received with a null string and take the appropriate action. Remember that
spaces, like those between the words in this paragraph, are not null strings but actual
characters in a string. For example the string constant “ ” is a string consisting of three
characters, all spaces.

If you ever forget to include the terminating quote (“ or ’) at the end of a string constant,
MegaBasic will automatically place one at the end of the line. This can be convenient
when you are typing a string constant as the last item of a line, since the second quote
need not be typed. However, if other terms or statements follow a string constant on the
same line, omitting the final quote causes all following characters to be included as part
of the string constant. Therefore, MegaBasic informs you that it added a missing quote
on programs edited or inserted into the program.

String constants are used in programs to represent fixed character sequences (usually
text) which are manipulated with other strings to form string results. This is analogous to
the use of numeric constants (Chapter 3, Section 2) in programs as fixed quantities. Since
string constants are typed from the keyboard, only the printable subset of ASCII
characters can be placed in them. If you type any control codes (values 0 to 31), the
MegaBasic line editor picks them up and uses them for various editing functions and
they never get into the string constant. However, string constants are not the only way
to express strings, as you will see in the sections that follow.

4

4-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: String Variables

Character strings from zero to 65502 bytes long may be stored in string variables for later
retrieval by name. A variable name may appear anywhere that string data is acceptable.
By merely referring to any string variable by name, its entire contents are immediately
made available. String variable names must begin with a letter (A-Z), usually end with a
dollar sign ($), and contain any number of intervening letters (A-Z), digits (0-9) or
underscores (_). Names are discussed in-depth in Chapter 1, Section 5. The following
examples illustrate how and how not to spell string variable names:

Legal String
Variable Names

A2$, S$, WORD$, LONG_STR$,
 LINE2$, HEADING

Illegal String
Variable Names

5CHARS$, $A, TEXT%, TITLE!,
 STRING#, TYPE$$

Using a string variable name wherever string data is expected gives access to the data
stored in the variable. Assigning string data to a string variable replaces its previous
contents with the new string, a process that can be performed by assignment statements
(Chapter 5, Section 2), EXAM statements (Chapter 7, Section 3), INPUT statements
(Chapter 7, Section 1), SWAP statements (Chapter 5, Section 2) and READ statements
(data Chapter 5, Section 1, file Chapter 7, Section 2). For example, the following short
program stores a message into a string variable named LINE$ and then prints the
contents of LINE$ on the screen:

10 LINE$ = “This message is stored in LINE$”
20 PRINT LINE$

Unlike string constants, the characters stored in string variables may assume the full 8-bit
ASCII character code range from 0 to 255. String variables in many computer languages
cannot store the entire range of 8-bit values (0 to 255), but the full range is vital to many
non-text applications. Bit-strings are a typical example of such an application, an
important tool which is described later in this section.

String variables in MegaBasic may be defined to hold any length string up to 65502
characters, as long as the available memory in your machine is sufficient. However since
strings are variable length objects, MegaBasic sets aside a memory area for each string
variable large enough to hold any string up to its defined maximum length. Unless you
explicitly define the maximum size for a new variable, MegaBasic will automatically
assign a maximum size of 80 characters, by default. You may assign your own maximum
string size using a DIMension statement like this:

DIM LINE$(50), BUF$(9999), CHAR$(1)

where LINE$ may store 0 to 50 bytes, BUF$ may store 0 to 9999 bytes and CHAR$ can
store only 1 or 0 bytes. The same DIM statement can define one or more strings by listing
their definitions one after another, separated with commas as shown above. Both string
and numeric (array) variables may appear in the same DIM statement.

Newly DIMensioned strings are filled to their maximum length with spaces (ASCII 32).
This default may be altered at any time to any ASCII code from 0 to 255 using PARAM(7)
in Chapter 9, Section 5. The 80 character default length of undimensioned string
variables may be set to any value from 1 to 4095 using PARAM(12).

4

4-5GFK-0256 Chapter 4 Representing and Manipulating Strings

Although default string variables are convenient, we recommend that you do not write
large programs that rely on them because they are often too large for small string
applications and this practice can complicate the test and debugging phase of
developing such programs. For example, by merely misspelling the name of an string in
some reference to it, MegaBasic will create a default string of that name if one does not
already exist. You can turn off default string creation by setting PARAM(12) to a value of
–1. Any subsequent references to new, unDIMensioned strings will cause an Undeclared
String Or Array Error, helpful in locating unintentional default string creations.

If you want a new string variable to contain zero characters (a null string) from the start,
simply assign a null string to it immediately after you create it, as shown in the example
below:

DIM STRING$(1000); STRING$ = “”

This creates a string variable named STRING$ which is initially set to contain a null
string (), but has the capacity to hold up to 1000 characters.

DIMensioning a string variable already defined re-defines that variable to the new size
specified. Such an operation is useful for releasing unneeded memory back to the system
for further use, and to permit program control over the size of string and array variables.
Since DIMensioning always re-initializes strings (with the default ASCII code), all
previous contents of the variable are lost, as is also the case with numeric arrays.

String variable and function names do not have to end with a dollar sign ($), although
this is a standard practice that makes the data type of string variables, arrays and
functions more obvious when reading the program. Strings names can be declared in the
same manner as numeric variables (integer and real). The complete set of rules and
syntax for declaring names as string entities is presented on the next page. If, however,
you are new to MegaBasic, we recommend that you name all string entities with names
ending with a dollar sign ($) to avoid any additional complication during your initial
efforts in learning MegaBasic. Later on, you can experiment with and take advantage of
the other methods in MegaBasic for declaring string variables, arrays and functions.

Rules For Declaring String Names

All variables and user defined functions are, by default, floating point (real) unless you
specify otherwise. To declare a specific name to be a string, you can end its name with a
dollar sign ($), declare its leading letter as STRING, or by declaring it explicitly as
STRING. Use the NAMES command to see what names are string, integer and real. The
rules and syntax for type declarations are summarized in order of decreasing precedence
as follows:

� Any variable or function name that ends with a dollar sign ($) will always name
a string object. A Type Error occurs if you attempt to declare or DIMension such
a name as real or integer.

� String arrays may be declared directly in DIMension statements, as shown in the
following example:

DIM STRING MSG(30,40), X(1000,50), BUFFER$(512)

which declares MSG() and x() as string arrays and BUFFER$ as a simple string
variable. The words STRING, INTEGER and REAL cause all DIMension
specifications that follow in the list to be string, integer or real variables, until
another specifier is encountered.

4

4-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� Specific names of variables and functions may be declared as STRING, INTEGER
or REAL using DEF statements such as:

DEF STRING LINE(),MSG
DEF STRING FUNC UCASE(BUF$)
DEF INTEGER X,Y,V(),P
DEF INTEGER FUNC TOTAL(V1,V2)
DEF REAL A,B,ARRAY (),C
DEF REAL FUNC SUM(V3,V4)

The empty parentheses () indicate names intended to be arrays. These
declarations override any types specified by letter. A Double Definition Error
results from declaring the same name with different types. This rule overrides
any data type associated with the leading letter of such names (see below).

� You can declare the data types by leading letter. A name beginning with a
declared letter will be become an object of the type declared. This is
accomplished using a DEF statement such as:

DEF STRING “s-v, z”, INTEGER “a, b, c, i-n”

where the string constant s-v, z specifies that names beginning with the letters
s,t,u,v and z will be strings and a,b,c,i-n specifies the leading letters of integers.
The quotes are required, but commas and spaces within the quotes are entirely
optional. Upper and lower case letters are treated as indistinguishable. A double
definition error will occur if you attempt to explicitly declare the same letter
with different data types.

� If none of the above rules apply, then, by default, the name will be assigned a
floating point (real) data type and cannot be a string.

4

4-7GFK-0256 Chapter 4 Representing and Manipulating Strings

Section 3: String Arrays

Another type of string variable is the array, in which a group of string values can be
stored under one name. String arrays are organized as an ordered set of storage
locations, called array elements, that are identified by a position number within the
ordering. For example LINE$(0) , LINE$(1) and LINE$(2) represent the first three
string elements of array LINE$. Parentheses are used to indicate that LINE$ is an array
and serve to contain the position of the desired array element. The positions are
sequentially numbered from zero up to the size of the array.

The 1-dimensional array LINE$ above could act as storage for a list of lines of text,
collectively representing a page of text, giving you direct access to each line on the page
by its line (position) number. Suppose that we combine many such pages together into
one string array for access by page (position) number. This is called a 2-dimensional
array. By identifying the line and the page we can directly access any line in the volume.
For example LINE$(PAGE,ROW) refers to line ROW on page PAGE, where PAGE and ROW
are simple variables specifying the array element positions. By adding further levels to
this idea, you can define and access string arrays with 3 or more dimensions. An
N-dimensional array requires N position numbers, called subscripts, to uniquely identify
an element position in the array.

DIMensioning String Arrays

In order for an array to exist it must be defined in your program prior to its use. The
definition of a string array must include its name, a maximum position for each
dimension subscript, and the string capacity of each of the array elements. Specify string
array DIMensions just like numeric arrays except that you must include the maximum
length of each array element as the last value of the DIMension list. Take the following
2-dimensional string array definition example:

DIM BUF$(7,20,16)

This defines a two-dimensional string with rows numbered 0 to 7, columns numbered 0
to 20 and individual string array elements having a capacity of O to 16 characters each.
You must always refer to BUF$ with a subscript list to indicate a specific array element.
For example:

BUF$(i, j) A correct reference to string element at row I,
column J.

BUF$(i) Too few subscripts is an error that stops the program.

BUF$ Omitting all subscripts is also a fatal error.

BUF$(i, j, k) Too many subscripts is also an error.

If you specify the wrong number of subscripts in an array reference, as in the last three
examples above, MegaBasic will report an Array Subscript Error. When accessing string
array elements, specify only the array DIMension positions and leave off the length
parameter, which is given only when DIMensioning .

You can re-DIMension the array at any time by re-defining it in another dimension
statement. All stored strings redefined in this manner are erased after such an operation
and re-initialized. Arrays can thus grow or shrink depending on your program

4

4-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

requirements. When arrays are made smaller the unused memory space is available to
the system for other purposes. The following list summarizes some important aspects of
using string arrays:

� An Array Subscript Error occurs if you attempt to access a dimension position
outside its defined range or use the wrong number of subscripts when accessing
it.

� A single DIM statement can define one or more arrays by simply listing their
definitions one after another separated by commas.

� All array elements are initialized the same way as simple strings.

� You cannot assign the same string variable name to both a string array and a
simple string variable. If you create a string array using the name of a simple
string variable that already exists, the simple variable and is contents will be
erased and the specified string array created under the same name.

� All string arrays must be defined explicitly, otherwise MegaBasic thinks they are
simple string variables instead of arrays.

� Array subscripts which are given as fractional quantities are truncated to the
next lower integer value (rather than rounded). For example
BUF$(3.723,0.201) is treated as BUF$(3,0) .

� For the best performance, you should employ integer expressions and variables
for array subscripts whenever possible. Floating point variables can be used, but
they will be converted internally to integer representation. Such conversions are
time-consuming by nature and best avoided if possible.

Since the dimensions of arrays can vary during the execution of your program,
determining the current dimensions of a given array can be useful from time to time.
The DIM() built-in function provides such information for any variable Chapter 9,
Section 5). DIM(S$) gives the number of dimensions of the variable S$; DIM(S$,1) gives
the highest position defined for dimension I of variable S$, counting the dimensions from left
to right.

Maximum String Array Size

As in all computer languages, the amount of memory available to MegaBasic limits the
maximum size of new arrays. Within this constraint, however, MegaBasic supports much
larger arrays than most other microcomputer languages.

The number of elements in an array is computed by taking the product of the
dimensions. For example the BUF$ array of the previous examples has 168 elements, as
computed by (7+1)*(20+1) = 8 * 21 = 168. One is added to each dimension to obtain
the true position count of each dimension.

The memory space taken by a string array is simply the number of elements times the
element size in bytes. The size of a string array element is its dimensioned length (i.e.,
the last number in its DIM specification) plus 2 (for internal overhead). Hence the total
memory required by the BUF$ array is 168 * (16+2) = 3024 bytes.

You can create as many variables and arrays as you like as long as their combined
storage requirements do not exceed the installed memory in your machine. MS-DOS
based systems are limited to 640k bytes of addressable memory (16 megabytes in
Extended MegaBasic). The FREE() function, described in Chapter 9, Section 5, provides
information about the current memory available so that your program can automatically
limit the size of new arrays to match available resources.

4

4-9GFK-0256 Chapter 4 Representing and Manipulating Strings

MegaBasic supports arrays with any number of elements, as long as no one subscript is
higher than 65534. For example, DIM BUF$(99,99,99,4) dimensions BUF$() to three
dimensions of 100 positions each, or 1,000,000 elements total (6 bytes/element). To
dimension BUF$(1000000,4) is not allowed, because the dimension extends higher than
65534. For performance and other reasons, one restriction applies to string arrays larger
than 65534 total elements: pointers to array elements can only access the first 65534
elements. Pointers to arrays (rather than to array elements) are unrestricted.

Obviously, you must have enough memory to support whatever arrays you actually
dimension, which tops out around 540k in a 640k DOS machine. Protected-mode
versions of MegaBasic, such as Extended MegaBasic, have no 640k limitation and
support massive arrays of up to 16 megabytes.

4

4-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: String Operators and Expressions

Strings are manipulated and processed by combining them in phrases called string
expressions, similar to numeric expressions. String expressions permit you to specify a
string as a combination of other strings and are formed from string symbols and string
operations. Although the notation of string expressions looks similar to numeric
expressions, their operation is totally different. The example below combines two strings
together into a string result:

This string expression: “ABCDE”+“12345”

evaluates to this result: “ABCDE12345”

As you can see, the plus sign (+) has a different meaning depending on whether it is
being applied to numbers or to strings. A plus operator used with strings is called a
concatenation operator, because it is used to connect or concatenate two strings into a
longer string.

String symbols used in string expressions include string constants, string variables, string
functions (both user-defined and built-in) and string sub-expressions. A sub-expression is
actually a portion of a larger expression that has been surrounded by parentheses,
grouped as a computational unit.

String operations, called string operators, are of two types: unary and binary. Unary
operators act on a single string to form the result string. For example the NOT operator
preceding a string (e.g., NOT Z$) will produce a result string of the same length but with
each byte logically complemented. Binary operators however act on two strings situated
on either side of the operator to combine them in some fashion producing a result string,
as in the concatenation operator demonstrated above.

MegaBasic evaluates string expressions from left to right accumulating the results from
each operation as it goes. The various string operators are not however applied with
equal priority. Take for example the following string expression involving concatenation
(+) and string repetition (*) factors:

“ABC”*2+“xyz”*3

This expression repeats ABC twice and concatenates it to xyz repeated 3 times (i.e.,
ABCABCxyzxyzxyz). Since the string factors (*) are evaluated before the concatenation,
we say that such factors take precedence over concatenation (just like their numeric
multiplication takes precedence over addition). Similarly, all string operators have been
assigned to a priority scale that controls the order of operations when several
precedence levels are present in the same expression, much like the numeric operator
precedence ordering.

When required, you can override these default priorities by surrounding any operation
by parentheses to force its evaluation in the order of your choice. The example below
illustrates a situation where concatenation (+) is performed prior to a string repetition
factor:

(“ABC” + “xyz”) * 5

4

4-11GFK-0256 Chapter 4 Representing and Manipulating Strings

The concatenation in parentheses is evaluated first, followed by repeating its result five
times. The table below lists the various string operators in order of decreasing
precedence followed by a discussion of each.

String Operator Precedence
12 Evaluate string constants, string variables, string

functions and sub-expressions.

11 String Indexing (Chapter 4, Section 5)

10 String Repetition Factors (*)

9 String Concatenation (+), String Subtraction (–)

8 String Comparisons (= <> <= >= <> IN)

7 Logical Complement (NOT)

6 MIN, MAX

5 MATCH

4 Intersection (AND)

3 Union (OR)

2 Exclusive-OR (XOR), Equivalence (EQV)

1 Implication (IMP)

This ordering is similar to that of numeric expressions except that strings have some
different operators. You can control the ordering of operations using appropriately
placed parentheses. Be careful using complex string expressions in string comparison
operations. The comparison operators are not really string operators since they produce
a numeric result (i.e., integer 0 for false, 1 for true). They are included in the table above
only to show their precedence within mixed mode expressions. It is the programmer’s
responsibility to ensure that mixed string and numeric expressions are sufficiently
parenthesized to resolve any inherent ambiguities.

String Concatenation

The simplest of the string operations is concatenation (+), which merely appends two
string operands together, end to end, in the order given. For example ABCDE+12345 =
ABCDE12345.

String Subtraction

AB returns A$ with all instances of characters specified by B$ removed, for example:

Subtraction Operands Result String

“ $34,564,194.37- ” $,” “345641 94.37”

“string functions” - “aeiou” “strng fnctns”

“this is a test string”-“ ” “this is a test string”

Removing extraneous characters from strings is a frequently needed operation that is
particularly tedious and slow using any other available means. This operator carries the
same precedence as the concatenation operator (+). For example A$+B$–C$ is
evaluated as (A$+B$)–C$. Note that the expression A$–B$–C$ is equivalent to
(A$–B$)–C$ and to A$–(B$+C$).

4

4-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

One application of string subtraction is counting the occurrences of one character in a
string. To do this very efficiently, the LEN() function is used which computes the length
of a string. Using the LEN() function and string subtraction, the following example
computes the number of spaces contained in A$:

LEN(A$) – LEN(A$–“ ”)

which simply computes the difference in length between A$ with spaces and A$ with
spaces removed. Of course, this computation can be generalized to count occurrences of
any character or set of characters. Without string subtraction, this computation would
require a programmed loop that checks each character one at a time, taking 20 to 100
times longer.

String Repetition

Any term of a string expression may be repeated by following the term by a multiply
operator (*) and a numeric expression [e.g., ABC*(X+Y)] . First the factor is
evaluated (X+Y) , then the string is repeated by that many times. The repetition factor
expression needs parentheses surrounding it only if it contains more than one numeric
term, as in the example above. When only simple factors are used, no parentheses are
required, as in the string expression:

A$*X+B$*37+C$*23.

Any complex string expression may be multiplied by enclosing it in parentheses
followed by the desired multiplier [e.g., (A$+STR$(N)+“XYZ”) * (R+2)] . Compound
nesting is permitted to virtually any depth. Typical applications of string multiplication
include dynamic formatting of strings in print statements, high-speed graphics, and
initialization of large strings.

Many computer languages provide string repetition as a separate function, which is not
nearly as convenient or intuitive as the MegaBasic string multiply. Other computer
languages include a separate function just to generate some fixed number of spaces (“ ”)
in a PRINT statement. To do this in MegaBasic you need only to include a space
multiplied the appropriate number of times (e.g.,“ ”*N) whenever you need it in any
PRINT or other statement.

String expressions are always formed in MegaBasic’s control stack, which can rapidly
overflow when compound repetition factors build up enormous strings that exceed the
available memory space.

String MATCH Operator

A$ MATCH B$ compares A$ and B$ and generates a string of characters showing which
bytes match (with ASCII 255) and which bytes do not match (with ASCII 0). If the two
argument strings differ in length the longer one is truncated to the same length as the
shorter one before the operator is applied. A$ MATCH B$ carries a precedence just above
the Boolean AND operator.

This operator is useful for creating masks which may then be used for selective overlay
and wild-card character matching algorithms. MATCH performs a process which would
otherwise require a complicated loop of statements taking far longer to complete. It is
useful to those requiring special assistance in pattern matching applications, and should
be considered an advanced topic. No examples of its use will be given.

4

4-13GFK-0256 Chapter 4 Representing and Manipulating Strings

String MIN/MAX Operators

A$ MIN B$ and A$ MAX B$ are available as string operators which compare the
corresponding characters of A$ and B$ (as in MATCH above) and return one string of the
same length consisting of the characters selected by the operation (MIN or MAX). For
example:

given: A$ = “012345”

B$ = “543210”

 then: A$ Min B$ = “012210”

A$ Max B$ = “543345”

Both Min and Max carry a precedence just above the Match operator described earlier.
One application for MIN and MAX is character range restriction. For example:
A$ max “ ”*len(A$) will force all control characters in A$ (ASCII 0-31) to spaces. This
expression uses a repetition factor on “ ”, a topic discussed earlier.

Logical Operators in String Expressions

Logical string operators (NOT, AND, OR, XOR, EQV and IMP) perform processes similar to
their function in numeric expressions, except that both operands and result are bit
strings. A bit string is simply a character string that is being used or interpreted as a
sequence of bits rather than as a sequence of characters. There is no physical difference
between character and bit strings and MegaBasic considers both as simply strings from
different points of view. There are always eight times as many bits as there are
characters in a string, because each character within a string consists of 8 bits.

By providing a repertoire of operations specifically designed for bit manipulation,
MegaBasic allows you to process character strings as bit strings. The logical string
operators act on each of the bits in a string, or the corresponding bits in two strings. For
example, NOT performs a logical reversal on each bit of the operand string following it
(1s become 0s, 0s become 1s). Its result string is the same length as its operand.

The other logical string operators operate on two string operands, producing a string
result which is a logical combination of corresponding bits in the operands. If the
operand strings differ in length, the longer of the two will be truncated to the same
length as the shorter string before actually combining the operands. The same set of
logical operators already described for numeric operations (in Chapter 3, Section 5) are
also supported for bit string operations.

Each of the logical operators is defined in the table that follows. To illustrate how they
work, we will show the effect of each operator on all the possible combinations of two
bits (i.e., 00, 01,10,11). It is important to understand that logical operators combine all of
the corresponding bit-pairs of two strings (except for NOT) which means that one logical
operation is performed for every result bit. It is this simultaneous combination of all bits
of bit strings that gives these operators their speed and power.

4

4-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Left Operand 0011

Right Operand 0101

NOT (right operand) 1010

AND 0001

OR 0111

XOR 0110

EQV 1001

IMP 1101

The zeros and ones are used only to illustrate bit values, but in actual practice, the
operands and the result are all (bit) strings.

As with numeric expressions, there are many different ways in which to express a given
logical combination. A number of equivalent logical expressions are described below to
further illustrate the logical operators as they are used in actual practice. Given that A$,
B$ and C$ contain bits strings of equal length which will be used as terms in the various
examples below.

 (a) A$ XOR B$
(A$ AND NOT B$) OR

(NOT A$ AND B$)

 (b) A$ EQV B$
(A$ and B$) OR (NOT

A$ AND NOT B$

 (c) A$ IMP B$ NOT A$ OR B$

 (d) NOT (A$ AND B$) NOT A$ OR NOT B$

 (e) NOT (A$ OR B$) NOT A$ AND NOT B$

 (f) A$ AND (B$ OR C$)
A$ AND B$ OR

A$ AND C$

 (g) A$ OR B$ AND C$
(A$ OR B$) AND

(A$ OR C$)

Examples (a) to (c) illustrates how you would compute the same result of the XOR, EOV
and IMP operators using only NOT, AND and OR. As you can see, considerable effort is
saved by using XOR, EOV and IMP when their particular computation is required.
Examples (d) and (e) are instances of DeMorgan’s Law, which is a rule for logically
converting ANDS to ORS or ORS to ANDS using NOT. It is useful for reformulating logical
expressions into simpler forms. Example (f) shows how the logical expansions of AND
and OR terms is performed.

As we shall see, bit strings and their associated operations are ideally suited to
applications involving the processing of sets. A set is a collection of related items, such as
the set of all experiments for which we have data, or the set of all employees in a data
base. A given set must define which members are present in the set and which members
are absent. Suppose that we have a set of employee records that can possess up to 1000
members, numbered 0 to 999. Further, let us suppose that we wish to extract some
subsets, like the set of employees which are managers and the set of employees that
earn more than $50,000 per year.

Each of these subsets can be efficiently represented in your program as bit strings, in
which each potential set member is assigned a bit position within a bit string. If the bit
corresponding to a particular member is a one (1), then that member is present in the
set; absent members are similarly marked with zero bits. Letting EMPLY$ be our

4

4-15GFK-0256 Chapter 4 Representing and Manipulating Strings

employee set, MGR$ be the manager set, and RICH$ be the set of employees making
more than $50,000, the following logical string expressions may have some use:

Logical Expression Resulting Set

MGR$ and RICH$ Set of managers who make more than $50,000

MGR$ and not RICH$ Set of managers who make less than $50,000

EMPLY$ and not MGR$ Set of employees who are not managers

RICH$ and EMPLY$ Set of employees who make more than $50,000

 RICH$ xor MGR$ Set of employees who are either managers or those
who make more than $50,000 but not both

Since strings can be as large as 65502 bytes, you can represent sets with as many as
524016 possible members, one for each bit in the string (given enough memory and/or
operational stack space). Sets are very general data structures which can be applied in
countless ways, and because the individual set operations are provided in the basic
instruction set of MegaBasic (as the logical string operators), they execute extremely fast.

Many applications in set processing and systems programming work require the ability
to turn bits on (set to 1), turn bits off (reset to 0) and flip their state (change 1s to 0s, 0s to
1s), without affecting the other bits in the bit string. This can is done by applying a bit
selection string called a mask, which controls which bits to change and which bits to leave
unaffected. Given an arbitrary bit string named BITSTR$ and a selector bit string named
MASK$ containing 1’s for selecting bits and 0’s for protecting bits, the following
expressions may be used to selectively alter bit strings:

Purpose Expression Example

Turning bits
ON BIT$ OR MASK$ 0101 or 0011

= 0111

Turning bits
OFF

BIT$ AND
NOT MASK$

0101 and not 0011
= 0100

Switching
bits BIT$ XOR MASK$ 0101 xor 0011

=0110

Other useful applications for bit vector operations include the following conversion from
lower case to upper case. It turns out that if you set bit5 of a character to the logical
combination of (NOT bit6 AND bit5) then the resulting character will be upper case (see an
ASCII code chart to verify this as an exercise). This operation can be performed on an
entire string using the following string assignment statement:

U$ = NOT ROTAT$(L$ AND CHR$(64)~LEN(L$),1) AND L$

where L$ is the original string, U$ is the upper case result string, and LEN(), CHR$() and
ROTAT$() are string functions described in Chapter 9, Section 3. A similar statement may
be implemented to convert from upper case to lower case. If often required within your
program, this is best programmed as a user-defined string function (one-line function).

4

4-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MegaBasic also includes several string functions designed specifically for bit string
processing. See Chapter 9, Section 3 for complete information on ROTAT$, BIT, ORD and
CARD, which are briefly summarized below:

ROTAT$() Rotates a bit string, left or right, by N bit positions.

BIT() Converts between numbers and bit strings.

ORD() Locate the first 1-bit within a bit position range.

 CARD() Counts the number of 1-bits within a bit position
range.

String Comparison Operators

Comparison operators are different from all the other string operators in that they give a
logical result instead of a string result. When you compare two strings, you are looking
to see if some relationship between the strings is TRUE or FALSE. For example you may
want to test whether one string is equal to another string. The equality comparison
returns TRUE if they are equal and FALSE if not equal.

By convention, MegaBasic (like many other computer languages) represents logical
values with numbers: 1 means TRUE and 0 means FALSE. These values of 0 and 1 are
internally represented in integer format instead of floating point, because integers can
be processed significantly faster. Although logical values (TRUE and FALSE) are primarily
used in IF statements and WHILE/REPEAT loops to decide what the next step of the
program should be, you can also specify a string comparison anywhere else that a
number is expected.

Strings can be compared using the same set of comparison relations that are provided
for comparing numbers. Each comparison operator compares its operands and returns
TRUE or FALSE (represented by an integer 1 or 0) to indicate the outcome of the
comparison. Both operands must be of the same data type (attempting to compare a
number with a string results in a Data Type Error). All the comparison operators are
described in the table below:

 Equal = Returns a TRUE if the left and right operands are exactly
equal, and FALSE otherwise.

 Less < Returns TRUE if the left operand is less than (below) the
right operand, and FALSE otherwise.

 Greater > Returns TRUE if the left operand is greater than (above)
the right operand, and FALSE otherwise.

Below or
Equal <= Returns TRUE if the left operand is less than or equal to

(not above) the right operand, and FALSE otherwise.

Greater
or Equal >= Returns TRUE if the left operand is greater than or equal

to (not below) the right operand, and FALSE other-
wise.

Not
Equal <> Returns TRUE if the left and right operands are not

exactly equal, and FALSE otherwise.

Subset IN
Returns TRUE if there are no 1-bits in the right operand
that are not also 1-bits in the left operand. This is
really a bit-string operator.

When strings are compared, the ASCII codes of corresponding characters are compared
from first to last until a difference is detected or the end of either string is encountered.

4

4-17GFK-0256 Chapter 4 Representing and Manipulating Strings

Strings are equal only if all characters are identical and both strings are of equal length. If
one string runs out before a difference is encountered, the longer string is taken as greater
than the shorter string. The following pairs of string constant comparisons illustrate some
of the subtle properties of string comparisons:

“AB” < “ab”

Upper case letters are assigned to a lower set of ASCII codes
than the lower case letters. If you want a comparison in
 which upper and lower case letters are treated the same, you
should convert the letters of both strings to one case before
comparing them.

“ ” > “ ”

Spaces are greater than a null string. In fact, all strings are
greater than a null string, except another null string. Null
strings do not have an official ASCII code because it is
not a character. But MegaBasic internally assigns the
value –1 to a null string for convenience and continuity.

“aa” < “aaa”

These strings are not equal because they differ in length. In
such a case, the shorter string is less than the longer string.
Strings must be identical in all respects to be considered
equal.

“ 25”<“–25”
This is true because a space character (“ ”) has a lower ASCII
code than a minus character (–), which illustrates how
 strings of numbers do not necessarily compare the same way
as their corresponding numeric comparison (i.e., 25 > –25).

It is important to remember that string comparisons give logical (0 or 1) results which
may be used anywhere that numbers are permitted, rather than string results like the
other string operators. Comparisons of expressions are supported as well comparisons of
simple values. The scale of operator precedence becomes important in such comparisons
to permit expressions involving arithmetic, logical and comparison operators with little
or no need for parentheses to group the various sub-operations. For example the
expression X + A$=B$ computes X+1 if A$=B$, or X+0 if A$<>B$. String comparison
operators always take precedence over arithmetic operators.

Exercise care when complex string expressions are supplied as comparison operands.
String operators look similar to numeric operators but their actions are totally different.
If you are not sure how MegaBasic will evaluate certain combinations of operators, you
can always supply extra parentheses to clarify and enforce the exact meaning that you
desire.

Changing the Collating Sequence

Although the ASCII character set was originally designed with string sorting and
comparisons in mind, you may occasionally encounter applications requiring string sorts
and comparisons based upon a different character ordering or collating sequence.
MegaBasic accommodates this with the translate function (TRAN$ in Chapter 9,
Section 3), a general purpose character conversion function which can map any
character to any other character throughout a string. Strings to be compared using a
non-ASCII ordering are first translated to the new character set and then compared
normally, as described above.

Bit-String Comparisons

If your application is using bit-strings, one common operation you may need is a test to
determine if one set is a subset of another set. The IN operator performs this function
which, for the expression A$ IN B$, returns TRUE (I) if every bit position in A$ that

4

4-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

contains a 1 is also a one in each corresponding bit position of B$, and returns FALSE (0)
otherwise. In terms of operations on sets (represented by bit strings), A$ IN B$ tests to
see if the set A$ is a subset of set B$. Like all other string comparisons, IN returns an
integer result, rather than a string, where 1 means true and 0 means false.

If B$ is longer than A$, only the portion of B$ equal in length to A$ is compared. If A$ is
longer than B$, A$ IN B$ can only be true if all the extra characters of A$ have all zero
bits [i.e., bytes containing CHR$(0)] and all the others are IN B$. IN is a bit-string
operation generally used in combination with other bit operations, including: BIT() ,
ORD() , CARD() , ROTAT$() , NOT, AND, OR, IMP, EQV and XOR.

4

4-19GFK-0256 Chapter 4 Representing and Manipulating Strings

Section 5: String Indexing and Substrings

It is often desirable to access portions of strings, called substrings, rather than the whole
string. Most programming languages implement such access through special functions
like LEFT$() , MID$() , RIGHT$() and SUBSTR$() . MegaBasic uses a different method
to access substrings, called indexing, that is easier to learn, executes faster, requires less
typing and performs the job in a more general fashion.

By convention, we will refer to the left and right ends of a string (oriented horizontally)
as the beginning and end of the string respectively. String indexing is based on the idea
that each character in a string has a position relative to the beginning of the string. We
will assign the first character to be in position 1, the second character in position 2 and so
on to the end of the string. Any portion of a string can therefore be specified by a
position range within the defined positions of the string. For example if A$ is our string
and we wish to access positions 10 through 27, we would express this as follows:

A$(10,27)

As long as the length of A$ is 27 or more, this indexing expression accesses the 18
characters in A$ starting at the one in position 10. If A$ contains less than 27 characters,
MegaBasic will access all characters from position 10 to whatever the length of the string.
A null string results if A$ is less than 10 characters long. Any string constant, string
variable, string function or sub-expression may be the subject of an indexing expression.

Variations on this theme provide several other modes to specify substrings in different
ways having advantages over one another. Each of the string indexing modes is
discussed in the table below. The examples shown in the table use the variable A$ to
represent a general string expression to which the indexing expression is applied.

String Indexing Expressions

 Interval A$(I,J) A$ (I,J) refers to the substring starting at position I and
ending with the byte at position J.

Open
Ended A$(I) Refers to the substring consisting of all bytes from posi-

tion I to the last byte of the string.

 Position
& Length

 A$(I:L)
Refers to a string of length L starting with the byte
at position I. This is equivalent to A$(I, I+L–1)
using the interval method. A null string results if L=0.

Right
Length A$(:L) Refers to a string of length L taken from the end of A$.

Equivalent to A$(LEN(A$)–L+1:L).

Single
Byte A$(I:) Refers to the single character substring in position I of

string A$. Equivalent to A$(1,I) or A$(I:1).

 Last
 Byte

 A$(:)
Refers to the single character substring at the end of A$.
This follows from the preceding two indexing modes
as a special case. This is equivalent to A$(LEN(A$)).

Given a string A$ (I,J), MegaBasic returns a null string whenever J is less than I (J=0 is
permitted) or I is greater than the length of A$. Also if the substring specified exceeds the
length of the stored string, only that portion which actually exists in the string will be
accessed. For example if A$ contains the string This is a String, then A$(9,1000), A$(9:100)
and A$(9) all refer to the same string: a String. An Out Of Bounds Error occurs if you
specify a starting position less than 1.

4

4-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Any string or string expression can be indexed, not just string variables. Just type your
index expression in parentheses immediately after the string expression and upon
evaluation, only the indexed substring of the expression result will be returned. Index
expressions have a higher precedence than any of the string operators, hence you must
surround the string expression to be indexed with parentheses if they contain multiple
terms, for example:

(A$ + B$ – C$)(1,J)

Without the parentheses around the expression A$+B$–C$, only the last term of the
expression (C$) would have been indexed. String constants can also be indexed, like any
other strings, and doing so has some important applications. Consider the following
example:

“JanFebMarAprMayJunJulAugSepOctNovDec”(1*3–2:3)

This string expression converts integers 1 to 12 into the corresponding names of the
month (i.e., their names abbreviated to three characters). This process of decoding a
number into some set of keywords or names is frequently required in interactive
software and report generators of all kinds. Indexing a string constant lets you do this in
one simple expression without any string variables or complicated loops to program.

Unlike the month abbreviations above, your keywords may not all be the same length, a
property required by this indexing application. To remedy this apparent deficiency,
insert some padding characters after each of the shorter keywords to force them all to the
same length. Then, index the string constant using that length and remove the padding
characters from the result using string subtraction (Chapter 4, Section 4) or the TRIM$()
function (Chapter 9, Section 3).

This technique depends on all the keywords fitting into a string constant, which must
itself fit within one program line (255 characters maximum). Longer lists of keywords
must be stored in a string variable of sufficient length and indexed in a similar manner.
You can also access longer lists by breaking them into several smaller string constants
that reside on different lines. You would then have to GOTO the appropriate line before
performing the indexed access as described above.

Indexing String Arrays

String arrays may be indexed by following the array subscript expression with a string
indexing expression (a second set of parentheses). In such a case, you are gaining access
to a substring in an array element of a string array. String array elements are always
functionally identical to simple string variables in any context. For example:

CUBE$(1,J,K)(FIRST,LAST)

which specifies the string from position FIRST through LAST of the string element in
row I and column J on level K. When using string arrays, take care to keep the subscript
expressions and the index expressions separate in your mind as well as in your program.

Assigning Strings to Indexed String Variables

An indexed string variable may be the target of an assignment statement or any other
operation that moves data into a string variable. However such an assignment normally
only affects the indexed character positions within the indexed region specified and
cannot alter the overall length of the string (an exception to this follows shortly). Strings
moved into these positions are truncated (from the end) when too long to fit. Shorter strings

4

4-21GFK-0256 Chapter 4 Representing and Manipulating Strings

are placed left justified into the indexed area, replacing only those characters in positions
required by the incoming string. Consider the following examples:

A$(1,J) = “string” Input B$(1:N) Read C$(:N)

In the first example, the string constant overlays the string contained in the string
variable starting at position I on up to position J. If that region is too short then only the
left-most portion that fits will be stored. If the region is longer than the assigned string
then the right-most portion of the region itself will not be modified in any way. In the
second example, the INPUT statement can only affect the N positions of B$ starting at
position I. In the third example, the READ statement affects only the last N positions of
C$. It is also important to remember that the indexed region of a string variable includes
only positions that actually contain characters, and excludes any region beyond the
current end of the string (i.e., you cannot alter positions beyond the end of the string or
its length with indexed assignments).

Since the indexed assignment statement above does not fill out the entire indexed region
when the string assigned is too short, another type of string assignment is provided for
this purpose. By using == instead of = any positions to the right of the string that
remain unfilled are set to spaces (i.e., the current string fill character set by Param 7). This
assignment is described in Chapter 5, Section 2.

Another type of string assignment in MegaBasic lets you replace the entire contents of
an indexed region with another string exactly. If the string and the region are different
lengths, MegaBasic automatically shifts the characters that follow the region up or down
to exactly accommodate the string so that it exactly replaces the region indexed. This
method uses the := operator for the assignment instead of = or == and it is the only
indexed string assignment that can affect the overall length of the string variable content.
See Chapter 5, Section 3 for further information.

Extended String Indexing

Index expressions may be appended to any string representation, including another
indexed string. This flexibility permits several layers of indexing to be applied to the
same string, which can facilitate implementation of various hierarchical data structures
stored in large string variables. For example:

A$(1,J)(R :L)(T)

Each indexing expression is evaluated from left to right and is applied as a simple
indexing expression to the result substring of the prior indexing expression. Internally,
MegaBasic arithmetically evaluates the series of indexing expressions as a unit and only
then does it apply it to the string being indexed. This replaces many potentially
time-consuming string move operations with a simple binary arithmetic computation
that executes many times faster. At the cost of some arithmetic, this same example could
have been done with a single indexing expression as follows:

A$(1+R+T–2,MIN(J,I+R+L–2))

Not only does this approach execute more slowly, but it is not at all obvious what is
really going on. Extended string indexing simplifies certain kinds of operations but in the
vast majority of applications simple indexing should be all that is necessary.

4

4-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Be sure to specify each numeric value in an index expression using integer
representation (rather than floating point real) wherever possible. Real expressions may
of course be used in this context with entirely correct and identical results, but with a
slower response. Index expressions are always in integer form internally, and MegaBasic
will convert any real expressions encountered to integer representation every time they
are evaluated. When a non-integral index value is evaluated (e.g., 3.721 or 9.834),
MegaBasic reduces it to the next lower integer value (e.g., 3 or 8) rather than rounding it
as some other programming languages do.

4

4-23GFK-0256 Chapter 4 Representing and Manipulating Strings

Section 6: String Functions

As we have shown, strings can be expressed as constants, variables and string
expressions. However they may also be expressed as results of special procedures called
functions. Functions are similar to array variables, in that they are referred to by name
and include additional information which affects the value that they represent. The
difference is that an array element merely accesses the value it holds, but a reference to a
function invokes a process which computes the string symbolized by the function name.
As with constants and variables, functions may be employed within string expressions to
represent any of the strings being combined by the expression.

A function is a process that computes a result based upon data which you have
communicated to it. To identify each process, functions are assigned names just like
variables. To use a function, you merely type its name and its input data just as if you
were typing an array name and its subscript list. For example, consider the following
three function references:

TRIM$(L$) REV$(L$) STR$(V)

The first function, TRIM$, removes any leading or trailing spaces from string L$ and
returns the intervening characters. The second function, REV$, returns the characters in
L$ in the opposite (reverse) order. The third function, STR$, converts the numeric value
of V into a printable string representation of that value. Functions are always of the same
form:

<function name> (<argument list>)

Input information to the function is specified after its name, enclosed in parentheses, as
a list of numeric or string values called an argument list. Each input value passed to the
function is called an argument and is specified using any general expression. The values
computed by these expressions are used by the function in forming its ultimate result.
The number of arguments and their type (string or numeric) depends on the particular
function being used. When more than one argument is present, they are separated from
each other with commas. A Data Type Error will occur if you specify a number (or string)
argument to a function that requires a string (or number) argument in that argument
position.

4

4-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MegaBasic possesses a library of over eighty built-in functions and also allows you to
create your own functions, written in MegaBasic statements. Chapter 9 provides
complete descriptions of all the built-in functions in MegaBasic and how to use them.
Defining your own functions is a somewhat more advanced topic that is thoroughly
covered in Chapter 8. Refer to these sections for more complete details. The built-in
string functions are briefly summarized below:

Built-in String Functions
*Len(S$) string length

Str$(X) number to string conversion

*Val(S$) string to number conversion

Chr$(X) ASCII code to character conversion

Chr$(S,Y) ascending character series

Chrseq$(I,J,..) multiple character ASCII sequences

*ASC(S$) character to ASCII code conversion

Trim$(S$) leading/trailing space removal

Rev$(S$) string reversal

Tran$(S$,T$,U$) character translation

*Match(S$,T$,I) simple pattern matching

*Find(T$=S$,W) general string search

Min$(A$,B$,..) minimum string among a list of strings

Max$(A$,B$,..) maximum string among a list of strings

Inchr$(I) raw character input

Reseq$(T$,,S) cyclical string resequencing

*Bit(V$,I:Y) packing/unpacking value to/from bit strings

Rotat$(S$,I) bit-wise string rotation

*Card(V$,I:N) counts the 1-bits in bit strings

*Ord(V$,I:N) searches bit strings for the next 1-bit

Collat$(V) sortable string of a numeric quantity

The asterisks (*) indicate functions which return numbers (related to strings), rather than
strings. Although such functions are associated with strings, a function which returns a
string will be referred to as a string function in this manual unless otherwise noted. All
the functions above are described in Chapter 9, Section 3.

There is no significant difference between user-defined string functions and user-defined
numeric functions. String function names are formed exactly like string variable names
(similarly with numeric functions). A string result is returned from a string function, a
number is returned from a numeric function. Both may be defined with string or
numeric parameters and formats include both single and multiple line. See Chapter 8,
Section 3 for all the details on defining and using user-defined functions

4

4-25GFK-0256 Chapter 4 Representing and Manipulating Strings

Because unDIMensioned string variables are created by default when encountered for
the first time, misspelled string function names will result in variables being created
under those names. Such errors can be very difficult to diagnose because there is no way
for MegaBasic to detect the error. For example, STR$(I) returns the string
representation of the value of I, and ST$(I) returns the open-ended substring of
variable ST$ starting at position I.

MegaBasic provides three facilities to aid the discovery of misspelled names. First, the
NAMES command (Chapter 2, Section 3) displays an alphabetical list of all user-assigned
names in the program. You should check out unrecognized names that appear in this
display. Mistyped variable and function names tend to be displayed in close proximity to
the correct spelling of the user-assigned name, due to the alphabetical ordering. Second,
the XREF command (Chapter 2, Section 5) displays all references to any name. Names
with only one reference may be misspellings. Third, in program listings, MegaBasic shows
user-defined names in upper case and MegaBasic reserved words in lower case. If you see
one of your identifiers in lower case, then you better change it because it is a reserved
word.

5 section level 1 1
figure bi level 1
table_big level 1

5-1GFK-0256

Chapter 5 Data Definition and Assignment Statements

This section provides descriptions of all statements involved in defining data structures
and moving computational results between variables. See Chapter 2 for the description
of the notation used to specify command and statement formats also employed in this
section. See Chapter 9 for all information about the built-in MegaBasic functions. This
chapter discusses the MegaBasic statements divided into the following categories:

Data Definition
Setting sizes, providing memory space, establishing initial values
and data types for working variables and defining data constants
for program operation.

Data
Transformation

Moving data between variables, packing and unpacking
bit-strings and performing computations.

Structured
variable fields

Defines variable field structures for building complex record
structures within string variables.

Pointer
Variables

Methods for indirectly accessing variables, functions, procedures
and line labels using information stored in other variables.

5

5-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Data Definition Statements

Data definition is the foundation of most computer programs and so we begin this
section by describing the MegaBasic statements for specifying data, defining data types
and allocating memory to data structures. These statements are summarized as follows:

DEF <vbl type specifiers> Declares the data types and uses for variables,
user-defined procedures, functions and structure
fields.

DIM <vbl size definitions> Creates string variables and arrays or changes their
current size or number of dimensions.

RESTORE <vbl list> Restores variables to their original contents at
creation.

DATA <data list> Defines string and numeric data for fast access
during program execution.

DATA END Terminates a logical group of DATA statements.

READ <vbl list> Loads data from a DATA lists into a set of program
variables.

RESTORE <pgm location> Randomly accesses a DATA list for subsequent access
by a READ statement.

ON...RESTORE <line list> Selects one of many DATA lists on the basis of a
computed index value.

LEN (<string vbl>)=<len> Sets the length of a string variable or string array
element without moving any data or changing
memory allocation.

REM <descriptive text> Descriptive comments to assist your program
development and maintenance activities.

DEF [SHARED] <name definition list>

Defines data type conventions and assigns data types and uses to specific names for use
in later program execution. DEF is special in that it is not an executable statement; it is a
declaratory statement that is processed before program execution and ignored if
encountered during execution. To define names that are accessible from other MegaBasic
packages, you can specify SHARED immediately following the DEF reserved word of the
statement, which affects all names defined by the DEF statement. The topic of SHARED
names is described in detail later in Chapter 10.

There are five different DEF statement forms, one to define variables and data type
assumptions, one for field structures, one for pointers, one for procedures and one for
functions. This discussion is confined to variable and type assumption DEF statements.
Defining field structures and pointers is described later in this Section. Procedure and
function DEFinitions are discussed in Chapter 8.

The DEF statement does not actually create variables, it simply attaches a string integer or
real type to each variable name. When the variable is subsequently created by your
program, its type is used to determine the proper amount of memory, its initial value
and the methods to use during computations for internally manipulating the data
representation contained by the variable. This greatly simplifies programming, because
MegaBasic takes care of most of the details once you have specified the appropriate
variable types.

5

5-3GFK-0256 Chapter 5 Data Definition and Assignment Statements

Data types are are assigned to names on a name by name basis, or by DEFining default
type assumptions based on the first letter of its name. Names that end in dollar sign ($),
percent (%) or exclamation point (!) are permanently assigned a string, integer or real
data type, respectively, and an error results if you attempt to declare such names
otherwise. The complete syntax for a type declaration DEF statement is as follows:

DEF [SHARED] <specifier>, <specifier>, <specifier>,...

where each <specifier> can be one of the following:

<type> <list of names>
<type> <leading letter list>

The <type> must be one of the words: STRING, INTEGER or REAL. The <list of names>
is a list of one or more names, separated with commas, to be assigned the <type>
specified. Names that will be used as arrays must be followed by empty parentheses ()
to indicate that intention, for example X(), Y() or Z(). There is no comma between the
<type> and its subsequent list. See Chapter 3 for complete information about INTEGER
and REAL data types, and Chapter 4 for the STRlNG data type.

The <leading letter list> is a quoted string constant that assigns the specified <type> to
all names that begin with one of the letters listed. It affects only those names that have
not been specifically assigned a specific type in other DEF statements. Without any
<leading letter list> specifier, all letters default to REAL to conform with standard BASIC
type conventions and any undeclared leading letters will retain this REAL default. The
quoted string consists of any combination of individual letters, in any order. A dash (-)
between two letters specifies a range of letters (e.g., “a-z” means all letters). Upper and
lower case letters are interchangeable; commas and spaces can be inserted anywhere for
improving appearance and readability but are otherwise ignored. Letter declarations
also affect the types of user defined functions with names beginning with those letters.
Consider the following example:

DEF integer X, Y(), Z, ”i-n”,
real INCR, M1(), LVAL, N,
string BUFFER, ”s-v”

This DEF statement assigns an integer type to variables X and Z, and to array Y. Then the
string constant ”i-n” defines variables with names beginning with any of the letters 1, J,
K: L, M or N as integer variables. Then define INCR, LVAL and N as real variables and
M1() as a real array. BUFFER is then declared as a string, along with any names that
begin with the letters 5,l u or v.

You can simplify a complicated DEF statement by breaking it into several DEF
statements, each defining a portion of the whole. The following set of DEF statements
are equivalent to the prior example:

 DEF INTEGER X, Y(), Z
 DEF INTEGER ”i-n”
 DEF REAL INCR, M1(), LVAL(), N
 DEF STRING BUFFER, ”s-v”

Variables which you do not explicitly declare in a DEF will automatically assume a type
derived from the leading or trailing character of its name. Our example above explicitly
declares several variables as real, because the leading letters in their names were
declared as integer by the string constant ”i-n”.

5

5-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

DEF statement must appear as the first statement of the program line on which they
reside and begin with the reserved word DEF. A program can have any number of DEF
statements, which may appear anywhere in a program. When encountered during
execution, DEF statements are skipped as if they were REMark statements.

If you declare the same name or leading letter as having more than one data type, a
Double Definition Error will occur. If you declare a name as one type and its leading letter
as another type, the specific name declaration will win and no error will be reported.
Declaring specific names always overrides letter declarations that would have affected
those names.

DEF Statement Ordering

Unlike all other MegaBasic statements, DEF statements are not executable, i.e., they are
ignored when encountered during program execution. All DEF statements in your
program are scanned in the initialization phase of program execution that occurs just
before actually beginning execution (you may notice a slight delay when you RUN a large
program with lots of DEF statements on a slow machine). DEF statements are scanned,
one by one, in the order in which they appear in your program, and the definitions they
contain are compiled into the internal data dictionary that defines the meanings of all
program symbols (i.e., variable and field names, line labels, function names and
procedure names).

Because of the sequential nature of DEF statement scanning, the order in which the DEF
statements appear in your program can affect what types are assigned. For example the
statement DEF FUNC x defines an INTEGER function X if earlier in the program the
statement DEF INTEGER “a-z” appears, but it defines an REAL function X even though it
may be followed by DEF INTEGER “a-z”. To avoid such ordering dependencies, it is best
to explicitly declare function types in their DEF statements (e.g., DEF INTEGER FUNC x,
etc.).

DEF statements can be entered as direct commands to affect subsequent type assumptions.
Directly entered DEF statements must be the first statement of a direct statement
command to be recognized, otherwise they are ignored (as they are in programs). Its
effect lasts only until the next RUN command, which always clears existing data and type
assumptions before running a program. Don’t DEFine procedures or functions in direct
commands because their code is overwritten arbitrarily by the next direct command you
enter.

DIM <list of string and array definitions>

Sets aside memory space for simple strings, string arrays and numeric arrays. DIM is an
executable statement, so space for its defined variables will not be allocated until the DIM
statement is actually executed in the running program. You must therefore make sure
that your DIM statements are executed before the variables they define are used in any
way by your program. If a variable already exists, DIMensioning it will alter its size and
re-initialize it as if it is being created for the first time. Consider the following example:

DIM ARRAY(12,15), STRING$(300), ROW$(100,20)

This DIM statement creates a two-dimensional variable named ARRAY, a simple string
variable named STRING$ and a 1-dimensional string array named ROW$. ARRAY will
have 13 rows numbered 0 to 12 and 16 columns numbered 0 to 15. STRING$ can store
any string value from 0 to 300 characters in length. ROW$ can store 101 strings
numbered 0 to 100, each of which may contain a string value of up to 20 characters.

5

5-5GFK-0256 Chapter 5 Data Definition and Assignment Statements

Arrays may be DIMensioned as string, integer or real (floating point). The words
STRING, INTEGER and REAL can be placed in the VIM specification list to control the
data type of subsequent variable definitions in the list, for example:

DIM INTEGER A(100),B(30),REAL C(75),D(150),
STRING LINE(80),Q(20,30)

In this example, arrays A() and B() will be integer arrays, C() and D() will be floating
point arrays, LINE() and Q() will be strings. Notice that the type specifiers STRING,
INTEGER and REAL affect all array definitions that follow them, until a different data
type is specified by a subsequent type specifier. Data Type Errors will occur if you
attempt to DIMension names that end with $, ! or % after a conflicting type specifier
[e.g., STRING V%(50), INTEGER X! (100) or REAL A $(80)] .

When arrays are DIMensioned with their data type explicitly specified as described here,
any data type assigned by previous DIM statements or DEF statements is overridden
because the latest DIM statement always takes precedence. When no type specifier (i.e.,
STRING, INTEGER or REAL) is explicitly given in the DIM statement, the previously
assigned type will prevail. The following program illustrates how this works:

Def integer X(); Rem - X is declared an integer array
Dim real X(100); Rem - Create real array X, override DEF decL
Dim X(750); Rem - Change its size, but keep Its REAL type
Dim integer X(5); Rem - Now DlMension X as an integer array
Dim X(8000); Rem - Change its size, but keep its integer type
Dim string X(50); Rem - Now X is a 50 character string vbl
Dim X(256); Rem - and then change X(J to a 256 char string

Changing the type of a variable is only supported in the interpreter. The MegaBasic
compiler does not support it, preventing such programs from being successfully
compiled. Changing the number of dimensions in an array or their size is supported by
both systems.

When arrays are created, each of their elements is given an initial value as part of the
array creation process. Each of the elements in numeric arrays is set to zero. Each string
array element is set to contain a string of spaces of the maximum string element length
specified. Simple string variables are also initialized with a maximum length string of
spaces. PARAM(7) may be used to change the fill byte of initialized strings to any other
ASCII character if spaces are not desired.

See Chapter 3, Section 4 and Chapter 4, Section 2 for additional information about
DlMensioning arrays and strings. Section 3 of this chapter contains a great deal of
pertinent information regarding numeric types and how you go about choosing and
specifying integer and real variables.

RESTORE <list of variables>

Restores (or reinitializes) the variables listed to their original contents at creation time
(by default or DlMension statement). When you specify an array name, empty
parentheses may be appended to it indicating that the name is that of an array. Simple
numeric variables may be listed by name. Strings are always filled to their DIMensioned
size with blanks unless the default string initialization ASCII code has been modified
using PARAM(7) (Chapter 9, Section 5). Numeric variables including arrays are filled
with zeros, for example:

RESTORE X,Y,A(),B$,R$()

where the empty parentheses indicate array variables (optional). This example restores
scalar variables X and Y to zero, initializes all elements of array A() to zero, and fills

5

5-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

scalar string variable B$ and all elements of string array R$() with spaces. Such use of
RESTORE is unrelated to its use with DATA statements.

LEN(<string variable>) = <number of bytes>

Sets the length of the string variable specified to the byte length specified. The length
may be any number from zero up to the DIMensioned size of the variable. You may
specify any unindexed string variable or string array element as the target string. This
statement neither increases nor decreases the amount of memory available for any
purpose. It merely revises the internal length counter associated with the string variable
to indicate the length of its contents. Such a revision is useful prior to storing data into
the string at absolute index locations, regardless of its prior contents (as in indexed
assignments or binary &READs). This statement is not commonly needed for most string
processing requirements and exists to handle only those rare instances when nothing
else will do.

DATA <data list>

Specifies a list of numeric and/or string data expressions separated by commas. DATA
statements do nothing when encountered during program execution, as their purpose is
solely to provide programs with built-in data values which may be assigned to variables
by the READ statement (described next). Unlike most other BASICs, which only permit
constants to be specified in DATA statements, under MegaBasic you can specify any
DATA item as an arbitrary string or numeric expression.

DATA statements are unsuitable for large amounts of data or when the data will be
revised during program execution. In such cases you should store the data on disk files
for the purposes you have in mind. Take, for example, the following program:

10 Data –2, “string1”, 45, “string2”, 126, “string3”
20 Data 321, “string4”, 0, “string5” –99, “string6”
30 For l = 1 to 6
40 Read X,A$; Print X,A$
50 Next I
60 End

This program READS two data values, PRINTS them on the console, then repeats the
process a total of six times. If it repeats more than six times, a DATA READ ERROR would
be generated and the program would stop, because the DATA statements only specify six
pairs of values. This program would run the same way no matter where the DATA
statements were placed within the program source.

DATA statements in a program are best visualized as a sequence of statements separate
from the rest of the program, but in the order they appear in the program. Data supplied
in DATA statements is accessed sequentially from the beginning DATA statement or from
a starting line number given by a RESTORE statement described below. DATA
statements placed within a THEN or ELSE clause of an IF statement are inaccessible from
READ statements and therefore serve no purpose.

DATA END

Specifies a logical end-of-data. Normally when a READ statement encounters the end of
a DATA list, it skips ahead to the next DATA statement and continues on. However in
many programs, you may have several groups of DATA statements that are not related to

5

5-7GFK-0256 Chapter 5 Data Definition and Assignment Statements

one another. In such a case, falling through one group into the next is totally meaningless,
but an error may not be reported, causing improper program operation that can
potentially be difficult to find.

Therefore, to protect yourself from such problems you can place a DATA END statement
after each logical group of DATA statements. If encountered while READing DATA
statements, MegaBasic reports a Missing Data Error instead of READing ahead to the next
DATA statement. Once encountered, your program has to reset the DATA pointer using
a RESTORE statement before any further DATA can be READ. DATA END is not
mandatory but MegaBasic provides it to assist the program development process.

READ <list of data variables>

Sequentially READS string or numeric data from the current DATA statement into the list
of data variables. Data variables may include simple and array numeric variables and
both unindexed and indexed strings. If the current DATA statement runs out of data
before filling all data variables, then the next DATA statement in the program is
automatically found and READing continues to the end of the variable list. Both DATA
and READ lists are scanned in the order given, and all variable types must match the data
items encountered. An error results from a type mismatch or from an attempt to READ
past the last DATA statement in the program.

MegaBasic maintains an internal READ pointer to keep track of the current DATA
position. This pointer is set to the first DATA statement when program execution starts.
When more than one independent program or package is in memory (see Chapter 10), a
separate DATA pointer is individually maintained for each. This permits each program to
process its own DATA statements independently of the rest. READ statements cannot
access DATA statements outside the package they reside in.

Whenever an error occurs during the processing of READ statements, the program
location of the error reported by MegaBasic will always be the location of the READ
statement involved. However, in many instances it is useful to also know the location of
the DATA list being scanned when the error occurred. For this reason, the STAT
command (Chapter 2, Section 5) always displays the current DATA scan location once a
READ statement has been executed.

MegaBasic does not advance the DATA READ pointer until after each variable has been
READ successfully so that, if a Type Error is encountered while READing, an error trap can
can recover by READing the value into a variable of a different type.

RESTORE [<label>]

Sets the DATA READ pointer to the first DATA statement after a specified line number or
line-label or to the first DATA statement in the program by omitting the <label>. This
statement is used to reset the READ pointer or to provide random access to DATA
statements. After being RESTORed either to the first or some other DATA statement,
subsequent READ statements will access DATA statements sequentially from that point.
Such use of RESTORE is unrelated to restoring variables as described earlier in this
section.

ON <expr n> RESTORE <line list>

Evaluates the numeric expression and truncates the result to an integer that specifies a
selection from the <line list>. This integer must be from 1 to the length of the <line

5

5-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

list>. The <line list> consists of a sequence of line numbers and/or line-labels, separated
with commas, which specify program locations of DATA statements. The DATA READ
pointer is set to the first DATA statement on or after the line selected via the integer. This
is useful for selecting data through a multi-way computational decision, an extended
form of the RESTORE statement above.

REM <descriptive text>

Everything from the REM keyword to the end of its program line is taken as a
non-executing comment, including statement separators (; and \) or text which would
ordinarily constitute valid executable statements. MegaBasic preserves the case
(upper/lower) of all letters that follow the REM keyword.

REM statements provide additional information and guidance to the programmer during
program development and later program maintenance. Well commented programs
generally take less total time to construct and debug. A good practice to adhere to is to
briefly describe each procedure or subroutine in its first line. To improve readability,
MegaBasic automatically inserts a blank line between a group of REM statements and the
programs that precede them when the program is LIST ed.

Some BASIC programmers have a tendency to be frugal in commenting their programs
because of the amount of memory space they consume. This fear may be justified in
some BASIC systems but not in MegaBasic. The CRUNCH utility supplied with MegaBasic
will remove all REMarks and extra spaces from the program and create a new program
file 20-50% smaller than the original. Using this utility, you can create a working copy for
execution work while retaining its expanded counterpart, generously commented, for
program development and maintenance. The runtime version of MegaBasic (RUN)
performs this source reduction process automatically on every program it executes.

5

5-9GFK-0256 Chapter 5 Data Definition and Assignment Statements

Section 2: Data Transformation and Assignment Statements

You can transform numerical and string information by combining one or more data
items into a result using arithmetic, mathematical, logical, or other computational means.
The result can then be assigned to a program variable or used in further calculations. You
need to understand how to use numbers, constants and variables (Chapter 3), strings,
string variables and string expressions (Chapter 4), and string and numeric functions
(Chapter 9), to make full use of the data transformation statements summarized below:

<variable> = <exprn>
Evaluates a numeric expression and
assigns the result to a numeric vari-
able.

 VEC <vector>
= <vector exprn>

Assigns values to the elements of a
vector computed from a vector
expression.

 <string vbl> = <exprn> Evaluates a string expression and
assigns the result to a string variable.

 <string vbl> := <exprn>

Evaluates a string expression and
then replaces the contents of a
sub-region within a string variable
with the result. The length of the
target string changes to accommo-
date replacements of differing
length.

<string vl> == <exprn>
Evaluates a string expression and
assigns the result to a string variable
sub-region, left justified and right-
filled with spaces as needed.

<variable> += <exprn>

Evaluates a numeric expression and
adds the the result to a numeric
variable. Many other operators can
also be used, such as *=, –=, /=,
etc. These are known as extended
assignment statements.

Assignments with
expressions

Any kind of assignment statement
can be embedded within larger
expressions to store intermediate
results into other variables while
evaluating the expression.

SWAP <vbl pairs>

Exchanges values between pairs of
variables. It supports integers, reals,
strings and indexed strings, and is
especially useful in sorting
applications.

BIT(<vbl$>,<range>)
= <exprn>

Evaluates a numeric expression and
assigns the result to a bit subrange
within a string variable (1 to 24 bits
wide).

5

5-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

[LET] <numeric vbl> = <numeric expression>

Evaluates the numeric expression on the right of the equals sign (=) and stores the result
into the numeric variable on the left. The prior content of the variable is lost. The
variable may be a simple variable or a unique array element. This use of the equals sign
has nothing whatsoever to do with its use in equality comparison expressions (e.g., If
X=Y then...). The reserved word LET at the start of this statement is entirely optional, as
it is with all assignment statements in MegaBasic.

Numeric variables and expressions are of two types: integer and real. Usually real values
are assigned to real variables and integer values are assigned to integer variables.
However MegaBasic does permit mixed-mode assignments of either type (i.e.,
integer=real, real=integer). Such assignments are inherently slower because of the
necessary conversion of the assigned value into the numeric type of the receiving,
performed automatically by MegaBasic.

When a real value is assigned to an integer variable, it is first truncated to a whole
number by throwing away its fractional portion (if any). For example the values 3.76, 0.4
and –2.9 are stored as 3, 0 and –2 in the integer variable. Reals values can span a larger
range than the 32-bit integer representation provided in MegaBasic, and a Numeric
Conversion Error will occur if you attempt to store a real value below –2,147,483,648 or
higher than +2,147,483,647 into an integer variable.

An integer value can be converted to a real value without precision loss in all cases
except one. Integer values beyond 100 million (+–) cannot fit within 8-digit BCD
floating point representation. Therefore the value is truncated to contain only the
leading 8 decimal digits of the integer. Values between 100 million and 1 billion will
always be within 9 of the actual value; values over 1 billion will be within 99 of the
original integer value after being converted to real. We strongly recommend that you
use versions of MegaBasic with 10 or more digits of floating point precision to avoid this
conversion limitation. If your program never uses integers of this size, 8-digit MegaBasic
can be used without any difficulties.

VEC <vector variable> = <vector expression>

Computes a sequence of values using a vector expression and assigns them to the
elements of a vector variable. A vector is a sequence of numbers in an array that is
accessed as a sequential list (i.e., without subscripts) and a vector expression is a
computation that uses vectors as terms of the expression. Using the vector processing
operations of MegaBasic you can perform thousands of arithmetic and mathematical
operations without executing more than one or two MegaBasic statements. Vector
statements are particularly useful for implementing matrix operations of any variety
(Chapter 3, Section 7).

Extended Assignment Statements

When developing software under any language, you will frequently need to add a value
to a variable, or multiply by a value, or change it in some manner that uses its current
value to compute its next value. For example the statement ARRAY(I,J) 5 ARRAY(I,J)+l,
will increment array element (i,j) by one. In order to speed up this kind of operation, an
extended assignment statement is supported that is faster because you only have to
specify the variable once, instead of twice.

5

5-11GFK-0256 Chapter 5 Data Definition and Assignment Statements

The examples below show how this is done:

Standard Assignment
Statement

Equivalent Extended
Assignment

ARRAY(I,J) = ARRAY(I,J)+1 ARRAY(I,J) += 1

TOTAL = TOTAL – EXTRA TOTAL–= EXTRA

PROD = PROD * MULT PROD *= MULT

QUOT = QUOT / DIVISOR QUOT /= DIVISOR

INTQ = INTQ DIV DIVISOR INTQ DIV= DIVISOR

V = V MOD MODULUS V MOD= MODULUS

BASE = BASE ^ EXPON BASE ^= EXPON

VALUE = VALUE SGN SVAL VALUE SGN= SVAL

When you specify an extended assignment operator (i.e., +=, –=,*=, /=, mod=, div=,
^=, sgn=), be sure that there are no spaces between the leading operator and the
following equals sign (=). For example X + = 1 will be reported as an error, while X +=
1 will be accepted.

When MegaBasic evaluates extended assignment statements, the expression to the right
of the equals sign (=) is completely evaluated before being combined with the variable
to the left of the operator, therefore:

the assignment: X *= Y + 1

is evaluated as: X = X* (Y+1)

instead of: X = (X * Y) + 1

Extended assignments are especially useful when the target variable is an array with
complicated subscripting, because of the time saved by omitting the second reference to
the variable. You can use extended assignment statements only with numeric varia~les;
extended string variable assignments are not supported. Furthermore, the numeric
operators supported include only those shown above and do not include any logical
operators (e.g., AND, OR, XOR, etc.) or comparison operators (e.g., = <~ > < etc.).

Assignments within Expressions

Assignment statements can also appear within any numeric or string expression. The
value of an assignment expression is the exact value that was assigned to the variable.
For example the two assignments:

A(i,j,k) = log(Z+5)/pi; Y = Sqrt(A(i,j,k)) * P

can be done as the following single statement:

Y = Sqrt(let A(i,j,k) = log(Z+5)/pi) * P

As you can see, assignment expressions let you assign a value to a variable and then go on
to use the same value in another independent way, all as one step. Another way to look
at this is that intermediate calculations performed within an expression can be stored in
variables during the course of evaluating the expression.

Notice the LET reserved word in the embedded assignment statement. LET is normally
an optional word to introduce an assignment statement. However in the context of an
expression, LET is necessary to indicate an assignment statement is ahead. Without LET,
MegaBasic would interpret the equals sign (=) as a comparison of two values instead of
an assignment.

5

5-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Proper use of assignment expressions can improve the performance of your software by
reducing the number of statements and variable accesses required to process a given set
of operations. Any kind of assignment can be used in assignment expressions, including
numeric and string variable assignments, extended assignments to numeric variables
(e.g., += –= *= etc.), and string replacement (:=) assignments. When string
assignment expressions are specified, the string returned by the assignment is the string
that was actually stored into the variable (which may be truncated to fit). The following
example evaluates a string expression, stores it into A$, compares the value stored into
A$ with B$ and increments N if they compared equal:

N += (let A$ = STRING_EXPRN$) = B$

Avoid assignment expressions involving the same variable more than once within the
same expression, because the order in which terms are evaluated within a complicated
expression is not necessarily well-defined. For example, the MegaBasic compiler
evaluates the individual terms of certain expressions in a different but equivalent order
for performance reasons.

You should also be aware that since the right-hand operand of AND, OR and IMP
operators is sometimes left unevaluated, LET assignments in that term may not be
performed. For example in the expression X OR (LET Y-Z), Y is set to Z only if X is
nonzero. This is because the expression result is known to be 1 if X is nonzero, causing
MegaBasic to skip the right-hand term (along with the assignment) to improve
performance.

You have to surround an assignment expression with parentheses if it is followed by
additional terms of a larger expression, because MegaBasic evaluates the assigned
expression as far to the right as it can before actually assigning the result to the variable.
Parentheses are not necessary if the assignment expression is the last term of an
expression. Because of this, compound assignment statements can be written as follows:

Let A = let B = let C = let D = let E = X*Y/Z

The statement computes the value of X*Y/Z and then stores it into E, followed by D,
then C, B and A. The leading LET is actually unnecessary, but was added merely for
consistency and style. Be careful when using compound assignments so that the value is
preserved as it passes from variable to variable. If integer and real variables are being
assigned, there may be some truncation due to the implicit type conversions that occur
when real values are stored into integer variables. Furthermore in compound string
assignments, the string value will shrink as it passes from right to left if any of the
assigned variables are not as large as the string they are receiving.

A useful routine that employs assignment expressions is given below. This routine
displays the contents of BUF$ onto the screen and expands any tab characters (ASCII 9
codes) into the appropriate number of spaces.

100 Def proc EXPAND_TAB BUF$; Local l,J; J = O
110 While Let J = match(BUF$,chr$(9),1et 1 = J~1)
120 Print BUF$(1,J–1),tab((pos(0)+1) ceil 8),; Next
130 Print BUF$(J+1); Return; Proc end

Notice that the WHILE condition expression sets I,J to point to the next sequence of
characters that does not contain a TAB character. This simplifies the loop down to only
one statement (the PRINT) and improves the processing speed accordingly.

5

5-13GFK-0256 Chapter 5 Data Definition and Assignment Statements

[LET] <string variable> = <string expression>

Evaluates the string expression on the right and assigns the resulting string value to the
string variable on the left. The contents of unindexed string variables are totally replaced
by the string value. For example, you can clear a variable of all characters by assigning a
null string to it: A$–“”. If the string value being assigned is longer than the maximum
length of the variable (as specified by the DIM statement), only the left-most portion that
fits will be assigned.

If the target string variable is indexed, then only the sub-string portion indexed is
affected. Strings longer than this region are truncated to fit and shorter strings are placed
left justified within the sub-string field, without altering the remaining positions. If the
string value is shorter than its indexed destination variable, the extra positions in the
variable are left unmodified. Indexed string assignments to not change the overall length
of the string contained in the target variable.

Care should be taken to avoid assigning expressions involving very long or many strings
in one expression, since working memory proportional to the length assigned is
required. The FREE(2) function (Chapter 9, Section 7) can tell you how much memory is
available for evaluating an expression at any point. It should be consulted prior to
evaluating potentially infeasible string expressions. Such expressions which would
otherwise cause a Scratchpad Full Error should be broken up into smaller pieces that can
be processed independently. Unless total memory is limited, only in extreme situations
should such steps be necessary because the scratchpad has an approximate capacity of
56k bytes.

[LET] <string variable> = <string variable>

String assignments with only a string variable or indexed string variable on the right-side
of the equals sign are assigned 2-3 times faster than the same string specified by a string
expression. This is because in that case, the data is directly transferred to the receiving
string variable without any intervening operations. For example A$=B$ is performed
much faster than something like A$=“”+B$, since “”+B$ must be formed as a result in
internal workspace prior to being assigned to A$. Furthermore, because this special case
does not use any internal workspace, the size of the transfer is not restricted by any
memory limitations. Hence variable-to-variable assignments up to 64k bytes in length
are always viable and extremely fast.

5

5-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

[LET] <indexed string vbl> := <string expression>

This statement (notice the colon (:) before the equal sign) will place the string on the
right into the indexed area on the left, just like the usual assignment. The big difference
is that when the indexed area and the assigned string differ in length, the destination is
expanded or contracted to fit the assigned string exactly (i.e., not just overlaid). For
example:

A$(L:0) := “string” Inserts ”string” into A$ at position L

A$(L:5) := “” Deletes 5 characters from A$ at position L

A$(K,L) := B$ Replaces the contents of A$(K,L) with B$

A$(K) := “”
Deletes all characters from position K to the end of
the string. Equivalent to A$ = A$(1,K–1) except that
no characters are physically moved.

A$(K) := B$
Replaces all the characters from position K to the end
of the string with the contents of B$. Equivalent to
A$ = A$(1,K–1)+B$, except that only the characters
of B$ are actually moved.

A$(:0) := B$
Appends B$ to the end of A$ (i.e., replaces the null
string at the end of A$ with B$). This is faster than
the equivalent operation A$ – A$+B$ because B$ is
moved directly to A$ without any movement of A$.

In these examples, characters above the specified indexed region in A$ are moved
appropriately and the length of A$ is adjusted up or down accordingly. If you specify a
destination anywhere beyond the end of the destination string, the string on the right is
simply appended to the end of the destination string on the left, for example:

A$(9999) := B$
or

A$(:0) := B$

Appends B$ to A$ as long as the length of A$ is shorter
than 9999 characters. It is equivalent to A$ = A$ + B$,
except that B$ is appended directly to A$ without
additional characters being moved.

If the operation implies a total result which is longer than the DIMensioned limit to the
destination string variable, all result characters beyond that limit are lost, as occurs with
the standard string assignment statement. Although this assignment is designed to give
the exact same result as if it were programmed using the standard concatenated
assignment, it does it 2-10 times faster and in a much more obvious way as shown by the
equivalent methods given in the examples.

This is a true string replacement operation that has many important applications. The
following example illustrates how easy it is to substitute one string for another, of
differing lengths, throughout a large body of text:

10 Rem—Substitute B$ for C$ everywhere in Text T$
20 I = 1; L=Len(C$); R=Len(B$)
30 I = Find(T$(1) = C$)
40 If I>0 Then [T$(1:L) := B$; I = I+R; Goto 30]

Line 30 sets I to the location of the next occurrence of C$ in T$ using the FIND function
(Chapter 9, Section 3). Line 40 performs the substitution and then repeats the process,
which ends when no more occurrences are found. This is a near optimum replacement
procedure and illustrates just one typical application of the string replacement
statement.

5

5-15GFK-0256 Chapter 5 Data Definition and Assignment Statements

[LET] <string variable> == <string expression>

When you assign (–) a string value to an indexed string variable or string field, it simply
overlays the contents of the indexed string. If it is shorter than the indexed region then
the right–most portion of the original string remains unchanged. The above string
assignment, which uses the == operator, guarantees that the entire content is replaced.

The double equals sign (==) indicates that any unchanged portion of the target string
will be filled with spaces (or other ASCII code controlled by PARAM 7). The length of the
target string variable is never changed by this assignment statement. If an unindexed
string variable is specified, it is handled like an all-inclusive indexed string variable. For
example, A$==B$ is equivalent to A$(1)==B$. The == operator must be typed without
any spaces between the two equals signs.

SWAP <list of variable pairs>

Exchanges the contents between each pair of variables listed. Both variables of each pair
must be of the same type (string or numeric), but may contain a mix of string and
numeric pairs. Each variable pair is exchanged independently of the others, for example:

SwapX,Y, A$,B$, R4(J),Z(I,K)

A SYNTAX ERROR results from an odd length list. A DATA TYPE ERROR results from
attempting to SWAP strings with numbers or to SWAP an integer variable with a real
variable. SWAP is limited to simple string or numeric data or array elements. You are
allowed to SWAP an array element with a non-array variable. If the two variables are
vectors preceded by the word VEC, the vector contents are swapped, for example:

SWAP VEC A(*),B(*)

See Chapter 3, Section 7 for complete information on vectors. SWAP statements are from
3 to 5 times faster than the usual assignment statement implementation (e.g., swapping
X and Y using the sequence: T=X; X=Y; Y=7). SWAP is useful for sorting routines,
where total sorting time can be cut substantially.

Any combination of indexed and unindexed string variables can be swapped. The length
of indexed variables is unaffected by a SWAP. The length of an unindexed string variable
is always set to the length of its new contents, limited of course by its capacity. The effect
of swapping two arbitrary string variables is defined in three logical steps:

� Let A$ and B$ represent two arbitrary string variables. A$ and B$ may or may not be
indexed.

� Let BUF$ be an unindexed string variable large enough to fully contain either A$ or
B$.

� SWAP A$,B$ is equivalent to the following three steps: BUF$=A$; A$=B$;
B$=BUF$.

In other words, swapping two string variables is implemented as if being performed
with an intermediate string variable of sufficient size to effect an exchange of the two
variables using only simple assignment statements. The rules governing string
assignments and their effect on the target string are followed by the SWAP statement
exactly. Bear in mind that SWAP uses no intermediate storage at all and executes much
faster than assignment statement implementations, however its effect is identical.

Attempting to SWAP two overlapping regions of the same string variable will have
unpredictable results. This is because MegaBasic SWAPS strings in place rather than
using intermediate storage, as described above. The overlapping regions will not be
properly exchanged, and your program will most certainly produce erroneous results.

5

5-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

BIT (<string vbl> [<bit range>]) = <expression>

Evaluates the non-negative numeric expression (on the right), converts it to an integer,
and assigns the result to any bit subrange (up to 24 bits wide) within a string variable.
The string variable reference may be indexed or unindexed. The optional <bit range>
specifies a starting bit position and either an ending position or a number of bits to be
affected. The following examples illustrate the various possibilities for specifying bit
ranges:

BIT(TBL$) Refers to the leading bit of byte 1 in TBL$.

BIT(TBL$,I) Refers to bit I of TBL$.

BIT(TBL$:N) Refers to the first N bits of TBL$.

BIT(TBL$,I:N) Refers to N bits of TBL$ starting with bit I.

BIT(TBL$,I,J) Refers to bit I through bit J in TBL$.

The BIT function is capable of accessing groups of 1 to 24 bits as a numeric unit. This
provides very efficient utilization of memory when large tables of small positive integers
are required. A string with a byte length of L bytes has bit positions from 0 to L~1,
which can be as high as 524015 (for the largest possible string of 65502 bytes).

If you specify a bit range that lies partially beyond the last byte of the string, the bit
range is truncated to fit the actual string. A bit range consisting of zero bits is specified if
all bits in the range lie beyond the string. BIT requires that the actual bit string being
accessed consists of 1 to 24 bits in length and lengths outside this range result in an Out
Of Bounds error.

The first bit of the specified bit subrange always represents the high order bit of the
integer bit sequence being accessed. The table below illustrates the relationships
between BIT addresses, bit numbers within bytes, and character

Character
Position

Bit Addresses Bit Number In Byte

1 0 to 7 7, 6, 5, 4, 3, 2, 1, 0

2 8 to 15 7, 6, 5, 4, 3, 2, 1, 0

3 16 to 23 7, 6, 5, 4, 3, 2, 1, 0

For example bit4 of the 3rd byte of the string is in BIT position 19. The BIT positions in
the table go by fours only to simplify illustrating the idea. BIT () may appear on either
side of the equals sign depending on whether you are storing a value (left) or accessing a
value (right). Other string functions that deal with bit strings include ROTAT$, ORD and
CARD (Chapter 9, Section 3). Chapter 4, Section 4 describes various boolean (logical)
operators which may be used combine and manipulate entire bit strings in one
expression.

Values are stored modulo 2^width, causing reduction of values too big for the given
length. For example BIT (A$,95:8)–259 stores a value of 3 into the 8 bits starting at bit 95
of A$. This is because the value 259 is actually 9 bits wide and only the lowest 8 bits were
stored.

5

5-17GFK-0256 Chapter 5 Data Definition and Assignment Statements

The expression to the right of the equals sign must return either an integer or a real
numeric result; a Data Type Error occurs if a string expression is specified. To obtain the
best performance, you should specify integer numeric expressions (rather than real)
wherever numbers are required on either side of the equals sign. Real values are
internally converted to integer representation before they can be used for string
indexing, array subscripts, bit positions and bit widths, and this conversion is inherently
time-consuming. Integer values are already in the proper internal form for immediate
application.

In addition to its ability at packing and unpacking small integer values in and out of
string variables, the BIT statement has important applications in processing bit strings.
Bit strings are ideal for representing sets, where bit(i) of the bit string is set to one if set
element (i) is a member of the set and reset to zero if it is not a member. The BIT
statement can, of course, set or reset any bit in a bit string. Additional information about
bit strings can be found in Chapter 4, Section 4 and Chapter 5, Section 2.

BIT has additional applications in sorting. Multi-byte values written into bit fields are
ordered high byte to low byte, permitting such fields to string sort correctly. This is the
opposite order from the way multi-byte integers are transferred using FILL, EXAM,
READ and WRITE statements. BIT is particularly useful for packing values into a string
variable used to communicate the CPU register contents in CALL statements (Chapter 7,
Section 3).

5

5-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Structured Variable Fields

Many applications involve complex record structures where a single data item may
contain numerous related strings, reals and integers. To be able to move these collections
of values or field structures around as a unit can greatly simplify programming and make
processing more efficient. MegaBasic supports field structures as data templates into string
variables, enabling you to assign names and data types substring regions within string
variables which can then be accessed by name. The resulting super-strings can then be
processed using the rich string facilities of MegaBasic just like other strings.

STRUCT <field definition list>

Defines a collection of field names, positionally related to one another, that are used to
access data fields of any type by name from portions of string variables. Each field name
is assigned a data type (i.e., STRING, INTEGER or REAL), a string index position and a field
length. Fields are applied to string variables in a manner similar to string variable
indexing expressions, for example:

VARIABLE.FIELD

This field reference extracts the region of VARIABLE that is indexed by the position and
length assigned to FIELD by a STRUCT statement, as if the region was a variable with the
data type of FIELD. Any string variable can be accessed with fields in this manner,
including indexed string variables and other string field references. Fields must be
defined by a STRUCT statement before they can be be used. The STRUCT statement is
specified as follows:

STRUCT <item>, <item>, <item>,...

where each <item> can be in any of the following four forms:

<type> <name>: <length>
Defines a field with the specified <name> and data <type>, and assigns it the current
index position and specified field <length>. If the <type> is omitted (i.e., no STRING,
INTEGER or REAL specifier), the field assumes the type implied by its name or its prior
type if already defined. If the :<length> is omitted, the length defaults to its previously
defined length or, if not ever defined, the length implied by its data type (i.e., 80 for
strings, 4 bytes for integer, 8 bytes for IEEE real, 5 bytes for 8-digit BCD real, etc.). Long
lengths are useful for later references to the field as (pseudo) arrays (described shortly).
Fields defined with a zero length are treated as undefined fields and therefore contribute
neither their position nor their zero length to subsequent default definition parameters.

Each field <name> is an ordinary MegaBasic identifier that is not already defined as the
name of a line label, procedure or function. Names of existing variables can be used, but
their prior definition disappears and memory storage assigned to them is released.

Each field <name> is assigned its position on the basis of what precedes it in the
STRUCT statement. If preceded by a @<position> expression, it takes on the position
specified. If preceded by another name, it assumes the position of that name plus the
length assigned to that name. The position of the leading <name> in the STRUCT list (or
one immediately following a USE <vbl> selection) depends on its prior definition. Fields
already assigned a non-zero length simply retain their prior position. Names never
before defined in a STRUCT statement and fields defined with a zero length are given a
position of 1 (and a new length).

5

5-19GFK-0256 Chapter 5 Data Definition and Assignment Statements

(2) <type> <name> (<item>, <item>, <item>,...)

Defines <name> with a sub-field list such that the <name> field accesses the entire
region accessed by its collective sub-fields. The <name> is assigned its type and position
the same way as in form (2), but its length is set equal to the sum of the lengths of its
sub-field list within the brackets. The leading sub-field is assigned the same position as
<name>. This form lets you assign sub-structure to higher level names already defined,
providing a means to create data structure hierarchies. All <item> forms except the
usE-form described below may appear within the sub-field list.

Although MegaBasic lets you define related structured variable fields in a hierarchical
manner, this specification merely provides a convenient way to assign positions to each
name with a minimum of effort. No error occurs if you later attempt to use field names
in a context that is logically inconsistent with the original hierarchy.

(3) @<position>

Defines the string index to assign to the next structure field name in the list. The at-sign
(@) must appear in front of the <position> value so that MegaBasic can tell it apart from
forms (1) and (2). Since they are equivalent to string index positions, it is an error to
specify a negative or zero <position>. This form is used when the sequential assignment
of field positions is not desired or to override other defaults imposed by the STRUCT
statement.

The <position> value is relative to the subfield list it is specified within, or relative to 1 if
not in such a list, for example:

STRUCT FIRST$:40, SECOND$[A$:20, @11, B$:30]

This defines B$ within a position relative to SECOND$, equivalent to SECOND$(11), or
an absolute position of 51. It also implies that SECOND$ has a length of 40, because A$
and B$ overlap by 10 positions.

(4) USE <host string variable>

Defines a default string variable to access for all STRUCT fields that are subsequently
defined and resets the current running field position back to 1 as if a new STRUCT
statement had just begun. This default host variable is accessed when a field variable
reference is not preceded by an explicit string variable. The USE variable remains in
effect until later re-defined. The word CLEAR can be specified in place of the <string
variable> to nullify the default variable selection (i.e., so that there is no default). For
example:

STRUCT USE A$, FIELD$[A,B,C],
 USE CLEAR, LIST$[I,J,K]

This defines the FIELD$ set with an A$ default and the LIST $ set with no default.
Default selections must appear outside of sub-lists. Later field definitions that follow a
USE <vbl$> specification are treated as if they began a new STRUCT statement (i.e.,
starting at position 1 unless its is already defined you specify a different @position first).

5

5-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Multi-Line STRUCT Statements

MegaBasic always continues a STRUCT list that ends with a comma onto the next
physical line. The next line simply continues with the next <i~em>, i.e., it does not
begin with the word STRUCT. In this manner, a STRUCT statement may continue on for
any number of lines. However, there are some things you need to remember if you do
use multi-line STRUCT statements. Make sure that you do not have any program
references to any of the subsequent lines (e.g., using GOTOS, GOSUBS and RESTORES)
because such meaningless references are not caught until they are executed. A multi-line
STRUCT statement as a one-statement THEN or ELSE clause requires brackets [] around
it as if it was a multi-statement clause. The CHECK command reports unbalanced
brackets and parentheses within any program line, so if a bracketed STRUCT list spans
beyond one line, CHECK incorrectly reports an error.

Since subsequent lines of multi-line STRUCT statements may begin with a field name
followed by a colon (e.g., A$:20,...), MegaBasic will treat the such names as a line-labels
unless the colon is followed by a digit or an opening parenthesis. This problem can also
be avoided by defining fields with the DEF STRUCT described below.

Redefining Structured Variables

Names defined in previous STRUCT statement are redefined by the most recent STRUCT
statement. Names of variables that already exist can be redefined as structured variables
only if those variables are local to the current package (i.e., they are not SHARED
variables). Names of line labels, procedures or functions can never be redefined for any
new purpose. Once a name is defined as a structured variable field, it can only be
redefined as another structured variable field.

STRUCT() Function

A special function useful in <position> expressions is STRUCT(F), which returns the
string index assigned to field F. STRUCT(F,N) returns other information about field F
depending upon the value of N, as follows:

 STRUCT(F,0) Return the string index position of field F (same as
STRUCT(F), with 1 argument).

 STRUCT(F,1) Return the number of bytes in the region assigned to
field F.

 STRUCT(F,2) Return the data type of field F (0=string, 1=integer
or 2=real).

STRUCT(F,N) returns –1 for all other values of N or if F is not defined as a structured
variable field.

5

5-21GFK-0256 Chapter 5 Data Definition and Assignment Statements

DEF [SHARED] STRUCT <item>, <item>, ...

You can define structure fields statically in a DEF STRUCT statement. As with all DEF
statements, they must appear as the first statement on a line. Such statements consist of
the word DEF followed by an optional SHARED modifier to declare all the fields as
sharable to other packages, followed by a fully specified STRUCT statement. DEF STRUCT
works just like the STRUCT statement except for the following limitations:

� Position and length expressions, if they appear, must be integer constants
without any arithmetic, parentheses or other processing specified. A field with a
zero length is treated as an undefined field: a field name with a data type only.
Field lengths default to the following values when the :length constant is
omitted: integers=4, reals=8, strings=0. String and real fields default to different
widths under the executable STRUCT statement because the statement assigns a
width that is determined at run time, unknown if the program is compiled.

� The leading field immediately following the STRUCT word always takes on a
position of 1, regardless of any earlier definition of that field name. If all fields
are assigned a length of zero, then they will also all be assigned a position of 1.
USE <vbl$> specifications also reset the position counter to 1 for the next field
name that follows.

� Fields that appear in more than one DEF STRUCT end up defined by the last DEF
STRUCT statement they appeared in. DEF statements in general are processed in
the order in which they appear in your program.

� USE <vbl$> expressions are permitted, but they only affect the default host
variable assignment of fields defined in DEF STRUCT statement, i.e., it does not
set the global default STRUCT USE <vbl$> in effect during execution.

DEF STRUCT is especially useful in programs that will be compiled with the MegaBasic
compiler, which requires that SHARED STRUCT fields be declared in DEF statements in
order to properly assign the correct data types at compilation time. However, DEF STRUCT
is also useful in interpreted programs to define STRUCT fields before actual program
execution begins, which is especially useful for field definitions that do not change
during program execution.

Fields completely defined in DEF STRUCT statements do not generate any code in
compiled programs, reducing your executable program size accordingly. Fields defined
in DEF STRUCT statements can always be redefined by subsequent STRUCT statements
during program execution, but remember that the leading field of a STRUCT statement
takes on its prior position if already defined. DEF SHARED STRUCT fields do not require
any actions in the package prologue to create them.

When developing and debugging your software and you modify a CONTinuable
program, MegaBasic re-processes all DEF statements to reflect any changes you may
have made in DEF statements, as well as to catch conflicts. However, re-processing a DEF
STRUCT statement would cause all statically defined fields to revert to their original data
types, positions and field widths. Any changes to those fields made by subsequent
STRUCT statements during prior program execution would be lost by such a move,
upsetting subsequent program CONTinuation . Therefore, DEF STRUCT statements are
ignored on DEF statement reassertion passes whenever you modify a CONTinuable
program. Although this prevents corrected DEF STRUCT statements from taking effect
while debugging a CONTinuable program, it does preserve the current program
execution state that is vital to CONTinuing after making program changes.

5

5-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Accessing Structure Field Variables

Structured variables in MegaBasic are designed to allow ordinary string variables to
represent a collection of individual data items. Although this is already possible using
string indexing and conversion techniques, these methods invite programming errors
and suffer from poor performance relative to the logically simple tasks that they
perform.

With structure fields, you can access integers, floating point numbers and fixed-length
strings within some larger string variable by name instead of using indexing expressions.
Using the extremely efficient string operations of MegaBasic, collections of such variables
can be moved, read, written or compared many, many times faster and with far greater
simplicity than processing the same set of variables individually. You refer to structured
variables in programs in the following manner:

Variable.field

where the field is a name to which you have assigned a string position, a length (number
of bytes) and a type (i.e., integer, real or string). The Variable portion must be a reference
to a string variable, which is then accessed through the field name specified. The string
variable may be indexed, or specified as a structured field of a larger string variable,
which allows for an indefinitely long path of fields. For example:

RECORD$.PERSON$.ADDR$.ZIP

This might refer to an integer ZIP code that resides in the ADDR$ field of a PERSON$,
which in turn, is a field in a larger RECORD$ that could contain many other fields. The
rules for specifying a structured variable reference are as follows:

� The leading term of a pathname must be a string variable sufficiently large to
contain all bytes of the field that follows it. This string variable may be indexed
or unindexed, a scalar or string array element, or a pathname that evaluates to a
string variable.

� The leading term of a field pathname can be a field name only if a default host
string variable is defined for that field. Such defaults are defined by the USE
<vbl> specification, which is described in detail in the discussion on default
referencing.

� The second and subsequent names in a pathname must be names of fields
defined by an earlier STRUCT statement. An error will be reported if any of these
field names are undefined or refer to a variable, function, procedure or line label.

� Only the trailing (last) name of a structured variable pathname may have an
integer or real type. In other words, all pathname fields must be strings, except
the last one which may be any type.

� Numeric fields must fit completely within the length of the variable specified to
its left in the pathname. Unlike string indexing or string fields, which truncates a
string that does not fit, MegaBasic reports an error if you attempt to access a
numeric value requiring one or more bytes outside the target string or if the field
itself is too short to support the numeric representation implied by the field
type.

� No spaces, linefeeds or tabs may appear within a pathname. Periods are used to
separate the individual fields within the pathname from one another.

5

5-23GFK-0256 Chapter 5 Data Definition and Assignment Statements

� Any string pathname field may be indexed, so that field names that follow can
refer to the indexed region of the string instead of the entire string field.

� Numeric fields (real or integer) may be followed by an optional pseudo array
subscript, to refer to the nth number instead of the first number at the specified
location. For example, A$.COUNT and A$.COUNT(0) both refer to the same
COUNT field, but A$.COUNT(1) refers to the number in the bytes that
immediately follow A$.COUNT(0). Only 1-dimensional subscripts are
supported; an error is reported if you specify two or more subscripts.

� Numeric field references are supported in any vector context. The effective
vector length is determined from the number of elements that fit into the string
variable region accessed by the field.

Structured String Assignments

When you refer to a structured variable string, such as A$.B$, you are really referring to
an indexed region of A$. For example if B$ was defined so that it accesses 10 characters at
position 20, then A$.B$ and A$(20:10) are exactly identical in all respects. Either reference
will be treated the same way in any context. A result of this is that string assignments to
such variables behave differently than assignments to ordinary string variables. For
example, when you assign a string to a longer indexed string region, not all the
characters within the indexed region are replaced. Also, an assignment to an indexed
string cannot change the length of the string variable (only its fixed-length contents).

To ensure that assignments to indexed strings or structured variable strings completely
replace their contents, you have to pad shorter strings with spaces (or some other fill
character) so that they fill out all bytes of the variable region. This is conveniently done
with a special string assignment statement, as follows:

<string variable> == <string expression>

The double equal-sign indicates that the <string variable> region specified will be
padded with extra spaces as required by shorter <string expression> values. This
operation also holds when the <string variable> is not indexed. For example A$==B$ is
really evaluated like A$(1)==B$, and hence the length of <string variable> is NEVER
altered by this assignment statement. Spaces (ASCII 32 code) are normally used to pad
strings, but this code can be changed by setting PARAM(7) to any ASCII code from 0 to
255. You can use this statement to assign strings to any kind of string variable, not just
structured string variables. Its function is identical to the LET statement in Microsoft
BASIC.

Passing Fields between Subroutines and Packages

You can pass names of structured variable fields to subroutines as variables (i.e., at-sign
parameters), but you cannot pass an actual structured variable accessed by variable,
because it is really an indexed string reference (even though it appear to be an integer or
real variable). Of course, you can always pass structured variable references by value to
subroutines, or use them in any other context that variables are allowed (e.g.,
assignments, expressions, READs/WRITEs, etc.). Structured variable names can be
SHARED between packages as long as the package defines ib own structured variables as
SHARED.

5

5-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Examples of Structured Variables

To further develop your understanding of how to define and use structured variables,
several examples are described below. First, the RECORD$ variable of the earlier
example could be defined by the following statements (and the assumption of a DEF
INTEGER A-Z context):

STRUCT RECORD$ [PTR$:16, PERSON$:180]
STRUCT UP,DOWN,LEFT,RIGHT
STRUCT NAME$:60, ADDRESS$:60,INFO$:60
STRUCT STREET$:15, CITY$:15, STATE$:15, ZIP
STRUCT REAL SALARY, TAXCODE, etc$:40

Remembering that each STRUCT list begins with a default position of 1, the above sequence
defines the following structured variable fields:

Name Type Position Length
RECORD$ String 1 196

PTR$ String 1 16

PERSON$ String 17 180

UP Integer 1 4

Down Integer 5 4

LEFT Integer 9 4

RIGHT Integer 13 4

NAME$ String 1 60

ADDR$ String 61 60

INFO$ String 121 60

STREET$ String 1 15

CITY String 16 15

STATE$ String 31 15

ZIP Integer 46 4

SALARY Real 1 8

TAXCODE Integer 9 4

ETC$ String 13 40

Using these definitions, some of the meaningful pathnames that are possible are listed
below:

A$.PERSON$ All PERSON$ fields in A$

B$.PERSON$.ADDRESS$ All ADDR$ fields in B$

C$.PTR$ All PTR$ fields in C$

D$.PTR$.RIGHT The RIGHT pointer in D$

E$.PERSON$.ADDRESS$.ZIP The ZIP code in E$

F$.PERSON$.INFO$ All INFO$ fields in F$

G$.PERSON$.ADDRESS$.STATE$ The STATE$ field in G$

H$.PERSON$.INFO$.SALARY The SALARY field of H$

I$.RECORD$ All RECORD$ fields of I$

5

5-25GFK-0256 Chapter 5 Data Definition and Assignment Statements

Notice that the structured variable references can be applied to ANY string variable (that
is long enough to contain the field being accessed). Also notice that, since the sub-field
lists are all based at position 1, you have to specify full pathnames to access any field
correctly. However, you can also define this structure so that any field can be referred to
using only a single field name in the path. This is done as follows:

STRUCT RECORD$ [PTR$:16, PERSON$:180]
STRUCT PTR$ [UP,DOWN,LEFT,RIGHT]
STRUCT PERSON$ [NAME$:60, ADDR$:60, INFO$:60]
STRUCT ADDR$[STREET$: 1 5,CITY$: 1 5,STATE$: 1 5,ZIP]
STRUCT INFO$ [REAL SALARY, TAXCODE, ETC$:40]

or equivalently:

STRUCT RECORD$ [PTR$:16, PERSON$:180]
STRUCT @STRUCT(PTR$),UP,DOWN,LEFT,RIGHT
STRUCT @STRUCT(PERSON$),NAME$:60,ADDR$:60,1NFO$:60
STRUCT @!STRUCT(ADDR$),STREET$:15,CITY$:15,STATE$:15,

ZIP, STRUCT @STRUCT(INFO$), REAL SALARY,
TAXCODE, ETC$:40

Here, we have defined sub-fields so that their positions correspond to their final net
position in the RECORD$. The same field references given above now reduce to:

A$.PERSON$ All PERSON$ fields in A$

B$.ADDR$ All ADDR$ fields in B$

C$.PTR$ All PTR$ fields in C$

D$.RIGHT The RIGHT pointer in D$

E$.ZIP The ZIP code in E$

F$.INFO$ All INFO$ fields in F$

G$.STATE$ The STATE$ field in G$

H$. SALARY The SALARY field of H$

I$.RECORD$ All RECORD$ fields of I$

The access to fields using this layout is a little faster than the prior method because fewer
names are used to determine the position of each field accessed. The later method is also
less wordy and brief as compared with the former. However, the prior method may be
more flexible in some applications because the sublevels defined can potentially be used
within different data structure hierarchies.

Default Referencing

References to structured variables normally begin with the name of an actual string
variable, which is then followed by a path of field names. In real life applications, this
name might be the same for a large proportion of all such references. Therefore
MegaBasic provides a method for declaring a string variable to be accessed by default
whenever you omit the leading variable name from the structured variable reference
pathname. This can greatly simplify and shorten certain complicated expressions
involving such references and reduce the running time needed to evaluate them.
Defining the default host variable involves the following statement:

STRUCT USE <string variable>

5

5-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

where the <string variable> may be a scalar string variable name, and indexed string or a
string field reference. String array references are not supported. This statement declares
the string variable to be used, by default, whenever you omit the variable name from a
structured variable reference. You can also specify the word CLEAR instead of <string
variable> to cancel the current default. An error is reported if you specify neither a scalar
string variable nor the word CLEAR.

The default remains in effect for all subsequent statements within the current package
until a different default name is declared. You cannot affect the current default structure
of other packages: each package has its own default. Also, you can localize the default
within procedures and functions by placing the word STRUCT in a LOCAL statement
(e.g., LOCAL X,Y,STRUCT,Z$) . This lets you change the default name within a
procedure or function without upsetting a possible default already declared around the
call to that subroutine.

The current default host variable has two distinct effects upon structured variable
references depending on whether or not a default was in effect when the variables were
defined in a STRUCT statement, as follows:

� Fields defined while a default variable is in effect are assigned a permanent
default that persists even after another STRUCT USE statement selects a different
default.

� Fields defined with no default variable in effect are assigned temporary default
status. References to such structured variables always use the currently selected
default as a temporary default; references made with no default in effect are
reported as a Structured Variable Error. When a subsequent STRUCT USE
statement selects another default variable, these same references follow suit and
access the new variable instead.

For example, consider the following sequence:

10 STRUCT A,B,C; Rem -- Defined with temporary default status
20 STRUCT USE A$; Rem -- Select A$ as the current default
30 STRUCT X,Y,Z; Rem -- Defined with permanent default of A$
40 STRUCT USE B$; Rem -- Change current default to B$

Line 10 declares several structured fields. Line 20 declares the default name to be A$, so
that now A, B and C all refer to A$ by default. Line 30 then defines three more structure
fields, X, Y, and Z, and assign each the permanent default of A$. The in line 40 we change
the current default name to B$. At this point, A, B and C now refer to B$ by default, but
X, Y and Z still refer to A$ because they were defined with a permanent A$ context.

The default variable idea can be used in very powerful ways. For example a subroutine
might refer to a set of variables which are, in fact, structured fields using the current
default variable. By modifying the default variable then calling this subroutine, you can
control the set of variables that it uses. This default only affects variable accesses within
the package it was defined in. Each package can independently define its own
structured variable default without affecting the others. Remember, however, that
default variables only come into play when you omit the leading host variable name
from the front of a structured variable pathname.

5

5-27GFK-0256 Chapter 5 Data Definition and Assignment Statements

STRUCT CHANGE <old vbl> TO <new vbl>

Sets all structured variable field names that currently have the <old variable> default so
that afterward they all use <new variable> as their permanent default. This statement
affects the permanent default assigned to every variable in every package throughout the
system that matches the old permanent default of <old variable>.

The word CLEAR can be specified in place of either <old variable> or <new variable> to
specify the null default. If you specify CLEAR as the <old variable>, then all structured
variable name with temporary status are assigned a permanent default of <new variable>.
If you specify CLEAR as the <new variable>, then all structured variable names having a
permanent default of <cur rent variable> are set to temporary default status. STRUCT
CHANGE has to scan all variables in the system to perform its task, so don’t use it
unnecessarily or in tight loops where it may burn up a lot of time.

If the default variable becomes undefined at any time, subsequent temporary default
references will generate an error. This is not detected until a reference is made. Variables
become undefined if the package that owns them is DISMISSed and no longer active.
Therefore, this can only happen if the default variable is a SHARED string variable
defined in another package.

5

5-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Pointer Variables

Pointers are supported under MegaBasic in a manner very similar to the pointer facilities
provided by C, PASCAL and other programming languages. A pointer is a mechanism
for accessing variables without using or knowing the names of those variables. In place
of a name, an identifying number or address is used, called a pointer. The real power of
this is that unlike names, pointers can be stored in other variables, moved around and
manipulated arithmetically. As a result, the choice and access of variables is controlled by
the executing program instead of being fixed within the program source code.

MegaBasic pointers can refer to user-defined functions, procedures and line labels, as
well as to variables. Furthermore, a pointer can refer to an entire array or to one element
within an array. To obtain the pointer associated with a named variable or other entity,
simply precede its name with a caret (A), as follows:

PTR = ^OBJECT

After executing this assignment statement, the variable PTR contains a pointer to the
variable OBJECT. If OBJECT had never been defined or assigned a previous value, a
pointer value of zero would be assigned to PTR (an invalid pointer that refers to
nothing). To access OBJECT using this pointer, you have to precede the pointer value
with an asterisk (*), as follows:

*PTR

This symbol can be used to specify OBJECT in any context where you could specify the
name OBJECT. For example, the following representations show how pointer
references correspond to name references:

 Pointer Type Setting a Pointer Reference Meaning

 Scalar variable PTR = ^SCALAR *PTR == SCALAR

 Array variable PTR = ^ARRAY *PTR(i,j) ==
ARRAY(i,j)

 Array element PTR = ^ARRAY(i,j) *PTR ==
ARRAY(i,j)

 Function Call PTR = ^FN_ADD *PTR(x,y) ==
FN_ADD(x,y)

The caret (^) function extracts the pointer to a named object and always returns an
integer value. Its argument can be any variable, label function, procedure or array name,
or it can be an array element reference. Both string and numeric variables are supported.
If you specify an array name without subscripts, then the resulting pointer must be
followed by subscripts in all asterisk (*) references. A pointer derived from a subscripted
array name must be used without subscripts, i.e., the *pointer reference behaves just like
a scalar variable. Except for subscripted array references, the caret function (^) accepts
no constants or other expressions of any kind. When extracting a pointer to a function or
procedure, do not specify any of its arguments in the pointer (^) function: only specify
its name by itself.

5

5-29GFK-0256 Chapter 5 Data Definition and Assignment Statements

Accessing Objects Through Pointers

The asterisk (*) function converts a pointer into a reference to whatever object it is
pointing to. However its argument must be an integer variable, an integer array
element, or numeric expression (integer or real) enclosed in parentheses. Hence if PTR is
a real variable, then *PTR is invalid and an error is reported. The integer argument of *
must evaluate to a valid pointer. The pointer integer variable or expression must
immediately follow the asterisk (*) without any intervening spaces, linefeeds or tabs.
Invalid pointers cannot always be detected (by MegaBasic or any other language) and
the unpredictable events that result from using one include wrong answers, corrupted
data and crashed machines. In short, all responsibility for error detection and proper use
falls on you, the programmer.

If PTR is a pointer to an integer variable, then *PTR refers to the contents of that
variable, as described above. If that integer variable itself contains a pointer to another
entity, then the expression **PTR refers to that entity. MegaBasic supports multiple
levels of pointer indirection to any depth as long as every pointer involved along the
way is a valid pointer. Only the last pointer in such a chain can point to a general object,
while the other pointers in the chain must be pointers to integer scalar variables or
integer array elements. This is because pointers must be stored in integer variables, as
MegaBasic does not have a separate pointer data type.

Array Pointer Arithmetic

Pointer arithmetic has meaning only in the context of array element access. For example,
if PTR = ^ARRAY(I), then the pointer reference *(PTR+l) refers to the same value as
ARRAY(1+1). Successively higher array element pointers will access successively higher
elements. When one dimension runs out, the first element of the next dimension is
accessed. The elements are accessed in the order they appear in physical memory,
regardless of how many dimensions the array has. Do not attempt to access array
elements beyond the end of an array. MegaBasic does not check for this error, and only
incorrect data (and/or crashed data structures) can result from this. Do not perform any
pointer arithmetic using pointers to non-subscripted arrays, scalar variables, labels,
functions or procedures: it always produces wrong and unpredictable results.

If the pointer arithmetic expression evaluates to a real number instead of an integer,
MegaBasic converts it automatically to integer. However, there are two reasons why you
should always avoid this. First, real arithmetic is much slower than integer arithmetic,
even with an 8087 processor. Second, under 8-digit BCD versions of MegaBasic,
real-to-integer conversion of large numbers, like pointer values, will lose some precision.
This is because 8-digit BCD reals have less precision than 32-bit integers. Any such
precision loss will destroy the pointer value for any correct purpose, and its subsequent
use can even crash your computer.

The DIM() function (Chapter 9, Section 5) can provide information about the dimensions
of an array. For example, if PTR points to ARRAY (rather than ARRAY(I)), then
DIM(*PTR) returns the number of dimensions in ARRAY. If, however, PTR points to
ARRAY(I) then DIM(*PTR) will return zero, because PTR is pointing to a scalar value, i.e.,
a single element within ARRAY().

5

5-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Pointers are only valid within the scope of an executing program. As such, they can not
be written to a file and then read back in a later invocation of the program. This is
because pointers are related to the physical memory location of the objects they point to,
which can change from one invocation to the next. A pointer to an object remains valid
throughout the life of the object it points to. For example, a pointer to a function in
another package is valid until that package is no longer in memory. You are responsible
for ensuring that pointers are valid before you use them. If MegaBasic determines that a
pointer is not valid, it reports a Pointer Variable Error (type 41).

Although a caret (^) is also used in MegaBasic as a power operator and an asterisk (*) is
also used as a multiply operator, there is no program context from which the meaning of
either of these symbols cannot be determined. In other words, there is never any
confusion or ambiguity. This property is similar to that of the minus sign (–), which is
used for both subtraction and negation.

Pointer Arguments in Subroutines

To further facilitate the pointer capabilities of MegaBasic, an additional argument type
can be specified in the argument definition of procedures and functions. Consider the
following procedure:

Def proc SHOW_VBL *PTR
Print PTR,“ points to”,*PTR
Return; Proc end

This subroutine displays both the pointer to a variable and its contents. Its argument can
be any scalar variable or array element of any data type (i.e., string, integer or real).
Notice the asterisk (*) preceding parameter PTR This tells MegaBasic to extract the
argument pointer and pass it to the procedure, instead of the argument value. This
pointer extraction is identical to the operation performed by the caret (A) function.
When SHOW_VBL is called, parameter PTR receives the pointer, which can then be used
in any manner consistent with the rules for using pointers as described earlier. For
example, the procedure above displays the pointer contained in PTR, as well as the value
it points to (i.e., *PTR),

Pointer parameters in function or procedure definitions (e.g., PTR above) must be integer
scalar variables. Specifying a real or string variable in this context is reported as a Pointer
Variable Error. The actual argument passed through a pointer parameter can be any
named entity that would be permitted in caret (^) expressions (as described earlier).
Therefore you also can pass function, procedure and label names to subroutines through
this mechanism.

A pointer parameter is equivalent to an integer parameter that is always passed a
pointer value (i.e., a caret (^) expression). The purpose of pointer parameters is to
eliminate the need to specify the caret (A) in front of all references to such arguments
and to hide this implementation detail from the caller. Furthermore, such parameters
provide a clean and simple way for passing array element variables to subroutines and
for implementing type independent parameters.

5

5-31GFK-0256 Chapter 5 Data Definition and Assignment Statements

Pseudo Variables

Using the pointer facility of MegaBasic, you can manipulate variables without knowing
of or dealing with their variable names. Normally, such variables had to be named
somewhere, i.e., they had to exist as ordinary variables before you could access them
through pointers. A special function lets you to create new variables whose only access is
through pointers, as described below:

P = CREATE(Q)

where Q is a pointer to a variable of the type desired for the new variable and P receives
the pointer to the new variable returned by CREATE(Q). There is no relationship
between variables *P and *Q except that they have the same type and *Q is not affected
in any way. The above assignment statement reads: Create a new variable with the same type
as variable *Q and store a pointer to it in P. Variables created in this manner are called pseudo
variables, because they do not have the usual name associated with them.

Arrays and strings created by this function have to be DIMensioned before they are used,
as no memory is allocated to them at creation time. If you access such variables without
DIMensioning them, the usual default variable DIMensions will be created automatically
as part of the first access. You can create scalar or array variables in any of the three
types: integer, real or string. An error results from attempting to create structure fields,
procedures, labels or functions.

Variables created by CREATE() are owned by the MegaBasic package that executed the
CREATE() function. If this package is removed from the system during execution, all
pseudo variables it owns will also be removed and their allocated memory released back
to the system for subsequent general use. Subsequent attempts to access variables that
no longer exist must be avoided, because the results will be extremely unpredictable and
can crash the system.

In some applications, you may want to create and then later release pseudo variables at
some point in your program without having to DISMISS the package that created them.
To free any variable from the system, use the following statement:

FREE <vbl>, <vbl>, ...

where <vbl> is a reference to any MegaBasic variable, by name or by pointer reference.
Names of arrays should be specified by name or pointer reference only (i.e., without
subscripts). This statement operates slightly differently on pseudo variables versus
regular named variables. Named variables will still exist after the FREE statement
finishes, but without any memory allocated to them (and scalar integers and reals are
left unaffected). Pseudo variables are freed completely, i.e., their allocated memory is
freed and any pointers to them are no longer valid. For example, the variable created by
the P = CREATE(Q) statement above, is destroyed by the statement FREE *P.

MegaBasic has a maximum capacity for 8190 symbols over all packages of a running
program (which includes functions, procedures, labels and fields, as well as variables).
Therefore, applications that expect to create vast numbers of pseudo variables may not
succeed. Small programs can create more pseudo variables than large programs because
the application begins with fewer symbols to start with. If you exceed the symbol
capacity, your program terminates with a Too Many Symbols Error. Typically, however,
even large programs with many packages use only several thousand symbols, which still
leaves most of the symbol capacity available for pseudo variables. Use the FREE(3)
function to find out how much symbol space remains.

5

5-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Pointer DEF Statements

Pointer Def Statements let MegaBasic compiler users specify the type of object that a
pointer points to in a DEF statement so that, in particular, local pointer functions and
external pointer variables and pointer functions can be given a pointer type to support
proper compilation. This statement only affects the compilation of pointers in MegaBasic
programs, and has no effect when interpreted. Its complete syntax is as follows:

DEF <name list>:<symbol>, <name list>:<symbol>, etc.

where <name list> is a sequence of pointer variable or pointer function names separated
by commas and preceded by an asterisk (e.g., *P, * Q ...), and <symbol> is the name of
any already-defined symbol of the type that the pointers in the will be pointing to.
Pointer variable names may be followed by parentheses () to indicate pointer arrays (i.e.,
arrays of pointers). A data type error is reported if any of the pointer names refer to
non-integers (e.g., reals, procedures, strings, etc.).

An error is reported if the symbol is not defined in any other DEF statements; symbols
defined in later DEF statements can be specified, but they must be defined in a DEF
statement somewhere. No other type declarative specifiers are permitted; things like
SHARED, REAL, INTEGER, etc. must be applied to these symbols in other DEF statements.
Pointer DEF statements can be placed anywhere in the program because they are
processed after all the other DEF statements have been processed.

This DEF statement makes it unnecessary to assign a dummy pointer value to pointer
variables in order for them to compile properly, making this the preferred method.
Furthermore, this method is the only correct way to declare:

� that an integer function returns a pointer to some specific type,

� that a SHARED name of any kind is a pointer to something specific (necessary for
proper compilation of programs that ACCESS those packages), or

� that a pointer argument of a subroutine (e.g., *P parameters) in another package
is a pointer of a specific type.

This statement lets you specify the type of object that a pointer points to in a DEF
statement so that pointer variables and pointer functions can be given correct pointer
types when compiled under the MegaBasic compiler. Version 5.600 and later of the
MegaBasic interpreter ignores pointer DEF statements, while earlier versions report
them as syntax errors. You should always declare all pointers in this manner if you ever
intend to compile your application at some later point.

6 section level 1 1
figure bi level 1
table_big level 1

6-1GFK-0256

Chapter 6 Program Control Statements

Normally, program execution proceeds sequentially through the statements in order by
line number. Program control statements allow you to change the course of execution to
suit the processing requirements. Except for the subroutine facilities, which are covered
in Chapter 8, all MegaBasic program control capabilities are described in this section, as
summarized below:

GOTOs and Program
Termination

Statements that immediately and unconditionally change
the course of program execution.

 Conditional Execution Statements that allow the results of calculation and com-
parison to decide subsequent program behavior.

Loops and Iteration
Control

Statements to setup and control blocks of statements
repetitively.

 Error Trapping Statements to control program behavior in the event of
unexpected errors.

Some of the program control facilities involve specifying where to go for the next
statement to execute. Line numbers are the easiest means to indicate program locations
for such purposes. However MegaBasic lets you to assign names to lines, called
line-labels, that may be placed at the beginning of a line, separated with a colon, as in the
following example program line:

10 LABEL: C = C+1; If C<100 then Goto LABEL

Line-labels may be any name legal as a variable name and may end with a dollar sign if
so desired. MegaBasic names follow certain rules which are laid out on Chapter 1,
Section 5. Once a name is used for any purpose in a MegaBasic program you cannot use
the same name for any other purpose (i.e., they must be unique). Once a line has been
given a line-label it may be referred to either by line number or by line-label. In other
words, line-labels and line numbers are interchangeable when referring to a line. If a
line-label is not followed by any statements on the same line (i.e., the line consists solely
of a label and a colon), references to that label will actually refer to the next line.
Line-labels on lines by themselves can be useful for making the label stand out to
improve readability.

The pseudo-line-label NEXT may also appear anywhere that line numbers and line-
labels are expected. This special reserved word, when used like a line number, refers to
the location in the program of the nearest closing NEXT statement. This feature is
discussed more fully in the context of the NEXT statement, described later in this section.

It is of course an error to refer to a line number or a line-label which is not present in the
program as specified. MegaBasic does not find references to things that do not exist in
your program until they are encountered during actual program execution. However,

6

6-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

the CHECK command (Chapter 2, Section 4), will find many of these dangling references
along with others kinds of errors that may also be present.

6

6-3GFK-0256 Chapter 6 Program Control Statements

Section 1: GOTOs and Program Termination

The simplest and most direct of all program control statements are described here, which
merely cause execution to either begin somewhere else in the program or terminate
execution in a variety of ways as summarized below:

 GOTO Branches to a fixed location in your program.

 ON..GOTO
Branches to one out of a list of program locations, based
upon an index value.

 STOP
Pauses program execution for testing purposes, allowing
for later CONTinuation.

 END
Terminates the program and passes an exit code back to
the process that invoked the program.

 DOS
Terminates the program and exits back to the operating
system. Also lets you execute shell commands from your
program (without stopping your program).

GOTO <label>

Causes program execution to continue at the line number or line-label specified. This is
sometimes referred to as an unconditional branch. A Line Number Error results if the line
does not exist as specified. The line label referred to must be in the same program as the
GOTO statement. When multiple programs or packages are in memory, the only way to
transfer control between them is by PROCedure or FUNCtion calls: GOTOS and other
line references are not allowed.

The GOTO keyword is optional when it is the object of a THEN or ELSE clause in an IF
statement (discussed later in this section). Do not use a GOTO to permanently exit a
subroutine of any kind (function, GOSUB or procedure). This is because MegaBasic
supports recursive programming and therefore assumes a subroutine is active until a
RETURN statement (Chapter 8, Section 1) is executed. However, you can jump out of a
GOSUB with a GOTO as long as a RETURN statement is eventually encountered, such as
jumping to another GOSUB.

If a GOTO is used to branch out of a FOR, WHILE or REPEAT loop, the loop will be
terminated and execution will continue normally. Any number of nested loops can be
terminated by one such GOTO and MegaBasic always continues properly at the nesting
level in effect in the line specified. GOTOS of any type all operate in this manner. See the
FOR, WHILE, REPEAT and NEXT statements for more details. If the line label specified is
the keyword NEXT, MegaBasic branches to the beginning of the next current-level FOR,
WHILE or REPEAT loop iteration.

A GOTO inside a multi-statement THEN or ELSE clause terminates the IF statement
operation, i.e., it is assumed to always jump out of the clause. If its target is inside the
clause, an error will occur as soon as the closing bracket a) is encountered.

6

6-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

ON <expr n> GOTO <line list>

Evaluates the numeric expression and converts the result to an integer which selects one
position in the <line list>. This integer must be from 1 to the length of the <line list>.
Program control is then transferred to the line selected. The <line list> consists of a
sequence of line numbers and/or line-labels, separated from one another by commas,
which must refer to actual lines that already exist in the program. This is commonly
referred to as a computed GOTO or a multi-way branch.

A typical ON..GOTO application is selection of some routine based on a user-entered
selection code. The following example gets a character from the user and jumps to the
desired routine only if it is a valid selection:

10 C$ = Inchr$(0); Print C$,
20 On Match(“ABCXYZ”,C$)+1 Goto
BADSEL,40,50,60,70,80,90
30 BADSEL: Print “ Bad selection, re-enter-- ”,; Goto 10
40
50 ...

Line 10 gets and displays the user-typed selection code. Line 20 uses the MATCH
function to obtain a code from 0 to 7 corresponding to one of the selections or none (0
returned if C$ not in ABCXYZ). The ON..GOTO uses this code and jumps into the selected
routine. Notice that the 0 case has been programmed to reject the users’ selection and
repeat the processes until a valid response is typed.

END [<exit code>]

Immediately terminates execution of the program. Finishing the last physical statement
in the program or encountering an untrapped program error has the same effect as an
END statement. When an END statement is encountered, the following steps are
performed:

� The optional EPILOGUE routines (Chapter 10, Section 2) of each active
MegaBasic package are executed in the same order the packages were loaded
from the disk. This mechanism gives each package an opportunity to terminate
gracefully. However, you can better control the order of EPILOGUE execution
using explicit DISMISS statements before you terminate.

� All unwritten file buffers are flushed and all open files are closed.

� The program terminates and returns the optional <exit code> back to the context
level where the program began execution (see below).

After the program terminates, MegaBasic returns back to the command level that
originally invoked the program. For example, if you run the program from the operating
system command (or shell) level that is where you end up after an END statement. If you
run the program by typing RUN in the MegaBasic command level, after an END
statement you end up at the MegaBasic command level Ready prompt. If a process, such
as an MS-DOS batch file, invoked the program, the process resumes after the END
statement is executed.

Upon returning to the operating system, MegaBasic provides an exit code that a batch or
other process can access through the D0S exit code service. This code is set by MegaBasic
depending on what caused the exit back to the operating system:

� Zero is returned when exiting MegaBasic from the command level i.e., using the
BYE or DOS commands, or after a MegaBasic program terminates normally and
exits to the system level.

6

6-5GFK-0256 Chapter 6 Program Control Statements

� The MegaBasic error code is returned when a program terminates abnormally,
i.e., after an untrapped error (including an untrapped Ctrl-C abort).

� The exit code specified by the END <exit code> statement is returned the the
operating system level if the program was run from there. This code is an
optional argument on the END statement that can be set to any positive integer
from 0 to 255.

This code is useful to the process that invoked the program so that it can base its next
action upon the success or failure of the MegaBasic program. Exit codes are only
supported by the more recent operating systems: MS-DOS, Concurrent CP/M and Xenix.

STOP [<data output list>]

STOP suspends program execution and puts you back into the command level of
MegaBasic (or all the way back to the operating system from the RUN version) and
displays a message like:

Stop in Line 315

which indicates where the STOP took place. STOP is usually employed for debugging
purposes since the program may be continued later on with the CONT command
(Chapter 2, Section 4). STOP statements are therefore quite useful as breakpoints,
especially during a debugging session since you can insert and remove program lines of
a continuable program and resume execution. STOP does not close any files, but it does
flush any data which has been written by your program but not yet posted to the file.

A STOP statement may optionally contain a data list which is displayed instead of the
STOP message shown above. This form of STOP is exactly like a PRINT statement in all
respects except that after its data is displayed, program execution terminates in the
manner described above.

DOS [<command line>]

DOS by itself (i.e., without arguments) is just like END except that upon completion,
MegaBasic itself is exited and control passes back to the operating system level. Like
END, DOS updates any unwritten file buffers to their respective files prior to actual
termination and then all open files are closed.

Under some operating systems (e.g., MS-DOS and Xenix) you can specify an operating
system shell command as a string expression argument to the DOS (Chapter 7, Section 3)
statement (e.g., DOS “DIR A:” or DOS “TYPE FILE”). Instead of exiting MegaBasic,
the specified shell command is passed to the system and executed, after which your
program resumes execution. If the shell command returns an exit code, you can pick it up
from PARAM(19) right after the DOS statement returns.

6

6-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Condition Execution

All decision-making during program execution is made using either IF statements or a
more general form called CASE statements. These facilities let your program control
which portions of a program are executed or ignored, based upon an arbitrary condition
or set of conditions.

 IF..THEN..ELSE Executes one of two sets of statements, based on some
true or false criteria.

 CASE BEGIN..END Executes one statement sequence, selected from any
number of cases based on an arbitrary criteria.

Together with the looping mechanisms of MegaBasic (Chapter 6, Section 3), these
statements provide everything you need to control program execution without resorting
to GOTO statements (which tend to obscure program structure and should be avoided
whenever possible).

IF <logical exprn> THEN <statement1> ELSE <statement2>

Evaluates the <logical exprn> and, on the basis of its outcome, selects and executes one
of two different statements. If the <logical exprn> is TRUE (i.e., non-zero), MegaBasic
executes <statement1> (known as the THEN-clause). If the <logical exprn> is FALSE (i.e.,
equal to zero), MegaBasic executes <statement2> (known as the ELSE-clause). After
executing either <statement1> or <statement2>, the IF statement is finished and
MegaBasic goes on to execute whatever follows it.

You can omit the ELSE clause from any IF statement (i.e., the word ELSE along with
<statement2>). If you do, then the IF statement simply controls whether or not
<statement1> is executed. The examples below show some simple IF statements and
how they work:

If X<100 Then X = X*C; Rem -- no ELSE clause here
If X=0 Then Print “X is Zero”
 Else Print “X is non-Zero”

Although the <logical exprn> is usually a simple comparison of some type (e.g., IF X=Y
THEN...), an expression of any complexity is permitted as long as it produces a numeric
result and the entire <logical exprn> fits on the same line. Any combination of string
comparisons, numeric comparisons and general numeric expressions are permitted, for
example:

If A$>B$ or Not X+Y and Z<50 Then Link P$

Any single statement may be used as <statement1> or <statement2>. As a special case,
when a GOTO follows a THEN or ELSE, the GOTO reserved word may be omitted leaving
only the line number or line-label specified, as in:

If A$>B$ Then 2000 Else LINLBL
instead of:
If A$>B$ Then Goto 2000 Else Goto LINLBL

6

6-7GFK-0256 Chapter 6 Program Control Statements

Since IF ..THEN..ELSE is also a single statement, using it in another IF statement creates a
compound or nested IF statement. The optional ELSE clause in such a statement is
always associated with the nearest previous IF . For example:

If X Then If Y Then Z=0 Else Y=0
Else If Z Then Y=0 Else X=0

The various kinds of things your can specify in THEN and ELSE clauses are summarized
below:

Any single
statement

Any single statement that can be executed by itself can be placed
after a THEN or ELSE, including another IF statement

Compound
statement

Two or more statements separated by semicolons and surrounded by
square brackets [...]. These are discussed in detail on the next page.

Line number
or label

The GOTO reserved word is optional on GOTO statements that immedi-
ately follow THEN or ELSE. This is called an implied GOTO statement.

 NEXT Same as GOTO NEXT (see the NEXT statement in Chapter 6,
Section 3).

 FOR, WHILE
or REPEAT

Any well-defined multi-statement loop can form a complete THEN or
ELSE clause without requiring brackets [] around the loop, i.e., the
loop is treated as a single statement.

An important distinction between IF statements in MegaBasic and other BASICS is that
additional statements that follow an IF statement on the same line are in no way
connected with that IF statement. Some other BASICS Wi11 skip all such statements in
the event of a false IF condition. Under MegaBasic, you can place following statements
on the same line or on successive lines with the same effect.

Compound Statements

For greater expressive power, either <statement1> or <statement2> or both may be a
compound statement, which is several ordinary statements grouped together and
executed as a unit. To form a compound statement from several individual statements,
surround them with brackets []. Compound statements only appear within IF
statements (after a THEN or ELSE) and may extend indefinitely over one or more
program lines. The following example should clarify their use:

If X=Y Then [R=Z; Swap S,T]
 Else [For l=1 to 10; R=R+X(I); Next]

Notice that FOR..NEXT (and WHILE..NEXT) loops may be included within compound
statements. When an IF statement is employed within a compound statement, it too can
include compound statements for its THEN or ELSE clauses. You can use the bracketing
mechanism to override the normal precedence of ELSE clause processing whenever
required, for example:

If X=Y Then If A$=B$ Then S=T Else T=S

In this example, the ELSE refers to (by default) the second IF which is only executed if
X-Y. Suppose that the desired action is to execute the ELSE clause upon failure of the first
IF test (X=Y). This can clearly be done as follows:

If X=Y Then [If A$=B$ Then S=T] Else T=S

6

6-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Null ELSE-clauses in IF Statements

In statements such as: IF cond1 THEN IF cond2 THEN S1 ELSE S2, an ELSE clause refers
to the most recent (or second) IF statement. Occasionally this may not be appropriate,
when you wish the ELSE to refer to an earlier instead. Therefore the IF statement
supports a null ELSE clause to permit this kind of specification, for example:

IF Cond1 THEN IF Cond2 THEN Stat1 ELSE ELSE Stat2

Notice the double ELSES. The first ELSE refers to the second IF , just as before, but it has
no statement associated with it. Such an ELSE is called a null-ELSE because it acts as a
do-nothing. The second ELSE refers to the first IF statement, which is what was desired.
Any number of null ELSES can be strung together to pad a multi-level IF statement so
that the last will ELSE match the desired IF statement level.

Multi-line IF Statements

Although, for the most part, IF statements tend to be short enough to fit completely
within the same program line, IF statements may span any number of program lines.
This lets you construct multiple level IF statements of any complexity the way you can
in PASCAL or C. A multi-line IF statement in MegaBasic works just like the simpler
single-line IF statement, except that the THEN and ELSE clauses can extend beyond the
one-line limit and physical line breaks can appear almost anywhere within the ~
statement. Specifically, the following rules and limitations must be observed:

� The IF and <logical exprn> components must fit in and appear on the same
program line (which can be up to 255 characters long). Condition expressions
longer than this are unusual, but they can often be broken up into smaller pieces
that fit the form:

If <cond1> then If <cond2> then If <cond3>...

� Physical line breaks may occur anywhere except within a simple statement or
between the IF and the <condition> expression. For example, a line break may
occur on either side of the THEN or ELSE keywords or on either side of a
compound statement bracket.

� Any branch to an explicit line number or label from within an statement will
logically exit the IF statement. Hence you cannot use GOTOS within IF
statements except to completely jump out of them. However, loop-relative
branches can be used without exiting the IF (i.e., EXIT, GOTO NEXT, etc.) when
the loop resides entirely within a THEN or ELSE compound statement.

� GOTOS that branch into the middle of an IF statement will generally lead to an
error condition. This is because an IF must be entered from the top in order to
properly process THEN and ELSE clauses and deal with compound statement
brackets properly. MegaBasic does not detect such errors until it encounters an
unexpected THEN, ELSE, or bracket [].

� Only use a GOTO within a clause to jump out, never to jump within the clause.
MegaBasic treats all such jumps as IF clause exits and an error will occur if they
don’t actually exit.

� Functions, procedures and GOSUBS can be invoked from within IF statements
without any effect upon the state of the IF , even if GOTOS or other (unrelated)
IF statements are executed within them. Recursive re-entry into an active IF
statement is also supported.

6

6-9GFK-0256 Chapter 6 Program Control Statements

� There is no practical limitation on the length of an IF statement or on how
many IF -levels or nested compound statement levels you can have. An IF
statement can go on for pages as needed. There is no speed penalty associated
with using multi-line IF statements as compared with using single-line IF
statements.

CASE BEGIN ... CASE END

A CASE statement is a program control structure that lets you perform complex
multi-way decisions without using GOTOS or IF statement. Like a FOR, WHILE or
REPEAT statement, a CASE statement initiates a process that controls how a subsequent
block of statements is executed. A complete CASE block begins with a CASE BEGIN
statement, in which you can specify a CASE argument value (string or numeric), and
ends with a CASE END statement. Between the CASE BEGIN and CASE END statements,
you specify a series of CASE branches, each consisting of a CASE test statement followed
by any number of statements to be executed in the event that the CASE test is successful.

When a CASE block is encountered during program execution, the following things
happen:

� MegaBasic verifies that the CASE BEGIN statement is matched by a later CASE
END statement (an error results if none is found).

� Second, the CASE argument is evaluated and saved for later use in the CASE
tests. For certain reasons described below, this argument is optional.

� MegaBasic scans each of the CASES within the CASE block to compare the CASE
argument with the CASE test expressions. If the CASE argument matches one of
the CASE tests, the sequence of statements associated with that CASE is then
executed, after which execution continues on the first statement after the closing
CASE END statement.

If none of the test values match the CASE argument, none of the CASES is executed, the
CASE block is exited and control passed to the first statement after the closing CASE END
statement. To help understand how all this works, consider the following program
fragment:

200 Rem -- Branch to the Case that matches X
210 Case begin on X ;Rem define beginning of CASE block
220 Case 1 ;Print “X equals 1
230 Case 2,5 ;Print “X equals 2 or 5
240 Case Z+3 ;Print “X equals Z+3
250 Case 8 to 25 ;Print “X lies in the range from 8 to 25
260 Case > 5, < O ;Print X is below 0 or above 5
270 Case ;Print X is none of the above
280 Case end ;Rem define end of the BASE block

Most elements of the CASE statement are represented in this example. Line 210 defines
the beginning of the CASE block and evaluates the CASE argument. If X=1 then the
CASE test on line 220 is satisfied, and MegaBasic proceeds to execute all of the statements
following the CASE test up to the next CASE statement. This sequence of statements is
not limited to one line, and may potentially span many lines or even pages before being
terminated by a subsequent CASE test or the final CASE END statement. A CASE branch
may contain no statements at all. Such a null branch has the effect of exiting the CASE
block when its corresponding test succeeds.

6

6-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Notice that the second CASE test (on line 230) contains two values. CASE tests consist of
one or more values, separated from one another with commas. Each test value is applied
in turn until one of them succeeds or all of them fail. Furthermore, the CASE test values
may be specified as expressions, instead of being limited to simply constant values (as in
CASE statements of other languages). This is illustrated on line 240 where the CASE
argument (X) is compared with the value Z+3.

Any CASE test expression can be preceded by an optional comparison operator, as
shown on line 260, that specifies what type of comparison to use. By default, MegaBasic
applies an equality comparison when you do not specify the comparison operator (i.e.,
specifying an equals sign (=) means the same thing as omitting the operator). In the
example above, the CASE branch is taken if X is greater than 5 or less than 0 (notice that
there are two test expressions). Any of the MegaBasic comparison operators are
permitted (i.e., = <><=>=<>). A CASE test consisting of two numbers separated by
the word TO provides the means to specify a numeric range, as illustrated on line 250 of
the prior example.

You can also specify a CASE test without any values, which creates a test that always
succeeds, as shown on line 260. Such a CASE test is used to execute a group of statements
in the event that none of the other tests have been satisfied. Naturally, if you use this
capability, this empty test must be the last one in the block (before the CASE END) because
any others that follow could never be reached.

The on value of the CASE BEGIN statement is optional. By omitting it, all CASE test values
are treated as conditional expressions, like the one used in IF statements where, instead of
comparing the CASE test values with a CASE argument, MegaBasic evaluates each test
expression as a true or false (i.e., non-zero or zero) and the first one that evaluates to true
is the CASE branch taken. The example below shows how this is done:

200 Rem -- Branch to the first Case that is true
210 Case begin; Rem - this is a logical CASE
220 Case Not EOF(D); Print “First case executed.”
230 Case UP or DOWN; Print “Second case executed.”
240 Case A+B=2; Print “Third case executed.”
250 Case X>Y or Z=2; Print “Fourth case executed.”
260 Case; Print “Catch-all case executed.”
270 Case end; Rem - define of the CASE block

This feature lets you create your own test conditions when the simple equality method
isn’t adequate for your application. For example, one CASE test might test X<Y, and the
next CASE might test V>LOW AND V<HIGH, and so on.

When omitting the CASE argument, specify CASE BEGIN by itself without any ON
<expr n> clause. An Out Of Context Error results if you specify a comparison operator in
front of any conditional CASE test expressions, as this does not have any meaning. A
complete summary of CASE statement usage and operation follows.

CASE Block Definition

A CASE block is defined as a sequence of statements that begin with a CASE BEGIN
statement, end with a CASE END statement, and in between contain one or more CASE
branches. All program statements between the CASE BEGIN and its first CASE branch are
skipped and can never be reached by normal program execution. Avoid placing any
statements in this region except for REMarks.

6

6-11GFK-0256 Chapter 6 Program Control Statements

The CHECK command will report any CASE blocks that do not contain matching CASE
BEGIN and CASE END statements. The display produced by the TRACE RET command
will show an entry for each active CASE block. Both of these features are useful during
the development, testing and debugging of applications that use CASE statements,
especially nested CASE blocks.

CASE Selection Criterion

The CASE BEGIN statement may include an optional ON expression argument, that
defines the target value to locate among the CASE branches. The expression may evaluate
to a string or a number. If the argument is omitted, the CASE test expressions are all
treated as conditional expressions. For performance reasons, a string CASE argument is
limited to a maximum length of 255 characters, and a Length Error results if this limit is
ever exceeded.

CASE Branches and Nested CASEs

CASE branches each consist of a CASE test statement followed by zero or more program
statements that are executed if the CASE test succeeds. There is no limit on the length of
any one CASE branch, as it includes all statements from the CASE test statement up to
the next CASE test or CASE END statement. If no statements follow a CASE test (before
the next CASE test of CASE END), then it specifies a null CASE branch that does nothing
when the test succeeds and the CASE block simply exits without doing anything. Other
CASE blocks may be nested within any CASE branch to any desired depth.

CASE Test Statements

CASE test statements consist of the reserved word CASE followed by zero or more test
case expressions separated by commas. A test case expression can be one of the
following:

� A string or numeric expression, providing a single value to match exactly.

� A string or numeric expression preceded by a comparison operator (i.e., one
of: = <> < <= > >=). String expressions can also be preceded by the IN
operator, for set membership tests.

� Two string or numeric expressions separated with the reserved word TO. This
specifies a range of values that the case test will accept. The first expression
should be less than or equal to the second expression to provide a range of
values to check against (i.e., the test fails if you specify a higher first value). The
range specified includes both end points of the range.

� No expressions of any kind. This specifies a null test that always succeeds (i.e.,
this branch is always taken if encountered).

Your case test may include one or more of the above methods in any combination after
the CASE reserved word. See the examples provided earlier. An empty or null test is
useful to implement an if-all-else-fails branch in the last CASE branch (sometimes known
as CASE ELSE in other languages). Subsequent CASES following such a branch are
unreachable by normal execution.

The data type of the CASE test expressions must match the data type of the CASE
BEGIN argument expression. For example, if the CASE BEGIN argument is a string, then
all of the CASE test expressions must also evaluate to strings (otherwise a data type error
is reported). If the CASE BEGIN argument is numeric, the CASE tests must also be

6

6-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

numeric and, if necessary, will be converted to the same numeric type (integer or real) as
the CASE BEGIN argument before each comparison is made. To avoid unnecessary type
conversions, arrange for numeric arguments and test values to have the same numeric
type. Logical test expressions may evaluate either to integer or real without incurring
any conversion penalty.

Logical CASE Test Statements

If the CASE BEGIN contained no argument value (i.e., no ON expression), the test
expressions are evaluated as logical expressions. Test success is indicated by the first
expression that evaluates to true, i.e., a non-zero value. In this context, it is meaningless
and an error to specify a comparison operator in front of any logical CASE test
expression.

If the test succeeds, the statements in the CASE branch are executed until the next CASE
test or CASE END statement is encountered. At that point, execution continues with the
first statement after the closing CASE END statement. If the test fails, the branch is
skipped and the next CASE test is examined. If no tests succeed, execution drops out of
the CASE block without executing any of the branches and continues with the first
statement after the closing CASE END statement.

Exiting a CASE Block

Occasionally you may need to exit the CASE block from within the CASE branch before
the branch has finished executing. There are several ways to do this depending on
where you want to go after exiting:

� CASE EXIT will exit the current CASE branch and resume execution on the
statement following the closing CASE END. CASE EXIT EXIT will exit two CASE
block levels and, likewise, you can exit any number of CASE blocks by specifying
EXIT that number of times. CASE EXIT operates correctly even if it is buried
within one or more levels of loops (i.e., FOR, WHILE or REPEAT).

� RETURN statements exit all CASES and loops in the current subroutine call and
returns to the caller.

� Loop EXIT statements executed from within a CASE branch will exit the nearest
FOR, WHILE or REPEAT loop, even if that loop surrounds the current CASE block
or several nested CASE block levels.

� Use a GOTO to branch directly to the closing CASE END statement. If you wish to
branch out of several nested levels of CASE blocks, branch to the CASE END
statement that closes the highest level you wish to exit from.

� A GOTO NEXT branch will start the next iteration of the nearest outer loop, even
if one or more nested CASE block levels have to be exited.

� A GOTO to a CASE BEGIN statement or to one at an even higher level will re-start
that CASE block. If you do this, be sure that the conditions affecting CASE
selection are somehow modified by the CASE branch to avoid an infinite loop.

You should avoid using GOTOS in CASE blocks because they are not necessary and can
lead to confusing code and get you in trouble. Branching (i.e., GOTO) to any statement
within an inactive CASE block will produce unpredictable results, and eventually leads to
an Unexpected Case Error when the very next CASE statement is encountered. Branching
to any line after the CASE END other than those described above is not defined and may
also produce unpredictable results.

6

6-13GFK-0256 Chapter 6 Program Control Statements

CASE Performance Hints

The switching speed of a CASE block depends solely on the number and complexity of
CASE tests that need to be evaluated before a successful match is found. The length of
the CASE branches has no effect whatsoever on how fast MegaBasic can sequence from
CASE test to CASE test (even if some of the CASE branches span many lines). Also, the
inclusion of comparison operators in front of any or all test expressions has no effect on
how fast the tests are evaluated.

Since CASE tests are evaluated sequentially until a match is found, you can significantly
speed up some CASE statements by carefully ordering the various CASES so that the
most likely CASE appears first, followed by the next most likely, and so on with the least
likely test appearing last.

When specifying a series of logical test expressions in one CASE test statement, instead of
separating them with commas, separate them with OR operators. This will combine the
separate expressions into a single long expression that evaluates somewhat faster than
the series of smaller ones. Note that this is only a performance recommendation, not a
requirement.

6

6-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Program Loops and Iteration Control

Loops are sequences of statements that are executed over and over again and usually
represent the areas in your program where most of the time during execution is spent.
The following loop constructs are provided in MegaBasic to support different ways of
sequencing and terminating loops:

 FOR..NEXT Loops while automatically sequencing through one or
more arithmetic series.

 WHILE..NEXT Loops as long a conditional expression tested at the top
of the loop remains true.

 REPEAT..NEXT IF Loops as long a conditional expression tested at the bot-
tom of the loop remains true.

EXIT
Terminates any loop type and branches to either the
first statement after the loop or to some other specific
location in the program (similar to a GOTO).

FOR <index vbl> = <range1>, ..., <rangeN>

A FOR statement defines the beginning of a repetitive statement block and specifies an
index variable and a series of values that it takes on, one at a time for each iteration
through the block of statements. For example, the following FOR loops prints the integers
from 1 to 100:

For I = 1 to 100; Print l; Next I

Notice the last statement, NEXT as it defines the end of the FOR loop. YOU can place any
number of program statements, including other FOR loops, between the FOR statement
and its closing NEXT. The idea is to execute a group of statements (located between a FOR
and a NEXT statement) repeatedly while setting the index variable to successive values of
the numerical series specified. A FOR loop will terminate when the index variable exceeds
the series limit. When this happens, program execution resumes at the statement
immediately following the NEXT statement (on the same line or later).

You can also specify more than one series of values in a FOR statement, processed from left
to right. When the first series is exhausted, the next one to the right of it is used until the
index variable has been set to each value specified by every series. For example, the FOR
loop below prints all integers from 1 to 10, followed by the integers from 20 to 100 by
tens:

For I = 1 to 10, 20 to 100 by 10; Print l; Next I

This FOR statement specifies two series, separated by a comma. The second series
additionally includes a different increment to use between values, called the step size.
Actually, you can specify each series independently in any one of three ways:

� <first value> TO <last value> BY <step size>

Specifies that the index variable will start at the <first value> and is incremented
by the <step size> after each iteration until the <last value> has been exceeded
(terminating the loop). To specify a descending series, the <first value> must be
higher than the <last value> and the <step size> must be a negative value.

6

6-15GFK-0256 Chapter 6 Program Control Statements

� <first value> TO <last value>

Same as form (a) except that the omitted <step size> defaults to a <step size> of
1. The is the most commonly used FOR series format.

� <single value>

Specifies a series consisting of one value, resulting in exactly one iteration. This
series terminates without incrementing the index variable after executing exactly
one iteration.

All series parameters are specified with general numeric expressions and may evaluate
to non-integer values. These three forms of series may be mixed in a single FOR
statement as needed. Most of the time you will be using a single series (the second form)
but look at the following examples for a feeling of the other possibilities:

For X=1 to 100
For X=175 to 38 BY –1
For X=SQRT(Y) to Z–10 by S
For X=–12, Y7, 31, A(F,G)
For X=1 to 10, 20 to 100 by 10, 200 to 1000 by 100
For X=1, 2, 4, 8,10 to 20 by 2, –58 to –1000 by –7.53
For X=FUNCTION1 to FUNCTION2 by R+FUNCTION3

Each iteration begins by comparing the current index variable value with the <last
value>. Execution proceeds through the loop body only while the index variable value
remains within its defined series. As each series is completed, the index variable is set to
the first value of the next series and the loop continues. The loop terminates at the end
of the last series listed in the FOR statement. Zero iterations are performed for any series
whose first value is already beyond the terminating value specified for that series. Since
the series are evaluated only once and maintained internally, none of the parameters for
the current series can be modified while the loop is progressing through it.

The index variable must be either an integer variable or a real variable. A Data Type Error
occurs if a string variable or a numeric array element is specified as an index variable. You
must use a real variable for the index if the values it will take on during the loop contain
decimals (i.e., they are non-integer values), or if the index variable is used within the
loop in predominantly real computations. Such computations will force MegaBasic to
convert the integer index variable to real each time it is used in a real context, which can
unnecessarily slow down execution.

In most applications, the FOR loop index variable will take on only integer values and
will be used for things like array subscripts and string index calculations. You should use
an integer index variable instead of a real variable when such is the case, because the
loop itself will execute more than 3 times faster. Integer loops in MegaBasic have been
specially optimized, and computations involving integers run much faster than the same
computations done using real representation. Array subscripts and string index
expressions are always processed internally with integers, so when you provide integers
from the start, MegaBasic has less work to do than if you specified such values using
floating point numbers (which have to be converted to integer representation anyway
before they can be used).

6

6-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Loops must terminate eventually, or your program would never come to an end. FOR
loops will terminate when all the values specified for the index variable have been
exhausted. You can however terminate FOR loops in other ways, all of which are
summarized as follows:

� Falling out the bottom of the loop after the index variable has taken on the last
value of the last series. In other words, letting the loop run its normal course.

� Branching out with a GOTO or implied GOTO (a THEN or ELSE <label>). You can
jump from an inner loop to any outer loop with any number of levels in
between, as long as you do not jump beyond the current subroutine level.

� Branching out using the EXIT statement (Chapter 6, Section 3).

� Executing a RETURN statement (Chapter 8, Section 1), which exits not only the
loop but its matching GOSUB, user-defined function or procedure as well.

� Causing an error which is trapped by an ERRSET statement (Chapter 6,
 Section 4) at some higher level.

For efficiency (as well as for recursive reentrance), MegaBasic maintains a FOR..NEXT
internal structure in the scratchpad area for the lifetime of the loop. If you terminate a
loop using any of the above methods, MegaBasic automatically recovers the loop
structure appropriate to the context into which you jumped. Two types of jumps are not
meaningful however

� Branching into the middle of a lower, inner loop is illegal because the inner loop
has not been initialized.

� Branching into a higher, outer loop active in a subroutine at a higher level is
illegal because MegaBasic cannot leave a subroutine without executing a
RETURN statement.

At times, you may wish to skip the remainder of the current loop iteration and begin
again with the next iteration. For example you might be looping through all the elements
of an array and performing some computation only if certain criteria are met. To do this,
you need only branch to the NEXT statement that terminates the loop. A GOTO can do
this if the NEXT is the first statement on its line. However, MegaBasic will automatically
begin the next iteration of any loop if you say GOTO NEXT (also ...THEN NEXT ...ELSE
NEXT or any other form of GOTO). This is further explained by the discussion on the
NEXT statement in Chapter 6, Section 3.

WHILE <logical expression>

Similar to a FOR statement, WHILE statements provide a looping structure that
repeatedly executes a group of statements (terminated by a NEXT statement) until some
condition is no longer true. The condition in this case is a logical expression that is
evaluated at the start of each iteration of the loop. In order for a WHILE loop to
terminate, the body of the loop must at some point cause the logical expression to
evaluate to zero (false). No iterations through the loop will be made if the logical
expression evaluates to zero at the top of the first iteration. For example:

While X<100: X=X+1; NEXT Increments X until it is greater or equal to 100

While Z=Y; X=X+1; NEXT Increments X forever if Z was equal to Y.

6

6-17GFK-0256 Chapter 6 Program Control Statements

The first example does nothing if X is already 100 or greater. The second example
illustrates what happens when the logical expression is not altered in the body of the
loop. It may be that you desire such an infinite loop in your application because you
employ other means to terminate the loop, for example:

While Y=Y; X=X+1; IF X>=100THEN EXIT; NEXT

This example illustrates the use of the EXIT statement (described below) in terminating a
WHILE loop, bypassing normal termination. The methods for legally terminating WHILE
loops are summarized below:

� Causing the condition to evaluate to zero (false).

� Branching out with a GOTO or implied GOTO (a THEN or ELSE <label>). You can
jump from an inner loop to any outer loop with any number of levels in
between, as long as you do not jump beyond the current subroutine level.

� Branching out using the EXIT statement (Chapter 6, Section 3).

� Executing a RETURN statement (Chapter 8, Section 1), which exits not only the
loop but its matching GOSUB, user-defined function or procedure as well.

� Causing an error which is trapped by an ERRSET statement (Chapter 6,
 Section 4) at some higher level.

REPEAT... NEXT [IF <condition>]

REPEAT has no arguments; its presence denotes the beginning of a REPEAT loop. This
type of loop always executes at least one iteration because it tests its loop control
condition at the end of the loop. In other words, a REPEAT loop is just like a WHILE loop
with its optional test at the end instead of at the beginning, for example:

REPEAT; X = X+1; NEXT IF X<100

This simple REPEAT loop increments X until X<100 becomes false. If X is already 100 or
greater, it is still incremented once (because the test is made after the body of the loop is
executed) and the loop terminates.

The IF <condition> is not an IF statement, but a loop termination test that is performed
at the end of each iteration. The IF <condition> is not an IF statement, but a loop
termination test that is performed at the end of each iteration. The IF <condition> is
optional, and if omitted, creates an infinite loop that must be terminated by some
operation within the loop itself (e.g., a RETURN, GOTO or EXIT statement).

Like FOR and WHILE loops REPEAT loops:

� Can be nested to any depth, can appear in compound IF statements,

� Can be nested in combination with other loop constructs,

� Support loop-relative branching (e.g., GOTO NEXT, EXIT or THEN NEXT),

� Can be exited with a RETURN statement or by error traps.

NEXT [<index variable>]

Defines the end of a FOR, WHILE or REPEAT loop and when executed, NEXT restarts the
loop from the top if the controlling condition is true. In FOR loops, a NEXT increments
the index variable; on WHILE and REPEAT loops it re-evaluates the condition expression.
The optional <index variable> can be supplied if the NEXT is terminating a FOR loop, and

6

6-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

it must be exactly the same index variable defined in the corresponding FOR statement.
This is a formality however and is useful only for programming clarity and style; faster
loop execution actually results without it. An <index variable> is illegal in NEXT
statements that terminate WHILE and REPEAT loops.

There must be one and only one NEXT statement associated with each FOR, WHILE and
REPEAT statement throughout your program. Each loop (FOR, WHILE or REPEAT) many
contain any number of inner loops, which may themselves contain lower level inner
loops. These are called nested loops because each inner loop is completely enclosed (or
nested) within the loop outside it. An error will result if you overlap loops without one
enclosing the other. FOR, WHILE and REPEAT loops may be nested in any combination
and to any nested depth.

NEXT may also be used in an entirely different context: as a line-label. NEXT as a label
always refers to the actual closing NEXT statement of the current FOR, WHILE or REPEAT
loop underway. This can be quite useful in situations when the NEXT statement is not
the first one on the line, for example:

10 For l=1 to N; IF ARRAY(I)>LIMIT then NEXT; Print l; Next

Any control statement that can specify a line number or label may also specify NEXT as a
(pseudo) label, although it is unlikely that it will be used in statements other than some
form of GOTO. An Unexpected Next Error results if the NEXT pseudo label is encountered
when no loop is currently active.

EXIT [<label>]

EXIT statements are used for terminating any FOR, WHILE or REPEAT loop currently in
progress, without waiting for normal loop termination. An optional line number or label
can be specified to tell MegaBasic where to resume program execution after the loop is
terminated. Omitting the line reference causes program execution to resume at the first
statement that follows the closing NEXT statement of the loop terminated. For example:

For l=1 to 100; If ARRAY(I)=X then exit; Next

This loop terminates if the index value increments past 100, or if ARRAY(I)=X. An error
results if no FOR, WHILE or REPEAT loop is currently active. EXIT without the <label> is
a clean, easy method to immediately terminate a loop without using GOTOS.

An EXIT to the pseudo label NEXT (i.e., EXIT NEXT) Will terminate the currently active
loop and begin the next iteration of the loop outside of that. An error results if an EXIT
NEXT is encountered without being immediately surrounded by two or more active
loops.

Multiple loop levels can be exited by repeating the EXIT keyword by the number of loop
levels desired, for example:

Exit exit exit 150

This exits three loop levels, then branches to line 150. As you might expect, leaving off
the line reference causes program execution to resume at the statement which follows
the NEXT of the highest level loop exited. Multi-level EXITS are especially useful in
complex nested looping applications where using GOTOS to exit loops is either
undesirable or impossible.

6

6-19GFK-0256 Chapter 6 Program Control Statements

Section 4: Error Trapping and Control

With the possible exception of extremely simple throw away programs, real life
programming applications need to be able to tolerate and handle unexpected situations.
Files that were supposed to be there, but weren’t; user’s requesting things that are not
within the realm of possibility; calculations exceeding the bounds of numerical or
mathematical representation. These and many other unforeseen possibilities can and do
arise, and your program must have contingency plans to handle them.

MegaBasic provides several powerful mechanisms to control errors, as summarized in
the table below. These mechanisms have been designed to take advantage of the
structure of your program in a way that lets you handle errors at the appropriate level of
execution in which they arise. This section cover these methods and how best to apply
them.

ERRSET Error trapping and trap generation

RETRY Automatic retry control on system errors

WAIT Timed delay generation

Most other programming languages handle errors by explicitly generating and passing
error codes around the program. When an error occurs, an error code that identifies the
kind of error is generated and passed to the operation that caused it. If the operation can
deal with this error, it branches off to do so, but otherwise passes another error code
back up to the operation that called it, and so on... The difficulty with this approach is
that the details of passing error codes back from level to level can be very complex and
error prone in itself and requires a great deal of programmer attention to do correctly if
it’s to be done at all.

MegaBasic greatly simplifies this process by automatically passing error codes and
descriptions up to context that actually uses the error description to take concrete
recovery actions. It restores the execution context at the error trap level no matter how
many levels of loops and subroutine calls were piled on top of the error situation. None
of the intervening program code needs to be concerned with error processing at all.

Error Trapping and Program Structure

It is useful to view program execution as a layered structure, much like an onion skin, to
understand the error recovery techniques of MegaBasic. Invoking a subroutine descends
one level; returning climbs back up a level. An important aspect to these levels is that a
higher level should not require knowledge of the internal workings of lower levels in
order to use them. For example, you don’t need to understand how square-roots are
computed in order to use the SQRT() function. Furthermore, since subroutines may be
called from numerous places throughout the program, they certainly have no knowledge
about the immediate context from which they were called.

When you implement a complex program with many levels, you have to isolate each
level from the others so that you can develop, test and debug it independently.
MegaBasic ERRSET operation supports this goal by letting you deal with program errors
on each level independently. Errors in a multi-level program structure can be detected
and handled differently at each level of the program.

6

6-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

For example the following list of error responses might be assigned to the same error
depending upon which level of the program sees

Subroutine Level Possible Response

Query Processing Insert Disk into Drive B:

Build report Unsupported selection

Find the employee record No field of that name

Access the index Index field unavailable

OPEN file statement File not found Error

The MegaBasic ERRSET statement provides independent error control at every level of
program execution. Each GOSUB, user-defined function or procedure, loop or CASE-block
may independently control its own ERRSET traps without affecting traps set by higher
levels of your program. If a lower level subroutine does not set any traps of its own,
traps defined at higher levels will control the lower level errors.

Such a transfer out of a lower level to a higher one is fully supported and constitutes the
only legal and viable way to bypass the normal RETURN mechanism. For example if
GOSUB 100 sets a trap then calls GOSUB 200 which in turn generates an error, the original
trap is used. However if GOSUB 200 sets its own trap before the error was encountered
then that trap is used. Upon RETURN, GOSUB 100 is still protected by its original trap,
unaffected by any ERRSETS within GOSUB 200.

What this means for applying ERRSETS is that the error trap line must be a line at the
same program level as the ERRSET statement that assigns it. Specifically, avoid
assigning error traps that can jump out of the current GOBUS, user-defined function or
procedure that contains the ERRSET itself. Instead, assign a trap to a line within the same
structure. A useful way to understand and remember this concept is to think of an
ERRSET as a special form of GOTO. If an ERRSET were replaced with a GOTO to the same
line and that GOTO is legal (i.e., it doesn’t jump out of the subroutine) then the ERRSET is
also legal and proper.

For example, to transfer control out of a GOSUB when an error occurs within the GOSUB,
execute the ERRSET statement prior to entering the GOSUB, with an error trap referring
to a line also outside the GOSUB (at the same level as the ERRSET statement). This is
actually the most straight forward and easily debugged method for constructing error
traps within a procedure-oriented language of any type. MegaBasic cannot enforce these
rules when the ERRSETS are made, so you must be careful to apply them properly.

When an error trap occurs, MegaBasic restores the entire state of program execution that
existed when the trap was set. This means that the current context of local variables at
whatever depth in subroutines is lost and the original state, as of setting the trap, is
restored. This provides an air-tight mechanism for error recovery that is repeatable in all
situations.

Furthermore, MegaBasic restores the error trap in effect at the time the current
subroutine was entered, rather than disabling the entire error recovery system after an
error occurs. Errors which occur before another trap is set are trapped at the higher level.
In other words, if you set an error trap before entering a subroutine, your program will
remain in control even if the subroutine fails to trap its own errors. An ERRSET
statement without arguments will also restore this higher-level trap instead of nullifying
the recovery system.

6

6-21GFK-0256 Chapter 6 Program Control Statements

If PARAM(21) is set to non-zero, high-level error reporting mode is enabled for the
MegaBasic package that PARAM(21) was set in (Chapter 9, Section 5). In this mode,
untrapped errors are not reported as occurring within that package. Instead, the errors
are reported to have occurred in the reference that called the routine in an outside
package.

ERRSET [<trap label> [, <diagnostic vbls>]]

When an error occurs during program execution, MegaBasic normally prints an error
message and the line number in which it occurred, then terminates your program. With
ERRSET, you can set up an error trap that takes control when an error occurs, allowing
you to control what happens after an error occurs so that your program can continue
without interruption. For example, the function below uses an ERRSET to determine if a
string represents a valid number:

10 Def integer func VALID(V$)
20 Errset TRAP; V = val(V$); Return 1
30 TRAP: Return 0; Func end

An error trap is simply a line at which the flow of control begins in the event of an error.
Both the ERRSET statement and the <trap label> it defines must reside within the same
subroutine level (i.e., same function, same procedure, same main program level etc.).
Error traps are locally defined and neither affect nor prohibit error traps potentially set
at higher levels of the program. When properly used, ERRSETS support the
development of fault-tolerant programs.

Each of the ERRSET arguments is described below. All arguments are optional and when
omitted, they must be omitted from right to left. For example, there must be a <trap
label> in order to include <diagnostic vbls>.

No arguments

Omitting all ERRSET parameters causes the ERRSET in
effect when the current subroutine or loop level was en-
tered to be restored. If no ERRSETS were in effect a that
time, then traps are turned off

<trap label>

Line number or line-label specifying the program line to
go to in the event of an error. Within loops, pseudo-label
NEXT may be specified. The label or line number must
specify a line within the same subroutine (or main pro-
gram) as the ERRSET statement itself.

<diagnostic
variables>

A set of numeric variables can be specified after the <trap
label>. When the ERRSET trap is taken, MegaBasic stores
information about the error into these variables, which
your program can then read in order to make informed
error recovery decisions.

Up to three diagnostic variables can be specified, separated by commas, and you can
omit them from right to left. Their meaning is positionally defined as:

� line number where the error occurred,

� error type code of the error, and

� the error message string.

6

6-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

These variables are supported for compatibility with earlier versions of MegaBasic. They
are not necessary in new programs because several system functions are supported that
return error information in even more detail, as described below:

 ERRLINE

Line number in which the error occurred. ERRLINE(l)
returns the relative statement number on which that
error occurred in that line and ERRLINE or ERRLINE(0)
returns the line number itself.

 ERRPKG$ Name of the package or work space where the error oc-
curred.

 ERRTYP Error type code of the error. Appendix A contains a com-
plete listing of error messages and codes.

ERRMSG$
Error message string that would have been displayed,
had no ERRSET trap been in effect. Only the descriptive
part of the message is returned.

 ERRDEV
Device or file number selected at the time the error oc-
curred. The error may or may not be related to I/O, but
when it is, knowing the open device channel can be
useful.

You need to use these functions very soon after an error occurs because their values can
change if another error or a Ctrl-C occurs before you access them. In addition to its line
number, the relative statement numbers on the line is useful after an error on a line with
many statements and ERRLINE(l) returns this number. Statement numbers are not
available from compiled programs, where ERRLINE() with any argument returns the
same value as ERRLINE with no argument. In compiled programs, you can determine
the relative statement number by reporting error addresses instead of line numbers and
looking in the .map file to figure which line and statement the reported address
corresponds to.

ERRSET

Restores the error trap in effect when the current pro-
gram level was entered. That higher level will then be
responsible for errors in the current level. This is com-
monly done to turn off error traps no longer needed. Re-
turning from a function or subroutine will automatically
disable its error traps in the same manner.

ERRSET 125

Sets an error trap so that execution will branch to line 125
if any trappable error should occur. This trap remains in
effect until the current subroutine RETURNS or until re-
defined by another ERRSET. A line-label or line number
can be

ERRSET 125,L,T,M$

Same as the previous form except that variable L is set to
the line number in which the error occurred, T is set to
the error type code of error that occurred and M$ set to
the error message. These variables can be omitted from
right to left.

When an error occurs and an error trap is defined, the following sequence of actions
takes place:

� Restores the program execution context of the most recent ERRSET, exiting all
levels of subroutines and loops active since that ERRSET, and restoring
parameters and local variables as if the intervening subroutine levels returned
normally.

� All information about the error is made available to the system error functions
and stored in any <diagnostic vbls> specified in the ERRSET statement.

6

6-23GFK-0256 Chapter 6 Program Control Statements

� Restores the prior ERRSET in effect before the current subroutine or loop level
was entered. If no prior high-level error trap was in effect, no trap is defined and
subsequent errors abort the program.

� Program execution restarts at the first statement on the line specified for error
recovery (i.e., the <trap label> given in the ERRSET statement). Your program
has now regained control.

Specifically, an error trap set within a subroutine, loop or CASE block remains active only
as long that program structure is active. After that, the previous error trap, if any, regains
control over errors. The important points about ERRSET error trapping are summarized
below:

� ERRSET traps within loops (FOR, WHILE and REPEAT), CASE statements,
GOSUBS, functions and procedures are active only as long as that program
structure remains active.

� When an error occurs, the trap taken is the ERRSET trap defined at the lowest
program level that is at or above the level on which the error occurred. All active
program structures between the ERRSET level and the level of the error are
terminated (no matter how deep), and execution then resumes at the line
defined by the ERRSET statement. At this point, any ERRSET traps defined at
higher levels will still be active.

� An ERRSET trap can be changed or disabled only by executing another ERRSET
statement at the same level as the earlier ERRSET. For example, from inside a
FOR..NEXT loop, you cannot change or disable an ERRSET trap set before the
loop was entered. An ERRSET statement with no arguments will disable the
ERRSET trap at the current program level.

� ERRSET traps defined within loops last only as long as the iteration in which
they were defined. At the end of each iteration, the error trap active before the
loop began is always restored. If an error trap must be active within a loop
throughout all iterations, its ERRSET statement must be invoked at the start of
every loop iteration.

� All active ERRSET trap levels are displayed by the TRACE RET command, along
with loops, CASE statements and subroutine invocations.

ERRSET traps are very fast, due to the fact that the process of resolving an error location
into a line and statement number is deferred to the point where this information is
actually needed (i.e., in ERRLINE references, setting the ERRSET recovery line number
variable and displaying built-in error messages). Often this location is not needed (e.g.,
as when basing a decision on merely the presence or absence of an error), so such
ERRSET traps proceed much faster. A typical example of this is using the VAL() function
to determine if a string represents a valid number.

To assist the program development and debugging process, MegaBasic does not trap type
10 errors when programs are RUN from the MegaBasic command level. Type 10 errors are
those involving errors in program formation, e.g., syntax errors, loop construction, etc.
Such errors need to be exposed during program testing and not hidden by the error
processing mechanisms, as they would be if they were trappable errors. Such errors are
always trapped when the program is run from the operating system command level.

6

6-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

ERRSET #<er ror type> [,<error message exprn>]

Generates an error of the given type for purposes of debugging and special program
control applications. You must have an active ERRSET in effect at the time this statement
is executed, otherwise a User Trap Error is issued. For example: ERRSET #9 generates a
Divide By Zero Error just as if your program had divided a number by zero. The <er ror
type> can be a numeric expression that evaluates to a value between 1 and 255. ERRSET
#0 is reserved for the special purpose of clearing the information returned by the
ERRTYP, ERRMSGS, ERRLINE and ERRPKG$ functions (no error is generated in this case).

One reason for causing errors with this statement is to break out of the current subroutine
level and return to a specific program location at a higher level in your program without
having to return normally. Such an action is not possible using GOTO statements because
functions and subroutines are considered to be active until a RETURN statement is
executed. If a program trap has been set by an ERRSET statement at some higher level,
you can always break out of any pile of active subroutines (and loops) and resume at the
trap location by causing any trappable error. ERRSET# is an effective way to generate
pseudo errors at any time.

The User Trap Error message, generated by ERRSET #errcode, may be customized by
augmenting the ERRSET# statement with an error message string expression, not to
exceed 30 characters. For example, ERRSET #99, INVALID MATRIX generates a
user-defined error which if trapped, returns error code 99 and if untrapped generates
the message:

INVALID MATRIX Error in Line xxx

This feature is intended to further support the implementation of self sufficient
procedures and functions (user-defined) which behave and appear as though they are
part of the MegaBasic built-in set. By generating errors which, with or without ERRSET
traps set, appear and behave in an identical manner to those generated by the built-in
features, program interfacing is standardized and simplified. As with built-in errors, the
system variable ERRTYP is set to the error code specified, and the system string variable
ERRMSG$ set to the optional (or default) error message given.

Custom error messages defined within a subroutine should be documented along with
the other interface rules, such as the argument list definition and the global data
structures it uses. You should word your message carefully so that it reads well in the
context of a MegaBasic error message.

When defining your own error types, it would be wise to assign error codes well above
the range already defined for built-in MegaBasic errors, so that your program can
discriminate between them. Additional error types will be added to MegaBasic from
time to time and therefore a good range for your own custom error codes might be 100
to 255. However, this is a rule that is not enforced that you can use to avoid any possible
conflict with the pre-defined MegaBasic error codes of the present and the future.

RETRY [<pr ocedure name>]

Defines a procedure which is called when certain errors occur which can potentially be
recovered from by retrying the operation that lead to the error. For example, a Not Ready
Error (type 25) occurs if the printer happens to run out of paper or it is not powered-up
when your program attempts to use it. In such a case, a RETRY procedure is called (if
defined) to provide a programmed response to the situation, giving the user a message
and allowing the process to be retried.

6

6-25GFK-0256 Chapter 6 Program Control Statements

RETRY procedures only work for some errors and they require support by the host
operating system to inform MegaBasic of the various error conditions from which
recovery is possible. Multi-tasking operating systems such as MP/M-86, TurboDos-86 and
Concurrent CP/M are among the operating systems supported. MS-DOS partially
supports RETRY and CP/M 86 version 1.1 does not provide any support. Multi-tasking
operating systems provide temporary locks on system resources (e.g., disks, files,
printers, records within files, etc.), which are supported by MegaBasic. If your program
attempts to use any locked resources, it must wait until those resources become available
(unlocked). The RETRY facility in MegaBasic is designed to provide a simple and
effective means for synchronizing with such events. The following errors may be retried
(see Appendix A for further details):

Type Error Message

25 Not Ready Error

26 File in use Error Error

27 Non-recoverable Disk

28 Read-Only Error

29 Operating System Error

32 Suspended file access

33 Error Disk unavailable Error

RETRY defines the retry procedure as the name specified, or disables the retry procedure
currently defined if no name is specified. RETRY may be used at any time to redefine the
current retry procedure in effect. Like ERRSET, RETRY is local to the current subroutine
level and therefore when a RETURN statement is executed, the retry procedure defined
(or not) at the calling level is restored and back into effect. Hence subroutines have the
freedom of defining their own retry procedures as required without upsetting those
defined at higher program levels.

The procedure name specified must be the name of a known procedure which does not
have any argument list in its DEF statement. When the procedure gains control after a
retriable error, the ERRTYP system variable will contain the error type being trapped, the
system string variable ERRMSG$ will contain the error message phrase, and the RETRY
function (i.e., not the statement) will return the number of retries that have taken place
on this particular error. To retry the operation that caused the error, just RETURN
normally from the procedure with a RETURN statement.

The retry procedure must not perform any file operations of any kind when a file
operation is the cause of the retry procedure call. To do so will very likely lead to a
corruption of the subsequent retry and cause potential damage to any file currently
OPEN. It should also avoid doing anything which could lead to the same error that
invoked it because RETRY procedures are disabled while one is currently active. Your
retry process may find it useful to use the WAIT statement (Chapter 6, Section 4) to
generate timed delays before resuming with retries. This statement depends on the wait
function only provided by multi-tasking operating systems and not supported in all
single user systems. Retry procedures should restrict themselves to using the RETRY
count and the ERRTYP code to decide on when and how to inform the user, and when to
retry and when to abort.

If after some number of retries you wish to give up, you must execute an ERRSET #
<er ror type> statement to generate your own custom error (described earlier). This is
necessary because you can exit a MegaBasic subroutine only by RETURNing or

6

6-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

generating an error. In the event that no retry procedure was in effect, an error would
have been generated anyway, so this response is consistent and justified. If the program
has an ERRSET trap in effect, the generated error will be trapped and execution will
continue. If no trap is active, then the program will terminate with the error.

The following example illustrates these concepts using the Not Ready Error generated
when a report printout is attempted:

100 Retry INFORM; Rem -- define retry procedure
120 Gosub PRINT_REPORT; Rem -- call the report generator
800 Rem -- Retry procedure for not ready errors
810 Def proc INFORM
820 If errtyp<>25 then Errset #errtyp,“Improper Retry
830 If retry>20 then Errset #25,“Not Readyn; Rem up tO 20 retries
840 Print “Printer not available, type any key when fixed:n,
850 V$ inchr$(0); Return; Rem -- Retry operation
860 Proc end

A retry procedure should handle all possible errors that invoke it by using the ERRTYP
code to branch to one of various routines for each type. When the retry procedure
RETURNS, it resumes the internal process that was in progress, right where it left off,
rather that restarting the MegaBasic statement that lead to the error. Because of this, the
recovery process is invisible to the statement that lead to the error, eliminating the
possibility of errors introduced by restarting actions already partially complete.

In all situations where retry procedures are useful, ERRSET traps could also be
employed. However to use ERRSETS for such purposes, you would have to speically
program an ERRRSET trap for each statement that contains potential for retries. A
RETRY procedure is normally defined once in the initialization of the program and
generally requires no further attention. Furthermore, retries controlled by ERRSETs
necessarily involve restarting the offending statement from the beginning, even though
it might have been partially completed. This requires that such recovery methods be
carefully programmed to ensure that such statements will yield correct results every
time.

Caution Using RETRY

You have to be very carteful within MegaBasic RETRY procedures that trap and process
errors for operations you intend to retry. First, do not do anything that performs any
DOS operating system calls (e.g., file OPEN, CLOSE, READ, WRITE, TIME$, DATE$, WAIT,
PRINT, INPUT, etc.), except for keyboard input and screen output and direct ROM BIOS
calls. If you violate this rule, DOS is left in an unstable state by the system call and upon
invoking the subsequent retry, the system will probably crash (a fault with DOS that
cannot be avoided).

Second, avoid any operations that could cause a reorganization of MegaBasic memory
structures because the operation being retried may be relying on an absolute address to
a memory structure which, if moved during the RETRY procedure, can invalidate the
address being used. Operations that can cause a memory reorganizaiton include
DIMensioning variables, accessing uninitialized variables and using a lot of scratchpad
space (e.g., processing big string expressions, doing subroutine calls to great depths, etc.)

6

6-27GFK-0256 Chapter 6 Program Control Statements

WAIT<number of seconds>

Generates a time-out delay specified by the number of seconds given. During the
period specified, MegaBasic is not executing and Ctrll-C will not be detected until the
WAIT is finished. The number of seconds may include fractions of a second down to 1
millisecond. Its actual resolution is system dependent but generally the time will always
be within 60 milliseconds of the time specified.

The MS-DOS versions implement the WAIT statement with additional timer accuracy that
correctly resolves to within 1 milllisecond. However, do not rely on the accuracy of any
such timinings when running MegaBasic under Microsoft WINDOWS because the
timing base is unpredictable.

WAIT statements are especially useful within RETRY procedures to slow down the rate at
which retries are performed. For example, one retry every two seconds would be
sufficient to wait for a locked file to become unlocked.

WAIT is supported under multi-tasking operating systems (e.g., MP/M-86 , TurboDos-86
and Concurrent CP/M) and under MS-DOS. Under single-user operating systems it is
supported if the system maintains a running clock with at least one-second interval
updates. If your system does not support the WAIT statement and you need such a
capability, use a FOR..NEXT loop with nothing inside it and an appropriate inside it and
an appropriate iteration count to implement delays.

7 section level 1 1
figure bi level 1
table_big level 1

7-1GFK-0256

Chapter 7 I/O and System Interaction

This section discusses the MegaBasic statements available for accessing data files, for
character device input and output and for interacting with external system processes
and services, as summarized in the table below. See Chapter 2 for the description of the
notation used to specify command and statement formats employed in this section. See
Chapter 9 for all information about additional I/O and system functions.

Input and Output
Console interaction, formatting strings and
numbers, text file processing and serial device
control.

 File Processing
Create and destroy files, serial and random ac-
cess to data and to file attributes.

System Interface
Altering MegaBasic system parameters, direct
access to memory, I/O ports, to machine-level
system calls and other system resources.

Logical Interrupts
Support for asynchronous event-driven processes,
useful for multi-tasking, background processing
and real-time process control

In all situations where retry procedures are useful ERRSET traps could also be employed.
However to use ERRSETS for such purposes, you would have to specially program an
ERRSET trap for each statement that contains potential for retries. A RETRY procedure is
normally defined once in the initialization of the program and generally requires no
further attention. Furthermore, retries controlled by ERRSETS necessarily involve
restarting the offending statement from the beginning, even though it might have been
partially completed. This requires that such recovery methods be carefully programmed
to ensure that such statements will yield correct results every time.

Caution using RETRY

You have to be very careful within MegaBasic RETRY procedures that trap and process
errors for operations you intend to retry. First, do not do anything that performs any
DOS operating system calls (e.g., file OPEN, CLOSE, READ, WRITE, TIME$, DATE$, WAIT,
PRINT, INPUT, etc), except for keyboard input and screen output and direct ROM BIOS
calls. If you violate this rule, DOS is left in an unstable state by the system call and upon
invoking the subsequent retry, the system will probably crash (a fault with DOS that
cannot be avoided).

Second, avoid any operations that could cause a reorganization of MegaBasic memory
structures because the operation being retried may be relying on an absolute address to
a memory structure which, if moved during the RETRY procedure, can invalidate the
address being used. Operations that can cause a memory reorganization include
DlMensioning variables, accessing uninitialized variables and using a lot of scratchpad
space (e.g., processing big string expressions, doing subroutine calls to great depths, etc).

7

7-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

WAIT <number of seconds>

Generates a time-out delay specified by the number of seconds given. During the period
specified, MegaBasic is not executing and Ctrl-C will not be detected until the WAIT is
finished. The number of seconds may include fractions of a second down to 1
millisecond. Its actual resolution is system dependent but generally the time will always
be within 60 milliseconds of the time specified.

The MS-DOS versions implement the WAIT statement with additional timer accuracy that
correctly resolves to within 1 millisecond. However, do not rely on the accuracy of any
such timings when running MegaBasic under Microsoft WINDOWS because the timing
base is unpredictable.

WAIT statements are especially useful within RETRY procedures to slow down the rate at
which retries are performed. For example, one retry every two seconds would be
sufficient to wait for a locked file to become unlocked.

WAIT is supported under multi-tasking operating systems (e.g., MP/M-86, TurboDos-86
and Concurrent CP/M) and under MS DC6. Under single-user operating systems it is
supported if the system maintains a running clock with at least one-second interval
updates. If your system does not support the WAIT statement and you need such a
capability, use a FOR..NEXT loop with nothing inside it and an appropriate iteration
count to implement delays.

7

7-3GFK-0256 Chapter 7 I/O and System Interaction

Section 1: Input and Output Statements

This section describes the character stream I/O statements and console facilities of
MegaBasic, which are summarized as follows:

 PRINT #<dev>,<data list>

Formats a sequence of numbers and strings and
sends the result to an output channel. The
extensive formatting capabilities are covered in
full detail.

 INPUT #<dev>,<input list>

Statement for requesting and receiving data
interactively from the user. Input editing is
supported. Input received is validated and stored
into numeric or string variables.

EDIT$ = <string exprn>
Loads the input editing buffer in preparation for
an editing session controlled by the INPUT state-
ment.

 ENTER <input source>

Redirects console input from a different source (i.e.,
text file or device name). Subsequent input from
device #0 is taken from that source until it runs
out and reverts back to the normal console.

 IOCTL #<dev>,<ctrl string>

Outputs special channel control sequences to
channels that support such controls. This is highly
dependent on the system configuration of the host
machine.

General file operations are described in Chapter 7, Section 2, which include a number of
important statements useful in the context of the current discussion (i.e., OPEN, CLOSE
and FILEPOS). Chapter 9, Section 4 provides complete operating details on the built-in
functions related to both I/O and file operations. The functions described there related to
just I/O are summarized below for easy reference:

Pos(D) Returns the column position on channel D.

Line(D) Returns the line position on channel D.

Inchr$(D..) Returns input characters from channel D.

Edit$ Returns the previous line input, or command tail.

Input(D) Returns the input status of input channel D.

Output(D) Returns the output status of output channel

Ioctl(D) Indicates whether channel D supports ctrl strings.

Ioctl$(D,C$) Returns control string input from channel D.

MegaBasic provides 32 I/O channels through which character streams are transferred to
and from your MegaBasic program. An I/O channel is simply a connection (implemented
in hardware and software) between your program and a device that accepts output
characters one at a time, or provides input characters one at a time. This process is called
stream I/O, because such data transfers usually involve many characters traveling
through the device, resembling a stream of characters. Your computer console screen
and keyboard is a typical example of such a device. Characters are input one at a time
from the keyboard and output to the screen one at a time. Together, this input and
output capability are combined into one I/O device called the console device.

7

7-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Your program communicates through only one I/O channel at any time and because
there are many I/O channels to choose from, an I/O channel must be selected for use
before any information transfer can pass through it. Therefore each I/O channel is
assigned a unique identifying number called its channel number, which is specified in each
MegaBasic statement or function that performs I/O with the corresponding I/O channel.
Channel numbers range from 0 to 31 and they are defined as follows:

0 Console screen and keyboard

1 Main system printer (usually output only)

2 Auxiliary I/O device (bi-directional)

3 - 31 User Defined

Channel numbers 0,1 and 2 are the built-in I/O channels which are provided by the host
operating system. These channels are always present, assuming that your operating
system has been implemented on your machine to support them. At any time, you can
transfer information between these devices by specifying the channel number 0,1 or 2 in
the MegaBasic command, statement or function requiring the data transfer. The syntax
for specifying channel numbers to MegaBasic facilities will described shortly.

Channel numbers in the range 3 to 31 are set aside for user defined I/O channels. Such
channels must be defined before they are used, with the MegaBasic OPEN statement
(Section 2 of this Chapter). The OPEN statement creates a temporary I/O channel
between your program and an arbitrary device or file already present and maintained
by the operating system, and assigns a channel number to it for use in subsequent I/O
operations. Such I/O channels become undefined and their channel numbers available
for re-assignment once you CLOSE the channel (Section 2 of this Chapter) or your
program ends (Chapter 6, Section 1).

Since channels may be either files or physical character devices, you can redirect output
from your program to storage (files) or onto actual peripheral devices by simply
diverting output to different channel numbers or changing an OPEN statement. The I/O
statements themselves are defined in generic terms which lend themselves to both
device and file I/O without favoring one over the other. It is the channel number itself
that determines the destination of output and source of input to your program.

The actual devices that your program can OPEN are highly system dependent. Under the
CP/M class of operating systems (i.e., CP/M-86, MP/M-86 and CCP/M), there are
unfortunately no devices supported other than the built in devices (0,1 and 2). Only files
can be OPENed on channel numbers 3 to 31 under these systems. However, the MS-DOS
class of operating systems provide a sophisticated facility for attaching arbitrary I/O
device drivers to the system at startup time, which you can access by name, somewhat
like file names. Such devices can be OPENed by your MegaBasic program and used for
I/O purposes just like any other device (or file).

Channel numbers are specified in MegaBasic commands and statements by giving the
channel number preceded by a Ib-sign (#). For example the built-in channels are
specified as #0, #1, and #2. The Ib-sign is needed because such channel numbers are
optional and it informs MegaBasic that the number specified is to be interpreted as a
channel number and not to be confused with other numbers that may also appear in the
same construct. When the channel number is omitted, channel #0 is assumed by default.
Therefore is it not necessary to specify a channel number when transferring data to and
from the console device. A comma separates a channel number from other data or
arguments that follow in the same statement.

7

7-5GFK-0256 Chapter 7 I/O and System Interaction

In commands, channel numbers must be specified with integer constants (i.e., an error
occurs if you specify fractional quantities or numeric expressions in this context).
However no such restriction is placed on channel numbers in program statements,
which can even compute channel numbers using numeric expressions if necessary.
Non-integer channel numbers are truncated to the next lower integer value as they
occur. Channel numbers supplied to I/O functions may also be specified as numeric
expressions, but no Ib-sign (#) should be placed in front of the number, as it is in
statements. Better performance results if you specify channel numbers using integer,
rather than floating point, expressions, but both work.

PRINT [#<channel>,]<data list> [,NOMARK]

Causes the data list specified to be output as characters to the channel specified (or the
default channel). The PRINT statement is the primary character output statement of
MegaBasic. WRITE statements can also be used but they are intended for data file
output. Although it goes by the name of PRINT, this statement is not merely a printer
operation, but a general stream output statement for use with any channel number. The
<data list> describes the items to be printed and how they are to be formatted. It
consists of the following items, which must be separated with commas when more than
one appears in the PRINT statement:

Numbers

Numeric values are converted to display codes and sent to
the PRINT channel. Their format can be controlled via a
format specification that precedes them in the data list.
Numbers may be specified with numeric expressions,
constants, etc.

Strings
Strings are sent to the PRINT channel after being formatted
as needed. They may be specified using any general string
expression, constant, etc.

Vectors

Vectors and vector expressions are PRINTed element by
element and formatted accordingly. Such items must be
preceded by the word VEC in order to be identified as
vectors. See the material starting in Chapter 3, Section 7 for
complete information on vectors.

 Format
Specifications

Controls the appearance and layout of numbers and strings
following it in the data list. Formats consist of a percent sign
(%) to indicate that a format specification is coming up, fol-
lowed by a string expression (commonly a string constant)
evaluating to a valid format description.

 Control
 Specifications

These are special purpose items inserted into the data list to
perform useful operations as the PRINT list is being pro-
cessed, such as tab control and blank line generation.

MegaBasic scans the data list, printing numbers and strings as they come and attending
to format and control specifications as encountered. Numbers and string expressions are
evaluated, then printed in the currently defined format, which may be redefined at any
point in the data list. At the beginning of the PRINT statement, the currently defined
format is the default format, which may also be re-defined at any point.

Normally a carriage return is generated on completion of a PRINT statement, but this
can be suppressed by terminating any PRINT with a comma. This allows several PRINT
statements to contribute to the formation of a single line. Because of how frequently
PRINT statements generally appear in most programs, the PRINT keyword can be
replaced by an exclamation mark (!) for brevity. This notation performs the identical
function that PRINT does.

7

7-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Format Specifications

Format specifications control the appearance of numbers and strings as they are printed.
For example you may want to be able to control their position on the page, restrict the
number of decimals displayed, select standard or scientific notation, breakup large
numbers with commas, put dollar signs in front of numbers, or justify a string on the left
or right of a fixed-width field. You can specify multiple options with a single format
specification. A format specification appears in PRINT statement preceding the values to
be formatted.

Format specifications consist of a percent sign (%), indicating that a format specifier is
next in the PRINT list, followed by a string expression that evaluates to a format
description string. When MegaBasic encounters a format string expression, it evaluates
the expression and remembers the result to control the format of subsequent items in
the PRINT statement. Nothing is printed when a format string is encountered. Format
strings can be virtually any length, limited only by the available scratch pad memory
remaining (up to 55k). A format specification affects all strings that follow it in the data
list until another format is encountered, or the data list ends.

In most instances, the format string expression will merely consist of a string constant
containing some fixed format, rather than as a large, complex string expression that
dynamically computes a different format based on prevailing conditions. Such flexibility
will be discussed, but for now we shall confine ourselves to the simple static format case.
One such example is as follows:

Print %“c15f2”, X, Y, Z

which prints the values of X, Y and Z with 2 decimal places, commas to the left of the
decimal, and right justified in a field of 15 character positions. Applying this to values
such as 4325, 0.3665, 5893432.567 and 0, the following display would be presented:

–4,324.00 .37 5,893,432.57 .00

The f in the format string is called the format mode character, which selects the type of
format to be applied. There are six numeric format modes and three string format
modes, which are all described on the following pages. Most format modes can be
further augmented by various format modifiers. For example, the c in the format string
above modifies the f-mode to include commas in large numbers. All modifiers will be
discussed shortly.

In the coming pages, we will discuss each of the various format modes and their
modifiers. Then we will show how they can be combined together to form more
complex format descriptions with a minimum of effort. Understanding how to specify
formats involves many things, which you should learn one at a time. Try them out as
you are reading about them; make up your own examples and experiment with them
until you feel comfortable with each concept.

7

7-7GFK-0256 Chapter 7 I/O and System Interaction

Formatting Numbers

If you do not include any numeric format specifications in a PRINT statement,
MegaBasic will display all numbers in the default format. You can designate any format
specification to be the default, but it is normally a special format called free-form, in
which numbers are displayed in the following manner:

� A single space as a separator from preceding values

� A minus sign (–) if negative, but no plus sign (+) if positive

� All leading digits and trailing decimals to full precision

MegaBasic switches to E-notation for numbers that are very large or very small, but most
numbers are shown the way you would normally expect them to appear. Free-form is
useful when numbers are displayed within unformatted text (like words in sentences)
and for quick displays such as those needed during the test and debugging phase of
program development. But free-form cannot be used for numbers that need to line-up in
columns and, many times, it displays numbers with more digits to the right of the
decimal than you would otherwise want.

So if free-form format is not desired, you must explicitly specify a different numeric
format. Numeric formats are denoted explicitly in two forms:

<width> <mode> <decimals>

<width> <mode> <places>

<width>
total number of print columns to provide for the number.
format mode character, one of the letters I, F, E, H, O
number of trailing digits to the right of the decimal.

 <mode> Minimum number of digit places that must appear in the
numeric value.

<decimals> number of trailing digits to the right of the decimal.

 <places> Minimum number of digit places that must appear in the
numeric value.

The example format string c15f2 illustrated earlier, specifies a <width> of 15 column
positions, a <mode> character of f (called an F-specification), and 2 trailing <decimals>.
Each of these components are discussed in detail below.

<width>

The format field width specifies a fixed number of print columns (or positions) to use
when displaying the formatted number. This width is specified as an unsigned integer
from 1 to 120, and must be wide enough to accommodate the largest number to be
printed in that field, including all decimals, any decimal point, commas, number signs,
dollar signs, leading spaces and any other characters that will appear in the field.

Numbers are always positioned up against the right-hand side of such fixed-width fields
so that they will line-up when placed in columns. Spaces (i.e., blanks) are used to fill out
the left side of the field to preserve the fixed-width. If you specify a field width that is
too narrow for some number to fit in, MegaBasic will display the field filled with
asterisks instead of the number to indicate a programming error that should be
corrected. However no formal error will be reported so that your program can continue
on.

7

7-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The field width is optional and if you omit it from a format, the numbers are formatted
with one leading space and however many additional print columns are necessary to
display the number, which may be determined by other specifications in the format
string. Such variable width fields are useful within unformatted text, as in paragraphs
and sentences, similar to free form.

<mode>
The format mode is a single character, in upper or lower case, which selects the type of
numeric format to be used. Six different modes are available, which include fixed
decimal (F), scientific or E-notation (E), integer (I), octal (O), binary (B) and hexadecimal
(H). All mode characters may be preceded by the optional field <width>, described
above, and followed by an optional <decimals> or <places> specification, which are
described below. Each <mode> is individually discussed on the net page.

<decimals>
This is the fixed number of digits to the right of the decimal point that you want
displayed in the number. For example, dollar values with pennies should be displayed
with two decimals. You can specify any number of decimals from 0 to 80 and each
number is displayed rounded to the nearest value with the exact number of decimals
specified. All decimals requested by the format are shown even if they are zeros. This
specification only applies to E and F format modes. Omitting the <decimals> from either
of these modes is equivalent to specifying zero.

<places>
This optional value is placed to the right of the format mode character to specify the
minimum number of digit places to show, even if that means extra leading zeros in front
of the number (which are normally suppressed). It applies only to the integer format
modes (I, H, O and B) and is usually specified to force leading zeros in front of numbers.
Numbers are normally printed with leading zeros suppressed. If you specify more
<places> than you have room for in your fixed <width>, a Format Specification Error will
occur.

Numeric Format Modes
Each of the format modes are fully described below. For notational purposes, the letter w
will stand for the field <width> value, r will stand for the <decimals> value, and p will
stand for the <places> value. Each of these values are optional but when supplied, they
must be given as unsigned integers.

Numeric Formatting Modes

wFr

Right justifies a number with r trailing decimals to the right within a field
w columns wide. Free-form fixed decimal layout is formed by omitting the
width (w). For example: PRINT %“12F3”,3476.6 displays as 3476.600
preceded by 4 spaces to make a total width of 12 columns. By omitting
r-decimals part or specifying zero causes the number to print rounded to
an integer, with no decimals and no decimal point displayed.

wEr

Same as wFr except that E-notation (scientific) is used. This notation prints
a base value (X.XXXXX...) followed by a power-of-ten scaling factor
(E+XX or E–XX) called the exponent. The exponent always appears as the last
4 characters of the specified field.

For example: PRINT %“12E5”,3476.6 will display the value 3.47660E+03
with just one space in front of it. See <mode> above for a discussion of
E-notation. When the field width is specified (w), it must be at least r+7 to
provide enough room for the entire value.

7

7-9GFK-0256 Chapter 7 I/O and System Interaction

wIp

Right justifies an integer in a field w columns wide. No trailing decimals
can be specified. Non-integral values are rounded prior to printing.
Free-form integers are generated by omitting the width (w). For
example: PRINT %”12I”,3476.6 displays the integer 3477 with 8 spaces in
front of it, using a total of 12 display columns. By omitting the 12, only
one space is placed in front regardless of the number size.

The p-option (places) is specified only to force a minimum number of
digit places, usually to include leading zeros in the number. For example
PRINT %”1217”,3476.6 displays 0003477 right justified in a field 12 columns
wide. No leading zeros appear if the number itself takes up or exceeds the
place-count specified.

wHp

Same as the preceding wIp format except the number is displayed in
hexadecimal, i.e., base 16, which is useful in systems programming
applications. No minus sign is displayed when negative numbers are for-
matted with this mode. Instead, negative 32-bit values are shown in
hexadecimal twos-complement notation. Free-form hexadecimal
numbers are displayed when both the width (w) and places (p) options are
omitted. Non-integer values formatted in this manner are truncated to the
next lower integer value before being displayed, rather than rounded as in
the wIp format. Format modifiers, described later, have no effect within
H, O and B format modes.

WOP
Same as the preceding wHp format except that the number is displayed
in octal, i.e., base 8, useful is certain systems programming applications.
The format mode character is the letter O, not the digit zero.

WBP
Same as the wHp format except that the number is displayed in binary, i.e.,
base 2, useful in applications using bit strings as well as in systems program-
ming applications. Up to 32 columns may be required to show all
the digits of some binary numbers (e.g., –1 displays as 32 places of ones).

Format Modifiers

The following set of special format modifying characters may be included within a
format string to produce additional features such as dollar signs, comma grouping (e.g.,
1,435,801), zero suppression, etc. Such modifiers consist of single characters which are
placed within a format specification string to invoke the desired effect.

Several modifiers may appear in a format string for their combined effect; their order of
appearance is of no significance. You can specify a modified free- form format by listing
all the desired modifiers without specifying any format mode (i.e., no mode implies
free-form). Each format modifier is described below:

Numeric Format Modifiers

$

Places a dollar sign ($) to the left of each number printed. When a leading
numeric sign (+ or –) appears with the dollar sign ($), the sign comes first, fol-
lowed by the dollar sign. Be sure to provide sufficient room in your field widths
(w) to allow for the dollar sign. The $modifier applies only to the F, E and I
format modes. In hexadecimal, octal and binary formats, $ includes the radix
sign character on the numbers (i.e., h for hexadecimal, o for octal and b for
binary). The radix sign will be appended to the formatted number whenever
you specify a $ format modifier. Be sure to account for this extra character in
any width specification affected by it.

7

7-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

 On F and I format modes, C inserts commas every three places (left of the deci-
mal) after 1000. Remember that these commas take up space in your specified
widths. On the E-format mode, the C-modifier produces a variant of
E-notation known as engineering notation, rather than insert commas.

C The exponent of numbers in engineering notation is always a multiple of three,
and the value portion is a number from 1.0 to 999. Such values are much
easier to comprehend in the same way that numbers with commas are easier to
understand. When using this format option, you must be sure that the format
width (i.e., number of columns) is at least 8 more than the number of decimals
specified. Engineering notation is also used for numbers printed in free-form
comma format for large values requiring a switch to E-notation.
Suppresses trailing zeros to the right of the decimal. Trailing zeros are
changed to spaces (blanks). If the format does not include a width specification
(w), then these spaces will not appear in the field. The Z-modifier applies
only to the F and E format modes.

Z On string formats (described later), the Z-modifier suppresses trailing spaces gen-
erated on formatted strings. Note that this shortens the field and is thus primarily
useful only on the last string of a printed line.

+
Indicates positive numbers with a plus sign (+), the same way as negative
numbers are shown with a minus sign (–). All numbers will be printed with a
numeric sign, regardless of their value. The + modifier applies only to the F,
E and I format modes.

T

Positions the sign of the number, if shown, to the right of the number (called a
trailing sign), instead to the left (a leading sign) . The sign will appear as the last
character of the specified field. When applied to fixed-width fields, all numbers
are shifted over one column to the left to provide room for the sign.
Non-negative numbers in such fields therefore have one space in the last
column of their field (instead of a sign). The T-modifier applies only to F and I
format modes, but it has no effect on negative values when the A-modifier is also
present.

A

Provides accounting format for negative numbers, which are shown in
parentheses rather than given a minus sign. When applied to fixed-width
fields, all numbers are shifted over one column to the left to provide room for
the closing parenthesis. Non-negative numbers in such fields therefore have
one space in the last column of their field (instead of parentheses). The
A-modifier applies only to the F and I format modes.

N
Suppresses the display of zero values by filling the numeric field with blanks.
This is useful for enhancing numeric displays that consist of mostly zeros, e.g.,
sparse matrices. The N-modifier applies only to the F, E, and I format modes.

*
Changes all leading blanks of formatted numbers to asterisks. For example the
format 15F2$i would format the value 5354.249 as ******* $5354.25. This
modifier has no effect on any of the Hex, Octal or Binary formats and is provided
for use in check-writing applications.

#

Causes the format specification it is within to become the default format as well as
the current format. This is not really a format modifier since it has no modifying
effect on the current format. Used alone in the specification, # sets the default
format to free-form numeric output (if it was not already). This may be used
for a particular format that occurs frequently throughout your program. Once
you make it the default format, you never again need to specify it explicitly in
your PRINT statements, because the default format is used whenever no
format is specified.

D

Selects the default format as the current format. All immediately preceding format
modifiers are lost, so this modifier should be first when more than one is
supplied. Additional specifications and modifiers that follow will alter this new
current format as specified. Think of the D-modifier as shorthand for the
default format. The default format is always unmodified free-form unless your
program changes using the Ib-sign #-modifier described above.

7

7-11GFK-0256 Chapter 7 I/O and System Interaction

Altering Format Attributes

The characters used for currency ($), decimal points (.) and comma separators (,) in
formatted numbers can be changed during execution. This is done within format strings
by following certain format modifiers with an equals sign (=) and the desired ASCII
code. These codes are described in the table below:

 $=n Defines the ASCII code
to use for dollar signs. “F2 $=33 C” !1,234,567.89

 C=n Defines the ASCII code
to use for - commas. “F2 $=37 C=32” %1 234 567.89

 P=n Defines the ASCII code
to use for decimal
points.

 “F2 $=33 C=46 P=44” !1.234.567,89

 G=n Defines the comma-
break grouping size. “F2 $=37 C=46 P=44 G=2” %1.23.45.67, 89

The values after the equal sign specify the ASCII code (in decimal) to use for the
respective usage. Note that P is a modifier used only for changing the decimal point
character and G is used only to specify the number of digits within comma groupings
(C). These changes become permanent for all subsequently formatted numbers within
the same MegaBasic package from which they were reassigned, so to restore them you
have to re-specify their original settings.

Automatic Numeric Scaling

Another PRINT format modifier is supported that shifts numbers left or right any
number of places before they are PRINTed . This eliminates the need to explicitly scale
numbers using multiply or divide before they are PRINTed , simplifying your program
and making it faster (i.e., the internal scaling does not perform any multiplies or
divides). This modifier consists of a < or > followed by the number of digit places to
shift. To shift left, use <; to shift right, use > (i.e., the number is shifted the direction of
the arrow). The following examples illustrate how this works:

 Print % “15F2>2”,X,Y,Z Prints values shifted to the right two places (i.e., divided by
100).

 Print % “201<3”,X,Y,Z Prints values shifted to the left three places (i.e., multiplied
by 1000).

 Print % “8H>3”,X,Y,Z Prints hexadecimal values shifted to the right 3 hex digits
(i.e., divided by 2^12).

 Print % “16B<4”,X,Y,Z Prints binary values shifted to the left 4 binary digits (i.e.,
multiplied by 2^4).

The scaling modifier works with all numeric format modes (i.e., I, F, E, H, O, B) and it has
no effect on string formats (i.e., L, M, R). When the binary, hex or octal modes are scaled,
the digits that fall off the end of the number are lost and no error is reported for this.
When any of the decimal modes are scaled, the resulting scaled number must remain in
the range of valid floating point values (a BCD limitation that is not in the IEEE version).

When used, scaling factors should follow the numeric format mode specification. They
could be placed in front, but then a space has to separate the shift count from the format
width that would follow. You can specify a scaling factor all by itself (or with other
modifiers) to scale a number printed in free-form.

7

7-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Multiple Formats and Format Rescan

Up to this point we have described formats that cause a series of values to be printed the
same way. But suppose, for example, that your PRINT statement will format six numbers
in three pairs, such that each pair consists of an integer and a fixed-decimal value. Since
the format changes on each successive number, you would have to specify a format
string preceding each of the six numbers, even though only two different formats are
actually needed. Such a PRINT statement would appear as follows:

PRINT %“8i”,1,%“12f2”,X,%“8i”,J,
%“12f2”,Y,% “8i”,K,%“12f2”,Z

To eliminate such cumbersome notation, MegaBasic allows multiple format specifications
to be packed into one format string, which are distributed in a round-robin fashion to
successive values being printed. This technique lets you avoid all the redundant
repetition of identical format specifications in situations like the one just described,
which can be programmed as follows:

PRINT %“8i,12f2”,1,X,J,Y,K,Z

Although both PRINT statements produce identical results, the later is obviously easier
to type and understand. The individual formats within a multiple format string must be
separated from one another with commas, as shown above. Spaces may be inserted
anywhere within a format string to improve readability but they have no other
significance.

MegaBasic simply applies successive formats from the string to the successive values as
they are encountered and displayed. If the format string runs out of formats before all
the values have been printed, MegaBasic cycles back to the first format in the string and
continues cycling through the formats until all values have been printed. This is called
format rescan. If more formats are supplied than the number of values to be printed, the
extra formats are never used and no error is reported.

You can specify the free-form format in a multiple format string as an empty format, i.e.,
two commas in a row with nothing in between (,,). The default format may be specified
simply as the letter D, a format modifier described earlier.

Multiple formats can be useful even when every number being printed uses an entirely
different format. Shorter data lists result if you define one long format string in the
PRINT statement instead of many separate short ones, and they are generally easier to
read and understand. Long format strings can be built and stored in string variables, so
that subsequent PRINT statements need only refer to their names to apply the multiple
format (e.g., PRINT %FMT$,X,Y,..)

Multiple format strings have the additional flexibility to intersperse line breaks and
arbitrary character sequences at any point between formatted items. Line breaks and
blank lines can be generated by specifying one or more slashes (e.g., //) as one of the
items in the format string. Each slash generates a carriage return, line feed sequence;
two or more slashes generates blank lines. Slashes are a separate item in the format
string, and as such, they must be separated from other items in the string by commas.
For example, to print the vector X(*) so that 8 values are printed on each line, the
following PRINT statement might be used:

PRINT %“8i,12f2,8i,12f2,8i,12f2,8i,12f2”, /, VEC X(*)

7

7-13GFK-0256 Chapter 7 I/O and System Interaction

In the same way that slashes can be inserted anywhere, you can also insert any string
constant in between formatted items. This is done by specifying a quoted string constant
as one of the items in the multiple format string. Either quote character can be used
(” or ’). For example, to divide the lines generated by the format example above with a
vertical bar (I), the following PRINT statement would be specified:

PRINT %“8i,12f2,8i,12f2,’ | ’,8i,12f2,8i,12f2,/”, VEC X(*)

Any characters (or control characters) can be included within such constants except for the
quote character used at both ends. An error occurs if the quote at either end is omitted.
This item in a format string is called a format literal, and it can be used for printing
telephone and social security numbers and other numbers that contain certain
non-numeric characters within them.

When MegaBasic prints a formatted number or string, it first prints any slashes (/) and
format literals that are encountered in the format string until an actual format
specification is encountered. After the last data item has been printed, MegaBasic
generates any slashes and literals that immediately follow the last format specification
(and precede the next specification). The same action is taken if no data items are
specified in the PRINT statement.

Format Repetition
To simplify the construction of more complicated format descriptions, the concept of
format repetition can be applied. In a format string, you can cause any sequence of
format items to be repeated by surrounding the sequence with parentheses (), preceded
by the repetition count. For example, the vector print example above can be simplified
using format repetition as follows:

PRINT %“4(8i,12f2),/”, VEC X(*)

where the format sequence ”8i,12f2” is effectively repeated 4 times. Format repetition
can be nested: repetition inside of repetition. For example, the above PRINT statement
can be augmented to print a blank line between every group of five output lines, as
follows:

PRINT %“5(4(8i,12f2),/),1”, VEC X(*)

You can specify up to 5 levels of nested format repetition. MegaBasic reports an error if
you specify more than five, or if the parentheses are not balanced, or if you omit the
repetition count. Properly designed nested format strings can be used to print entire
pages using a single PRINT statement.

Dynamic Formatting
Computing format specifications at run-time, instead of using static fixed format string
constants, is known as dynamic formatting, which can make use of information available
at the time of the PRINT statement in constructing the format string. For example your
format may change depending on how much data is to be printed, its range of values,
and the characteristics of the channel receiving the output. If you wish to print X with
commas, zero-suppression, dollar sign, right justified in a field W characters wide with D
decimals, use the statement:

PRINT %“$ZC”+STR$(W)+“F”+STR$(D),X

Dynamic formatting can be a complex task that requires care and planning. User-defined
string functions are useful here to hide the details of format construction and provide
access to your various formatting processes by name. Functions also collect the format
decision-making into centralized places, confining future changes to a limited area of
your program.

7

7-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Formatting Strings

Strings are normally printed exactly as given in the data list and additional spacing may
be programmed as needed. Using the wide variety of string operations provided in
MegaBasic, you have great control and flexibility over the format of strings. Formatting
entire displays exclusively with string operations can be a very powerful way to control
the appearance of your output. The STR$() function (Chapter 9, Section 3), which
converts a number into a string form, provides all the support necessary for combining
numeric and string information into formatted data ready to display.

There are, however, several simple string formats that are commonly required in many
applications, and hence are provided in MegaBasic: left and right justification and
centering. The format specifications for these capabilities are described below using the
same notational conventions as those employed to describe the numeric format
specifications earlier in this section.

String Format Modes

Each of the string format modes is fully described below. For notational purposes, the
letter w will stand for the field <width> value. If the string does not fit into the field
width specified, the right-most characters that do not fit are discarded. If the string is
shorter than the specified field, it is positioned within the field according to the format
mode (Left, Right or Middle), filling the unused field positions with blanks.

wL
Left justifies a string in a field w columns wide. If the
string is shorter than w characters, additional spaces are
output to fill out the length.

wR
Right justifies a string in a field w columns wide. If the
string is shorter than w characters, the proper number of
spaces required are printed, followed by the string itself.

wM
Middle justifies (centers) a string within a field of w
columns. If the string is shorter than the given field width,
an equal number of spaces are printed before and after the
string is printed to fill out the field exactly.

The following examples should clarify their use:

“15L” Left justifies a string in a 15-character field.

“12R” Right justifies a string in a 12-character field.

“78M” Centers a string in a 78-character field.

When MegaBasic encounters a number when a string format is specified, the number is
printed in free-form format and the string format is then applied to the next item in the
output list. When MegaBasic encounters a string when a numeric format is specified, the
string is printed as-is (unformatted) and the numeric format is then applied to the next
item in the output list. This allows your program to continue in the face of format type
errors, and lets you insert unformatted numbers and strings into print statements with
minimal affects on the format strings being applied.

When the last item of a print statement is L(eft) or M(iddle) formatted, the line will
usually end with trailing spaces. If you do not wish this to occur, you can specify the Z
modifier to suppress the trailing spaces on any formatted string. Note that this shortens
the field and is thus primarily useful only on the last string of a printed line.

7

7-15GFK-0256 Chapter 7 I/O and System Interaction

Control Specifications

Special control specifications may also appear in the <data list>. These are not format
specifications and are not preceded by a percent (%). A plus sign (+) resets the line
count for the channel to zero before proceeding and is necessary only in applications
where this count is being used with the LINES() function. The plus sign (+) does not
generate any printed characters and has nothing to do with the similar format modifier
(+).

Multiple blank lines may be generated from a single PRINT statement by a field of
slashes, similar to FORTRAN format statements. For example: PRINT #D,///, will
generate 3 carriage returns on channel D. Slashes may be interspersed throughout the
data list.

MegaBasic generates a carriage return at the end of the PRINT statement unless you
suppress it by ending the statement with a comma. For example PRINT x displays X and a
carriage return, while PRINTX, displays X without a carriage return so that later PRINT
statements can continue on the same line.

TAB(P) advances the cursor to column position P prior to printing the next item, where P
is a numeric expression that evaluates to a value from 0 to 255. This is accomplished by
printing spaces until the desired position is reached. TAB(P) is ignored if P is less than or
equal to the current position.

Printing to Files

When printing to channels 3-31, you are really transferring data to a file OPENed under
the same file number. Exactly the same data is transferred to the file as would be
displayed on the console if channel #0 were employed. However it can be important
that the last byte printed before the file is CLOSEd be an appropriate end-of-file mark so
that the file can be processed correctly by other programs. The MegaBasic endmark (an
8-bit value of 26, ASCII CTRL-Z) is placed automatically after each PRINT for this
purpose if enabled. See PARAM(9) to use a different file endmark. You can suppress this
endmark from being written to the file by typing the reserved word NOMARK as the last
item in the data list of the PRINT statement you want it suppressed on. See the NOMARK
statement for other information.

This is appropriate for later INPUT processing by MegaBasic programs, but typical file
processing programs external to MegaBasic sometimes expect other endmarks. For
example ASCII codes 0,1, 26 and 255 are common. You must handle this situation by
redefining the endmark code with PARAM(9) (Chapter 9, Section 5). Note that whatever
code is used cannot be part of the text printed without causing a false end-of-file
condition when later processed.

INPUT [#<channel number>,] <input list>

This statement inputs text lines from channel 0 to 31 and stores them into program
variables. If the variable is numeric, then MegaBasic attempts to convert the text line into
a number. String variables receive the text line as is. If the input channel is an interactive
device, such as the console screen and keyboard (device #0), then input can be edited
using the MegaBasic line editor keys (Chapter 9, Section 5). As such, no input is accepted
or acted upon by your program until you type the ENTER key (or carriage return). An
edited input line can be as long as 254 characters or as short as zero characters (by typing
only the ENTER key).

7

7-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

A simple console INPUT statement that requests a string, two numbers and another
string (i.e., four inputs in all) might appear as follows:

INPUT A$,X,Y,B$

In this example, we omitted the channel number to select the console by default. INPUT
can accept numbers in any form that MegaBasic recognizes as valid numeric constants.
This includes signed and unsigned numbers with and without decimals, E-notation,
octal, binary and hexadecimal. INPUT will not accept invalid numbers and automatically
re-requests a new response from the user for any numeric input that is out of range or
not a valid number or includes decimals on values destined for integer variables. You can
input numbers into several numeric variables with a single input consisting of several
numbers separated by commas or spaces. See Chapter 3, Section 2 for a complete
discussion of numeric constants under MegaBasic.

You can also input a number into a string variable, but in this case, the number is simply
treated as an arbitrary sequence of characters, i.e., no numeric validation is performed.
String variables accept the entire line of input, even if it contains spaces, commas,
numbers or words and phrases.

Input strings larger than the DIMensioned size of the input variable will be truncated
to fit the string. Inputs into indexed string variables (or into string fields) that are shorter
than the region indexed are stored left justified in the fixed-width region, padding all
remaining character positions to the right of the characters input with spaces.

INPUT statements provide all the editing capabilities of the MegaBasic line editor
(Chapter 1, Section 6) for each input. Although you can potentially INPUT data on a
hard-copy terminal (i.e., on paper instead of a screen), the line editor assumes that a
screen is being used. On a hard-copy device the editing process will cause severe
misalignment of characters if any insertions, deletions or backward cursor movements
are attempted.

Input Prompts

An input prompt is a message that is output to an interactive input channel so that the
user knows that an input response is required. They also usually include additional
information about the kind of input expected. The INPUT statement lets you specify an
input prompt in front of any input variable in the <input list>, for example:

INPUT “Enter a number ”,X, “Type a string ”,A$

You can specify prompts as any string expression that does not begin with a variable or
user-defined function name. This is so that MegaBasic can tell prompts and input
variables apart. If your prompt is in a string variable, you can surround it with
parentheses to specify the prompt variable in an input statement. MegaBasic always
re-displays the prompt when invalid numeric responses are re-requested.

If you do not specify an input prompt for any particular input variable, MegaBasic
automatically provides the prompt message: ? . To suppress any prompt messages,
including the automatic question mark, specify a null string () as your prompt. If the
user types several numbers in a single input response, only the initial prompt for the first
numeric input variable appears; the unneeded prompts are suppressed. For example:

INPUT “1st value = ”,X, “2nd value = ”,Y, “3rd value = ”,Z

7

7-17GFK-0256 Chapter 7 I/O and System Interaction

If, in response to the input request above, you type all three values separated by commas
or spaces in one input line, the second two prompts never appear on the screen and the
program continues on. You could also type one input value, then type two input values,
suppressing only the prompt for variable Z. This lets you skip ahead in an input
sequence that you have been through many times: sort of an expert mode. Note,
however, this only works for numeric inputs, not string inputs, and only within a single
INPUT statement.

In order to maintain the correct column position for the console, the maximum input
string you can enter is limited to 255 characters minus the length of the INPUT prompt.
Therefore, really long prompt strings can prevent you from entering all the characters to
may wish to.

Building Input from Prior Input

Input entry is usually the major bottleneck when using a computer program. One facility
that MegaBasic provides to help reduce input keystrokes is the access to the previous
non-blank input line using Ctrl-R or F5 editing keys (Chapter 1, Section 6). Once
accessed, you can edit this prior input to create a new input entry. Also, the most
recently entered entered input line is brought up automatically on the screen if the very
first character you type is an editing control character (i.e., not an input character).

The previously entered line is not the only prior input you have access to. MegaBasic
also remembers many of the most recent lines of text input through the console
keyboard so that you can retrieve any of them whenever you are entering keyboard
INPUT. This is particularly useful when you find yourself entering the same or similar
line repeatedly because you can avoid having to retype the entire line each time.
MegaBasic only remembers one instance of each line entered and keeps them in a
most-recently-used order for convenient access. Lines that differ only in upper/lower
case and number of spaces are treated as the same line and only the most recent
rendition is remembered. Null lines (i.e., those without any characters) are never
retained.

You access previously entered lines by typing one of several control keys at any time
while you are entering a text line into MegaBasic (or into a MegaBasic program). Two
keys let you move forward or backward through the line list; one key lets you return to
the original line and one key deletes a line from the list. Once a line is accessed, you can
immediately begin editing it without any further keystrokes. At any time you can discard
your current line and start over on a different line by simply accessing another line and
continuing. See Chapter 1, Section 6 for details on these control characters.

Editing Variables with Default Values

Another facility provided by the INPUT statement can be used to actually edit the
current contents of a variable. This is especially useful for inputs where the program can
second-guess the input response with a default response. Consider the following example:

INPUT “Do you wish to continue? ”,EDIT ANSWER$

As with any INPUT statement, this statement asks a question and stores the result into a
string variable (ANSWER$). But notice the word EDIT in front of the variable. This causes
the current contents of ANSWER$ to be displayed on the screen with the cursor
positioned over the first character, before accepting the user s response. If the user types
ENTER (or carriage return), the variable is returned unaltered. If the user deletes or
inserts characters into the display, whatever is shown when the ENTER key is typed is
returned in the variable.

7

7-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Your program can, of course, store the string Yes or No into the ANSWER$ variable before
issuing the INPUT statement. If the contents of ANSWER$ happens to be what the user
was about to type, the response need only be a single keystroke (i.e., typing the RETURN
or ENTER key). If the response differs only slightly from the contents of the variable, the
user can easily edit the visible entry already present on the screen into the desired
response, before typing the ENTER key. To edit this value, the first key you type Must be
an editing control key, rather than an ordinary input character. If the first key is an input
character, the current default entry shown vanishes from the screen and is replaced by
the key struck. This makes it unnecessary to delete the entry first when all you want to
do is simply type a different entry without editing.

Any input variable can be edited by preceding its name with the EDIT keyword.
Variables without this modifier will be input the usual way. You can edit numeric
variables in this manner as well. Numbers are displayed using the default format
currently in effect (explained earlier in this section) and with all leading and trailing
blanks removed. Do not use a numeric format that inserts commas into large numbers
because that would divide the input into several numbers (e.g., 1,234,567 is interpreted
as three numbers).

Suppressing Input Echo

If edited and echoed input is not desired, use the INCHR$() function, described in
Chapter 9, Section 4. Also, you can specify INPUT statements in three different forms to
control carriage return and character echo, as follows:

INPUT Echoes all input keys typed during each input entry.

INPUT1 Suppresses the carriage return echo after each input.

INPUT2 Suppresses all echo and editing control key action.

INPUT2 works just like the INPUT1 statement except that characters input are not
echoed to the console or other specified channel. Editing control keys are not recognized
and input as normal characters and input is terminated with a carriage return. This is
ideal for the input of passwords or other applications where echo suppression is
desirable. All three forms of INPUT behave in an identical manner when inputting from
an open text file: suppressing the echo of character and carriage return input and
disabling all input prompts.

Input from Files

When inputting from a non-interactive device, such as a file (opened under channel 3 to
31) or read-only device, the INPUT statement operates as follows:

� All prompts are suppressed and EDIT keywords are ignored.

� For each string variable being input, a complete line is read from the file. This
consists of all characters from the current file position up to the next carriage return,
end of file mark, or physical end of file (which ever comes first). This terminator is
not included in the line input, nor in the next line input. Thus a sequence of carriage
returns is INPUT as a sequence of null strings.

� For each numeric variable, MegaBasic reads the file from the current file position up
to the end of the number. Numbers must be terminated by commas, spaces, tabs,
linefeeds or carriage returns. All leading control characters and separators are
ignored.

7

7-19GFK-0256 Chapter 7 I/O and System Interaction

� Carriage returns and linefeeds (ASCII codes 13 and 10) are treated differently when
they appear in pairs. A CR-LF sequence collapses into a single CR code (ignoring the
LF). An LF-CR sequence collapses into a single LF (the CR is ignored and does not
terminate the line).

� An error occurs if you attempt to INPUT a numeric variable and no valid number is
present at the current file position. If numbers in the file contains commas, dollar
signs ($) or other extraneous characters, then numeric input is not directly possible
and you must input such values as strings and extract the values with string
operations. Numbers with decimals input into integer variables are truncated.

An error occurs if your program attempts to INPUT a string when the first character is
the end-of-file mark (26 code) or past the last file byte. You can test for this condition by
testing the INPUT() function (Chapter 9, Section 4) for a value of zero before each
INPUT line (Section 1 of this Chapter), or by trapping the error with the ERRSET
statement (Chapter 6, Section 4). To recognized a different endmark code, use PARAM(9)
to redefine it (Chapter 9, Section 5).

ENTER <console input source>

Redirects console input from a different, specified source text file or character device.
MegaBasic takes all subsequent console keyboard input from the input file specified,
until the file runs out or a BYE, END or DOS command is encountered. If the input file
runs out or an untrappable error occurs, the normal keyboard is re-established so that
subsequent commands are taken from the keyboard. ENTER can be used either as a
command or as an executable statement within a program. As an executable statement,
the <console input source> can be specified as a general string expression.

This capability is useful for re-playing a keystroke sequence for any purpose, such as
automating a sequence of MegaBasic commands or providing automatic responses to an
executing program for testing or demonstration purposes. Only DOS compatible
versions of MegaBasic currently support this feature. Enter works exactly like the DOS
command-level input redirection mechanism (e.g., BASIC < CONSOLE.INP).

EDIT$ = <string exprn>

Evaluates the string expression and places it into the previous-line buffer so that editing
control keys can be used on it in a subsequent INPUT statement, for example:

This permits editing of the string produced by the concatenation of A$, B$ and C$
without prior entry of that string from the keyboard. See Chapter 1, Section 6 for further
details on editing data as it is entered. The INPUT statement itself supports a much more
powerful method for editing the current contents of program variables. The current
contents of the previous-line buffer is always available from the EDIT$ function (no
arguments).

Because MegaBasic maintains a list of most-recently-entered lines, rather than a single
line, setting EDIT$ (e.g., EDIT$ = string), adds a new most-recent line to the line list.
Setting EDIT$ several times in succession adds several lines to the list, which can be
useful for pre-loading the buffer in preparation for a subsequent input entry. You cannot
overflow this buffer because MegaBasic makes room for new entries by automatically
deleting the oldest lines in the buffer as needed. Normally this buffer is 512 bytes long,
but you can resize it at any time by setting PARAM(24) to any size from 0 to 4096. The
buffer is always cleared to empty every time you set PARAM(24) (Chapter 9, Section 5)

7

7-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Command-Level Arguments

Whenever you execute a program, either from the MegaBasic command level or the
operating system command level, you can follow the command that starts the program
with additional characters on the same line. This sequence of extra characters is called
the command tail, and MegaBasic places it into the old line buffer when program execution
begins so that you can retrieve them (using the EDIT$ function) as needed by your
program, extracting any additional arguments it contains. For example, suppose you run
a program from the operating system using the command:

BASIC Program data1 data2 data3

When Program begin execution, EDIT$ will return the additional data typed as the
string: Program data1 data2 data3. This command tail must be used before your program
requests console input via the INPUT statement, because the edit buffer is then
overwritten and its prior contents are lost. See the EDIT$ function (Chapter 9, Section 4)
for special considerations about accessing the command tail string and using EDIT$ in
general.

IOCTL #<channel number>, <control string>

Transmits a control string to the device opened under the specified channel number. If
the device does not support control strings then no action is performed and no error is
reported. Control string operations are supported only under the MS-DOS operating
systems.

Some device drivers under MS-DOS and other operating systems can accept and
generate special control information called I/O control strings. These strings allow
programs to control the behavior of the device like baud rates, stop bits, communication
protocols, character translation, internal buffering, timing characteristics, etc. Special
status information may also be obtained from a device as input control strings. Control
strings are passed between application programs and devices via a special I/O channel
called the IOCTL channel which is provided by the device along side its normal character
I/O transfer channel. Control strings are simply character strings that are transferred
through this special I/O channel. The length and content of control strings is determined
by the the design of the device driver itself; it is really a special command language
designed specifically for a specific device. Its definition must therefore be obtained from
documentation associated with the device and is generally a customized capability
peculiar to a specific device driver.

Once your program has opened up a device under some MegaBasic channel number
using the OPEN statement, your program can then access the I/O control string
capabilities of the device. The following table lists the other control string facilities
provided by MegaBasic:

IOCTL(D)
This function asks the device opened under channel
number D if it can process control strings. The function
result is Yes (1) or No (°)

IOCTL$(D)
This function inputs a control string from channel
number D. If the device does not process control
strings then a null string is returned.

 IOCTL$(D,C$)
This function outputs control string C$ to channel
number D and then returns an input response control
string from the device, i.e., send a command and return
the acknowledgement response.

7

7-21GFK-0256 Chapter 7 I/O and System Interaction

Section 2: File Processing Statements

MegaBasic provides a complete set of file operations that your program can apply to
accomplish any desired file processing task. Most operations refer to files either by name
or by open channel number. Each statement performs a relatively simple operation, all
of which are summarized in the table that follows, giving you a view of the total range of
possibilities before delving into the detailed discussion of each file processing statement.

CREATE Creates a file under some new specified name.

 DESTROY
Permanently deletes files from the system. The storage area
they occupied then becomes available for use by other files.

RENAME Changes the name of a file to another unique name.

 DIR and DIR$ Provides listings of file directories and access to subdirectories
and user numbers.

OPEN
Opens an existing file for subsequent access and assigns an
open channel number. Files can be opened under a variety of
access levels to limit the kinds of operations permitted.

OPENC
Similar to OPEN except that files opened for output are created
automatically if they do not already exist, plus other automatic
features.

CLOSE
Closes a file that has been previously opened. This ensures that
all revisions made to the file while open are posted to the
permanent recorded copy of the file on the storage device.

 FILPOS(F)
Sets the file position of open channel E File positions can also
be set within READ and WRITE.

 FILESIZE(F) Sets the absolute file size under open channel F to a longer or
shorter length.

 READ Accesses information in an open file and transfers it to variables
in your program.

WRITE
Transfers variables or computation results to specific locations
of an open file. Information can written anywhere within a file
or appended to the end of a file.

LOCK
UNLOCK

Locks and unlocks regions of files opened in shared mode
under multi-user or network environments.

This section of the manual describes the facilities in MegaBasic for accessing and storing
data on files maintained by your operating system. You should be familiar with your
particular operating system, its capabilities and user facilities for basic file operations.

What is a File?

A file is simply a sequence of bytes or characters stored on some mass storage device,
which is maintained by the operating system as an individual data object, rather than as
separate bytes of unrelated information. Files may be of any length up to some limit
imposed by the physical size of the storage device and the configuration of the operating
system. Dividing large amounts of data into a set of files permits easier handling of the
data, similar to the way that manual systems break up data into individual files
containing related information.

7

7-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Since many files can be maintained by the operating system, each one is assigned it own
name, unique from the rest, so that any particular file can be identified when it is needed
for later access. File names are assigned by people and by computer software when the
file is created for the first time, and the name assigned usually contains some indication
of the purpose of the file or its contents. File names are expressed in MegaBasic
programs using string expressions, and in commands as a series of characters without
quotes around them. Consult your operating system manual for details concerning file
names, file types and internal file structures.

Accessing Files

In MegaBasic, as in other programming languages, a file must be opened before your
program can access its contents. This is similar to manual systems, where files must be
withdrawn from a file cabinet drawer and opened to view before the data they contain
can be accessed. Opening a computer data file causes MegaBasic to build a number of
internal control structures that provide efficient, direct access to the file without having
to give the file name for each operation. Your program can have up to 32 files open
simultaneously. An open file is identified in your program by its open channel number,
an integer from 0 to 31 which is assigned to a file when it is initially opened.

Once a file is open, you can read from it, write to it, determine or change its size, find out
the date and time that it was last modified, etc. Since a file is just a sequence of bytes on
a storage medium, the location of any particular byte in a file is called its byte position.
The first byte in a file is always at byte position 0, the second byte is at position 1, and so
on up to the last byte of the file. Byte position numbers are important because all data
transfers occur at specific byte positions in the file. You have to specify file positions to
access data located at random locations scattered about your file.

Sequential and Random File Access

For each open file, MegaBasic maintains a special byte position pointer which is called
the current file position. Whenever you do not specify the byte position of a data transfer,
MegaBasic performs the transfer at the current file position. Upon completion of the
transfer, the current file position is advanced to the byte position following the last byte
transferred to the file. Hence, if you never specify a byte position when transferring
data, successive transfers are performed in ascending file locations. Accessing files in this
manner is called sequential file access.

Another way to access a file is called random file access, so-called because data is read or
written in non-sequential or random order. To access data in a file at random, you have to
set the file position to the location at which you will be reading or writing. In actual
practice, most programs apply a mixture of both sequential and random access methods
to accomplish their tasks. For example, you might read alphabetized names from a
master data file that is in random order, under control of an index file that is read
sequentially. Random file access will be covered in more detail when we discuss the
transfer statements themselves.

When you specify byte positions and open channel numbers using values with decimals
(e.g., non-integer values like 523.736 and 0.943), MegaBasic truncates the numbers to the
next lower integer before using them (e.g., 523 and 0). An Out Of Bounds Error will occur
if negative values are specified as file positions. Also, real values specified for any integer
purpose such as these is slower than using integer values because MegaBasic has to
convert them to integer form before using them. This can be avoided by specifying
integer expressions in all integer contexts like open channel numbers, byte positions in
files, array subscripts, string indexing, etc. Integers are explained in depth over most of
Chapter 3.

7

7-23GFK-0256 Chapter 7 I/O and System Interaction

MegaBasic is capable of accessing very large files, up to 2,147,483,647 bytes in length.
This is greater than the limiting disk size supported by most currently available
microcomputers and their operating systems. Even when the ever expanding capabilities
of the latest microcomputers eventually support such capacities, few applications are
likely to require files of this size.

Text File Processing

The READ and WRITE statements described in this section are intended for general data
file information data transfers. One common class of files that requires special handling
is called text files, which contain unformatted lines of words and phrases like the page of
text you are now reading. It is convenient to process such files as a sequences of lines,
rather than as individual characters or fixed-length records. For this reason you should
transfer text information between text files and your MegaBasic program using PRINT
and INPUT statements instead of WRITE and READ statements. PRINT and INPUT have
been designed specifically to deal with such files in a simple I/O and System Interaction
and efficient manner, whereas you would complicate your task by using READ and
WRITE to do the same thing. Chapter 7, Section 1 describes in depth how to apply
PRINT and INPUT to text file processing.

Record-Oriented Files

In some applications, it can be useful to organize a file as a sequence of fixed-length
records, where each record consists of a set of data fields. In MegaBasic, you can
implement this by reading and writing records as fixed-length strings (see the READ and
WRITE statements about this). Such strings can be built from or divided into their data
field components using either standard MegaBasic string processing methods, or by
accessing the record string as a structured variable, composed of the desired data fields,
then accessing the various fields directly as variables. The subject of structured field
variables begins in Chapter 5, Section 3.

Specifying File Names

File names in MegaBasic statements and functions are always specified by string
expressions, which means they can be constructed using string computations, or pulled
out of string variables. You will often specify file names as simple string constants: just a
file name with quotes around it. The exact syntax of file names is defined by the host
operating system, but the differences generally affect only the set of characters that are
legal as file name characters (letters, digits and some punctuation). File names consist of
the following four parts:

<drive code>: <pathname> <primary name> . <extension>

The optional <drive code> is a letter indicating the physical drive on which the file
resides. You can omit this if the file resides on the default drive (see your system manual).
A colon (:) separates this letter from the rest of the name when the <drive code> is given.
The optional <pathname> specifies the directory where the file resides. The <primar y
name> is mandatory and consists of 1 to 8 characters. The optional <extension> consists
of 1 to 3 characters and immediately follows the <primar y name> with a period (.) in
between for separation.

7

7-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

A file name cannot contain question marks (?) or asterisks (*) for matching multiple files.
Periods (.) and colons (:) can appear only as separators as shown above, never within the
name portions. All letters in file names may be typed in upper or lower case for the same
effect. Also, no blanks (spaces) may appear anywhere within a file name; those in the
above file name format exist solely for visual purposes and do not appear in actual file
names.

Under MS-DOS you can specify file names with their directory path. This provides access
to files in directories other than the currently selected directory. As with file names, path
names can be typed in upper or lower case, but MegaBasic converts any lower case
characters to upper case internally. The names within a pathname must be separated by
backslashes (\) or forward slashes (/), and MegaBasic converts forward slashes to
back-slashes before the name is used internally.

Any legal MS-DOS pathname is acceptable to MegaBasic. Hence the file .. \ x refers to the
file named X in the directory just above the current directory. See your MS-DOS
operating system users manual for complete information about file pathnames and how
to specify them.

File Functions

There are a number of built-in MegaBasic functions (Section 2 of this Chapter) that
provide information about files useful to your file processing applications. These
functions are summarized below for quick reference.

Inchr$(F,N) Inputs N bytes from open channel F

Input(F) True if data can be read, False otherwise

Output(F) True if data can be output, False otherwise

File(F$) True if channel F$ exists, False if not

Filepos(F) Byte position of file opened under channel F

Filesize(F) Total file size opened under channel F

Filedate$(F) Date of last update for open channel F

Filetime$(F) Time of last update for open channel F

Filectrl(F) Internal system file handle of open channel F

Open$(F) Full name of the file open under channel F

Space(D) Total remaining disk space on drive D

Dir$(F$) File name strings extracted from the directory

CREATE <new file name>

Creates a new file of zero size on the disk. Omitting a drive reference from the file name
refers to the current default drive. The file name is a string expression which must
evaluate to a name not already present in the file directory. A File Already Exists Error
occurs if an existing file name is specified.

DESTROY <existing file name>

Permanently deletes the specified file name from the disk and its directory. The file
name is given as a string expression. DESTROY statements ignore file names that do not
exist, rather than reporting a File Not Found error. If you DESTROY an open file, its file
buffers are not flushed and the file is closed before being deleted to make it possible to
easily DESTROY a file that has exceeded the available disk space, without causing
additional Out Of Disk Space errors.

7

7-25GFK-0256 Chapter 7 I/O and System Interaction

RENAME <old file name>,<new file name>

Changes the name of a file to a new name, and possibly moves it into another directory
(on the same drive). MegaBasic reports an error if either the <old file name> doesn’t exist
(a File Not Found Error) or the <newfile name> does exist (a File Already Exists Error). Both
file names are given as string expressions.

Under MS-DOS, RENAME lets you rename a file with a different directory pathname,
causing the file to be physically relocated to that directory without any time-consuming
copy transfers. Such moves can only occur between directories on the same drive: a File
Creation Error is reported if you attempt to move a file across drives or network nodes.

DIR$ = <director y pathname string expression>

Selects the sub-directory to be used for subsequent file searches, displays, OPENS,
CREATES, DESTROYS, etc. This statement is only supported for the MS-DOS family of
operating systems. The string expression must evaluate to a valid MS-DOS pathname
starting at the root directory. If any of the names in the pathname are not found, no
directory change is made and a File Not Found Error will result. The root directory can be
selected using a pathname string of/. Consult your MS-DOS operating system guide for
further details on MS-DOS pathnames.

This statement also changes the current drive, as needed, in addition to changing the
current directory path. You can change the drive without changing the directory path by
specifying only the drive part, e.g., ”D:” or ”C:”. Prior to MegaBasic version 5.60, DIR$ -
did not modify the current drive, requiring you to set PARAM(2) for that purpose. If you
want to set the current directory on another drive without changing drives, you now
have to save and restore the current drive using PARAM(2).

When used as a string function, DIR$ (Chapter 9, Section 4) by itself (without any
arguments) will return the current pathname for the default drive. With an argument,
DIR$() Wi11 extract file names from the directory for further use in directory scanning
applications.

DIR = <user number>

Selects the CP/M user nurliber for all subsequent file operations under the CP/M class of
operating systems. The user number is normally zero, but with this statement you can
select any user from 0 to 15 (0 to 31 under TurboDos-86). The user number must be
selected prior to OPENing any files stored under that user. Files from different user
numbers may be OPEN at the same time without conflict. This statement is not
supported under the MS-DOS family of operating systems because they use
sub-directories instead of user numbers. Sub-directories can be selected by the DIR$
statement described above.

DIR [#<output device>][, <drive>][, <file.ext>]

Generates a file directory listing from your MegaBasic program. It displays the directory
only for the currently selected user number (CP/M) or subdirectory pathname (MS-DOS).
You can start and stop long displays using the space-bar, as described for the LIST
command (Chapter 2, Section 2). DIR prints a copy of the file directory from <drive> to
<device>. When omitted, both arguments take on the current default assigned to them.

7

7-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

DIR is provided so that your MegaBasic programs can list file directories; the following
examples illustrate its use:

DIR Displays all the files from the default drive.

DIR 3 Displays all the files from drive C:

DIR #1, 2 Prints all files from drive B: to the printer.

DIR “pgm” Displays all the files with type .PGM from the default drive.

Because channel numbers in the range 3 to 31 perform file operations sending a
directory to such a device involves simultaneous file requests that may not be supported
by the host operating system. You should therefore avoid directing the DIR to channels 3
to 31 unless you know that it works properly.

OPEN [<modifiers>] #<channel>, <file name>

Provides program access to a file and its contents lasting until the file is closed or the
program ends. The OPEN statement looks up the specified file name in the directory and
if found, associates the supplied channel number (0 to 31) with the file for reference by
subsequent operations involving that file. An error results if you attempt to OPEN a file
which is not found as specified in the file directory, or if you try to OPEN a file under a
channel number which is already assigned to another open file. A file must be OPENed
before it can be accessed with READ, WRITE, or other file statements and file functions
that refer to a file by channel number (including PRINT and INPUT).

Under the MS-DOS class of operating systems, you can OPEN any I/O device driver
present on the system. Such devices are not files and any byte positioning and buffering
concepts discussed below for files do not apply for open devices. These devices are
normally used by PRINT and INPUT statements which require that you OPEN them
under a number which is 3 or higher (0,1 and 2 are built-in I/O channels which cannot be
reassigned). Device drivers have names which, like file names, are specified with a string
expression in the OPEN statement to identify what to OPEN. Device names do not appear
in the file directory and you need to know what their names are in order to OPEN them,
a subject that should be covered in documentation relating to your particular system.

The current file position of a newly OPENed file will always be at byte position zero (at
the beginning of the file). So if you start writing data to a file immediately after OPENing
it, you will overwrite the previous contents stored at the beginning of the file. You must
set the byte position of the file to the location you desire the file transfer to take place.
For example, to append data to the end of a file immediately after opening it, you would
set the byte position to the byte size of the file before proceeding with the transfer
operation. See the FILEPOS() and FILESIZE () functions for further information. Byte
positions can be specified within the data list of the READ and WRITE statements
described in this section.

Your program should CLOSE files (Section 2 of this Chapter) which are no longer needed
by subsequent processes. Closing a file makes its channel number available for use by
another OPEN file and ensures that all changes made to the file are properly posted to
the file directory maintained by the operating system.

7

7-27GFK-0256 Chapter 7 I/O and System Interaction

Optional <modifiers> may be specified to control file access in the following ways:

SHARED

The file is OPENed in a mode that allows other users on the machine
to also OPEN the same file simultaneously. Under multi-user
environments, MegaBasic provides an automatic record locking and
unlocking mechanism to ensure file update integrity. Under single-user en-
vironments, such transfers involving such files are unbuffered, resulting in
much slower response but immediately posting file changes to disk. We will
fully discuss the use of OPEN SHARED files later on beginning in
Chapter 7, Section 2.

 INPUT
(or

READ)

Only permits READ or INPUT operations to be performed on the open file.

A WRITE or PRINT to such files causes a Read-Only error. In
multi-user systems, OPEN INPUT also allows other users to also have the
file open, but no locking operations are supported unless you also open
the file SHARED.

 OUTPUT
(or

WRITE)

Only permits WRITE or PRINT operations to be performed on this open
file. This is primary useful to trap an READS or INPUTS from files which
you intend to be open for output only, as the file is internally opened
in read/write mode.

APPEND

Positions the newly opened file to the first byte position beyond its end
(instead of at the beginning). A subsequent write operation will then
append data to the file instead of writing to the beginning of the file. Like
the other OPEN mode reserved words (i.e., INPUT, OUTPUT, SHARED,
etc), APPEND can be specified in combination with any of the other
modes. However, APPEND always implies output-only so if later the file is
repositioned and read, you must be sure to also specify INPUT along with
APPEND in the OPEN statement.

Opening a file for APPEND under CP/M systems may be a dangerous thing to do,
because there is no way to know exactly where the end of the file really is. CP/M
maintains the size of a each file in units of 128 byte blocks and unless you are always
writing 128 byte records, opening for APPEND Will usually position the file farther than
the actual end of the data.

If no modifiers are specified, the file is OPENed for input and output, and private
(exclusive) access under multi-user systems. The SHOW OPEN command (Chapter 2,
Section 5) shows you the current characteristics of all OPEN files.

The same file may be OPENed under more than one channel number so that several file
pointers can be independently used in subsequent file operations. This can be quite
useful in situations where sequential access from several different locations occurs
simultaneously, such as copying data from one location to another or sorting. MegaBasic
controls multiple buffer usage so that at all times any given 512-byte file segment can
only be buffered by at most one buffer. This is transparent to the program and prevents
any file update problems due to the multiple buffers.

A typical application of multiple file-OPENS is reducing record sizes in a file, in-place,
rather than creating a separate result file. For example the following program removes
all the spaces from a text file:

10 Rem –– Remove spaces from file F$
20 Open #8,F$; Open #9,F$; Dim LINE$(200)
30 While Input(8); Input #8,LINE$
40 LINE$ = LINE$-“ ”; Print #9,LINE$; Next
50 Close; End

7

7-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Line 20 opens file F$ once as an input file (#8) and once as an output file (#9). Line 30
processes each line in the file until the end of file is reached. Line 40 removes all spaces
from the line input and PRINTS the resulting line back to the file. The multiple buffers
and separate file pointers make this process both easy to program and very fast. This
kind of process only works when each resulting line is no longer than the input line.

A pool of file buffers is always available which is automatically assigned to files as
needed. The buffering system is completely transparent to your programs and never
needs any attention other than changing the number of buffers in the pool, using
PARAM(1O) (Chapter 9, Section 5). This number however need only be changed to
increase performance at the expense of memory. As few as 4 buffers or as many as 127
may be assigned and the number assigned is not in any way dependent on the number
of files you have open now or intend to open. For example, 4 buffers can service 32 OPEN
files or 127 buffers can service 1 OPEN file.

Files OPENed under channel numbers above 2 may be sequentially accessed by PRINT or
INPUT statements and by READ and WRITE statements. The example program shown
earlier does all file access with PRINT and INPUT. This facility provides efficient
sequential access to text-files. See Chapter 7, Section 1 for the details (under PRINT and
INPUT).

All OPEN files, their channel numbers, current file positions, and other characteristics are
accessible and common to all programs in a multiple package system. In such a system, it
may be useful to have a central routine manage the set of channel numbers which is in
use and available. The OPENS(F) function can be employed to test a channel number for
availability.

OPENC [<modifiers>] #<channel>, <file name>

OPENC works just like the regular OPEN statement except that it automatically creates
files that do not exist and erases files that do exist, according to how it was opened:

 OPENC Creates the file if it dos not exist already. If it does exist, OPENC
works just like OPEN.

OPENC INPUT Just like OPEN INPUT

 OPENC OUTPUT Creates the file if it does not exist, or erases the file if it does exist
(i.e., its file size is set to zero).

 OPENC APPEND Creates the file if it does not exist already and positions the file
pointer to the end of the file.

OPENC is often much more convenient to use than OPEN, but at the expense of exposing
data files to possible erasure from unintentional misuse. OPEN is more conservative than
OPENC, but the files it opens must always exist and it performs no extra services.

CLOSE [<list of channel numbers>]

Posts all recent changes made to open files (flushes buffers and sets file sizes), then frees
the open file channel number for subsequent reuse. The channel numbers of each open
file to be closed are listed immediately after the CLOSE reserved word. Each channel
number is preceded by a Ib-sign (#) and commas separate the channel numbers from
one another in the list. All open files are closed when no channel numbers are specified.

7

7-29GFK-0256 Chapter 7 I/O and System Interaction

For example:

CLOSE
Closes all files currently open. Avoid this form when there is a
possibility that you might unintentionally close files opened by
other packages.

CLOSE #N+3 Closes the channel number specified by the expression N+3.

MegaBasic does nothing if you specify a channel number that is not currently open. All
files are automatically closed when your program ENDS, but they will remain open after
a STOP statement so that subsequent CONTinuation can proceed with the same files
available.

FILEPOS (<channel>) = <new file position>

Sets the byte position of an OPEN file for subsequent sequential file operations. Random
file positioning may also be specified within the data list of a READ or WRITE statement,
but FILEPOS() is sometimes more convenient and readable. When the file is being
processed only with PRINT and INPUT statements, this is the only method of
re-positioning available. By setting the file position to the file size in bytes (see the
FILESIZE() function), subsequent WRITE or PRINT statements will append data to the
end of the file, extending its length accordingly.

FILESIZE (<channel number>) = <new file size>

Sets the absolute size of an OPEN file to the <new file size> specified. This statement
changes the amount of physical disk space that is allocated to a file and hence changes
the amount of disk space remaining. The <newfile size> is specified as a numeric
expression (integer of real) that evaluates to the number of bytes in the file (i.e., the file
position of the first byte beyond the end of the file).

Setting the file size is not a commonly required operation because the WRITE statement
automatically extends the file as data is written past the old end of the file. It is especially
useful for shortening files, as there is no other way to do it. This operation is possible
only if the host operating system supports it (e.g., MS-DOS and Xenix).

READ [<type mode>] #<channel>, <data list>

Reads data from an open file, specified by the <channel number>, into one or more
program variables (string, integer or real). The <data list> consists of a series of items,
separated from one another with commas. Except for file position expressions, all READ
items must be variables (i.e., not expressions).

File Position (%)

Changes the file position for subsequent READS from the file, specified as file
byte-position expression preceded with a percent sign (%). When you do not specify this
position, data will be sequentially read from the current file position. The current file
position becomes the position specified here, and you can re-specify it more than once in
the <data list>. You can also set the file position using the FILEPOS() assignment
statement.

7

7-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Variable-length String Variable

Reads a MegaBasic variable-length string from the file into the specified string variable.
Variable-length strings reside on files with a two or three byte header that indicates how
long the string is. This entire length is read into the variable. If the variable is shorter
than the string being read, only the left-most portion that fits will be transferred to the
variable, discarding the rest. Such strings with headers are written by MegaBasic WRITE
statements. A Data Type Error occurs if a proper string header is not found at the current
file location. The target string variable can be indexed or unindexed.

Real Variable

Reads a floating point value from the file into the specified real variable. No validation of
the bytes read is performed; whatever bytes are present in the file are read into the real
variable. Hence, a real (memory image) representation is read from the file, instead of
the less efficient ASCII representation (as some other BASICS read). INPUT statements
should be used for reading ASCII numbers from files. The number of bytes read depends
on the floating point precision provided by the current version of MegaBasic. Chapter 3,
Section 1 discusses the internal representation of floating point real numbers. Chapter 3,
Section 7 describes how to read entire arrays from the file in one READ.

Integer Variable

Reads the next four bytes from the file into the integer variable specified. These bytes are
ordered from the low to high in the file. No data type checking is performed on integer
values as they are read from the file (as done for string values described above).
Chapter 3, Section 7 describes how to read entire arrays (i.e., vectors) of integer values
from the file in one quick operation.

16-bit Values into Numeric Variables (@)

Reads the next two bytes from the file into an integer or real variable after performing
the appropriate type conversion. An at-sign (@) must precede each numeric variable in
the data list to be read in this manner. The two bytes read are interpreted as an unsigned
integer value (ranging from 0 to 65535), which is converted to the proper format for the
numeric variable specified (real or integer). The two bytes are ordered low-to-high on
the file.

8-bit Values into Numeric Variables (&)

Reads the next single byte from the file into an integer or real variable after performing
the appropriate type conversion. An ampersand (&) must precede each numeric variable
being read in this manner. The byte read is interpreted as an unsigned integer value
(ranging from 0 to 255), which is converted to the proper format for the numeric variable
specified (real or integer).

Fixed-length String Variable (&)

Reads zero or more bytes directly from the file into a string variable. No header is
interpreted from the file to control this operation. Instead, the number of bytes read is
determined by the exact length of the string variable specified, i.e., its string length, not
its maximum dimensioned size. You must precede each string variable to be read in this
manner with an ampersand (&) to indicate fixed-length string mode.

7

7-31GFK-0256 Chapter 7 I/O and System Interaction

This method gives you the most control over how many bytes are read, but you are
responsible for controlling the length of the transfer by controlling the length of the
receiving string variable. In general, fixed-length strings are the best way to read
fixed-length records from a file. Additional steps are required to access the individual
data fields within such records.

Forming a READ Statement

A READ statement data list is composed of the above data items in any combination. The
data list may be any length as long as the entire READ statement fits within one
MegaBasic program line (up to 255 characters). Chapter 3, Section 7 describes an
additional way to read data into vector or array variables. READ statements are
processed from left to right, performing each READ or file position task as encountered in
the order given in the data list.

The variables read must be simple variables, array elements, string variables or string
array elements. Any string variable or array element may be indexed to read data into a
substring region of the variable. As data is read from the file, it replaces the prior
contents of each receiving variable in exactly the same manner as if the data were stored
using an assignment statement to each variable. The following statement will illustrate
some of the possibilities:

READ #F, A,B,C, %P1 ,X,Y, %P2,Z

This reads A, B and C from the current position of the file, X and Y from position Pl, and
Z from position P2. Simple numeric variables and individual array elements may be read
from the file.

Reading Numbers

The numeric precision assumed when floating point values are read from a file must
agree with the precision in effect when the data was written. For example if a file was
written using 14-digit precision MegaBasic, it cannot be read by any program being run
under 8,10 or 12-digit configurations of MegaBasic. The precision of floating point values
read/written to files is, however, independent from the precision used for variables.
PARAM(11) may be set to any precision from 6 to 18 digits to control subsequent file
transfers (p. [P#,param).

Binary data can also be read into numeric variables by prefacing each numeric variable
reference with an ampersand (&) for 8-bit values or an at-sign (@) for 16-bit values.
16-bit values are defined as the next two bytes on the file with the low-order byte first.
Both 8-bit and 16-bit values are interpreted as unsigned integer values. Binary file
operations bypass all type checking since they read whatever is presented to them. The
8-bit and 16-bit values are converted to floating point format when read from the file
into real variables. Integer variables do not require this conversion and hence a much
faster transfer results. The following READ statement illustrates the possibilities:

READ #F,X,A(I,J),8Y,@B(K)

where numeric values are read into X and A(I,J); a byte-value is read into Y and a 16-bit
word-value is read into B(K). Reading vast quantities of bytes with this method is not
recommended because each byte read is individually read and dispatched to each
destination variable one at a time. Also, you should avoid using real variables for
receiving 8 and 16 bit values because of the considerable effort that is required to convert
each value to floating point representation, a process performed internally for each
variable read. Large quantities of binary information should be read as fixed-length
strings into string variables, as described shortly.

7

7-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Reading Strings

String variables can be read as a whole or as indexed sub-strings. String data is written in
a special compact format: the amount of storage taken equals the length of the string
plus two for up to 255 characters, or plus three for over 255 characters. The short
sequence of bytes in front of such strings is called the string header, which tells
MegaBasic that a string of some specified length resides on the file. This header makes it
possible to sequentially read variable length strings, one after another from the file,
without having to explicitly specify and control how much data to read on each transfer
(because the length is embedded in the string itself).

If the string on the file is larger than the variable it is read into, the characters that don’t
fit are lost just like string assignment statements). Regardless of the string variable
capacity, the file pointer is always set properly to the next item in the file after reading
any string.

In some applications, string headers are not suitable because you are reading pure
binary information from the file that was not written as variable-length strings. An
example of this is a file written by a foreign system which your program is processing by
interpretation. To read pure sequences of bytes from files, bypassing all type and header
controls, precede each string variable name with an ampersand (&). The number of
bytes read is controlled by the current (before the READ) length of the string. 16-bit
binary READS are not possible with string variables. The following example shows how
this is done:

10 DIM A$(100), B$(167); Rem––Set your string sizes
20 Read &A$, &B$; Rem –– Read 100 bytes into AS, 167 into B$
30 Read &A$(1,N), &B$(1,M); Rem––Read N bytes into A$, M into B$

It is very important to realize that the number of bytes read using ampersand string
variables is equal to the length of the string variable specified in the READ list. This
length is not necessarily the same as the DIMensioned size of that string variable. For
example if we set A$=”” prior to the READ in line 20 above, zero bytes will be read into
A$ when it is read. Furthermore, this kind of READ never affects the length of any string
variable, as measured by the LEN function (e.g., LEN(A$)). A length of a string variable
can be set to any length up to its dimensioned size with a statement like: LEN(A$)-N , as
described in Chapter 5, Section 1.

Random-Access READs

As each data item is read from the file, the file position is advanced by the number of
bytes read, so that the file position is always aligned to the next data item. When
randomly accessing a data file, you must specify file positions which always refer to the
first byte of multi-byte data items (such as strings, 16-bit values, and floating point
values. To do this you must know the number of bytes required for each data item.
String and binary data types are covered above. The length of floating point values is
always the same for a given MegaBasic precision: PRECISION/2+1. Thus the standard
8-digit precision requires 5 bytes (8/2+1 = 5). If you ever access a data item somewhere
past its first byte, a Data Type Error will usually occur to inform you of the problem.
However binary data items have no identifying characteristics to permit such error
detection, so exercise great care when processing random binary files.

7

7-33GFK-0256 Chapter 7 I/O and System Interaction

Numeric Representation Control
The <type mode> is an optional modifier you can place in any READ (or WRITE)
statement to control the numeric type (real or integer) of numeric values read, regardless
of the numeric type of the variable receiving the number. You specify this modifier as the
reserved word REAL or INTEGER typed just after the word READ and before the
#channel number expression. This modifier has no effect upon string READS and
WRITES not even in the case where the strings happen to contain numeric structure
fields, as such strings are treated as ordinary strings.

The INTEGER modifier causes all numbers to be read as integers during the modified
READ statement, even if real variables appear in the data list. MegaBasic automatically
converts these integer values read from the file into real form when the receiving
variable is real, and no conversion is applied when the variable is integer.

The REAL modifier causes all numbers to be read as real values (IEEE binary or BCD
floating point) during the modified READ statement, even if integer variables appear in
the data list. MegaBasic automatically converts these real values as they are read from
the file into integer form when the receiving variable is integer, and no conversion is
applied when the variable is real.

In most applications, numbers are written on files in predominantly one type or the
other, and the <type mode> allows you to READ a series of numeric values of one type
into a series of variables of both types (in any mixture). This feature can be useful for
ensuring the proper interpretation of stored numbers without having to be aware of the
numeric type of the variables being read into. Numbers read into variables preceded by
ampersands (&) or at-signs (@) are unaffected by the REAL and INTEGER type
modifiers. Converting numbers between real and integer representations can degrade
program performance and may involve some precision loss in the process. Chapter 3
describes both numeric types and important additional information about conversions.

One application for the REAL <type mode> occurs when a program designed with only
real variables is converted to take advantage of integer variables and expressions. Files
processed by such programs may be reading (and writing) numbers which, by design,
would always be real numbers. If the data lists of READ (and WRITE) statements become
integer data lists, the real file transfers will suddenly become integer file transfers, and
erroneous results would surely follow. You can solve this problem by simply inserting
the REAL modifier immediately after each READ and WRITE reserved word throughout
such converted programs to force REAL number transfers for all transfers.

WRITE [<type mode>] #<channel>, <data list> [,NOMARK]
Writes a list of one of more data items to the open file specified by the <channel>.
WRITE works just like the READ statement except for the direction of data transfer. The
data listed need not be confined to just variables. Any data being written may be
specified as a general expression whose computational result is written to the file. As in
the READ statement, the data list of a WRITE consists of strings, numbers and file position
expressions, as summarized below:

File Position (%)
Specifies the starting byte position in the file to which the next data item will be written.
This is specified with a percent sign (%) followed by a numeric expression that evaluates
to the desired byte position. When you do not specify this position, data will be written
sequentially to the current file position. The current file position becomes the position
specified here, which can be re-specified more than once in the <data list>. You can also
set the file position using the FILEPOS() assignment statement.

7

7-34 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Variable-length Strings

Writes the string specified as a variable-length string to the file at the current file
position. Such strings are written to files with a two or three byte header that specifies
how long the string is, so that the same length can be read back at a later time. The
header also helps MegaBasic verify that a string is actually on the file when a READ
request attempts to read it. Variable-length strings are useful for variable-length record
structures.

Real Values

Writes the specified floating point real value to the file at the current file position. The
exact memory image of the (IEEE binary or BCD) floating point value is written to the
file, rather than a printable ASCII numeric representation (as written by some other
BASICS). The number of bytes written is dependent on the floating point precision
provided by the current version of MegaBasic (as described in Chapter 3, Section 1). The
precision of floating point values read/written to files is, however, independent from the
precision used for variables. PARAM(11) may be set to any precision from 6 to 18 digits
to control subsequent file transfers (Chapter 9, Section 5). PRINT statements should be
used for writing ASCII numeric representation to files.

Numbers should be written to files in this manner when speed is important and the
numbers being written contain decimals or can span a very large numeric range. This is
the most general purpose numeric file format. A number is written in this representation
whenever the number evaluates to a real number. See Chapter 7, Section 3 for complete
details on the differences between real and integer numbers and how to specify them.
Chapter 3, Section 7 describes how to write partial or entire arrays to files in one quick
step (i.e., as vectors).

Integer Values

Writes the specified integer value to the file at the current file position as a sequence of
four bytes. These bytes are ordered from the low to high in ascending locations on the
file. You should consider this numeric file format when speed and wide range are
important and the values being written are always integer, especially those which are
manipulated within programs in integer variables. This representation is particularly
well suited for storing file position pointers used in complex linked file structures. A
number is written in this representation whenever the number evaluates to a integer
number. See Section 3 of this chapter for complete details on the differences between
real and integer numbers and how to specify them. As with real numbers, integer arrays
can be written to files using vector write operations, described in Chapter 3, Section 7.

16-bit Word Values (@)

Writes the specified value, which must be within the range from 0 to 65535, as a
two-byte sequence to the current file position. You must indicate numbers to be written
in this manner by preceding each one with an at-sign (@) to distinguish them from
those written in real or integer format (described above). The two bytes written are
written in low-byte high-byte order on the file. Real values written in this way are
automatically converted to binary integer form before the transfer takes place. You
should consider this numeric format when compactness is an important consideration
and the values to be written always lie within the 16-bit unsigned integer range.

7

7-35GFK-0256 Chapter 7 I/O and System Interaction

8-bit Byte Values (&)

Writes the specified value, which must be within the range from 0 to 255, as one byte to
the current file position. You must indicate numbers to be written in this manner by
preceding each one with an ampersand (&), distinguishing them from those written in
real or integer format (described above). Real values written in this way are
automatically converted to binary integer form before the transfer takes place (a time
consuming process best avoided). You should consider this numeric format when
compactness is the overriding consideration in your application and the values to be
written always lie within the 8-bit unsigned integer range.

Fixed-length Strings (&)

Writes the string specified directly on the file at the current file position. No header
describing the string is written to the file ahead of the string. The string is written exactly
as specified, no more, no less, and programs that read it back are expected to determine
for themselves how to many characters to read. You must indicate strings to be written
in this manner by preceding each one with an ampersand (&), distinguishing them from
those to be written as regular string data with headers. You should consider writing
strings in this way when headers are undesirable, or for fixed-length records, or when
you want to control all aspects of your data transfers at the expense of some additional
program complexity.

Forming WRITE Statements

A WRITE statement data list is composed of the above data items in any combination.
The data list may be any length as long as the entire WRITE statement fits within one
MegaBasic program line (up to 255 characters). Chapter 3, Section 7 describes an
additional way to write data from numeric vector or array variables. WRITE statements
are processed from left to right, performing each WRITE or file position task as
encountered in the order given in the data list. A typical WRITE statement looks
something like this:

Write #F, R+S,Log(X), %P1,X,Y, %P2,ZIY–54

This statement writes R+S and LOG(X) at the current file position, X and Y at position
Pl, and Z/Y-54 at position P2. Without any file position specifications (%), all data is
written sequentially on the file. Writing past the physical end-of-file causes the file to be
extended automatically.

Writing Numbers

It is of the utmost importance for you to understand that numbers are written to the file
in different ways depending on whether the number evaluated in the <data list> as a
real number or as an integer number. Integers and reals are written using a different
number of file byte positions and their structures are interpreted in totally different and
incompatible ways. Programs that expect a certain numeric representation on a file
where a different one resides will produce erroneous and unpredictable results. You
should be familiar with all of the material presented in Section 3 of this chapter, in order
to properly express numeric values and computations so that they evaluate to the
expected numeric type.

7

7-36 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

However, you can specify an optional <type mode> for specific WRITE (and READ)
statements to force numbers being written to a specified type, regardless of how they
are specified. Either of the reserved words REAL or INTEGER may be inserted between
the WRITE (or READ) reserved word of the statement and the <channel>, to cause any
particular file transfer to only write the numeric file representation corresponding to the
type specified. Numeric type control only affects numbers and has no effect on strings,
even if the string contains numeric structure fields.

If a number appears in the <data list> of the wrong type, MegaBasic automatically
converts it to the <type mode> specified. Although too many such conversions can
degrade the performance of your program, your program will transfer numbers in a
predictable and expected manner. You should be aware however that these conversions
have certain limitations on numeric range and precision that are also described in
Chapter 3. The following two example WRITE statements illustrate an integer-only
WRITE and a real-only WRITE to the channel number contained in variable F:

Write integer #F, X,Y, Z
Write real #F, X,Y, Z

Binary data can be written by prefacing each numeric expression with an ampersand (&)
for 8-bit values or an at-sign (@) for 16-bit values. Floating point values from 0 to 65535
are converted to binary format before the WRITE takes place. The optional <type mode>
has no effect on any binary format. For example:

Write real #F,X,A(I,J),&Y,@B(K)

In this WRITE statement, X and A(i,j) are written to the file as floating point values, Y is
converted to an 8-bit value and then written, and B(E9 is converted to a 16-bit value and
then written. 8-bit and 16-bit values consume only 1 and 2 bytes of file space,
respectively.

Writing Strings

String expressions may be included in the data expression list and are written in a
manner corresponding to the READing of strings. Preceding string expressions with an
ampersand (&) causes the string to be written as a sequence of fixed-length bytes for the
length of the string. Without the ampersand (&), strings are written with a 2 or 3 byte
header in front of the string for identification purposes; ampersand (&) strings are
written as pure fixed length byte sequences without any header. The following example
illustrates the various ways a string can be written:

Write #F, A$,B$(1,J),“literal”+Q$, &C$,&D$(K,L),&Chr$(0)*15

This statement writes A$,B$(i,j)and”literal”+Q$tofile#Fasvariable-length strings,
followed by fixed-length strings C$, D$(k,1) and CHR$(O)*15 (without headers), the
later of which generates a sequence of 15 binary zeros, a topic described in Chapter 4,
Section 4.

Since the elements of a WRITE statement may be general expressions, each data item
listed in the data list is evaluated internally and this internal result is then written to the
file. String data can potentially consume all the internal work space set aside for this
purpose and hence great care must be exercised when very long computed strings are
being written.

7

7-37GFK-0256 Chapter 7 I/O and System Interaction

In the case where the string expression consists solely of a string variable (indexed or
not), the contents of the variable are transferred directly to the file, rather than being
evaluated internally as a general expression. Hence no internal memory is required for
this common case. A side benefit of this implementation is that large transfers out of
string variables proceed twice as fast as transfers of string expression results of
comparable length.

End-of-File Marks

If file endmark generation is enabled (see the NOMARK statement below), MegaBasic
writes an additional single byte file endmark at the prevailing file position (without
advancing the file pointer) after executing each WRITE statement. While useful for
purely sequential file usage, this often proves unsatisfactory for binary or random access
operations. To prevent the generation of the end-of-file mark, you may finish WRITE
statement with the NOMARK keyword, for example:

Write #F, A$, X, Y, Nomark

This same keyword may also be used as a program statement to provide global control
over the generation of end-marks for subsequent write operations (see the next
statement) . The endmark code generated may be redefined using PARAM(9), described
in Chapter 9, Section 5.

NOMARK <logical exprn>

Normally, MegaBasic does not write endmarks during write operations. The NOMARK
statement lets you enable or disable endmark generation at any time. A non-zero
expression (logical True) causes file mark suppression, and a zero (logical False)
expression brings it back again. When endmarks are enabled, the endmark code (usually
an ASCII 26 code), is written to the file each time a WRITE statement is executed. It is
written to the file at the file byte immediately following the last item written by the
WRITE statement (without advancing the file position).

Endmarks usually get in the way in applications involving binary or random file
operations. In other applications, usually text or other sequential processing, endmarks
can be useful. CP/M-86 extends files in blocks of 128 bytes at a time. Endmarks can be
useful under that operating system (and others like TurboDOS) to mark the true
end-of-file within the last file block.

If the keyword NOMARK is appended to the output list of a WRITE statement, the
endmark for that statement is suppressed, regardless of the current NOMARK
enable/disable state. Therefore, the NOMARK statement affects the action of only those
WRITE statements which omit the NOMARK keyword. The endmark code normally used
is an ASCII 26 code, but this can be redefined using PARAM(9) (Chapter 9, Section 5) or
the CONFIG utility program (Appendix C, Section 2). NOMARK also controls whether
or not the end-mark is used to detect the end of file during READS and INPUTS.

WRITE [#<channel number>]

Flushes all file buffers internally associated with the open file specified, or flushes all
open files if no channel number is specified. This statement has the same effect as closing
the file(s), re-OPENing them, and setting the file position of each back to the same
position it was when closed. This statement is useful in situations where, at certain
points during program execution, it is desirable to ensure that the physical files on the
disk are totally up-to-date. Typical applications include data base programs and
multi-user environments. Files which are OPEN SHARED are unlocked by this operation.

7

7-38 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

READ [#<channel number>]

Flushes all file buffers for all open files or for the one specified, just like the WRITE
statement described above. In addition however, this statement empties the contents of
all the affected file buffers so that subsequent file operations are forced to perform
physical disk transfers. Most programs will not need (or desire) to use this statement,
which greatly slows down subsequent file operations. It is provided specifically for
multi-user and network environments where files may be serving several processes
simultaneously. It is not possible to update multi-access files properly unless the users of
such files always deal directly with the file itself, rather than through private buffers in
memory. This statement simply re-starts the buffering process from scratch, each time it
is invoked.

Shared OPEN Files

When your program OPENS a file under multi-user and network versions of MegaBasic
no other process is permitted to open that file with write-privileges until it is CLOSED.
Conversely, if the desired file is in use by another process when your program attempts
to OPEN it, a File Busy Error occurs, which can be trapped with ERRSET as a type 26 error.
Once the file has been successfully OPENed, your program has exclusive access to that
file. NOTE: MegaBasic exclusive OPENS do allow other processes to open the same file for
read-only access. Conversely, files open for read-only access can also be opened by other
processes for read write access.

Occasionally, especially in large data base applications, you may wish to OPEN a file
without excluding other processes from OPENing it and without being prevented by
another ’s access in progress. This is called a non-exclusive or SHARED open file, which is
specified by an OPEN statement of the form:

OPEN SHARED #<channel number>,<file name>

Any file, not already exclusively OPENed (non-SHARED), may be OPENed for SHARED
access. Such files can be tricky to deal with, however, because if several processes are
accessing and modifying the same area of the file simultaneously, the outcome can be
highly unpredictable (depending on the order in which the different processes
access/modify the file contents). Depending on your system, you may have to set
Param(22) for correct operation (Chapter 9, Section 5).

The general approach that you must use in shared file access applications is to perform
one transaction at a time. A transaction in this context is the set of all operations on
shared files that must all be performed and completed successfully to bring about the
desired outcome. For example, inserting a new record into a data base is one transaction
that may involve updating several index files and one or more master files. Such
operations will fail if other users can modify any of these related file structures in the
middle of this transaction. Furthermore, external access involving any data that is in the
process of changing will not be valid either. Hence, the following outline summarizes the
correct way to implement such a transaction:

� Identify and lock all potentially writeable components required in the desired
transaction. Do not proceed until all components are locked or you abort the
transaction.

� Now that you have exclusive access to all required file regions, perform the
necessary accesses and updates that are needed.

� Unlock every component locked in the first step.

7

7-39GFK-0256 Chapter 7 I/O and System Interaction

MegaBasic makes use of the record locking capabilities of the multi-user system to give
your program temporary exclusive access into critical areas of the SHARED file (regions
where potential modifications could disrupt the intended sequence in progress).
Although this locking mechanism has been designed to be as automatic and transparent
as possible, there are inherent difficulties with the very concept of shared files which
require the MegaBasic programmer to fully understand the actions invoked by READ (or
file INPUT) and WRITE (or file PRINT) statements.

Explicit File Locking

The LOCK statement lets you explicitly lock an open file region and UNLOCK lets you
unlock it, both of which have the same syntax:

LOCK #<file number>, <lock specification>
UNLOCK #<file number>, <lock specification>

where the <lock specification> can be one of the following:

<start> Specifies a 1-byte lock at the specified file location.

 <start>: <length>
Specifies a lock at the specified file location over the
<length> specified.

 <start> TO <end> Specifies a lock at the specified file location up to
the ending position specified.

LOCK and UNLOCK give you complete low-level control over the locking used on SHARED
files. They do nothing if applied to files not opened in SHARED mode. However, you are
responsible for unlocking everything you lock in exactly the same manner it was locked
and for remembering to do so before closing the file. LOCK and UNLOCK affect neither
the current file size nor its position for subsequent READS or WRITES. Retriable
Suspended File Access errors are generated if the file is already locked by another process.

The automatic locking performed by MegaBasic on SHARED files is still active and can be
used along with the LOCK and UNLOCK statements. However, since these direct locking
statements provide more control over locking, PARAM(26) can be set to 1 to disable the
automatic locking of MegaBasic (or to zero to re-enable it again). PARAM(26) is local to
each MegaBasic package. Setting PARAM(22) to –1 will disable automatic locking over all
packages in the application.

Automatic Locking Under MegaBasic

Files under MegaBasic are stream-oriented, rather the record-oriented. This means that all
files are viewed as a continuous sequence of bytes, over which the programmer may
impose logical records using file position addressing techniques. Thus a string or number
on a file is read or written as a short sequence of bytes at some specific byte location
within the file. This approach to file operations provides the greatest possible flexibility,
but it leaves the notion of records up to the individual programmer to define. For
example, records of 100 bytes can be accessed by record number R using the following
READ statement:

READ #F, %R*100, A$,B$,X,Y,Z

Notice that we position the file at the byte location derived by multiplying the record
number by the record length. The record itself, in this case, consists of two strings and
three numbers.

7

7-40 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

In multiuser and local area network applications, record locking is generally provided by
letting an application inform the operating system that one or more regions of a file will
be temporarily locked to prevent other users from accessing them while they are being
changed. After completing the transaction, the user unlocks the locked regions and
continues on.

In a record-oriented file model, records can be locked and unlocked as they are accessed.
But a different approach must be used in a stream-oriented file model because the
records are conceptual, rather than physical. Since the operating system typically limits
number of individual file locks per process (usually less than 64), locking each byte is not
feasible. Instead, MegaBasic defines records, for record locking purposes, in the
following way:

� The beginning of a record is defined as the first file byte accessed by a READ or WRITE
statement or the first byte accessed after a change in file position.

� The end of a record is defined as the last byte accessed by the READ or WRITE
statement before the end of the READ or WRITE statement, or the next file position
change, which ever occurs first.

Thus each READ and WRITE statement can access one or more records, delimited by the
statement boundaries and/or file position changes. For example, the following READ
statement accesses three records:

READ #F, A$, %123,X,Y,B$, %9999,C$,Z

Notice that several variables may be accessed in one record and that you could read the
beginning of a record without reading the rest of it. It is important to realize that this
notion of records is defined for the purpose of record locking and it may not correspond
to the logical records that a program uses when accessing the file.

When your file is OPEN SHARED, all READS and WRITES (INPUTS and PRINTS too)
implicitly lock and unlock the file blocks in a predetermined way. Your programs are
never concerned with the actual lock/unlock operations themselves. Your program is
strictly concerned only with its READ and WRITE statements. Internally, MegaBasic
performs READS and WRITES in the following sequence of steps:

Shared Read Sequence
� Unlock all locks currently active throughout this file.

� Reposition the file as needed, then lock the first byte of the current record.

� Read the actual record directly from the file. No buffers are used on any file
operations of file opened in SHARED mode. If there are more records to read, go back
to step (2).

In other words, a READ statement first unlocks all areas currently locked in the file, then
locks each record and reads it into the program variables. Lack of buffered support for
SHARED transfers greatly slows down the transfer but this is essential for correct
operation in a shared access system. The WRITE sequence is the converse of the READ
sequence:

Shared Write Sequence
� Reposition the file as needed then lock the first byte of the current record.

� Write the record directly to the file, i.e., without any file buffering. If there are more
records to write, go back to step (1).

� On completion of the write statement, unlock all records of this file that are
currently locked.

7

7-41GFK-0256 Chapter 7 I/O and System Interaction

In other words, a WRITE statement locks each record before writing it, and writes each
record directly to the file without buffering. On completion, all records currently locked
are unlocked, including both the newly locked records and any records already locked
before the write operation began.

Notice that WRITE is the converse of READ in all respects. In most programs most of the
time, the scheme for READS and WRITES as defined above will provide all the
locking/unlocking features necessary. For example reading some values, using them in a
computation, then modifying and writing them back to the file will always operate
correctly, even if other processes are trying to do the same thing. This policy also tends
to minimize the number of file locks active at any given instant.

At first glance, it may appear that locking only one byte of a record would not be
sufficient for reliable operation. However, shared access is an inherently cooperative
process that would not work without agreement by all competing processes. As such,
locking the first byte of a record is equivalent to locking the entire record as long as
every file access abides by one very simple rule: always access records from the
beginning of the record, i.e., do not access the middle of a record without accessing the
beginning. This is a very reasonable rule that is easy and natural for any process to
observe. Such processes already have to cooperatively access files through the locking
primitives provided by the operating system, so one additional minor rule is in no way
unreasonable.

Multiple File Locks

In some situations, a transaction involves several regions of one or more files, all of
which have to be locked during the transaction process. For example, deleting records
from linked data structures stored on a file may requires numerous READS and WRITES
to perform one logical modification to the file, requiring a continuous lock on all file
regions involved until the operation is complete. To do this, the file transfer statement is
augmented with the keyword LOCK to indicate that locked records are to remain locked.
This disables the unlocking phase of the READ and WRITE statements that was described
earlier. Such statements will then appear as follows:

READ LOCK #<channel number>, <transfer list>
WRITE LOCK #<channel number> , <transfer list>
INPUT LOCK #<channel number> , <transfer list>
PRINT LOCK #<channel number> , <transfer list>

PRINT and INPUT statements can also transfer data to and from files and as such, they
should be thought of as READS (INPUT) and WRITES (PRINT).

We should emphasize that this mode of operation is the exception rather than the rule
and overusing it can lead to poor performance for competing processes or exceed the
maximum number of locked regions permitted by the operating system, resulting in a
Too Many File Locks Error. If you require many parts of a file to be locked simultaneously,
you should consider OPENing the file in exclusive (unSHARED) mode, instead of SHARED
mode.

Always minimize the total number of locked records at any given instant. This is done by
following the policy of locking what you need to, use the locked data immediately, then
perform all necessary updates (WRITES) and leave the file in a completely unlocked
state – all as one action to be done without interruption. MegaBasic itself can only
maintain a total of 64 locks at any given time over all OPEN files collectively. The
operating system may support more or less than this number, so your programs must be
designed to limit the use of this extremely scarce resource to avoid premature program
termination (by errors).

7

7-42 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Some operating systems, notably Concurrent CP/M and TurboDOS 86, cannot lock files
down to the byte level. Instead, they only support locking of file blocks, typically 128
bytes each. Therefore when MegaBasic locks the first byte of a record under these
systems, it is actually locking the appropriate block in the file that contains the desired
byte. This can sometimes cause unexpected delays due to the locking of nearby regions
unrelated to the transaction at hand. This cannot be avoided in such systems.

Retry Control for Blocked Resources

When MegaBasic attempts to lock a record, in preparing to read or write that record, a
Suspended File Access Error will occur if that record is already locked by another process.
You should consider this error to be a normal, expected event in applications that access
shared files. However, setting up an ERRSET trap for every file access operation in the
program can get pretty tedious (and bulky). Therefore MegaBasic provides a special
mechanism that lets you provide your own automatic response in these situations.

The RETRY statement (Chapter 6, Section 4) defines a procedure to be invoked when
resource access is temporarily blocked by other processes. This include the system
printer, exclusively OPENed files (unSHARED), locked records, locked disk drives, etc. This
error recovery mechanism is supported in addition to the ERRSET recovery mechanism
already provided for all trappable errors. A WAIT statement (Chapter 6, Section 4) can be
used for timed delays that do not consume CPU cycles can be invoked to control the
retry process.

7

7-43GFK-0256 Chapter 7 I/O and System Interaction

Section 3: System Interface Statements

These statements provide access to system memory and hardware ports 0 to 65535 and
permit control of various MegaBasic system parameters. See Chapter 9, Section 5 for the
discussion of additional functions FREE() , EXAM() , INP() and variable addressing [].
This Section covers the statements summarized below:

 SEG Defines the default physical memory segment to use when the seg-
ment portion of a segment:offset address is omitted.

FILL Stores data directly into physical memory locations.

EXAM Reads data directly from physical memory into program variables.

OUT Sends 8-bit values through physical machine ports.

 CALL

Invokes a machine code subroutine using a FAR CALL. Machine
registers can be set before the call and retrieved after the call. Your own
machine subroutines can be accessed as a MegaBasic package using
another method described in Chapter 10, Section 5.

 CALL Invokes a machine code subroutine using a software INT number
Machine registers can be set before the call and retrieved after the call.

 CALL# Defines a MegaBasic procedure that is access externally through a
software INTerrupt.

DOS “cmd” Executes an operating system shell command.

 PARAM Provides access to many MegaBasic internal control variables, some
of which can be altered, all can be read.

Memory access should only be used by qualified programmers and even then avoided
whenever possible. It is very easy to corrupt the machine code of MegaBasic to produce
unpredictable and even disastrous results. Furthermore, programs which rely upon such
techniques will be highly machine dependent and potentially very difficult to move to
other machines or operating systems. These operations are intended for limited use by
systems programmers to perform actions which would otherwise be impossible.

To accommodate the segmented addresses of the 80x86 CPUs, memory addresses
required by the FILL, EXAM or CALL functions and statements may be specified two
different ways:

<segment address>: <offset address>
or
<offset address>

The first form specifies both address components, each of which may be given with a
arithmetic expression, and represents a complete absolute memory location. The second
form specifies only the offset portion of the complete address and the segment portion is
the default segment, defined by an earlier SEG statement (described below). Keep this in
mind whenever using FILL, EXAM or CALL.

Many of the parameters and results of these system interface statements are in strictly
integer form. In MegaBasic you can generally specify numbers in either real or integer
form, but real numbers are converted to integer when the context in which they are
used demands it. Better performance results if you always specify numbers in the same
numeric type as used by the application.

7

7-44 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

SEG [<variable name>]

MegaBasic variables do not reside at fixed memory locations because their segments are
physically relocated from time to time during program execution to efficiently allocate
large memory blocks. The SEG statement sets the default segment address as used by
the FILL, EXAM and CALL statements. This statement sets the default segment address
to that of the specified variable (even if it changes), or to the standard control segment if
omitted.

This default is local within functions, procedures and GOSUBS, and cannot therefore be
changed by invoking a sub-program of any kind. The default segment is applied
whenever a memory address does not contain an absolute segment override and will
always be correct no matter how much internal reorganization occurs.

FILL <star ting address>, <data list>

Stores a list of data values directly into sequential memory locations. The data list is
identical to that of a WRITE# statement and the data is stored into memory in the
identical format, summarized as follows:

� Floating point (real) values are stored in the prevailing floating point format native
to the executing MegaBasic (BCD or IEEE binary floating point format). Control over
precision using PARAM(11) is not supported: the normal internal precision is always
used.

� Integer values are stored as a sequence of four bytes which represent the 32-bit
twos-complement integer value used by MegaBasic. These bytes are ordered from
low to high in ascending memory locations.

� Numbers specified in either real or integer form can be FILL ed as 8-bit or 16-bit
unsigned binary integers by preceding each such value in the data list by an
ampersand (&) or an at-sign (@), which converts and stores the values in 8-bit or
16-bit (low-high order) unsigned binary integer format, respectively. An Out Of
Bounds Error will occur if any numbers so specified lie outside the range of 8-bit and
16-bit values.

� String values are stored in packed string format with headers unless preceded by an
ampersand (&), which stores the string in binary format without string headers. See
the READ# (Section 2 of this Chapter) and WRITE# (Section 2 of this Chapter)
statements for further information.

EXAM <star ting address>, <variable list>

Loads string or numeric variables from absolute sequential memory locations. EXAM
loads variables from memory the way the FILL statement stores values into memory. Its
variable list is identical to that of the READ# statement (Section 2 of this Chapter). Refer
to the FILL, READ# and WRITE# statements for further information.

OUT <por t number>, <byte value>

Sends an 8-bit value (0..255) out through the hardware port specified. No status
interrogation is performed and the transfer takes place immediately. Any 8086 port
number from 0 to 65535 is permitted. The OUT statement will accept either numeric or
string data for output through CPU ports. For example: OUT P,C$ will output the first
character in string variable C$. Any general string (or numeric) expression may be
specified, however only the first character of the string is OUTput. If a null string is
specified, an undefined value is OUTput.

7

7-45GFK-0256 Chapter 7 I/O and System Interaction

CALL #<int> [,<register$> [,<result register$>]]

Invokes any of the 8086 software interrupts numbered from 0 to 255. An actual software
interrupt instruction implements the call, rather than simulating it. Calling an
uninitialized interrupt number will likely crash or halt the system. The machine code
interrupt subroutine being called must termInate with an 8086 IRET instruction. This
statement permits machine register access on both the call (the first register string) and
the return (the result register string variable). Register values are specified concatenated
together as a string of characters, positionally defined in the string as follows:

Position Register
1 AX

AH
2

 AX
AL

3 BX
BH

4
 BX

BL
5 CX

CH
6

 CX
CL

7 DX
DH

8
 DX

DL
9 SI

11 DI
13 BP
15 ES
17 DS
19 CPU Flags

Use BIT() , ASC() , CHR$() , FILL and EXAM to pack/unpack your desired values
to/from the string arguments. CALL is 80x86 CPU dependent and other MegaBasic
versions using different microprocessors may use different but similar conventions. To
send and receive all the registers, the string arguments specified must be the full 20 byte
length (i.e., ten 16-bit registers). Shorter strings access fewer registers, e.g., a length of 5
bytes would access registers AX, BX and CH.

The CPU register string includes the Flags register as bytes 19 and 20 of the register string.
Because of the critical nature of the FLAGS register, you cannot set any of the flag bits
and attempts to so will be ignored (without any reported error). Your program can only
examine the FLAGS in a returned register string. Usually only the CARRY flag will be of
interest and it is returned in BIT(REG$(19),7) .

Although there can be good reasons for doing so, passing absolute addresses of
MegaBasic variables to external routines for access and/or modification can be very risky.
This is because MegaBasic variables are moved from time to time to allow efficient
management of the available memory. The very act of using a CALL statement can cause
a shift in memory addresses. The following steps can be used to minimize this difficulty.

� Set the register string to chr$(0)*20, which forces a memory shift if one would have
occurred.

� Setup the register string with your absolute addresses, taking care to use no
user-defined functions or complex expressions that might cause another memory
shift in the process.

� Make the CALL

7

7-46 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Interrupts which have been set up by the SERVICE statement (described later) cannot
be accessed by CALL# statements using the same MegaBasic program that set them up.
However, they can be invoked from programs running under other copies of MegaBasic
in the same machine. An Interrupt Service Error results if this rule is violated.

CALL <seg>:<offset> [,<register$> [,<result reg$>]]

Executes an 8086 FAR CALL to the subroutine at the memory location specified by the
numeric address expression <seg>:<offset>. The CPU register contents can be
communicated to and from the routine using the same conventions as specified for the
interrupt CALL# statement described above. The machine code subroutine being called
must terminate with an 8086 FAR RET instruction.

DOS [<command string expression>]

DOS statements without any arguments exit MegaBasic, or execute operating system
commands specified as a string expression and then returns to MegaBasic. Thus you never
need to return to the operating system to invoke some operating system service. From
MegaBasic, you can COPY or TYPE files, display DOS directories, run batch files, execute
programs written in C, COBOL, FORTRAN, assembler, PASCAL, or any other language, so
long as the program can be run from the operating system command level.

Since the command string is a string expression, you have to surround it with quotes,
but you can also specify it using an arbitrary string expression. Omitting the command
string altogether will exit MegaBasic and return you to the operating system command
shell (however the END statement is preferred).

You specify the operating system commands exactly as if you were typing them at the
operating system command level, for example:

DOS “copy C:*.*B:*” Copies all files from drive C: to drive B:.

DOS “type ”+T$ Types the text of the file named in string variable T$
on the console screen.

DOS “”

Enters the MS-DOS command shell while preserving
the current program state within MegaBasic. At this
point you can enter DOS commands for as
long as you want to. Afterward to resume where
you left off, just type the DOS EXIT command to
get back into MegaBasic.

Consult your MS-DOS operating system manual for full information about the available
DOS commands and how to specify them. We describe several important ways to use the
DOS statement below:

� Your programs can request MS-DOS commands from the user with an INPUT
statement for immediate execution by the DOS statement. Hence, your program can
always stay in control without giving up any capabilities.

� If the command string is a null string, MegaBasic invokes the command processor
for command execution from the console, which allows the user to enter as many
MS-DOS commands as desired. To return to MegaBasic, the user must type the
MS-DOS command EXIT, which exits the command processor and returns back to
MegaBasic.

7

7-47GFK-0256 Chapter 7 I/O and System Interaction

� Your program can build a MS-DOS batch file and then execute it with a DOS
command. This is done by simply PRINTing them to an OPEN file whose name has
the extension .BAT (e.g., BATCHFIL.bat). You execute a batch file by giving its name
as an MS-DOS command (e.g., DOS “BATCHFIL”). Upon completion of the last
command in the file, MegaBasic regains control and your program continues on its
way. See your MS-DOS manual for further information about batch files and batch
commands.

� Sometimes you may want to redirect the output of an executing batch file. Given a
file or device name in string variable OUT$ and a batch file name in variable
BATCH$, the following MegaBasic statement will redirect all console messages to the
message destination specified:

DOS “COMMAND > ” + OUT$ + “IC ” + BATCH$

Be sure that your batch file ends with an EXIT command to return to MegaBasic.
Otherwise, it enters the shell command level and waits for a command while screen
output is redirected away from the screen.

DOS shell commands come in two flavors: internal and external. Internal commands are
those built into the command shell, while external commands are those in separate files, i.e.,
those with .EXE , .COM or .BAT file extensions. External commands always return a
termination or exit code which your program can access from PARAM(19) immediately
after the DOS statement. See the END statement (Chapter 6, Section 1) for more
information on exit codes.

There is one important restriction that you must be aware of in using the DOS statement
to execute DOS system commands: never execute a program which stays resident in
memory after it terminates. An example of this type of program is the PRINT utility
included in the standard set of MS-DOS utilities. Such programs will likely appear to
operate correctly for a while, but later on after MegaBasic regains control and/or
terminates, the system will probably crash or lockup with a memory allocation error at
some point.

You can use most resident programs without any problems by making them resident
before you bring up MegaBasic. For example, you can install the DOS PRINT utility before
you get into MegaBasic, then later invoke PRINT from MegaBasic through a DOS
command. This is necessary as a result of the memory allocation mechanism used within
the DOS operating system; it is not a bug in MegaBasic.

The DOS statement relies on the MS-DOS command processor residing on a disk file
(usually named COMMAND.com), which is temporarily brought into memory to execute
each command. You may notice a slight pause between giving a DOS command and its
actual execution (while loading the command processor). MegaBasic determines the
name of the current command processor by reading it from the set of MS-DOS
environment strings, available to all programs running under MS-DOS.

If MegaBasic cannot find the command processor on the disk under the name specified
in the environment, a File Not Found error will occur. This can happen if you set the
default drive to a drive which does not contain any command processor file. To avoid
this problem, your MS-DOS system should employ a CONFIG.sys configuration file that
contains the command:

SHELL = C:\COMMAND.COM /P

7

7-48 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

which specifies that the command processor is always found in the root directory on
drive C: no matter what the default drive happens to be. This is especially useful on
fixed-disk systems where you only need one copy of the command processor on the
system. The command processor is usually re-loaded when most programs terminate, so
if the system cannot find it, you have to re-boot from scratch. See your DOS operating
system manual for other information about CONFIG.sys and the SHELL command.

The DOS command is also supported under the Xenix operating system version of
MegaBasic. However, there are some differences that you should read about in
Appendix B.1. MegaBasic does not support it under any of the CP/M operating systems,
nor under the TurboDOS and Convergent Technology operating systems.

SERVICE #<inter rupt number>,<proc label>
Sets up an 8086 interrupt to access a MegaBasic subroutine (PROC). The interrupt
number may be a value from 0 to 255; the procedure label identifies a procedure (PROC)
which is executed when the specified interrupt is invoked. The procedure specified must
contain exactly one string argument variable which communicates the CPU register
contents to and from the interrupt caller and follows the positional assignment
conventions defined for the CALL statement described earlier. On RETURN, the CPU
registers are set to the current contents of the string variable.

As with the CALL statement described earlier, the register string is limited by the length
of string variable used to communicate the register values. Registers defined past the
end of a string variable shorter than 20 bytes will retain their contents present when the
interrupt was invoked.

This statement is intended to provide an interface between your MegaBasic programs
and other arbitrary programs in the same 8086 system address space. Other programs
can invoke the specified PROC by merely executing a software interrupt instruction
corresponding to the interrupt number specified. The CPU register values are stored in
the string variable prior to beginning the PROC execution and on a RETURN statement
the contents of that string variable are placed into the CPU registers and passed back to
the interrupt caller. By using one of the registers to pass a function number, one interrupt
can branch to any number of separate routines.

Up to 16 separate interrupt numbers can be independently set up using separate
SERVICE statements. An interrupt number already defined can be redefined with
another SERVICE statement. The set of defined interrupts is cleared each time the RUN
command is invoked.

Although technically possible, this statement is not intended for hardware interrupt
service routines written in MegaBasic statements. Such use is highly system dependent
and involves hardware prioritizing which, without careful planning, can lead to hanging
up the system for indefinite periods of time. The response times for MegaBasic SERVICE
routines are usually much longer than required by most hardware interrupt
applications. SERVICE routines are therefore most suitable for major activities such as
transaction processing, database searches, etc.

In multi-tasking or multi-user systems, MegaBasic SERVICE routine requests can
potentially occur during another routine execution. In such cases, MegaBasic will block
further requests until the completion of the current routine. Only one SERVICE routine
can be executing at any given instant. This means that a routine cannot itself invoke
another routine (using CALL#) without causing the system to wait forever, unless the
routine is managed by another copy of MegaBasic. If a SERVICE routine requires
another SERVICE routine in the course of its operations, it need only invoke it as an
actual PROC instead of a CALL#. In single-user systems, a Interrupt Service Error results if
a SERVICE interrupt is invoked while MegaBasic is executing another.

7

7-49GFK-0256 Chapter 7 I/O and System Interaction

SERVICE [<memor y size required>]

Exits MegaBasic and returns to the operating system, but leaves the current program
and its variables intact for subsequent access via interrupt calls. This statement allows
exiting MegaBasic after one or more interrupt routines have been setup so that other
programs which use them can be subsequently executed. Notice the absence of the
lb-sign (#) in this statement as compared to the earlier SERVICE statement.

MegaBasic normally takes up all the memory in your machine, leaving nothing for other
programs to use. Under MS-DOS, you can release all unused memory back to the
operating system, except for a fixed number of bytes specified in the SERVICE
statement; a default value of 4096 bytes is assumed if the argument is omitted. Under
CP/M-86, you must reduce the maximum memory limit of MegaBasic itself to some fixed
total number of bytes, using the CONFIG utility program.

PARAM (<exprn>) = <exprn>

The PARAM(P) statement allows control of several internal execution factors. It may be
used on the left side of an assignment statement (=) to assign new values, or accessed as
a function to determine current PARAM() values. See the discussion of the PARAM()
function in Chapter 9, Section 5 for complete information.

7

7-50 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Logical Interrupts

This section describes a mechanism allowing processes external to a running MegaBasic
application to asynchronously invoke procedures within it. This mechanism, called the
logical interrupt system, posts external interrupts into MegaBasic which are subsequently
acknowledged upon completion of the MegaBasic application statement currently
executing. An interrupt service routine, implemented in MegaBasic statements, services
the logical interrupt, and when it returns, the original program resumes execution at the
statement that was interrupted.

The purpose of the logical interrupt system is two-fold. First, to provide fast, real-time,
event-driven response to external events for applications such as industrial process
control, instrumentation and communication. Second, to provide a limited multitasking
capability for special applications under single-user operating systems, such as MS-DOS.
As we will describe below, logical interrupts have to be triggered by external processes,
which are usually driven by hardware interrupts.

INTERRUPT <logical Int>, <proc>[,<priority>][,<max post>]

This specifies the MegaBasic procedure to be called when an external process triggers
the logical interrupt number. Its parameters are as follows:

� Logical interrupt number from 0 to 31.

� Name of (or pointer to) a MegaBasic procedure that processes logical interrupts
invoked by a process external to the running MegaBasic program.

� Optional priority level number that defaults to a priority level equal to the specified
interrupt number. Priority levels do not have to be unique and may range from 0 to
255. When more than one interrupt is pending simultaneously, the one with the
numerically highest priority is serviced next.

� Optional maximum number of pending interrupts that can be outstanding without
causing an overrun (i.e., being lost). It defaults to 1 if omitted. Buffered interrupts are
discussed in detail shortly.

A user-assigned Intel 80x86 interrupt vector is used as an entry point into MegaBasic,
which is divided into a set of 32 logical interrupts by setting AL register to a value from 0
to 31 before invoking the 80x86 software interrupt number. The term logical interrupt is
used to distinguish them from INTEL software interrupts because they provide an
idealized interrupt system instead a physical one. To supply application-specific
information, the invoking process may optionally pass additional values in ES and BX
when calling the 80x86 interrupt, which the MegaBasic interrupt service routine can
access when it begins executing.

Interrupt Service Procedures

An interrupt service procedure is simply a MegaBasic procedure with zero formal
parameters. They can be defined locally or in external packages and implemented in
either MegaBasic code or machine code (in assembler packages). Generally what the
procedure itself does should be kept as short as possible. A typical interrupt procedure
might do nothing more than access the posted interrupt information (via the
INTERRUPT function coming up) and add it to a queue for processing by the foreground
application.

7

7-51GFK-0256 Chapter 7 I/O and System Interaction

When an interrupt occurs, all interrupts with the same or lower priority become
disabled until the procedure returns. However if an enabled interrupt with a higher
priority occurs, it will be serviced as soon as the next MegaBasic statement finishes
executing. As soon as the higher priority interrupt procedure returns, the lower priority
procedure resumes execution, re-enabling the intervening priority levels. The user must
ensure that in such a case, any common data structures used by the various interrupt
service routines are accessed in a re-entrant manner. The LOCAL statement is useful in
such cases to protect variables that need to be preserved.

Avoid operations that wait for something to occur; after all, the whole idea of logical
interrupts is the elimination of wasteful polling mechanisms. For example, INPUT
statements, INCHR$() function calls or anything else that waits for keyboard input
should not be used inside logical interrupt service routines. INPUT statements that display
prompts and accept edited input are not re-entrant, so logical interrupt service routines
must avoid using them to avoid conflict. This is because interrupting an interactive input
statement to execute another such INPUT statement will leave the original INPUT in an
unpredictable state. The INCHR$() function is, however, fully re-entrant so it can be
used within a service procedure without restriction.

The foreground application should avoid operations of indeterminate duration because
logical interrupts are usually only serviced between MegaBasic statements and excessive
statement execution time will delay interrupt response. Logical interrupts are also
serviced while waiting for single character input (as in interactive INPUT statements and
INCHR$() function calls) and during WAIT statement delays.

It is possible to block logical interrupt servicing by calls to the operating system or to
other resident software that wait or execute indefinitely. This includes shelling-out to the
operating system, direct CALLS to system device input (and sometimes output)
functions, and MegaBasic multi-character inputs (e.g., READing serial devices, INCHR$()
with multi-character requests).

Interrupt service procedures should not be used to process extremely rapid events, due to
the relatively long periods that interrupts cannot be acknowledged (i.e., during
statement execution). For example, one-at-a-time byte transfers at 38.4k baud could be
too fast for this type of system. However events like output buffer empty, input buffer almost
full, machine tool sequence complete, timer expired, concentrator available, mouse moved, hot-key
pressed, pressure threshold reached and message waiting can be handled very efficiently.

Buffering Logical Interrupts

An individual logical interrupt number can handle multiple interrupts without
necessarily causing an overrun condition. This is done by buffering the external
interrupt post requests up to a maximum count, specified by the optional fourth
parameter on the INTERRUPT statement, as described earlier. For example if you set
<max post> to 4, up to 4 interrupts could be posted and pending on that interrupt
without causing an overrun.

An overrun condition can only occur if the <max post> limit is exceeded or there is no
more space in the interrupt posting buffer pool. There is a system-wide limit of 64
pending interrupts, so it is possible to use up all the interrupt capacity on only a few
interrupts if you over-commit the interrupt capacity too far.

The <max post> parameter defaults to 1, which leads to interrupt overrun condition if a
second interrupt is received before the first one is processed, unless you specifying a
higher number. Interrupts stay posted until the processing procedure RETURNs,
however while a logical interrupt is being serviced it is temporarily given one extra
posting.

7

7-52 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Interrupt Control

Variations of the INTERRUPT statement are used to enable and disable logical interrupts
and to select an 80x86 INT number for access by the external processes. Logical interrupt
capabilities provide a complete system for supporting real-time, asynchronous event
processing. The INTERRUPT statement earlier merely defines a logical interrupt
number, it does not enable it. Three other statements are available to enable, disable and
terminate interrupts:

INTERRUPT [<logical int>], ON Enables specified interrupt
INTERRUPT [<logical int>], STOP Disables specified interrupt
INTERRUPT [<logical int>], END Clears interrupt definition

If the interrupt number is omitted from the above statements, all currently defined
interrupt numbers are selected by default and modified accordingly. MegaBasic reports
an error on any attempt to enable or disable an undefined interrupt number. When an
interrupt occurs on a disabled interrupt number, the event is still posted but not acted
on. Later, if the interrupt number is re-enabled, the posted event is serviced
immediately. An interrupt can be redefined by clearing (END) its current definition and
redefining the same interrupt number in an INTERRUPT statement with different
procedure and control settings.

Interrupt Control Information

The INTERRUPT function is provided so that an INTERRUPT service procedure can access
the register values passed by the external invoking process, along with status
information about a logical interrupt. This function is specified as follows:

INTERRUPT(<data selector> [, <interrupt number>l)

where the <data selector> chooses the value from the available set and the optional
<inter rupt number> specifies the logical interrupt number (0 to 31) for which the data
applies. If the <inter rupt number> is omitted, then the logical interrupt currently being
serviced is assumed. Minus one (–1) is returned if the interrupt is not being serviced, or
if either argument is out of range. The <data selector> argument may take on the
following integer values:

INTERRUPT priority level currently defined
0 Interrupt priority level currently defined

Current interrupt status, as defined below:
Bit 0 Logical interrupt is defined

Bit 1 Interrupt service is enabled

1 Bit 2 An external interrupt is pending

Bit 3 Interrupt currently being serviced

Bit 4 Not serviced in time (overrun)

2 Value contained in the BX register when posted
3 Value contained in the ES register when posted
4 Number of interrupts pending on this interrupt
5 Posting limit currently defined for this interrupt

7

7-53GFK-0256 Chapter 7 I/O and System Interaction

The interrupt status value returned for selector 1 contains a number of bit flags that
indicate the current state of the corresponding interrupt. These bits are most easily
accessed using the & operator, e.g., INTERRUPT(l)&4 indicates the status of bit 2.

The overrun flag indicates that the interrupt has been posted more than once before
being serviced by the interrupt procedure. This flag is cleared only when an INTERRUPT
ON or STOP statement is invoked. If overrun is a result of too many events on one logical
interrupt, you can redistribute the events over multiple logical interrupts to lessen the
burden or specify a higher <max post> limit. Overrun can also occur when your
program executes operations of indeterminant duration, such as multi-character READ,
INCHR$ and direct CALLS to similar operations in the operating system and other
resident software, so avoid such actions while logical interrupts are enabled.

Assigning the 80x86 Software Interrupt

The 8086 INT number must be defined as one of the 256 (0 to 255) hardware interrupt
vectors provided by the 8086 CPU, using the following statement:

INTERRUPT = <cpu interrupt number>

Defining it with the INTERRUPT = statement causes that interrupt vector to be linked
into the MegaBasic logical interrupt system. It is this hardware INT that is called by
external software to invoke the MegaBasic logical interrupts. Without defining it, no
execution path to your logical interrupts exists. In multi-tasking systems where more
than one incarnation of MegaBasic is executing, each of the MegaBasic tasks may assign
a different 80x86 INT so that each one independently accesses separate MegaBasic
programs.

Only one 80x86 INT vector is used by the logical interrupt system. If you re-define it as a
different number, the prior INT vector is restored to its earlier contents and the new
vector is set to point into the logical interrupt system. A defined interrupt vector is only
restored when MegaBasic exits or when a program defines another 80x86 INT number.
The pointer in the interrupt vector points to the following structure in the MegaBasic
process segment:

CALL FAR <entry seg>:<entry offset>
DW <INT vector offset>

The CALL FAR is a 5 byte instruction that is followed by a word containing the offset in
the interrupt table (segment 0000) of the currently defined interrupt in use. This allows
external processes to determine for themselves if the interrupt vector they are about to
call has been defined. This word will not match the interrupt vector offset if the
interrupt vector was not setup by a MegaBasic INTERRUPT = <INT> statement. The
following assembly code can be used to make this test:

MOV BX,Offset INTNUMB*4 ;Point BX to interrupt vector to test
PUSH DS ;Point DS to interrupt table segment
XOR AX,AX
MOV DS,AX
LDS Sl,Dword ptr [BX] ;set DS:SI to interrupt vector contents
CMP BX,[SI+5] ;compare vector offsets
POP DS ;Restore original DS
JNE NOTSETUP ;Branch it not equal to error recovery.

7

7-54 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Posting Interrupts

One of the 256 interrupt vectors is reserved for use as the interface that external events
signal to MegaBasic that some event has occurred. This INT number is defined by the
INTERRUPT = <number> statement described earlier. The external process places the
logical interrupt number in AL, sets BX and ES to an optional value to be posted and then
calls the reserved interrupt number. This invokes a short routine within MegaBasic that
posts the event in the internal interrupt control tables maintained by MegaBasic and
then immediately returns.

Except for the carry flag, all CPU registers are preserved by the event interrupt. Invalid
or undefined logical interrupt numbers in AL are ignored. Hardware interrupts are
disabled during this posting operation. The posting call returns with carry set if posting
fails for any reason (e.g., undefined interrupt or exceeding the posting limit), and returns
with carry cleared to indicate a successful post.

It is only when MegaBasic finishes whatever statement it is currently executing, that it
services a posted interrupt (assuming it has a higher priority than any interrupt currently
being serviced). When an interrupt service procedure returns, it will resume program
execution at the point it left off, as long as no other interrupts are pending.

Background Processing under MS-DOS

To provide a more complete environment for developing, testing and using the logical
interrupt system, the MS-DOS version of MegaBasic takes advantage of the multi-tasking
hooks provided by the MS-DOS operating system (as implemented on IBM PCS and
compatible computers). These hooks allow background processes to execute concurrently
with DOS shell commands and other programs unrelated to MegaBasic.

In the discussion that follows, we shall refer to executing MegaBasic logical interrupt
service procedures as background processes and refer to all other operations as foreground
processes.

A DOS statement lets you enter a nested invocation of the COMMAND.com command shell
to either execute an immediate command and return, or to enter its interpretive
command level for an indefinite period. During this time, if logical interrupts are
invoked by interrupt driven processes, they will be acted on as if the MegaBasic program
itself is running, providing a limited but effective form of concurrent processing.

Concurrent operation under MS-DOS works by rapidly passing the cPu back and forth
between the foreground and background processes. To get from the foreground to
background, DOS invokes INT 28h during busy loops and INT lCh on every so-called
timer-tick (18.2 times per second). To get back to the foreground process, the background
process need only return from the INT 28h or INT lCh that called it. MegaBasic does this
automatically when the logical interrupt service procedures have all completed, when a
predefined time-slice is exhausted, or when an INTERRUPT WAIT statement is executed
(a topic discussed shortly).

Normally, the MegaBasic DOS statement temporarily releases all unused memory to the
system so that the invoked command will have the maximum memory available for its
own execution. However since this leaves nothing for the background processes to
execute with, a second optional parameter to the DOS statement must be specified to
reserve some working memory for MegaBasic operation, for example:

DOS ””,5000

7

7-55GFK-0256 Chapter 7 I/O and System Interaction

This statement enters the shell command level and leaves 5000 bytes of free memory for
any background processing, beyond the memory already in use by the program. The
memory size parameter may be any number of bytes up to the available free space,
minus about 16k for the command shell process. It should generally be limited to the
smallest amount of memory under which the background process can fully execute
without running out of memory.

When a background process gains control during a DOS statement invocation, it
normally retains control until it and all other outstanding logical interrupts pending is
serviced and its associated interrupt procedures have all returned. In some situations,
particularly when the background process is waiting for some event to take place, the
background process may take up too much time before giving the foreground a chance
to execute. Therefore, a special statement can be issued to give the foreground process
immediate control before continuing with the next background statement. This
statement is simply:

INTERRUPT WAIT

After executing this statement, the foreground process resumes until it passes control
back to the background process, which continues with the statement immediately
following the INTERRUPT WAIT statement. In background processes that wait for things
to happen, as in background modem transfers, INTERRUPT WAIT statements should be
invoked in busy waiting loops so that the background process doesn’t monopolize the
CPU unnecessarily while it waits. When no DOS statement is in progress, INTERRUPT
WAIT statements are ignored when executed (i.e., they do nothing).

Background processes must never STOP or END, either directly or indirectly due to an
error, while a DOS statement is in progress. To do so will leave the system with an active
COMMAND.com shell running a foreground process that can neither be removed nor
resumed. In such a state, you can edit and save your program to repair bugs, but the
machine will crash when you exit MegaBasic. Furthermore, all available memory, except
the amount you specified in the DOS statement, will be unavailable for any purpose. The
only viable option at this point will be to re-boot the computer. To minimize the
likelihood that this occurs, the following additional extensions are provided:

� MegaBasic does not recognize Ctrl-C from the console when a DOS statement is in
progress. This is to prevent a Ctrl-C typed into a foreground process from
inadvertently reaching the background process and stopping it.

� MegaBasic does not execute DOS statements while a higher-level DOS statement is still
active and attempts to do so will be ignored. The design of MS-DOS does not support
such an operation and permitting it would immediately crash the system.

� The DOS function can be tested at any time to determine if a DOS statement is
currently in progress. The DOS function returns 1 if a DOS statement is in progress, 0
if no DOS statement is in progress, or –1 if the DOS statement has completed but
logical interrupts serviced before its completion have not yet finished.

All logical interrupts serviced during a DOS statement must be completed (i.e., their
service procedures must return) before the DOS statement is really finished so that the
statement following the DOS statement can be executed. Until this happens, Ctrl-C and
further DOS statements will remain disabled.

7

7-56 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Automatic Background Processing

Up to now, we have discussed background processes that are initiated by external
interrupts. However, MegaBasic also supports background processes that are invoked
automatically by the DOS. To use this feature, an additional third (and optional fourth)
parameter is appended to the DOS statement to enter the foreground process:

DOS <command>,<memory size>,<int number>,<time slice>

where <int number> is the logical interrupt to invoke while the DOS statement is in
progress. It may be any of the 32 logical interrupts, but it must defined and enabled
before you issue the DOS statement (otherwise nothing will happen). When the DOS
statement completes, the program resumes with the statement that follows it and the
background process invoked by the interrupt specified will no longer be invoked.

The <time slice> argument may optionally specify the maximum amount of time to be
given to the background process without yielding to the foreground process. This is
called the time slice limit and it is specified as an integer number of milliseconds from 0
to 65535. If you omit this argument, a default of 65535 is used (about 65 seconds). When
a time slice is used up, MegaBasic generates an automatic INTERRUPT WAIT so that the
foreground process can resume. INTERRUPT WAIT statements can still be used to
further break up a time slice as needed, but they are not necessary in most background
applications if you specify an appropriate time slice. The interval specified is rounded up
to the nearest system timer-tick provided under the host system.

If the automatic interrupt is the only logical interrupt being used, you do not have to
define any 8086 software INT in order for it to operate. The automatic interrupts are
invoked through the DOS INTS lCh and 28h and therefore no other vectors are needed.
All you have to do is:

� Define the logical interrupt with its procedure and priority

� Enable the logical interrupt

� Issue a DOS statement that reserves enough memory and specifies the logical
interrupt number to be invoked repeatedly by the DOS.

To see how all this is put together to form an actual background MegaBasic program, an
example background process that occasionally displays the time of day now follows:

10 Interrupt 1 ,TEST,4; Rem –– Define a logical interrupt
20 Interrupt on; Rem –– Enable logical interrupt 1
30 Dos “”,5000,1,10; Rem –– Enter DOS, begin background
40 End; Rem –– Done upon user “Exit”

50 Def proc TEST
60 Repeat; I += 1; If not I mod 1000 then Print time$,dos
70 next; If dos<1 then Return
80 Proc end

Procedure TEST prints the current time of day on the screen whenever variable I
increments to a multiple of 1000. In line 70, the background status is tested so that the
procedure only returns after the user types EXIT in the DOS command level
(terminating the background process). The apparent effect of all of this is that the
program executes concurrently along with whatever you happen to be running in the
foreground. To terminate the background process, type the EXIT command from the
DOS command level.

7

7-57GFK-0256 Chapter 7 I/O and System Interaction

Background Process Termination

A MegaBasic background process can terminate at any point, either normally or through
an untrapped error. What occurs is that when the process terminates (e.g., via END, DOS,
STOP or an error), control is permanently passed back to the foreground. However, the
background program remains suspended in memory until you give the EXIT command
from the DOS command shell. At that point, the background process formally terminates,
releasing all its memory, leaving you again at the DOS command shell prompt.

Background Time-Slice Control

Ideally, you never want to experience any visible delays in a foreground process due to
excessively long time-slices taken by a background process. There are two ways that
background processes can begin their time-slice: through the timer-tick (INT lCh) and
through the DOS idle loop (INT 28h). In general running off the timer-tick is more visible in
the foreground process than running off the idle loop, particularly for computationally
intensive background processes. Knowing which method began the current time-slice,
enables you to use INTERRUPT WAIT to shorten unnecessary time-slices.

Hence INTERRUPT(2) returns 0 or 1 in background processes to indicate the source of the
current time-slice: from the idle-loop or the timer-tick, respectively. For example, suppose
your background process has a loop where is spends a lot of time. An INTERRUPT WAIT
if INTERRUPT(2) >0 at the top of each iteration allows only one loop iteration during
timer-ticks, but a full time-slice during idle loops. INTERRUPT(2) normally returns the BX
register value that is posted by logical interrupts, a register not set by background
processes.

8 section level 1 1
figure bi level 1
table_big level 1

8-1GFK-0256

Chapter 8 User-Defined Subroutines

One of the most powerful aids for controlling complexity of software systems is the
principle of modular design. As programs become longer, they also become more
complex and difficult to work on. To maintain the simplicity of small programs, large
problems can be broken down into a set of smaller component problems which, by
themselves, are easier to solve. If some of these component problems are still too
complex to deal with, they can be further subdivided until the subcomponents become
manageable. Corresponding to each of these sub-components is a program module
designed to solve its problem. This is the technique of modular design, also called divide
and conquer, which is implemented in programming languages using the construct called
subroutines. The concepts and techniques you use to build and use subroutines are
covered in this chapter, as summarized below:

 Subroutine
Statements

Summary of all MegaBasic statements
involving user-defined functions and
subroutines.

Elements of
Subroutines

Essential concepts and related ideas neces-
sary to building subroutines.

 Types of
Subroutines

The different mechanisms involved in the
three types of subroutines supported
under MegaBasic: GOSUBS, procedures
and functions.

Communicating
with

Devices

Detailed descriptions of all available tech-
niques for passing information between
subroutines and their calling references.

 Recursive
Programming

How subroutines can invoke themselves
as a powerful means for reducing the size
and complexity of the solution being
implemented.

In MegaBasic, as in most programming languages, modules are implemented with
subroutines, sometimes known as subprograms. In their simplest form, subroutines consist
of some sequence of program statements that can be invoked from elsewhere in the
program by merely referring to them by name. This program sequence is not some
random collection of statements, but rather a coherent solution to one problem or
subproblem. To hide the details of the subsolutions required to implement them,
subroutines usually refer to other subroutines for that subsolution. Hence large
programs tend to be structured as hierarchies of subroutines where most of the actual
details are carried out at the lowest levels.

8

8-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

This chapter discusses the most powerful feature of MegaBasic: subroutine construction
and usage. It describes the collection of features that let you create your own additions to
the language as you see fit, extending its capabilities and tailoring its facilities toward
your own special needs. These features permit previously developed programs to be
used as the building blocks of new, larger programs, which, on completion, become the
primitive components of still larger systems.

To put it simply, a subroutine is nothing more than a section of your program that
performs a specific task, that has been set aside and given a name for you to refer to (and
execute) from anywhere in your program. As you develop programs from subroutine
building blocks, you will gradually accumulate your own useful set of subroutines that
can be used to build new programs with far less effort than earlier ones. In the sections
that follow, we assume that you understand how to build and use programs, and
concentrate on the new concepts about subroutines.

Chapter 10 covers the concept of packages, which lets you collect many of your
subroutines and global data variables into external libraries that can be accessed by your
main program as MegaBasic extensions. Subroutines can also be developed in assembler
(Chapter 10, Section 5) and packages with one or more assembler routines can be
accessed by your program like any other package.

The LIBRARY.PGM file included with the MegaBasic release contains many examples of
useful functions and procedures which illustrate how subroutines can be built,
documented and made accessible for general use by other programs you write.
Meaningful names, line-labels and identifiers are used to clarify their usage and
understanding and they may be freely applied to your own programs without any
further permission from the author. Refer to these routines for more examples of the
concepts described in this section.

8

8-3GFK-0256 Chapter 8 User-Defined Subroutines

Section 1: Subroutine Statements

MegaBasic provides three types of user-defined subroutines: GOSUBS, functions and
procedures. A GOSUB is simply a means for re-using a section of program lines from any
place in the program. User-defined functions are used like variables for data in string or
numeric expressions, except that they represent computed results rather than stored
values. Procedures are like GOSUBS, except that they are invoked by name instead of by
program line location, and they can supply argument list parameters. This section
describes all the MegaBasic statements used to create subroutines, summarized as
follows:

 GOSUB Invokes a sequence of program lines which returns
back when a RETURN statement is encountered.

 ON..GOSUB Selects and executes a GOSUB from a list of
GOSUBS using a computed index into the list.

 RETURN
Causes the currently executing GOSUB, function or
procedure to return to the program location from
which it was originally called.

 LOCAL
Creates temporary string or numeric variables for
use within a GOSUB, function or procedure. These
variables disappear after the subroutine executes its
RETURN statement.

 DEF FUNC Defines the name, arguments, entry point and
result type of a user-defined function.

 FUNC END Defines the end of a user-defined function.

 DEF PROC Defines the name and argument structure of a
user-defined procedure.

 PROC END Defines the end of a user-defined procedure.

 ARGUMENT Statement that accesses arguments from an
open-ended argument list.

You can communicate data to procedures and functions through an argument list, which
is used in computing their intended task. Functions always compute a single result
which is used in the expression that invoked the function.

GOSUB <label>

Short for GOTO Subroutine, a GOSUB statement transfers program control to the line
specified (by line number or line-label) as with the GOTO statement. The line transferred
to must be in the same program (package) as the GOSUB statement. When a GOSUB
subroutine has finished its work, the program resumes execution at the statement
following the GOSUB statement. To signal this termination response, a companion
statement called a RETURN must be executed. MegaBasic keeps track of the statement
following the GOSUB so that when a RETURN statement is encountered, control returns
to the right place. There may be any number of RETURN statements within the body of
the GOSUB subroutine, and each of them will resume execution at the same point in the
program.

GOSUBS are best visualized as program blocks that perform a procedure as an
operational unit. Although the body of a GOSUB has no obvious structure required by

8

8-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MegaBasic language syntax, it is important to treat it as a unit by clearly defining its
entry and exit points and using them in rigidly controlled ways. You should not jump
out of a GOSUB using any type of GOTO statement, for the purpose of bypassing the
RETURN statement. The RETURN mechanism that remembers where to continue after
each GOSUB returns cannot take such exits into account and unpredictable behavior may
result. You can use a GOTO to instead of a RETURN, if that GOTO jumps somewhere that
eventually does execute a RETURN statement, like another GOSUB.

MegaBasic provides several mechanisms that depend on well-defined block structured
GOSUBS to be useful. Error processing structures (ERRSETS) and LOCAL variables are
local within GOSUBS, meaning that changes made to them do not propagate back up
through to the program when the GOSUB returns. You can define your own LOCAL
variables within GOSUBS which may be used in any way whatsoever without affecting
anything outside that GOSUB (discussed below). Awareness of these features is necessary
for proper programming of GOSUBS and ERRSET processing.

New programs should favor user-defined procedures over GOSUBS, because they
perform the same function in a cleaner way and have additional features that make
them far more versatile. GOSUBS will always be supported in MegaBasic for
compatibility with existing programs that use them.

ON <exprn> GOSUB <line list>

Selects and invokes one GOSUB from a list of GOSUBS, according to a computed
number that specifies which GOSUB in the list to invoke. The <line list> is a series of line
numbers or line labels, separated by commas, which identify each of the GOSUBS from
which the computed choice is made. The <expr n> is a real or integer expression which,
after being truncated to an integer, must evaluate to the position in the <line list>
corresponding to the desired GOSUB line number. This integer must be from 1 to the
length of the <line list>. Upon completion of that GOSUB (after its RETURN is executed),
program execution resumes at the statement that follows the <line list>. This is
sometimes referred to as a computed GOSUB because it executes a GOSUB based upon a
computed value.

RETURN [<expr n>]

Directs program control to the statement following the most recent GOSUB or procedure
call, or returns a string or numeric expression result from a user defined function. The
<expr n> is only specified in RETURNS from functions, which is the only way a function
result is made available.

Before the actual return, RETURN restores the states of the previous ERRSET structure
and of any LOCAL variables (see LOCAL statement below) to their states at the time of
the GOSUB or user function call. A RETURN statement is permitted anywhere within a
subroutine, even inside a FOR or WHILE loop. RETURN statements may appear in as
many places within a subroutine as needed.

When you use a RETURN statement to return from a user-defined function, you must
follow the RETURN reserved word with an expression that provides the result value of
the function. The data type of this expression must match the data type of the
user-defined function, i.e., string functions must return a string, numeric functions must
return a number. A Data Type Error will occur if such a type mismatch is specified.

Numeric functions are defined as either integer or real functions, which means that the
numeric result that they return is always a number of the type defined. However, if you

8

8-5GFK-0256 Chapter 8 User-Defined Subroutines

specify a real result for an integer function (or vice versa), MegaBasic will automatically
convert the expression result to the proper numeric type (i.e., integer-to-real or
real-to-integer). This kind of type mismatch is permitted and no error is reported for its
occurrence, unless for some reason the type conversion could not be completed (e.g., a
real result too large to fit into an integer representation). Nonetheless, you should
always try to provide numbers in the proper representation for the context in which
they are to be used for the most efficient implementation.

LOCAL <list of string and scalar variables>

Creates temporary simple string and numeric variables (not arrays) which may be used
freely for any purpose within any GOSUB, user-defined function or procedure. LOCAL
statements generally appear as one of the first things done within subroutines that use
them, rather than in the middle somewhere. Global variables of the same name which
already exist are protected but inaccessible until the subroutine executes a RETURN
statement. Scalar and string variables may be listed separated by commas after the
LOCAL keyword, and can then be used for unlimited local working storage.

Since local variables carry their previous value after the LOCAL declaration, they may be
employed for passing data parameters to GOSUBS. On RETURN, their prior values are
restored, and program execution resumes. Used within recursive procedures (Chapter 8,
Section 5) to create temporary working variables, this is a particularly useful and
powerful tool.

Subscripted variables cannot be LOCALized . LOCAL declarations are permitted only
within subroutines and using them directly inside FOR or WHILE loops will cause an
error. Re-DIMensioning of a LOCAL string, although not recommended, is permitted
as long as its previous string value will fit (i.e., it can be restored) upon RETURN.

String variables of any length can be localized, but since their previous contents are
saved on the scratchpad until a RETURN is executed, really long strings can easily use up
all the storage set aside for this purpose. Hence LOCAL strings should be used sparingly
and with great care to avoid such problems. The amount of local storage available at any
instant can be obtained from the FREE(2) utility function. The following example
illustrates how LOCAL variables are confined to subroutines:

10 X = 99999; Y = X; TEXT$ = “text string”
20 Gosub 50; Print TEXT$,X,Y;
30 End

50 Local X,TEXT$
60 X – –1; Y = X; TEXT$ = “######”
70 Return

When this program is run, the PRINT statement in line 20 will display the line: text string
99999 –1. Notice how the GOSUB was unable to modify both X and TEXT$ (because they
were declared LOCAL) but was able to modify Y because it was not declared LOCAL.

When they are only being employed to prevent interference with variable values,
LOCAL variables are not needed within subroutines which are always called from other
packages (Chapter 10). All variables within external packages are implicitly local to that
package unless explicitly declared SHARED. Such variables are physically different from
those in other packages that happen to have the same name.

8

8-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

DEF [<modifiers>] FUNC <name> [(<arg list>)] [=<exprn>]

Defines a user-defined function, including its name, its list of arguments and its mode of
operation: single line or multiple line. A function name may be any legal variable name
(Chapter 1, Section 5). Such names do not have to begin with the letters FN as in other
BASICS.

The DEF statement must appear as the first statement on the line in which it appears and
it cannot be preceded by a line label. Chapter 8, Section 3 contains further details on
user-defined functions. The optional set of <modifiers> is used to specify the access
scope (SHARED) of each function, and the result type (STRING, INTEGER or REAL) of
numeric functions. These modifiers are described as follows:

 SHARED
Indicates that the function may be invoked from
external packages in a multiple package program.
SeeChapter 10, Section 2 for further details about
this.

 INTEGER

Specified only for numeric functions that return an
integer result, rather than a real result. All numeric
functions are real unless you declare them to be
integer, or if the leading letter of its name has
already been classified as integer by a DEF
statement.

 REAL

Specified only for numeric functions that return a
real result, rather than an integer result. This
modifier need only be supplied if an earlier DEF
statement has already classified the leading letter of
the function name as integer, because functions are
normally real by default.

 STRING

Specifies that the function returns a string result.
This is not required if the function name end with
a dollar sign ($) or if the leading letter of the
function name has been declared as a string
already. Its presence with such names is, however,
permitted and and may improve program
readability.

Since numeric functions always return either an integer or a real result, you must
somehow indicate the result type of each function. This is may be done explicitly using
the above modifiers in the DEF statement of the function, or implicitly by allowing the
default type to be imposed by omitting the type from the DEF statement. Without the
word STRING, INTEGER or REAL, a function s result type is implied from its name.
However, it helps program readability if all functions explicitly declare their result type.
The rules for assigning data types to names are discussed in Chapter 3, Section 1,
Chapter 4, Section 2 and Chapter 5, Section 1. See the RETURN statement (Chapter 8,
Section 1) for more information about returning the result of a function.

When a function is activated by using it in an expression, an argument list is supplied
which defines values for each of the argument list variables in the order given by the
DEF FUNC statement. Such values may be specified by a general expression, but they
always appear within the function itself as the contents of the argument list variables.

The optional argument list consists of a sequence of unindexed string or numeric
variable names separate by commas and enclosed in parentheses. These variables, called
formal arguments, serve during actual use of the function to hold the data passed to the
function so that they can be processed to form the ultimate result returned. If no

8

8-7GFK-0256 Chapter 8 User-Defined Subroutines

argument list is specified in this definition statement, then no arguments can be passed
to the function when it is actually used.

Argument list variables may be either string, integer or real variables, which corresponds
to the argument type to be passed through that argument in the list. You should specify
numeric argument list variables that possess the appropriate integer or real type for the
context in which they are to be used. This avoids unnecessary type conversions which
can degrade the performance of your program.

An argument list has several other optional advanced features which are discussed in
Chapter 8, Section 4. These features include passing data in both directions through the
parameter variables, optional parameters that take on default values when omitted, and
open-ended parameter lists that can have any number of parameters.

If the =<expr ession> at the end of the DEF statement is omitted, then a multiple line
function is defined whose procedural definition must follow. The main body of a
multi-line function consists of a sequence of statements that includes at least one
RETURN <expr n> statement and physically ends with a FUNC END statement (described
below). The following example illustrates a useful multi-line function:

40 Def string func NTH(N); Local P
50 If N mod 100 > 3 and N mod 100 < 21

then Return str$(N)+“th”
60 P = min(N mod 10,4)*2+1; Return
str$(N)+“thstndrdth”(P:2)
70 Func End

Typing this
direct statement

 For l=1 to 10; Print NTH(I),; Next

produces this
output

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

FUNC END

Used as the last statement of a multiple-line function to indicate where its DEFinition
ends. Unlike the DEF statement, which must be the first statement on a line, the FUNC
END statement may appear anywhere on a line as long as it is the last statement of the
function. Single-line functions do not use the FUNC END statement, but they are
mandatory in multi-line functions.

DEF [SHARED] PROC <proc name> [<arg list>]

Defines the name and argument structure of a user-defined procedure. Without any
arguments, a procedure is virtually identical with a GOSUB. To use a procedure you
merely type its name, along with any required arguments (and you do not type the
word PROC or GOSUB in front). Procedures are permitted anywhere that a MegaBasic
statement is expected and in fact, appear so much like statements that you may have a
hard time telling them apart. The SHARED modifier is needed only to allow access to the
procedure from other packages in a multiple package program (see Chapter 10 for
details).

The <ar gument list> of a procedure is identical with the <ar gument list> of a function
except that it is not enclosed in parentheses. Function arguments require parentheses to
separate them from surrounding expression terms. Procedures cannot be invoked from

8

8-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

within expressions and therefore the parentheses are not needed (and, in fact,
MegaBasic reports an error if they are used). See Chapter 8, Section 4 for important
details concerning the more advanced features of argument lists.

Procedures may have any name that would be legal as a variable name as long as the
name is not used for another purpose elsewhere in your program. You can even assign
procedure names that end with a dollar sign ($) or a percent (%), although such names
are normally reserved for strings and integers. Procedure names do not represent data,
so they do not have a data type as variables and functions do.

The body of a procedure consists of any sequence of program statements which
ultimately must lead to a RETURN statement. More than one RETURN may appear in a
procedure if needed. The very last statement of a procedure must be a PROC END (see
below). Procedures are almost identical with multiline user-defined functions, except
that they are not used in expressions and do not return a result via the RETURN
statement. The following useful procedure illustrates some of these concepts:

100 Rem *** Sort VALUE(L) through VALUE(H) with Quicksort
105 Def shared proc SORT @ VALUE,L,H; Local T,l,J
110 REPEAT; T=VALUE((L+H) div2); I=L; J=H
115 While J>–L and VALUE(J)>T; J =1 ; Next
120 While l<=H and VALUE(I)<T; I += 1; Next
125 If l<=J then

[Swap VALUE(I),VALUE(J); I +– 1; J = 1;
 If l<=J then 115]

130 If J–L<H–I then Swap H,J else Swap L,l
135 SORT VALUE,L,H; L=l; H=J; Next if L<H
140 Return; Proc end

This procedure sorts the contents of a range elements in a numeric array into ascending
order. Once defined, its use is as simple as:

SORT ARRAY,FIRST,LAST

Notice how the procedure call appears as if it were a standard MegaBasic statement.
Procedures are specifically designed to encourage the definition of your own new
additions to the working set of MegaBasic facilities. Their similarity to statements is
intentional so that you do not have to remember and apply a separate set of rules to use
them. Read Chapter 8, Section 4 for important additional features of argument lists
which make procedures more versatile.

PROC END

Used as the last statement of a user-defined procedure to indicate where its
DEFinition ends. Unlike the DEF statement, which must be the first statement on a
line, the PROC END statement may appear anywhere on a line as long as it is the last
physical statement of the procedure.

ARGUMENT <list of variables>

Reads a sequence of values from an open-ended argument list into a set of variables. The
variable types must match the actual argument types being read. An error occurs if any
types mismatch or if there are more variables specified than the number of actual
arguments remaining. The ARGUMENT() function will tell you if more actual arguments
remain. Open-ended argument lists are a special feature of MegaBasic procedures and
functions described on Chapter 8, Section 4.

8

8-9GFK-0256 Chapter 8 User-Defined Subroutines

Section 2: Elements of Subroutines

Subroutines in MegaBasic are provided as a set of related program constructs which are
very simple and natural to use, yet they provide tremendous generality in their
application. Their effective use, however, requires that you understand the concepts and
motivation behind them. Several types of subroutines are supported under MegaBasic,
but they all involve the following ideas in varying proportions:

Invocation by Name

A subroutine requires some means of identifying it. Hence each subroutine has a name
of some sort. All subroutines are invoked by merely referring to their names. These
names generally refer to the location in the program where the subroutine is defined.
Procedures and functions can even reside in other external packages (described in
Chapter 10).

A Single Entry Point

A subroutine must have some well-defined point at which it begins execution. Any
subroutine that seems to have more than one entry point should really be treated as
several subroutines, one for each entry point. This concept is enforced by the fact that
subroutines are invoked by name, as described above.

One or More Exit Points

As with any program, a subroutine must at some point complete its assigned duties and
terminate. However since subroutines are invoked by programs or other subroutines,
they should not stop the entire execution process. Instead, subroutines must terminate
and then resume execution at the statement following their invoking reference. A special
subroutine termination statement called RETURN is used for exactly this purpose. While
a subroutine is executing, it may decide at any point that it has finished, so MegaBasic
allows a RETURN statement to appear anywhere (even within loops, CASE statements
and other block structures).

Communication of Input Data

Subroutines would be rather useless if they could only use one particular set of input
data. MegaBasic provides various mechanisms for communicating input data to
subroutines at the time that they are invoked. All of these methods ultimately reduce to
passing input data to the subroutine through a well defined set of variables known to the
subroutine. MegaBasic provides a wide variety of methods for passing information
through argument lists (Chapter 8, Section 4).

8

8-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Communication of Output Results

The existence of a subroutine is justified only if it produces a result or causes some effect
that is useful in some way. Various mechanisms are provided in MegaBasic for
communicating these results directly to other places in the program that need them. For
example, function subroutines return a single value back to the invoking computation
directly, whereas procedure subroutines return results through argument or global
variables. Subroutines can also generate results which, instead of communicating with
the program, communicate with external files or devices.

Independence, Isolation and Information Hiding

It is highly desirable to be able to use subroutines as building blocks without having to
know how they work (e.g., you don’t need to understand the molecular structure of
bricks in order to use them to build a house). Subroutines must therefore effectively hide
their internal details from the context in which they are used. This is called information
hiding, which is a primary reason subroutines are so important in modern software
development.

Another aspect of information hiding is the need to isolate the actions of subroutines so
that they do not have any obscure or otherwise unplanned effects on the surrounding
(invoking) context. The package mechanism of MegaBasic provides an effective barrier
between external subroutines and their local references. Other mechanisms MegaBasic
provides for isolating subroutines include: ERRSETS, LOCAL statements, argument lists,
etc.

8

8-11GFK-0256 Chapter 8 User-Defined Subroutines

Section 3: Types of Subroutines

MegaBasic supports three different types of subroutines: GOSUBS, functions and
procedures. The facilities provided for defining and using them are covered earlier in
this Chapter and you should be somewhat familiar with that material before reading on.
The only difference between GOSUBS, functions and procedures, other than superficial
syntax differences, is the manner in which input and output information is conveyed
between the subroutine and its caller.

An extremely important means for communicating input data to and output results from
functions and procedures is a language construct called an argument list. Argument lists
are fully discussed later in Chapter 8, Section 4, and the discussion below glosses over
them to avoid the extra detail.

GOSUB Subroutines

The standard method for building program modules in all BASICS is the GOSUB, which
is simply a sequence of program steps which can be invoked from anywhere in the
program, without having to be typed in repeatedly. A GOSUB is universally accepted in
all BASICS with substantially the same meaning and form. The GOSUB itself is any
sequence of program statements that eventually terminates with a RETURN statement. It
is invoked by specifying its beginning line in a GOSUB statement, such as:

GOSUB 1010

which simply says begin execution at line 1010 and come back when a RETURN statement is
encountered. In MegaBasic, you can assign names to individual lines and such lines can
then be referred to by name as well as by line number. If line 1010 were to be named
SORT, then the above GOSUB reference could be stated as follows:

GOSUB SORT

Such names have an immense effect upon the readability of your program and their use
is highly recommended. The naming rules are described in detail on Chapter 2,
Section 5. There is nothing at all special about the program statements performed within
a GOSUB, except that they must eventually execute a RETURN statement. Since it is a fixed
sequence of statements which only perform one specific set of actions, applying a GOSUB
to different situations can be rather cumbersome. Take, for example, the following simple
sort GOSUB:

1000 Rem *** Sorts the N values of array TABLE
1010 SORT: For l=1 to N–1; For J=1+1 to N
1020 If TABLE(I)>TABLE(J) then Swap
TABLE(I),TABLE(J)
1030 Next J; Next l; Return

To apply GOSUB SORT to any set of numbers involves loading the numbers you wish to
sort into array TABLE() , setting N to how many numbers it contains, then invoking the
subroutine with the statement: GOSUB SORT (or GOSUB 20). It is easy to see that in some
situations, just setting up the variables in preparation for using a GOSUB might well
require more effort than what the GOSUB itself performs. GOSUBS are useful in simple
applications, but MegaBasic provides a much more powerful and flexible construct,
called a procedure, which you should use when new programs are developed.
MegaBasic supports GOSUBS primarily to support existing programs that use them.

8

8-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Procedure Subroutines

Procedures differ from GOSUBS in three ways. First, their definition begins with a DEF
statement that gives the procedure a name and creates a set of channels through which
information is communicated to and from the procedure, called arguments. Second,
procedures are invoked by stating their name followed by any required input data (no
GOSUB prefix is used). Procedure calls therefore appear quite similar to built-in
MegaBasic statements. Conversely, new statements may be added to the built-in set by
defining them as MegaBasic procedures. Third, your programs can refer to procedures
defined in other programs if necessary, which further enhances the view that procedures
are language extensions. This particular topic will be covered later on in Chapter 10. The
preceding sort GOSUB has been rewritten as a procedure for the following example:

1010 Rem *** Sorts the N values of array TABLE
1015 Def proc SORT @TABLE,N
1020 For l=1 to N–1; For J=1+1 to N
1030 If TABLE(I)>TABLE(J) then Swap
TABLE(I),TABLE(J)
1040 Next J; Next l; Return
1050 Proc End

The only difference with the GOSUB is that line 1015 has been added to define the
procedure name and its input data. The input data is communicated to the procedure as
a list of arguments, a subject to be covered in the next chapter. SORT as defined by this
procedure can be invoked with different sets of input data without any additional
changes, as follows:

SORT NTBL,200
SORT KEYS,LENGTH-UNUSED
SORT VECTOR,M*N

where NTABLE, KEYS and VECTOR are all one-dimensional arrays containing the data
to be sorted. Communicating data via this mechanism provides tremendous flexibility
for applying procedures to varying situations. Procedures are therefore recommended
over GOSUBS in all significant applications. A good rule of thumb is to use GOSUBS only
for very small subroutines which are called from nearby lines of a single larger routine.
GOSUBS in existing programs can be easily converted to procedures which have no
arguments to begin with, and later enhanced with argument lists as needed. (You can
also leave in all GOSUBS if you don’t want to bother converting them into procedures.)

Defining Procedure Subroutines

Procedures are defined with three components: a definition header statement, a body of
statements that performs the desired task, and a terminating statement. The definition
statement and structure of procedures is similar to that of functions, as follows:

DEF PROC <procedure name> <optional argument list>
Any number of MegaBasic statements that
eventually executes a RETURN statement
PROC END

The <procedur e name> may be any legal variable name which is not used anywhere else
in the program (i.e., it must be unique). A dollar sign ($) is permitted to appear as the last
character of a procedure name but since procedures do not have a type associated with
them, it does not imply a string type (as in variables and functions). This statement must
appear as the first statement on the line in which it appears. The DEF and PROC
keywords must appear as the first two words in this header.

8

8-13GFK-0256 Chapter 8 User-Defined Subroutines

The <optional argument list> is a list of variables, separated with commas, through which
input data and output results may be communicated. This construct permits the
procedure to deal with one set of variables that represent any data being communicated
with its user. This important topic is thoroughly treated Chapter 8, Section 4. Procedure
argument lists of both their definition and their references are never surrounded by
parentheses as they are in functions, which gives procedure calls the appearance of
MegaBasic statements.

The procedure body of statements is exactly like the body of a GOSUB designed for the
same task. It must have at least one RETURN statement so that it can continue execution
in its calling routine when finished. The very last statement of a procedure definition
must be PROC END, which defines the end of the procedure definition.

Function Subroutines

Functions differ from procedures in two ways. First, functions are invoked from within
string or numeric expressions, rather than as statements in themselves. Second,
functions must return a single result value (string or numeric) back to their invoking
expressions, as part of their final termination. This result is returned by specifying it in
the terminating RETURN statement (Chapter 8, Section 1). Functions are identical with
procedures in all other respects.

By defining your own functions, frequently used computations can be programmed
once, and later referred to by name as often as necessary anywhere else in your
program. This centralizes its internal implementation details in one place in the
program, so that if the computation is modified in the future, all places that use it are
automatically updated. Furthermore, properly designed functions can be independently
used without knowledge or consideration of their internal workings, freeing you to
solve the problems at hand instead of being side-tracked by lower level details.

As with built-in functions, user-defined functions are named and include an argument
list. Any name legal for assignment to a variable is also legal as a function name. As with
variables, function names must reflect the data type that is returned. A dollar sign ($)
ending the name indicates that the function generates a string result; functions named
without a dollar sign must generate a numeric result. Unlike most BASICS, function
names do not have to begin with the letters FN. Once assigned as a function, a particular
name cannot be used for any other purpose. Name formation in MegaBasic is covered in
detail on Chapter 1, Section 5.

The argument list of a function must be enclosed in parentheses and may contain string
or numeric argument expressions. Both the number of arguments and their data type
must correspond to your definition of the function (described below). The argument list
doesn’t appear if no arguments are required for its operation. Argument lists are
discussed in Chapter 8, Section 4.

MegaBasic supports two different forms of function definition. The simplest and most
common form is called a single-line function. Functions of this type merely define an
expression (string or numeric) which is evaluated when the function is invoked. Such
functions are then applied as shorthand for the expression whenever required.

For more complex applications, multi-line functions can be defined. These are not
restricted to just one line or one fixed result expression. Multi-line functions may contain
as many statements as necessary to compute the desired result. Because no limit is
imposed on their size or content, such functions may perform many complex
computations, alter global data structures, or perform input and output transfers prior to
returning their ultimate result.

8

8-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Defining Single-Line Function Subroutines

Single line functions are completely defined by a single program statement which must
fit within one program line, up to 255 characters long, and has the following form:

DEF[<type>] FUNC <name> [(<argument list>)] = <expression>

The <name> specifies the unique name by which the function is referred to throughout
the program. The optional <ar gument list> lists in parentheses the variables through
which the argument data is passed to the function. The <expr ession> specifies a string or
numeric expression combining the arguments (with possibly other data) into a new
result which is passed back to expression invoking the function.

An optional <type> may be specified on numeric functions to control the result type of
the function. You may specify one of the words STRING, INTEGER, or REAL for this
option. If you omit the <type> option, the function result type is derived from the
function name itself. Names ending with a percent sign (%) are integer; names ending
with an exclamation mark (!) are real; and names ending with a dollar sign ($) are string.
Otherwise the function result type depends on earlier DEF statements (Chapter 5,
Section 1) which may have assigned a numeric or string type to the leading letter of the
function name. In the absence of any type declaration, a function will return a real result
by default. We recommend that all function definitions explicitly include its full type
declaration as a matter of programming style and general readability.

The result <type> merely ensures that the result is always of the desired type specified,
regardless of the actual numeric computations performed within the function and the
result expression. MegaBasic will automatically convert the numeric result of a function
to its defined type whenever the type of the RETURNed result differs. A Data Type Error
wi1l be reported if you attempt to return a string result from a numeric function or return a
numeric result from a string function.

Single-line functions provide a simple way to combine data using a complex expression,
for example the definition:

Def real func MODULO(N,M) = N–INT(N/M)*M

The variables N and M are function arguments which will be used to represent the data
presented by an actual reference to the function, such as in:

MODULO(X–1 7,SQRT(Y))

When this reference to MODULO is made, the formal arguments, N and M, are set to the
values expressed by X–17 and SQRT(Y) respectively. N and M are then used within the
expression given in the DEFinition of MODULO, i.e., N–INT(N/M)*M. This expression
is evaluated and the result is passed back as the value of MODULO, which may then be
invoked within a higher level expression, as in:

X = LOG(MODULO(X–17,SQRT(Y)) + MODULO(R/S–10,T))

This is a complete assignment statement which sets X to the logarithm of the sum of two
different references to MODULO in the same expression. Numeric argument definition
variables, like N and M above, have no relation to variables of the same name used
outside the function definition, because they exist only during the active execution of the
function. The argument list has some important properties and options which you
should read about in Chapter 8, Section 4.

8

8-15GFK-0256 Chapter 8 User-Defined Subroutines

Defining Multiple-Line Function Subroutines

Multiple line functions permit construction of functions with any number of statements.
Similar to procedures, the definition has three parts: the DEF statement similar to the
above, the main body of the function procedure, and a FUNC END statement to terminate
the definition:

DEF [<type>l FUNC <function name> [(<argument list>)]
 Any number of MegaBasic statements which
 eventually executes: RETURN <result exprn>
FUNC END

The only difference between single and multiple line function DEF statements is the
absence of the equal sign (=) and <expr ession>. Instead, the main body of the function
immediately follows the DEF statement. This main body consists of whatever series of
program statements are necessary to perform the desired task and return the result
(except that it cannot include another DEF statement).

To pass the result back to the expression that invoked the function, a multiline function
executes a RETURN statement specifying an expression that computes the desired result.
Any number of RETURN statements may appear within a multiple line function (just like
a procedure), and when any one of them is executed, its result expression is computed
and passed back to whatever expression invoked the function, causing the program to
resume from that point.

The <r esult exprn> must compute a numeric result for numeric functions and a string
result for string functions. As described for single-line functions, an optional <type> can
be specified to define a numeric function result as STRING, INTEGER or REAL. You
should understand the material presented in Chapter 3 in order to make the best choice
of real and integer numeric types.

Illustrated below is a small multi-line function to test a string to see if it is a valid
number:

10 Input “Enter a numeric string –– ”,A$
20 If VALSTR(A$) Goto 10
30 Print “Not a valid number, try again”
40 Goto 10

100 Def integer func VALSTR(TRY$)
105 Errset 115
110 E=VAL(TRY$); Return 1
115 Return 0; Func end

This simple but useful function logically tests a string for whether or not it correctly
represents a numeric constant. It returns 0 (false) if an error occurs when VAL(N$)
attempts to convert N$ to a number, or returns 1 (true) if successful. Hence
VALSTR(“234O17”) returns 1 and VALSTR(“$7,235.98”) returns 0. VALSTR() is defined
as an integer function because its logical result is returned faster.

Multiple line functions must physically terminate with a FUNC END statement. You
cannot define other functions within function definitions, but you can define them in
terms of other functions by employing user-defined functions as components to
compute higher level results.

8

8-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Side-Effects Produced by Subroutines

User subroutine references invoke the MegaBasic subroutines within a larger context of
higher-level program operations or expressions. When subroutines return, this execution
context resumes where it left off and the program continues. Ideally, this context should
be unaltered by the act of calling the subroutine, other than the result intended.
However there are two areas where subroutine calls can potentially upset program
integrity in non-trivial and unobvious ways. These are known as side-effects.

The first side-effect is the problem of global variables changed within the subroutine and
is one of the most frequently encountered sources of programming errors when
programming in BASIC with subroutines. In the example below, variables outside a
function subroutine are affected by the function call, causing the FOR..NEXT loop in line
200 to continue forever:

200 For l=100 to 1 by –1
210 A(l)=SUMM(I); Next; End
800 Def func SUMM(N); T=0
805 For l=1 TO N; T=T+B(I); Next
810 Return T; FUNC End

The problem in this example is that the same loop index variable (I) is used by two
different but nested loops, a condition which is easily hidden by the function itself. You
must ensure that this kind of situation never happens in your programs by restricting
potentially harmful variable accesses. Two methods are available for controlling variable
access:

� Every time you use a variable, find out how and where it is used elsewhere in
the program and make appropriate changes as needed, and

� Define temporary variables used in subroutines as LOCAL variables with the
LOCAL statement.

Data stored in variables must be preserved for the term of its usefulness. Variables which
contain long-term data must be protected from unintentional use, especially in large
programs. You may safely obtain temporary storage by using available local function
argument variables (if any), or by temporarily creating new variables with the LOCAL
statement (Chapter 8, Section 1). Both methods can be employed, but using LOCAL
variables is preferred.

The second type of side-effect is rather obscure but you should be aware of it. READ or
WRITE statements containing user function calls which in turn perform their own READS
or WRITES to the same file, can upset the current file position causing the original READ
or WRITE to access the wrong file position. For example if you directly WRITE the result
of a function that itself accesses the same file, the data will be written at the file position
left by the function call rather than the position specified by the original WRITE
statement. Or suppose that a READ statement includes a user function that CLOSES the
file in its procedure. Such an operation would produce highly unpredictable results.

Awareness of this side-effect is essential to prevent it from occurring. There are two
ways to avoid this problem. At the call level, you can always store the function result in a
variable for subsequent use in the READ or WRITE statements. At the function level, you
could save the file positions of all files accessed by the function and restore them just
before returning back to the caller. This is an excellent solution because it hides the
details within the function and the caller does not have to know anything about it.

8

8-17GFK-0256 Chapter 8 User-Defined Subroutines

Section 4: Communicating with Subroutines

Useful subroutines take some input data, do something with it, and produce some effect
or result. Inputs must be accessible to the subroutine and the set of output results
produced need to be posted in some way useful to its caller. Except for the RETURN
<expr ession> of function subroutines, all data communication between subroutines and
their application context is through variables. The various techniques to do this are
presented below.

Global Variables

In MegaBasic, like all BASICS, all variables may be accessed throughout the program.
This type of access is called global access and such variables are referred to as global
variables. Variables that contain the results of one statement are therefore accessible to
any other statement that chooses to use them. The output of one subroutine becomes
the input of another. This kind of data communication has no limitations other than the
ability of the programmer to manage the relationships of the variables involved.

However, as more variables come into play, the task of managing variables can become
more difficult. Each use of a variable must be checked out by a thorough examination of
its uses throughout the program. The searching capability of the LIST command
(Chapter 2, Section 2) and the NAMES command (Chapter 2, Section 3) is useful for this.
The XREF command (Chapter 2, Section 5) generates a cross reference listing of the
various identifiers showing where they are referenced. Each global variable should be
documented and its purpose restricted to a single use.

Meaningful names assigned to variables, lines, functions and procedures are an
important means of managing your program. Depending on the application, a naming
standard can be useful to indicate the purpose of each variable by characteristics
embedded in its name. For example, by naming truly global variables with names of six
or more characters and restricting the names of variables used for temporary storage to
five or less characters, it will be more difficult to accidentally use a global variable for
temporary purposes. In the long run, such self-imposed standards can save you a
significant amount of debugging time.

The problems associated with global variables are an unavoidable result of the
unrestricted access to variables, a standard feature of BASIC itself. Without restrictions
on global variable access, programs larger than 40 or 50k bytes become difficult to
develop and maintain. Fortunately, MegaBasic has some automatic mechanisms to
handle these sorts of problems: argument lists and their related local variables.

Argument Lists

As seen above, communicating data through variables has some rather severe
shortcomings. Instead of having to explicitly assign values to the variables required by
the subroutine, MegaBasic supports a mechanism for automatically assigning them,
called an argument list. When invoking a subroutine that uses an argument list, the data
you wish to communicate is listed after the name of the subroutine without necessarily
being stored in any particular variables. When the subroutine begins execution, this
input data becomes available as a list of variables corresponding to each input argument.

8

8-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The following example illustrates how this works. Suppose that you need to compute
the nearest multiple of one number to another. This simple function would be defined
something like this:

Def func NEARMULT(V,MULT) = round(VlMULT)*MULT

The argument list of this function is defined with two numeric variables, V and MULT,
which are called the formal arguments of the function. The actual work of the function is
performed by the expression to the right of the equals sign (=), which uses the two
arguments in a computation that determines the result desired. When invoked,
NEARMULT uses any pair of actual arguments that you wish to submit to it for calculation
and they do not even have to be stored in variables, for example:

NEARMULT(XIY,Z–2)

MegaBasic sets V to the result of quotient X/Y, sets MULT to the difference Z–2, and then
begins function execution. These two argument expressions are called the actual
arguments of the function. Even though NEARMULT only knows how to operate with two
fixed variables (i.e., V and MULT), it can accept any arbitrary pair of input numbers.

Subroutine arguments can be strings as well as numbers and when strings appear as
actual arguments, their corresponding formal arguments in the argument list definition
must be string variables. In other words, the data types of the actual and formal
arguments must agree. MegaBasic assumes that the definition is correct when they don’t
agree, and reports an error in the reference to the subroutine. For example, if you supply
a string expression as one of the arguments to the function above, MegaBasic reports a
Data Type Error.

You can independently specify formal argument variables with several optional
capabilities. Different argument passing modes are supported to let you pass actual
arguments as values, as variables or as pointers. This is covered in the next few pages.
The number of arguments specified in subroutine references normally matches the
number defined for the subroutine. However, you can also specify optional arguments
along with default values that are passed in the event that the corresponding actual
argument is omitted. This powerful feature is described later on in this chapter.

8

8-19GFK-0256 Chapter 8 User-Defined Subroutines

Argument Passing Modes

MegaBasic supports a number of different ways that arguments can be passed to
subroutines called argument passing modes. Each mode has certain advantages over the
others in specific applications. They are specified independently for each formal
argument by the presence or absence of a single special character in front of the formal
argument variable in the subroutine DEF statement. Much of the remainder of this
chapter is devoted to describing these argument modes, which are summarized below:

Value
Arguments

Unless you specify otherwise, arguments are passed
by value. In other words, only the value is passed
to a subroutine. Changing the value of such an
argument has no effect on the subroutine caller.

 Variable
Arguments

An at-sign (@) indicates an argument that lets you
pass an actual variable to the subroutine. Such vari-
ables may contain input values, but they may be
altered by the subroutine in order to pass output
data back as well. The actual arguments specified
can only be names of variables, i.e., no expressions,
arrays subscripts or string indexing.

Copied
Arguments

A percent sign (%) indicates an argument that
simply receives an input value for subsequent use
 by the subroutine. This is similar to a value argument,
but the formal argument variable is not restored
upon returning from the subroutine.

Pointer
Arguments

An asterisk (*) indicates an argument that extracts
the pointer to the actual argument and passes that
value through the formal argument variable
instead. The topic of pointers is discussed in
Chapter 5, Section 4.

Value arguments are common in most applications because of their generality and
simplicity. The other argument modes have very important uses and can simplify and
speed up certain types of processing. The concepts and motivation for each mode will
now be discussed in full detail.

Value Arguments

Formal arguments defined in subroutines are nothing more than simple variables, which
may actually have other uses in the program (outside the subroutine). When you pass
data to a procedure or function through the variables listed in the subroutine definition,
the following steps are performed internally:

� All of the actual data values to be passed are completely evaluated, as each
argument may be expressed by a general expression.

� The current contents of the variables listed in the argument list definition are
saved so that upon RETURN, they can be restored to their original values as if
nothing happened.

� The previously evaluated actual data values to be passed are then copied into the
corresponding argument variables for subsequent use within the function.
Numeric arguments are converted to the same type as the argument variables
receiving them.

8

8-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MegaBasic preserves the contents of all formal argument variables during the entire
execution life of a subroutine. In other words, the contents of each formal argument
variable defined by a subroutine is the same before and after invoking that subroutine,
regardless of what information is passed through it. Once a subroutine RETURNS, its
formal argument variable values disappear and are forever lost. Because they effectively
exist only within the context of subroutine execution, such variables are called local
variables. The following procedure illustrates an example of this:

10 LIMIT = 999999,; Print LIMIT; COUNT_TO 10;
Print LIMIT; END
20 Def proc COUNT_TO LIMIT
30 For LIMIT = 1 to LIMIT; Print LIMIT,; Next
40 Return; Proc end

When RUN, this program produces the following output:

99999912 3 4 5 6 7 8 910 999999

Although LIMIT is altered within procedure COUNT_TO, its value on the outside of the
procedure is unaffected. The LIMIT variable inside the procedure is, for all intents and
purposes, totally separate and distinct from its namesake outside of the procedure.
Other variables used within subroutines that are not formal argument variables will be
treated as global variables, and their values persist after the subroutine terminates.

The fact that you can always temporarily store information in local variables without
ever worrying about overwriting global information is an extremely useful and
simplifying mechanism. It means that you can develop subroutines which can be used in
any context without fear that they may alter surrounding variables in unplanned ways.
Local variables are so important that MegaBasic includes a LOCAL statement
(Chapter 8, Section 1) which effectively creates local variables for whatever temporary
(local) application you desire.

The following program uses a LOCAL statement to implement the previous example
using a GOSUB instead of a procedure:

10 COUNT = 999999; Print COUNT,;
GOSUB 20; Print COUNT;
End
20 Local COUNT;
For COUNT = 1 to 10; Print COUNT,;
Next; Return

When RUN, this program produces the following output:

9999991 2 3 4 5 6 7 8 910 999999

Even though the COUNT variable is modified within the GOSUB, it remains unchanged
from the view of the routine which called the GOSUB. Use local variables to isolate the
inner workings of your subroutines, confining their effects on the outside world to only
well-defined and documented sets of intended output result variables.

String variables may be passed by value as localized variables but remember that their
prior string value is saved in internal scratchpad memory until the RETURN statement is
executed. This can quickly use up the 55k bytes (approx.) that they possesses if used
indiscriminately. Furthermore, the formal variable argument itself must be of sufficient
capacity to contain the actual input argument string. A Length Error results if the input
argument exceeds the size of the formal variable.

8

8-21GFK-0256 Chapter 8 User-Defined Subroutines

String variables used solely for local purposes should be assigned an initial value of a
null string () during program start-up (initialization). This will prevent the unnecessary
saving of a full variable of spaces () onto the scratchpad stack when the string is
declared local or used as a local parameter in an argument list.

Variable Arguments (@)

The standard method of passing input data to subroutines via local variables does not
address the other side of the problem: subroutine output. Local variables only
communicate input values and by definition cannot be employed to pass computed
results back to the user of the subroutine. Furthermore, it is neither possible nor feasible
to communicate array variables as local variables, but in many situations array
communication is nonetheless highly desirable. For example, if you develop a subroutine
to sort the contents of an array, you most certainly would like to apply that subroutine to
any array without having to reprogram it for each.

Variable arguments are specified by placing an at-sign (@) in front of the corresponding
formal argument variable in the subroutine DEF statement. This form of argument not
only passes the contents of a variable, it passes the variable itself. MegaBasic temporarily
changes the identity of the formal argument variable so that it becomes the actual
argument variable itself. This change of identity remains in effect until the subroutine
terminates. The simple example below illustrates these concepts with a procedure that
increments numeric variables:

10 X=6;
While X<16; INCREMENT X; Print X,; Next;
End

20 Def proc INCREMENT @ VBL
30 VBL = VBL+1; Return 40 Proc end

Running this program produces the following output:

7 8 91011 1213141516

Although INCREMENT only deals with a variable named VBL, it is called with a different
variable named X. Inside this procedure, VBL becomes X and any alteration to VBL is
really an alteration to X. As shown above, the special nature of this argument is indicated
in the argument definition of VBL by placing an at-sign (@) in front of it.

This method of communicating variables is called passing by address in many languages,
due to the internal mechanism employed to implement it. Passing by address is a
powerful feature of FORTRAN, PASCAL, C, PL/1, ALGOL, and many other compiled
languages. There are a number of ground rules that must be obeyed in order to use this
feature, which follow below:

� An at-sign (@) must immediately precede each formal argument variable in the
DEF statement which is to be passed by address. The at-signs are never to
appear in the calls to this subroutine.

� Actual arguments to be passed by address must appear as a variable name only:
no subscripting, no indexing, no arithmetic expressions, no parentheses. This
means that array elements and indexed string variables cannot be passed by
address.

� The formal variable in the definition and the actual variable passed in the calling
sequence must agree in type, i.e., both must be string variables or both must be
numeric variables.

8

8-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� Either integer or real variables may be passed through a formal argument
variable of either type. The formal argument variable does not impose its
numeric type onto the argument when passing by variable, as is done when
passing by value.

� Prior dimensions of the formal argument variable in the DEF statement do not
control what may be passed and are, in fact, irrelevant. This is because the entire
variable and its current size attributes are passed along with the rest of the
variable. However all references to the passed variable within the body of the
subroutine must agree with its current data type definition. The DIM() function
(i.e., not the statement) provides information about array variables which can be
useful in implementing subroutines that process arbitrary arrays.

� Nothing but variables may be passed in the actual arguments: no functions, no
procedures and no expressions, nothing except single unadorned variable
names.

Passing variables by address is important for two reasons. First, you are able to define
subroutines which can process any variable which is passed to it, whereas with passing
by value you do not have any access to the variable, only its value. This also means that
results of a subroutine may be communicated back to the calling program via the
variable. Second, no matter how big the variable is, you can pass it as an argument in
only a fraction of a millisecond (impossible when passing a large string by value).

The DIM() function (Chapter 9, Section 5) allows subroutines to determine for
themselves the dimensions of variables passed to them. DIM(X) returns the number of
dimensions currently defined for variable X; zero is returned if X is scalar or undefined.
DIM(X,N) returns the upper limit of dimension N of array X. An error results if X is not
an array or N is outside the range 1 to DIM(X) .

Copied Arguments (%)

In some BASICS (e.g., North Star BASIC string arguments), the passing by value mode of
input argument communication does not restore the prior contents of the argument
variable on RETURN, i.e., local variables are not used. The net effect of using this mode is
identical to storing input values into a set of variables with assignment statements prior
to calling a GOSUB that uses them. When you pass data by copying, the following steps
are performed internally:

� All of the actual data values to be passed are completely evaluated (as each
argument may be expressed by a general expression).

� The previously evaluated data is then copied into the corresponding argument
variables for subsequent use within the subroutine. Numeric arguments are
converted to the same type as the argument variables receiving them.

This passes the input data but loses the prior contents of the formal argument variable.
An occasional program designed with this mode in mind may rely on the side-effect
values left in those variables (a questionable practice).

To invoke this type of argument passing, a percent sign (%) may be placed in front of
any formal argument variable to indicate this mode is to be used, similar to the way that
an at-sign (@) is used to indicate passing of variables. This mode is simply the passing by
value mode without the local argument variable.

Two reasons for using this mode should be mentioned. First, if the formal argument
variable contains a very large string, the execution time and internal memory space

8

8-23GFK-0256 Chapter 8 User-Defined Subroutines

required to localize that variable may be undesirable. Copied arguments are not localized
and therefore execute faster and require no internal scratchpad storage. Secondly,
variables in external packages (see Chapter 10) are local unless explicitly declared as
SHARED. Such variables, if not used for any other purposes within the external package
itself, can be used as copied arguments while retaining the properties of local variables.

Pointer Arguments (*)

Chapter 5, Section 4 describes a MegaBasic capability called pointer variables. You should
read that section for complete information about pointer variables and pointer
arguments. The discussion below is intended to introduce you to pointer concepts and
their use within the context of subroutine argument lists.

A pointer is a special number that represents a variable, function, procedure, or line
label. Each named MegaBasic object has an associated pointer. If you have a pointer, you
can use it to access the object to which it refers without having to use its name. Since such
numbers can be stored in variables, your program can then use variables to refer to other
variables. MegaBasic pointer variables are almost identical with the pointer facilities
implemented in the C programming language.

By placing an asterisk (*) in front of a formal argument variable, you define that
argument as a pointer argument. When an actual argument is passed though such an
argument, MegaBasic extracts its pointer value and passes it (by value) to the subroutine.
In other words, the pointer is passed instead of the actual argument itself. The formal
pointer argument variable must be an integer because pointers themselves are 32-bit
integer values.

Specifying a real or string variable in as a formal pointer argument is reported as a
Pointer Variable Error. The actual argument passed through a pointer argument can be
any named entity, including: scalar string, integer or real variables, any array name or
array element reference, or the name of a procedure, function or line label. Pointer
arguments therefore let you pass objects rather than expressions. This is similar to
variable arguments, but pointers are much more general (though also more difficult to
use).

In order to use the pointer argument within the subroutine, you need to know how to
access the object it points to. This subject is, again, covered in Chapter 5, Section 4. The
purpose of pointer arguments is to provide an automatic pointer extraction mechanism
as part of the argument list mechanism in order to hide this implementation detail from
the caller. In addition pointer arguments let you pass, among other things, subroutine
names and array elements as parameters to subroutines.

Optional Parameters and Default Values

You can define argument lists of user-defined functions and procedures to permit the
omission of parameters from the calling argument list. In other words, such functions
and procedures can be called with a different number of arguments on different
references. This capability is useful for constructing MegaBasic subroutines with special
purpose arguments that only need to be specified in the references that actually need
them. Proper application of this capability can simplify your programs, as well as make
them run faster and be more readable and maintainable. The following function DEF
statement illustrates how to create a function with 1 or 2 arguments:

Def real func LOGARITHM(V,BASE=10) = log(V)llog(BASE)

8

8-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

This function computes the logarithm of V to any BASE specified or to base 10 if not
specified. Notice the BASE=10 expression in the argument list. This syntax specifies the
default value to use for parameter BASE if no second argument is specified. Any
argument defined in this manner may be subsequently omitted from the argument list
when calling the subroutine. For example LOGARITHM(2) returns Log 2 base 10,
LOGARITHM(3,12) returns log 3 base 12. With this general idea in mind, the additional
rules for defining and using default parameters are listed below:

� Parameters can only be omitted from right to left, i.e., you cannot omit
parameters out of the middle, unless you also omit all parameters to the right of
them. Be sure to define default values for every parameter allowed to be
omitted.

� When all parameters are omitted from function references, you must also omit
the parentheses that surround the argument list (i.e., don’t leave an empty
parenthesis shell).

� Default values, when specified, immediately follow the formal parameter
variables in the subroutine argument list definition with an equals sign (=)
separator. A default value may only be a constant or a simple variable (no
subscripts or indexing) and must match the data type of its corresponding
parameter variable. General expressions as default values are thus not
supported.

� When a simple variable is the specified default value, its effective value is its
contents prior to the evaluation of any earlier parameters. This is because
MegaBasic evaluates the entire calling argument list before binding the values to
the formal parameter variable list in the definition.

� Default values may also be assigned to parameter variables that are passed as
variables (preceded by @) or passed by copying (preceded by %). The default
value of an at-sign (@) variable must be a simple variable, never a constant.
Default values for percent sign variables (%) are identical to default values for
regular (local) parameters.

Generally, it is convenient to use default values that can be identified by their values as
default values. For example, a null string () is a useful default value for a string
parameter that would never be a null string. When the subroutine tests this parameter
and discovers that it is null, a different course of action for the omitted parameter can be
taken.

Because optional parameters may only be omitted from right to left, you should
carefully design your argument list definition so that the optional parameters are
ordered from most often required to least often required (left to right). In this way, the
references to these subroutines will tend to use the minimum number of calling
arguments throughout your program.

Default parameters are passed to the subroutine more quickly than specified arguments.
However you should remember that no matter how many arguments you actually
supply when calling your subroutine, MegaBasic always evaluates all of the arguments
in the defined formal argument list. Therefore unnecessary optional parameters that are
never needed in practice should be avoided for best performance. Also, the addition of
default values to subroutines definitions does not in any way slow down subroutine calls
that include all the arguments.

Default values that change with program conditions are implemented by specifying the
default values with simple variables. For example, suppose that whenever you omit a

8

8-25GFK-0256 Chapter 8 User-Defined Subroutines

certain parameter you want it to default to the last value actually specified for it. If this
parameter is the variable LAST, you might implement this type of default using the
parameter definition: %LAST=LAST. The percent causes LAST to retain its value after
the subroutine terminates. Hence if you omit this parameter, it simply takes on its
current value, i.e., the value it had upon return from the subroutine (assuming nothing
else altered it).

One of the really important applications of optional parameters is the extension of
existing MegaBasic packages in an upward compatible manner. Suppose that you have a
package that is used by many people, for instance, a data base function library. As time
goes by, you discover that some of the functions it contains can be modified to cover a
wider range of applications, but you are prevented from realizing these expanded
capabilities because a change in their argument structure would make the package
incompatible with existing programs using it. You can probably see by now that
appropriately defined optional parameters are the key to expanding such functions. All
existing programs using the package can execute as before, while at the same time new
or upgraded software can take advantage of the extended capabilities they provide by
using the additional parameters.

Open-ended Argument Lists

A totally different argument list structure is also supported to let you define functions
and procedures that can be called with any number of arguments from one call to the
next. Furthermore, the argument type of each argument (string or numeric) may also
vary on different calls. This capability is useful for defining subroutines that can more
easily adapt to the context from which they are called. MegaBasic has several built-in
functions that already operate in this manner, such as the MAX() and MIN() functions
and the PRINT statement. To show you how to define such functions and procedures,
we have defined below a user-defined version of the MAX() function called MAXIMUM:

100 Rem *** Return the maximum value from a list of values
110 Def func MAXIMUM(...); local X,Y; Argument X
120 While argument; Argument Y; X 2 max(X,Y); Next
130 Return X; Func End

This function illustrates all the essential features of the open-ended argument list
capability. Notice that the formal argument list definition in the DEF FUNC statement
consists of three dots (...) instead of variable names. This simply indicates that the
function will be called with an open-ended arguments list and that all argument
handling will be done within the body of the function.

Since no formal argument variables are provided in such functions, a special statement
to obtain the actual arguments from the call has been added, called ARGUMENT.
ARGUMENT works very much like the READ statement for reading values from DATA
statements into variables, except that ARGUMENT reads the calling argument list into
variables. For example, ARGUMENT A,B,C reads the next three arguments from the
calling argument list into numeric variables A, B and C; ARGUMENT A$,X reads a string
argument into A$ and a numeric argument into X. In line 110 of the example above, an
ARGUMENT statement is used the read the first value of the calling argument list into
variable X.

The ARGUMENT statement only works directly inside the subroutine and cannot be used
from within other lower-level subroutines. In other words, you cannot have open-ended
arguments read by calling other subroutines.

8

8-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

An open-ended argument list is, by definition, a list of some unspecified number of value
expressions, separated with commas. Your program needs some way to determine when
the list has been exhausted, so that it can stop reading arguments. You could use ERRSET
to trap the error that results from trying to read past the last argument with the
ARGUMENT statement. However the ARGUMENT statement can be used as a function (no
arguments) that returns True (1) if there is one or more unread arguments remaining on
the calling argument list, and False (0) if no more arguments. Line 120 in the example
tests the ARGUMENT function in the WHILE condition to determine the presence of
additional unread arguments and if true (1), executes the loop to evaluate the next one
and process it.

MegaBasic permits your function or procedure to return without reading all the
arguments that it was called with. Such unread arguments are never evaluated, so no
computational effort is wasted on them. A good example of this is the AMONG()
function, which returns the position of a number in a list of numbers, or zero if it
matches none of them:

100 Rem *** Return the position (1,2,..,n) that X match a value
in a list
110 Def integer func AMONG(...); Local X
120 Argument X; I = 1
130 While argument; argument Y;

If X–Ythen return l; 1+~1; Next
140 Return 0; func end

This function returns a result as soon as the first argument is found to equal any one of
the other arguments, or when the list is exhausted. For example, AMONG(323, 567,12, 87,
323, 999) = 4, AMONG(–34, 8256,7) = 0, etc.

Up to now, we have examined open-ended argument lists of numbers for functions. In
the example below, we have defined a procedure that prints each of the arguments
listed, regardless of their type (string or numeric). Notice that error trapping is needed to
do this because a Type Error will occur if a string (numeric) argument is read into a
numeric (string) variable. By trapping the error, the argument can be re-read using a
different variable, allowing the process to continue.

100 Rem *** Procedure that displays any sequence of arguments
110 Def proc PRINT_LIST...; local V, V$
120 While argument
130 Errset 140; Argument V; Print V; Goto Next
140 Errset 150; Argument V$; Print V$; Goto next
150 Errset #99, “Bad Arguments”
160 Next; Return; Proc end

8

8-27GFK-0256 Chapter 8 User-Defined Subroutines

Section 5: Recursive Programming

You are free to employ the subroutine you are defining within its own definition. Known
as recursion, such subroutines must ultimately reduce down to a result without
reference to themselves in order to terminate in a finite amount of time. Otherwise they
continue to invoke themselves until all the subroutine control space in the machine is
consumed, ending in a Scratchpad Full Error. Recursive subroutines often split a problem
into several smaller but similar problems, then call themselves to solve each of these.

A simple application of recursive programming is the process of determining the
greatest common denominator of two integers (GCD for short). It can be shown
mathematically that GCD(n,m) = GCD(m mod n, n), where 0<n<m. This equation
defines GCD in terms of itself, making it a recursive definition. The following program
shows how it is implemented in MegaBasic:

10 Rem –– Recursive Function for the
20 Rem –– Greatest Common Denominator
30 Def func GCD(VAL1 ,VAL2)
40 If VAL1 > VAL2 then Swap VAL1 ,VAL2
50 If VAL1 then Return GCD(VAL2 mod VAL1 ,VAL1)
60 Return VAL2; Func End

Line 30 names the function and defines its arguments. Line 40 ensures that VAL1 is not
greater than VAL2, because we will be taking the remainder of VAL2/VAL1 using the
MOD operator. This is justified because the GCD of two numbers is the same regardless of
their order. Line 50 tests VAL1 to see if it is non-zero and if so, returns the result in terms
of another GCD evaluation, i.e., it calls itself. If VAL1=0 then the GCD must be the value of
VAL2, i.e., the GCD of zero and any other value is that value.

One of the important aspects of recursive programming illustrated above, is the essential
property that the problem is ultimately reduced down to a result which is NOT
recursively defined. The GCD function repeatedly reduces the original numbers supplied
into smaller numbers which have the same GCD. When one of these numbers eventually
becomes zero, the final result is known and does not required further recursive
processing.

The above example also illustrates how hard it is to guarantee the a recursive subroutine
will eventually terminate in all cases. Upon careful examination of it, you may notice
that if VAL1 or VAL2 is negative (less than zero), then GCD will never reach a point of
termination and ultimately uses up all remaining scratchpad space and terminates the
program by force (i.e., by an error).

Many recursive programs can actually be reformulated as iterative procedures (i.e.,
implemented with loops) rather than recursively. Iterative implementation usually
executes a little faster and consumes less memory. This being the case, why do we bother
with recursive programming? The answer is that certain problems are more naturally
defined recursively and their solution can be much more obvious and simply specified in
a recursive manner.

The key to recursive programming is in recognizing that certain problems can be
naturally defined in terms of themselves and to avoid recursive solutions to those
problems that are not. As with all tools, selecting the one most suited to the problem at

8

8-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

hand leads to the quickest solution. Recursive programming is a surgeons scalpel, not to be
confused with a construction pile-driver.

Another important consideration in constructing recursive subroutines is knowing when
to use local variables and when to use static variables. Static variables are those that keep
their contents after the subroutine returns, and local variables are those whose contents
live only as long as the current subroutine invocation.

Variables used to store temporary or intermediate resulting within the recursive
subroutine should usually be local variables. This is because you do not want a recursive
re-entry into the same subroutine to overwrite the contents of such variables before they
are used. Temporary variables having no further use before a recursive re-entry do not
have to be local. Static variables can be used to store data that is never modified (i.e.,
read-only), or for input/output data that the subroutine modifies along the way.

A subroutine does not have to call itself directly to be recursive, it is also recursive if it
invokes a different subroutine that, at some point, invokes the original subroutine again.
This is known as indirect recursion and is not really any different from direct recursion
except that it is less obvious. It sometime arises accidentally in larger programs when the
programmer calls a subroutine that eventually get back to the same point in the program
before returning. This can be a difficult situation to diagnose and the TRACE RET
command (Chapter 2, Section 4) can be useful for this.

9 section level 1 1
figure bi level 1
table_big level 1

9-1GFK-0256

Chapter 9 MegaBasic Built-in Function Library

This section provides a complete description of all the built-in functions in MegaBasic.
These should be studied for utility in your particular applications since there may be
several that already do what you have in mind and they run many times (even
hundreds of times) faster than similar procedures implemented in more primitive BASIC
statements. This function set has been carefully selected to cover the widest variety of
applications with a minimal number of separate function entities (when applied in
combination). Chapter 3, Section 7 covers how to apply most of these functions to entire
vectors of numbers (instead of just scalars). For easy referral, the built-in functions have
been grouped into the following subsections:

 Arithmetic
Functions

Simple arithmetic conversions and transformations
including: rounding, truncation, comparison, abso-
lute values, etc.

Mathematical
Functions

Transcendental functions and other transformations
for mathematical and scientific applications.

Character and
Bit Function

Functions for combining, searching and transforming
character and bit strings.

File and Device
I/O Functions

Functions providing information to support access to
files and serial l/O devices.

Utility and
System Interface

Functions for directly accessing memory, hardware
ports and various MegaBasic internal parameters.

MegaBasic supports a relaxed parentheses convention: parentheses are optional around
the argument lists of any numeric function having a single numeric argument. For
example, Log Sin X is the same thing as Log(Sin(X)). You may not omit parentheses from
around any argument list for string functions or from those which contain (or may
contain) more than one argument in the list. When an expression follows a function
without parentheses, only the first term of the expression is recognized as the argument.
For example the expression Sqrt X * Y is evaluated as (Sqrt X) * Y, not as Sqrt(X * Y).
There is a small speed improvement for reducing parentheses, but this feature is really
supported to help simplify complex arithmetic expressions.

9

9-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Unless otherwise noted, parameters to functions can be arbitrarily complex expressions.
Numeric arguments can evaluate to either an integer or real data type. MegaBasic
always converts numeric arguments to the type (integer or real) internally required by
the particular function being invoked, regardless of the type actually provided. You can
improve the performance of your program by specifying numeric arguments in the type
(integer or real) most natural to each function or statement programmed. The description
of each function provides the details necessary to take advantage of such numeric type
considerations. A syntax summary of all built-in functions now follows:

ABS(<numeric exprn>)
ACOS(<numeric exprn>)
ASC(<string expression>)
ARGUMENT
ASlN(<numeric exprn>)
ATN(<numeric exprn>)
BlT(<string variable> [<bit position range>])
CARD(<string> [<bit range>])
CElL(<numeric exprn>)
CHR$(<ASCII code> [,<last ASCII code>])
CHRSEQ$(<range>,<range>,...)
COLLAT$(< numeric exprn>)
COS(<numeric exprn>)
DATE$
DlM(<variable name> [, <dimension number>])
DIR$
DlR$(<prior file name string>)
EDIT$
ELAPSE [(<mode>)]
ENVlR$(<name or sequence number>)
ERRDEV
ERRLINE
ERRMSG$
ERRPKG$
ERRTYP
EXAM(<memor y address>)
EXP(<numeric exprn>)
FlLE(<file name string exprn>)
FlLEDATE$(<open file number>)
FlLECTRL(<open file number>)
FlLEPOS(<open file number>)
FlLESlZE(<open file number>)
FlLETlME$(<open file number>)
FlND(<mode><vbl$><cmp><expr$>,<step>,<count>, <step>, <count)
FRAC(< numeric exprn>)
FREE(<numeric exprn>)
INCHR$(<device> , <length>, <break set, <echo flag>, <time out)
INDEX
INP$(< port number>)
INP(<port number>)
INPUT(<device number>)
INT(< numeric exprn>)
INTEGER(<numeric exprn>)
INTERRUPT(<selector> [,<inter rupt number>])
IOCTL$(< channel number> [,<output control string>])
lOCTL(<open channel number>)

9

9-3GFK-0256 Chapter 9 MegaBasic Built-in Function Library

LEN(<string expression>)
LlNE(<device number>)
LN(<numeric exprn>)
LOG(<numeric exprn>)
MATCH(<sear ch string>,<match string>,<starting location>,<count>)
MAX$(<stringl>, <string2>,... <stringN>)
MAX(<list of numeric expressions>)
MlN$(<string1>, <string2>,... <stringN>)
MlN(<list of numeric expressions>)
MOD(<numeric exprn>,<modulus exprn>)
OPEN$(<file number>)
ORD(<string> [<bit range>l)
OUTPUT(<device number>)
PARAM(<parameter number>)
Pl
POLY(<real value>, <real array name>, <polyn degree>)
POS(< device number>)
REAL(<numeric exprn>)
RESEQ$(<tar get string>,< step size>)
REV$(<string expression >)
RND(<numeric exprn>)
ROTAT$(<string exprn>,<r otation distance>)
ROUND(<numeric exprn> [,<significant digits>])
SEG(<variable name>)
SGN([<sign exprn>~ <value exprn>)
SlN(<numeric exprn>)
SPACE(<drive number>)
SQRT(<numeric exprn>)
STR$(<numeric expression> [,<format string>])
STRUCT(<field> [,<selector>l)
SUBDlR$(<prior subdirectory name string>)
SUM(<vector expression>)
TAN(<numeric exprn>)
TIME$
TRAN$(<string>,<original chars>,<translated chars>)
TRAN$(<string>:<translation map vbl$>)
TRlM$(<string expression>)
TRUNC(<numeric exprn>)
VAL(<string expression>)
 [<variable name>]

9

9-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Arithmetic Functions

The functions described in this section perform simple arithmetic operations on numbers
such as rounding, truncating, absolute values, remaindering, random values, sign
transfer, etc. Following the summary below, each function will be described in detail.

Int(X) Returns greatest whole number no greater than X.

Ceil(X) Returns lowest whole number no less than X.

Trunc(X) Returns the integer portion of X.

Frac(X) Returns the fractional portion or X.

Round(X) Returns the nearest whole number to X.

Round(X,P) Returns X reduced to P significant digits.

Mod(X,Y) Returns the positive remainder of X/Y.

Abs(X) Returns the positive value of X.

Sgn(X) Returns the sign of X (–1, 0 or +1).

Sgn(X,Y) Returns Y with the sign of X.

Min(X,Y,..) Returns the minimum value among a list of values.

Max(X,Y,..) Returns the maximum value among a list of values.

Rnd(X) Returns uniformly distributed random values.

Sum(V) Returns the sum of the elements of vector V.

INT(< numeric exprn>)

Returns the greatest whole number less than or equal to the numeric expression. For
example: INT(3.4) = 3, INT(.2) = o, INT(–7) = –7, INT(–1.3) = –2 .

This function is only useful with real numbers, since INT() of an integer is the same
value. INT() always returns a result of the same numeric type (integer or real) as the
argument supplied. INT has sometimes been known in other languages under the name
FLOOR.

A common use of INT() is finding the greatest multiple of a number that is not greater
than another. The expression INT(X/Y)* Y returns such a multiple of Y with respect to
X. This expression is so frequently encountered that it can also be expressed in
MegaBasic as x INT Y, which is computed much more efficiently. In this context, INT is
being used as an operator (like + and –), rather than as a function.

CEIL(< numeric exprn>)

Returns the smallest whole number greater than or equal to the numeric expression. For
example: CEIL(3.4) = 4, CEIL(–2.13) = –2, CEIL(1) =1. This function is only
useful with real numbers, since CEIL() of an integer is the same value. CEIL() always
returns a result of the same numeric type (integer or real) as the argument supplied.

9

9-5GFK-0256 Chapter 9 MegaBasic Built-in Function Library

One common use of CEIL() is finding the smallest multiple of a number that is not less
than another. The expression CEIL(X/Y)*Y returns such a multiple of Y with respect
to X. This expression is useful enough that it can be expressed in MegaBasic as x CEIL
Y, and computed much more efficiently (especially with integer operands). Using this
syntax, CEIL is being used as an operator (like + and –), rather than as a function.

TRUNC(<numeric exprn>)

Returns numeric expression value with any fractional part removed. For negative
numbers this is equivalent to the CEIL() function and for positive numbers this is
equivalent to the INT() function (described above). For example: TRUNC(3.4) = 3/
TRUNC(–2.71) = –2, TRUNC(7) = 7.

This function is only useful with real numbers, since TRUNC() of an integer is the same
value. TRUNC() always returns a result of the same numeric type (integer or real) as the
argument supplied. Like the CEIL() and INT() functions, the expression
TRUNC(X/Y)*Y can be expressed as x TRUNC Y, which is computed much faster with
integer operands.

ROUND (<numeric exprn>)

Rounds the number specified to the nearest whole number. For example: ROUND(3.4)
= 3, ROUND(3.5) = 4, ROUND(6.8) = –7, ROUND(–2.5) = –2 . This function is only
useful with real numbers, since ROUND() of an integer is the same value. ROUND()
always returns a result of the same numeric type (integer or real) as the argument
supplied.

In many applications it is desirable to round a number to the nearest tens-place or
hundreds-place or some other multiple of 10 (or other moduIus). ROUND() can easily be
generalized to round in this manner using the expression ROUND(X/Y)*Y. For both
efficiency and convenience, this computation may be expressed in MegaBasic as
x ROUND Y. For example: 36498 ROUND 10 = 36500, 57.382 ROUND .1 = 57.4 .

ROUND(<numeric exprn>,<significant digits>)

Returns the numeric expression value rounded to the number of significant digits
specified by the second argument expression, which must be 1 or greater. For example:
ROUND(1.6483,3) = 1.65, ROUND(S72096,3) = s72000 . This function is especially
useful in PRINT statements for limiting the significant figures of values that can span a
very large numeric range. Such numbers would normally be formatted using
exponential notation (E-format), which is usually only appropriate in
scientific/engineering applications and undesirable for business applications.

Another important application for this function is the case of comparing two numbers to
see if they are approximately-equal. Such a comparison is frequently required when two
floating point calculation results are compared for equality and minor differences in the
last few trailing digits are considered insignificant. For example, we can compare X and
Y out to the first 5 significant figures with the expression: ROUND(X,5) = ROUND(Y,5) .

MOD(< numeric exprn>,<modulus exprn>)

Returns the smallest non-negative number which when subtracted from the first
argument produces an exact multiple of the second argument. For example:

MOD(34,17) = 0, MOD(13,5) = 3,
MOD(–13,5) = 2, MOD(X,0) = 0.

9

9-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MOD() accepts either real arguments or integer arguments. If they are not both of the
same numeric type then one argument is converted into the type of the other before
calculating the modulo. MOD() returns a result in the same numeric type as the type of
its arguments (after making them the same). MOD() may also be used as an operator:
X MOD Y =MOD(X,Y). MOD() executes faster with integer operands than with real
operands.

MOD() has zero precision loss for all arguments in both integer and floating point modes.
This is important because a major use of MOD() is in range reduction applications.
MOD(X,Y) requires time proportional to the magnitude difference between X and Y, and
it is extremely fast for magnitude differences under 1010 because no multiplies and
divides are used. It is somewhat slower when X and Y have an extremely large
magnitude difference (e.g., 1050 MOD 10– 50) because it uses the method of successive
scaled subtraction. Although MOD() introduces no error into the result, a meaningful
result requires absolute accuracy in the original X and Y values, especially for large
magnitude differences.

FRAC(<numeric exprn>)

Returns the difference between the number specified and the next lower integer, i.e., the
fractional portion of a number. This function is only useful with real numbers, since
FRAC() of an integer is always zero. FRAC() always returns a result of the same
numeric type (integer or real) as the argument supplied. For example: FRAC(3) = 0,
FRAC(4.23) = .23, FRAC(–7.2) = .8, FRAC(3.4) = .4.

ABS(<numeric exprn>)

Returns the positive (absolute) value of the numeric expression specified. For example:
A85(–25.3) = 25.3, ABS(17.1) = 17.1, ABS(0) – 0. ABS() always returns a
result of the same numeric type (integer or real) as the argument supplied.

SGN(<numeric exprn>)

Evaluates the numeric expression and returns –1 if it is negative, 0 if it is zero, and+l if it
is positive. For example: SGN(–4.5).=l,SGN(o) = o,SGN(352l)=l . This result
always has an integer type, regardless of the numeric type of the argument.

SGN(<sign expm>,<value exprn>)

Returns the value of the second argument with the sign of the first argument. The sign
of the second argument and the value of the first are both ignored. For example:
SGN(4,10) = –10, SGN(0,–34) = 34, SGN(–3,–99) = -99 . This function
returns a result of the same numeric type (integer or real) as the second argument. No
type conversions are performed by this function, regardless of the type of either of its
arguments. SGN may be used in an operator context (e.g., X sgn Y) to perform the same
operation (Chapter 3, Section 5).

9

9-7GFK-0256 Chapter 9 MegaBasic Built-in Function Library

MlN (<list of numeric expressions>)

Returns the minimum value among a list of expression values. The expressions must be
separated from one another with commas. For example: MIN(2,1) = 1,
MIN(45,Z987, –12,0,34) = –12. MIN() returns an integer result only if all
expressions listed evaluate to integer values. If one or more expressions evaluate to real
values, the result will also be a real value. The INDEX function returns the sequence
number of the minimum value returned by MIN() . When two arguments are used and
the INDEX feature is not needed, you may want to use the MIN operator instead of the
MIN() function (e.g., x MIN Y instead of MIN(X.Y)) because it is somewhat faster.

Any argument of MIN() can be a vector or vector expression if you precede it with the
VEC reserved word. MIN() operates on vectors as if each of their elements was listed as
a separate argument, so that afterward, the INDEX function returns the sequence
number of the argument that was selected.

MAX(<list of numeric expressions>)

Returns the maximum value among a list of expression values. The expressions must be
separated from one another with commas. For example: MAX(2,1) = 2,
MAX(4S,2,987,–12,0,34) = 987. MAX() returns an integer result only if all
expressions listed evaluate to integer values. If one or more expressions evaluate to real
values, the result will also be a real value. The INDEX function returns the sequence
number of the maximum value returned by MAX() . When two arguments are used and
the INDEX feature is not needed, you may want to use the MAX operator instead of the
MAX() function (e.g., X max Y instead of MAX(X,Y)) because it is somewhat faster.

Any argument of MAX() can be a vector or vector expression if you precede it with the
VEC reserved word. MAX() operates on vectors as if each of their elements was listed as
a separate argument, so that afterward, the INDEX function returns the sequence number
of the argument that was selected.

SUM(<vector expression>)

Computes the sum of the elements of a vector or vector expression computation. The
VEC reserved word is not used in SUM() because SUM() only operates on vectors.
SUM() operates on either integer or real vectors and executes as much as 12 times faster
than an equivalent interactive implementation. See Chapter 3, Section 7 for complete
information on specifying and using vectors.

RND(<numeric exprn>)

Returns a pseudo-random number sequence uniformly distributed over the interval
0...1, not inclusive. The value of the argument expression controls the method of
computation:

 Zero argument Returns the next number in the current sequence. Omit-
ting the argument to also specifies zero.

0 <argument < 1 Defines a new starting seed based upon the argument.

 Negative argument Defines a new starting seed, based upon a quasi-
random hardware condition.

The argument to RND() is used only as a real value, hence an integer argument will be
converted to real before any computation begins. The result produced by RND() is, of
course, a real value. RND without arguments is equivalent to RND(0) .

9

9-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Sequences of random numbers are useful in computer simulations of realworld systems,
probability studies, or any application requiring some element of chance. RND()
produces only values uniformly distributed over the interval from 0 to 1, but you can
transform its value for other random distributions, using simple calculations. Several of
these methods are summarized below:

� Uniform distribution within the interval (low,high):

LOW + RND * (HIGH–LOW)

� Exponential distribution about a mean of M:

M – LN RND – 1.

� Nonnal distribution with a mean M and a standard deviation S:

M + NORM*S, where NORM is a teal function defined as:

Def real X1, X2, S
Def real func NORM; Local S,X1,X2
Repeat; X1 = rnd; X2 = rnd; S = X1*X1 + X2*X2
Next if S>=1
Return X1 *SQRT(–2*LN SIS)
Func end

An excellent source of additional information about these random distribution methods
and many others can be found in the book: The Art of Computer Programming, Volume
2, by Donald E. Knuth, published by AddisonWesly Publishing Company.

9

9-9GFK-0256 Chapter 9 MegaBasic Built-in Function Library

Section 2: Mathematical Functions

The functions described below all use real argument values to produce real result values.
When integer arguments are supplied to them, MegaBasic automatically converts them
to real form. Most of these functions are the so-called transcendental functions, which
include trigonometric functions, logarithmic and exponential functions and square-root.
Such functions return, out of necessity, approximations to the desired value rather than
exact answers. MegaBasic computes these functions with accuracy out to the last digit of
the prevailing floating point precision in most cases. For a small percentage of cases, the
least significant digit will be off.

Sqrt(X) Returns the square root of X.

Log(X) Returns the common logarithm of X.

Ln(X) Returns the natural logarithm of X.

Exp(X) Returns e raised to the power of X.

Pi Returns the constant pi to full precision.

Sin(X) Returns the sine of X radians.

Asin(X) Returns the radian angle of X expressed as a sine.

Cos(X) Returns the cosine of X radians.

Acos(X) Returns the radian angle of X expressed as a cosine.

Tan(X) Returns the tangent of X radians.

Atn(X) Returns the radian angle of X expressed as a tangent.

Poly(X,C(),D) Evaluates the polynomial of X using a coefficient array.

SQRT(<numeric exprn>)

Returns the square-root of the expression value specified. An out of bounds error will
occur if a negative argument is supplied to this function. For example SQRT(9) = 3,
SQRT(1) = 1, SQRT(5.7) = 2.38746727 , etc.

LOG(<numeric exprn>)

Returns the logarithm, base 10, of the expression value specified. An out of bounds error
will occur if a negative or zero argument is supplied to this function. For example:
LOG(1000) = 3, LOG(l) = 0, LOG(.123) = –.9100948886 , etc.

LN(<numeric exprn>)

Returns the logarithm, base e (2.7182818...), of the expression value specified. An out of
bounds error will occur if the argument specified evaluates to a negative or zero value.

9

9-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

EXP(<numeric exprn>)

Returns the constant e (2.7182818...) raised to the power specified by the numeric
expression argument. An out of bounds error will occur if this argument is above
+145.06286 (or +709.72683689 in IEEE), because it produces a result too large to
represent in MegaBasic floating point representation. If the exponent is below
–147.36549 (or –708.39641846867 in IEEE) then the result underflows and a zero result
is returned without any reported error.

PI

Returns the constant pi (3.141592..) rounded to the prevailing precision of MegaBasic.

SlN(<numeric exprn>)

Returns the sine of the angle specified by the numeric expression. This angle must be
expressed in units of radians, not degrees. To obtain the sine of an angle expressed in
degrees, you must multiply that angle by the constant pi/180 before taking the sine.

ASlN(<numeric exprn>)

Returns the angle in radians corresponding to the sine specified by the numeric
expression argument. An out of bounds error will occur if the argument is less than –1
or greater than +1. The result returned is always an angle in radians between –pi/2 and
+pi/2. To convert this radian result into degrees, you must multiply it by the constant
180/pi.

COS(<numeric exprn>)

Returns the cosine of the angle specified by the numeric expression. This angle must be
expressed in units of radians, not degrees. To obtain the cosine of an angle expressed in
degrees, you must multiply that angle by the constant pi/180 before taking the cosine.

ACOS(<numeric exprn>)

Returns the angle in radians corresponding to the cosine specified by the numeric
expression argument. An out of bounds error will occur if the argument is less than –1
or greater than +1. The result returned is always an angle in radians between 0 and pi.
To convert this radian result into degrees, you must multiply it by the constant 180/pi.

TAN(<numeric exprn>)

Returns the tangent of the radian angle specified by the numeric expression argument.
To obtain the tangent of an angle expressed in degrees, it must be converted to radians
before taking the tangent, by multiplying it by the constant pi/180.

ATN(<numeric exprn>)

Returns the angle in radians corresponding to the tangent specified by the numeric
expression argument. The arctangent is computable for any real argument. The result
returned is always an angle in radians between –pi/2 and pi/2. To convert this radian
result into degrees, you must multiply it by the constant 180/pi.

9

9-11GFK-0256 Chapter 9 MegaBasic Built-in Function Library

POLY(<numeric exprn>, <real array vbl>, <degree>)

Evaluates a polynomial on the first argument using a coefficient array (second
argument) and a polynomial degree (third argument). The coefficient array must contain
all the coefficients in ascending order and be specified as an array reference to coefficiento (the
constant term). Invalid evaluations result if the degree specified extends past the end of
the coefficient array.

For example to evaluate the polynomial: 1+3X+5X2+7X 3+9X 4, we first store the co-
efficients 1, 3, 5, 7 and 9 into array positions ARRAY(0...4) , then call POLY(X,
ARRAY(0), 4) to evaluate this 4th-degree polynomial for a value of X.

Multi-dimensional arrays may be employed with the understanding that their last
dimension index specifies the coefficient sequence position, and prior dimension
subscripts serve to select one sequence of many. This follows from the sequential
coefficient access employed by POLY() and the organization of array storage elements.
For example POLY(X,C(I,J),5) evaluates a 5th-degree polynomial using the
coefficient list C(I,J) on X, where I selects the sequence and J specifies the low-coefficient
position of the six coefficients in the sequence (coefficient 0 to 5).

9

9-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: Character and Bit String Functions

This section describes all functions related to character string processing and information
about strings. A character string is a sequence of characters (or bytes) that is handled as a
single data object, rather than as a multitude of separate characters. Such a data object
has various properties which can examined and manipulated: they have a finite length,
its characters are arranged in a particular order, their contents may represent words or
numbers or other abstract variable length data.

Since each character in the string is stored in an 8 bit memory byte, strings can also be
thought of as sequences of bits, otherwise known as bit strings. Each bit of a bit string
can take on one of two values: 0 or 1, which can represent Yes or No, True or False, On or
Off, membership or non-membership, or any other dual-valued relationship. Chapter 4
of this manual covers characters, strings and bit-strings in depth.

Len(A$) Returns the character count in string A$.

Rev$(A$) Returns A$ in reverse order.

Trim$(A$) Trims the spaces from both ends of A$.

Min$(A$,B$,...) Returns the minimum string among a list.

Max$(A$,B$,...) Returns the maximum string among a list.

Asc(A$) Returns the ASCII code of the first byte of A$.

Chr$(X) Returns one-byte string of ASCII code X.

 Chr$(F,L) Returns the ascending sequence of ASCII characters
from F to L.

Chrseq$(<ranges>) Returns a string of multiple specified ASCII code ranges.

 Str$(X,F$) Converts number X into a string representation using
optional format F$.

Val(A$) Converts string representation of a number to a number.

Collat$(X) Returns the string of X that can be string-sorted.

Match(A$,B$,S,N) Returns a position in A$ where B$ is found.

Find(A$>,B$,W,N) General purpose string searching facility.

Tran$(A$,B$,C$) Translates characters in A$ and B$ to those in C$.

 Reseq$(A$,N) Resequences A$ from row-column to column-row
order.

Bit(A4,I:W) Accesses bit ranges in A$ as numbers.

Rotat$(A$,N) Rotates string A$ by N bit positions (left or right).

Ord(A$,I:W) Returns the first bit position in A$ set to one.

Card(A$,I:W) Returns the count of bits set to 1 in A$.

Some of these string functions return a numeric result instead of a string result, and as
such, may be used only in numeric expressions and not in string expressions. Except for
the VAL() function, which always returns a real result, all of the numeric-string functions
return integer results. Considerable savings in computation time can be realized by
avoiding unnecessary conversions between real and integer.

9

9-13GFK-0256 Chapter 9 MegaBasic Built-in Function Library

LEN(<string expression>)

Returns the length of the string expression. For example: LEN(“ABCDEFG”) returns 7,
and LEN(“”) returns 0. LEN() requires more execution time and memory space when
the string is not a simple string variable or constant because it has to completely evaluate
the string expression before it can determine the length.

The length of a string variable (as opposed to its dimension) may be arbitrarily set using:
LEN(S$) = <length> , where S$ is any string variable or string array element
and<length> is any integer value not greater than the current dimension of the string.
New characters created by extending the string are accessible but their particular values
are unpredictable.

REV$(<string expression>)

Returns the string expression evaluated with its characters in reverse order. For example:
REV$(“abcdefg) = “gfedcba”.

TRlM$ (<string expression>)

Returns the string supplied after stripping all leading and trailing spaces. Although both
ends of the string are trimmed, you can trim the spaces from one end only by appending
a non-blank character to the opposite end, trimming the result, and then removing the
non-blank character appended. For example the following expression trims only the
trailing spaces from A$: TRIM$(“*”+A$)(2)

MlN$ (<string1>, <string2>,... <stringN>)

Returns the minimum string expression value listed, and sets INDEX to the sequence
number of the one returned within the list. The strings are compared on the same basis
as used in all MegaBasic string comparisons: from left to right according to the ASCII
collating sequence. MIN$() is the string counterpart to the numeric MIN() function and
operates in an identical fashion.

MAX$(<stringl>, <string2>,... <stringN>)

Returns the maximum string expression value listed, and sets INDEX to the sequence
number of the one returned within the list. The strings are compared on the same basis
as used in all MegaBasic string comparisons: left to right according to the ASCII collating
sequence. MAX$() is the string counterpart to the numeric MAX() function and operates
in an identical fashion.

CHR$(<ASCII code>[,<last ASCII code>])

Converts an ASCII code (any numeric value from 0 to 255) into a one-character string
corresponding to the code supplied. The ASCII code conversion table in Appendix D.3
provides a complete listing of ASCII codes and their corresponding characters.
Examples: CHR$(65)=“A~, CHR$(57)=“9” .

By supplying the second (optional) ASCII code parameter, CHR$() will return a string
consisting of an ascending sequence of characters corresponding to all ASCII codes
ranging from the first code given up to and including the second code given. If the
second parameter is below the first parameter then a null string is returned. Examples:
CHR$(48,57)=“0123456789”, CHR$(87,43)=“”.

9

9-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

In order to make this capability easier to use with printable characters, any argument to
the CHR$() function can be either a number or a string. For example, CHR$(65) and
CHR$(“A”) both return the letter “A”; CHR$(48,57) and CHR$(0,9) both return the
string “0123456789”. Only the leading character of a string argument is used and
characters after the first one are ignored.

CHRSEQ$(<range>,<range>,...)

Returns a series of ascending ASCII character sequences, equivalent to a concatenation
of multiple CHR$() functions. Each <range> consists of a single ASCII value or two
ASCII values separated by a colon (:) to specify a range of ASCII values. For example, the
following two expressions are equivalent:

Chrseq$(1 ,4,65:90,255)
Chr$(1)+Chr$(4)+Chr$(65,90)+Chr$(255)

Notice that a colon is used to separate the end-points of an ASCII range in CHRSEQ$()
functions and a comma is used as the separator in CHR$() functions. As with CHRS() ,
an ASCII value in any argument to CHRSEQ$ can be specified by either a number or a
string. For example, CHRSEQ$(65:90,97:122) and CHRSEQ$(“A”:“Z”,“a”:“Z”) both
return the same result, but the string arguments make the purpose of the function much
more readable. CHRSEQ$() is provided for applications that require so many character
sequences that programming them with CHR$() is tedious and inefficient.

STR$(<numeric expression> [,<format string>])

Converts any numeric value into a printable character representation of the number in
string form (i.e., the character sequence you might type to enter the value from the
keyboard). Examples: STR$(123.70)=“123.7”, STR$(–34E2)=“–3400”.

Without the optional format string, the value is converted using the default format
currently in force. By including a second parameter string expression that evaluates to a
valid numeric format (Chapter 7, Section 1), the numeric value is converted according to
the format given. Formats to generate commas, fix-point, E-notation as well as
hexadecimal, octal and binary conversions are supported along with many other
options. For example: STR$(23.87,“6F1”)=“ 23.9”, STR$(1234567.8,“CI”)=“ 1,234,568”.

VAL(<string expression>)

Converts a character string representing a valid numeric value into the actual value it
represents. This is the opposite of the STR$() function described earlier. The string may
contain leading or trailing spaces (or line-feeds), but must be an otherwise valid numeric
constant. The constant specified by the string may be any legal number as recognized by
MegaBasic. This includes numbers in E-notation, as well as binary, octal and hexadecimal
notation. The rules governing the formation of numeric constants are described in
Chapter 3, Section 2, for example: VAL “ 92E3”) = 92000, VAL(“–0012.430 ”) = –12.43,
VAL(“7FFFh”) = 32767.

A numeric string may be terminated by a comma, tab, linefeed or carriage return ASCII
codes and characters beyond this point are not scanned or otherwise validated.
Therefore the VAL() argument string may contain multiple numeric fields, of which
only the first field is converted. By using the method described below, such multiple
fields can be parsed and extracted.

After converting a string to a number using the VAL() function, you can find out the
position in the string of the first character beyond the numeric character sequence

9

9-15GFK-0256 Chapter 9 MegaBasic Built-in Function Library

evaluated. The INDEX function returns this position right after the VAL() function is
evaluated. If an error occurred because the string contained no ASCII-represented number,
INDEX Will return zero. If all characters in the string argument participated in the
numeric sequence, INDEX will return the length of the string argument plus one. This
capability is useful for walking through a string that contains many numbers separated
by spaces or other delimiters and picking out the numeric information. It is also useful
for detecting the presence of incorrect characters in strings intended to contain a single
number and nothing else.

ASC(<string expression>)

Converts the first character of the string specified into its corresponding numeric ASCII
code. The function is the converse of the CHR$() function described below. Examples:
ASC(“A”) = 65, ASC(“9”) = 57, ASC(“”) = –1.

Asc(S$) executes much faster when the string expression consists of only a string variable
reference (indexed or unindexed), because the leading character in the variable can be
accessed without evaluating an entire string expression.

COLLAT$(<numeric exprn>)

Converts a number into a string which is suitable for sorting as a string. In many
applications, it is necessary to sort records containing some arbitrary set of fields, which
may include both numeric and non-numeric information. The COLLAT$() function
allows you to combine numbers with strings into a larger string record which, along with
many others, is searched or sorted using purely string methods and operations.
Although the STR$() function also converts numbers to strings, a string comparison
between two such numeric strings by no means implies the same comparison result of
the two values as numbers. COLLAT$() is designed to fulfill this need.

COLLAT$() converts an integer value into a four byte string, and real values into a
5-to-10 byte string, depending on the prevailing floating point precision of the BASIC
being used. Comparing two real strings will produce the same result as comparing the
two real numbers from which they came. Comparing two integer strings also compares
as if they were numbers. However, you cannot compare an integer string with a real
string and get any meaningful result because these two representations are not
compatible. Hence you must ensure that the argument data type is what you expect it to
be.

MATCH(<search string>, <match string>[,<start>] [,<count>])

Returns the character position (a number) in the <search string> that matches all the
characters in the <match string>. Zero is returned if no matching string is found, or if
either string contains no characters (i.e., null string), for example:

MATCH(“abcdefg”,“de”) = 4
MATCH(“abcdefg”,“DE”) = O

An optional <start> may be specified to cause the search to begin on the character
position given (skipping earlier characters of the string), for example:

MATCH(“abcdefg”,“de”,3) = 4
MATCH(“abcdefg”,“de”,5) = O

9

9-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

An optional <count> may be given to specify how many occurrences of the search string
to locate before returning the position found. If you specify a <count> then you must
also specify the preceding the <start>, for example:

MATCH(“This is the search string”,“ ”,1,3) = 12
MATCH(“This is the search string”,“ ”,7,3) = 19

If this repeat count is omitted, a default of one is assumed causing the function to return
the position of the first occurrence encountered. If the repeat count is higher than the
number of occurrences that exist in the target string or if it is set to zero, then a zero
result will be returned and INDEX will contain the number of successful matches found
before failing. This capability greatly improves the performance of repetitive searches
and pattern counting procedures. A typical application is the processing of packed string
fields separated by spaces or commas (as above), where direct accessed to the Nth field
or word is needed quickly.

Both the search string and pattern may be specified with general string expressions.
Sufficient internal workspace (scratchpad memory) is required to temporarily contain
both strings specified. If the <search string> is a simple string variable or an indexed
string variable, MegaBasic searches the variable directly (i.e., without copying it to
internal storage). If you specify a <search string> using any more complex a string
expression than this, it always requires scratchpad memory to hold it for searching. The
<match string> is always held in scratchpad memory while the search is in progress.

The MATCH() function is very fast and compatible with most other BASICS that include
a string search function. However, the FIND() function, described next, is much more
general purpose and, in some cases, it can provide even faster response.

FIND([<mode>]<vbl$><relation><string>[,<step>] [,<count>])

This function provides a general purpose searching capability designed for a wide
variety of applications. String variables may be searched forward or backward and the
criterion of the search may include any comparison relation (not just equality as in the
MATCH function described above). One of several types of searches may be selected by
specifying an optional <mode> keyword. Before jumping into examples of the FIND()
function, we will first describe each of the FIND() parameters in detail.

<mode>

This optional parameter selects the type of search to be done, and may be one of the
following reserved words: MIN, MAX or ORD. MIN and MAX select a search for the
minimum/maximum substring satisfying the search <r elation>. ORD selects an ordered
table search for much faster response. When <mode> is omitted, the string being
searched is assumed to be an unordered table and the search simply FINDS the first
position that satisfies the comparison criterion. These modes are discussed in complete
detail later on.

<vbl$>

This parameter specifies the string variable to be searched. The result returned by
FIND() is always a character position within this string variable. The search can be
restricted to any substring within this string variable by merely indexing the variable to
the desired region within it. In such a case, the result position returned is still relative to
the beginning of the string variable, rather than to the indexed region. The variable is

9

9-17GFK-0256 Chapter 9 MegaBasic Built-in Function Library

always searched in-place (i.e., without moving it anywhere first). FIND cannot search the
result of a general string expression unless it is first stored into a string variable.

<relation>

This parameter specifies a criterion that constitutes a successful search. It is specified as
any one of the six comparison operators: = <> < <= > >=. FIND returns the first
position in the string variable where the comparison relation holds (i.e., is true).

<string exprn>

The <string exprn> parameter specifies the string that FIND will be searching for, and it
may contain up to 255 characters. The length of this string is not related to or limited by
the optional <step> parameter (described below). FIND() always compares this string
with a substring of equal length in the string variable being searched.

<step>

Specifies the step size to advance through the search string variable for each successive
comparison. Omitting the <step> results in steps of one byte (as done by the MATCH
function). Steps larger than one are useful when the contents of the string variable are
organized as a sequence of fixed length substrings (i.e., string records). For example a
<step> of 5 compares substrings in the string variable at positions 1,6,11,16,21,... with the
target string expression until the relation is satisfied. To search backwards through the
string variable, you can specify a negative <step>, which searches from the highest
possible comparison position in the string variable down to the first.

<count>

As in the MATCH() function, the optional <count> specifies how many occurrences of
the search string to locate before returning the position found. For example
FIND(T$>S$,5,N) returns the position of the Nth 5-byte substring in T$ that is greater
than S$.

If this count is omitted, a default of one is assumed, returning the position of the first
occurrence encountered. If the count is higher than the number of occurrences that exist
in the target string (or set to zero), then zero is returned and INDEX Will contain the
number of successful matches found before failing. See the MATCH() function for other
examples.

Results Returned by FIND()

FIND returns the position in the string variable at which the specified comparison
criterion was met. Zero is returned if no such location exists. No matter how the string
variable may be indexed, this position is always relative to the beginning of the string
variable, rather than to the beginning of the indexed region being searched (as returned
by MATCH). For example, given that S$ = “ab-cd-ef-gh-ij-kl-mn-op”:

Find(S$(6)=“ij”) will return position 13.
Find(S$(1)=“ij”) will also return 13.

9

9-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

However, at certain times you may desire a result position which is relative to the
indexed region, rather than to the absolute string base. For this reason, MegaBasic also
computes this relative position and provides it in the INDEX function for your use if
needed. For example, after each of the uses of FIND() above, INDEX returns the
positions 8 and 13, respectively. INDEX is set in this manner for all but the ordered search
case (when <mode> is ORD). In that case, after a successful search INDEX contains the
same position returned by FIND() ; after an unsuccessful search INDEX contains the
position where the search string expression should be placed if inserted into the ordered
table.

Using FIND() in the Default Mode

In default mode (i.e., no <mode> is specified), the FIND() searches the string according
to the specified <r elation> and <step> until it finds the first occurrence of success, even
though there may be other locations further on that also satisfy the <r elation>. Given
that we are searching string TBL$ for string K$, the following examples should show
how this works:

FIND(TBL$=K$)

Compare the characters in K$ with the same number of characters
at TBL$(1). If equal then return position 1. Otherwise, repeat
the comparison at TBI$(2) , then TBL$(3) , and so on until a
match is found. If none is found then return zero. This
particular example is identical with MATCH(TBIS,K$) .

FIND(TBL$(J)=K$)
Shows how to search from position J instead of 1. The result re-
turned will be an absolute position in TBL$ and the position re-
turned in INDEX Will be relative to region TBL$(j).

FIND(TBL$>K$)
Instead of searching for equality, this search stops when the
 comparison finds the character position where TBL$(i) is great-
er than K$. You can specify any comparison operators.

 FIND(TBL$<K$,8)
Performs the comparison at every 8th character, instead of one
every byte.

FIND(TBL$<>K$,-8)

Searches backward through TBL$, starting from the end of
TBL$. Suppose that TBL$ is 800 bytes long. The search first
compares substring TBL$(793) with K$, followed by
TBL$(785) , TBL$(777) , and so on. Each comparison
remains an ascending byte-by-byte compare but reverses the
order comparisons are performed.

You may have noticed the similarity between FIND and MATCH. In fact, FIND(T$-S$)
returns the same result as MATCH(T$,S$) . However FIND has several differences that
should be emphasized. FIND is designed to find relationships in string tables by
searching forward or backward through fixed length substrings. This generality makes
FIND() slower for certain simple byte-by-byte matching applications. MATCH is
designed for faster simple pattern matching and compatibility with similar functions in
other languages and other dialects of BASIC.

Using FIND() in MIN or MAX Mode

By preceding the string variable to be searched with the reserved word MIN or MAX, you
search for the minimum or maximum substring that satisfies the given comparison. As in
all string comparisons, concepts of higher, lower, minimum and maximum are based upon
the collating sequence set forth by the ASCII code set (shown in Appendix D). Although
it is quite possible to use a looping process to find the minimum and maximum

9

9-19GFK-0256 Chapter 9 MegaBasic Built-in Function Library

substrings, implementing your search with MIN or MAX mode will execute as much as 40
times faster. For example, the following two searches are equivalent:

Case 1: 10 1 = Find(max TBL$ < K$, W)

Case 2:

10 1 = 0; J = 1
20 J = Find(TBL$(J) < K$, W)
30 If J=0 then 60;
 If 1=0 then [I=J; Goto 50]
40 If TBL$(J:W)>TBL$(1:W)

then l=J
50 J = J+W; Goto 20
60 Rem -- l is now set to the

 position desired

Both cases search TSL$ for the highest substring, W characters in length, which is
less-than (<) the string contained in K$. As you can see, MIN and MAX mode is not only
faster but also much easier to understand within your programs. If you wanted to search
for the absolute minimum or maximum substring (i.e., not subject to any other
comparison criterion), you need only specify a comparison which will always be true, for
example:

FIND(MAX TBL$<>“”, W) Returns the maximum substring position.

FIND(MIN TBL$<>“”, W) Returns the minimum substring position.

One clever application for FIND() in MIN or MAX mode is substring sorting. Suppose
that we sorted a table of substrings by moving the lowest substring in the table to the
front, followed by the lowest of the remaining substrings, and so on through the table.
This obvious sorting method that is rarely used because it is usually inefficient to
implement. But with the FIND() function, this method is the fastest way to sort a string
table of up to several hundred substrings (i.e., other methods are faster on longer lists).
The example below sorts TSL$ into ascending order using this method:

10 For I = 1 to Len(TBL$)-W by W
20 J = Find(min TBL$(1) <= TBL$(1:W), W)
30 Swap TBL$(1:W), TBL$(J:W)
40 Next I

To sort the substrings into a descending order, just change the MIN in the FIND() to a
MAX, and change the less-than-or-equal (<=) to a greater-than-or- equal (>=). For fun, see
if you can eliminate the need for the intermediate variable J in the above sort program to
make it a 3-statement sort.

Using FIND() in ORDered Mode

An ordered substring table is a series of substrings such that given any two consecutive
substrings in the table, the first one is always less than or equal to the second one. Such a
table can be searched very quickly a binary search. Instead of searching sequentially until
the desired substring is found, a binary search proceeds somewhat differently. It first
examines the middle substring to determine which half of the table to search next. Then,
it examines the middle substring in that half of the table. On each iteration, a binary
search rules out half of the region the desired substring is known to reside and very
quickly converges on the target substring.

9

9-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

To specify that the string variable is an ordered string table and that a binary search is to be
used, you precede the search table string variable with the word ORD. The ORD mode is
well suited to applications where massive table lookups dominate the processing time.
For example a program that reads a text file to determine all the unique words and how
many times they occur can greatly benefit from using the FIND() function in ORDered
mode.

FIND() in ORDered mode has some important differences and restrictions as compared
with the other FIND() modes. These are described below along with several other fine
points:

� The sign of the <step> does not determine the direction of the search. Instead, a
negative <step> specifies that the table is in descending order, a positive <step>
specifies a table in ascending order. In any case, the <step> must be a number in the
range from –32767 to +32767.

� The only <r elation> supported in ORDered mode is equals (=). If you specify any
other <r elation> (i.e., < <= > >= <>), an Out Of Context Error will result.

� When the search for equality succeeds, INDEX is set to the same location as the
result position returned. When the search fails, the result returned is zero, but
INDEX is set to the position in the table where the string would be, had it been
found (i.e., insert it here for future lookups). This feature makes table maintenance
quite a bit easier. An example follows shortly.

� When the search table contains more than one instance of the string sought, an
ORDered FIND() will return the position of the one beginning the sequence. In an
ordered table, such occurrences will be in consecutive positions. In an ascending
table, this is the one toward the beginning of the table; in a descending table, this is
the one toward the end of the table.

� MegaBasic does not check that the substrings are perfectly ordered throughout the
table, nor does it check that the direction of the ordering is as specified. Hence,
searching an unordered table as though it were ordered will yield meaningless results.

It is imperative that you ensure that the substrings in string variables to be searched in
ORDered mode are really ordered the way you think they are, and without any
exceptions. Even one exception to this rule can easily lead to a totally meaningless result.

The example below illustrates a good model of how you go about building and
maintaining an ordered string table. It is a program that simply gets an input string from
the user, finds it in a table, inserts it if it is a new string, and increments a count if it has
been entered before.

10 Rem *** Table Insertion into an Ordered Table
20 W = 20; DIM TBL$(1000*W), COUNT(1000), STRING$(W)
30 TBL$ =; Rem -- Set TBL$ to empty
40 Input Enter string to insert -- ,STRING$
50 If STRING$ = then End; Rem -- Done when null string en-
tered
60 1 = Find(ord TBL$ = STRING$, W)
70 If I then [J = (1-1)/W; COUNT(J) = COUNT(J)+1; Goto 40]
80 Rem -- String not found, so insert at position - INDEX
90 1=index; TBL$(1:0):=(STRING$+ *W)(1:W); Goto70

9

9-21GFK-0256 Chapter 9 MegaBasic Built-in Function Library

In line 10, the substring length is defined (W=20) and the string and count tables are
defined. Line 30 sets the table to empty, which ensures that trailing spaces do not
corrupt the order nature of the table. Line 40 inputs a string from the user and line 50
terminates the program if a null string was entered (i.e., only a carriage return was
typed). Line 60 searches for the input string in the table using an ORDered find() . Line
70 increments the count corresponding to the string location found in the table. Line 90
inserts a new string into the table using an insertion assignment statement (:=). Before
being inserted, the string is padded with extra spaces (as needed) so that its length is
exactly 20 characters long. It may prove beneficial to type this program into MegaBasic
and play with it for a while to get comfortable with concepts it uses.

TRAN$(<tar get string>, <original chars>, <translated chars>)

Translates one set of characters into another set of characters throughout the given
<tar get string>. The translation is based on the characters in corresponding positions of
the second and third arguments. When the <original chars> and the <translated chars>
differ in length, the longer is truncated to the length of the shorter. If the <original
chars> or the <translated chars> is null () then the <tar get string> is returned
unchanged. Neither the second nor third arguments may exceed 256 characters without
causing a Length Error.

TRAN$(“ABCDEFG”,“BDFR”,“xxxx”) = “AxCxExG”

TRAN$(“capitalized vowels”,“aeiou”,“AElOU”)
= “cApltAllzEd vOwEls”

One application of TRAN$() is to change the collating sequence used by a string sort, by
mapping all key characters into another character set, sorting the strings, then
re-mapping the keys back to their original character set. Other useful applications
include upper and lower case conversions and mapping between ASCII and EBCDIC
codes or other character sets.

Another application for TRAN$() is constructing classification strings for strings that you
want to break into words, numbers commands, sentences, etc. For example suppose you
translate all letters to L, all digits to D, all spaces, line-feeds and tabs to S, all punctuation
characters to P and all other characters to ?. Since the resulting string has a classification
letter for each corresponding character in the original string, words appear as a sequence
of LLL’s, numbers as DDD’s, blank space as SSS’s, and so on.

A second, faster form of TRAN$() is supported that can save time in applications that
make heavy use of this function. It has the following syntax:

TRAN$(<target string>: <translation map>)

where the <translation map> is a string variable containing the translation characters in
the following form. At each position corresponding to the ASCII code of the original
character (i.e., ASCII 0 in position 1, ASCII 1 in position 2, and so on) you store the
character you want that code translated to. For example, to translate an “A” to an “a”, the
character in the map at position 66 would be an “a”. The map always begins with ASCII
0 and continues sequentially up to the highest code you want to translate. ASCII codes
beyond this limit are left unchanged. The intervening positions corresponding to
untranslated characters must be filled with those same characters.

This form is much faster than the former (typically 2 times), especially when the <tar get
string> is short. This is because the translation table doesn’t have to be set up on every
invocation. Although it takes extra work to initially set up the table, you can define all
your translations once, then refer to them by name as needed.

9

9-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

RESEQ$(<tar get string>,<step ske>)

Resequences the bytes of the <tar get string> into a different order which depends upon
the value of <step size>. Given a <step size> of N, the sequence returned always begins
with the first byte of the <tar get string>, followed by the Nth byte after that, followed
by every Nth byte after that through to the end of the string. This sequencing then wraps
around to the beginning of the string and continues the cycle until all bytes have been
accessed. If a byte is accessed a second time before all bytes have be output, it is skipped
and the cycle continues from the next byte instead. A few examples should clarify how
this works:

RESEQ$(“AaBbCcDdEeFfGgn,2) = “ABCDEFGabcdefg”
RESEQ$(“ABCDEFGabcdefg”,7) = “AaBbCcDdEeFfGg”
RESEQ$(“abcdefghijkl mn”,3) =“adgjmbehkncfil”
RESEQ$(“AAAAbbbbcccc”,4) - “AbcAbcAbcAbc”

This unusual function has a number of applications which would execute hundreds of
times slower in ordinary BASIC statements. The most important of these is the ability to
restructure a string of substrings in row-column order into a string in column-row order
(as shown by the first two examples) and back again. Applications include character
re-distribution procedures, text formatting, character and attribute processing for
graphics, sector translation tables for operating systems, Monte Carlo simulations, etc.
RESEQ$() requires a scratchpad area equal to twice the length of the argument string to
perform this process.

ROTAT$(<string exprn>, <rotation distance>)

Rotates a byte string by the number of bit positions specified by the <rotation distance>,
as given by a numeric expression that evaluates to a number from –524287 to 524287. A
negative distance rotates the string to the left (toward the beginning) and a positive
distance rotates it to the right (toward the end). No rotation takes place when a distance
of zero is specified or the string is a null string (). The entire string rotates as a unit and
bits that fall off the end are moved to the other end (i.e., no information is lost). Execution
time is linearly related to the length of the <string exprn> and unrelated to the rotation
distance specified. Rotating by multiples of 8-bits rotates the string by character
positions, because each character is represented by a sequence of 8 bits.

ROTAT$ has numerous applications which would not normally be feasible in BASIC.
Checksums and string hashing are efficiently implemented using exclusive -OR (XOR) in
conjunction with ROTAT$. Rotating bit-masks into desired positions is another
application. Communicating 8- bit binary information through a 7-bit com-line is easily
accomplished using procedures which unpack 8-bit data into 7-bit bytes at one end, and
reassemble them back into 8-bit bytes at the other end. See the LIBRARY.pgm file for
examples

BlT(<string variable> [<bit position range>])

Returns the numeric value represented by the range of bits specified within the string
variable. If no bit range is supplied, then the value of the leading bit in the string is
returned (0 or 1). Bit ranges are specified by a starting bit address and either a length
(number of bits) or an ending bit address (similar to string indexing). In no case are you
permitted to specify a bit range of more than 24 bits. The value returned is always a
positive integer from 0 to the maximum integer representable by the number of bits
accessed. When the string variable is indexed to a smaller region of bytes within it, the

9

9-23GFK-0256 Chapter 9 MegaBasic Built-in Function Library

bit range is relative to the beginning of the indexed region, rather than to the beginning
of the string variable. The following 5 examples illustrate the various ways you can
specify a bit range:

BIT(S$) Refers to the leading bit of S$.

BIT(S$:N) Refers to the N leading bits of S$.

BIT(S$,1) Refers to the Ith bit of S$.

BIT(S$,1:N) Refers to the N bits beginning at bit I of S$.

BIT(S$,1,J) Refers to the bits in position I through J of S$.

Bit positions are not the same as character string positions: for each byte position there
are 8 bit positions. The actual bit string accessed will be shorter than specified if part of
what is specified lies beyond the last byte of the string. An Out Of Bounds Error will occur
if the actual number of bits accessed is less than 1 or greater than 24. This function may
be placed on the left side of an assignment statement in order to set the bit range to
some other value. This is described in Chapter 5, Section 2 along with additional
information about the BIT() function and bit string processing.

CARD(<string> [<bit range>])

Counts and returns the number of l-bits in the <string>, which may be either a string
variable or a general string expression. CARD (an abbreviation of cardinality) may include
a bit subrange identical to the ORD function (described below), providing an extremely
fast and flexible method for counting the number of l-bits within any arbitrary bit string.
This capability is particularly useful for bit strings representing sets, as it it tells you how
many elements are contained in a set. CARD() is identical with the ORD() function
described below except, of course, for the result returned. Refer to the ORD function
above for details on specifying bit subranges in this function.

ORD(<string> [<bit range>])

Returns the bit position of the first bit in the <string> set to one. A bit range may be
specified to restrict the bit search to any bit subrange within the <string>. The <string>
may be specified by either a string expression or a string variable. When ORD searches an
indexed or unindexed string variable it uses no internal scratchpad space and executes
much faster than for the same string specified by a string expression. Regardless of the
bit subrange specified, ORD always returns a bit position relative to the beginning of the
byte string being searched. The following examples show the various options of the ORD
function:

ORD(S$) Returns the position of the first on-bit in S$.

ORD(S$,1) Returns the position of the first bit set on or after position I.

ORD(S$,1,J) Returns the first bit set within bit positions from I to J (inclusive).

ORD(S$,1:N) Returns the first bit set within the N bits starting at bit position I.

ORD(S$:N) Returns first bit set within the first N bits of S$.

9

9-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

ORD returns –1 if no bit is on in the specified bit-string. Bit positions may range from 0 to
the length of the string * 8 minus 1, which can potentially exceed half a million. Only the
portion of the specified bit rang which is actually defined in the byte string will be
searched. The following example shows how to use the ORD function to display all the
bit positions within string variable TBL$ that contain ones:

10l = –1
20 1 = ord(TBL$, 1+1)
30 If I > –1 then [Print l; Goto 20]
40 End

ORD is extremely fast and permits bit strings to control other operations. For example,
bit strings can represent arbitrary record selections in large data bases. Such bit strings
can be combined and manipulated using logical operators to form complex result bit
strings which are then scanned (using ORD) to generate a report. The ORD() function
bears absolutely no relationship to the ORDered mode of the FIND() function (Chapter
9, Section 3). ORD is an abbreviation of ORDinal number, a number representing the
order of elements in logical sets.

9

9-25GFK-0256 Chapter 9 MegaBasic Built-in Function Library

Section 4: File and Device I/O Functions

Most file and I/O functions require you to specify an open channel number, which specifies
the file or device to be accessed. Open files and actual peripheral I/O devices can be
addressed in an identical manner, so that your program can deal with both types as if
they were identical in most cases. See Chapter 7, Section 1 for additional information
about I/O independence and redirection.

Pos(D) Gets or sets the column position on channel D.

Line(D) Gets or sets the line position on channel D.

 Inchr$(D,..) Returns input characters from channel D. Various options
provide control over termination, echoing and time-out.

 Edit$ Returns the previous line input, or the command tail that
invoked the program.

Input(D) Returns the input status of input channel D.

Output(D) Returns the output status of output channel D.

File(F$) Returns true (1) if file F$ exists, false (0) if not.

Filepos(D) Gets and sets the byte position on open file D.

Filesize(D) Gets and sets the total file size of open file D.

Filedate$(D) Returns the date of last update for open file D.

Filetimie$(D) Returns the time of last update for open file D.

Filectrl(D) Returns the system file handle assigned to open channel D.

Space(D) Returns the disk space remaining on drive D.

Dir$(F$) Returns the file name following F$ in the directory.

Subdir$(D$) Returns the subdirectory name after F$ in the directory.

Open$(F) Returns the full name of the file OPENed under channel F.

IOCTL(D) Test l/O channel D for IOCTL capability.

IOCTL$(D,C$) Sends control string to channel D and returns responses.

Typ(D) Test for an endmark at the current file position.

Numeric arguments supplied to these functions may be specified either as integer or real
values. Internally, however, only integer data is used and floating point arguments will
automatically be converted to integer form before they are used. These functions all
return integer results.

9

9-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

POS(<channel number>)

Returns the current column position of the device specified by the numeric argument.
This channel number must correspond to an I/O device or open file number (0 to 31).
Column positions range from 0 to 255. The column position is automatically maintained
by MegaBasic as characters are sent to the device (or open file) via PRINT statements,
according to the following rules:

� Set to position zero on each carriage return (ASCII 13) and by the initial OPEN
statement the made the file or device available.

� Set to the next multiple of 8 on each tab character (ASCII 9).

� Incremented by one on all codes from 32 to 255.

� Decremented by one on each backspace character (ASCII 8).

� Unchanged by all other control characters (0 to 31).

MegaBasic cannot, however, account for cursor position changes caused by special
escape sequences, function codes or system calls. Therefore POS() can be set to any
value (0 to 255) using an ordinary assignment statement. Using this feature, your
program can correct the current column position for a device whose positions have been
altered by non-standard cursor positioning. Because of the limited range of the column
position (i.e., 0 to 255), if you print a string longer than 255 characters, the channel
position will wrap around back through zero, resulting in a meaningless position when
subsequently examined.

LlNE(<channel number>)

Returns the current line position of the device specified by the numeric argument. Line
positions range from 0 to 255 change according to the following rules:

� Set to zero by opening channel D, by a PRINT statement containing a plus sign (+)
control or by a form-feed character (ASCII 12) sent to the device (except the console
#0).

� Incremented by one on every line-feed character sent to device D.

� Can be set to any value from 0 to 255 using an assignment statement. Once the
value 255 is reached, however, the LINE() position will wrap-around back to zero
and start over.

This function is useful for controlling page length while your program is generating
output. Without it, your program would have to count output lines itself. As with the
POS() function, MegaBasic cannot account for cursor position changes caused by special
escape sequences, function codes or system calls. Therefore LINE() can be set to any
value (0 to 255) using an ordinary assignment statement. Using this feature, your
program can correct the current row position for a device whose positions have been
altered by non-standard cursor positioning.

9

9-27GFK-0256 Chapter 9 MegaBasic Built-in Function Library

INCHR$(<channel>,<length>,<break set,<echo>,<time out)

Inputs characters from the channel specified. Control characters and other binary data
can be input through this functions. Several options control device selection, input
termination and echoing using the following arguments:

 <channel>

Specifies the open device or file number of the input channel. Except for
the console, printer and auxiliary devices (0,1 and 2), a channel must be
OPENed before it can be used. Unlike those that follow, this argument
is not optional.

<length>

Specifies the absolute maximum number of characters to input before re-
turning them to your program. MegaBasic allocates memory for this
number of characters before the input process begins, so don’t specify
unreasonable values here to simulate indefinite input (to be terminated
by other means).

 <break set>

Specifies a set of characters any one of which terminates the input,
returning all preceding characters. Afterward, INDEX is set to the
character position in the <br eak set> of the character that terminated the
input. A null break set string can be specified to indicate no break set.
If the limiting input <length> has been reached without encountering
any of the characters in the break set, INCHR$() returns with all charac-
ters input and sets INDEX to zero.

<echo>
A non-zero value specifies that each character is echoed back to the
channel as it is input. A zero value suppresses echoing, which is the
default when this argument is omitted.

 <time out>

Specifies the time in (real) seconds to wait for the next input character
before timing out and returning with all the input characters received
up to that point. The time out specifies the period between characters.
A time out of zero terminates input as soon as the next character is not
immediately available without waiting (e.g., those in the type ahead buffer).
Fractional seconds are supported to the time resolution level supported
by the host operating system.

All INCHR$() arguments except the channel number are optional. Arguments can only
be omitted from right to left (i.e., you cannot omit arguments out of the middle). This
results in five possible ways to specify INCHR$() . Examples of each form are given
below along with what they do:

INCHR$(D) Waits for 1 input character from channel D, without input echo.

INCHR$(D,L) Waits for L input characters from channel D and does not echo them.

 INCHR$(D,L,B$)
Waits for up to L input characters from channel D, or until an input
character matches one in B$. No characters are echoed.

INCHR$(D,L,B$,E)
Waits for up to L input characters from channel D, or until an input
character matches a character in B$. Input characters echoed
if E<>O .

 INCHR$(D,L,B$,E,S)

Inputs up to L input characters from channel D, or until an input
character matches a character in B$, or until the time between input
characters exceeds S seconds. All input characters are echoed if E is
non-zero.

 INCHR$(D,1,“”,0,0) Inputs 1 character from channel D if it can be input without waiting.
The input the character is not echoed

9

9-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

INCHR$() will also input characters from a file if the file is OPEN and you specify the
open file number as the channel. No end-of-file mark is checked for, although an Out Of
Bounds Error will occur if you attempt to read past the physical end of the file. Do not use
INCHR$() in this manner directly in the data list of a WRITE statement to the same file,
as it will upset the file pointer for the subsequent WRITE operation.

EDIT$

Returns the last line input from the console, i.e., the contents of the old line buffer. EDIT$
has no arguments. Whenever you execute a program, either from the MegaBasic
command level or the operating system command level, the old line is set to the
command tail. EDIT$ can therefore retrieve this command tail so that your program can
extract any additional arguments it contains. For example if you run a program from the
operating system using the command:

BASIC Program arg1 arg2 arg3

When Program begins execution, EDIT$ will return the string:

“Program arg1 arg2 arg3”

This command tail must be used before your program requests console input via the
INPUT statement, because the edit buffer is then overwritten and its prior contents are
lost. For testing purposes, the RUN command (in the development version of
MegaBasic) copies the text of itself into the old line buffer in a manner identical to the
above scenario.

If the program is either compiled or running under the PGMLINK system, the program
name is stripped from the front of the command tail string. You can use PARAM(16) to
decide in your program whether or not the first word in EDIT$ is the program name.
Because of the volatility of the command tail and its dependence upon the execution
model of your program, a program that will be using EDIT$ for the command tail
should begin execution with a sequence like the following:

DIM TAIL$(128)
TAIL$ = TRIM$(EDIT$)
IF PARAM(16)<2 THEN
 TAIL$ = TAIL$(MATCH(TAIL$+“ ”,“ ”))

This program fragment sets string variable TAII$ to the argument string typed after the
program name without the program name portion (which normally is not needed) and
without depending on any particular execution model of MegaBasic. Subsequent use of
the command tail can then access string variable TAIL$ without worrying about any
other issues.

INPUT(<channel number>)

Returns true (1), false (O) or unknown (–1) to indicate the input status of the channel
specified. If the channel is an OPEN file number, then INPUT() returns false (O) if the
current file position is beyond the end of the file or the character about to be READ is the
endmark code, otherwise INPUT() returns true (1). Unknown (–1) is returned only
when the input status is unavailable from the host operating system or the system
returns an error for the input status request (e.g., the input status of an output-only
channel like a printer).

9

9-29GFK-0256 Chapter 9 MegaBasic Built-in Function Library

Do not use INPUT() to test for the end-of-file on a binary or non-text file (i.e., any file
the you are using READ and WRITE statements on). It will give false indications of
end-of-file depending on the file contents. For such files, use the comparison
FILEPOS(N)>=FILESIZE(N) to make such a test.

When the console keyboard input status is interrogated (i.e., INPUT(0)), YOU should
remember that the Ctrl-C detection system of MegaBasic swallows incoming keyboard
characters when they are typed during statement execution. Hence you should disable
Ctrl-C when using INPUT() to control programmed input from the keyboard (using
Param(1) = 1). INPUT() returns the input status without actually reading the character
present. INPUT(0) may also be spelled as INPUT (i.e., without an argument) to mean
the same thing.

OUTPUT(<channel number>)

Returns true (1), false (O) or unknown (–1) to indicate the output status of the device
specified. If the device is an OPEN file number, then OUTPUT() returns true (1) all the
time. Unknown (–1) is returned only when the output status is unavailable from the
host operating system or the system returns an error for the output status request (e.g.,
the output status of an input-only device like a 80-column card reader). OUTPUT(0),
which requests console output status, may also be spelled as OUTPUT (i.e., without an
argument) to mean the same thing.

FlLEPOS(<open file number>)

Returns the position of the file pointer of the specified open file number. The file
position represents the number of bytes between the beginning of the file and the
current file location where the next byte would be transferred by a sequential READ or
WRITE. Hence the beginning file position is zero. The number returned by FILEPOS()
is always in integer mode.

FILEPOS() may appear on the left-side of an assignment statement (e.g., FILEPOS(5)
= N*L) in order to explicitly change the current file pointer, rather than setting as part
of a READ or WRITE statement. This is discussed more fully in Chapter 7, Section 2.

FlLESlZE(<open file number>)

Returns the number of file blocks in the open file number specified. Under the MS-DOS
operating system, FILESIZE() returns the file size in units of bytes instead of blocks.
This value always points to the first byte position past the end of the data on the file. You
may therefore correctly append information to any file simply by beginning sequential
file transfers at this file location.

Also under MS-DOS, the FILESIZE() function may be placed on the left side of an
assignment statement in order to set the file size to any byte length. This feature will
usually be applied to reduce a file size, since any file will be extended automatically by
the WRITE statement as needed.

To be compatible with earlier versions of MegaBasic, FILESIZE() returns the file size in
units of 256 bytes per block under CP/M, MP/M and TURBODOS operating systems. You
can however employ any block size from 1 to 65535 bytes per block by setting Param(14)
(Chapter 9, Section 5) to the size of your choice (independent of operating system).

9

9-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

FlLEDATE$(<open file number>)

Returns the date that the specified open file was most recently modified. The date is
returned as an 8 character string in MM/DD/YY form (month/day/year). This function
depends on the host operating system for file date maintenance and access, a facility not
available under some operating systems (e.g., CP/M-86). FILEDATE$() returns a null
string (i.e., a zero length string) whenever the date information is not available for any
reason.

FlLETlME$(<open file number>)

Returns the time that the specified open file was most recently modified. The time is
returned as an 11 character string in 24-hour HH:MM:SS.DD form
(hour:minute:sec.decimals). This function depends on the host operating system for file
time maintenance and access, a facility not available under some operating systems (e.g.,
CP/M-86). FILETIME$() returns a null string (i.e., a zero length string) whenever the
time information is not available for any reason.

FlLECTRL(<open file number>)

Returns the internal system file handle associated with the specified <open file channel>.
This function is typically not required in most applications, but it is provided to support
direct system calls involving files opened under MegaBasic for special applications. If the
file was OPENed using the obsolete file control block method (FCBS supported under DOS

2.xx only), FILECTRL() returns the offset address of the FCB instead of the file handle.

MegaBasic has no knowledge of any change in file state made using system calls with
access to files using file handles, which can interfere with subsequent MegaBasic file
operations. For example, closing a file using a direct system call followed by MegaBasic
file operations involving that same open file can have unpredictable results.

FlLE(<file name string exprn>)

Looks up the file name specified in the file directory and returns true if it is present (1
=r/w file, 2=r/o file), or false if it is not present (0). Since a trappable Improper File Name
Error is reported for bad file names, this function is also useful in testing for correct file
name formation.

SPACE(<drive number>)

Returns the amount of available unused disk space remaining on the disk drive number
specified. Use 0 to select the default drive, or 1, 2, 3, ... to refer to any available disk
sub-system (i.e., for drive a:, b:, c:, ...). Like the FILESIZE() function described above,
the SPACE() function returns a result which is scaled into file blocks: 256 bytes/block
under CP/M and 1 byte/block under MS-DOS. You can however control the block size by
setting PARAM(14) (Chapter 9, Section 5) to any byte count from 1 to 65535 (independent
of operating system).

DIR$

Returns the current directory pathname on the default drive. You can also select
different directories on the default drive by assigning your desired directory string to
DIR$ as an assignment statement (Chapter 7, Section 2), for example: DIR$ = “
\bin\basic”.

9

9-31GFK-0256 Chapter 9 MegaBasic Built-in Function Library

DlR$(<prior file name string>)

Returns file names, one at a time, from the file directory. The string argument must
specify the last file name returned from this function, or a drive designator string which
causes the first file name on that drive to be returned. Drive designator strings consist of
a drive letter followed by a colon (e.g., “A:”, “B:”, “C:”, etc.) or a null string, which selects
the default drive. A null string is returned if there are no files on the drive, or file name
F$ cannot be found on the drive, or file name F$ is the last file in the directory.

The purpose of this function is to provide a sequence of file names from which your
program can select and subsequently process. File directories simply become input data
for your programs. Because the names are returned in string form, arbitrary pattern
selection criteria can be imposed, i.e., you are not limited to wild-card character (? and *)
matching that is usually provided by the operating system. The following example
illustrates how one might generate a list of all files from drive B:

10 LAST$ = Dir$(“b:”)
20 While LAST$>; Print LAST$;
30 LAST$ = Dir$(LAST$); Next

MegaBasic always looks up the file name supplied and after finding it, returns the
subsequent file name from the directory. This approach permits unlimited file processing
between one file name and the next without affecting the file name sequence returned.
With proper programming, you can even sequence through the file names from multiple
disks simultaneously.

This function does have one important limitation. If the last name returned from
DIR$() is renamed or deleted, it will not be found the next time that DIR$() is called,
causing the name sequence to terminate. This can be avoided if you defer such a delete
or rename until the next file name has been extracted, or the sequence is restarted from a
prior file name known to reside in the directory.

SUBDlR$(<prior subdirectory name string>)

Returns each subdirectory name, one at a time, from the currently selected directory. It is
similar to the DIR$() function described above that extracts file names from the current
directory. SUBDIR$() extracts directory names, permitting programs to walk through
the subdirectories on the disk. See the discussion about the DIR$() function above to
see how to use the SUBDIR$() .

OPEN$(<file number>)

Returns the name of the file or device OPENed under that number, or a null string if
nothing is OPENed under the number specified. File names are returned with the drive
code, full directory pathname and the file name with its extension. Device names consist
of only a name, and any drive, path or extension specified in its original OPEN is not
given in the name string because such information does not apply.

OPEN$() is useful for testing a channel number for availability (i.e., where it returns a
null string), for obtaining file names given only file numbers, for extracting the directory
path of an open file (or its drive code), and for determining whether an open channel is
a file or an I/O device (only files have a drive code in their names). OPEN$() is also
useful for generating a fully-qualified file name string that correctly identifies the file
without any knowledge of the current drive and/or directory.

9

9-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

IOCTL(<open channel number>)

Returns true (1) or false (0) to indicate whether the device opened under the specified
channel number (i.e., file number) is capable of processing I/O control strings. IOCTL()
is not supported under all operating systems. The IOCTL statement is described in
Chapter 7, Section 1.

IOCTL$(<channel number> [,<output ctrl string>])

Returns an input control string from the channel opened under the channel number
specified (i.e., file number). A null string is returned if no input control string is available
or if the channel does not support control strings. If you specify the optional output
control string, it will be sent to the channel before the input control string is requested.
IOCTL$ is not supported under all operating systems. See the IOCTL statement in
Chapter 7, Section 1 for further details.

TYP(<open file number>)

Returns the data type at the current file position of file number X. The data types
returned are as follows: 0 = ENDMARK, 1 = String, 2 = Floating Point Value, 3 =
Unknown (most likely integer or other binary data). TYP() always returns 0 whenever
the file position is higher than the last byte written to the file (i.e., FILEPOS() >=
FILESIZE()).

TYP() does not and cannot work correctly on files that contain any data other than BCD
numbers and normal strings (i.e., those written with string headers). The potential
conflicts include integers, IEEE floating point values and any data written in 8-bit (&) or
16-bit (@) mode. These data types may be incorrectly reported by TYP() as numbers,
strings or endmarks.

TYP() is useful primarily for detecting the end-of-file mark (endmark) at the end of
logical records or files, and for compatibility with North Star BASIC data files and early
MegaBasic releases. Because of this, TYP() is only supported for compatibility with
programs that already use it. Avoid reliance on TYP() in any new programs.

9

9-33GFK-0256 Chapter 9 MegaBasic Built-in Function Library

Section 5: Utility and System Interface Functions

This section describes various functions that provide direct access to memory and
machine ports and various internal MegaBasic operating parameters and numerous
utility functions. See Chapter 7, Section 3 for important details about Intel 80x86 memory
addressing. That section also describes other system interface facilities. Unless otherwise
specified, all arguments to these functions are best specified as integers, and numeric
results are returned as integers.

Time$ Returns the current time in an 11-byte string.

Date$ Returns the current date in an 8-byte string.

Elapse Returns elapsed time in seconds since previous ELAPSE call.

Argument Returns argument-remaining status in open-end argument list.

Interrupt() Returns status and control data on logical interrupts.

Struct() Returns position, length and type data for STRUCT fields.

Real(I) Returns the value of expression I in real mode.

Integer(R) Returns value of expression R in integer mode.

Dim(V) Returns current dimension specifications of variable V.

Errtyp Returns the error code of the previous error.

Errmsg$ Returns the error message string of the previous error.

Errpkg$ Returns the package name where the last error occurred.

Errline Returns the line number where the previous error occurred.

Errdev Returns the channel selected before the previous error.

 Index Returns secondary result values provided as side-effects after
executing various functions.

Free(T) Returns one of a variety of free-memory resource statistics.

Inp(P) Returns 8-bit data directly from CPU port I?

Exam(M) Returns the contents of memory at hardware address M.

Seg(V) Returns absolute segment address of variable.

[V] Returns absolute offset address of variable.

Envir$() Accesses MS-DOS environment strings.

Param(T) Provides access to various internal MegaBasic control parameters.

TIME$

Returns the current time, as provided by the operating system, in an 11-byte string. A
null string is returned if the time is not available from your particular system. A 24-hour
format is provided that includes the hour, minute, second and 1/l00s seconds (e.g.,
12:34:56.78). The first character of TIME$ is a blank character whenever there is no
ten-hour digit. Since TIME$ is a string, you can easily create any other time format with
further string operations.

9

9-34 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

DATE$

Returns the current date, as provided by the operating system, in an 8-byte string. A null
string is returned if the date is not available from your particular system. The date is
provided in month/day/year format with two decimal places for each value. The first
character of DATE$ is a blank character whenever the month can be expressed in one
digit. Since DATE$ is a string, you can easily create any other date format with further
string operations.

ELAPSE [(<mode>)]

Returns the number of seconds that have elapsed since the last time that ELAPSE was
called. The first time it is called, ELAPSE() returns the number of seconds since
00:00:00.00 (midnight of the previous night). You can specify a non-zero argument to get
the time without resetting it for subsequent calls. Normally, ELAPSE is called without
specifying any arguments (e.g., X = ELAPSE).

ELAPSE returns a real result, which may include fractional seconds down to the
millisecond level depending on the time capabilities provided by the operating system.
Under MS-DOS, the precision of ELAPSE() resolves down to the 1 millisecond level.
However, do not rely on this level of accuracy when running MegaBasic under Microsoft
WINDOWS because the timing base is unpredictable. ELAPSE returns zero under
systems that do not support a usable time-base.

ARGUMENT

Returns true (1) if any open-ended arguments (Chapter 8, Section 4) remain to be read from
the argument list of the current subroutine call, or false (O) if none.

INTERRUPT(<selector> [,<interrupt number>])

Returns selected status and other information about logical interrupts. See Chapter 4,
Section 4 for a full description of logical interrupts and this function.

STRUCT(<field name> [,<selector>])

Returns selected information about structure field variables (Chapter 5, Section 3).

REAL(<numeric exprn>)

Returns the value specified by the argument expression in real mode, regardless of its
original numeric type (integer or real). All integers can be converted into real values
without any precision loss, except when you are using 8-digit floating point precision. In
that case, integers with absolute values above 100 million cannot always be converted
exactly because they cannot be represented exactly in such a limited floating point word
size. If this is a problem, you should switch to a version of MegaBasic that uses 10-digit
floating point or higher (e.g., IEEE/8087 MegaBasic).

Although MegaBasic converts between integer and real mode automatically as needed
by internal processing requirements, you may occasionally need to force an integer
expression into real mode. For example writing the contents of an integer variable onto a
file as a floating point number instead of an integer. Another example is the following
expression:

X + Real(l) * Y

9

9-35GFK-0256 Chapter 9 MegaBasic Built-in Function Library

where X and Y are real and I is integer. In this example, MegaBasic might convert Y to
integer (depending on its value) so that the multiplication can be performed using the
much faster integer multiply. Upon completion, however, the integer product would be
converted back to real mode to be added to real X. Therefore we are forcing I to real
mode to prevent the unnecessary conversions from slowing down the computation.

INTEGER(<numeric exprn>)

Returns the value specified by the argument expression in integer mode, regardless of its
original numeric type (integer or real). Be aware that this function truncates non-integral
real numbers into integer whole numbers. A numeric overflow error will occur if a real
number below –2,147,483,648 or above 2,147,483,647 is supplied as an argument to the
INTEGER() function.

Although MegaBasic converts between integer and real mode automatically as needed
by internal processing requirements, you may occasionally need to force a real
expression into integer mode. For example writing the contents of a real variable onto a
file as an integer instead of a real. Another example is the following expression:

Integer(X) + I + J + K

where I. J and K are integer and X is real. In this example, if real X were to remain real,
each of the integer terms being added together would be converted to real and added in
floating point to X. Therefore X is forced into integer mode to prevent the unnecessary
conversions from slowing down the computation.

DIM (<variable name> [, <dimension number>])

Returns the number of dimensions currently defined for the variable specified, which
can be any variable name, string or numeric, but no subscripts or indexing or
parentheses are to be included with the name. Zero is returned if variable V is not
dimensioned. If the second argument is supplied, DIM(V,D) returns the upper limit
defined for dimension D of variable V. The dimensioned maximum size of a string
variable array element or simple string variable is accessible using the DIM(vhl$,0)
function. Zero is returned if the specified variable name given has not been defined. An
error results if a numeric variable is specified and dimension O is selected.

The DIM() function is provided specifically so that subroutines can determine for
themselves the sizes of arrays they receive for processing, making additional parameters
for this purpose unneeded. The <variable name> can also be specified with pointers. For
example if P points to an array, then DIM(*P) returns its dimension count. If P points to a
scalar variable or an array element, then DIM(*P) returns zero (i.e., no dimensions).

ERRTYP

Returns the error code of the previous error encountered and ranges from O to 255. See
the ERRSET statement in Chapter 6, Section 4 for additional information. Appendix A
lists all the MegaBasic error messages and error types.

ERRMSG$

Returns the error message of the most recent error encountered. This is especially useful
for informing the user of errors that the program has trapped. See the ERRSET
statement in Chapter 6, Section 4 for additional information. Appendix A lists all the
MegaBasic error messages and error codes.

9

9-36 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

ERRPKG$

Returns the name of the package (in string form) in which the most recent error
occurred. See the ERRSET statement in Chapter 6, Section 4 for additional information.

ERRLINE

Returns the line number of the line on which the most recent error occurred.
ERRLINE(1) returns the relative statement number on the line where the error occurred.
See the ERRSET statement in Chapter 6, Section 4 for additional information.

ERRDEV

When an error occurs when using some OPEN file or device, your program may need to
know which device was involved in the error. ERRDEV always returns the channel
number of the device most recently in use before or when the error occurred. For
example if you invoke the file size function: FILESIZE(l9) and no file is OPEN under
file number #19, a File Not Open Error will occur. If your program traps this error,
ERRDEV can be invoked to return the offending file number, in this case a value of 19.

ERRDEV is only of use when you trap errors using the ERRSET statement, because your
program will immediately terminate if any error occurs and no error traps are in effect.
See the ERRSET statement in Chapter 6, Section 4 for additional information.

INDEX

Returns secondary information produced as a side-effect after invoking a number of
other MegaBasic statements and functions. A brief description of these secondary results
is given below, but for further details you should consult the complete documentation of
the operations it involves.

 VAL() String position in the string argument supplied to VAL() just
beyond the number extracted by VAL() .

MIN, MAX Argument sequence number of the value selected.

MIN$, MAX$ Argument sequence number of the string selected.

MATCH()
Number of successful matches encountered before failing. If
match found, INDEX returns the same value as the MATCH()
function itself.

FIND()
Number of successful matches encountered before failing a
repetitive search, or the insert-position after a FIND ORD
failure, or relative substring position after a successful search.

 INCHR$()
The string position of the terminating character in the input
break character set argument.

Vector
Operations

Running operation counter. After a vector operation, INDEX
returns the number of operations performed.

If you intend to use INDEX after some operation, use it right away or store it in a variable
because of the likelihood that it may be altered by a subsequent operation (i.e., one of
the above) before you use it.

9

9-37GFK-0256 Chapter 9 MegaBasic Built-in Function Library

INP(<por t number>) or INP$(<port number>)

Returns the value of an input data byte from the hardware port number specified, which
must be within the range from 0 to 65535. No status is examined and whatever data byte
is present is returned immediately. The value returned (0 to 255) is always in integer
mode, never in floating point. For the fastest response times, you should specify the port
number using an integer expression. INP$() returns the input value as a one-byte string
instead of an integer so that it can be used in a string context.

FREE(<numeric exprn>)

Returns a variety of memory resource statistics, as selected by the numeric argument:

 0
Maximum number of bytes available for the next new string variable.
The quantity is the lesser of the total memory free and 65520.
FREE(0) , or equivalently FREE, is useful in computations that
determine how big to make scalar string sizes.

 1 Total memory bytes currently available for more code and data.

 2

Maximum bytes remaining for internal scratchpad use, i.e., expression
evaluation, looping and subroutine control local arguments, etc.
FREE(2) ranges from 0 to approximately 52000. If your program
exceeds this internal space, a Scratchpad Full Error will result, which
may be trapped as a type 13 error via an ERRSET.

 3

Number of unused bytes remaining in the global symbol table, which
manages all the symbols over all packages in a running MegaBasic ap-
plication. When full, new variables cannot be created and your pro-
gram stops with a Too Many Symbols Error. When FREE(3) becomes
less than about 1000 bytes, you are in danger of running out of space.

 4
Returns the number of unused memory segments, which if zero
means that anything that needs another segment will abort your
program.

EXAM(<memor y address>)

Returns the value of the memory byte at the address specified by the argument
expression. Note the distinction between this and the EXAM statement (Chapter 7,
Section 3). The memory address may be specified as a segment:offset pair as described in
Chapter 7, Section 3.

SEG(<variable name>)

Returns the actual 80x86 segment address of either the default segment setup by a SEG
statement (if no argument is specified), or of a variable specified to the SEG() function.
If supplied, the variable must be given as a variable name, unadorned by indexing or
subscript specifications. This is useful for accessing the memory allocated to variables
with the FILL , EXAM, and CALL statements.

The addresses of MegaBasic variables may change during program execution as a
side-effect of certain operations: DIM, LINK , ACCESS, INCLUDE, or even expression
evaluation. Therefore do not assume static locations and pick up a fresh copy of the
address just before using it.

9

9-38 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

[<variable name>l

Returns the memory offset address of the variable specified, which may be a string or
numeric scalar or array element. Offsets of integer or string variables refer to the first
byte of the given integer, string or indexed string variable. Integer values are physically
stored in memory low-byte first. Offsets of floating point variables refer to the sign-byte
of the value, which is the last byte of the number. Variable offsets can be used in CALL
statements for passing pointers to data to be processed, or in FILLing or EXAMining
their memory contents directly from your program.

[V] returns only the offset portion of the two-component 80x86 cPu memory address. The
segment portion is available as a default segment using the SEG statement (Chapter 7,
Section 3), and from the SEG() function described above.

ENVlR$(<name or sequence number>)

Returns any of the MS-DOS environment strings by specifying the name of the
environment string or by specifying the position of the string in the environment string
list, i.e., is sequence number (e.g., 1 returns the first string, 2 returns the second, and so
on). The environment is a list of strings each of the form: <name>=<string>. A null
string is returned if no environment string corresponds to the sequence number or name
specified, or if the host operating system is not MS-DOS. ENVIR$() returns only the
<string> portion of the environment string accessed.

For example, ENVIR$(“PATH”) returns the directory search path string, and
ENVIR$(“COMSPEC”) returns the full path name of the command shell file. These
names must be fully spelled out in upper case with no spaces, equals signs (=) or other
extraneous characters. ENVIR$() returns a null string () if the specified name string
does not exactly match any existing string <name>.

Environment strings contain information about alternate sub-directory search paths and
other information communicated to all programs. The MS-DOS SET command is used to
build this set of environment strings and display them on the console. Your program can
then use these strings to select the directories from which files are accessed, and base its
decisions on the prevailing parameters provided in the environment. See the SET and
PROMPT commands in your MS-DOS operating system manual for further information.

ENVIR$(0) returns the pathname of the main program of a MegaBasic application. This
makes it possible for an application to access files and packages from the same directory
that the main program was loaded from. You can also use it to alter program behavior
based on the actual name of the main program.

There are some key differences between the interpreted and compiled versions of
ENVIR$(0) that you may need to know. The interpreters (BASIC or RUN) always return
a fully-qualified pathname (i.e., with the drive, directory path, name and extension) of
the actual main program file. If a LINK statement is executed, the new main program
brought in by the LINK will then be returned by ENVIR$(0).

On the other hand, from compiled programs ENVIR$(0) returns the pathname of the
original .exe file executed from the command shell. If you run .go files with the runtime
libraries explicitly, ENVIR$(0) will return the pathname for the runtime library file
instead of the compiled main program. Furthermore the compiled ENVIR$(0) result is
unaffected by subsequent program LINKS , while under the interpreter it is.

9

9-39GFK-0256 Chapter 9 MegaBasic Built-in Function Library

PARAM(<parameter number>)

Returns an internal MegaBasic condition selected by parameter number, ranging from 0
to 25. Each Param is explained below. Certain Params may be set with an assignment
statement, such as: Param(1)=0. Such Params are shown marked with an asterisk (*).
Additional Parameters may be added to this list from time to time.

Internal Control Parameters

 0

Returns the MegaBasic version number. This value is useful when developing Mega
Basic programs which may be run under different versions of MegaBasic. Such
programs can take advantage of special capabilities only when they are available and
branch to different routines when not.

 1*

Lets you control the current state of program interruptibility: 1 for disallowed or 0 for al-
lowed. The interruptibility state is local to each package, i.e., its current setting
affects only the program in the workspace from which it is read or set. Commands and
direct statements are always interruptible. Setting PARAM(l) to negative values
controls the method used for program interruption: Ctrl-C (–2), which consumes input
type-ahead, or Ctrl-Break (–1), which preserves type-ahead.

O - Enables interruptibility -1- Selects Ctrl-Break

1- Disables interruptibility -2 - Selects Ctrl-C

 2*
Returns the current default drive number: 1=A, 2=B, and so on. This is the drive im-
plied by file names that do not include a specific drive reference. You can set PARAM(2)
to any valid drive number. A disk reset is performed each time PARAM(2) is assigned.

 3*
Returns the current default I/O device (normally 0) used whenever an optional channel
number is omitted. Has no effect on the console messages displayed by MegaBasic
(Ready, error messages, etc.)

 4

Returns the prevailing floating point precision of the MegaBasic version you are
unning under. BCD versions return 8,10,12,14,16 or 18 and IEEE/8087 versions return 2
(for double precision) . Any particular version of MegaBasic supports only one floating point
precision (i.e., it is not configurable).

Returns a code specifying the operating system environment under which MegaBasic is
executing. The following codes have been assigned:

0 = North Star DOS 7 = TurboDOS-86

1 = CP/M80 8 = TurboDOS-80

2 = APC’s MTOS 9 = Concurrent CP/M

 5 3 = CP/M-86 10 = Convergent Technology DOS

4 = North Star HDOS 11 = Xebux-286

5 = MS-DOS 12 = GE PCM

6 = MP/M-86

Like Param(0), this value is useful for writing system independent programs.

 6 Not currently defined.

 7*
Permits access to the ASCII code used to initialize strings and string arrays. At startup,
Param(7) = 32, the ASCII code for spaces. You can revise this value to any code from
0 to 255 with an assignment statement: Param(7)=0.

9

9-40 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Internal Control Parameters

 8*

Setting to a non-zero value (e.g., 1) disables all subsequent epilogue execution. In this
state, epilogues invoked by DISMISSes as well as by program termination or a LINKing
to another program are not performed, but execution proceeds as if they were performed.
Only epilogues in MegaBasic code are affected; epilogues in assembler packages are
still executed. PARAM(8) does not remain non-zero for very long: it is cleared by any
MegaBasic error and by beginning program execution using either RUN or LINK .
PARAM(8) can also be cleared by setting it to zero directly. This helps in situations
where serious failures detected within large MegaBasic applications can be cleaned up and
execution either restarted (via LINK) or aborted without causing additional problems that
could result by allowing epilogue execution to proceed after a catastrophic error.

 9*

Redefines the end-of-file code and affects the operation of READ, WRITE, TYP() ,
PRINT and INPUT file operations. Any value from 0 to 255 may be assigned, but only
values 0-1, 26, and 154-255 should be used to avoid conflict with the encoding of
strings and floating point values on files (26 is useful for text files).

10*

Returns or changes the number of file buffers available during file operations and may
be set to a value from 4 to 127. Open files are not affected by setting Param(10) and need not
be closed first. If you attempt to assign more buffers than 128 or than available memory per-
mits, only the maximum possible will be allocated. File buffers are 512 bytes each and their
number is controlled solely via Param(10).

11*

Returns or changes the floating point format type that is assumed by READ and WRITE
 statements during file transfers. Param(11) is normally set to the native floating point format
of MegaBasic (see Param(4) above). You can change Param(11) to any format under the
IEEE/8087 version (1=single IEEE, 2=double IEEE, or 8 to 18 BCD), or to any BCD format
under BCD versions (8 to 18 BCD).

This feature permits access to files written by versions of any precision. Shorter values
 are padded with trailing zeros and longer values are rounded to the prevailing precision. All
file transfers use the precision specified by Param(11) until subsequently changed.

Returns and sets the maximum length of string variables subsequently created by
default, without being defined by an explicit DIM statement. Any maximum size from
–1 to 4095 is permitted, although remember that that much memory will be held by such
variables until re-defined by a later DIM statement, if any. Param(12) is initially set to 80.

12* Programs that do not rely on default strings can benefit by setting Param(12) to –1 to
disable the automatic string creation feature of MegaBasic. This is useful to eliminate the
possibility of variables created as a result of misspelling their names or of forgetting
to DIMension strings properly. With this in effect, attempting to access an undeclared
string will result in an Undeclared Str ing Or Array Error, alerting you to their presence
and indicating an error in your program.

Returns and sets the upper limiting subscript boundary for default arrays. Normally a refer-
ence to an array which has not been previously accessed causes a new (default)
array to be created automatically which has one dimension and subscripts ranging
from 0 to 10. Param(13) allows you to control the upper boundary of default arrays
subsequently created. The value assigned must be an integer from –1 to 1023.
Param(13) is initially set to 10.

13* Programs that do not rely on default arrays can benefit by setting Param(13) to –1 to
disable the automatic array creation feature of MegaBasic. This is useful to eliminate the
possibility of variables created as a result of misspelling their names or of forgetting to
DIMension arrays properly. With this in effect, attempting to access an undeclared array
will result in an Undeclared String Or Array Error, alerting you to their presence and
indicating an error in your program.

9

9-41GFK-0256 Chapter 9 MegaBasic Built-in Function Library

Internal Control Parameters

 14*

Returns the current number of bytes per file block, used to scale the result returned by
the FILESIZE() function and the SPACE() function. Under CP/M-type operating sys-
tems, the standard block size used by MegaBasic is 256 byte/block; under MS-DOS systems
the block size is 1 byte/block. If you are designing generic programs intended to be run
under any operating system, Param(14) should be set to some consistent value
(e.g., 1) so that your program can ignore this system dependency.

15

Returns the maximum number of files and/or devices that may be OPENed under
MegaBasic. Normally, you may OPEN up to 32 files (under file numbers 0 to 31). But
the CONFIG utility program can alter this limit for particular copies of MegaBasic to
any value from 8 to 128 for specific applications. This limit cannot be changed by a running
program, but your program can determine the limit by reading Param(15).

Returns a code indicating the kind of MegaBasic that is running your program. The
following values are returned:

0 - MegaBasic development version 3 - PGMLLLINK under the run version

1 - Run-only version of MegaBasic 4 - Stand-alone, compiler program

16 2 - PGMLINK under the
development version

This information is useful for dependencies on whether the execution of the program is for a
develop/test/debug session, or under the ultimate production environment
(e.g., see EDIT$). Normally, you will develop and checkout your programs under
the development version, while finished programs will be run under the run-only
environments provided by RUN or PGMLINK.

17

Returns the largest amount of scratchpad space used so far during the current Mega-
Basic session. This value is useful in determining the resource requirements of a given pro-
gram so that its viability in different systems can be ascertained. Param(17) may at times be
several thousand bytes higher than the true value because it is updated only when more
physical memory is allocated to the scratchpad segment.

18*

Lets you force file and directory pathnames under the Xenix 286 operating system to
all upper or lower case. Under Xenix, such names spelled with different letter case
but otherwise the same will refer to different files. Param(18) set to zero (its initial value)
allow names to be passed exactly as-is to Xenix. Setting Param(18) =1 forces all names
to lower case and Param(18)=2 forces them to upper case. This is particularly useful in
programs written under non-Xenix MegaBasic if they are being ported to Xenix.
Param(18) has no effect under any other operating systems currently supported.

19

Returns the error code reported by the most recent operating system call made by
MegaBasic that reported an error. After executing a shell command with the DOS
statement, Param(19) returns the exit code returned by the shell command. Under
MS-DOS, all INT 24h traps and most INT 21h calls that return errors (but not all) can
be determined with Param(19) . All errors reported by CP/Mtype operating systems
(including TurboDOS, MP/M 86, CCP/M, etc.) are returned by Param(19).

20*

Returns a non-zero value to indicate that hardware floating point support is currently avail-
able for speeding up math operations. Returns zero to indicate all math operations are done
using only software methods. You can disable use of the floating point
hardware by setting Param(20) to zero, and re-enable it by setting Param(20) =1. If no math
support is installed on the host machine, then Param(20) remains zero, no matter what
you set it to. Only the IEEE version of MegaBasic supports floating point
hardware; the BCD version does not.

9

9-42 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Internal Control Parameters

21*

Returns and sets the high-level error reporting state of the current MegaBasic package. Nor-
mal low-level reporting is 0, high-level reporting is 1. This mode affects the reported error
location of any error that, untrapped by an ERRSET statement, terminates the
program. Normally, MegaBasic reports the exact line number and package name where
such an error occurs. This is low-level reporting mode, where Param(21) = 0. Errors that
occur within a package set to high-level mode (Param(21) = 1) are not reported as errors in
that package. Instead, they are reported as if they occurred in the most recent, outer
subroutine call reference within a package in low-level mode (i.e., where Param(21)=0).
The purpose of this is to further hide the implementation details of a package from the
user of a package. Param(21) must be set by the package itself, such as in its PROLOGUE
 routine. Such a package is then free to generate errors in response to improper
arguments and other conditions, so that they are reflected as errors in the use of
the package instead of appearing to be package bugs.

22*

Enables or disables file and record locking operations, meaningful only under MS-DOS sys-
tems that provide network support. Setting PARAM(22) to 0 disables file/record
locking, 1 enables both network operations and automatic locking, and –1 enables network
operations without automatic locking. See Chapter 7, Section 2 for details about
MegaBasic file locking.

23

Returns the host microprocessor type as a numeric code: O for 8086/88,1 for 80186/88, 2
for 80286, 3 for 80386 and 4 for 80486. When you first begin your MegaBasic session,
MegaBasic determines the type of microprocessor currently executing MegaBasic and dis-
plays it in the sign on message. This information is not currently used for any other
purpose, but future versions of MegaBasic may use it to optimize certain operations.

24*

Sets the size of the most-recently-input line list. This buffer defaults to 512 bytes, but
you can change its size to any value from 0 to 4096 bytes by setting Param(24) to the
desired size at any time. Setting the buffer size to zero disables the previous line list
capability altogether (except for the standard old line buffer). Setting Param(24) always clears
the buffer of all lines, except for the most recently entered line. Defining a larger
or smaller buffer size causes the total available memory space to decrease or increase
accordingly. For more information, see the line editor discussion in Chapter 1, Section 6 and
the EDIT$ statement in Chapter 9, Section 4.

25*

Set to 1 enables a special LINK mode causing subsequent LINK statements to leave
 supporting packages initialized with all their variables, open files and ACCESSes intact. The
next program still has to ACCESS the packages it needs, but nothing is
automatically DISMISSed by the LINK statement in this mode. PARAM(25) can be turned
on and off at any time during execution to affect all subsequent LINK statements executed

10 section level 1 1
figure bi level 1
table_big level 1

10-1GFK-0256

Chapter 10 Multiple Module Programs

Suppose that you could collect all your favorite functions and procedures and somehow
make them available as additional primitives of the language, extending its capabilities
and expressiveness accordingly. And further suppose that there was no limit on how
many of these primitives you could add to the language, as long as the total memory
resources permitted them. Given enough built-in features in any language it is easy to
see that any application could be implemented by a small program. This is the
philosophy behind MegaBasic packages. All MegaBasic package concepts and supporting
statements are described in this section, as summarized below:

Overlay and
Package

Statements

Summarizes all MegaBasic statements that support and manage
multiple program modules, including program LINK (also called
CHAIN) and MegaBasic package statements.

Package
Definition

Describes the four aspects of package definition: everything you
need to know about creating a package.

 Using
Packages

Discusses how to load, initialize and gain access to packages from
your program. Removing from memory packages that are no
longer needed is also covered.

Multi-Package
Environment

Shows how to take advantage of the multiple workspace
development environment provided by MegaBasic to create,
test and debug packages for use in large programs.

Assembler
Packages

Protocols, structures and procedures for implementing
MegaBasic packages in assembler or machine code. This lets
you add very high speed extensions to MegaBasic.

Although MegaBasic packages are normally written in MegaBasic, you can also develop
packages using low-level assembly language as well. Assembler is the fastest possible
computer language to implement software in, but it is also one of the more difficult and
demanding languages to write in. MegaBasic assembler package development is an
advanced capability covered in Chapter 10, Section 5. However, using assembler packages is
virtually identical to using normal MegaBasic packages, so you need to understand the material
presented below regardless of the package implementation you choose.

A package is simply a collection of useful variables, functions and procedures contained
within a separate MegaBasic program file and accessible to your program as an external
library. The subroutines within packages may be defined in terms of subroutines in still
other packages, making it possible to implement programs of virtually any size or logical
complexity. Packages that are no longer needed during execution can be made to go away
under program control, releasing their memory resources for other uses.

10

10-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

When you call a general purpose subroutine, it should not be able to produce
unexpected side-effects on your program. Imagine the chaos of developing a huge
program where all variable, procedure and function names are accessible throughout the
entire program. Indeed, such a situation exists in all BASIC programs and this is the
major reason that BASIC has historically been unsuitable for implementing large
complex systems.

MegaBasic package mechanisms have been designed to overcome these limitations and
to provide a flexible environment for large-scale application development. MegaBasic
packages let you create subroutines in such a way that all their implementation details
are hidden from the program that uses them. Further, the controlled interface between
MegaBasic packages greatly simplifies the development of special-purpose packages
that can be easily integrated into specific systems in an independent way.

The use and definition of packages centers around a small set of primitive operations
which, in conjunction with one another, provide all the facilities to load, access, detach
and remove packages and the structures they contain all during execution. We shall
begin by discussing just what makes a package.

File Lookup Order

When MegaBasic loads a program file using LOAD, MERGE, LINK, INCLUDE or ACCESS,
it first looks in the directory implied by the specified file name. If it is not found there,
then the standard system search order, as specified by the PATH environment variable.
MegaBasic searches each of the directories in turn until the file is found (or not). The file
is loaded from wherever the file is found first.

Instead of using the system PATH, you can also use the MBPATH environment variable to
specify an alternate file lookup path-set for MegaBasic program files. It works exactly
like the system PATH command that you already set up in your AUTOEXEC.BAT, except
that you set it up it with the system SET command (see your MS-DOS manual for
details). If MBPATH is defined, it is used instead of the system PATH; if is is not defined,
then the system PATH is used. Separating the MegaBasic lookup order from the system’s
can speed up the loading of MegaBasic modules while reducing the size of the system
PATH.

10

10-3GFK-0256 Chapter 10 Multiple Module Programs

Section 1: Overlay and Package Statements

The statements covered in this section are used for combining programs into larger
programs which may, during execution, reside totally in memory, or partially in memory
and partially on disk files. A single program module is limited in MegaBasic to a
maximum of about 75,000 bytes, enough space for up to 3 or 4 thousand statements.
However, up to 64 separate programs can co-exist in memory, limited only by the total
memory installed in your machine and made available to MegaBasic. Under program
control, such program modules, called packages, can be brought into memory and access
relationships established among them, permitting each package to access the subroutines
and data of others in a controlled manner. The statements discussed in this section are
summarized as follows:

DEF SHARED...
Defines functions, procedures variables and fields that will
be accessible from other packages in memory and declares
their types.

 ACCESS Activates MegaBasic packages and establishes the relation-
ships between them.

DISMISS
Deactivates MegaBasic packages, breaks the inter-
connections with between packages and releases packages
no longer in use by the program.

INCLUDE Loads and activates MegaBasic packages without forming
access relationships between them.

 LINK
Primitive method for terminating the current program and
starting another. Also known as CHAIN in some Basics,
LINK is intended for compatibility with older programs that
use it (and not encouraged for use in new programs).

Access between packages is limited to named procedures, functions and variables, all of
which must be explicitly declared as SHARED in order to be externally accessible.
Subroutines and variables that are not declared SHARED can only be accessed from
within the program in which they are defined, completely hidden from the view of all
outside packages.

This multiple program model is simple to use, yet more powerful and general purpose
than the CHAINing facilities of other BASICS (and of MegaBasic). We highly
recommended that CHAINed programs be upgraded to the package model and to avoid
LINK statements in new programs. In so doing, future enhancements to your programs
will be much easier to implement and programming side-effects from major changes can
be minimized and controlled.

DEF SHARED <function or procedure definition>

Defines a function or procedure as SHARED, meaning that outside packages which can
ACCESS the package containing this definition, may freely use the function or procedure
within their own statements as needed. This statement merely represents the inclusion
of the SHARED indicator in the DEF statement described back in Chapter 8, Section 1,
which you should thoroughly read and be able to apply in single-package programs
before attempting in multi-package programs. Another kind of DEF statement for
variables (Chapter 5, Section 1) can affect the numeric type of SHARED functions, which

10

10-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

you should also understand. See Chapter 10 for additional information about developing
large multiple-module programs.

DEF SHARED <list of variable names>

Declares that each of the variables listed will be accessible to outside packages having
access to the current package, as granted by the ACCESS statement described later on.
The list of variable names consists of one or more identifiers separated with commas.
Names which will be used as arrays must be followed by empty parentheses () to
indicate this intention. This statement does not allocate any storage to these variables at
this time. An example of this statement is shown below:

DEF SHARED VECTR(), X, Y, ARRAY$(), integer Z()

This statement is really just an extension of the data type declarative DEF statement
(Chapter 5, Section 1). You should refer to that discussion for important additional
options that can be used to declare SHARED variables as string, integer or real variables.
DEF statements are not executable but processed just before the program begins
execution, and their order can affect the data type of SHARED variables.

INCLUDE <list of package names>

Brings a list of program files (containing packages) into memory for later execution.
Package file names are specified with string expressions and separated with commas. An
error results if any file cannot be found. Packages specified which are already in memory
are ignored and remain in memory, otherwise, as each file is INCLUDed, the following
sequence of actions is performed:

� The program file is loaded off the disk into memory.

� Its program DEF statements are all processed and the definitions are made
available locally, but shared entities are not bound externally at this point.

� Its Ctrl-C enable/disable state is set to the same state as in the program executing
the INCLUDE. PARAM(1) may be used to subsequently control this setting from
within the package itself.

� Its prologue procedure is invoked if one has been defined. On completion of the
prologue it returns to the INCLUDE statement which then resumes INCLUDing
more files. A prologue is an ideal place for additional INCLUDE and ACCESS
statements if the package being INCLUDed requires additional packages for its
operation.

The sequence in which package files are INCLUDed is important because the prologues
are executed in that order. Further, this order also controls the sequence in which
epilogues are performed when the program ENDS. The ACCESS statement (below)
performs an implicit INCLUDE operation on every package it deals with, hence INCLUDE
statements are useful primarily to control the order of subsequent prologue and
epilogue execution.

Although in memory, packages cannot access anything defined in other packages until
access has been explicitly granted with an ACCESS statement (described next). INCLUDE
is not generally a frequently needed statement because ACCESS always implicitly
INCLUDES packages not already memory resident.

10

10-5GFK-0256 Chapter 10 Multiple Module Programs

ACCESS <package list> [FROM <package list>]

Establishes access to the shared entities defined within each package specified in the first
list of packages. If the optional FROM clause is omitted, then the package executing the
ACCESS statement is granted access to the list of packages. Package lists consist of one of
more package file names, specified as string expressions, separated with commas. If any
specified package name is not present in memory when an ACCESS statement is
invoked, MegaBasic will INCLUDE it automatically from its disk file. Once
ACCESSibility has been established, further identical ACCESS requests are ignored,
i.e., redundant ACCESS statements are not an error and do nothing. As each package is
loaded into memory, the following steps are performed internally:

� Its program DEF statements are all processed and the definitions are made
available locally.

� Sets its Ctrl-C enable/disable state to the same state as in the program executing
the ACCESS. PARAM(1) may be used to subsequently control this setting from
within the package itself.

� Executes the prologue procedure within the package if one has been defined and
not yet been executed by an earlier INCLUDE or ACCESS. A prologue is an ideal
place for additional ACCESS statements if the package being initialized requires
additional packages for its own operation.

� Makes all SHARED names of the package available to the ACCESSor. This
process, known as binding, is only performed by an ACCESS statement and
never by an INCLUDE statement. Only those SHARED names that actually have
references are bound. This is the only step performed if the package was already
brought into memory by an earlier ACCESS or INCLUDE statement.

Your program or package may use any SHARED entities that belong to other packages
that have been ACCESSed, just as if they had been defined directly within your
program. Your programs can then be written using much higher level constructs than
simply the built-in primitives provided in your language. The details of these constructs
are hidden from the view of your program, greatly simplifying your programming
design and implementation tasks.

DISMISS <pkg name list> [FROM <pkg name list>]

Severs external access to each of the packages in the first list from each package listed in
the second optional FROM list. The package executing the DISMISS statement is assumed
in the absence of a FROM list. When a DISMISSed package becomes inACCESSible
from all packages, the variables created by it along with its program source lines are
erased and the memory held by them is made available for subsequent reuse.

Names of inactive or not-present packages are ignored. The first list of package names is
the list of packages to be DISMISSed . The optional second list (the FROM list) specifies
the packages from which the first list is DISMISSed . By omitting the FROM list, the
packages are DISMISSed from the package invoking the DISMISS statement. If the
FROM list is specified as an asterisk (*), the first list of packages is DISMISSed from all
packages.

10

10-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The DISMISS statement does the reverse of an ACCESS statement: ACCESSible
packages become inACCESSible . When a package is no longer ACCESSible from any
package, it is automatically removed and its memory space is released for reuse
elsewhere. One DISMISS statement can break the ACCESSibility of (potentially)
many pairs of packages. The following sequence of operations is performed for each
(implied) pair of ACCESSed/ACCESSor packages:

� All references (access) to the ACCESSed from the ACCESSor are broken.
Subsequent reference to these in the ACCESSor package will be treated as new
default variables.

� If the package is still ACCESSed from other packages no further action is
performed, i.e., finishing this DISMISS . See the ACCESS and DISMISS functions
 (Chapter 10, Section 3) for an important exception to this.

� Once the package is inACCESSible from all packages, its epilogue routine (if
present) is executed. This is a good place to close working files and perform any
clean-up procedures necessary.

� All its data, SHARED or otherwise, is released back into the system for
subsequent reuse for other purposes. The package source is marked free, rather
than actually released. If the occupied memory is suddenly required by some
activity, MegaBasic releases freed packages. But if the package is later INCLUDEd
or ACCESSed before actually released, it is already resident and no physical
program load from the file is done. Already freed packages can be forced out by
using the FREE statement (no arguments). Packages that were either manually
LOADed or contain unSAVED changes are protected from erasure to simplify the
development and testing cycle.

If you fail to explicitly DISMISS a package, it will stay in memory with all its variables
and arrays intact until the program terminates.

LINK <pr ogram name exprn> [,<common vbls>]

Terminates the current program, releases it, loads another program specified by the
<program name exprn>, then begins execution on the first line of the new program. All
files are closed and data stored in variables may or may not be lost, depending on the
<common variables> portion of the LINK statement. LINK thus provides a means for
MegaBasic programs to automatically LOAD and RUN program segments of their own
choosing.

Variables may be passed between LINKed programs by listing their names after the
program file name expression in the LINK statement. Any type or size of variable may
be passed as long as space in the LINKed program permits. For example the statement:
LINK’“PGM’’,X,Y,B$,V() will LINK to “PGM” and pass X,Y,B$,V() to it, where ()
indicates that V is an array. Syntax errors result from expressing computations in this list.

To preserve all variables, use an at-sign (@) instead of the variable list. For example
LINK“PGM’,@ will pass all variables to “PGM”. With this method, any files OPEN before
LlNKing will still be OPEN when the LINKed program begins. Only the variables that
have references in both programs are passed by the at-sign LINK statement. Therefore,
as the system LINKS from program to program, only variables common to all programs
are preserved throughout execution.

10

10-7GFK-0256 Chapter 10 Multiple Module Programs

The LINK statement physically frees all packages in memory as it chains from the current
program to the next program (including the old program just left). These remaining
packages are neither active nor ACCESSed by anyone, but subsequent ACCESSes or
LINKS to them will execute quickly because they don’t have to be re-loaded from the disk
again, similar to the DISMISS statement operation. To force a program to be loaded from
the disk, you can flush all inactive packages from memory by executing a FREE statement
(no arguments) just before executing the LINK , ACCESS or INCLUDE.

If the target LINK program is already in memory, it too is executed without being
re-loaded from the disk. If the LINK program does have to be loaded from the disk,
MegaBasic requires enough free memory to hold the new program without first freeing
the program executing the LINK .

To further support systems that LINK from program to program, each of which
ACCESSing many of the same supporting packages, a special LINK mode can be
enabled by setting PARAM(25) to 1. This causes subsequent LINK statements to leave
supporting packages initialized with all their variables, open files and ACCESSes intact.
The subsequent program still has to ACCESS the packages it needs, but nothing is
automatically DISMISSed by the LINK statement in this mode. Variables may be passed
to the next LINK program the usual way (i.e., listed individually or @ for all variables).
PARAM(25) can be turned on and off at any time during execution to affect all subsequent
LINK statements executed.

10

10-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Package Definition

A package is just a program stored in a file that you develop just as you would any other
program. In addition, it contains a few declarative statements for making some of its
defined objects externally known and accessible. If you already have an ordinary
MegaBasic program, you can turn it into a MegaBasic package by understanding and
applying the following four logical components of a MegaBasic package:

 SHARED
Objects

Variables, functions and procedures that are made available
for reference by other programs. Line numbers and line
labels (and hence GOSUBS) are not sharable.

 PROLOGUE
An optional initialization routine, called a prologue, which is
executed automatically upon loading the package.

EPILOGUE
An optional clean-up routine, called an epilogue, which is
executed just prior to removing an existing package from
memory, or when the main program terminates.

 Programming
Details

The main body of MegaBasic statements that implement the
intended operations of the various subroutines. These details
are hidden from users of the package.

SHARED Objects

It would greatly reduce the power and effectiveness of packages if everything they
contain was always externally accessible. Therefore, subroutines and variables within
packages are not externally accessible unless they have been specifically declared as
SHARED objects. To declare functions and procedures as externally accessible, insert the
word SHARED in their corresponding DEF statement, for example:

DEF SHARED FUNC CUBE(X)=X^3
 or
DEF SHARED PROC SORT TBL
all the procedure implementation details
RETURN; PROC END

Without defined as SHARED, these subroutines would be available for use only from
within the package they are defined. To declare SHARED functions as having a string,
integer or real type, you should place the word STRING,

INTEGER or REAL preceding the FUNC reserved word, as described in Chapter 8, Section
1. To share variables with external programs, each variable must be declared in a DEF
SHARED statement:

DEF SHARED <variable list>

The <variable list> consists of variable names separated with commas. You may have as
many of these statements as you need to list all the desired SHARED variables and they
may be located anywhere in the package program. This declaration is necessary only for
the package that owns the data. See the discussion in Chapter 5, Section 1 for further
information on DEF statements. External programs refer to SHARED variables just as if
they were defined locally.

10

10-9GFK-0256 Chapter 10 Multiple Module Programs

Do not declare the same name in two different packages as SHARED, or a Shared Name
Conflict Error will occur when one package accesses the other or when both are accessed
by a third package. This error also occurs when an external name is already defined
locally for another purpose. Declare SHARED objects just once in the package that owns
them. Then, any package that requires access to the name can ACCESS (Chapter 10,
Section 1) the package that owns it.

Line-numbers and line-labels and GOSUBS cannot be SHARED. Subroutines of the FUNC or
PROC variety are the only program objects that may be executed from another program.
Specifically, this means that a program cannot jump into another package, except as part
of a call and return sequence.

An important application for SHARED variables is implementing a set of data which is
available for reference throughout the entire program (i.e., by all packages). Known in
other languages as GLOBAL or COMMON data, this type of access is frequently required
when developing a large program. Truly global data should be kept in one specific
package that contains nothing but global objects (variables and/or subroutines), rather
than along with other SHARED objects which are not really global (i.e., needed by only a
subset of the system). By collecting all global variables and subroutines into one package,
they are easier to manage, control and access by all other packages. See the ACCESS
statement (Chapter 10, Section 1) to see the various ways for making SHARED data
externally available.

Prologue and Epilogue Routines

These two optional subroutines may be specified to perform automatic initialization and
clean-up operations when packages are initially loaded (e.g., on its first ACCESS) and
subsequently released. Hence the outside users of a package require no knowledge of
these necessary but arbitrary and sometimes messy details. Packages can then be
sufficiently autonomous to be independently developed, simplifying large-scale
program development activities.

What the prologue and epilogue do is completely up to the programmer. A typical example is
a database service package which requires various open working files and initialized
data structures before its subroutines will function properly (using a prologue). Then, just
prior to program termination or its release from memory, it updates and closes its
working files (using the epilogue). Another important application for prologue/epilogue
constructs is the loading and subsequent release of additional packages. More on that
subject later.

To define a prologue or epilogue GOSUB, simply place the line labels PROLOGUE or
EPILOGUE in front of the first statements of the GOSUB. These labels must be spelled
exactly as indicated and may not be used for another purpose. Be sure that the source
code that defines each GOSUB ultimately terminates by executing a RETURN statement.
The absence or presence of these line-labels in your program determines the absence or
presence of a prologue/epilogue.

The PROLOGUE and EPILOGUE mechanism is designed to satisfy the initialization and
clean-up processes needed by a package in a convenient and general way. However
they are optional to give you the freedom of controlling the manner in which your
particular program will operate. It is entirely possible for initialization and clean-up
processes to be implemented using SHARED procedures which are called explicitly by the
ACCESSing package at the appropriate times.

The prologue of a package is executed only once when the package is initially loaded and
never again (unless it is released and later re-loaded). The epilogue of a package is

10

10-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

executed only after all accesses to its package have been released using DISMISS
statements. An epilogue will not execute until the prologue (if any) has successfully
completed and returned, so that if the prologue aborts due to an error, the epilogue will
never execute.

PARAM(21) controls how errors are reported in packages. If subroutines in your
package detect errors in the way they were called, it can be desirable to report such
problems as errors in the use of the package. By setting PARAM(21) to 1 (see Chapter 9,
Section 5) in your package PROLOGUE, errors will be reported as errors in the calling
reference to the subroutine (i.e., in the calling program), instead of in the package itself.

Package Programming Details

The implementation details within a package are no different from an ordinary
program. It consists of whatever variables, GOSUBs, functions, procedures and any other
things that are necessary to implement the package. Typically, only a small percentage of
all the objects within a package are made visible as SHARED objects, while all the rest are
used for internal implementation. The main point here is that, for the most part, a
package is just an ordinary program module.

10

10-11GFK-0256 Chapter 10 Multiple Module Programs

Section 3: Using Packages

Once packages are defined, they may be used by any program which requires them. To
use a package, its program file must reside in memory along with the program that will
be using it, and its SHARED objects must be known by that program. Since memory is
generally a scarce resource, packages that have served their purpose and are no longer
needed can (and should) be removed from memory to make room for other packages or
data. The various facilities that provide these functions will now be described.

Accessing Packages

In order to make the SHARED contents of a package available to your program, two actions
must be taken. First, the file containing the package must be loaded into memory and
initialized. Second, all of the SHARED names it defines must be made accessible to your
program, so that when you refer to one of these names, the external object associated
with this name is accessed (instead of creating some new, local program variable). This
entire process can be done by the following statement:

ACCESS <package name>

where <pack age name> is specified as a string expression that evaluates to the file name
of the MegaBasic package. There are other options on the ACCESS that we will describe
shortly, but first, let’s explore what happens when MegaBasic executes the ACCESS
statement above.

First the package file name is located in the directory and the program is loaded into
memory. An error results if the file cannot be found. If the package is already present in
memory, MegaBasic saves time by not reloading it from the disk. After loading a package
and initializing its DEF statements, The ACCESS statement then binds every name in
your program that matches a SHARED name in the package to the object having that
name. Only those SHARED names that actually have references are bound. If any of the
matching names are already associated with some variable or subroutine in your
program (i.e., they are already defined), then the ACCESS fails and MegaBasic reports a
Shared Name Conflict Error along with the name and packages involved. Finally, the
prologue procedure within the package is invoked if one has been defined. A prologue is an
ideal place for additional ACCESS statements if the package being initialized requires
additional packages for its own operation.

This finishes the ACCESS statement, and execution continues to the next program
statement following it. In summary, an ACCESS loads, initializes and connects a package
to your program or other package. It creates only a one-way connection, so that the
SHARED objects are accessible in a controlled, limited way, rather than to all packages
everywhere.

10

10-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

As mentioned earlier, ACCESS statements have some other options to give it more
flexibility. In particular, one ACCESS statement can access a list of one or more packages.
You can also specify another list of packages that accesses the first list. An ACCESS
statement can take one of the following three forms:

 ACCESS <list> Accesses the packages listed from the current pro-
gram or package.

ACCESS <list> FROM <list>
Accesses the packages specified in the first <list>
from each of the packages specified in the second
<list>.

 ACCESS FROM <list> Accesses the current program or package from each
of the packages listed.

where <list> is a sequence of one or more package names separated by commas, each
specified by a separate string expression. If any specified package name is not present in
memory when an ACCESS statement is invoked, MegaBasic will load and initialize it
automatically from the disk. Once ACCESSibility has been established, further
identical ACCESS requests are ignored and no error reported.

Your package may use any SHARED objects that belong to other ACCESSible packages,
just as if they were defined directly within your program. Thus your programs may be
written using much higher level constructs than simply the built-in primitives provided
in the language. The details of these constructs are hidden from the view of your
program, greatly simplifying your programming design and implementation tasks.

Including Packages

The load-initialize sequence performed by ACCESS can also be performed without
binding the SHARED names within the package to any package or program. This is done
using the INCLUDE statement, which takes the form:

INCLUDE <list of package names>

where <list of package names> is a list of file names specified with string expressions,
separated with commas. An error results if any file cannot be found. Packages already
present in memory will not be reloaded from the disk. Package names in this and all
other package statements are specified as file name string expressions. Once a package
has been INCLUDed into memory it may be accessed by other packages using the
ACCESS statement.

10

10-13GFK-0256 Chapter 10 Multiple Module Programs

In general, INCLUDE is not a statement frequently needed because ACCESS always
implicitly INCLUDES any packages not already memory resident. However, it can be
useful in controlling the order that packages are brought into memory and initialized.
This sequence can be important because the prologues are executed in that order.
Furthermore, this order also controls the sequence in which epilogues are performed
when the program ENDS. Epilogues are done in the reverse order of the load-initialize
sequence. If this is not desirable, the DISMISS statement may be used to force the
epilogue invocation, as discussed below.

Dismissing Unneeded Packages

The DISMISS statement provides a means for removing current packages to make room
for ACCESSing others, or for reclaiming data space. This statement has the following
forms, similar to the ACCESS statement:

 DISMISS <list1>
Dismisses the packages listed from the current
program or package.

 DISMISS<list1 > FROM<list2>
Dismisses the packages specified in <listl>
from each of the packages specified in <list2>.

where <listl > is a sequence of currently ACCESSed package names, separated with
commas. The optional <list2> specifies the packages from which the first list is
DISMISSed . Any package names listed that are not currently in memory are ignored. By
omitting <list2>, all <listl > packages are DISMISSed from the package executing the
DISMISS statement.

The DISMISS statement does the reverse of the ACCESS statement. The effect is that
ACCESSible packages become inACCESSible from the program or package that
previously accessed them. When a package is no longer ACCESSible from any package,
MegaBasic automatically removes it and its variables from memory. This released
memory space becomes immediately available for reuse elsewhere. One DISMISS
statement can break the ACCESSibility of (potentially) many pairs of packages.

The DISMISS statement performs a specific sequence of operations on each ACCESS
relationship to be broken. The sequence is performed the same way on each pair, and it
consists of the steps described below. Given that program MAIN has previously accessed
package LIBRARY, the following sequence of operations is performed:

� All references to the LIBRARY from MAIN are broken. Subsequent reference to
these in MAIN package will be treated as new default variables. MAIN no longer
ACCESSes this package.

� If LIBRARY is still accessed from other packages no further action is performed.
If LIBRARY is not ACCESSible from any package, its epilogue routine is executed
(if present). Epilogues are a convenient place to close working files and perform
any general clean-up procedures necessary or additional DISMISS statements, if
the package was ACCESSing any private packages of its own.

� All LIBRARY data, SHARED or otherwise, is dismantled and its allocated memory
is released back into the system for subsequent reuse for other purposes.

DISMISS does have some restrictions, all of which stem from the need for SHARED
functions and procedures to be able to RETURN. A package cannot DISMISS itself. If it
could, then upon finishing the DISMISS statement there would be no program to
continue with. For the same reason you can’t DISMISS the original main program and
MegaBasic reports an Illegal Package Operation Error if such attempts are made.

10

10-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

When DISMISS removes a package from memory, its program source image actually
remains intact, but the region it occupies is marked as free memory. If another LINK ,
INCLUDE or ACCESS statement requests its presence before it is actually overwritten,
MegaBasic will recover and reuse the code already in memory, rather than spend the
time to reload the program from its disk file all over again. If your program needs
memory for variables or arrays, these free areas are used if no other free memory is
available.

Orphaned Packages

A package will not go away until you explicitly DISMISS it and nothing else ACCESSes it.
Although this sounds simple, it is easy to assume that when packages are DISMISSed ,
their ACCESSes will magically get DISMISSed as well. But instead, such orphaned packages
will just sit there in memory, with all their variables intact and their epilogues unexecuted,
taking up memory space until they are formally DISMISSed . If the package is
ACCESSed again, then it will still be initialized, so its prologue will not be executed and its
SHARED variables will have whatever values they had at the time they were last
modified. Orphaned packages show up in the SHOW command as Detached.

This behavior gives you a good deal of control over the lifetime of a package and its
variables. For example, a package of global variables would normally never be
DISMISSed so that it would remain active throughout execution regardless of whether it
was actually ACCESSed by others at any particular instant in time.

In order to accommodate those applications that really do have to DISMISS all the
currently unACCESSed packages, you can still do so by specifying a DISMISS statement
without any arguments (i.e., DISMISS). However, avoid using this statement while inside
a prologue, directly or indirectly, because it can prematurely DISMISS packages that are
in the process of being ACCESSed at that moment.

A package can guarantee that it survives a DISMISS (including one with no arguments)
by simply ACCESSing another package that in turn ACCESSes it back. Unless an outer
package performs a DISMISS package FROM *, such mutual ACCESSes ensure that both
packages always remain ACCESSed by at least one package, preventing their removal
(and their epilogue execution) from occurring (except by the mechanism described below).

ACCESS and DISMISS Functions

It is often desirable to treat a set of packages as if they were one package, ACCESSing
and DISMISSing one of them and allowing its PROLOGUE and EPILOGUE to bring in
later release the supporting sub-packages. As long as there are no loops in the ACCESS
relationships (e.g., two packages accessing each other), this is easy and natural to do.
However, in more complex situations, loops in the access paths can be unavoidable and
desirable. The discussion below describes the pitfalls of doing this and how to avoid
them.

Consider the following scenario. Suppose MAIN accesses PKG-B and then later on
dismisses PKG-B. Well of course, PKG-B goes away as you would expect. Now suppose
that for whatever reason, we break PKG-B into two packages PKG-B and PKG-C that
access each other. So we run MAIN and it accesses PKG-B and later dismisses PKG-B, just
as before. Since PKG-B has itself and PKG-C accessing each other in its prologue, you
would probably also have an epilogue that dismisses PKG-B and PKG-C from each other
so that they will both go away when MAIN dismisses PKG-5.

Now for the surprise. When you run MAIN and it finishes accessing and dismissing
PKG-B, PKG-B and PKG-C Will still be accessing each other with all their data intact and

10

10-15GFK-0256 Chapter 10 Multiple Module Programs

no epilogue executed! In fact, the epilogue cannot be executed without MAIN explicitly
dismissing the two packages from each other. This is because epilogues are normally
executed for packages being dismissed that are accessed by no one else. Thus breaking up
a package in this manner may actually require changing all accessing packages, an
undesirable characteristic from a maintenance standpoint, particularly in large systems
of packages.

To enable an epilogue to dismiss such local networks of sub-packages, you can execute
epilogues in packages with active accesses by raising its access count threshold with the
DISMISS function (no arguments). For example, setting this threshold to 5 (e.g.,
DISMISS=5) means that as soon as the package is DISMISSed and 5 or fewer accesses
remain, its epilogue is executed. This threshold can only be set or examined within the
current package and defaults to zero if not set. The way you would use this is to set
DISMISS (in the prologue) equal to the number of ACCESSes that would normally be
active when the package was no longer in use by any external packages. In our example
above, you would set DISMISS=1 so that the epilogue of PKG-B would execute as soon
as PKG-C remains its only accessor.

To assist package management, the ACCESS function (also no arguments) returns the
number of packages that currently access the current package. One use for this is to set
DISMISS = ACCESS in the prologue after all its sub-packages have been accessed and
initialized. This would cause its cleanup epilogue to execute as soon as an outer package
dismissed it, even though one or more of its sub-packages still accesses it at the time. For
such a mechanism to operate effectively, the epilogue must dismiss all its sub-packages
so that upon return from the epilogue, all accesses to the package are cleared and the
system can then release the package from memory. Packages are only freed when no
other packages are accessing it (i.e., when ACCESS = 0), no matter what you set DISMISS
to.

Access-counts are incremented on completion of the package ACCESS, i.e., after the
prologue executes. So calling the ACCESS function in a prologue returns an access count
that does not include the ACCESS in progress and in fact will always be zero upon entry
into a prologue. Conversely, access-counts are decremented at the start of the package
DISMISS , i.e., before the epilogue executes.

A Model of a Multi-Package System

MegaBasic packages are extremely general and their facilities may be applied in an
unlimited variety of configurations. Having so many different ways of solving the same
problem can be initially confusing when learning how to use packages. It is therefore
useful to have some simple model upon which to base your beginning approaches to
system development. Once experience is gained in using packages with a simple model,
the subtle nuances can be more fully explored and applied to your implementations.

A natural model of a system of packages is an extension of the subroutine concept.
Suppose that your program appeared something like this:

ACCESS all immediately needed packages files
Perform all desired tasks
DISMISS all unneeded packages
GOTO beginning if more tasks to be done.
END

10

10-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

This model is conceptually very simple and yet provides a means to execute programs
much larger than the available memory. However, let’s further suppose memory was
sufficient to contain your entire program, but you had so many packages loaded at the
same time that the overall complexity became unmanageable. This important problem
can be overcome if each of the packages ACCESSed above were to fit the following form:

� The prologue routine contains additional ACCESS statements to support itself by
accessing its own packages.

� The epilogue DISMISSes all packages INCLUDed by the prologue.

This use of prologue/epilogue routines permits many packages to appear as one package,
which has obvious simplifying implications. To do this effectively, each package should
contain objects of roughly the same level of abstraction. The original main program
would perform only the highest levels of processing, invoking primarily objects defined
by other packages which in turn would be defined at lower levels in other packages
until, at some point, all details were processed.

Multiple Package System Example

To further clarify how the package concept can be used to construct real software
systems, an example transaction processing and reporting system is illustrated below.
This is not a real program, but one possible model of a common system which requires
100–200k bytes of program code and 50–400k bytes of data space (variables). Each box
shown represents one complete and separate package of related subroutines and data.
Arrows have been drawn from each package to all other packages which it requires for
its operation, in order to show the ACCESS relationships.

Menu Driver

Transaction
Processing

Global data
and utilities

Report
Generator

Database
management

File handler Video and
printer drivers

10

10-17GFK-0256 Chapter 10 Multiple Module Programs

Menu Driver

This package is the highest level of the system, although it may be just another package
in an even larger system (e.g., as a menu sub-system). It will have an initialization
sequence implemented as a PROLOGUE which ACCESSes all the packages that it needs
for its own processing. Since MENU provides a user interface to the transaction processing
and reporting facilities of this system, its initialization prologue will include the statement:

ACCESS “TRANSACT”, “REPORT”, “GLOBAL”.

Transaction Processing

TRANSACT is the package handling the various transactions that the user is allowed to
make. It consists of a set of subroutines which are called from the MENU package and is
shielded from having to know about higher-level details. When initialized, TRANSACT
requires access to the global data area used throughout the system and to the data base
manager. Its prologue therefore contains the statement:

ACCESS “GLOBAL”, “DATABASE”

Report Generator

REPORT performs all of the display, listing and visual output of this system. Because of
this it needs the services of the data base manager (DATABASE), as well as to the system
global data package (GLOBAL) and a special graphics package designed to drive the
various video and plotter hardware that may be present on the system. Its initialization
prologue will therefore contain the statement:

ACCESS “DATABASE”, “GLOBAL”, “GRAPHICS”.

Data Base Manager

DATABASE provides an interface into the data maintained and accessed from higher
levels of the program. It consists of a collection of subroutines that perform searching,
deleting, inserting, rearranging, renaming, editing and organizing of application data.
DATABASE is independent of data representations and individual applications, so it
accesses the global data area and to the system file handler. So when DATABASE is
initialized, its prologue will access the required packages with the statement:

ACCESS “FILES”, “GLOBAL”

This prologue might also initialize various arrays and other data structures so that it is
immediately ready for service requests.

File Handler

This package provides the routines for converting high-level file requests from
DATABASE into low-level system-specific file transfers. By changing this package, the
entire system is able to move to another system with different file conventions (e.g.,
CP/M to UNIX). FILES does not require other packages for its operation, but its
initialization prologue might open files and set up data structures so that subsequent
service requests can be filled immediately.

10

10-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Video and Plotter Graphics

GRAPHICS provides the REPORT generator with the routines necessary to interface with
the display and hard-copy graphics hardware. It converts high level graphics commands
(e.g., DRAW, COLOR, SCALE, BORDER, FILL , etc.) into the low-level hardware-specific
commands to drive the graphics hardware. Like the file handler, this package does not
require additional packages, but its initialization prologue would likely initialize the
graphics hardware.

Global Data and Utility

GLOBAL contains all common variables, functions and procedures used by throughout
the system. If needed, GLOBAL could contain an initialization prologue to dimension the
GLOBAL arrays and strings and fill them with any desired initial information. Most of the
packages in this imaginary multi-package system require access to GLOBAL and access it
in their prologue routines.

Additional Comments on this Example

We have assumed this system resides in memory, but if MENU is just another package of a
larger system, then additional operations are needed to remove it and its sub-packages
from memory when no longer needed. Because of its complex data and file structures,
various clean-up tasks may be required to maintain the integrity of the data base
involved. Therefore EPILOGUES should be defined within each package to:

� Clean-up all unfinished business, such as posting recent changes to files, closing
various open files, setting global status flags, clearing buffers, etc.

� Release all subordinate packages. This is done by merely listing the same
package names that appeared in the ACCESS statement (executed by the
prologue) in a DISMISS statement.

An EPILOGUE is the perfect place this because it is invoked automatically when a
package is DISMISSed (or the entire system ENDS) and the details of its clean-up
operation (or even its existence) need not be known by the package doing the
DISMISSing . Be sure to order the package names in the DISMISS statement if
EPILOGUE ordering is important.

Converting LlNKed Systems into Package Systems

The package concept is extremely powerful and general, but large programs written in
BASIC usually rely on CHAIN statements (like the MegaBasic LINK statement) to
sequence from one program module to the next. Although this permits machines with
limited memory to execute large programs, it does nothing to improve the flexibility of
the system and usually results in deterioration of program structure. When such
program systems are transported to the MegaBasic environment, it is desirable to
replace any reliance on CHAINing or LINKing with an equivalent mechanism based
on packages. To see how to do this, let’s examine the essential properties of LINKed
systems:

� Each program module in a LINKed system runs as a stand-alone program
which, on completion, causes another program module to be loaded from a disk
file into memory and then started.

� Each program module must decide for itself the next program module to be run,
so that each module can sequence to one of any number of other modules
depending on the prevailing conditions.

10

10-19GFK-0256 Chapter 10 Multiple Module Programs

� Some subset of program variables may be communicated from one LINKed
module to the next. Not all BASICS support this capability but programs written
to use it (such as earlier MegaBasic programs) must be permitted to continue
doing so.

To provide these capabilities using a purely package concept, each of the LINKed
modules can be a separate package and a very small main program will remain in
memory throughout the life of the system to manage the process bringing program
modules into memory for execution and removing them when finished. This main
program will look something like this:

10 Rem 1 *** Main program to control LlNKed system
20 Def shared VBL1, VBL2, ARRAY(), NEXT_PGM$
30 NEXT_PGM$= module1; Rem--Assign the first module name
40 LAST_PGM$ = NEXT_PGM$; Rem -- Save the module name
50 Include NEXT_PGM$; Rem -- Execute the next module

60 Dismiss LAST_PGM$e; Rem -- Remove it on completion

70 If NEXT_PGM> then 40; Rem -- Sequence to the next module
80 End; Rem -- Done when no more

In line 20 we define all the variables which are to be common to all LINKed modules.
This list can, of course, be extended to define as many variables as required. One such
variable, NEXT_PGM$, iS a common string variable which will always contain the name
of the next package module to bring into memory. Instead of directly LINKing to the
next module, each package merely sets NEXT_PGM$ to the name of the module to be run
next and then returns so that main program can bring this about.

In line 30 we set NEXT_PGM$ to the name of the first module to be executed. Line 40 is
the beginning of the main execution loop and module name is saved in a private string
variable for later reference. Line 50 brings the next module into memory with an
INCLUDE statement, which causes the PROLOGUE of package loaded to be executed. The
PROLOGUE of each module is responsible for performing all tasks to be done by the
module, i.e., it is really the main controlling program within each module. Before each
PROLOGUE returns, it must set NEXT_PGM$ to the name of the next module to be run.

When line 60 is reached, the PROLOGUE of the INCLUDEd package has completed and
NEXT_PGM$ should now contain the name of the next module to be run. But first we
remove the module just completed using a DISMISS statement. Line 70 tests
NEXT_PGM$ and loops back to repeat the whole process if it contains a module name, or
terminates execution (by falling into line 80) if NEXT_PGM$ contains no module name.

System termination can be done by executing an END statement within any of the
component module packages, but the method described here centralizes this action and
provides more control. For example you could branch to a pre-determined module (e.g.,
a main menu) whenever NEXT_PGM$ is returned empty, instead of terminating the
system. It should be clear at this point that there is a structure to each of the LINK
module packages. A summary of this structure now follows:

� Each package must contain a PROLOGUE which in turn acts as the main
program of the module, controlling the sequence of events within that package.

� The PROLOGUE must gain access to the set of common variables defined by the
managing main program of the system. Its first statement should therefore be:
ACCESS “MAIN”, where “MAIN” is the name of the main program.

� Any time prior to RETURNing, each PROLOGUE must set NEXT_PGM$ to the
name of the module to be subsequently run. Instead of LINKing to the next
module, the PROLOGUE merely RETURNS with this information and the main
program takes over.

10

10-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The biggest problem you are likely to encounter in converting a LINKed system into a
package system, is that you must always RETURN from the PROLOGUE level in order to
cause the next module to be executed. LINK statements, however, can be executed at
any subroutine level to bring in the next module. Low level LINK statements will
therefore have to be re-implemented in such a way as to meet the RETURN level
criterion. By restructuring your program module so that all LINKS are performed at the
top level of the module (i.e., no LINKS within procedures, functions and GOSUBs), the
job of converting to packages will be trivial. Such a change in structure will have the
additional side-benefit of forcing the intermodule interface to be centralized at the top of
the program, improving the maintainability of the program as a result.

10

10-21GFK-0256 Chapter 10 Multiple Module Programs

Section 4: The Multi-Package Development Environment

With more than one program source in memory at one time, the workspace
environment becomes a collection of workspaces, one for each package. Within each
workspace, you may alter and debug the source code it contains without altering the
contents of any other workspace. It is only after you switch to another workspace that
you may apply program development facilities to another program source.

There are two kinds of workspaces: temporary and permanent. Workspaces created by
LINK , ACCESS and INCLUDE statements are temporary, because the RUN command
eliminates them just prior to beginning program execution. The LOAD command may be
used to create and fill permanent workspaces, i.e., those which survive a RUN. Permanent
workspaces persist until they explicitly eliminated using the CLEAR command. If you
switch to a temporary workspace and modify its contents, it becomes a permanent
workspace. When saved to a file, such a workspace reverts back to temporary status. This
scheme let MegaBasic protect and maintain the source files you are actually working on
while automatically eliminating unnecessary source files from your memory space.

When automatically eliminated, workspace contents is merely marked free. If the
memory space occupied by freed programs is later needed by other activities, MegaBasic
physically releases them to obtain the required memory. Such programs will reside in
memory indefinitely if their occupied memory is never needed. If such programs are
again ACCESSed before released, no disk transfers are required because the program is
already memory resident. Therefore, by careful design, you can implement
multi-package systems which automatically adapt to the amount of memory available in
the host computer. Given enough memory, all packages will stay resident; with
somewhat less memory, occasional disk activity will occur to bring back a temporarily
DISMISSed package.

Each workspace carries the name of the package it contains. You can see a summary of
all workspaces by issuing a SHOW command (Chapter 2, Section 5). Each workspace
name is displayed along with the package size and the amount of data currently owned
by the package. The currently selected package is always displayed at the top of the list.
To see the ACCESS relationships involving the current package, use the SHOW ACCESS
command (Chapter 2, Section 5).

Several operational parameters are locally maintained for each workspace to facilitate
their independence. The auto-SAVE file name is unique to each workspace since each
package comes from a different file. The Ctrl-C state, disabled and enabled by
PARAM(1), is also separately defined for each package. Likewise, the TRACE mode is set
up on an individual basis so that all debugged packages can TRACE as if they are built
into the language (by not tracing). To more fully clarify the package environment, a
complete list of facilities common to all packages is contrasted below with those facilities
which are maintained independently:

Global Facilities and Attributes

I/O devices and OPEN files Value of INDEX

File end mark and no mark state Line editing buffer

Scratchpad area Initial string code

File transfer floating point size 8087/809x87 State

10

10-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Local Facilities and Attributes

DATA-READ pointer Program source

Ctrl-C disable/enable state Package name

Execution TRACE mode Current line ranges

Conditional TRACE IF expression Auto-SAVE file name

TRACE: execution line Default PRINT format

Structured variable defaults Program variables

Switching from Workspace to Workspace

INCLUDE and ACCESS statements load packages into new workspaces, but they do not
change your current workspace. With the USE command (Chapter 5, Section 5) you can
select any of the packages currently available in memory for subsequent operations.
Typing USE followed by a carriage return lets you to step from workspace to workspace
until you reach your desired package.

The USE command may also be typed with a package name in order to directly select your
desired workspace without having to sequence through all the names available. If the
supplied package name is found among those present in memory then it will be
immediately selected. If it is not found, a new empty workspace can be created under the
name given.

To minimize the number of unnecessary workspaces in memory, MegaBasic
automatically deletes workspaces that contain no program lines. This action is taken only
when you leave the empty workspace, by entering a different workspace (with USE).
Hence it is not possible to create several empty workspaces and then go back to fill them
in: they must be used immediately.

When a program stops for any reason (i.e., END, STOP, errors), the currently selected
workspace is set to that package which contains the code in which the stop took place.
This is most convenient for debugging purposes and eliminates the need for explicitly
selecting (USE) packages in many instances. MegaBasic displays the current package
name whenever it automatically changes the workspace. Whenever you LOAD a package
into a workspace, it becomes the currently selected workspace.

Workspace Implications to Direct Statements

Any valid program line typed without a line number is always executed immediately by
MegaBasic. The meaning of any identifiers in direct statements is always taken from the
current workspace, which consists of all the names defined by the current package plus all
SHARED names ACCESSible from the current package. Therefore the same direct
statement typed under different workspaces may easily produce different results. New
variables created by direct statements, by default or explicitly, will belong to the package
contained by the current workspace. ACCESS statements typed directly will affect the
access rights of the packages specified. INCLUDE statements typed directly will load
additional packages into memory. All modifications to the program state (i.e., variable
contents, ACCESSibility , INCLUDES, etc.) will carry over and affect execution
accordingly when the program CONTinues .

10

10-23GFK-0256 Chapter 10 Multiple Module Programs

Source Modification Effect on Accessibility

When you interrupt execution with Ctrl-C, it can be CONTinued , and MegaBasic
permits minor source code alteration without upsetting CONTinuability . Revision of
certain lines can curtail CONTinuability (Chapter 2, Section 4). ACCESSibility can
also be affected by modification and CONTinued execution might not possess the same
ACCESS configuration, as summarized below:

� Renaming SHARED objects usually leads to trouble if subsequent
CONTinuation is intended.

� Line editing, insertion and deletion does not affect the ability to access SHARED
names in other packages.

� SHARED variables that disappear from the program due to editing out all
references to them will continue to exist and will remain accessible from other
packages.

� External references to SHARED functions and procedures will become undefined
if they are edited out of the source.

� Additional SHARED objects edited into a package will be ACCESSible from other
packages when execution CONTinues .

Executing a Multi-Package Program

When more than one program is in memory and RUN is invoked, whichever workspace
you are in becomes the main program. Prior to beginning program execution, RUN
performs the following sequence of operations:

� The program residing in the currently selected workspace becomes the main
program. All data currently defined by the main program is erased and released
to free space. If the current workspace is empty, a No Program Error results when
RUN is attempted.

� All temporary workspaces are marked free, and data they own is released to free
additional memory. This consists of all unaltered packages brought into memory
with INCLUDE or ACCESS statements.

� LOADed packages are retained in memory, but all ACCESSibility to and from
them is severed. Data defined by such packages is retained also. Via this
mechanism, special purpose packages (e.g., debugging routines or completely
independent programs) may remain available indefinitely.

� The main program is set to permanent status (regardless of its prior status). The
DEF statements throughout the program are initialized and program execution
begins.

If a program has been interrupted with Ctrl-C or encountered a STOP statement during
execution, the CONT command will continue execution. Regardless of what package
workspace you are in when you type CONT, MegaBasic always switches to the
workspace in which the STOP took place, prior to resuming execution.

10

10-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Unfinished Epilogues

When a multi-package MegaBasic program terminates prematurely, due to a Ctrl-C or
untrapped error interruption, you can always enter a direct END statement from the
keyboard to execute all the remaining epilogues. However this step is easy to forget and,
under some circumstances, execution of the package epilogues may be vital to
subsequent program operation (e.g., epilogues may release important system resources).
Therefore, MegaBasic detects situations where epilogue closure may be disrupted and
executes an implicit END statement before continuing on to perform certain commands.
This occurs when there is at least one remaining epilogue and you type a LOAD (into an
existing active workspace), RUN, CLEAR or BYE command.

Loading Programs into Multiple Workspaces

The LOAD command is used to load a program file into a workspace. If the filename
specified happens to be in memory already, then that workspace becomes overwritten
with the loaded program. If it is not present in memory, you can LOAD the file into either
the current workspace or a new workspace, depending on your response when asked:
Into a new WorkSpace? An error results if the filename is found neither in memory nor in
the file directory. After any successful load operation, the workspace that contains the
LOADed file is selected for subsequent operations.

Saving Programs and Eliminating WorkSpaces

The SAVE command writes the program contained within a workspace onto a file. If the
filename specified happens to be the name of a current workspace, that workspace is
written onto the file of the same name. Otherwise, the program in the current
workspace is written to the specified file, and the workspace is renamed to match the
filename given in the SAVE command. In any case, after a SAVE you will be in the same
workspace as before the SAVE.

The CLEAR command (Chapter 2, Section 5) deletes the program in the current
workspace and then eliminates the workspace altogether (unless it is the sole
workspace). Afterward, MegaBasic switches to the next workspace in the LOAD
sequence. All workspaces may be CLEARed using this command by confirming an
explicit request from MegaBasic when you invoke this command.

Tips on Package Development

It is a good idea to completely debug a package prior to bringing it into a system of other
packages. Build a test routine into the package to simulate a main program, then run the
package by itself. Such test routines should be left in the packages (where feasible) after
being debugged for later debugging and for documentary value.

Avoid declaring anything as SHARED unless absolutely necessary. This policy promotes
independence among packages and minimizes the possibility for clashes between
identical local and global identifiers. Another good practice is to use longer, more
descriptive names for SHARED objects than you would normally for unSHARED objects to
make the references to these global objects stand out in the program source.

There is about 500 bytes overhead in each executing package, so it generally take less
memory to have fewer larger packages than numerous small packages. Executing your
application under the RUN version of MegaBasic reduces this overhead further.

10

10-25GFK-0256 Chapter 10 Multiple Module Programs

Section 5: Assembler Packages

This section describes the structures and protocols required by MegaBasic packages
developed in assembler. It assumes that the reader already understands both the
concepts involved in using MegaBasic packages and how to write programs in 80x86
assembler. Use of MegaBasic assembler packages is virtually identical to using MegaBasic
interpreter packages. Their highlights and differences are summarized below:

� Assembler packages are written in machine code using an assembler or possibly
a high-level compiler language, such as C. Because of this, the operations such a
package supplies are extremely fast.

� Assembler packages contain procedures and functions invoked from your
MegaBasic applications which support a flexible argument structure for
communicating with the calling program. SHARED variables are not supported
by assembler packages.

� Assembler subroutines are invoked with names and argument lists instead of
CALLS, PEEKS and POKES, making them as easy to use as the built-in functions
and statements of MegaBasic.

� Assembler packages are ACCESSed, INCLUDEd and DISMISSed from
MegaBasic programs just like interpreter packages. They can also be included in
binary load images created by the PGMLINK facility that comes with the
MegaBasic RUN version.

� Unlike interpreter packages, an assembler package cannot ACCESS any other
MegaBasic package. It should be regarded as a completely self-contained library
of machine-coded subroutines.

� The SHOW command will display the names and sizes of all assembler packages
(along with all other packages) currently loaded, and they are shown with the
type Binary. Obviously, such packages cannot be listed or modified and therefore
you are prevented from getting into these workspaces with the USE command.

� Assembler packages have to be written very carefully and all the rules for
constructing them must be followed exactly. Programming errors in these
packages will, more often than not, crash the system. Furthermore the
debugging environment MegaBasic provides to interpreter programs does not
apply to assembler packages. In short, you are on your own.

� Additional support for assembler packages includes assembler source code for
an example package and several utilities to assist your efforts in creating,
checking and listing assembler packages.

Assembler packages are accessed from MegaBasic programs using the ACCESS
statement or the automatic package mechanism (see the CONFIG utility). ACCESS
performs roughly the same sequence of operations to link both package types to a
MegaBasic program. This process can be summarized as follows:

� Look up the specified package name in the set of packages already loaded. If not
in memory then look up the specified package name in the file directory. If it is
found then load the package into memory, otherwise report a File not found
error.

10

10-26 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� Determine whether the package is a interpreter or assembler package, by
examining the identifying characteristics in the package header. If it is an
assembler package then continue on, otherwise ACCESS the interpreter
package. If the package does not contain the proper assembler package signature
(a 16-bit constant at a pre-defined displacement) then report an Illegal package
operation error.

� If the package has already been initialized then skip this step. Otherwise
validate the structure of each defined procedure and report inconsistencies as a
Package Definition Error. This is the onetime initialization phase. MegaBasic then
searches for a PROLOGUE and executes it if found. A corresponding EPILOGUE is
executed when the package is DISMISSed and no longer ACCESSed by any
other MegaBasic packages. PROLOGUES and EPILOGUES are optional.

� Link each name defined in the assembler package to references in the
ACCESSing package. If any of these names are already defined then report a
Package Name Conflict Error.

� The linkage process is complete. The MegaBasic program can now invoke any of
the assembler subroutines as if they were built-in library routines. Once brought
into memory, assembler packages will show up in the listing generated by the
SHOW command as Binary packages.

Once ACCESSed, all the procedures and functions that have been implemented by the
package are immediately available, and can be invoked by name from programs or from
direct-statements typed at the keyboard. The rules for invoking procedures and
functions are simple and direct:

� Procedures begin with a name, followed by zero or more arguments. The
arguments are not surrounded by parentheses and their type must match their
type defined in the assembler package.

� Functions must appear in an expression context, and consist of a function name
and an optional argument list surrounded by parentheses. Arguments must
match their type as defined in the package.

Arguments can be values (i.e., expressions) or variables (i.e., passed by address). Any
argument can be defined as optional, so that the calling reference can leave off some or
all arguments depending on the application. Optional arguments can be omitted
anywhere in the argument list, not just from right-to-left as in interpreter PROCS and
FUNCS. For example the function call TEST(FIRST,,THIRD,,FIFTH) omits the second
and fourth arguments. The extra commas are only required when a specified argument
follows an omitted argument (e.g., the TEST() function above might have more than
five arguments defined).

Defining Assembler Packages

In order for MegaBasic to recognize and correctly process an assembler package, the
package must conform to a specific structure or layout. This layout is designed for
efficient MegaBasic use and for simplicity from the assembler implementor’s point of
view. The overall structure is quite simple, as described below:

� At the beginning of the file is a package header, usually 64 bytes. This header
identifies the package to MegaBasic and defines certain necessary information
for loading and executing it.

10

10-27GFK-0256 Chapter 10 Multiple Module Programs

� After the package header, are one or more FAR subroutine blocks that
implement each of the PUBLIC entry points provided to the calling MegaBasic
program. Each block consists of a subroutine header and the assembler code that
implements the subroutine.

� The entire package file must be less than 64k bytes in length. Although this size
may seem limited, a tremendous amount of machine code can fit in such a
space. MegaBasic itself is not much larger than this.

The package header identifies the package as a MegaBasic assembler file and includes a
minimal amount of other global information. The header is defined in the INCLUDE file
supplied with the MegaBasic developers tool kit (ASMDEFS), which currently defines
the following fields:

Field
Offset Package Header Field Contents

0000 Two bytes containing the hex values 04h, 00h to help MegaBasic discrimi-
nate between the various types of package files that can be
loaded (i.e., interpreter files, ASCII files, assembler packages, etc.).

0002 WORD containing the number of bytes in the header.

 0004 WORD containing a signature that identifies the file as a valid
assembler package suitable for MegaBasic. The value defined by the IN-
CLUDE file is ADEFh and is generally not of any concern to the
programmer.

0006 WORD defining the number of memory bytes to provide in the code seg-
ment beyond the size of the package file. This allows a small
assembler package in a small file to be placed in a code segment of
arbitrary size. This value must be specified as the label ADDMEM
EQUated to the byte count desired and placed just above the
INCLUDE ASMDEFS.asm statement. If this value implies a total seg-
ment size larger than 65536 bytes, the size is set to 65536. If
ADDMEM is not defined in your assembly, this WORD will default to zero.

0008 WORD that specifies the offset of the first subroutine header in the pack-
age memory image. Normally, this is the offset that immediately follows
the package header (i.e., 0040h).

0010 6 bytes reserved for future use (must be set to zero).

0016 16 byte package name buffer filled in by MegaBasic.

0032 BYTE containing the floating point precision of the running copy of
MegaBasic. BCD to 18, and IEEE real format is approximately 16
digits precisions span from 8 (double precision Intel format for the 80x87).
This byte is filled in by MegaBasic when the package is first
read into memory.

0033 BYTE indicating the format used by the running copy of MegaBasic
to represent floating point numbers. Two types are available: 0
indicates BCD format, and 1 indicates IEEE double-precision binary for-
mat. This byte is filled in by MegaBasic when the package is first read into
memory.

0034 DWORD containing ES:BX from an invoking logical inkrrupt call.

0038 BYTE with special control flags. Currently, only bit7 is defined and
indicates package usability in protected mode under Extended
MegaBasic. All other bits must be zero.

 0039 25 bytes reserved for internal use and future expansion and must be
set to zero.

10

10-28 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The FAR procedure blocks that immediately follow the header each consist of a
procedure header, the procedure name string, and an assembly code procedure that
implements the desired operation. Each of these blocks should begin on an even offset
for performance reasons, but this is not mandatory. The procedure header defines the name
of the procedure, its type (i.e., procedure or function), and its argument structure. The
procedure header specification is defined as follows:

Field
Offset Procedure Header Field Contents

0000 WORD containing the offset of the next procedure block header.
Zero indicates that no more procedure blocks follow. Non-zero
values are relative to the beginning of the package header.

0002 WORD containing the offset of the procedure code entry point.
This is where MegaBasic enters the assembler procedure.

0004 WORD contains the offset of the procedure name. Names are de-
fined later on.

0006 WORD defining the procedure type: procedure or functions.
Functions may return integers, reals and strings. The legal values
for this field are: PROCED, IFUNC, RFUNC, SFUNC, PROLOGUE
and EPILOGUE. These are defined in a special INCLUDE file
(ASMDEFS.asm) provided with the MegaBasic developers tool
kit.

A PROLOGUE is just a procedure that is automatically executed
when the package is initially loaded. An EPILOGUE is a procedure
that is automatically invoked when the package is removed (using
the MegaBasic DISMISS statement). You should not declare
more than one subroutine as a PROLOGUE or an EPILOGUE.

0008 WORD defining the maximum length of the result returned from a
procedure of type SFUNC. It should be sel to zero for all other
procedure types. This value, a byte count, causes this much
memory to be reserved on the logical control stack for the
returned string function result.

0010 3 WORDS reserved for possible future use.

0016 WORD specifying the maximum number of arguments defined for
the procedure. Zero may be specified tc indicate no arguments.

0018 Zero or more WORDS defining the argument types from left to
right. The number or words defined here must be the same as the
count defined in the preceding field. The permissible values for
this field are defined in an INCLUDE file provided with the
MegaBasic developers tool kit. The labels it defines are described
below.

The procedure name, referenced by the procedure header, consists of a length byte
followed by the name characters (in upper case) and terminated by a carriage return (ODh).
The length byte counts itself, the name length and the carriage return terminator. The
name portion must be a valid MegaBasic identifier. PROLOGUES and EPILOGUES do not
need names, but you should define a null name for them, consisting of the two bytes:
2,0Dh. Avoid names matching MegaBasic reserved words, because they would never be
accessible from your MegaBasic program, and no diagnostic is provided.

10

10-29GFK-0256 Chapter 10 Multiple Module Programs

Defining and Accessing Arguments

Argument types include integer, real and string, which can be specified in two modes: by
value, by address. Arrays of any type (i.e., integer, real and string) can be passed by
address. Arguments passed by value are read-only values, i.e., the procedures can access
and use the values passed, but they should not attempt the change the value. Such
attempts would not result in any data being passed back to the calling MegaBasic
program. On the other hand, arguments passed by address are designed for access and
alteration. Value arguments can be specified in the calling MegaBasic program as general
expressions, while address arguments must be simple variables, indexed and
non-indexed string variables and array elements only. MegaBasic will report an error if
these restrictions are violated or if the number of arguments specified does not match
the number defined (allowing for optional arguments, of course).

Arguments are defined in a list at offset 0010h in the subroutine header (PRLIST)
consisting of the defined argument count followed by a series of 16-bit constants
indicating the argument type. These constants are defined in the ASMDEFS.asm
INCLUDE file. By default, an argument type constant defines mandatory arguments (i.e.,
non-optional). To define an optional argument constant, you must follow the constant
label with AND OPTIONAL. For example, the following DWs define a non- optional
integer value argument and an optional integer value argument:

DW INTVAL ;Mandatory integer-value argument
DW INTVAL AND OPTIONAL ;Optional integer-value argument

When MegaBasic evaluates arguments, the actual argument type specified is verified
against its defined type and if they do not match, an error is reported. Otherwise,
MegaBasic builds a data structure that describes the argument specified and passes a
pointer to this structure on the CPU hardware stack.

Arguments are passed to assembler package subroutines on the CPU stack in the
following way. Upon entry to the subroutine, SS:BP will point to a series of 16-bit words
that each represent one argument. The words themselves each contain either a zero,
indicating an omitted argument, or the stack segment offset of a description of the
argument passed. This may be more easily understood from the 4-argument example
below:

Addressing
Word

Accessed

Argument
Description
Addresses

SS:BP+6 WORD3 Fourth argument

SS:BP+4 WORD2 Third argument

SS:BP+2 WORD1 Second argument

SS:BP+0 WORD0 First argument

10

10-30 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

This method is designed for fast indexed access to any argument, for supporting omitted
arguments, and to accommodate new argument types. Each argument description
depends on the argument type, i.e., an integer value has one description, a string
variable has another. The table below summarizes the layouts of each argument
description:

Word0 Word1 Word2 Word3 Word4 Word5
Integer
Value INTVAL Offset Segment

Integer
Variable INTVBL Offset Segment

Real
Value REALVAL Offset Segment

Real
Variable REALVBL Offset Segment

String
Value STRVAL Offset Segment Length

String
Variable STRVBL Offset Segment Length

Max.
length

Len
Offset

Any
Value ANYVAL Offset Segment Length

Any
Variable ANYVBL Offset Segment Length

Max
length

Len
Offset

Array
Variable ARRVBL Offset Segment

Elem.
Count

Elem.
Length

Dim
Offset

In the preceding table, the words ANYVAL and ANYVBL are replaced by the code for the
actual data passed through that argument (i.e., ANYVAL is replaced by INTVAL ,
REALVAL or STRVAL, and ANYVBL is replaced by INTVBL , REALVBL, STRVBL or
ARRVBL). In the following pages, we will discuss each argument type in detail, including
both the argument description and how it is specified.

Integer Values

An integer value argument is defined in the subroutine header with the label INTVAL .
The calling program must supply a numeric expression that evaluates to a number that
is an integer or one that can be converted to an integer. This conversion is done
automatically by MegaBasic as needed. The internal description of an integer value
argument consists of three 16-bit words:

WORD0 Constant INTVAL indicating an integer value argument.

WORD1 Offset of the integer value.

WORD2 Segment of the integer value.

The Segment/Offset pair is a double-word pointer to the actual 32-bit integer value.
Arguments of this type can be accessed by the subroutine but changes to this value are
not passed back to the MegaBasic program through this argument. This is generally the
fastest method to pass a numeric value to an assembler procedure.

10

10-31GFK-0256 Chapter 10 Multiple Module Programs

Integer Variables by Address
An integer variable argument is defined in the subroutine header with the label
INTVBL. The calling program must specify this argument type with a reference to a
scalar integer variable or an integer array element. The internal description of an integer
variable argument consists of three 16-bit words:

WORD0 Constant INTVBL indicating an integer variable argument.

WORD1 Offset of the integer variable.

WORD2 Segment of the integer variable.

The Segment/Offset pair is a double word pointer to a MegaBasic integer variable or
array element. The pointer can be used to both access and modify the 32-bit integer, and
points to the lowest order byte of the integer variable (at the lowest offset). Changing
the memory contents at this location will affect the contents of the MegaBasic integer
variable in the calling program.

MegaBasic will report an error if the actual argument passed to the procedure was not
an integer variable, e.,g. an expression of any kind, a real variable or a string variable.

Real Values
A real value argument is defined in the subroutine header with the label REALVAL. The
calling program must supply a numeric expression that evaluates to any number (real or
integer). MegaBasic automatically converts integers to real whenever they are specified
for this argument type. The internal description of an real value argument consists of
three 16-bit words:

WORD0 Constant REALVAL, identifying a real value argument.

WORD1 Offset of the real value.

WORD2 Segment of the real value.

The Segment/Offset pair is a double-word pointer to the leading byte (i.e., the lowest
memory offset) of the actual real value. Arguments of this type can be accessed by the
subroutine but changes to this value are not passed back to the MegaBasic program
through this argument.

Subroutines that access real variables are expected to know the format of real numbers.
MegaBasic supports BCD real formats in 8,10,12,14,16, and 18 digit precisions, and
binary real numbers in Intel IEEE double-precision format (8 bytes long), suitable for
8087 or 80287 operation. Any individual copy of MegaBasic supports just one of these
formats.

Real Variables by Address

A real variable argument is defined in the subroutine header with the label REALVBL.
The calling program must specify this argument type with a reference to a scalar real
variable or a real array element. MegaBasic reports an error if you specify any type of
expression or string for this argument type. The internal description of an real variable
argument consists of three 16-bit words:

WORD0 Constant REALVBL, identifying a real variable argument.

WORD1 Offset of the real variable.

WORD2 Segment of the real variable.

10

10-32 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The Segment/Offset pair is a double-word pointer to the leading byte (i.e., the lowest
memory offset) of the actual real variable passed. Changing the memory contents at this
location will affect the contents of the MegaBasic real variable in the calling program.
Subroutines that access real variables are expected to know the format of real numbers.

String Values
A string value argument is defined in the subroutine header with the label STRVAL. The
calling program must supply a string expression for this argument type. The internal
description of a string value argument consists of four 16-bit words:

WORD0 Constant STRVAL identifying a string value argument.

WORD1 Offset of the string value.

WORD2 Segment of the string value.

WORD3 Number of bytes in the string value.

The Segment/Offset is a double-word pointer to leading byte of the string value.
Arguments of this type can be accessed by the subroutine but changes to this value are
not passed back this argument. If you modify this string for some reason, do not alter
any bytes passed the end of the string.

String Variables by Address
A string variable argument is defined in the subroutine header with the label STRVBL.
The calling program specifies this argument type with a reference to a scalar string
variable or a string array element, and indexing expressions are allowed on these string
variable references. The description of a string variable argument consists of six 16-bit
words:

WORD0 Constant STRVBL identifying a string variable argument.

WORD1 Offset of the string variable.

WORD2 Segment of the string variable.

WORD3 Number of bytes in the string variable.

WORD4 Maximum number of bytes the variable can hold.

WORD5 Offset of the length of the string in the variable. The
segment is the same as specified by WORD 2. Zero indicates
that the length cannot be altered .

The Segment/Offset pair is a double word pointer to a MegaBasic string variable or
string array element. The pointer can be used to both access and modify the string
contained in the variable, and points to the first byte of the string. Changing the memory
contents at this location will affect the contents of the MegaBasic string variable in the
calling program. Under no circumstances should any bytes beyond the maximum length
of the variable be altered.

The length of string variables that are not indexed can be modified to any length from 0
to the maximum permitted length given by WORD 4. Indexed string variables are
fixed-length and this is indicated by a zero offset in the length word in WORD 5. The
current length (in WORD 3) and the maximum length (in WORD 4) will always be the
same for indexed string variables.

MegaBasic will report an error if the actual argument passed to the procedure was not a
string variable or string array element, e.g., an expression of any kind, a real variable or
an integer variable.

10

10-33GFK-0256 Chapter 10 Multiple Module Programs

Arrays by Address (Not currently supported)

A array variable argument is defined in the subroutine header with the label ARRAYI for
integer arrays, ARRAYR for real arrays or ARRAYS for string arrays. The calling program
must specify this argument type with a reference to a simple array name, without any
subscript or parentheses. MegaBasic reports an error if any expression or non-array
variable is specified. The internal description of a string variable argument consists of six
16-bit words:

WORD0 Constant ARRAYI for integer arrays, ARRAYR for real arrays or
ARRAYS for string arrays.

WORD1 Offset of the first byte of the first array element.

WORD2 Segment of the array variable.

WORD3 Number of elements in the array.

WORD4 Number of bytes per element.

WORD5 Offset of array dimension list.

The array element size depends on the array type: integers and reals are identical to
scalar values, and string elements have a length defined in the array definition (a topic
covered below). Large MegaBasic arrays (i.e., those that exceed 64k bytes) cannot be
accessed by assembler procedures because of the complex segmented data structures
involved. The layout of MegaBasic arrays is described below:

Displacement Numeric Arrays String Arrays

0000 1st dimension size Maximum length

0002 2nd dimension size 1st dimension size

0004 3rd dimension size 2nd dimension size

and so on... and so on...

The dimension count is the number of elements in that dimension. For example the array
X(99,40) has 100 elements in the first dimension and 41 elements in the second dimension.
The list of dimensions is followed by a word of zeros (16-bit) as a terminator. Immediately
after the zero terminator follows the sequence of array elements. The elements are ordered
such that as you advance sequentially through memory, the right-most subscript varies the
most rapidly and the left-most subscript varies the least rapidly.

The elements of a string array contain both the string and its length in the following data
structure. The first two bytes of each element form a 16-bit word count of the number of
characters in the string. This count is immediately followed by the string (i.e., the
number of characters indicated). The maximum length that the string array element can
hold is the number of bytes per element minus 2. All elements are the same size. You can
modify both the string contents and the length word, but be sure that you do not modify
any bytes past its maximum capacity, nor set the length to any value larger than the
element size minus 2.

Values of Any Type

By setting the argument type in the subroutine header to the label ANYVAL, the
argument expression may evaluate to a string, integer or real result. After evaluating the
argument, MegaBasic leaves the result in one of the value argument description formats
described earlier: INTVAL , REALVAL or STRVAL. The argument type code that appears

10

10-34 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

in the argument description is set to reflect the actual argument type evaluated (i.e., it is
not marked ANYVAL). For example, if the ANYVAL argument expression turned out to be
an integer, then an integer value description would be provided and its leading WORD
would contain the label INTVAL .

To use such generic arguments, your assembler code must check the first WORD of the
argument description to find out which argument type was passed. Generic arguments
are useful in subroutines that have to operate on any kind of data or in subroutines that
determine omitted arguments by data type context. More steps are required to use such
arguments, so you should really need them before you decide to use them in your
subroutines.

Scalar Variables of Any Type by Address

By setting the argument type in the subroutine header to the label ANYVBL, the
argument expression may evaluate to a string, integer or real variable. After evaluating it,
MegaBasic creates a variable argument description using the appropriate format: INTVBL ,
REALVBL, or STRVBL. The argument type code that appears in the argument description
is set to reflect the actual argument type evaluated (i.e., it is not marked ANYVBL). For
example, if the ANYVBL argument was a string variable, then a STRVBL description would
be provided. See the discussion on ANYVAL arguments above for further information.

Array Variables of Any Type by Address (Not currently supported)

By setting the argument type in the subroutine header to the label ANYARR, the
argument expression may evaluate to a string, integer or real array. After evaluating
such an argument, MegaBasic leaves the result in one of the array argument description
formats described earlier: integer array (ARRAYI) , real array (ARRAYR), or string array
(ARRAYS). As with the other generic value arguments (ANYVAL and ANYVBL), the
argument type code that appears in the argument description is modified to reflect the
actual argument type evaluated (i.e., it is not marked ANYARR). For example, if the
ANYARR argument turned out to be an real array, then an real array description would
be provided and its leading WORD would contain the label ARRAYR. See the discussion on
ANYVAL arguments above and ARRAYS BY ADDRESS earlier for further information.

Subroutine Code

The subroutine code accesses the arguments, if any, passed by the calling program, and
executes its designated operation in assembler. MegaBasic always enters the subroutine
at its defined entry point with the following registers setup:

� DS, ES and CS all point to code segment of the assembler package.

� SS:SP points to the FAR return address on the machine stack.

� CX contains the count of how many arguments were actually specified in the
calling MegaBasic program reference. This count includes omitted arguments
only if they were preceded or followed by a comma (i.e., CX contains the
number of comma-separators plus one). CX is zero if no arguments were
specified.

� SS:BP points to the WORD containing the offset of the first (or left-most)
argument. The next WORD up (i.e., at SS:BP+2) points to the WORD with the
offset of the second argument, and so on. An omitted argument is indicated by a
WORD that contains zero.

10

10-35GFK-0256 Chapter 10 Multiple Module Programs

� SS:BX points to the base location on the MegaBasic logical control stack at which
function results are placed. This pointer is meaningless for procedures.

The subroutine is expected to know how to access each of the arguments passed to it
from MegaBasic. This is reasonable since the subroutine definition has defined the
argument types, SS:BP points to CX words that point to the argument data structures
(also in the stack segment), and each data structure begins with the argument type
constant for programming convenience.

It is important that the subroutine code does not rely on any fixed code segment
addresses. MegaBasic loads the assembler package into memory wherever it is possible,
which may not be in the same place at different times. Also, the memory segment it
resides in may move from time to time to make room for new data structures required or
created by the MegaBasic user program. Hence the code must remain segment
relocatable at all times. This also means that your assembler subroutines cannot be
CALLed from external processes or hooked into interrupt vectors, because the assembler
package code segment can and will change during interpreter operation (but not while
your assembler code is executing).

Data tables and other structures may be included in the assembler package and accessed
off of DS, ES or CS (as passed by MegaBasic). NEAR subroutines may also be included in
the package for use by any of the formally declared subroutines.

The CPU stack (i.e., SS:SP) has sufficient space for reasonable use by your subroutines.
However, if you need more than about 100 bytes of stack space (i.e., 50 PUSHes), you
should define your own local stack and switch to it at the appropriate time. Be sure that
you restore the original stack before your subroutine returns.

Returning From A Subroutine

To return from a subroutine, a FAR RET instruction must be executed with the cPu
registers and other return structures set up in the following way:

� SS:SP must point to the same stack level that it pointed to upon entry into the
subroutine. It points to a FAR RET address back to MegaBasic.

� DX must contain the number of bytes returned in the result returned. This only
applies to functions; when returning from a procedure register DX is not used.

� The result of a function must be stored at location specified by SS:BX at the time
the function was entered (see below).

� The Carry flag must be cleared (CLC) if no error is being reported.

� If an error is being reported, the Carry flag must be set (STC) and DS:SI must
point to the error code and message to be reported. The format of this message
is described below.

An error message that DS:SI points to consists of an error code (BYTE) followed by a
zero-terminated error message string not exceeding 32 characters. The error code and
message are processed exactly like MegaBasic errors and the error will be reported as if it
occurred in the MegaBasic statement that invoked the assembler subroutine. A zero
error code is not trapped and indicates a fatal error that immediately terminates the
program. Type 10 errors are assumed to be related to errors in program syntax and are
trappable in the RUN version only. Although you can specify any error code from O to
255, you might consider using only codes above 100 so that your programs can always
discriminate between MegaBasic errors, which never go that high, and errors originating
from your assembler packages.

10

10-36 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

No other registers need to be restored upon return. If a function result is to be returned
to the caller, it must be copied to the location SS:BX provided at entry time and DX must
be set to the number of bytes returned in the result. This length must Never be longer
than the maximum result length declared in the function header. The result area is
allocated to the maximum size indicated by the result-length field in the subroutine
header just before the subroutine is entered, so you can use that area for temporary
storage at any time before the final result is placed there.

Assembling a Package

To simplify the understanding, construction and assembly of MegaBasic assembler
packages, there are four files the come with the MegaBasic release disk that will greatly
assist you. These files are:

 EXAMPLE.asm

A complete MegaBasic assembler package that implements a
number of simple but useful procedures and functions and
demonstrates most of the concepts involved in forming as-
sembler packages.

ASMDEFS.asm

An assembler file that should be INCLUDED at the
beginning of every assembler package the you create (it is
INCLUDED by EXAMPLE.asm). It defines all the subrou-
tine types, all the argument types and other useful entities
including the package header itself that must appear in from
of every package.

An MS-DOS batch file that assembles, links and converts
MegaBasic assembler packages from the source file to the
finished package. To use, simply type:

ASMPKG.bat ASMPKG asrmfile1 asmfile2 asmfile3 ...

Each file is processed independently, one at a time. The
 source file names are assumed to have the .ASM extension.
Do not type the .ASM extension on the names in the com-
mand. This process requires the MASM assembler, LINK link-
er and the EXE2BIN conversion utilities.

ASMCHK.pgm

Utility to check and display the internal structure of a com-
pleted assembler package. It shows the name, type and
argument structure of each subroutine. To use it just RUN
the program and supply the package name in the command
line (default extension is .BIN).

The assembler files provided were prepared using the MASM 5.x assembler from
MicroSOFT Corporation. ASMPKG produces binary files with the file extension of .BIN ,
which you must specify in file names supplied to INCLUDE, ACCESS and DISMISS
statements. You could rename such files with a .PGM extension which MegaBasic adds
by default, but this would probably create confusion with the MegaBasic interpreter files
in the same directory.

You should study the EXAMPLE.asm source file to help understand the material
presented here. Although the volume of information we have discussed may seem
complex, once you see how it is done and begin to write some of your own assembler
packages, you will find it to be about as simple as programming in assembler could ever
be. We highly recommend that, at least for your first few packages, you build packages
by making a copy of the EXAMPLE.asm source file and then modify that copy to suit
your needs (deleting those portions that you do not require). It is always easier to
modify an existing, correct, running program than to build one from scratch.

section level 1 1
figure bi level 1
table_big level 1
figure_ap level 1
table_ap level 1

A
section level 1 1
figure_ap level 1
table_ap level 1

A-1GFK-0256

Appendix A Error Messages

This appendix describes all error types and messages reported by MegaBasic. Errors are
reported with a descriptive message, a non-zero error code and the location in the program
where the error occurred. Errors with codes less than 255 can be trapped by the program
and handled by user-prescribed actions. Errors with a 255 error code cannot be trapped
and constitute fatal errors. It is not possible or feasible to recover from errors of this type
and error traps have no effect if set. They are usually revealed during the debugging
phase of program development and do not occur in well tested final versions of
programs.

The ERRSEI statement (Chapter 6, Section 4) is used to set traps for errors that later
occur. When trapped, MegaBasic branches to a user-specified program location and
provides information about the error in the following functions:

ERRLINE Line number in which the error occurred.

ERRPKG$ Name of the package or workspace where the error occurred.

ERRTYP Error type code of the error (see below).

ERRMSG$
Error message string that would have been displayed, had no
ERRSET trap been in effect. Only the descriptive part of the
message is returned.

ERRDEV
Device or file number selected at the time the error occurred.
The error may or may not be related to I/O, but when it is,
knowing the device can be useful.

When an untrapped error occurs (fatal or otherwise), MegaBasic reports the error
message and its program location on the console screen and terminates the program.
The text of the program line itself is placed in the edit buffer, so that you can
immediately use editing control characters to examine and modify the offending line
after the error is reported. MegaBasic also puts you into the workspace containing the
package where the error occurred so that you can immediately examine the problem.

To assist the program development and debugging process, MegaBasic does not trap
type 10 errors when programs are RUN from the MegaBasic command level. Type 10
errors are those involving errors in program formation, syntax, loop construction, etc.
Such errors need to be exposed during program testing and not hidden by the error
processing mechanisms, as they would be if they were trappable errors. Such errors are
always trapped when the program is run from the operating system command level (under
either run or development versions).

Certain trappable error types have the potential for recovery by retrying the same
operation after waiting some amount of time and/or physically adjusting computer
system components. A good example of this is getting a Not Ready Error when the printer

A

A-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

paper runs out. Retries can be controlled using the RETRY statement (Chapter 6, Section
4). This mechanism only applies to those trappable errors below which are marked with
an asterisk (*). Read the discussion on the RETRY statement for further details.

Argument List Error (10)

The actual argument list of a user-defined function or procedure does not correspond to
its formal definition or is otherwise improperly formed.

Array Subscript Error (1)

An array was specified with the wrong number of subscripts or a subscript position
specified was outside the range defined for that array dimension.

Attempt to Read Endmark Error (21)

A file endmark code was encountered during the READing or INPUTTing of
(non-binary) data from a file. Endmarks may be employed as end of record marks and
hence do not necessarily imply READing past the final end of the file. MegaBasic does
not normally generate endmarks, you can control them using the NOMARK statement.

Buffer Update Error (255)

Disk error encountered when attempting to update file buffers at program termination.
No line number is associated with this error. The offending file is CLOSEd without
updating its buffer, losing all new data it contains (512 bytes maximum). If other buffers
contain information destined for this file, their contents is also lost. This problem is most
likely to occur when information is appended to files that reside on a disk without any
free space. Other error messages may immediately precede this one.

Command Argument Error (255)

A missing or improper argument or operand was supplied to a MegaBasic command. It
can result from a program line number argument that was followed by some character
other than a comma (,) or a dash (–).

Continue Error (255)

Attempted to CONTinue execution of a program without being in the state of temporary
suspension left after a Ctrl-C or programmed STOP. Non-trivial major modifications to
a CONTinuable program source can result in loss of the ability to CONTinue . This error
only occurs in the command level, not during program execution.

Ctrl-C Stop (15)

A Ctrl-C was typed to abort program execution or a programmed STOP statement was
executed. This is not an error, but Ctrl-C can be trapped as an error type 15 (STOP
statements are not trappable). PARAM(1) can be set to enable or inhibit the detection of
a console Ctrl-C. The program can be CONTinued after stopping from either cause.

Data Type Error (4)

Data specified for an operation was of the wrong type: usually a string (or number) was
given where a number (or string) was expected.

A

GFK-0256 A-3Appendix A Error Messages

Denied Access Error (36)

The operating system would not let your program OPEN or RENAME an existing file or
device. This can result from attempting to open a read-only file for writing, attempting
to RENAME a device (i.e., devices cannot be renamed) or making some other request
prevented by protection mechanisms active on that file.

Device l/O Error (35)

An error was reported by a system device driver while your program was using it, or a
device was OPENed under one of the built-in device numbers (i.e., O, 1 or2).

Directory Not Found Error (34)

A directory pathname could not be found on the drive as specified. See Appendix B and
your operating system users manual for information about path names.

Disk Full Error (8)

All disk space was exhausted before finishing the requested operation or an access to an
area beyond the bounds of the physical disk region available was attempted.

Disk Unavailable Error(33*)

An attempt was made to access a disk unit which was non-existent, not ready for access,
or locked by another process temporarily. This error is an operating system dependent
error that may or may not be supported.

Divide by Zero Error (9)

An attempt was made to divide a number by zero.

Double Definition Error (255)

The same name was used to identify more than one procedure, function, line label or
SHARED variable. All these objects are bound to their assigned names at startup time,
before the execution of the first program statement. Any violations of this rule are
reported at this time.

Exit Error (10)

An EXIT statement was encountered without any FOR, WHILE or REPEAT loop currently
active.

Expression-Depth Error (10)

Too many levels of parentheses during the evaluation of a string or numeric expression.
Around 20 levels of parentheses are supported.

File Already Exists Error (6)

A file name specified for a new file (CREATE) or for renaming an existing file (RENAME)
was actually present in the file directory.

A

A-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

File Busy Error (26*)

An attempt was made to OPEN a file which was already OPEN by another process for its
own exclusive use. This can only occur under a multi-user or multi-tasking operating
system or under local area networks (LANS) .

File Creation Error (18)

The operating system will not honor a request to create a new file directory entry. This
can be due to a disk whose directory is already filled to capacity, or the file already exists,
or the disk or directory marked as read-only, or an attempt to RENAME a file to a different
drive, or some other system problem.

File Not Found Error (7)

A file name was specified for a existing file which was not found in the file directory.
Misspelling a file name or omitting the source drive code or path from the name will
cause this error, or the DOS command shell (i.e., COMMAND.com) could not be located so
that a DOS command could be executed.

File Not Open Error (20)

An attempt was made to access an OPEN file or device using a file number not assigned
by a previous OPEN statement.

File Number In Use Error (19)

An attempt was made to OPEN a file using a file number already in use. This error can be
trapped to test file numbers for availability, or the file number can be tested with the
OPEN$() function, which returns a null string if that number is available.

File System Error (30)

An inconsistency was discovered while performing file operations. This error should
never occur and represents a problem in MegaBasic itself. Please report it immediately to
your MegaBasic representative along with a description of how to re-create the error.

Floating Point Operand Error (37)

The floating point processing hardware (e.g., 8087, 80287 or 80387) reported that an
invalid operation was requested by the CPU. This error should never occur and usually
represents a hardware malfunction, a software error within MegaBasic itself, or, most
likely, a result of providing improper data to an 8087/287/387 math coprocessor, such as
denormalized numbers, infinity values, not-a-number representations, and others. Such
values can result from reading IEEE values from wrong file locations or from incorrectly
written files, EXAMining incorrect real values from memory, or from real fields in
structured variables that have been erroneously set by non-floating point assignment
statements. MegaBasic takes steps to prevent improper floating point values from arising
out of numerical calculations, hence your source data is virtually the only culprit.

Format Specification Error (5)

An unknown or impossible numeric format was specified, such as a width that is too
narrow for the number of decimals requested, or illegal characters encountered in the
format string.

A

GFK-0256 A-5Appendix A Error Messages

Illegal Operation Error (38)

An illegal operation was specified in defining logical interrupts (Chapter 7, Section 4),
given the way that they were previously set up.

Illegal Package Operation Error (24)

A package attempted to DISMISS either itself or the main program, or you attempted to
LOAD a scrambled (hidden) or assembler package into memory or to SAVE a scrambled
or assembler package already in memory (left over from running a program).

Improper Filename Error (17)

A file name has been specified which in some way violates the rules for forming file
names as defined by the host operating system.

Improper Vector Error (39)

A vector variable was specified using or containing an undefined name (i.e., a default
variable), or the name of a string, procedure, function, or line label.

Incomplete Definition Error (255)

Some essential portion of a DEF statement or the construct it defines is missing.

Insufficient Memory Error (255)

The total amount of memory available to your program and its data has been consumed
before the completion of the current operation. Unless the actual memory size available
in your machine is severely limited, you should be able to scale down some of your large
array and/or string variables to provide more free space and prevent this error from
occurring.

Internal Stack Error (255)

The scratchpad memory stack that maintains loop structures, returns locations for active
subroutines and intermediate calculations has been left in an unusable state. This error
should not normally occur and usually means that MegaBasic tried to recover from an
error in your program, but the transient memory stack could not be properly aligned to
the recovery routine specified by a earlier ERRSET. You should examine the region
around the reported program location to determine the true cause of the error.

Internal System Error (255)

Some erroneous condition has been detected within MegaBasic itself which prevents
further program execution and from which recovery is impossible. This error should
never occur during normal operations and may indicate a serious problem in MegaBasic,
or a corruption of internal data structures due to an incorrect FILL statement or
hardware malfunction. Do not attempt to continue work with the present execution
copy of MegaBasic. If you can rule out FILL statements and hardware problems, please
report in writing the circumstances which lead to this error to your MegaBasic
representative or dealer in as much detail as possible so that a correction can be made.

A

A-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Interrupt Service Error (255)

In context with a SERVICE routine, one of the following conditions produces this error:

� More than 16 distinct interrupt numbers have been assigned.

� Invoking a SERVICE routine that is no longer defined in the program or
invoking it from the same copy of MegaBasic that assigned it.

� Invoking a SERVICE routine in a MegaBasic program that is currently
processing a SERVICE routine.

Length Error (16)

The length of a string is too long or too short for the intended operation, or the length of
a result or specification is not defined for the operation. For example, strings arguments
passed by value to user-defined functions or procedures must be within the maximum
length of the formal string parameter defined. This error also occurs if you attempt to
load an ASCII text program file longer than 65535 characters.

Line Number Error (10)

A line-number was used in the program which referred to a line number not present in
the program. Such errors occur when encountered during execution because MegaBasic
binds line number references to their target lines when they are first encountered.

Local Declaration Error (10)

A LOCAL statement was encountered in a loop (FOR, WHILE or REPEAT) or outside of any
active function, procedure, GOSUB, prologue or epilogue.

Loop Index Error (10)

The index variable provided by a NEXT statement didn’t match the index variable
specified in the opening FOR statement, or the index variable in a FOR was not a valid
variable type (e.g., an array element or string variable), or an index variable was supplied
on the closing NEXT of a WHILE or REPEAT loop.

Loop/Case Overlap Error (10)

A CASE statement block partially overlapped with a FOR, WHILE or REPEAT loop. Block
and loop structures may be nested but not overlapped.

Missing Argument Error (10)

An essential operand or argument expression is missing from a statement, function,
procedure or from either side of an operator.

Missing Bracket Error (10)

A closing right or left bracket bracket was not found as expected, usually due to a
compound THEN or ELSE clause that was never opened or closed properly.

Missing CASE END Error (10)

A CASE BEGIN statement appeared that was not followed later on by its matching
CASE END statement.

A

GFK-0256 A-7Appendix A Error Messages

Missing DATA Statement Error (11)

A program data READ statement attempted to access a DATA statement after the last one
had already been read, or in a program containing none. Use the STAT command to find
out where the DATA READ pointer is during program execution.

Missing NEXT Error (10)

A FOR, WHILE or REPEAT loop was not followed later by its matching NEXT statement.

Missing Parenthesis Error (10)

A string or numeric expression ended without closing all the parenthesis levels it began.

Missing Return Error (10)

The physical end of a user-defined procedure or function was reached without
encountering a RETURN statement.

No Program Error (255)

With no program in memory, a command was issued which required the presence of a
program in memory.

Non-recoverable Disk Error (27*)

The system was unable to complete a physical disk read or write operation, due to a
hardware failure or other condition beyond its control.

Not Ready Error (25*)

An attempt was made to access some peripheral device on the system which is not
on-line or not otherwise available.

Numeric Overflow Error (14)

A computation resulted in a value too large to represent in MegaBasic floating point
format. Numbers too small to represent are automatically converted to zero, causing no
error for that case.

This error is also reported whenever you supply a floating point value to an integer
context (e.g., integer assignment statement) and it was too large to be converted to
integer representation. Such values must always lie in the range from –2,147,483,648 to
2,147,483,647.

Operating System Error (29*)

The host operating system ran out of some critical resource prior to completing the
requested operation. This can occur when the number of OPEN files, file locks, or other
limited resource has been used up and more are requested by your program. Under
MS-DOS, this error is almost always the result of failing to ask for enough files in your
CONFIG.SYS setup.

Out of Bounds Error (3)

A numeric value was specified that was either too large or too small for the intended
operation.

A

A-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Out of Context Error (10)

Some program object was used in an improper context: using a function as a procedure
or operator, a procedure name as a line-label a line label or statement as a function, etc.
This is a form of Syntax Error.

Out of Memory Segments Error (255)

The internal MegaBasic memory manager ran out of memory segments while trying to
create space for a program or some other data object (e.g., a string or array). This error
can only happen with an extremely large multiple package software system, an
unanticipated operating system limitation or the corruption of the internal data
structures of MegaBasic resulting from a hardware or software malfunction.

Pointer Variable Error (41)

Attempted to access some program object through an invalid pointer (Chapter 5, Section
4). This can be caused by specifying non-integer variables or undefined variables as
pointers, or by using numerical values that could not possibly refer to any program
object. MegaBasic can usually validate pointer values on the fly, but not always (neither
can C or other languages).

Program Compaction Error (255)

An error occurred during the automatic removal of spaces and REMarks performed by
the RUN version on a newly loaded program about to be executed. This should never
occur during normal processing and indicates an inconsistency in program internal
encoding structure.

Program Too Big Error (255)

Indicates an attempt to extend the program source contained in the current workspace
beyond 65535 bytes (64k). Reducing the length of long names will not correct the
problem. You must reduce the number of lines or reduce the number of bytes in lines
(e.g., remove extra spaces). Total program size may actually exceed 64k because a
program is composed of two regions: one that contains the program lines (referred to by
this error), and one that contains the program identifiers, numeric constants and other
operational symbolic support data. The best solution to this problem is to break the
program into two or more packages, providing plenty of room to expand.

Re-Dimension Error (2)

Attempted to DIMension a string or array in the process of being assigned a value at a
higher level. This is reported in the assignment statement affected by the erroneous
re-dimension, but not all instances can be detected.

Read Past End of File Error (22)

The physical end of file was encountered while READing or INPUTTing data from the
file.

Read-Only Violation Error (28*)

An attempt was made to write on or modify a file, directory or disk that has been set to
read-only or write-protected mode.

A

GFK-0256 A-9Appendix A Error Messages

ScratchPad Full Error (13)
The internal scratchpad area used for evaluating string and numeric expressions and
maintaining loop, function and procedure control structures has run out of room. Its
currently available size can be obtained at any time using the FREE(2) function.

Shared Name Conflict Error (23)
A package being ACCESSed for subsequent use defines a SHARED name (of a variable,
function or procedure) which is already defined and in use by the package requiring
ACCESS to it. MegaBasic reports the name and the packages involved.

Structured Variable Error (40)
A structured variable field (Chapter 5, Section 3) was improperly defined or improperly
referenced or used in a context that does no permit structured variables. This can be due
to attempting to define fields at positions beyond 65535 or below zero, or fields too
narrow to contain the data type specified, or attempting to define a procedure, function,
line label or SHARED name of any kind as a structured variable component.

Suspended File Access Error (32*)
An attempt was made to read or write to a physical region of an OPEN SHARED file
which was temporarily locked by another process. Retrying the operation will
eventually succeed when the locking process releases the locked file region. This error is
possible only on OPEN SHARED files under a multi-tasking operating system or local
area network.

Syntax Error (10)
An improperly constructed MegaBasic statement, command or expression was
encountered for execution. All other type 10 errors are either syntax errors or other
violations of program form and construction.

Too Many File Locks Error (31)
The last attempt to temporarily lock some region of an OPEN SHARED file exceeded the
locking capacity of either MegaBasic or the operating system. MegaBasic can lock up to
64 regions among all the OPEN SHARED files, while the operating system may support
more or less than that number. The error can only occur under operating systems that
support record lock-out (e.g., Local Area Networks, Xenix, TurboDos-86, Current CP/M,
etc.).

Too Many Symbols Error (255)

Usually caused by a new variable or subroutine definition being added to the symbol
table after it fills up. Collectively, there is a limit of about 7000 symbols over all packages
in memory. Use the FREE(3) function to determine the remaining room in this table.
This error can also result from having too many different constants or user-assigned
names in a package. No one module can have more than 2560 unique program
constants, or more than 6656 user-assigned names (for variables, line-labels, functions or
procedures).

Undefined Name or Procedure Error (10)
A procedure name or line-label was found that was not defined in the program using the
spelling encountered.

A

A-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Unexpected Argument Error (10)

An extra argument was encountered during the processing of a statement, function,
procedure or expression.

Undeclared Array or String Error (42)

An attempt was made to access an array or string that was never DIMensioned .
Normally, unDIMensioned arrays and strings are created automatically by default
when your program accesses them the first time. However, if PARAM(12) or
PARAM(13) is set to less than one, this default creation feature is disabled and attempts
to access undeclared arrays and strings are reported as this error (Chapter 9, Section 5).

Unexpected Bracket Error (10)

Encountered a closing bracket for a compound THEN or ELSE clause when no such
clause was active.

Unexpected CASE Error (10)

Encountered a CASE END, CASE EXIT or a CASE selection branch without previously
opening a CASE block with a CASE BEGIN statement.

Unexpected NEXT Error (10)

A NEXT statement was encountered with no active FOR, WHILE or REPEAT loop present.

Unexpected Parentheses Error (10)

A closing parentheses was encountered before any opening parenthesis in an
expression.

Unexpected Return Error (10)

A RETURN statement was encountered without any procedure, function or GOSUB
actively underway.

Unexpected THEN/ELSE Clause (10)

A THEN or ELSE clause was encountered without first evaluating an IF condition. This
usually results from a multi-line IF statement that is improperly formed or from a GOTO
whose target line begins with the word THEN or ELSE.

Unintelligible Program Error (255)

An attempt was made to LOAD (or ACCESS, MERGE, INCLUDE, LINK , etc.) a program file
which contained no recognizable binary or ASCII program. The RUN version reports this
error if anything but a binary program is accessed.

A

GFK-0256 A-11Appendix A Error Messages

Unknown Command Error (255)

A command was issued which was either misspelled or unavailable under the version of
MegaBasic being used. Misspelling a user-defined procedure name at the start of a direct
statement or running a command name and its leading argument together without any
white space in between will also lead to this error.

Unsupported Feature Error (10)

A MegaBasic feature that is supported under some operating system environments was
used under an environment that does not support it.

User Trap Error (255)

An ERRSET# statement was executed with no ERRSET trap in effect. If the ERRSET#
specifies a custom error message then that message will replace the User Trap portion of
the message. This error represents the reporting of a user-specified specified error that
was not trapped.

Value Conversion Error (12)

An ASCII string intended to be a representation of a numeric constant could not be
converted to a number, due to improper number formation. This can occur from a
VAL() function or from INPUTTing ASCII numeric values from a text file.

Write- Only Volition Error (28)

An attempt was made to read or input from a file that was opened in output-only or
write-only mode.

A

A-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Error Messages by Error Code
255 Buffer update error 10 Loop/Case overlap error

255 Command argument error 10 Missing argument error

255 Continue error 10 Missing bracket error

255 Double definition error 10 Missing CASE END error

255 Incomplete definition error 10 Missing NEXT error

255 Insufficient memory error 10 Missing parenthesis error

255 Internal stack error 10 Missing RETURN error

255 Internal system error 10 Out of context error

255 Interrupt service error 10 Syntax error

255 No Program error 10 Undefined symbol error

255 Out of memory segments error 10 Unexpected argument error

255 Program compaction error 10 Unexpected bracket error

255 Program too big error 10 Unexpected CASE error

255 Too many symbols error 10 Unexpected NEXT error

255 Unintelligible program error 10 Unexpected parenthesis error

255 Unknown command error 10 Unexpected RETURN error

255 User trap error 10 Unexpected THEN/ELSE clause error

1 Array subscript error 10 Unsupported feature error

2 Re-Dimension error 11 Missing DATA statement error

3 Out of bounds error 12 Value conversion error

4 Data type error 13 ScratchPad full error

5 Format specification error 14 Numeric overflow error

6 File already exists error 15 Ctrl-C Stop

7 File not found error 16 Length error

8 Disk full error 17 Improper filename error

9 Divide by zero error 18 File creation error

10 Argument list error 19 File number in use error

10 Exit error 20 File not open error

10 Expression-depth error 21 Attempt to read endmark error

10 Line number error 22 Read past end of file error

10 Local declaration error 23 Shared name conflict error

10 Loop index error 24 Illegal package operation error

25* Not ready error 34 Directory not found error

26* File busy error 35 Device I/O error

27* Non-recoverable disk error 36 Denied access error

28* Read-only violation error 37 Floating point operand error

28 Write-only violation error 38 Illegal operation error

29* Operating system error 39 Improper vector error

30 File system error 40 Structured variable error

31 Too many file locks error 41 Pointer variable error

32* Suspended file access error 42 Undeclared array or string error

33* Disk unavailable error

B
section level 1 1
figure_ap level 1
table_ap level 1

B-1GFK-0256

Appendix B Other Operating Systems

MegaBasic runs on a variety of different operating systems. Each operating system has
its own peculiarities which are difficult, if not, impossible to reconcile with one another.
Hence there are some slight differences in certain capabilities and operational rules
between versions of MegaBasic that run under different operating systems. All such
differences are related to operating system services and do not affect the underlying
language constructs.

The host operating system type can be determined from within your program by
interrogating the the PARAM(5) function (Chapter 6, Section 2), which returns an
integer code corresponding to each operating system supported by MegaBasic.
Operating system dependent routines in your program can use this code at any time to
select the implementation appropriate to the operating system at hand. In this way, you
can develop generic versions of your programs that will execute properly regardless of
the system you run them under.

As the MS-DOS operating system is the most prevalent system in current use, the
MegaBasic Reference Manual describes MegaBasic from the MS-DOS point of view.
Hence Appendix B describes how MegaBasic under other operating systems differs from
the MS-DOS implementation. Appendix B is organized in the following way:

Section Description

Appendix B
Section 1

 Xenix 386/486 System V

Appendix B
Section 2

 CP/M-86 on 8088/8086 machines

Appendix B
Section 3

 Concurrent CP/M-86 and MP/M-86

Appendix B
Section 4

 TurboDos-86

B

B-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Xenix 386 System V

MegaBasic under Xenix 386 System V is very close to MegaBasic under MS-DOS, as
MS-DOS itself was designed with Xenix compatibility in mind. We will describe in this
section how MegaBasic under Xenix differs from MegaBasic under MS-DOS. Because
MegaBasic is a living, growing language, some of the differences described below may
disappear in future releases of MegaBasic.

Features That Differ from MS-DOS

� File and directory pathnames under Xenix use a forward slash (/) to separate the
pathname components, as compared to a backward slash (\) required under
MS-DOS. Also, drive letters (e.g., B:FILE) are ignored in file names used in Xenix
MegaBasic programs.

� PARAM(18) was added to provide upper/lower case conversion to filenames
before they are passed to the operating system. This is useful when running
MS-DOS MegaBasic programs under Xenix 386, because MS-DOS does not care
about case (case-insensitive) but Xenix does (case-sensitive). Setting
PARAM(18)=1 forces all names to lower case, PARAM(18) =2 forces them to
upper case, and PARAM(18)=0 passes all filenames on to Xenix without any case
conversion. Xenix MegaBasic begins execution with PARAM(18)=0. PARAM(18)
has no effect upon the directory pathname portion of file names.

� The DIR statement is supported by invoking the Xenix Ic command. If you
specify a string argument to DIR, it will be used as the command tail to the lc
command. If you specify a device number in DIR (e.g., DIR #1), the output of Ic
will be redirected to that device.

� PARAM(5) returns 11 to indicate the Xenix 286 version of MegaBasic.

� After executing a DOS command, the error status of the command executed can
be accessed through the ERRTYP function. The value returned is the Xenix exit
status of the SYSTEM() call, not a MegaBasic error code.

Features Unique to Xenix MegaBasic

� Up to 8 megabytes of memory are available to user programs and their data.

� When you PRINT to device #1 or #2, MegaBasic sends all characters to a file
instead of an actual device. This file is named /tmp/prnxxx, where xxx is the
process identification number of the MegaBasic process. Concurrent invocations
of MegaBasic will therefore use different prnxxx files. PRINTed output will
accumulate in the prnxxx file until MegaBasic terminates or a PRINT END
statement is executed.

� At this time, MegaBasic passes the prnxxx file to the Xenix spooler process using
the system command: Ipr -c prnxxx. Following this action, the prnxxx file is
deleted. If a PRINT END is issued, MegaBasic goes on to create a new prnxxx
file and again associates it with devices #1 and #2.

B

GFK-0256 B-3Appendix B Other Operating Systems

� By modifying the system command that passes the prnxxx file to the spooler,
you may be able to redirect the output to devices other than the standard
printer. The PRINT END <string> statement can be used to specify such
modified printer commands. The <string> is a string expression that evaluates
to the desired command prefix, to which MegaBasic appends the file name
currently in effect. For example the string Ipr -c specifies the default command as
described above; the string more causes the file to be displayed on the console
screen. Note that PRINT END terminates the current printer session and begins
a new one, and that a command specified by the optional <string> applies to
the new printer session rather than the terminated one.

Features not Supported

� The IOCTL statement is not supported and the IOCTL() functions always
indicate that any I/O device does not support IOCTL strings.

� I/O redirection from the MegaBasic command line is not currently supported
completely, but data transfers are passed through.

� DIR$() and SUBDIR$() functions are not supported. However, directories can
be opened (read-only) and their contents accessed to determine what files and
subdirectories are present and their names extracted and used as needed.

� RETRY procedures may be defined, but they are currently never invoked by the
error processing system.

� The BASIC command from MegaBasic is not supported. However you can easily
invoke BASIC using the DOS “basic” command at any tlme.

� The CONFIG, PGMLINK and CRUNCH utilities are not currently supported
under the Xenix 286 operating system (although they may be supported in
future versions).

� The SERVICE statement is not supported and the CALL and CALL#, although
available, will cause protection violations and immediately terminate MegaBasic.
You should use the request.c interface described elsewhere to access system
services and other software not directly provided by MegaBasic.

� The IBM keyboard function keys and cursor control keys do not generate the
standard two-byte sequences under Xenix 386. Therefore these keys are not
recognized by MegaBasic for editing purposes. You must use the various CTRL
keys for editing.

� The logical interrupt system is not currently supported because the CPU
hardware interrupt vector region is protected from modification by user
programs by the 80386 virtual mode protection mechanism. In future versions of
MegaBasic, there may be an analogous capability that can be implemented for
use under Xenix.

� Any attempt to directly access hardware I/O ports (through INP() and OUT) or
memory locations outside MegaBasic data structures (using FILL and EXAM)
will be trapped by the 80386 protection mechanism and terminate the
MegaBasic process immediately. Such operations cannot be supported in this
environment.

B

B-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: CP/M-86 On 8086/88 Machines

DOS Statements

CP/M has no command shell processor, hence you cannot execute operating system
commands from your MegaBasic program. Furthermore, the background processing
supported under PC-DOS is unavailable under CP/M.

DIR = <user number expression>

This statement selects the CP/M user number for all subsequent file operations. The user
number is specified by a numeric expression that evaluates to an integer from 0 to 15.
The user number of any file must be selected prior to accessing the file.

FILEDATE$() and FILETIME$() functions

Neither of these functions is supported under CP/M. If called, they both return a null
string.

SPACE() and FILESIZE() Functions

The two functions return disk and file size in units of 256 byte blocks, instead of bytes as
under MS-DOS. Because of this, you have to be careful appending information to a
CP/M file because it is difficult to know exactly where the end of the file really is.

FILESIZE() cannot appear on the left side of an assignment statement because CP/M
does not support changes in file size except for extending it by writing past the end of
the file.

DOS Exit Codes

Termination codes are not supported by CP/M-86, but they are supported under MP/M
and Concurrent CP/M.

B

GFK-0256 B-5Appendix B Other Operating Systems

Section 3: Concurrent DOS and MP/M-86

Concurrent CP/M is a multi-tasking single-user operating system version CP/M-86.
MP/M-86 is a multi-user, multi-processing version of CP/M-86. All three of these
operating systems are supported by the CP/M version of MegaBasic (i.e.. one BASIC runs
under all three). This appendix will describe only those few differences that exist when
running MegaBasic under Concurrent CP/M or MP/M-86, as compared with CP/M-86.
All these differences stem from the enhanced features of Concurrent and MP/M-86 over
CP/M-86 and the requirements imposed by the support of shared resources (e.g., files,
queues, printers, consoles, CPU and memory).

At startup, MegaBasic determines which of these operating systems is running so that
subsequent operations take the appropriate action. MP/M-86 and CCP/M are virtually
identical from the users view from within MegaBasic. However CCP/M users should
assign the SHARED file attribute to their MegaBasic so that one resident copy of
MegaBasic is shared among multiple contexts. See your operating system manual for
instructions on how to do this. When MegaBasic is waiting for keyboard input under
both MP/M-86 and CCP/M, it lets the system do the waiting so that time-slices are not
unnecessarily burned up.

Very few differences exist at the present printing of this manual and future releases of
MegaBasic may include more enhancements than those described below. Programs
which run under CP/M-86 will run without change under MP/M-86. With more than one
user competing for the same resources however, the following mechanisms are provided
to control access:

System Printer (device # 1)

As soon as you use the printer, by sending at least one character to device #1, the printer
will be attached to your program. If however the printer is in use by another user, a Not
Ready Error will be generated by MegaBasic. This error can be trapped via an ERRSET
statement as a type 25 error. Once you have successfully sent at least one character to
the device #1, your program will own the printer until your program ends and
MegaBasic is exited.

In programs that execute for an extended period of time (or even continuously), it may
not be desirable for the printer to be tied up by the program indefinitely. Therefore the
additional statement PRINT END may be issued to release the printer so that other users
may access it while your program no longer needs it. At any subsequent time however,
your program may again grab the printer by merely printing to device #1 as described
above.

B

B-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Because it is important to not monopolize the printer unnecessarily, your programs
should very clearly define all printing requirements as a three step process:

� Make sure the printer is available. Use ERRSETs to continuously retry the initial
output to device #1 until it succeeds, or maybe inform the user and request
what action to take.

� Perform all the required printing transfers.

� Release the printer for others to use with a PRINT END statement.

File and Record Locking Facilities

MP/M-86 versions of MegaBasic support the system of private and shared file and the
automatic record lockout capabilities (Chapter 7, Section 2). This is a consistent set of
facilities that MegaBasic supports under various multi-user and network operating
systems. You should read that material for further information.

B

GFK-0256 B-7Appendix B Other Operating Systems

Section 4: TurboDos-86

TurboDos-86 is almost identical to MP/M-86, and this appendix explains only the
differences between those two operating systems. See Appendix B, Section 4 for all
features identical in MegaBasic under both systems.

TurboDos routes all printer characters through the FIFO file assigned to the current user
or the printer. This makes the printer always (logically) available, obviating the need for
printer locking mechanisms. This does however mean that there may be a delay
(possibly significant) between the time that printed material is sent and the start of its
physical printout. PRINT END does nothing if it appears in any MegaBasic programs.

DIR = <user number exprn>

Under TurboDos-86, user numbers may range from 0 to 31, rather than 0 to 15 as in
MP/M-86 and CP/M-86.

RETRY Procedures

TurboDos does not allow user programs to control all the errors that can occur from
certain file operations. In such cases, TurboDos takes control away from the user
program rather than informing the user program so that it can take appropriate action.
The only retriable errors supported by TurboDos are the locked access errors that can
occur when more than one process is attempting to access the same region of a file
OPENed in SHARED mode or OPEN files which are already OPEN in exclusive
(non-SHARED) mode by another process. Several important errors, however, are not
recoverable. These are listed below:

� Drive select errors cause an abort back to the operating system level like under
CP/M-86, rather than being trapped by MegaBasic as in MP/M-86.

� Bad sector errors can be retried using the TurboDos error handler, rather than
the MegaBasic RETRY capability.

� Read-Only errors cause an abort back to the operating system level.

C
section level 1 1
figure_ap level 1
table_ap level 1

C-1GFK-0256

Appendix C Utilities and Other Software

This section concerns itself with a number of programs external to MegaBasic that
perform functions useful to the development process.

Section Description

 Appendix C
Section 1

PGMLINK: utility for combining a MegaBasic program and
any supporting packages with a RUN version into a stand-
alone execute-only single file program.

 Appendix C
Section 2

CRUNCH: a program image compactor that reduces program
size by 30% and more through removal of blanks and
REMarks .

 Appendix C
Section 3

CONFIG: a configuration program to set various options in
your versions of MegaBasic.

 Appendix C
Section 4

FLIP : utility providing MegaBasic with a separate program
development and debugging screen from the application
output screen.

 Appendix
Section 5

Utilities for generating real-time events on standard PCs
and processing them using the logical interrupt facilities of
MegaBasic.

 Appendix C
Section 6

MegaBasic packages that come with MegaBasic and
ACCESSed from your program to provide a variety of
special functions and procedures.

 Appendix C
Section 7

Summary of the currently available MegaBasic and related
products.

C

C-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Stand-Alone Programs with PGMLINK

PGMLINK binds the currently running image of MegaBasic with a series of MegaBasic
packages into a single, stand-alone, execute-only file. Such a program may then be run
without having any copies of MegaBasic on the disk, by merely typing its name at the
command level of the operating system, like the other utility programs that came with
your machine. In fact, such programs are indistinguishable from those produced by
compilers and assemblers, as far as their surface appearance is concerned.

To run this utility, you must be prepared to enter the file names of the main program and
the packages which it accesses. You must also be running PGMLINK under the same
version of MegaBasic that you want executing your final program. PGMLINK will display
the floating point precision and operating system type of the version of MegaBasic you
are running under before you enter the names of your program files, so that you can
abort the process if necessary.

PGMLINK first requests the name of the file on which your complete program system
will be built. If it already exists, then its contents will be automatically erased before
proceeding. PGMLINK then requests the file name of the main program and the names of
the subsequent support packages. When all names have been entered, type a carriage
return to the file name request to terminate the program. Your stand-alone program will
then be ready to run.

Your program will run the same way as it would as if you executed it under the RUN
version. It can still ACCESS or INCLUDE other program files that are on the disk if
needed. All packages that you bound together in the executable file are brought into
memory at the same time, and hence there must be sufficient memory available to load
all of them and execute the entire program. If any packages contained in this file are
DISMISSed and removed from memory, they must reside on another separate disk file
if they are ever needed again by a subsequent INCLUDE or ACCESS statement. No
program component packages can be individually extracted from the execute-only file
once they have been bound together.

There is one minor difference in the way execute-only programs behave that you should
be aware of. The command tail that the operating system communicated to any transient
command (like BASIC, a text editor, RUN, etc.) consists of all characters typed
immediately after the command name. If you use command tails, you know that the first
word in every command tail is the name of your program, because it is typed
immediately after the command BASIC or RUN. However, your execute-only program
file name will be the command and hence it will not appear as the first word in the
command tail, or anywhere else. There will always be one less word in command tails
received by execute-only programs as compared with the same programs run under
BASIC or RUN explicitly. This incompatibility is important if you pass arguments to your
program in the command tail.

Under MS-DOS, console input may come from a text file instead of from the keyboard.
This capability is quite useful when you are creating stand-alone programs with the
PGMLINK facility. By preparing a text file using your favorite editor, you can store the
names of the program files required for any PGMLINK process, so that you no longer
have to type them in or even remember what they are. This is especially useful when
your stand- alone program consists of many packages. Once your text file is prepared,
type the following command at the operating system level:

RUN PGMLINK < pgmnames.txt

C

GFK-0256 C-3Appendix C Utilities and Other Software

where pgmnames.txt is any file containing the necessary program file names. The left
arrow (<) causes MegaBasic to take its standard console input from the specified file
instead of the actual console keyboard.

The text file containing the list of program file names must be constructed in an identical
manner to the way you would type the names from the keyboard in response to
PGMLINK file name requests. This format is summarized as

 Line #1 Name of the file to which the final resulting stand-alone
program will be written.

 Line #2 Name of the main program file.

 Line #3 Name of the first supporting package file.

 Line #4
Name of the second supporting package. You may
continue to add additional lines as needed to list all of the
supporting packages required.

 Last Line
The last line must be a blank line to signal PGMLINK that no
more file names are listed. For this reason, you must not
have any other blank lines in this text file.

Another point about PGMLINKed systems should also be mentioned. When your
stand-alone system begins execution, all the supporting packages will be in an
uninitialized state: equivalent to free workspaces (see the SHOW command). If you
perform any processing which would normally release free workspaces, your packages
will be removed from memory before you may have had a chance to INCLUDE or
ACCESS them.

DOS commands, in particular, will always get rid of all free packages in order to provide
the greatest possible working memory to the subsequent DOS command. This can be
avoided by making sure all of your supporting packages are INCLUDEd or ACCESSed
before giving the DOS command.

C

C-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: Program Compaction with CRUNCH

A surprising amount of memory space is taken up by blanks inserted into the code and
REMarks that have nothing to do with program execution. Well commented, structured
BASIC programs typically have 30% or more of their memory area invested in blanks
and remarks. The CRUNCH program conveniently optimizes a BASIC program by
creating a new BASIC program without spaces and remarks, leaving the execution
properties unchanged. This utility is useful only when more memory or source code
protection is desired.

MegaBasic performs this CRUNCHing process automatically when programs are
executed with the RUN version. This utility program is included so that convenient
storage of a CRUNCHed program on a disk file is possible for program secrecy or for
extremely large programs that cannot even be LOADed without size reduction. CRUNCH
is able to reduce programs about 10% further than the automatic method used by
MegaBasic RUN. The features of CRUNCH are summarized below:

� Helps keep a program secret by removing all traces of internal program
commenting and readable formatting. Additional code security provided by the
scrambling option, which irreversibly creates a RUN-only version of your
finished program that is impossible to LIST under any version of MegaBasic.

� Reduces program memory and file requirements by 20%-60% in only seconds.
Such programs load faster and execute slightly faster. The memory saved
increases the capacity for program variables and working storage.

� File-to-file conversion allows preservation of the original version.

� Deletes all REMarks from your program. Line number references to deleted REM
lines (such as GOTOS, GOSUBS, or ERRSETS) are adjusted to the nearest
non-REMark following the deleted lines.

� Spaces and line-feeds within quotes (“”) are preserved; all others are deleted.

� CRUNCH aborts if the source program has any unresolved line number references
and displays the number of such occurrences.

� Program lines can optionally be joined together to eliminate most of the line
numbers in a program to gain further size reductions.

How to Use CRUNCH

CRUNCH is a separate utility program intended to be run from the operating system,
rather than from within MegaBasic. You simply type the name CRUNCH followed by the
original file name then the result file name, as follows:

CRUNCH <program name><result file name>

Both files may be typed with or without the .PGM program file name extension, and
.PGM is assumed when omitted. CRUNCH aborts if the original program file cannot be
found in the directory or if the original program and result files are the same. CRUNCH
tells you if the result file exists or not, and requests confirmation before proceeding.
CRUNCH creates a new file automatically as needed for the resulting CRUNCHed program.

C

GFK-0256 C-5Appendix C Utilities and Other Software

You can specify the same file names for the original and the result files only when they
are on different drives. CRUNCH will automatically derive such a result file name from
the original if you specify the result file as a drive specifier only. For example, the two
CRUNCH commands below both mean the same thing:

CRUNCH A:MYPROG B:

CRUNCH A:MYPROG B:MYPROG

Code Security by Scrambling

CRUNCH will request whether or not you wish to scramble your program. This option
produces a RUN-only version of your program that can never be LISTed , EDITed , or
otherwise accessed by anyone, and is provided for those users who require additional
program source security. The technique used is intended to provide at least the same
level of code protection for MegaBasic programs that complier languages implicitly
provide for compiled programs. This scrambler requires no password, and is irreversible,
so be sure that you select this option intentionally. CRUNCH always gives you a second
chance to get out of this option.

The development version of MegaBasic (i.e., BASIC) permits ACCESSes of scrambled
packages, so that large systems that use such packages can be tested and debugged
without requiring the presence of unscrambled versions of the packages. Such packages
are displayed by the SHOW command as hidden and you cannot get into these programs to
look at the source. Scrambled packages cannot be LOADed, SAVEd, LISTed , or any other
operation that could bypass the protection afforded by scrambling. INCLUDE and
ACCESS are the only statements that can load scrambled packages into memory.

C

C-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 3: MegaBasic Configuration with CONFIG

Your version of MegaBasic can be personalized in a number of respects to accommodate
its operating environment and your needs. These options are implemented by making
changes to certain memory locations within MegaBasic. The CONFIG utility program
provided in the MegaBasic software package lets you selectively alter the available
options. When you are satisfied with your choices, CONFIG will install your
modifications onto all MegaBasics contained on one disk, or allow you to install onto
some while bypassing the rest. You can re-configure MegaBasic whenever necessary.
From the system command line, you can run CONFIG in batch mode using the following
forms:

RUN CONFIG Menu-driven, interactive mode.

 RUN CONFIG <directory path> Selects path and asks for options.

 RUN CONFIG <file path> Displays settings for one MegaBasic file.

 RUN CONFIG <file path> <options> Sets options for one MegaBasic file.

 RUN CONFIG <directory path> <options> Sets options for all MegaBasics in the directory.

The <options> are of the form: letter=value (with no spaces). Multiple options are
separated with spaces. Omit the <options> to display settings. The option letters are
defined as follows:

Option Value Range

c Allow Ctrl-C abort On or Off

b Use Ctrl-Break for Abort On or Off

k Console mode 0 to 15

o Maximum Open Files 8 to 127

l File locking support On, Off, Auto

n Number of File Buffers 0 to 127

e End-of-file mark code 0 to 255

f Floating point file format 1 to 18

a Default array size –1 to 255

s Default string size –1 to 255

u Force Upper-Case Identifiers On or Off

m Maximum low-memory Kbytes 96 to 1023

z Minimum high-memory Kbytes O to 16384

h Maximum high-memory Kbytes O to 16384

x Default pkg file extension String

p Automatic Package Access String

When you are satisfied with your choices, you can then have all MegaBasics
immediately configured at once, or you can have them configured one by one,
individually subject to your confirmation.

C

GFK-0256 C-7Appendix C Utilities and Other Software

Be sure to only modify copies of your original software while protecting your originals by
keeping them safely away from your computer system. Each of the currently available
options is described below.

Allow Ctrl-C Abort

Normally MegaBasic will always detect a Ctrl-C typed from the console and abort
program execution. Using PARAM(1) you can disable or re-enable this mechanism.
However for turn-key MegaBasic applications, Ctrl-C can be disabled at startup (prior to
executing the 1st program statement). PARAM(1) may be later executed within the
program to modify this state as needed. When disabled, Ctrl-C may be input as an
ordinary control character (through INCHR$).

Use Ctrl-Break for Abort

When the Ctrl-C abort mechanism is enabled, all keys you type during program
execution are examined for Ctrl-C and discarded, making them unavailable as
type-ahead for subsequent inputs. Ctrl-Break is a different mechanism that does not
have this limitation. Turning this option on makes Ctrl-Break the execution abort key
and Ctrl-C a potentially available input character. PARAM(1) may be used to control
recognition of a Ctrl-Break abort.

Console Mode Byte

This option controls several console features. To each feature, corresponds a separate
value which are added together to form the console mode value. These values and their
meanings are summarized below:

 1

Slow Console Output. This is required by some so-called IBM-PC
compatible machines which have a bug in their console driver. If this
option is not selected, such machines will display nothing or display
continuous garbage when MegaBasic is started. Therefore, this is the
standard setting of MegaBasic but you can turn it off if it is
unnecessary (resulting in a much faster console response on block
output).

 2

IBM ROM BIOS Supported (not necessarily on an IBM machine). This
extra set of system calls is used on IBM Personal Computers and
compatibles by the MegaBasic line editor. It is not required when using
generic terminals, but you should use it if it is present. If you select the
ROM BIOS and it is not present, the machine will crash as soon as Mega-
Basic attempts to use it.

 4

Automatic detection of the IBM ROM BIOS presence. If you select
this option, option 2 above is automatically determined by MegaBasic
(and its configured value is ignored). This is the standard factory
setting of MegaBasic.

 8

Indicates that ANSI sequences are supported for the console and
causes the line backup operation to use ANSI sequences. This takes
precedence over code 2/4 when both are specified. ANSI sequences
are particularly important on non-DOS machines (e.g., TurboDOS,
Xenix, CP/M96, etc.) using stand-alone terminals that do not support
backspace wrap-around (the method used when neither ANSI or
ROM BIOS is selected).

When you set the video mode byte, specify the sum of all options you wish to select. For
example, the standard setting is 7 (1+2+4). This byte affects only the MS-DOS versions of
MegaBasic.

C

C-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Maximum Number of OPEN Files

MegaBasic is normally configured to support up to 32 open files and/or devices, under
file numbers ranging 0 to 31. However some application may require more than this
number and so you are allowed to change the open file limit to any number from 4 to
127. Be aware that the more open file capacity you have, the more memory is required
and dedicated to this purpose (about 80 bytes per file, opened or not). You may also
have to configure your operating system to support a large number of open files.

Number of File Buffers

MegaBasic normally begins execution with a number of file buffers based on the amount
of memory available to the user. If, for specific applications, this is an inconvenient
setting, your program can control this number via PARAM(1O), or the particular copy of
MegaBasic can be configured for a specific number of file buffers at startup. You may
specify 0 buffers for the default case (automatic sizing), or 4 to 127 fixed number of
buffers. See PARAM(10) for further information about file buffers.

File Locking Support

This setting provides global control over file locking operations. Setting to OFF disables
multi-user file locking services to files supported. Setting to AUTO enables
shared/exclusive open files and enables MegaBasic automatic file locks on all file
transfers. Setting to ON enables shared/exclusive open files and disables MegaBasic
automatic file locking mechanisms. Locking files that are opened SHARED much be done
explicitly by the application using LOCK and UNLOCK statements.

End-of-File Mark Code

The 8-bit code normally used to indicate the termination of data on a file is a decimal 26.
This code may be altered during program execution using PARAM(9) or by configuring
its default value from the start. To avoid conflict with string or floating point values
stored on the file, the endmark code should be one of the following values: 0,1, 26, or 154
to 255.

Floating Point File Format

You can set the initial value of PARAM(11) (Chapter 9, Section 5) that takes effect when
MegaBasic begins execution. This value specifies the floating point format to use when
transferring real numbers between data files and your program. You can specify BCD
formats from 8 to 18 digits and IEEE binary formats 1 for single and 2 for double
precision (IEEE versions only).

Undimensioned Array Size

When array variables are accessed without being previously dimensioned, their size is
automatically set to 11 elements numbered 0 to 10. Most BASICS also provide a default
upper limit of 10, but there are various reasons why other sizes may be useful. You can
control this default upper subscript by setting PARAM(13) (Chapter 9, Section 5) and
you can control the initial startup value of PARAM(13) by configuring it to any length
from 0 to 1023. A value of –1 disables the creation of arrays without a DIMension
statement.

C

GFK-0256 C-9Appendix C Utilities and Other Software

Undimensioned String Length

When string variables are accessed without being previously dimensioned, their size is
automatically set to 80 characters maximum. You can control this default size by setting
PARAM(12) (Chapter 9, Section 5) and you can control the initial startup value of
PARAM(12) by configuring it to any length from 0 to 4095. A setting of –1 disables the
creation of string variables without DIMensioning them.

Lower-Case Symbols

You can configure MegaBasic to leave the letter case in names the way you type them
instead of forcing them to upper case. In this mode, MegaBasic will show the case spelling
you typed for the first reference to the name, no matter how you spell it in subsequent
references. This lets you type a name in any case you like, but it will always LIST the
same way throughout the program. You can change the case spelling of existing names
using the NAME command (which affects all references). Shared names in other packages
do not have to match the letter case of references to them, i.e., shared name linkage is
case-insensitive.

This feature is for purely esthetic and programming style purposes. It will not affect
program size or performance, but it can enable you to make your software look a little
more the way you would like it to. MegaBasic versions earlier than 5.72 use
case-sensitive name linkage, so avoid using this feature for programs to be executed
under such earlier versions.

Maximum Low-Memor y KiloBytes

MegaBasic normally uses all of the available memory in the machine as supplied by the
operating system when you first start MegaBasic. Sometimes, this can be undesirable
when you would like to reserve some memory for another purpose. This option allows
you to specify how much memory to allocate to MegaBasic, which you enter in units of
lk (1024 bytes). Since MegaBasic requires a minimum of about 96k just to come up, you
must specify at least this minimum or CONFIG will not accept it.

Minimum High-Memory KiloBytes

Specifies the minimum amount of extended memory that must be present to allow
execution to proceed (Extended MegaBasic only). Execution aborts if less than the
specified number of Kilobytes of extended memory is available. Non-zero values less
than 128 are treated as 128, but you can specify any value higher than that. This
minimum is useful to guarantee that sufficient memory exists prior to running any
particular program. A default of 128k is the minimum setting for the version on the
release diskette.

By setting the minimum to zero, Extended MegaBasic will run on machines that have no
extended memory. However, this mode of operation is intended only for testing
extended MegaBasic on such machines, rather than for general program use. This is
because, under machines without extended memory, standard MegaBasic has fewer
limitations and provides more available memory than extended MegaBasic, making it a
better choice.

C

C-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Maximum High-Memory KiloBytes

This Extended MegaBasic option specifies the overall limit on how much extended
memory MegaBasic will ever use, even if more exists. This option is specified as the
number of Kilobytes (units of 1024 bytes) and currently defaults to 4096K (i.e., 4
megabytes) on the release diskette.

Default Program File Extension Name

The default extension name to MegBasic program file names is .PGM whenever a
program file name without any extension is specified. You can change this default with
this CONFIG option to any upper case extension of 1, 2 or 3 characters. Do not specify the
dot (.) in front of the new extension name.

Automatic Package Access

MegaBasic can be CONFIGured so that one or two MegaBasic packages are
automatically ACCESSed by each and every program and package executed under that
copy of MegaBasic. Either package can be an interpreter or assembler package. If an
error occurs when MegaBasic attempts to internally ACCESS an automatic package, no
error will be reported, the automatic package will not be ACCESSed and no further
attempts will be made. Specify one package name or two package names separated by a
comma and no spaces.

C

GFK-0256 C-11Appendix C Utilities and Other Software

Section 4: Screen Flipping for Debugging

Debugging screen-intensive MegaBasic programs is often complicated by the fact that
the output from the application shared the same screen as output from the testing and
debugging dialogue. Application screens would invariably become corrupted by any
debugging dialogue that took place, causing the screen output to become so
contaminated that the very bugs being sought would be even more difficult to locate.

To remedy this difficulty, MegaBasic supports screen-flipping, a technique that separates
application output from the MegaBasic command-level dialogue. This technique relies
on the multiple video pages in IBM-compatible video systems running in text mode.
When an application is running, the standard video page 0 is selected, which is the page
normally selected for most DOS applications. When MegaBasic enters its command-level
(i.e., at the Ready prompt), it selects video page 1 so that all output generated while in
the command level will be displayed on video page 1 (without contaminating the
application output still stored in video page 0). As soon as the application begins or
continues execution (e.g., via RUN or CONT), the application output is restored as if no
command dialogue had taken place.

Regardless of which video screen you are viewing, you can always see the other screen
by pressing both shift keys simultaneously. This screen remains selected until any key is
pressed, as which point the screen reverts back to the video page shown before. If the
application was running when you pressed shift-shift, it is temporarily suspended (i.e.,
paused) for the period that the other screen is being viewed and resumes execution as
soon as the screen reverts back. In order to accommodate systems that do not support
the shift-shift combination (due to inadequate ROM BIOS compatibility), you can also use
alt-alt or ctrl-ctrl on keyboards that provide such dual-shift keys.

All development activities use video page 0, including TRACE operations and output
generated by direct statements. You do have to be careful with direct statements that
invoke program procedures and function involved in changing the display, because their
output will go to video page 1 (which may not be what you had intended).

Screen-flipping is an optional feature that you enable by running the FLIP utility. FLIP
iS a terminate-and-stay-resident (TSR) utility that provides the screen-flipping
mechanisms through INT 2Fh, code BAh. All you have to do is include FLIP in your
AUTOEXEC.BAT file so that it is present before you run MegaBasic. You cannot install TSRs
from MegaBasic: they must be installed before MegaBasic is entered and AUTOEXEC.BAT is
the best place to install them from. When FLIP is executed, it displays a message that
says MegaBasic screen flipping is ON. If you run FLIP again, it toggles the screen-flipping
and again displays a message informing you of its current state (i.e., ON or OFF). When
OFF, MegaBasic uses video page 0 for all operations, and behaves just like prior versions
of MegaBasic. Running FLIP therefore lets you turn screen-flipping ON or OFF at any
time. The RUN version of MegaBasic does not use screen-flipping regardless of whether
or not screen-flipping is enabled.

C

C-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Interrupt Trapping

Once FLIP is installed, it monitors a number of interrupt vectors that are never called,
except when the system crashes due to a programming error. For example, INT 6 is
called when the CPU attempts to execute an invalid instruction. Normally, an INT 6 will
crash the machine because neither DOS nor the BIOS ever bothered to trap this
important interrupt vector and do something intelligent with it. FLIP on the other hand,
traps INT 6, displays the CPU registers and stack contents and then terminates the
offending program. The interrupts FLIP traps in this manner are: 0 (divide error), 1
(single-step), 3 (breakpoint), 4 (numeric overflow), 6 (invalid instruction), and 7
(coprocessor unavailable) and 13 (protection violation). Programs that have valid uses
for these interrupt vectors would normally insert their own interrupt vectors, overriding
the ones set by FLIP. The protection FLIP provides is present for all programs run, not
just MegaBasic, and is included with FLIP only because of a design omission in DOS
itself. FLIP consumes only a couple kilobytes of memory and is therefore economical to
have installed all the time.

Exiting Crashed Applications

FLIP also provide a special hot-key you can use to abort any application stuck in an
infinite loop that would otherwise require re-booting the machine to regain control. This
key, Ctrl-alt-ESC, aborts the currently executing process and displays the location and
register contents in effect when you aborted execution.

Note

Aborted application will not have had a change to perform any
necessary termination clean-up, which can leave the system in an
unstable state.

C

GFK-0256 C-13Appendix C Utilities and Other Software

Section 5: Real-Time Event Processing Utilities

EVENTS is a removable TSR that lets MegaBasic applications respond to a wide variety of
simultaneous external EVENTS on MS-DOS systems without using wasteful status polling
mechanisms. This is accomplished by using the logical interrupt facilities of MegaBasic to
catch the events as they happen and queue them for processing by the MegaBasic
application. The events currently supported are:

� Mouse events (buttons up/down/click, moved/stopped, etc.)

� Up to 10 independent timers

� Up to 40 hot keys

� Any Shift/Ctrl/Alt/Caps/Insert key combinations

� Ctrl-Break

Serial port events are not provided by EVENTS, because the MegaCOMM.sys driver
(available separately) is already designed to provide logical interrupt support for all
aspects of interrupt driven serial communication (e.g., buffer getting full, buffer empty,
special character received, error conditions, line control, baud rates, etc.).

The basic operation of EVENTS is very simple. After EVENTS.COM is installed as a TSR,
you (i.e., the application) tell EVENTS to signal the running MegaBasic application when
some specific event occurs and to identify this event with an event id (a 16-bit integer of
your choice). Then the application continues about its business without any more
attention on the pending event. When it occurs, the application automatically suspends
its whatever it was doing, processes the event in the manner prescribed for its event id,
and resumes the application where it left off (and without any additional polling or
other programming at the application level).

Installing EVENTS.COM

EVENTS must be installed by running it prior to executing MegaBasic and any applications
that use it. Once installed, EVENTS provides a set of calls you can make through
INTerrupt OBFh that make requests for events to be triggered. Its various functions
are selected by setting AH to a function number along with any other register values
appropriate to that function. All functions are described later in this document.

You can remove the EVENTSTSR from memory by running it again with the/U
command line option. EVENTS will not be able to remove itself from memory if another
TSR has hooked the interrupt vectors used by EVENTS, and will display a message in
such a case. If the uninstall is successful, the original interrupt vectors that were hooked
by EVENTS will be restored and all memory used by EVENTS will be released back to
DOS (only about 2300 bytes). EVENTS currently hooks following software interrupt
vectors:

� Interrupt 09H for all keyboard shift key and hot key events

� Interrupt lBh for Ctrl-Break events

� Interrupt lCH for the timer events

� Interrupt 17h for printer events

C

C-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Once installed, EVENTS provides a variety of functions to enable and disable the various
events supported. These functions are called through INTerrupt OBFh, with a function
number in register AH and additional parameters in other registers as needed. Since the
event facilities are extended from time to time, the function details are documented in
EVENTS.DOC, along with the error codes, recent changes and other information.

The Task Manager

A demonstration of EVENTS named TASKMGR.PGM is included. This is a skeletal task
manager suitable as a starting point for building your own event-driven applications. It
displays the activity of 10 independent timers, mouse events, keyboard shift key changes
and function hot-key activity.

TASKMGR is completely driven by the external events provided by the EVENTSTR utility,
i.e., it does not perform any device polling. This is accomplished by using the MegaBasic
logical interrupt system to trap events and queue them for processing by the application
in a controlled and organized manner.

Timer Facilities

EVENTS supports 10 timers driven by a single logical interrupt. Times are measured in
milliseconds (resolved to IBM-PC timer-ticks of about 54 msecs). You can specify a 32 bit
unsigned value for the number of milliseconds on a timer resolved up to the next tick
(up to a maximum of about 3 weeks). When the timer times out, a MegaBasic logical
interrupt is invoked, and the timer stops counting. Several functions are provided to: set
timer values, set timer logical interrupts, pause/resume a timer, get timer status.

Keyboard Shift and Hot Key Events

You can request that EVENTS invoke a specified logical interrupt whenever a specified
combination of keyboard shift keys is pressed down (Ctrl, Alt, Left Shift, Right Shift,
Caps, Insert, etc.).

Another set of functions in EVENTS allows you to specify up to 40 hot keys. A hot key
definition is comprised of 2 arguments: The scan code and the shift key status. When a
user presses a key combination that has been defined as a hot key combination, a specified
MegaBasic keyboard intercept procedure is invoked using a logical interrupt.

When a keyboard intercept occurs, the keyboard intercept mechanism is disabled until
re-enabled by your program. Keys that are intercepted go no further than your program
(i.e., to the BIOS). The keyboard intercept procedure can determine which Hot Key was
invoked by examining the value in INTERRUPT(2) which contains the event id you
assigned for that hot-key when you requested it from EVENTS (function 11).

Mouse Events

The mouse is a rich source of external events which can really consume a lot of processing
power using a polled mechanism, but can be very efficiently handled using the
event-driven approach provided by logical interrupts. EVENTS assumes a standard
mouse driver is already installed supporting an INT 33h entry point into the mouse
functions. One of the EVENTS functions enables and disables the mouse events.
Enabling the mouse events tells the physical mouse driver to inform the EVENTSTSR
about any change occurring on the mouse. You should disable the mouse events after
your application has finished with using the mouse to clear the connection between the
EVENTS and the Mouse driver.

C

GFK-0256 C-15Appendix C Utilities and Other Software

Left and right mouse-button events are independently set for each button and can be
any combination of: pressed, released, changed, clicked and double-clicked. A change
event is the press or release of a button and is posted immediately; a press or release event
is only posted if not part of a click; a click event is only reported when not part of a double
click. Therefore, except for a change event, mouse button events are not reported until the
button has remained unchanged for about 90 milliseconds.

The mouse-position events currently supported are mouse-moved and mouse-stopped;
movement is posted immediately; stoppage is reported only after movement has ceased
for at least 90 milliseconds. You can also define a region on the screen where the mouse
must be in order for the event to be triggered.

All mouse events return a pointer (i.e., ES:BX returned to the logical interrupt handler)
to a data structure containing 4 words:

 Word 0 Event ID assigned by user (at the time event is armed)

 Word 1 Current button status at the time of the event with bits
positionally defined as (0,1) 1 (left,right)

 Word 2 Mouse column position

 Word 3 Mouse row position

Once an event occurs, you must re-arm the trap to activate the event again. Click-events
take precedence over pressed/released events. You can call the various mouse driver
functions directly (i.e., through Int 33h) for additional information about the mouse or to
control it in other ways.

C

C-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 6: Other Supplemental Packages

The program files described below are provided with the MegaBasic software system.
They can be ACCESSed from your application and freely used and/or given away in any
manner you wish.

LlBRARY.pgm

The LIBRARY.PGM contains a variety of procedures and functions that you may find
useful in the development of your own programs. These modules also demonstrate the
use of many features and serve as additional examples to supplement the manual. At the
present time, all documentation for these routines is limited to the remarks in the
LIBRARYPGM program file.

PCBASLlB.pgm

The PCBASLIB.PGM contains a variety of procedures and functions that you may find
useful in the development of programs intended to run on the IBM-PC family of
microcomputers. Many subroutines have been added to make it easy to access the
various capabilities of the screen and keyboard, in particular. At the present time, all
documentation for these routines is limited to the remarks in the PCBASLIB.PGM
program file.

C

GFK-0256 C-17Appendix C Utilities and Other Software

Section 7: MegaBasic Products

This section covers the MegaBasic products currently available. For additional
information, pricing and ordering, and additional support, please contact your
MegaBasic representative, the MegaBasic Bulletin Board System (415-459-0896) or
MegaBasic Language Products at PO. Box 723, Fairfax CA 94978.

Development vs. Run-time Versions

The MegaBasic interpreter comes in two separate configurations: the full, development
version (named BASIC), and its run-time subset (named RUN). They may be purchased
together or separately. Each includes 14-digit BCD and IEEE binary floating point
support.

MegaBasic Development Versions

The development version is the primary development tool that supports all phases of
program development including program entry, editing, saving to files, debugging,
testing, etc. All MegaBasic software development is performed in this configuration.
When you run BASIC, YOU can either run an existing program directly or enter the
program development environment.

The licensing for BASIC permits use on only one machine at a time. Distributing BASIC
with MegaBasic applications is not permitted. However, you can economically extend
your own license to additional machines by purchasing an additional MegaBasic
Reference Manual for each machine.

BASIC includes a 600 page manual, various utilities, numerous programming examples
and useful subroutines for your applications. BASIC requires at least 128k bytes.

MegaBasic Run-time Systems

The run-time MegaBasic subset, named RUN, executes MegaBasic applications, without
program development capabilities. This allows special optimizations for running
programs in the smallest space and shortest time. RUN is about 30% smaller than BASIC
(saving about 24k bytes) and up to 50% faster. RUN transparently (and in negligible time)
compresses each application code module as it loads into memory, reducing its
load-image size by up to 60%.

RUN licenses you to bundle it with your MegaBasic applications for third-parties without
additional fees or other restrictions. RUN includes a utility to link it together with your
application modules to build a stand-alone program file, and another utility to cipher
executable code into a form that cannot be converted back into readable source code.
RUN requires at least 96k

MegaBasic Compiler System

This product boosts the execution speed of MegaBasic applications by a factor of 2 to 12
times, depending on the MegaBasic interpreter you are comparing it to and the kind of
processing being done. Typical speed improvement is 5 times faster than the interpretive
run-time system, with memory requirements for compiled applications roughly equal.

C

C-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

The MegaBasic compiler is also useful for completely analyzing and verifying the
syntactic correctness of existing MegaBasic programs, often finding errors in code you
may have thought correct.

Compilations are command-line oriented, with parameters specified in the command
line, in response files, or both. It compiles at a rate exceeding 1000 statements per second,
even on s-l-o-w computers. It reports all source code errors and supports all MegaBasic
constructs.

The compiler supports various compile-time options to control optimization, line
number inclusion, symbolic map file generation, error messages, package dependencies,
output file format, destination path for result files, etc. Complex multiple package
applications may be compiled through a response file, so that you only have to specify
its compilation details once. The components of this product include:

� A compiler with libraries for 8 and 14 digit BCD and 16 digit 80x87 IEEE binary
floating point. Other libraries supporting protected mode operation giving
access to extended memory come with the Extended MegaBasic product.

� A utility automating the compilation of large applications.

� A utility combining multiple packages into a single .EXE file.

� A utility generating extensive cross-reference listings for documenting large,
multiple package applications.

� A compiler manual supplementing the MegaBasic Language Reference and
Programmer’s Guide.

The MegaBasic compiler is used in conjunction with the MegaBasic Development
System running under MS-DOS or compatible operating systems (e.g., Concurrent DOS).

Extended MegaBasic

Extended MegaBasic runs completely in protected-mode in order to provide full access to
as much as 16 megabytes of extended memory, otherwise it is indistinguishable from
standard MegaBasic.

A DOS-extender is not needed with this special version of MegaBasic. Extended
MegaBasic is a DOS-extender, dedicated to developing and running very large
MegaBasic applications with lots of data. It is the first, and possibly the only, BASIC that
runs in protected-mode on MS-DOS. It provides the following features:

� It executes MegaBasic programs under MS-DOS with access to up to 16
megabytes of memory, providing an ideal environment to develop extremely
large applications in BASIC without paying workstation or mainframe prices.

� String and numeric arrays may be up to 16 megabytes. The total number of
arrays and strings is limited only by the amount of available memory.

� 100k more memory is provided in the 640k base memory region for DOS shell
commands executed under extended MegaBasic than under standard
MegaBasic. This is because all but 8k of code and 16-128k of its data resides in
extended memory.

� Nearly all existing MegaBasic programs execute perfectly without any
modifications. Some programs that involve themselves in direct machine access
(using FILL , EXAM and CALL statements) may require some very minor
changes.

C

GFK-0256 C-19Appendix C Utilities and Other Software

� Special installation procedures, DOS-extenders and memory drivers are not
required, you simply run your program as a normal MegaBasic program.

� Extended MegaBasic only uses the amount of memory left unused by other
processes that may also be using extended memory (e.g., VDISK drivers and
operating system caches). You can set Extended MegaBasic to limit the amount
of extended memory available even when more is present.

� It operates in the protected mode of the 80x86, but allows user programs to call
operating system functions residing in real mode (e.g., DOS, ROM BlOS, etc.).

� All MegaBasic programming constructs are supported, including FILLS , EXAMS,
CALLS, logical interrupts and assembler packages.

� The execution speed in protected mode is roughly the same as in real mode,
with only about 3 to 10 percent lost, due to inherent differences in protected
mode operation.

Extended vs. Standard MegaBasic

Apart from the vast memory resources available, virtually all MegaBasic constructs in
Extended MegaBasic operate the same way as they do under standard MegaBasic. The
few features that differ are all a result of the fact that extended MegaBasic executes in
the protected-mode of the 80286/386/486 microprocessor, while standard MegaBasic
operates in real-mode. These features are summarized below:

� Direct access to machine memory using EXAM and FILL statements is different
because the segment portion of the address is no longer a paragraph address, but
rather a segment selector. Extended MegaBasic provides a method to convert
paragraph addresses into selectors for use in EXAMS and FILLS .

� Machine language interrupt calls using CALL# statements are supported in a
virtually 100% compatible manner. This allows you to make interrupt calls to
real-mode interrupt routines, such as DOS calls, ROM BIOS interrupts, etc.

� Machine language subroutine far-calls using CALL statements are supported by
extended MegaBasic, but only to call protected mode routines using known code
selectors.

� CALLing machine code that has been loaded into a MegaBasic string variable is
not supported.

� Background processing using INTERRUPT statements is not supported, but
logical interrupt driven real-time event processing is supported.

� BASIC Terminate-and-Stay-Resident processes (TSRS) implemented with
SERVICE statements are not supported.

System Requirements

Extended MegaBasic requires a certain minimum hardware configuration to operate.
This minimum is generally satisfied by PC-AT or PS-2 class machines using 80286, 80386
or 80486 microprocessors. Specifically, the requirements are:

� An 80286, 80386 or 80486 microprocessor. Systems that routinely process over
1000 interrupts per second may require an 80386/80486, due to the limitations of
the 80286 microprocessor.

� At least 128 kbytes of available memory in both the base megabyte and the
extended memory regions. Expanded memory is neither used nor affected.

C

C-20 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� DOS version 3.0 to 5.x running in real-mode, or in the Virtual-8086 mode of the
80386/486 if VCPI/DPMI is supported (as provided by most 386 memory
managers such as QEMM, 386MAX and Microsoft Windows).

� A standard IBM-compatible ROM BIOS that includes support for extended
memory. Any system that supports extended memory VDISK drivers will
support protected mode Extended MegaBasic.

� Assembler packages are supported under Extended MegaBasic, but there some
“rules of the road” that must be obeyed by the assembler code when running in
protected mode.

The Extended MegaBasic System includes both the development and runtime systems,
support for both decimal BCD and IEEE 80x87 binary floating point, extended memory
versions of the compiler run-time libraries (requires MegaBasic compiler), plus all
utilities, full documentation and no-nonsense unlimited license to bundle the run-time
system with your applications distributed to third-parties.

VSCREEN Window Manager

The VSCREEN package provides sophisticated windowing, field management and menu
support for MegaBasic applications. For compatibility and very low-overhead, the
VSCREEN software operates only in text-mode and includes the following capabilities:

� Windows are view-ports through which you view all or part of an arbitrarily
large virtual screen behind it. The virtual screen portion seen through the
window can be instantly repositioned or resized.

� Window style and layout includes border type, shadow and color, foreground
and background colors for output and for input fields, window size, placement
and visibility mode, virtual screen size, and cursor size and visibility.

� The number of active windows is unlimited and you can control how windows
overlap. Deleting a window releases all its memory for use elsewhere in your
program.

� Windows can appear and disappear instantly or gradually (explode, implode,
digital fade, etc.). They can be moved about the screen instantly, or slid across
the screen under program or mouse control.

� Ordinary MegaBasic PRINT statements are used to send output to VSCREEN
windows. Field-input editing and menu selection routines are used for keyboard
input and mouse control.

� ANSI escape sequences to windows are supported. Cursor locations relate to the
virtual screen. Character output and other operations are supported on hidden,
visible or partially overlapped windows.

� VSCREEN includes other packages that provide high-level functions, such as
screen-forms and field management, menu-bars with drop-down menus, file
selection, directory browsing, multiple text-file browsing, and more.

VSCREEN supports monochrome, Hercules, CGA, EGA and VGA under MS-DOS on any
IBM-PC compatible machine. It includes 6 major packages, extensive demos illustrating
all features and capabilities, full source code, 80 page manual and license to include
execute-only components in your MegaBasic applications supplied to third-parties.

C

GFK-0256 C-21Appendix C Utilities and Other Software

VTRIEVE Record Manager

VTRIEVE removes the burden of developing data management facilities, one of the
more tedious and complex chores in applications programming. This lets you
concentrate on the design and development of your application instead.

VTRIEVE is a powerful record management engine for MegaBasic programmers,
containing all the necessary functions and procedures to efficiently manage an
application’s data files. Programmers familiar with Novell’s BTRIEVE record manager
will find that VTRIEVE supports most of its functions plus a few more, including shared
access to VTRIEVE files over networks, with better performance.

Access to data records in VTRIEVE is extremely fast, no matter how many records are in
the file. This is because it is based on B-tree file structures, known for their speed and
reliability. VTRIEVE can store data records and their indexes within a single file,
reducing the number of files that you must physically open for large applications. This
lets you have over 100 different databases open through VTRIEVE simultaneously.

It is easy to create and destroy indexes on the fly (up to 40 per file), which are then
maintained automatically as records are added, updated and deleted. There is virtually
no ceiling on the number of records VTRIEVE can maintain within each file. VTRIEVE
supports fixed length and variable length data records (up to 65520 bytes) and duplicate
record keys are permitted. Each VTRIEVE file can include arbitrary application-specific
information, useful for field descriptions, record counters, configuration data, display
control, etc.

Contents and Requirements

The VTRIEVE product includes the VTRIEVE module, a manual explaining all its
functions and procedures, a description of the internal layouts of VTRIEVE files, and a
small demo application. VTRIEVE is written entirely in MegaBasic and includes full
source code with liberal commentary.

VTRIEVE requires MegaBasic interpreter 5.60 or later running under MS-DOS 3.0 or later
(optionally MegaBasic Compiler 1.62 or later). Execute-only VTRIEVE components may
be included with MegaBasic applications distributed to end-users.

MegaCOMM Serial Device Driver

MegaCOMM is an attachable MS-DOS serial device driver that supports up to 8 serial
devices, any or all of which can be interrupt driven. It provides special event-driven
support for use with MegaBasic applications.

A single MegaCOMM driver supports any set of 8 serial devices, COM1 through COM8,
while keeping driver size to a minimum (i.e., under 6k plus buffers). Interrupt driven
operation, on input, output or both, is supported independently on each device.
MegaCOMM lets you assign multiple interrupting devices to the same interrupt vector as
needed (or to multiple interrupt vectors).

A utility is provided that allows static configuration of serial device operation, by
modifying the device driver file itself. An extensive IOCTL language lets you
dynamically control device operating characteristics and request status information,
including:

� Device baud rate, stop bits, byte width and parity.

� RTS/CTS and DTR/DSR line control and forcing breaks.

C

C-22 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� XON/XOFF flow control usage and character data masks.

� Device status: input available, output ready to send, carrier or CTS, output
device still sending, DTR and CTS, break detect, framing error, parity and
overrun.

� Operational status: input buffer count and availability, output data remaining
and available, and detailed device configuration parameter and status set.

� A request for input event traps to generate a MegaBasic logical interrupt when an
input character count is reached, a specified character is input or a time-out expires.

� A request for output event traps to generate a MegaBasic logical interrupt when a
specified amount of output buffer space becomes available or a time-out expires.

The MegaCOMM product includes: the device driver, documentation, configuration utility,
IOCTL demo/utilities, and a MegaBasic demo/utility package providing modem
connection facilities for MegaBasic applications, and license to distribute execute-only
components, when bundled with applications.

AnsiPLUS Enhanced Console Device Driver

AnsiPLUS is the ideal console driver for power-users. The standard device drivers supplied
with MS-DOS, the critical interface between you and your personal computer, do not take
full advantage of the capabilities of the major video controllers currently in use: EGA and
VGA. In addition, the standard personal computer BIOS has severe limitations.

AnsiPLUS integrates major console elements missing from MS-DOS and PC-BIOS into a
single compact device driver that you can easily control and personalize. With
AnsiPLUS installed, your interaction with MS-DOS and non-Windows applications will
be significantly improved.

There are distinct advantages to using AnsiPLUS with MS-DOS programs in Windows
3.0 Enhanced Mode. For example in this mode, separate copies of AnsiPLUS are
automatically included in each MS-DOS process.

Extended EGA and VGA Features

The AnsiPLUS enhanced MS-DOS console device driver supports the following
EGA/VGA display features, not provided by other screen drivers:

� Automatic recognition of all text and graphics screen modes, including those
with large numbers of lines and columns.

� Much faster operation in text and 16-color graphics modes, than either the
original MS-DOS console driver or the standard ANSI driver.

� Key-enabled smooth scrolling so you can effortlessly read the screen while it is
scrolling (only with faster CPUS).

� Full control over colors, supporting 16 foreground/background colors in color
text modes and color-mixing in 16-color graphics modes. Control over palette
registers and VGA DAC registers let you tap the full color possibilities of your
video board.

� Selection of EGA/VGA character sets, to control the character height used for any
video mode. Simple ANSI control sequences to switch between 25/43/50 line text
modes.

� An extended ANSI Set Mode control sequence to specify modes based on
expanded CPU registers.

C

GFK-0256 C-23Appendix C Utilities and Other Software

Replacements for Common TSRs

The AnsiPLUS driver effectively integrates several console functions eliminating the
need for separate TSR programs or device drivers. These functions include:

� An intelligent screen saver.

� The ability to freeze scrolling and then scroll measured amounts of text in
various useful ways.

� Extending keyboard input type-ahead up to a maximum of 192 keystrokes.

� Preventing your type-ahead buffer from filling with unintended keystrokes by
disabling repeat key type-ahead, while allowing repeat keys that are
immediately consumed by programs.

� An interrupt-controlled Ctrl-G tone generator that prevents multiple beeps from
“stacking up” and stalling your programs, and a special ANSI control sequence
to set the frequency(s) and duration(s) of the Ctrl-G beep tone.

OtherAnsiPLUS Extensions

� Ability to let you scroll back many screen-fulls of lines that have recently scrolled
off the top of the screen out of view.

� AnsiPLUS highlights keys you type as they are displayed on the screen, visually
separating typed entries from computer output.

� Unlike standard drivers, AnsiPLUS displays a cursor for typed entries while in
graphics mode.

� AnsiPLUS provides functions to insert and delete lines and characters.

� AnsiPLUS has a “transparent background mode” that writes each output
character in the current foreground color without changing the background
color.

� You can apply bold, underline, black shadow, and slant enhancements, in any
combination to output characters in 16-color graphics modes.

� AnsiPLUS allows blanks between parameters, commas and semicolons as
separators, single or double quotes around character parameters, and signed
parameters up to 32767.

C

C-24 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

MegaBasic Support Features in AnsiPLUS

AnsiPLUS comes with an extensive MegaBasic application support package that
provides a programming front-end to all features of AnsiPLUS . It allows you to:

� Set video and graphics modes, select character set height text treatment in
graphics modes, select video page, set or modify cursor position, save/restore
complete video state.

� Define available colors, set EGA/VGA palette registers, select current color
attributes for output characters, enable/disable transparent background and
blinking colors.

� Clear the current screen page or current line, insert and delete lines and
characters on the screen.

� Fill rectangular areas on the screen, with or without borders, shadows and titles.
Scroll a rectangular area in any direction, save and restore a rectangular area
between the screen and a MegaBasic string variable.

� Query AnsiPLUS status for cursor position, colors, etc.

� Enable and disable various AnsiPLUS driver features, define Ctrl-G beep tones
and key translations.

AnsiPLUS comes complete with the AnsiPLUS console device driver, detailed user
documentation, and utilities for controlling colors and other AnsiPLUS features. It also
includes create and edit escape sequence programs, the MegaBasic AnsiPLUS
application support package, and license to distribute necessary execute-only
components of AnsiPLUS with MegaBasic applications.

D
section level 1 1
figure_ap level 1
table_ap level 1

D-1GFK-0256

Appendix D Miscellaneous Information

This appendix covers various subjects that are less likely to be needed on a regular basis,
but are nonetheless of vital importance at certain times. The following areas are covered:

 Appendix D
Section.1

MegaBasic
Enhancements

Brief summary of all changes to MegaBasic made since the
previous MegaBasic manual (April 1989)

 Appendix D
Section 2

MegaBasic
Reserved Words
and Characters

Alphabetical listing of all words and special characters
reserved by MegaBasic for use in commands, statements,
operators functions and other operations.

 Appendix D
Section 3

Code
Conversion

Tables

Reference table for conversion between decimal, hexa-
decimal, binary and ASCII codes.

 Appendix D
Section 4

Converting
Non-integer

Programs to Use
Integers

Step-by-step instructions on how to take advantage of
integers in programs originally designed for floating point.

 Appendix D
Section 5

Loading Earlier
Programs

Explanation of the built-in automatic translator that
converts programs written prior to MegaBasic Version 4.0,
including the loading and running of North Star Basic
programs.

D

D-2 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 1: Recent MegaBasic Enhancements

This appendix summarizes the major changes to MegaBasic that have occurred since
MegaBasic Reference Manual, Revision C (April 1989). It provides only very brief
references to each item are given and you should seek the appropriate section in the
manual for complete information. Users familiar with MegaBasic versions earlier than
5.65 can study this appendix for a quick review of recent extensions that may impact
current software development efforts. With a couple minor exceptions, MegaBasic has
been extended in an upward compatible manner to preserve the operating
characteristics and executability of all programs developed under earlier versions of
MegaBasic. Descriptions of minor improvements are excluded.

Changes Since Revision E (November 1991)

� The IN comparison operator has been extended to integer bitstring
comparisons, in addition to strings.

� MegaBasic under MS-DOS now requires DOS release 3.0 or later.

� In a multi-user or network environment, SAVE without arguments gives you a
warning if someone else has modified the same MegaBasic program file since
you last LOADed it.

� LOAD commands can now load more than one program file at a time.

� The CONFIG utility is now easier use, has more options and includes command
line operation (i.e., non-interactive batch mode).

� In DOS versions, WAIT releases current virtual time-slice for multitasking
systems. ELAPSE() and WAIT are now accurate to within 1 millisecond.

� Arrays with 2 or more dimensions can now have more than 65535 elements.

� USE sequences to the next package name beginning with a character typed and
no longer sequences through free packages to avoid clutter.

� The new MBPATH= environment variable lets you override the PATH= program
directory search order.

� ENVIR$(0) now returns the complete pathname of the main program file.

� END now executes any remaining EPILOGUES in first-to-last order

� PRINT formats can now alter the characters used for ,.$ in formatted numbers.

� OPENing files in exclusive read/write mode are now allowed to be opened
read-only by others in a network environment.

� OPENC INPUT statements will now create input files if they do not already exist.

� The FILE() function returns 0 for no file, 1 for read/write files and 2 for read-only
files.

� Setting PARAM(22)=-1 enables network use without enabling the automatic file
locking features of MegaBasic.

� PARAM(23) now returns 4 for 80486 CPUs and 3 for 80386 CPUs.

� FLIP now locks the temporary screen context until the next keypress, instead of
requiring you to hold down both shift keys.

D

GFK-0256 D-3Appendix D Recent MegaBasic Enhancements

� SHOW SIZE now displays the size of field structures.

� Total symbol capacity over all packages has been increased to 8190, up from
about 6000 to 7000.

Changes Since Revision D (March 1991)

� Extended MegaBasic is now compatible with VCPI-compliant 80386 memory
managers, such as QEMM and 386MAX. Symbol capacity has been increased by
about 15%. String arrays may now be up to 16 megabytes in size. Memory
segment capacity has increased to 400 segments.

� During any MegaBasic command that allows you to pause screen output with
the space bar, you can now immediately type in the next command while you
are in pause mode without having to first abort the command. The TAB key can
now be typed during the display pause to display the next dozen lines.

� OPEN READ statements now open the file in a mode that allows other external
processes to also have the file open for either reading or writing. No locking of
any kind is imposed and the file operations are buffered for fast accessed.

� SHOW , SHOW ACCESS and USE commands display the package names in
alphabetically sorted order. The SHOW command display is enhanced with
additional information. SHOW ACCESS commands now show only the ACCESS
relationships of the current package and to show the relationships between all
packages—you have to append an asterisk (*) to the end of the SHOW ACCESS
command.

� USE commands now supports the Up, Down, Left, Right, Home, End and Tab
keys to walk around in the package list.

� FREE(3) returns the number of unused bytes remaining in the global symbol
table, which manages all the symbols over all packages in a running MegaBasic
program. FREE(4) returns the number of unused memory segments.

� Logical interrupts are now serviced during INPUT, INCHRS and WAIT.

Individual logical interrupts can now handle multiple interrupts without
necessarily causing an overrun condition. This is done by buffering the external
interrupt post requests up to a maximum count, specified by an optional 4th
parameter on the INTERRUPT statement.

� XREF lets you display the locations of references to lines and names by procedure
or function name as well as by line number. In other words, instead of showing a
list of line numbers that contain references to each name, XREF can show you a
list of subroutine names that contain references to each name.

� Displays showing program locations by line number now include the name of
the subroutine that contains that line. This is particularly useful in the TRACE
RET command, as it makes the current calling path plainly visible.

� The line range of a subroutine (i.e., FUNC or PROC) can now be specified by
name in any command that expects a line range. The name must be preceded by
a dot (.) to indicate this is a line range, rather than some other command
argument.

� The starting line and step-size arguments now default to the previous values left
over from the previous ENTER command (in that workspace), or to 10 on the
first ENTER command.

D

D-4 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� Ctrl-HOME deletes all characters to the left of the cursor.

� PgUp/PgDn keys which access the recent input entries now searches for entries
that match the characters appearing to the left of the cursor.

� You can now enter extended ASCII codes (codes 128 to 255) into an input line
using the ALT-000 mechanism provided by more recent keyboard drivers.

� The child-process exit code left after a DOS statement executes a shell command is
now available as a system error code from PARAM(l9).

� ACCESS and DISMISS functions added to provide greater control over systems
of packages.

� FIND(VEC vector exprn) added to let you search vectors.

� The error code for all non-trappable errors has been changed from O to 255 and
any user-defined error with that code will be non-trappable.

� INPUTS into string fields or indexed (i.e., fixed-width) string variables now
perform right-fill as done by string == assignments. INPUT2 now displays
prompts instead of suppressing them.

Changes Since Revision C (April 1989)

� MERGE and DEL statements are no longer supported in MegaBasic (the MERGE
and DEL commands are, of course, still supported).

� The MERGE command (Chapter 2, Section 3) now supports multiple line ranges,
allowing you to restrict the merge to only those source program lines. These
ranges can be specified either by line number or by subroutine name.

� Seven new operators provide support for bit-wise logical combinations, shifting
and rotating in both directions of 32-bit integers.

� STRUCT statement extended in various ways, the most important being
multi-line STRUCT and DEFSTRUCT statements for static STRUCT definitions.
The STRUCT reserved word may be used in XREF and NAMES commands to
select field variables in the command report.

� DEF DATA statements now longer need the DATA reserved word when defining
variables data types or defining SHARED variables.

� DEF statements can be entered as direct statements to affect subsequent type
assumptions (until the next RUN command).

� DEF statements to define pointer types have been added to assist the MegaBasic
compiler’s treatment of pointers. Such statements are ignored by version 5.600
and later of the MegaBasic interpreter, but reported as Syntax Errors in earlier
versions.

� The $ format-modifier appends the radix letter (i.e., b, o or h) to numbers printed
in binary, octal and hexadecimal formats.

� The DESTROY statement now ignores file names that already do not exist, instead
of reporting a File not found error.

� The new ENTER statement lets you temporarily redirect console input from a file
or other device.

� MegaBasic now gives you the opportunity to finish any remaining epilogues prior
to processing any LOAD, RUN, CLEAR or BYE commands you enter while an
initialized program is active.

D

GFK-0256 D-5Appendix D Recent MegaBasic Enhancements

� When LOADing a text-file program, MegaBasic no longer renames the loaded
program with a .pgm file extension as it used to, so be careful to rename it
yourself if you later SAVE the program.

� File locking is now supported and enabled in all MS-DOS versions of MegaBasic.
PARAM(22) can be set non-zero or zero to enable or disable file locking.

� You can no longer SAVE, by name, the contents of a workspace other than the
current work space. However, SAVE now lets you save multiple workspaces
with one SAVE command.

� PARAM(8) can be set non-zero to disable all further epilogue execution, which can
be useful in fatal error termination and cleanup processing.

� The new FLIP utility (a TSR you run before running BASIC) improves the
MegaBasic program development and debugging environment by separating
the program application output screen from the program debugging and editing
screen so that they do not interfere with one another.

� INTERRUPT(2) returns additional information to logical interrupt driven
background processes. Other background process enhancements have also been
made.

� DISMISS no longer removes unACCESSed packages unless you specify their
names in the DISMISS statement, i.e., you have to explicitly DISMISS packages
in order to get their epilogues executed.

� The new CREATE() function lets you create new variables of any data type. Such
variables, called pseudo variables, have no name and are accessed via the pointer
returned by CREATE. The new FREE statement lets you release variables created
by the CREATE function.

� DIR$= pathname now changes the default drive if a different drive code is
specified in the pathname.

� If memory permits, LINK statements no longer obliterate packages left in
memory so that subsequent ACCESSes or LINKS can pick them up from
memory instead of unnecessarily re-loading them from the disk.

� PARAM(25) can be set to 1 to cause subsequent LINK statements to preserve the
execution state of the current packages (i.e., their program variables, open files
and ACCESSes) through to the next program.

� The SHOW , SHOW ACCESS and SHOW SIZE commands now provide more
information to assist in the testing of large applications with many packages.

� ERRLINE(1) returns the relative statement number on the line in which the most
recent error occurred. ERRLINE and ERRLINE(0) both return the line number
of the most recent error.

� Ctrl-Break now optionally replaces Ctrl-C for program interruption using an
interrupt driven approach that preserves the type- ahead input buffer. See
PARAM(1) for details.

D

D-6 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 2: MegaBasic Reserved Words and Characters

The table below lists all the reserved words used by MegaBasic. None of these words are
available for use as names of structure fields, variables functions, procedures or
line-labels.

ABS cont errline include max$ rem stop

access copy errmsg$ index merge ren str$

acos cos errpkg$ inp min rename string

and create errset inp$ min$ repeat struct

append DATA errtyp input mod request subdir$

argument date$ exam input$ move reseq$ sum

asc def exit input1 NAME restore swap

asin del exp input2 names ret swapdef

atn delete FILE int next retry TAB

BASIC destroy filectrl integer nomark return tan

begin dim filedate$ interrupt not rev$ then

bit dir filepos ioctl ON rnd time$

by dir$ filesize ioctl$ open rotat$ to

bye dismiss filetime$ LEN open$ round tr

CALL div fill let openc run trace

card dos find li or SAVE tran$

case dupl for line ord scr trim$

ceil ED frac link out seg trunc

ch edit free list output service typ

chain edit$ from ln PARAM sgn UNLOCK

change elapse func load pi shared use

check else funcend loadpkg poly show VAL

chr$ end GOSUB local pos sin vec

chrseq$ ent goto lock print size WAIT

clear enter IF log proc space while

close envir$ imp loge procend sqrt write

collat$ eqv in MATCH READ stat XOR

const errdev inchr$ max real step xref

The two names PROLOGUE and EPILOGUE are not really reserved words, but they do
have special meaning in conjunction with packages and hence you should avoid using
them for other purposes as well. From time to time, new built-in statements and functions
may be added to the repertoire of MegaBasic. User-assigned names in older programs that
match new reserved words must be renamed in order to use newer versions of MegaBasic. To
this end, MegaBasic automatically renames such occurrences when a program is first loaded.
This action, which takes place on a LOAD, INCLUDE, ACCESS, MERGE or LINK (in the

D

GFK-0256 D-7Appendix D Recent MegaBasic Enhancements

development version only, not in RUN), merely doubles the leading character of the name until
it no longer matches any reserved word or user defined name. MegaBasic reports each name
reassignment it makes to you on the console.

Special Characters

In addition to the various reserved words, MegaBasic also uses most of the symbols in
the standard ASCII character set for specific purposes within program statements and
commands. For example, letters (A-Z, a-z), digits (0-9) and underscores (_) are used to
form identifiers; numeric constants are formed from the digits, letters A through F, plus
(+), minus (–) and period (.). A complete summary of all special characters follows
below:

Special Characters and Delimiters

 () Parentheses: surround function arguments, subexpression
groupings, array subscripts and indexing expressions.

 []
Brackets: surround multi-statement THEN/ELSE clauses in
IF statements, memory offsets of program variables, con-
catenated vector variables, structured variable definitions.

“ ” Quotes: surround string constants.

’ ’ Apostrophes: surround string constants.

+ Plus sign: addition and string concatenation operator.

 –
Minus sign: subtraction, negation and string difference
operator, line range separator in commands, letter range
separator in data type declaration DEF statements, search
string option disable.

 *

Asterisk: multiplication operator, pointer variable resolu-
tion operator, vector wild-card selector, pointer argument
lead-in in PROC/FUNC definitions, wild-card string match
symbol in LIST , EDIT and CHANGE searches).

 / Slash: real division operator, separator in directory path-
names, newline generation in PRINT statements.

 \ Backslash: statement separator, separator in directory
pathnames.

 ^
Caret: exponentiation/power operator, pointer extraction
operator, bit-wise xor-operator (^^).

_ Underscore: visual separator for use in long identifiers.

 .

Period: decimal point in numeric constants, file name ex-
tension separator, structured variable pathname compo-
nent separator, open-ended arguments in FUNC/PROC
definitions, the current program line number or range in
development commands, lead-in to symbolic line ranges.

, Comma: separator between arguments, array subscripts
and indexing expressions.

 :
Colon: line-label separator, part of the string replacement
assignment operator :=, separator indicating a width ex-
pression in indexing of strings, vectors and bit ranges.

; Semicolon: separator between program statements.

D

D-8 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Special Characters and Delimiters

 <
Less-than: string and numeric comparison operator, arith-
metic shift operator (<<), lead-in for numeric scaling val-
ue in format specifications.

 >
Greater-than: string and numeric comparison operator,
arithmetic shift operator (>>), lead-in for numeric scaling
value in format specifications.

 =
Equal sign: assignment operator, comparison operator, de-
fault argument value lead-in in FUNC/PROC definitions
lead-in for single-line FUNCtion expression definition.

 # Number sign: device or open file number lead-in, software
INTerrupt number lead-in in CALL statements.

 ! Exclamation point: real type indicator in identifiers, short-
hand for PRINT.

 $ Dollar sign: string type indicator in identifiers, symbol for
line number of last program line.

 %
Percent sign: integer type indicator in identifiers, file posi-
tion in READ/WRITE, copy argument type lead-in in
FUNC/PROC definitions.

 &
Ampersand: binary mode file transfer in READ/WRITE
statements, wild-card string match symbol in LIST , EDIT
and CHANGE searches, bit-wise and-operator on integers.

 | Vertical bar bit-wise OR-operator on integers.

 ~ Tilde: bit-wise ones-complement unary operator on integers.

 @
At-sign: 16-bit integer transfers in READ/WRITE state-
ments, lead-in for by-reference or by-address arguments
in FUNC/PROC definitions, lead-in for STRUCT position
changes.

 ? Question mark: wild-card character used in program editing
searches.

D

GFK-0256 D-9Appendix D Recent MegaBasic Enhancements

Section 3: ASCII Character Codes and Special Keys

The table below lists all 256 byte values in decimal, hexadecimal, binary, and in ASCII.
IBM compatible keyboards provide a number of extended keys, which produce a
two-character sequence when typed. The first is always a null character (ASCII zero)
that indicates a second extended key-code follows. The second code identifies the special
key itself and these codes are shown in the table for your convenience. You can safely
assume that if a null character is input from the console, then an extended code will follow
for which your program should wait. The following IF statement illustrates a simple way
to input a single normal or extended key.

IF (let C$ = inchr$(0)) = chr$(0) then C$ = C$+inchr$(0)

Be sure to disable the MegaBasic Ctrl-C mechanism (by setting PARAM(l) to 1) while
performing one-at-a-time character input, so that none of the input characters are lost to
the Ctrl-C detection mechanism.

Some of the extended codes are typed with the Ctrl or Alt keys held down and are
indicated in the table by a ctl or alt superscript. Others are keys that have special names,
such as Ins or Del, which are shown by name. Still others are called function keys and are
indicated as F1, F2, ..., F10. While some computers may have additional extended keys
beyond those shown, we have included only those that are in general use and available
on the vast majority of IBM compatible keyboards.

The ASCII codes from 128 to 255 are called the extended ASCII codes (unrelated to the
extended keys described above). Although they cannot normally be typed at the keyboard,
more recent keyboard drivers often let you type any arbitrary ASCII code by typing its
code in decimal digits while holding the ALT-key down. For example, ALT-234 generates
an ASCII 234 code as soon as you release the ALT key. Be careful that you do not type
extended ASCII characters into a program, except for characters inside quotes (i.e.,
within string literals), because they will conflict with the internal binary representation
of the program line.

D

D-10 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Dec Hex Binary Key Ext Dec Hex Binary Key Ext

0 00h 0000000 @ ctl 32 20h 00100000 sp

1 01h 00000001 Actl 33 21h 00100001 !

2 02h 00000010 Bctl 34 22h 00100010 *

 3 03h 00000011 Cctl 35 23h 00100011 #

4 04h 00000100 Dctl 36 24h 00100100 $

5 05h 00000101 Ectl 37 25h 00100101 %

6 06h 00000110 Fctl 38 26h 00100110 &

7 07h 00000111 Gctl 39 27h 00100111 ’

8 08h 00001000 bksp 40 28h 00101000 (

9 09h 00001001 tab 41 29h 00101001 0

10 0Ah 00001010 1feed 42 2Ah 00101010 *

11 0Bh 00001011 Kctl 43 2Bh 00101011 +

12 0Ch 00001100 Lctl 44 2Ch 00101100 ,

13 0Dh 00001101 ret 45 2Dh 00101101 –

14 0Eh 00001110 Nctl 46 2Eh 00101110 .

15 0Fh 00001111 Octl 47 2Fh 00101111 /

16 l0h 00010000 Pctl 48 30h 00110000 0

17 11h 00010001 Qctl 49 31h 00110001 1

18 12h 00010010 Rctl 50 32h 00110010 2

19 13h 00010011 SctI 51 33h 00110011 3

20 14h 00010100 Tctl 52 34h 00110100 4

21 15h 00010101 Uctl 53 35h 00110101 5

22 16h 00010110 Vctl 54 36h 00110110 6

23 17h 00010111 Wctl 55 37h 00110111 7

24 18h 00011000 Xctl 56 38h 00111000 8

25 l9h 00011001 Yctl 57 39h 00111001 9

26 lAh 00011010 Zctl 58 3Ah 00111010 :

27 1BH 00011011 [ctl 59 3Bh 00111011 ; F1

28 1Ch 00011100 \ctl 60 3Ch 00111100 < F2

29 1Dh 00011101]ctl 61 3Dh 00111101 = F3

30 1Eh 00011110 ^ ctl 62 3Eh 00111110 > F4

31 1Fh –––11111 _ctl 63 3Fh 00111111 ? F5

D

GFK-0256 D-11Appendix D Recent MegaBasic Enhancements

Dec Hex Binary Key Ext Dec Hex Binary Key Ext

64 40h 01000000 @ F6 96 60h 01100000 ’ F3ctl

65 41h 01000001 A F7 97 61h 01100001 a F4ctl

66 42h 01000010 B F8 98 62h 01100010 b F5ctl

67 43h 01000011 C F9 99 63h 01100011 c F6ctl

68 44h 01000100 D F10 100 64h 01100100 d F7ctl

69 45h 01000101 E 101 65h 01100101 e F8ctl

70 46h 01000110 F 102 66h 01100110 f F9ctl

71 47h 01000111 G home 103 67h 01100111 g F10ctl

72 48h 01001000 H ↑ 104 68h 01101000 h Flalt

 73 49h 01001001 I PgUp 105 69h 01101001 i F2atl

74 4Ah 01001010 J 106 6Ah 01101010 j F3atl

75 4Bh 01001011 K ← 107 6Bh 01101011 k F4atl

76 4Ch 01001100 L 108 6Ch 01101100 l F5atl

77 4Dh 01001101 M → 109 6Dh 01101101 m F6atl

78 4Eh 01001110 N 110 6Eh 01101110 n F7atl

79 4Fh 01001111 O end 111 6Fh 01101111 o F8atl

80 50h 01010000 P ↓ 112 70h 01110000 p F9alt

81 51h 01010001 Q PgDn 113 71h 01110001 q F10atl

82 52h 01010010 R insert 114 72h 01110010 r

83 53h 01010011 S del 115 73h 01110011 s ←ctl

84 54h 01010100 T 116 74h 01110100 t →ctl

85 55h 01010101 U 117 75h 01110101 u endctl

86 56h 01010110 V 118 76h 01110110 v pgdnctl

87 57h 01010111 W 119 77h 01110111 w homectl

88 58h 01011000 X 120 78h 01111000 x Ialt

89 59h 01011001 Y 121 79h 01111001 y 2alt

90 5Ah 01011010 Z 122 7Ah 01111010 z 3alt

91 5Bh 01011011 [123 7Bh 01111011 (4alt

92 5Ch 01011100 \ 124 7Ch 01111100 | 5alt

93 5Dh 01011101] 125 7Dh 01111101] 6alt

94 5Eh 01011110 ^ F1ctl 126 7Eh 01111110 ~ 7alt

95 5Fh 01011111 _ F2ctl 127 7Fh 01111111 “ 8alt

D

D-12 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Dec Hex Binary Key Ext Dec Hex Binary Key Ext

128 80h 10000000 9alt 160 A0h 10100000

129 81h 10000001 0alt 161 A1 h 10100001

130 82h 10000010 162 A2h 10100010

131 83h 10000011 163 A3h 10100011

132 84h 10000100 pgupalt 164 A4h 10100100

133 85h 10000101 165 A5h 10100101

134 86h 10000110 166 A6h 10100110

135 87h 10000111 167 A7h 10100111

136 88h 10001000 168 A8h 10101000

137 89h 10001001 169 A9h 10101001

138 8Ah 10001010 170 AAh 10101010

139 8Bh 10001011 171 ABh 10101011

140 8Ch 10001100 172 ACh 10101100

141 8Dh 10001101 ↑ ctl 173 ADh 10101101

142 8Eh 10001110 174 AEh 10101110

143 8Fh 10001111 175 AFh 10101111

144 90h 10010000 176 B0h 10110000

145 91h 10010001 ↓ ctl 177 B1h 10110001

146 92h 10010010 insctl 178 B2h 10110010

147 93h 10010011 delctl 179 B3h 10110011

148 94h 10010100 180 B4h 10110100

149 95h 10010101 181 B5h 10110101

150 96h 10010110 182 B6h 10110110

151 97h 10010111 183 B7h 10110111

152 98h 10011000 184 B8h 10111000

153 99h 10011001 185 B9h 10111001

154 9Ah 10011010 186 BAh 10111010

155 9Bh 10011011 187 BBh 10111011

156 9Ch 10011100 188 BCh 10111100

157 9Dh 10011101 189 BDh 10111101

158 9Eh 10011110 190 BEh 10111110

159 9Fh 10011111 191 BFh 10111111

D

GFK-0256 D-13Appendix D Recent MegaBasic Enhancements

Dec Hex Binary Char/Key Dec Hex Binary Char/Key

192 C0h 11000000 224 E0h 11100000

193 C1h 11000001 225 E1h 11100001

194 C2h 11000010 226 E2h 11100010

195 C3h 11000011 227 E3h 11100011

196 C4h 11000100 228 E4h 11100100

197 C5h 11000101 229 E5h 11100101

198 . C6h 11000110 230 E6h 11100110

199 C7h 11000111 231 E7h 11100111

200 C8h 11001000 232 E8h 11101000

201 C9h 11001001 233 E9h 11101001

202 CAh 11001010 224 EAh 11101010

203 CBh 11001011 235 EBh 11101011

204 CCh 11001100 236 ECh 11101100

205 CDh 11001101 237 EDh 11101101

206 CEh 11001110 238 EEh 11101110

207 CFh 11001111 239 EFh 11101111

208 D0h 11010000 240 F0h 11110000

209 D1h 11010001 241 F1h 11110001

210 D2h 11010010 242 F2h 11110010

211 D3h 11010011 243 F3h 11110011

212 D4h 11010100 244 F4h 11110100

213 D5h 11010101 245 F5h 11110101

214 D6h 11010110 246 F6h 11110110

215 D7h 11010111 247 F7h 11110111

216 D8h 11011000 248 F8h 11111000

217 D9h 11011001 249 F9h 11111001

218 DAh 11011010 250 FAh 11111010

219 DBh 11011011 251 FBh 11111011

220 DCh 11011100 252 FCh 11111100

221 DDh 11011101 253 FDh 11111101

222 DEh 11011110 254 FEh 11111110

223 DFh 11011111 255 FFh 11111111

D

D-14 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 4: Converting Floating Point Programs to Integer

The integer version of MegaBasic is capable of running all programs that ran under
earlier versions of MegaBasic which did not support integers. It is 100% compatible with
such earlier programs and you do not have to make any changes. Since integers can be
read from and written to files, the READ and WRITE statements of earlier programs are
automatically altered when initially loaded to ensure that only floating point values are
written to the file. This feature is more fully discussed later in these application notes.

Integers provide substantial gains when they replace floating point arithmetic, array
subscripts and string indexing. To achieve 100% compatibility, MegaBasic assumes all
numeric variables are to be floating point unless you specifically state otherwise. Hence
your program cannot take advantage of the performance improvements provided by
MegaBasic integers until you change your program. This is actually a very easy process
for most programs and is accomplished by following the steps described below:

� Thoroughly read and understand all information described for this process.

� After bringing up MegaBasic, load the program to be converted to integer
operation into your workspace. MegaBasic will immediately scan this program
(if it was created under a non-integer MegaBasic) and automatically insert the
reserved word REAL after each READ and WRITE throughout your program.
This is done to ensure that floating point numeric file transfers do not suddenly
become integer transfers, with erroneous results.

� In virtually all programs, the overwhelming majority of numeric variables and
functions are used to store and return integer values. With this in mind, place
the following DEF statement at the top of your program to set all (numeric)
variables and functions to an integer type:

DEF INTEGER “A-Z”

� Carefully examine your program to determine if it uses any variables or
functions in a floating point capacity. If it does use floating point, make a list of
the names of all such variables and functions throughout your program. With
this done, insert the following statement after DEF statement described above:

DEF REAL name1, name2, name3, name4, ...

where the list of names is the list of real variables found in your program. Be
sure to specify empty parentheses () on names of arrays. Additional DEF
statements may be used if your list is longer than one program line. Do not
include any floating point function names in these DEF statements. Instead,
insert the word REAL into each formal FUNCtion definition line immediately
before the FUNC reserved word:

DEF REAL FUNC RTOTAL(LIST_VBL).

� Go through your program looking for divide operations (/). For each one found,
examine how it is used and determine if an integer divide (DIV) could be used in
its place. A regular divide is an exclusively floating point operation which is slow
in floating point and slower dividing an integer by an integer (because of the
extra conversions). The DIV operation with integers is from 5 to 8 times faster.

� Remove the reserved word REAL from all READ and WRITE statements which do
not involve floating point numeric data transfers.

D

GFK-0256 D-15Appendix D Recent MegaBasic Enhancements

� Thoroughly test your program and ensure that the results it obtains are identical
with those obtained under the earlier non-integer version of MegaBasic under
which it was originally developed.

This procedure will be effective and straightforward with most programs. As you
become accustomed to integers in your daily programming work with MegaBasic, you
will find your own ways of using them suited to your style of programming. This
conversion procedure is intended only as a bridge to get you started.

D

D-16 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

Section 5: Loading Programs from Earlier Z80 Versions

Programs developed under prior versions of MegaBasic will likely be named with a .zba
suffix (secondary or type name). Files with other than the .pgm default suffix must be
spelled out in full in order to LOAD them. MegaBasic programs starting with the Version
4.0 series use a totally different internal encoding from programs developed under
earlier versions. When programs using the earlier encoding are LOADed, MegaBasic
Versions 4.0 and later perform a 100% translation of the program into the newer form.

Several enhancements to the language syntax have been made which are incompatible
with pre-version 4.0 programs. However when such programs are LOADed the
automatic translator makes all the appropriate program modifications as needed to be
100% compatible. When developing new source code under Version 4.0 and later, you
will have to use the new syntax because no translation is done after its initial LOAD.
These relatively minor modifications are all described below:

� To allow later extension of PRINT formatting, all static formats must be enclosed
in quotes (“ or ””). Lower case as well as upper case format characters are
accepted.

� Since functions may be arbitrarily named, their DEF statements must contain the
reserved word FUNC, e.g., DEF FUNC TOTAL(X,,Y) . The translator leaves FN in
all earlier programs only to ensure uniqueness of identifiers. You can later
rename functions to anything you like.

� Since names must be unique, the earlier rule that arrays and scalars can be given
the same name is no longer applicable. To ensure uniqueness of array names
when translating earlier programs, MegaBasic doubles the first character of
every array reference in the program. You can change their names after this to
suit your own special needs. For example A(I) becomes AA(I), X3a) become
XX3a), and so on.

� String parameters in DEF statements are passed as localized values just like
numeric parameters (i.e., as local variables). To support the earlier method of
simple string parameter copying which is not re-entrant, each parameter is
preceded by a percent sign (%). This is only done in the function DEF statement
and never in references to functions. The only reason for using this method for
passing strings is to be compatible with programs that rely on the side-effects of
that approach or for the slightly faster execution it provides. For the sake of
completeness and consistency, numeric parameters may be passed in the same
manner by flagging them with percent signs as well.

� FILL and EXAM statements (Chapter 7, Section 3) have been made consistent
with READ and WRITE statements in the way they interpret their data list.
Byte-oriented transfers must be preceded by an ampersand (&); word-oriented
transfers must be preceded by an at-sign (@). If neither of these lead-in
characters is present, then data is transferred just like the other file operations:
numeric floating point and packed-string with a string header.

D

GFK-0256 D-17Appendix D Recent MegaBasic Enhancements

Running North Star BASIC Programs
� Users with programs developed under North Star BASIC can run them under

MegaBasic with very little work. However, do not load them as text files or type
them in from the keyboard. The procedure described below explains how to
convert your binary North Star BASIC programs to binary MegaBasic using an
automatic translator. ASCII program text files have no North Star internal
structures, which are needed to tell the translator that North Star BASIC
programs are being loaded and what to translate. By loading these programs as
text files, you are bypassing the automatic translator, creating an enormous
conversion job for yourself that is totally unnecessary. To convert any North Star
BASIC program properly, just perform the following steps:

� Through whatever means available to you, get your North Star BASIC program
files off of their North Star diskettes (DOS or CP/M-80) and onto files under your
8086 operating system (e.g., CP/M-86 or preferably MS-DOS). MegaBasic cannot
help you with this step.

� RUN your North Star BASIC program through the NSB2ZBA.pgm utility
provided with MegaBasic. This converts your program into ZBASIC format, the
Z80 version of MegaBasic.

� LOAD the resulting program file into MegaBasic. MegaBasic detects ZBASIC
programs and automatically converts them to MegaBasic internal program
format.

� SAVE the translated program back to a disk file. Now test your the program and
make any other changes to it that might be necessary for it to operate correctly
in the 8086 environment, then be sure to SAVE the corrected program again. See
the list of incompatibilities provided below for reference. Also read Appendix D,
Section 5 earlier for other changes that may be required.

This process is very easy and you will find that you can convert dozens of programs in
just one sitting after getting used to it. Be sure to read the rest of the MegaBasic
Reference Manual because there are many capabilities that go far beyond North Star
BASIC that are too numerous to go into here. All the commands in North Star BASIC are
supported, but in a much expanded form. See Chapter 2 for details on the entire
MegaBasic command set. The North Star BASIC incompatibilities to look for include:

� Enhancements to MegaBasic have been incorporated to areas that have
heretofore been considered errors in standard BASIC. Programs that rely on
such errors, so that ERRSET recovery techniques can switch to alternate
routines, might run into difficulty since such errors may no longer exist.

� All ERRSETS (Chapter 6, Section 4) must be examined for compatibility. In
particular, calls to GOSUBS or FNS that setup ERRSETS for the program will not
work, as the scope of each ERRSET is confined to the execution of the invoking
subprogram.

� The DATA-READ pointer is preserved during GOSUB and FN calls. If the
subroutine itself alters the READ pointer for its purposes, this mechanism
conveniently localizes it until a normal RETURN is processed. Thus GOSUB calls
expected to revise the READ pointer before returning will not work.

� Token definitions since Release 5.0 will usually be treated differently in standard
BASIC than in MegaBasic. As of Release 5.2, only three examples are known:
LET, FILEPTR and FILESIZE . The North Star LET token lists as WHILE and
must be deleted, EILEPTR ends up as A MegaBasic MOD function, and
FILESIZE becomes the MegaBasic SWAP statement.

D

D-18 MegaBasic Language Reference and Programmer’s Guide Reference Manual - September 1994 GFK-0256

� MEMSET and LINE statements do not exist because they are completely
unnecessary. But in MegaBasic LINE lists erroneously as LOCAL and such
statements must be deleted from the program.

� Your program REMarks may have strange spelling errors due to the keyword
differences in MegaBasic. The quickest and easiest way to fix these is with the
command: EDIT REM which extracts all REMarks for your editing (Chapter 2,
Section 3).

� Do not attempt any of the North Star Personalization procedures on MegaBasic
as they are not the same. Instead, use the CONFIG program described in
Appendix C, Section 3, which implements all personalization options available.

� Since MegaBasic format strings are always string expressions, format
specifications that include a dollar sign ($) may appear to MegaBasic as dynamic
formats, which will subsequently execute incorrectly. Such formats appear to
begin with a string variable (e.g., Z$12F2, C$8I, etc.). You can fix this problem by
surrounding each such format with quotes (), for example: %“Z$12F2”,
%“C$8I”, etc.

� FNDEFinitions must appear as the 1st statement on the line that you define
them. North Star BASIC allows it to appear anywhere in the line which results in
much more time spent in the load-up process prior to program execution.

� Through system errors in some North Star BASICs, program lines may
erroneously contain control characters. MegaBasic will display such bad
characters as question marks (?) for your correction.

� Lines, commands, and direct statements may be entered in any combination of
upper and lower case. MegaBasic converts all lower case letters not inside quotes
() to upper case before proceeding.

� User defined names with more than one character (e.g., Tl, A$, FNS6, Z3$, etc.)
must be entered run together without any inserted spaces to avoid a syntax
error. The left parentheses following function, string, or array names is
considered part of the name when applying this rule.

� Line-feeds may be entered into the program text for longer lines, and so that
spaces can be inserted between lines to make the text more readable. When
listed, each line-feed expands into a LF-CR sequence.

Index

Index-1GFK-0256

Numbers
8086 register access, 7-43 , 7-45 , 7-46

8087 MegaBasic, 3-35

A
Abbreviated

commands, 2-2
structured variable access, 5-25

Abort errors, A-1

Aborting program execution (CTRL-C),
2-32

ABS function, 9-6

Absolute values, 9-6

ACCESS relationships, 2-41

ACCESS statement, 10-5 , 10-12

Access to array dimensions, 9-35

Accessibility & program changes, 10-22

Accessing
accessing structured variables, 5-25
bits in strings, 5-16
command tails, 9-28
CPU resources, 7-43
current date, 9-34
current time of day, 9-33
data files, 7-21 , 7-26
DATA statements, 5-6–5-7
edit buffer contents, 9-28
external subroutines, 10-3
external subroutines/data, 10-12
external variables, 10-4
files, 7-4 , 7-43
files and I/O devices, 9-25
files as devices, 7-3 , 7-15
integers, 5-16
intermediate calculations, 5-11
memory content, 9-37
memory contents, 7-44
name of open file, 9-31
open-ended arguments, 8-8
packages, 10-12
program constants, 5-6
programs on files, 2-15 , 2-16
string arrays, 4-7
substrings, 4-19
system resources, 9-33
text files, 7-26

the current directory, 9-30
workspaces, 10-22

Accounting format, 7-10

Accuracy in floating point, 3-38

ACOS function, 9-10

Actual arguments, 8-18

Adding
array element, 9-7
new program lines, 1-8
source lines from files–MERGE com-

mand, 2-27
strings, 4-11

Adding array elements, 3-29

Addition, 3-16

Additional
function results, 9-36
MegaBasic products, C-17

Addresses of variables, 9-37

Addressing bits in strings, 5-16

Addressing memory, 7-44 , 7-45 , 7-46 ,
9-37

Advancing the input cursor, 1-15

Aggregate data structures, 5-18

Alphabetical, error message, A-2

Alteration command summary, 2-18

Altering
continuable programs, 10-22
file sizes, 7-29
program line numbering, 2-24
programs, 2-18 , 2-20
sequential execution, 6-1
string length, 4-20 , 5-6 , 5-10
the OPEN file limit, C-8

Ambiguous expressions, 4-11 , 4-16

Ampersand lead-in, 7-30 , 7-33

AND numeric operator, 3-19

AND string operator, 4-11

ANSI sequences, C-22

ANSI.sys console device driver, C-22

Appending
program modules, 2-27
strings, 4-11
vector variables, 3-28

Argument
input to functions, 3-23 , 4-23

Index

Index-2 GFK-0256

input to subroutines, 8-9
list definition and usage, 8-17
lists, 8-6 , 8-7 , 8-12
modes, 8-17
passing modes, 8-19
pointer, 5-30
statement, 8-8
types in functions, 3-25
variables, 8-19

Arithmetic
assignments, 5-10
concepts, 3-1
expressions, 3-14
function summary, 3-24
functions, 9-4
manipulation, 3-1
on pointers, 5-29
on vectors, 3-28 , 3-29
operators, 3-16
replacements, 5-10
representation, 3-1
use of comparisons, 3-22

Array
access, 3-10
communication, 8-21
communication between programs,

10-6
dimensions, 9-35
dimensions currently defined, 9-35
element assignments, 5-10
elements, 3-10
functions, 3-29
maximum size, 3-11 , 4-8
memory addresses, 9-37
names, 4-7
numeric, 3-10
pointers, 5-29
processing, 3-26
size and dimension, 3-10 , 3-11
size statistics, 2-42
slices, 3-27
statements, 3-30
string, 4-7
subscripts, 3-10
summation, 3-29
type declarations, 3-12
variable swapping, 3-32

Array of procedures, 5-28

Array pointers, 5-29

ASCII
code, 4-4

code initialization, 9-39
codes, 4-13
collating sequence, 4-16
conversion tables, D-9
file input, 7-18
program format, 2-12 , 2-16
to character conversion, 9-13

ASIN function, 9-10

Assembler packages, 10-25

Assembly code access, 7-45 , 7-46

Assigning
integer names, 3-5
numeric types, 5-2
string variable length, 5-5
variable types, 3-9 , 3-12

Assignment
statement, 5-10
to numeric variables, 5-10
to string variables, 4-4 , 4-20 , 5-13
to vectors, 3-30

Assignments
inside expressions, 5-11
to structured vbls, 5-22

Asterisk field filling, 7-7

Asynchronous events in MegaBasic, 7-50 ,
C-13

At-sign
arguments, 8-21
lead-in character, 7-30 , 7-33 , 10-6
LINKing, 10-6

ATN function, 9-10

Attaching programs to RUN, C-2

Attributes of
OPEN files and devices, 2-42
subroutines, 8-9
variable sizes, 2-42

Auto-increment assignments, 5-10

Automatic
array creation, 3-11
conversion between real and integer,

3-25
direct statement line, 2-37
file creation, 7-28
file locking mechanisms, 7-39
line numbers, 2-11
package removal, 10-16
packages, C-10
pointer extraction, 8-23
program backup, 2-14

Index

Index-3GFK-0256

record locking mechanisms, 7-38
retry of recoverable errors, 7-42
translation from prior versions, D-16
workspace removal, 10-22

Automatic retry of recoverable errors,
6-23–6-24

Available
functions, 9-1
memory space, 9-37
space remaining on disk, 9-30

Avoiding program duplication, 4-23 , 8-1 ,
8-13

Avoiding program duplications, 3-23

B
B-formats, 7-8

B-Tree utilities, C-21

Background processes, 7-50 , C-13

Background programs, 7-56

Backing up the input cursor, 1-15

Backslash separator, 1-8

Balancing parentheses/brackets, 1-15

Base
10 logarithms, 9-9
array subscript, 3-10
e logarithms, 9-9
file position, 7-29

Base-16 integer constants, 3-7

Base-2 integer constants, 3-7

Base-8 integer constants, 3-7

Baud rate control, C-21

BCD numbers and arithmetic, 3-2

BCD/IEEE floating point, 3-35

Beginning value in variables, 3-8

Bibliography of supplemental material,
1-5

Binary
conversion tables, D-9
data file access, 7-33
file access, 7-31
floating point, 3-35
format mode, 7-8
IMP, 4-11
integer constants, 3-7

integers, 5-16 , 7-30 , 7-34 , 7-44 , 9-22
NOT, 4-11
operators, 3-14 , 3-16 , 3-19 , 3-22 , 4-10 ,

4-11 , 4-13 , 4-16
OR, 4-11
packages, 10-25
program format, 2-15
representation, 3-4
rotation, 9-22
string operators, 4-10 , 4-13
string searching, 9-16
XOR, 4-11

Bit
access, 5-16
addressing, 5-16
function, 9-22
manipulation, 4-13 , 9-22
processing, 5-16
rotation, 9-22
searching, 9-23
statement, 5-16
string comparisons, 4-17
string logical combinations, 4-13
strings, 9-22
vector processing, 4-13

Blank
line insertion, 1-10–1-11
lines, 7-15
lines in formats, 7-12
lines in listings, 5-8

Blanking zero values in PRINT, 7-10

Block input from devices and files, 9-27

Block structures, 6-8

Boolean
operator definitions, 3-19
operators, 3-19
sets, 9-21 , 9-23
string operators, 4-10 , 4-13

Bracket matching, 1-15

Bracket variable addressing, 9-38

Bracketed IF statements, 6-6

Branch trees, 6-8

Branching
criteria, 6-10
out of CASE blocks, 6-9–6-10
out of loops, 6-17
out of sequential execution, 6-1
unconditionally, 6-2

Breaking out of loops, 6-17

Breaking program execution, 6-3 , 6-4

Index

Index-4 GFK-0256

Brief syntax summaries, 2-2

Bringing packages into memory, 10-12

Bringing up MegaBasic, 1-6

Buffer statistics, 2-40

Buffer update, 7-28

Buffered file operations, 6-3 , 6-4 , 7-26

Buffered serial communications, C-21

Building
blocks of packages, 10-8
field structures, 5-18
programs from components (MERGE

statement), 2-27
subroutines, 8-1 , 8-11
systems of packages, 10-1

Built-in
data values, 5-6
functions, 4-23 , 9-1

BY increment specifier, 6-13

BYE Command, 2-40

Byte
access to memory, 7-44
data file access, 7-33
data to ports, 7-44
file access, 7-29
input from ports, 9-37
memory storage, 7-44
position of an open file, 9-29
positions in strings, 4-19
strings, 4-1

C
C-programming constructs, 5-10 , 5-11 ,

5-28 , 8-23

Calculating vectors, 3-28

Calculating with expressions, 3-14

Calculation accuracy, 3-38

Calculator keep mode, 2-31

Call sequence display, 2-37

CALL statement, 7-45

CALL# statement, 7-46

Calling
functions, 3-23 , 4-23
machine code routines, 7-45 , 7-46
operating system commands, 7-46

subroutines, 8-3

Card function, 9-23

Cardinality of a set, 9-23

Carriage return suppression, 7-5 , 7-15 ,
7-18

Case
block definition, 6-9
conversion, 9-21
conversion example, 4-15
selection criteria, 6-10
selection speed improvements, 6-12
statements, 6-8
test expressions, 6-11

Catalog of disk files, 7-24 , 7-25

Causing errors, 6-23

Caution with
functions, 8-15
global variables, 8-15
READ#, 8-15
WRITE#, 8-15

CCP/M-86 MegaBasic support, B-5

CEIL function, 9-4

CEIL operators, 3-18

Centering strings, 7-14

CHAINed systems of programs, 10-18

Chaining between programs, 10-6

CHANGE command, 2-20

Changes to MegaBasic, D-2

Changing
continuable programs, 10-23
file sizes, 7-29
identifiers (NAME command), 2-24
modifying and continuing programs,

2-33
programs (command list), 2-18
string length, 5-6
swapping, 5-15
the current directory, 9-30
the input cursor, 1-15
the OPEN file limit, C-8
workspaces, 10-22

Channel
assignments, 7-3
column positioning, 7-15 , 9-26
default, 7-3
device control, 7-20
errors, 9-36
expression, 7-3

Index

Index-5GFK-0256

I/O functions, 9-25 , 9-32
input, 7-15
line count, 7-15
numbers, 7-3
numbers, OPEN, 7-26
oriented I/O, 7-3
positioning, 7-15
row positioning, 7-15

Character
data to ports, 7-44
deletion, 1-15
device control, 7-20 , 9-32
input from ports, 9-37
insertion, 1-14
output status, 9-29
patterns, 2-8
positions in strings, 4-19
processing, 4-1
range reduction, 4-13
rearrangement, 1-16
set translation, 4-17
strings, 4-1
to ASCII code conversion, 9-13
translation, 9-21
waiting status, 9-28

Characters, special, D-7

CHECK command, 2-38

Checking parenthesis nesting, 1-15

Choosing
between integer and real, 3-2
maximum strings, 9-13
maximum values, 9-7
minimum values, 9-7

Chopping off the decimals, 9-5

CHR$ function, 9-13

CHRSEQ$ function, 9-14

Ciphering program files, C-4

Cleaning up control stack, 6-13

Cleaning up the scratchpad, 6-13

Cleanup routines, 10-9

CLEAR command, 10-24

Clearing
all data, 2-44
variable contents, 5-5

CLOSE statement, 7-28

Closing open files, 7-28

Co-resident programs, 2-3 , 10-3 , 10-4

Code
modification, 10-23
protection, 1-6
security, 1-6–1-7

Coded program format, 2-12

Codes for trappable errors, A-1

Coefficients to polynomials, 9-11

Coercion between real and integer, 3-4 ,
3-25

COLLAT$ function, 9-15

Collating sequence, 4-13 , 4-17 , 9-18 , 9-21

Colon separator, 4-19 , 5-16 , 9-14

Column
device positioning, 9-26
positioning, 7-15 , 9-26
width specifications, 7-7

Column/row transpose on strings, 9-22

Combining
combining operations, 5-11
format specifications, 7-11
IF statements, 6-5–6-6
library functions, 3-23 , 3-24
numbers with operators, 3-14
numbers within strings, 5-18
numerical vectors, 3-26
packages–MERGE command, 2-27
programs with RUN, C-2
vector variables, 3-27

Comma
groupings in numbers, 7-9
PRINT control, 7-5
separator, 2-5

Command
edit, 2-18
environment, 1-8
execution control, program entry, 2-30
form, 2-5
level, 1-6
organization, 1-8
shell execution, 6-4
summary, 2-11 , 2-18
tail access, 9-28

Commands
alphabetic summary of, 2-2
conditional editing, 2-19
device notation, 2-6
display-information and control com-

mands, 2-40

Index

Index-6 GFK-0256

formation of, 2-5
global replacement–CHANGE com-

mand, 2-20
information and control, 2-40
line range deletion, 2-24
line ranges in, 2-6
merging, 2-27
program debugging, 2-30 , 2-37
program deletion, 2-18 , 2-24
program development, 2-1 , 2-11
program editing, 2-18 , 2-19
program entry, 2-11
program file names in, 2-9
program listing, 2-12
program loading, 2-15
program rearrangement, 2-24 , 2-25
program saving–RENAME and MOVE

commands, 2-14
program searching-list search $, 2-12
renumbering–RENAME and MOVE

commands, 2-24 , 2-25
search strings in, 2-7
syntactic notation, 2-4
text file program, 2-16
utility, 2-40
workspace, 2-40 , 10-24

Commented programs, 5-8

Common
data structures, 10-6
expressions, 4-23 , 8-1
logarithms, 9-9
memory area, 9-38 , 9-39
numeric constants, 3-6
procedures, 3-23 , 4-23 , 8-1
resources, 10-21
variables, 10-6 , 10-8

Common expressions, 3-23

Communicating
between programs, 10-5
by address, 8-21
by copying, 8-22
by value, 8-19
variables, 8-21
with GOSUBs, 8-11
with subroutines, 8-10 , 8-17

Communicating through serial channels,
C-21

Compacting program files, 1-6

Comparing strings, 4-11 , 4-12 , 4-13 , 4-16
, 9-15

Comparison operators, 3-22 , 4-11 , 4-16

Comparison string operators, 4-16

Compatibility
between IEEE/BCD versions, 3-36
between versions, B-1
with DATA statements, 5-7
with different precisions, 7-29
with North Star BASIC, 8-22
with prior versions, D-16

Compiling MegaBasic programs, C-17

Complement logic, 3-19

Complements of sets, 4-13

Components of
a program, 1-10
CASE blocks, 6-9
packages, 10-8
subroutines, 8-9

Compound
IF statements, 6-6
statements, 6-6
string expressions, 4-12

Computed
format specifications, 7-13
GOSUB statement, 8-4
GOTO statement, 6-3
RESTORE statement, 5-7

Computer arithmetic, 3-2

Computing
memory requirements, 3-11 , 4-8
multiples, 3-17
numerical vectors, 3-26
vector results, 3-29
vectors, 3-28
with expressions, 3-14

Concatenate string operators, 4-11

Concatenating strings, 4-10 , 4-11

Concatenating vector variables, 3-27

Concepts of packages, 10-8

Concurent processes, C-13

Concurrent CP/M errors, 6-24

Concurrent DOS support, B-5

Concurrent processes, 7-50

Conditional
CASE selection, 6-10
editing, 2-19
execution, 6-5
expressions, 6-5
loops, 6-15

Index

Index-7GFK-0256

program editing, 2-6
tracing, 2-34

Conditional rules in CASEs, 6-10

CONFIG utility programs, C-6

Configuration options, C-6

Configuring
MegaBasic, C-6
packages, C-10
the OPEN file limit, C-8

Confining MegaBasic memory usage, C-9
, C-10

Confirming unsaved programs, 2-16 , 2-40

Console
configuration, C-7
device, 2-5
input, 7-15
program listings, 2-12
status function, 9-29
trace controls, 2-34

Console driver, C-22

Constant, numeric, 3-6

Constant, string, 4-2

Constructing subroutines, 8-1

CONT Command, 2-33

Context
dependencies, 5-10
editing, 2-18 , 2-19
program listing, 2-12
search, 2-7

Continuability, 10-23

Continuable STOP, 6-4

Continuing program execution, 2-33

Control
stack workspace, 4-12
variables, 6-16

Control keys–TRA CE, 2-34

Control-Break, C-7

Control-C, C-7

Controlled time-outs, 6-26

Controlling
debugging trace, 2-34
default drive, 9-39
default I/O device, 9-39
defaults, 9-39

errors, 6-20
execution, 2-30
expression evaluation, 3-14
internal parameters, 9-39
MegaBasic parameters, 9-39
numeric format, 9-14
operator precedence, 4-10
output formatting, 7-6
print statements, 7-15
program execution–CTRL -C, 2-32
result precision, 9-5
screen speed-comand output, 2-10
string expression evaluation, 4-10
string initialization, 9-39
string length, 9-13
user intervention, 9-39
workspaces, 2-3

Controlling floating point size, 3-37

Conversion tables, D-9

Converting
between real and integer, 3-25
from North Star BASIC, D-17
GOSUBs to procedures, 8-12
integers to real, 3-4
LINKs into packages, 10-18
non-integer programs, D-14
numbers to integer, 9-35
numbers to real, 9-34
numbers to strings, 9-14
string to numbers, 9-14
to MegaBasic SAVE Command, 2-15

COPY command, 2-26

Copying
argument values, 8-22
data to files, 7-33
program sections, 2-26 , 2-27

Correcting
input characters, 1-16
input errors, 1-19
typing errors, 1-14

COS function, 9-10

Counting
bits in strings, 9-23
characters, 9-12 , 9-13
set membership, 9-23

CP/M user numbers, 7-25

CP/M-86 MegaBasic support, B-4 , B-5

CPU register access, 7-43 , 7-45

CREATE statement, 7-24

Create/open statement, 7-28

Index

Index-8 GFK-0256

Creating
data files, 7-24
field structures, 5-18
new files, 7-28
single-line functions, 8-14
string variables, 4-4
subroutines, 8-11
systems of packages, 10-1
workspaces, 10-22 , 10-24

Cross-sections of arrays, 3-27

CRUNCH utility program, C-4

CTRL-C
abort, 2-32 , 9-39
disable, C-7
during package execution, 10-23
initial state, 10-4

CTRL-C Break, C-7

Current
data type on file, 9-32
date, 9-34
dimensions of variables, 9-35
disk capacity, 9-30
file capacity, 9-30
file position, 9-29
format, 7-7 , 7-9
memory space, 9-37
numeric memory, 9-40
time of day, 9-33

Cursor control, 7-15 , 9-26

Cursor positioning during input, 1-15

Custom debugging controls–TRACE
command, 2-37

Custom error messages, 6-23

Customizing MegaBasic, C-6

Customizing the STOP message, 6-4

Cycle of program development, 1-8

D
Data

access to memory, 7-44
accessibility, 10-5
communication between programs,

10-6
definition statements, 5-2
in multiple package systems, 10-4
initialization, 5-2

input to subroutines, 8-9
list definition and usage, 8-17 , 8-18
lists, 7-33
ownership, 10-8
read-pointer, 5-7
security, 7-37
statement, 5-6
statistics–ST AT command, 2-40
structure memory addresses, 9-37
SWAP statement, 5-15
symbols in expressions, 3-14
transformation statements, 5-9
type agreement, 5-7 , 5-15
type conversion, 9-13
type on file, 9-32

Data file
access, 7-29
blocks, 7-24
creation, 7-24
length, 7-24
processing statements, 7-21
renaming, 7-25
size, 7-24
types, 7-24

Data file directory listing, 7-24

Data file indexing, C-21

Database operations, C-21

Date of last file alteration, 9-29

DATE$ function, 9-34

Debugging
aids, C-11
assistance, 8-17
command summary, 2-30
direct statement line–TRACE com-

mand, 2-37
direct statements-execution, 2-30
dual-screen, C-11
error recovery procedures, 6-23
mode, 2-34
problems with default arrays, 3-11
programs, 2-30 , 2-34
statements, 6-4

Decimal, conversion tables, D-9

Decision branching, 6-8

Decision criteria, 6-10

Declarations, 8-5

Declarative characters, D-7

Declaring
data/subrs as external, 10-8

Index

Index-9GFK-0256

decrementing assignment statements,
5-10

field structures, 5-18
numeric types, 5-2
variable types, 3-9 , 3-12

DEF
SHARED statement, 10-3 , 10-8
statement, 5-2 , 8-6 , 8-7 , 8-12 , 8-14 ,

8-15

DEF statement, 5-32

Default
array creation, 3-11
array size, 9-39 , C-8
configuration, C-6
default structured variable access, 5-25
device–I/O devices, 2-5
dimensions, 3-12 , 4-4
drive, 9-39
ELSE clause, 6-7
file buffers, C-8
file extension, 7-26
format, 7-7 , 7-9
format modifiers, 7-9
I/O channel, 7-3
I/O device, 9-39
input prompt, 7-16
input values, 7-17
line numbering, 2-24
program file name suffix, 2-9
segment address of variables, 7-44
string length, C-9
string size, 9-39
string variable size, 4-4
variables, 3-23 , 4-23

Defining
data files, 7-21 , 7-24
field structures, 5-18
functions, 8-6 , 8-7
logical interrupts, 7-50
loops, 6-13 , 6-16
multi-line functions, 8-15
numeric arrays, 3-10
numeric types, 5-2
procedures, 8-5 , 8-6
program structures, 6-15
prologues and epilogues, 10-9
retry procedures, 6-23–6-25 , 7-42
single-line functions, 8-14
string arrays, 4-7
string variables, 4-4
strings and arrays, 5-4
subroutines, 8-1 , 8-11

systems of packages, 10-1

Definition statements, 5-1 , 8-3

DEL command, 2-24

Deleted character recovery, 1-16

Deleting
data files, 7-24
empty workspaces, 10-22
input characters, 1-16
line ranges, 2-24
packages, 10-5 , 10-9
substrings, 5-14

Delimitor characters, D-7

Descriptions of MegaBasic errors, A-1

Design techniques, 8-27

DESTROY statement, 7-24

Determining name of open files, 9-31

Determining the current directory, 9-31

Developing large programs, 1-8

Developing programs–program entry
commands, 2-11

Development environment, 10-21

Development version, 1-6

Device
channel errors, 9-36
column positioning, 9-26
control, 7-20 , 9-32
default, 2-5
I/O functions, 9-25
I/O statements, 7-3
input, 7-15
line positioning, 9-26
oriented file output, 7-15
output status, 9-29
row positioning, 9-26
specification, 2-6

Device driver, C-21

Devices in use display–SHOW, OPEN
command, 2-42

Diagnostic error codes and messages, A-1

Diagnostic string of error, 9-36

Differences
between IEEE/BCD versions, 3-36
between versions, B-1
with prior versions, D-16

DIM function, 3-10 , 8-22 , 9-35

DIM statement, 3-10 , 4-4 , 4-7 , 5-4

Index

Index-10 GFK-0256

Dimensioning
integer variables, 3-5
numeric arrays, 3-10
real variables, 3-5
string arrays, 4-7
string variables, 4-4

Dimensions of an array, 9-35

DIR command, 7-25

DIR$ function, 9-30

Direct
machine access, 7-43
memory access, 7-44 , 9-37
mode, 2-1 , 2-30
statement execution, 2-30
statements, 10-22

Directory
name extraction, 9-31
of disk files, 7-25
partitions, 7-25
path of open file, 9-31
pathname function, 9-31
scanning function, 9-30

Disabling Ctrl-C abort, 10-4

Disabling CTRL-C abort, 9-39

Disabling file endmarks, 7-33 , 7-37

Disconnecting from files, 7-28

Disk
capacity, 9-30
file directory listing, 7-25

DISMISS statement, 10-5 , 10-13

Display commands-information and con-
trol commands, 2-40

Display package accessibility–SHOW
command, 2-41

Displaying
a fixed number of digits, 7-8
current workspaces, 2-41
names, 1-12
programs–LIST command, 2-11 , 2-12
selected identifiers, 2-23
statement execution–TRA CE com-

mand, 2-34
status of OPEN files–SHOW, OPEN

commands, 2-42
strings, 7-13
the RETURN path–TRACE RET com-

mand, 2-37
user assigned names, 2-23

variable sizes, 2-42
vectors, 3-33

Distribution on random numbers, 9-7

Divisibility function, 9-6

Division, 3-16

Dollar format, 7-9

Dollar sign notation, 2-6

DOS statement, 6-4

DOS-extenders, C-18

Double
definition errors, 2-31
precision floating point, 3-35
spacing, 5-5

Drive codes in file names, 7-23

Drive specifiers, 2-10

Dual-screen debugging, C-11

DUPL command, 2-27

Duplicate variable names, 3-10

Duplicating program lines, 2-26 , 2-27

Dynamic
breakpoints, 2-36
format specifications, 7-13
formatting, 9-14
numeric arrays, 3-10
program alteration and continuing, 2-33

range of real numbers, 3-2
tracing, 2-37

E
E-notation, 3-6

Earlier program formats, D-16

Echo suppression, 7-18

Edit buffer access, 9-28

EDIT command, 2-19

EDIT statement, 7-19

EDIT$ function, 7-19 , 9-28

Editing, 1-14
command summary, 2-18
continuable programs, 2-33 , 10-23
control keys, 1-18
input entries, 1-14
on the fly, 2-19
programs, 1-14 , 2-18 , 2-19

Index

Index-11GFK-0256

Editor suppression, 7-18

E-formats, 7-8

ELAPSE function, 9-34

Elapse time, 9-34

Elements of
arrays, 3-10
packages, 10-8
string arrays, 4-7
subroutines, 8-9

Eliminating data files, 7-24

Eliminating GOTOs, 6-8

ELSE
clause control, 6-7
clause restrictions, 6-16
clauses, 6-5

Empty (NULL) ELSE clause, 6-7

Empty lines in listings, 5-5

Enabling CTRL-C abort, 2-32 , 9-39 , 10-4

Encripting program files, C-5

End of subroutines, 8-4

END statement, 6-3

End-of-file processing, 7-15 , 7-18 , 7-33 ,
7-37 , 9-29 , C-8

Ending
multi-line function DEFs, 8-7
procedure definition, 8-8
program execution, 6-3–6-4
the TRACE mode, 2-38

Endmark on files, 7-33

Endmark suppression, 7-33

Enforcing numeric result type, 3-25

Engineering
format mode, 7-8
functions, 9-9
notation for numbers, 3-6

Enscripting program files, 1-8

Ensuring
integer results, 9-35
numeric result type, 3-25
real results, 9-34

ENTER command, 2-11

Entering
program lines, 2-11
programs, 1-8
programs from text files, 2-16

similar lines, 1-17

Entry points, 8-9

Enumerating
bits in strings, 9-22
characters, 9-13
set membership, 9-23

ENVIR$ function, 9-38

Environment
commands, 2-40
descriptor, 9-39
statistics, 2-40
strings, 9-38

Environments-workspace environment,
2-3

Epilogue
calling path–TRACE RET, 2-37
debugging, 2-37
guide lines, 10-15
invocation, 10-4
routines, 10-9
sequencing, 10-13

Equality operator, 3-22 , 4-16

Equivalence between indexing modes,
4-19

Equivalence operator, 3-19

EQV numeric operator, 3-19

EQV string operator, 4-11

Erasing
data files, 7-24
files, 7-28
the program–DEL command, 2-24

ERRDEV function, 9-36

ERRLINE function, 9-36

ERRMSG$ function, 9-35

Error
checking–CHECK command, 2-38
codes and messages, A-1 , A-11
diagnosis, 9-36
diagnosis–TRA CE command, 2-37
message string, 9-35
messages, alphabetical, A-2
processing functions, 9-35
recovery subroutines, 6-23 , 7-42
trapping statement, 6-20
traps while tracing, 2-36
type of last error, 9-35

ERRSET statement, 6-20 , 6-23

ERRTYP function, 9-35

Index

Index-12 GFK-0256

Establishing external access, 10-5

Evaluating polynomials, 9-11

Evaluation of extended indexing, 4-21

Event generation, C-13

Events, serial communication, C-21

EXAM
data lists, D-16
function, 9-37
statement, 7-44

Examining
memory contents, 7-44 , 9-37
program variables, 2-31

Example
multi-package system, 10-16
packages, C-16

Exception error codes and messages, A-1

Exception processing, 6-20

Exchanging, vectors, 3-32

Exclusive file access, 7-38

Exclusive OR operator, 3-19

Executable, statements, 7-1

Execute-only MegaBasic programs, C-2

Executing
in the background, 7-54
multiple package programs, 10-23
operating system commands, 7-46
programs, 1-6
shell commands, 6-4

Execution
abort–CTRL -C, 2-32
command summary, 2-30
continuing, 2-33
control statements, 6-1
controlling, 2-30 , 2-32
debugging, 2-34
direct statements, 2-30
improvements, CASE, 6-12
interrupting, 2-32
program–RUN command, 2-31
single-step, 2-34
starting, 2-31
statistics, 2-40
tracing, 2-34

Exhaustive table of logical combinations,
3-19

EXIT NEXT meaning, 6-17

EXIT statement, 6-17

Exiting
CASE blocks, 6-11
loops, 6-13 , 6-15 , 6-17
MegaBasic–B YE command, 2-40
program execution, 6-3–6-4
subroutines, 8-3 , 8-4 , 8-9
the trace mode, 2-34

EXP function, 9-10

Explicit file positioning, 7-29

Explicit subroutine arguments, 8-17

Exponential
format mode, 7-8
function, 9-10
notation for numbers, 3-6
random numbers, 9-7

Exponentiation, 3-15

Expressing numbers, 3-6

Expression
arithmetic, 3-14 , 3-16
boolean, 4-10 , 4-13
comparison, 4-16
conditional, 2-37 , 3-19 , 6-5
indexing, 4-19
logical, 3-19 , 4-10 , 4-13
numeric, 3-14 , 3-16
optimization, 3-19
relational, 3-19 , 4-16 , 6-5
string, 4-10 , 4-13
string indexing, 4-19

Expressions
containing assignments, 5-11
in DATA statements, 5-6

Extended
assignment statements, 5-10
IF statements, 6-7
line length, 1-10

Extended MegaBasic, C-18

Extensibility, 8-1 , 8-12 , 10-1 , 10-5

Extension configuration, C-10

Extensions to MegaBasic, D-2

External
data, 10-4
data accessibility, 10-5
event processing, 7-50 , C-13
function accessibility, 10-5
procedure accessibility, 10-5
resources, 10-21
subroutine accessibility, 10-5

Index

Index-13GFK-0256

subroutines, 10-4
variable accessibility, 10-5
variables, 10-4

External access
from direct statements, 10-22
to MegaBasic, 7-48 , 7-49
to other program, 10-8
to outside packages, 10-12

Extra function results, 9-36

Extra space removal, 9-13

Extracting
directory names, 9-31
file names from directory, 9-30
fractional numeric part, 9-5
square-roots, 9-9
the integer portion, 9-4

F
Facilities for packages, 10-11

Falling through loops, 6-13

Fast arithmetic, 3-4

Faster execution, 1-7 , 4-23 , 5-13–5-14 ,
5-15 , 7-26 , 7-45 , 7-46 , 8-21 , 8-22 ,
C-17

Faster string processing, 4-21

Fatal errors, A-1

F-formats, 7-8

Field management, C-20

Field width omission, 7-7

Field width overflow, 7-7

Field width specification, 7-7

Field widths, 7-7

File
access, 7-26 , 7-29
allocation changes, 7-29
alteration date, 9-30
alteration time, 9-30
blocks, 7-24
buffer control, 7-33
buffer update, 6-3–6-4 , 7-28
buffers, 7-26 , 7-33
capacity, 9-30
change date, 9-30
change time, 9-30
creation, 7-24

deletion, 7-24
directory listing, 7-25
endmark, 7-37
error detection, 7-29
function, 9-30
function summary, 7-24
functions, 9-25
headers on strings, 7-30
indexing, C-21
input, 7-18
input to vectors, 3-33
length, 7-24
length changes, 7-29
locking mechanisms, 7-38
look ahead, 9-32
name extension, 7-23
name extraction from directory, 9-30
name search, 9-30
name syntax, 7-23
names, 7-24
names of open files, 9-31
names of programs, 2-9
operation upsets from functions, 8-16
output, 7-15
output from vectors, 3-33
position base, 7-29
position function, 9-29
positioning, 7-29
processing statements, 7-21
renaming, 7-24
revision date, 9-30
revision time, 9-30
size, 7-24
size changes, 7-29
types, 7-24

File buffer control, C-8

File directory listing, 7-24

File lookup order, 10-2

FILEDATE$ function, 9-30

FILEPOS function, 9-29

Files, floating point on, 3-37

Files as devices, 7-3 , 7-15

Files in use display, 2-41

FILESIZE function, 9-29

FILETIME$ function, 9-30

FILL data lists, D-16

FILL statement, 7-44

Filling data to memory, 7-44

Filling with spaces, 5-15

Index

Index-14 GFK-0256

FIND function, 3-29 , 9-16

Finding
bit patterns, 9-23
maximum strings, 9-13
maximum values, 9-7
minimum values, 9-7
names, 1-12
string patterns, 9-15
the nearest multiple, 3-17

Finishing packages, 10-5

Finishing the TRACE mode, 2-38

Finite memory, 10-6

Fixed string constants, 4-2

Fixed-length string access, 7-30

Fixed-point format mode, 7-8

Fixed-point rounding, 3-17 , 9-5

Fixing input errors, 1-19

Flag arrays, 9-22

Floating point
compatibility, 3-36
elimination, D-14
file access, 7-30
file representation, 3-37
numeric constants, 3-7
numeric processing, 3-35
performance, 3-38
precision, 3-8 , 9-39
precision compatibility, 7-30
precision on files, C-8
range, 3-2
representation, 3-2 , 3-8
type declarations, 3-5
variable type declaration, 3-9 , 3-12

Floor function, 9-4

Flushing file buffers, 7-37

FOR
loop editing, 6-16–6-17
statement, 6-13
value list, 6-13

FOR..NEXT, 6-13

Forcing
integer results, 9-35
numeric result type, 3-25
real results, 9-34
string variable length, 5-6

Formal arguments, 8-17

Format
computed, 7-13
control, 9-14
current, 7-7
default, 7-7 , 7-9
dynamic, 7-13
exponential, 7-7
floating point, 7-7
free-form, 7-7
integer, 7-7
lead-in character, 7-6
literals, 7-11
modifiers, 7-9
modifying, 7-9
nesting, 7-13
repetition, 7-13
rescan, 7-12
slashes, 7-11
specifications, 7-7
specifying, 7-7 , 7-9 , 7-13
static, 7-7
string expression, 7-14
string syntax, 7-8

Formatting
file output, 7-15
numbers, 7-7
output, 7-5 , 7-6
strings, 7-13

Forming constants, 3-6

Forming program lines, 1-11

Formulation of the problem, 8-27

FRAC function, 9-6

Fractional portion of numbers, 9-6

FREE function, 9-37

Free-form format, 7-7 , 7-9

Freeing storage, 10-5

FUNC END statement, 8-7 , 8-15

Function
accessibility, 10-5
argument passing modes, 8-19
arguments, 8-13
arithmetic, 9-4
bit-manipulation, 9-12
built-in, 3-23 , 4-24 , 8-1
calling path–TRACE RET, 2-37
character, 9-12
communication, 8-17
components, 8-9
conversion, 9-12
creation, 8-1

Index

Index-15GFK-0256

data types, 8-13
debugging, 2-37
defining, 3-23 , 4-24 , 8-1 , 8-6 , 8-7 , 8-15
definition, 8-1 , 8-6 , 8-14 , D-16
identifiers, 1-12
inverse, 9-9
library of, 3-23 , 4-24
local parameters, 8-16
local variables, 8-5
mathematical, 9-9
multi-line, 8-13 , 8-15
names, 8-6
naming, 8-13
numeric, 9-4
parameters, 8-13
polynomial, 9-9
results, 8-13
side-effects, 8-16
single-line, 8-13 , 8-14
statements, 8-3
string, 9-12
subroutines, 8-13
termination, 8-4
trigonometric, 9-9
types, 8-11
unpacking, 9-12
usage, 8-1
user defined, 3-23 , 4-24 , 8-1 , 8-13 , 8-14

zero parameters, 8-14

Functions
built-in, 3-24
channel access, 9-25 , 9-32
device access, 9-25
externally accessible, 10-8
file access, 9-25
for hardware purposes, 9-33
for system purposes, 9-33
for utility purposes, 9-33
in assembler, 10-25
library of, 3-24
on numerical vectors, 3-29
without parameters, 8-13

G
Generating

blank lines, 7-15
errors, 6-23
random numbers, 9-7

Generic CASE selection, 6-10

Getting current directory, 9-30

Getting name of open file, 9-31

Giving up CPU cycles, 6-26

Global
editing, 2-19
endmark control, 7-37
packages, C-10
replacement, 2-18
resources, 10-21
substitution, 2-21
variable side effects, 8-16
variables, 8-5 , 8-17 , 10-8

GOSUB
calling path, 2-37
communication, 8-17
computed, 8-4
debugging, 2-37
local variables, 8-5
recursion, 8-27
statement, 8-3
termination, 8-4
types, 8-11
use and definition, 8-11

GOTO statement, 6-2

GOTO, computed, 6-3

Greater-or-equal operator, 3-22 , 4-16

Greater-than operator, 3-22 , 4-16

Greatest
common denominator example, 8-27
numeric array sizes, 3-11
string array size, 4-8

Grouped statements, 6-6

Guaranteeing
integer results, 9-35
numeric result type, 3-25
real results, 9-34

H
H-formats, 7-8

Hardware
functions, 9-33
port access, 7-44 , 9-37
register access, 7-43
requirements, 1-3
requirements of MegaBasic, 1-3

Hexadecimal
conversion tables, D-9

Index

Index-16 GFK-0256

format mode, 7-8
integer constants, 3-7

Hiding implementation details, 8-10

Hiding procedure details, 8-3

Hierarchical data structures, 5-18

Hierarchical structures, 8-3

High level modularization, 10-1

High-speed
arithmetic, 3-4
packages, 10-25
string searching, 9-16

Host operating systems, 1-3

Host system dependencies, B-1

I
I-formats, 7-8

I/O
channel errors, 9-36
channel functions, 9-25
channels, 7-3
channels in use display, 2-42
data lists with functions, 8-15
device control, 7-20 , 9-32
device specification, 2-5
port access, 7-44 , 9-37
redirection, 9-25
statements, 7-3
status, 9-28

IBM-PC screen processing, C-16

IBM-PC subdirectories, 7-25

Identifier re-assignment, 2-24

Identifier restrictions, D-6

Identifiers, 1-12

Identifying
procedures, 8-12
program objects, 1-12
subroutines, 8-9
variables, 3-8 , 4-4

IEEE MegaBasic, 3-35

IEEE/BCD floating point support, 3-35

IF statement, 6-5

IF statement errors, 6-6

Immediate statement execution, 2-30

IMP numeric operator, 3-19

IMP string operator, 4-11

Implementation of packages, 10-10

Implication operator, 3-19

Implicit
array creation, 3-11
dimensions, 3-10 , 4-4
package INCLUDEs, 10-4
subroutine communication, 8-17

IN operator, 4-17–4-18

INCHR$ function, 9-27

INCLUDE statement, 10-4 , 10-12

Including packages, 10-9 , 10-12

Inclusive OR operator, 3-19

Incomplete definition errors, 2-31

Increment specific in loops, 6-13

Incrementing assignments, 5-10

Independent program modules, 8-10 ,
8-21 , 10-9

INDEX function, 9-36

Index variables, 6-13 , 6-16

Indexed
GOSUB statement, 8-4
GOTO statement, 6-3
RESTORE statement, 5-7
string assignments, 4-20 , 5-13 , 5-15

Indexing
arrays, 3-27
extended string, 4-21
modes of, 4-20
outside actual string, 4-20
string, 4-19
string array, 4-20

Indexing data files, C-21

Indirect access pointers, 5-29

Infinite loops, 6-15–6-16

Information
hiding, 10-1 , 10-9 , 10-24
on files and I/O devices, 9-25
on OPEN files and devices, 2-42
on variable sizes, 2-42

Inhibiting Ctrl-C abort, 9-39 , 10-4

Inhibiting file endmarks, 7-33 , 7-37

Initial
configuration, C-6

Index

Index-17GFK-0256

Ctrl-C state, 10-4
default format, 7-7
string variable size, 4-4
value in new variables, 3-8

Initialization at startup, 10-23

Initialization routines, 10-9

Initializing
numeric arrays, 3-10
static DEF statements, 10-4
string variables, 9-39

INP function, 9-37

INP$ function, 9-37

Input
arguments, 8-9
channel, 7-15
character deletion, 1-15
data to subroutines, 8-17
device, 7-15
editing, 7-17
function, 9-27 , 9-28
I/O port, 9-37
line editing, 1-14 , 1-20
numeric, 7-15
of similar lines, 1-18
programs–ENTER command, 2-11
statement, 7-15
statements, 7-3
status function, 9-28
string, 7-15
substrings, 5-14
variable list, 7-15

Inserting
input characters, 1-14
new program lines, 1-8
program lines, 1-10

Installing MegaBasic, 1-3

INT function, 9-4

INT operators, 3-17

Integer
access to memory, 7-44
data file access, 7-33
DIM statements, 5-4
file access, 7-29
format mode, 7-8
function, 9-35
memory storage, 7-44
numeric constants, 3-7
packing/unpacking, 5-16
portion, 9-4

representation, 3-4
truncation, 9-5
type declarations, 3-5 , 5-2
use in floating point programs, D-14
variable type declaration, 3-9 , 3-12

Intentional errors, 6-23

Inter-program communication, 10-6

Interactive input, 7-16

Interactive input editing, 7-17

Interfacing to procedures, 7-48 , 7-49

Intermediate calculations, 5-11

Intermediate results of operations, 9-36

Internal
MegaBasic parameters, 9-39
program constants, 5-6
program data, 5-6
register access, 7-43
translation from prior versions, D-16

INTERRUPT statement, 7-50 , C-13

Interrupting execution, 2-32 , 2-37

Interrupts into machine code, 7-46

Interrupts into procedures, 7-48 , 7-49

Intersection of sets, 4-13

Interval string indexing, 4-19

Introduction to MegaBasic, 1-1

Inverse
cosine function, 9-10
functions, 9-9
sine function, 9-10

Invoking
epilogues, 10-5 , 10-13
errors, 6-23
functions, 3-23 , 4-23
MegaBasic, 1-6
operating system commands, 7-46
programs, 1-6
prologues, 10-4
shell commands, 6-4
subroutines, 8-3 , 8-9

IOCTL examples, C-21

IOCTL function, 9-32

IOCTL statement, 7-20

IOCTL$ function, 9-32

Isolating implementation details, 8-10

Iteration control, 6-16–6-17

Index

Index-18 GFK-0256

Iterative program structure, 6-13 , 6-15

J
Jump statement, 6-2

Jumping out of CASE blocks, 6-11

Jumping out of loops, 6-17

Justification, left, 4-20–4-21 , 5-13 , 7-6

Justification, right, 7-6

Justifying strings, 7-13

Juxtaposition of strings, 9-22

K
Keyboard

entry of numbers, 3-7
input, 7-15
status function, 9-29
trace controls, 2-35

Keyboard hot-keys, C-13

Keywords, 2-4 , 2-5

Kinds of arguments, 8-17

Kinds of subroutines, 8-11

L
L-formats, 7-14

Label re-assignment–NAME command,
2-24

Labeling program objects, 1-12

LAN file access, 7-38

Language extensibility, 8-1 , 8-12 , 10-1 ,
10-5

Large memory access, C-18

Large scale programming, 8-1 , 10-1 , 10-3
, 10-4

Large user-defined functions, 8-15

Largest numeric array sizes, 3-11

Largest string array size, 4-8

Last input line access, 1-17

Last-byte string indexing, 4-19

Leading
letter type declarations, 5-2
space removal, 9-13
zeos in displayed numbers, 7-8

Learning computer software, 1-5

Leaving
CASE blocks, 6-11
loops, 6-13 , 6-15 , 6-17
subroutines, 8-9

Left
bit rotation, 9-22
fill, 7-14
justification, 4-20–4-21 , 5-13 , 7-6 , 7-13
substrings, 4-19

LEN function, 9-13

LEN statement, 5-6

Length
assignment statement, 5-6
error, 8-20
of an open file, 9-29
of lines, 1-8
of strings, 4-20 , 9-13

Length of vectors, 3-28 , 3-29

Lengthening file sizes, 7-29

Less-or-equal operator, 3-22 , 4-16

Less-than operator, 3-22 , 4-16

Library functions, 3-23 , 3-24 , 9-1

LIBRARY package, C-16

Lifetime of variables, 10-13

Limited memory, 10-3

Limiting
MegaBasic memory usage, C-9
numeric array sizes, 3-11
result precision, 9-5
string array size, 4-8

Line
continuation, 1-10
editing, 2-18 , 2-19
feed continuation, 1-11
feed display control, 2-12
function, 9-26
input from text files, 7-18
label list, 6-3 , 8-4
label restrictions, D-6
labels, 1-12 , 6-16 , 8-11
length, 1-8 , 1-10
number alteration–CHANGE com-

mand, 2-21

Index

Index-19GFK-0256

number alteration–REN and MOVE
commands, 2-25

number list, 6-3 , 8-4
number order, 1-10
number references, 2-25
numbers, 1-8 , 1-11 , 2-11
positioning, 9-26
range deletion, 2-24
ranges, 2-6
renumbering, 2-18 , 2-24
selection, 2-6

Line number where last error occurred,
9-36

Linear string searching, 9-16

Lines, labels, special purpose, 10-9

LINK statement, 10-6

LINKed systems of programs, 10-18

LIST command, 2-12

List of
arithmetic functions, 9-4
commands, 2-2
file and I/O functions, 9-25
mathematical functions, 9-9
string functions, 9-12
utility and system functions, 9-33

Listing
current workspaces–SHOW command,

2-41
disk files, 7-25
names, 1-12
program line ranges, 2-12
programs, 2-11 , 2-12
status of OPEN files-SHOW OPEN,

2-42
the RETURN path (TRACE RET), 2-37
variable sizes–SHOW SIZE, 2-42

Literals in formats, 7-12

LN function, 9-9

LOAD command, 2-15 , 10-24

Loading
data constants, 5-7
data from files, 7-29
earlier programs, D-16
memory contents, 7-44 , 9-37
packages, 10-9
packages into memory, 10-12
programs, 2-16
workspaces, 10-24

Local
area network file access, 7-38
DATA statement pointer, 5-7
ERRSETs, 8-4
parameter variables, 8-14
protection, 6-20 , 8-5
resources, 10-21
statement, 8-5 , 8-16 , 8-19
variable protection, 8-16
variables, 6-20 , 8-3 , 8-5 , 8-19

Localized error control, 6-20

Locating bit patterns, 9-22 , 9-23

Locating names, 1-12

Locating string patterns, 9-15

Locating vector values, 3-29

Location of last error, 9-36

Locking external file access, 7-38

LOG function, 9-9

Logarithmic string searching, 9-15 , 9-16

Logarithms, 9-9

Logical
CASE selection, 6-10
expressions, 6-5
interrupts, C-13
operator definitions, 3-19
operators, 3-19
rotation, 9-22
sets, 9-22
string operators, 4-10 , 4-13

Long IF statements, 6-7

Loop
boundaries, 6-16
continuation, 6-17
control, 6-13
control variables, 6-16
definition, 6-16
exiting, 6-17

Looping program structures, 6-13 , 6-15

Low level packages, 10-25

Lower case conversion, 9-21

Lower to upper case conversion example,
4-15

M
Machine

code access, 7-45 , 7-46

Index

Index-20 GFK-0256

dependent operations, 7-43
packages, 10-25
register access, 7-43 , 7-45 , 7-46

Major system implementation, 10-1

Managing variable names, 8-17

Manipulating
data files, 7-21
numeric information, 3-1
numerical vectors, 3-26
strings, 4-1 , 9-12

Map of program structures–XREF , 2-43

Mapping characters, 9-21

MATCH function, 9-15

MATCH operator, 4-12

Matching parentheses/bracket pairs, 1-15

Matching strings, 4-12

Math processor MegaBasic, 3-35

Mathematical Functions, 9-9

Matrix
arithmetic, 3-28
cross-sections, 3-27
functions, 3-29
manipulation, 3-26
slices, 3-27
statements, 3-30
variable swapping, 3-32

MAX array value, 3-30

MAX function, 9-7

MAX operator, 4-13

MAX$ function, 9-13

Maximum
array size, 3-10
line length, 1-8
memory space, C-4
program size, 10-3
string array size, 4-8
string capacity, 4-4
string variable size, 4-8
strings, 9-13
substring selection, 9-16
values, 9-7

Measuring elapse time, 9-34

MegaBasic
compiler, C-17
extended, C-18
for North Star BASIC users, D-17

function library, 9-1
functions, 9-33
installation, 1-4
manual organization, 1-5
numeric representation, 3-2
product summary, 1-1
support for Xenix, B-2
system requirements, 1-3
version number, 9-39

MegaBasic configuration, C-6

MegaBasic products, C-17

Memory
access, 7-44 , 9-37
addressing, 7-44 , 7-45 , 7-46 , 9-38
configuration of MegaBasic, C-9
extended, C-18
limitations, 10-6
management, 10-5
maximization, 10-3 , C-4
requirements, 5-13 , 8-22
requirements of arrays, 3-11 , 4-8
resident programs, 10-4
segment address of variables, 9-37
space, 3-10 , 3-11
statistics–ST AT command, 2-40

Menu support, C-20

MERGE command, 2-27

Merging program modules, 2-18 , 2-27

Message string of last error, 9-35

Messages from program errors, A-1

Messages, error, A-1

Method pointers, 5-28

M-format, 7-14

Middle substrings, 4-19

MIN array value, 3-29

MIN function, 9-7

MIN operator, 4-13

MIN$ function, 9-13

Minimizing floating point, D-14

Minimum
hardware requirements, 1-3
substring selection, 9-16
values, 9-7

Mixed data type expressions, 4-11 , 4-16

MOD function, 9-5

Model multi-package system, 10-15

Index

Index-21GFK-0256

Modes of arguments, 8-18

Modifying
continuable programs, 2-33 , 10-23
file sizes, 7-29
MegaBasic, C-6
sequential execution, 6-1
string length, 5-6

Modular
arithmetic, 3-16 , 9-5
design, 8-1 , 8-21 , 10-1 , 10-15 , 10-24
program structures, 8-3

Module lookup order, 10-2

Monitoring
program execution–TRA CE command,

2-34
program variables, 2-31
statement execution, 2-34
subroutine calls–CHECK command,

2-38

Mouse support, C-13 , C-20

MOVE command, 2-25

Moving
data between variables, 5-9
data files, 7-25
data from files, 7-29
data to files, 7-33
data to memory, 7-44
input characters, 1-15
memory contents, 7-44 , 9-37
program lines, 2-24 , 2-25
the input cursor, 1-15

MP/M-86 retriable errors, 6-23–6-24

MS-DOS
background processing, 7-54
environment strings, 9-38
multitasking, 7-54
subdirectories, 7-25

Multi-character input, 9-27

Multi-dimensional
numeric arrays, 3-10
string arrays, 4-7

Multi-level, string indexing, 4-21

Multi-line
functions, 8-6 , 8-7 , 8-15
print statements, 7-15
procedures, 8-7

Multi-package system example, 10-16

Multi-tasking support, 7-50 , B-2 , B-5 , B-7

Multi-user applications, 7-38

Multi-user facilities, 7-42

Multi-valued expressions, 3-28

Multi-way, GOSUB statement, 8-4

Multi-level
error control, 6-20
IF statements, 6-5 , 6-7

Multi-line, IF statements, 6-7

Multiple
file buffers, 7-26
file positioning, 7-29
formats, 7-11
line user-defined functions, 8-15
number signs, 3-6
package development, 10-21
package execution, 2-31
package programs, 2-3 , 10-1 , 10-3 , 10-4

program access–SHOW command,
2-41

statements on a line, 1-10
workspaces, 1-8 , 10-24

Multiple MegaBasic environments–BA-
SIC command, 2-45

Multiplication, 3-16

Multiply string operator, 4-11

Multiplying strings, 4-10 , 4-12

Multi-user facilities, 6-24 , 6-26

Multiuser file access, 7-38

Multiuser MegaBasic support, B-2 , B-5 ,
B-7

Multi-way
decision branching, 6-8
GOTO statement, 6-3

N
Name

invocation, 8-9
listings, 2-23
of package containing error, 9-36
re-assignment, 2-24
restrictions, 1-12 , D-6

Name procedures, 8-12

NAMES
command, 1-12 , 2-23 , 2-24

Index

Index-22 GFK-0256

data files, 7-24
files, 7-24
function, 8-6 , 8-13
procedure, 8-7
string array, 4-5–4-6

Names from the file directory, 9-29

Naming
procedures, 8-12
program entities, 1-12
variables, 3-8 , 4-4
workspaces, 10-21

Natural logarithms, 9-9

ndirect variable access, 5-30

Necessary hardware requirements, 1-3

Negative powers, 3-16

Nested
CASE blocks, 6-10
format specifications, 7-13
GOSUBs, 8-3
IF statements, 6-5 , 6-7
loops, 6-13
MegaBasic environments, 2-45
statements, 6-7
string expressions, 4-12

Network applications, 7-33 , 7-38

Network utilities, C-21

New
data files, 7-24
features in MegaBasic, D-2
file message–SAVE command, 2-14
files, 7-24
program lines, 1-8
programs, 2-14
strings and arrays, 5-4
workspaces, 2-16 , 2-42 , 10-22 , 10-24

New MegaBasic environments, 2-45

Newline suppression, 7-15

Next data type on file, 9-32

NEXT pseudo line label, 6-1 , 6-17

NEXT statement, 6-16

NOMARK in WRITE# statements, 7-33

NOMARK statement, 7-37

Non-decimal constants, 3-7

Non-destructive backspace, 1-15

Non-negative values, 9-6

Non-numeric processing, 4-2

Non-subscripted strings, 4-4

Non-uniform random numbers, 9-8

Nonstandard argument modes, 8-22

Nontrappable errors, A-1

Normal random numbers, 9-8

North Star BASIC compatibility, D-17

NOT numeric operator, 3-19

NOT string operator, 4-11

Not-equal operator, 3-22 , 4-16

Notation for expressing numbers, 3-6

Notation of syntax, 2-4

NPX MegaBasic, 3-35

Null
ELSE clauses, 6-7
function parameter list, 8-13
strings, 4-2 , 4-19 , 5-15

Number
error code, A-11
of array dimensions, 9-35
to string conversion, 9-14

Numbers in non-decimal systems, 3-7

Numeric
arrays, 3-10
assignments, 5-10
boolean operators, 3-19
comparison operators, 3-22
concepts, 3-1
constants, 3-6
constants in programs, 3-7
data file access, 7-33
data to ports, 7-44
expressions, 3-14
file access, 7-29
format modes, 7-8
format specifications, 7-7
format string syntax, 7-8
functions, 3-23 , 9-4
input, 7-15
input from text files, 7-18
keyboard input, 3-7
logical operators, 3-19
manipulation, 3-1
memory storage, 7-44
operator precedence, 3-14
operators, 3-14 , 3-16
precision, 9-39
relational operators, 3-22

Index

Index-23GFK-0256

representation, 3-1
representations, 3-2
rounding, 9-5
sign to the right, 7-9
string conversion example, 8-15
type coercion, 3-25
use of comparisons, 3-22
value list loops, 6-13
variables, 3-8

O
O-formats, 7-8

Obtaining current date, 9-34

Octal format mode, 7-8

Octal integer constants, 3-7

Offset address of variables, 9-38

Old file message, 2-14

Old input line access, 1-16

ON
GOSUB statement, 8-4
GOTO statement, 6-3
RESTORE statement, 5-7

Open channel numbers, 7-26

Open file name string, 9-31

OPEN statement, 7-26 , 7-28

Open-ended arguments, 8-8

Open-ended string indexing, 4-19

OPEN$ function, 9-31

OPENC statement, 7-28

Opening data files for use, 7-26 , 7-28

Operands, 3-14

Operating, systems, 1-4

Operating system
command tail, 9-28
commands, 1-6 , 7-46
exit, 6-3 , 6-4
type, 9-39

Operator
arithmetic, 3-14 , 3-15 , 3-16
boolean, 3-19 , 4-13
comparison, 3-22 , 4-16
logical, 3-19 , 4-13
numeric, 3-14 , 3-15 , 3-16
precedence, 3-14 , 3-15 , 4-11 , 4-12

precedence override, 4-10
relational, 3-22 , 4-16
string, 4-10

Opoerating system, dependencies, B-1

Optimization, 3-19 , 5-13

Optimized execution, C-17

Optimizing for speed, 9-16

Optional
field width, 7-6
spaces and line feeds, 1-11 , 2-5
syntactic components, 2-4

OR numeric operator, 3-19

OR string operator, 4-11

ORD function, 9-23

Order of evaluation, 4-10 , 6-7

Order of operations, 3-14

Ordered array elements, 3-10

Ordered string searching, 9-16

Ordering MegaBasic, C-17

Ordinal number of set members, 9-23

Orientation to MegaBasic, 1-1

Other MegaBasic products, C-17

OUT statement, 7-44

Output
formatting, 7-5 , 7-6
from argument lists, 8-21
function, 9-29
results from subroutines, 8-10 , 8-17
statements, 7-3
status, 9-29

Output to
devices, 7-5
ports, 7-44
text files, 7-5 , 7-15

Outputting strings, 7-13

Outputting vectors, 3-33

Outside subroutines, 10-4

Outside variables, 10-4

Overlapping windows, C-20

Overlaying program modules, 10-3 , 10-6

Overriding operator precedence, 4-10

Overview of functions, 3-23 , 3-24

Overview of program development, 1-8

Index

Index-24 GFK-0256

Ownership of data variables, 10-8 , 10-22

P
Package

accessibility, 2-41
components, 10-8
converting from CHAIN, 10-18
definition and usage, 10-1
development, 10-24
development environment, 10-21
independence, 10-9
initialization, 10-16
main body of statements, 10-10
memory overhead, 10-24
names, 10-12
operations, 10-11
removal, 10-13 , 10-18
resources, 10-21
strategies, 10-18
system development, 10-15
where last error occurred, 9-36

Package lookup order, 10-2

Packages, 10-3
DATA statements in, 5-7
list of, 2-41

Packing integers, 5-16

Packing numbers into strings, 9-22

Paging program listing–LIST command,
2-12

Panic button–CTRL-C, 2-32

PARAM
function, 9-39
statement, 7-49

Parameter
input to subroutine, 8-9
list definition and usage, 8-17
list options, 8-23
lists, 8-6 , 8-7 , 8-12 , 8-13
passing modes, 8-19
pointers, 5-30

Parentheses
around negative numbers, 7-9
expression control, 3-14
in string expressions, 4-10

Parenthesis matching, 1-15

Parenthesized format specifications, 7-13

Partial vector variables, 3-27

Partitioning programs, 10-3 , 10-6

Passing
numeric arguments, 8-14
parameters in startup command, 9-28
variables, 8-21
variables to subroutines, 8-21

Passing by
address, 8-21
copying, 8-22
value, 8-19

Passing data
between programs, 10-6
to GOSUBs, 8-11
to/from subroutines, 8-17

Passing string arguments to functions,
8-14

Pathname function, 9-30

Pathnames of open files, 9-31

Pattern matching, 2-7 , 9-15 , 9-16

PC-DOS environment strings, 9-38

Peeking at memory, 7-44 , 9-38

Percent
file positioning lead-in, 7-29
format lead-in character, 7-6
lead-in character, 7-29 , 7-33
sign argument variables, 8-22

Performance improvements, CASE, 6-12

Performing system commands, 7-46

Peripheral channel errors, 9-36

Peripheral device control, 7-20 , 9-32

Permanent program status, 10-6

Permanent workspaces, 10-21 , 10-23

Personalizing MegaBasic, C-6

PGM extension configuration, C-10

PGM files, 2-9

PGMLINK utility program, C-2

Physical requirements of MegaBasic, 1-4

PI constant, 9-10

Place of last error, 9-36

place where last error occurred, 9-36

Plus sign format modifier, 7-9

Pointer
arguments, 8-23
arguments in subroutines, 5-30

Index

Index-25GFK-0256

arithmetic, 5-29
array, 5-29
DEF statements, 5-32
variables, 5-28

Poking data to memory, 7-44

POLY function, 9-11

Polynomial evaluation, 9-11

Port access, 7-44 , 9-37

POS function, 9-26

Position of an open file, 9-29

Position-length indexing, 4-19

Positioning
channels, 7-15
devices, 9-26
file pointer, 7-29
the file pointer, 7-29

Positive values, 9-6

Post-loop termination, 6-16

Power failures, 1-9

Powers, 3-16

Powers of base e, 9-9

Precedence of ELSE clauses, 6-7

Precision
compatibility, 7-30
control, 9-5
control operators, 3-17
loss in 8-digit BCD, 3-25
numeric, 3-8 , 9-39
of real numbers, 3-2

Precision control, 3-37

Predefined symbols, D-6

Pre-loop termination control, 6-15

Preparing field structures, 5-18

Preparing programs, 2-11

Preserving
global structure, 8-16
line number increments, 2-25 , 2-27
state of program execution-CONT com-

mand, 2-33
variable values, 8-19

Preventing file endmarks, 7-33 , 7-37

Previous input line access, 1-16

Previously developed modules–merging,
2-27

PRINT
column positioning, 7-15
control specifications, 7-15
fields, 7-6
formatting, 7-6
statement, 4-2 , 7-5

Printer device, 2-5

Printer status, 9-29

Printing
program listings–LIST command, 2-12
to files, 7-15
vectors, 3-33

Prior
environment recovery, 2-40
input line access, 1-16
SAVE file, 2-14

Private resources, 10-21

Problem formulation, 8-27

PROC END statement, 8-8

Procedure
access using interrupts, 7-48 , 7-49
accessibility, 10-5
argument passing modes, 8-19
calling path–TRACE RET, 2-38
communication, 8-17
components, 8-9
creation, 8-1
debugging, 2-38
definition, 8-1 , 8-7
identifiers, 1-12
local variables, 8-5
names, 8-7
reference map, 2-43
statements, 8-3
termination, 8-4
usage, 8-1
use and definition, 8-12

Procedures
externally accessible, 10-5
in assembler, 10-25
merging from other packages, 2-27

Processing bit strings, 4-13

Processing in the background, 7-54

Processing numbers, 3-1

Processing strings, 4-1 , 9-12

Program
access command summary, 2-11
access to constants, 5-7
access to data, 5-7

Index

Index-26 GFK-0256

alteration–CHANGE command, 2-21
backup, 1-8
backup–SA VE command, 2-14
components, 7-1
constants, 5-6
control over–CTRL-C, 2-32
control statements, 6-1
cross reference command, 2-43
data, 5-2 , 5-6
debugging, 2-31–2-37
deletion, 2-18 , 2-24
design, 8-1
development commands, 2-3
development summary, 1-8
development–MERGE command, 2-27
documentation, 5-7
editing, 2-18
entry, 2-11
execution, 1-6
execution–RUN command, 2-31
fiile names, 10-12
file capacity–STAT command, 2-40
file name suffix, 2-9
files, 1-6
files–SAVE command, 2-15
index generation–XREF, 2-43
integrity, 10-3
line length, 1-8
line numbers, 1-11
line ranges, 2-6
line selection, 2-7
loading, 2-16
looping, 6-13
modification, 10-23
name configuration, C-10
partitioning, 10-3
protection, 1-6
rearrangement-REN command, 2-24
remarks, 5-7
renumbering-MOVE command, 2-25
saving, 2-14
security, 1-6 , C-5
sequencing, 6-13
size reduction, C-4
size–ST AT command, 2-40
statements, 7-1
statistics, 2-40
structure checking–CHECK, 2-38
subset restriction, 2-6
testing–TRA CE command, 2-37
workspaces, 1-8
XREF command, 2-43

Program lookup order, 10-2

Programmed STOP, 2-33

Programmer defined procedure, 8-7

Programmer functions, 8-6 , 8-13

Programs
from text files, 2-16
in other BASICs, 2-16
in textual form, 2-12 , 2-16

Prologue
calling path, 2-37
debugging, 2-37
examples, 10-16
guidelines, 10-15
invocation, 10-4
routines, 10-9
sequencing, 10-13

Prompted input, 7-16

Prompted line numbers, 2-11

Propagation of Ctrl-C state, 10-4

Protected-mode MegaBasic, C-18

Protecting program files, C-5

Protection from losing work, 2-16

Pseudo line label, 6-17

Pseudo random numbers, 9-7

Public resources, 10-21

Punctuation, 2-4

Punctuation characters, D-7

Purchasing MegaBasic products, C-17

Purpose of the MegaBasic manual, 1-5

Q
Question mark input prompt, 7-16

Quick program display, 2-14

Quote protection, 2-5 , 2-7 , 2-19 , 2-21

Quotes around strings, 4-2

R
R-formats, 7-14

Radix conversion, D-9

Raising to powers, 3-16

Random
access to DATA statements, 5-7

Index

Index-27GFK-0256

file access, 7-29
file endmark suppression, 7-33
file position base, 7-29
file position function, 9-29
file positioning, 7-29
file processing, 7-37
numbers, 9-7

Range of floating point, 3-2

Range of integer format, 3-4

Ranges of characters, 9-14

Raw input, 7-18

Re-dimensioning
numeric arrays, 3-10
string arrays, 4-7
string variables, 4-4

Re-entering input lines, 1-14

Re-intializing variables, 5-5

READ LOCK statement, 7-38

READ statement, 5-7

READ# statement, 7-29

READ# statement side effects, 8-16

Reading
current date, 9-34
currrent time of day, 9-33
data from files, 7-29
directory names, 9-31
name of open file, 9-31
the file directory, 9-30
vectors from files, 3-33

Real
function, 3-25 , 9-34
numeric constants, 3-7
numeric processing, 3-35
precision on files, C-8
representation, 3-2
type declarations, 3-5
variable type declaration, 3-9 , 3-12

Real-time events, 7-50 , C-13

Re-assigning identifiers–NAME com-
mand, 2-24

Recognizing names, 1-13

Record
file access, 7-29
locking mechanisms, 7-38
termination, 9-32
variables, structured, 5-18

Record management, C-21

Recoverable error codes and messages,
A-1

Recovering
from editing errors, 1-17
input characters, 1-16
the prior environment, 2-37

Recovery from program errors, 6-20

Recursive programming, 8-5 , 8-27

Reducing
complexity, 8-1 , 10-1
dependence on GOTOs, 6-8
execution time, 5-11
program duplication, 8-1

Redundant INCLUDEs and ACCESSes,
10-12

Reference map, 2-43

Referencing line numbers–REN com-
mand, 2-24

Referencing structures, 5-25

Referring to subroutines, 8-3

Register access, 7-45 , 7-46

Relational
expressions, 6-5
operators, 3-22
searching, 9-17
string operator, 4-11
string operators, 4-16

Release differences, D-2

Released MegaBasic programs, C-2

Releasing unneeded memory, 4-4

REM statement, 5-8

Remainder function, 9-5

Remaining memory space, 9-37

Removing
data files, 7-24
embedded blanks, 4-11
empty workspaces, 10-22
input characters, 1-16
packages, 10-5 , 10-9
spaces, 9-13
the decimals, 9-5
the sign from numbers, 9-6
workspaces, 2-44

REN command, 2-24

RENAME statement, 7-25

Index

Index-28 GFK-0256

Renaming
data files, 7-25
identifiers, 2-24
workspaces, 10-24

Renumbering, 2-25

Renumbering program lines, 2-24

REPEAT loop exiting, 6-17

REPEAT statement, 6-16

Repeated format specifications, 7-13

Repeating strings, 4-10 , 4-12

Repetitive
input entries, 1-18
program structures, 6-13 , 6-15
string indexing, 4-21

Replacement statement, 5-10

Replacing formal arguments with actual
values, 8-18

Replacing substrings, 5-14

Repositioning the input cursor, 1-16

Representing
numbers in MegaBasic, 3-2
numeric information, 3-1
strings, 4-1

Required operating resources, 1-4

Required operating systems, 1-4

Rescanning format strings, 7-11

RESEQ$ funcrtion, 9-22

Reserved words, D-6

Reserving memory, C-9

Reserving storage, 5-4

Resetting channel line count, 7-15

Resetting DATA statements, 5-7

Resolving expression ambiguities, 4-16

Responding to external events, 7-50 , C-13

RESTORE data statement, 5-7

RESTORE variables statement, 5-5

Restoring
initial variable contents, 5-5
input characters, 1-16
local structures, 6-20
local subroutine structures, 8-4
local variables, 8-5

Restricting external access, 10-12

Restrictions on DISMISS, 10-13

Result types from functions, 3-25

Results from subroutines, 8-10

Resuming program execution-CONT
command, 2-33

Retrieving programs, 2-11 , 2-16

Retry procedures, 6-23 , 7-42

RETRY statement, 6-23 , 7-42

RETURN expression statement, 8-4 , 8-15

Return path–TRACE RET, 2-37

RETURN statement, 8-4 , 8-11 , 8-19

Returning from subroutines, 8-9

Returning to operating system, 2-40

REV$ function, 9-13

Reversing strings, 9-13

Review of error context, 2-14

Revising programs–EDIT command, 2-18
, 2-19

Revising string length, 5-6

Revising the OPEN file limit, C-8

Revisions to MegaBasic, D-2

Right
bit rotation, 9-22
fill, 5-15 , 7-14
justification, 7-13
sign format, 7-9
string indexing, 4-19
substrings, 4-19

Right-justifying, numbers, 7-8

RND function, 9-7

ROTAT$ function, 9-22

Rotating bit strings, 9-22

ROUND function, 9-5

ROUND operators, 3-18

Rounding
numbers, 3-8 , 9-5
numeric output, 7-7
of long constants, 3-6
to a nearest multiple, 3-18
upward, 9-4

Routines in machine memory, 7-45 , 7-46

Row device positioning, 9-26

Index

Index-29GFK-0256

Row positioning, 9-26

Row/column transposes, 9-22

Rules for
naming program entities, 1-12
passing by variable, 8-21
specifying numbers, 3-6
using argument lists, 8-17

RUN command, 2-31 , 10-23

RUN version, 1-6 , 5-7

Running
in the background, 7-54
multiple package programs, 10-23
out of DATA statements, 5-7
out of memory, 3-10
programs, 1-6 , 2-31

S
Safe memory area, 9-39

Safeguarding your work, 1-9

Sample multi-package system, 10-16

SAVE command, 2-14 , 10-24

Saving memory, 1-7 , 8-22 , 8-27 , 10-11 ,
10-13 , 10-22 , 10-24

Saving programs, 1-8 , 2-14

Scalar string variables, 4-4

Scalar variables, 3-8

Scaling factors in numbers, 3-6

Scanning directory names, 9-31

Scanning the file directory, 9-30

Scientific
format mode, 7-8
functions, 9-9
notation for numbers, 3-6

Scope of variables, 8-17

Scrambling program files, 1-6 , C-5

Scratching the program–DEL command,
2-24

Scratchpad workspace, 4-12 , 5-13

Screen
configuration, C-7
processing, C-16
status, 9-28

Screen fields, C-20

Screen flipping, C-11

Scroll control, 2-10

Search order, 10-2

Search string, 2-12 , 2-19 , 2-21

Search string options, 2-7

Searching
for bit patterns, 9-23
programs, 2-12
string variables, 9-16
vectors, 3-29

Secondary file name, 2-9

Secondary results, 9-36

Security of program files, C-5

Seeding random numbers, 9-7

SEG function, 9-37

SEG statement, 7-44

Segment address of variables, 7-44 , 9-37

Segmented data structures, 5-18

Segmenting programs, 10-3 , 10-6

Selecting
between integer and real, 3-2
subdirectories, 7-25
user numbers, 7-25
workspaces, 10-22
workspaces-USE command, 2-42

Selection rules in CASEs, 6-10

Selective program editing, 2-6

Self-calling subroutines, 8-27

Self-starting programs, 1-6

Self-sufficient package systems, 10-17

Semi-colon separator, 1-8

Sending data between LINKs, 10-6

Separator characters, D-7

Sequences of characters, 9-14

Sequencing
of prologues, 10-13
program structures, 6-13
through bit strings, 9-23

Sequential, line numbers, 2-11

Sequential file
access, 7-29
look ahead, 9-32
position base, 7-29
positioning, 7-29

Index

Index-30 GFK-0256

Serial device control, 7-20 , 9-32

Serial device driver, C-21

Series of characters, 9-13

SERVICE statement, 7-49

SERVICE# statement, 7-48

Set manipulation, 4-13 , 9-22

Set membership, 4-17

Setting
breakpoints–TRA CE command, 2-34
string variable length, 5-6
the current directory, 9-30
the default format, 7-9
the file position, 7-29
up logical interrupts, 7-50 , C-13
up retry procedures, 6-23

SGN function, 9-6

SGN operators, 3-17

Shared
data, 10-3 , 10-5
program objects, 10-8 , 10-24
subroutines, 10-3 , 10-5
variables, 10-4 , 10-5 , 10-8

Shell execution, 6-4

Shifting line numbers–REN command,
2-25

Shortening file sizes, 7-29

SHOW
ACCESS command, 2-41
command, 2-41
OPEN command, 2-42
SIZE command, 2-42

Showing
a fixed number of digits, 7-8
current workspaces, 2-41
status of OPEN files, 2-42
variable sizes, 2-42

Side effects
from argument passing, 8-19
from functions, 8-16
of operations, 9-36
with argument lists, 8-22

Sign
on positive values, 7-9
to the right, 7-9
transfer, 3-16 , 9-6

Simple
functions, 8-14
string factors, 4-12
string variables, 4-4
variables, 3-8

Simplified field access, 5-25

Simplifying
complicated numeric formats, 7-11
expressions, 4-20–4-21 , 8-14
programming, 8-1

Simulation with random numbers, 9-7

SIN function, 9-10

Single-byte
data file access, 7-33
file access, 7-29
input, 9-27
string indexing, 4-19

Single-line
delete, 2-24
function definition, 8-14
functions, 8-6 , 8-14
procedures, 8-7

Single-step program listing, 2-12

Single-step TRACE mode, 2-34

Size of an open file, 9-29

Size of array dimensions, 9-35

Sizing string variables, 4-4

Slash print control, 7-15

Slashes in formats, 7-11

Slicing arrays, 3-27

Small array creation, 3-11

Software interrupt access to machine
code, 7-46

Sorting applications, 5-15 , 7-26 , 9-16

Sorting numbers as strings, 9-15

Source
modification, 10-23
protection and security, 1-7

SPACE function, 9-30

Space remaining on disk, 9-30

Space-bar display control, 2-12

Special
arithmetic operators, 3-17
assignment statements, 5-10
characters, D-7

Index

Index-31GFK-0256

ELSE clause, 6-7
function results, 9-36
line labels, 10-9
packages, 10-25
purpose commands, 2-40

Specifying
B-formats, 7-8
CASE blocks, 6-9
E-formats, 7-8
F-formats, 7-8
H-formats, 7-8
I-formats, 7-8
non-decimal constants, 3-7
numbers, 3-6
numbers to program requests, 3-7
numeric constants, 3-7
numeric formats, 7-7
O-formats, 7-8
output formatting, 7-6
prologue and epilogue, 10-9
string variable length, 5-6
variable types, 3-9 , 3-12
workspaces, 2-43

Speed considerations, 1-7 , 2-32 , 4-21–4-22
, 5-14 , 5-15 , 6-12 , 7-26 , 7-45 , 7-46 ,
8-21 , 8-22

SQRT function, 9-9

Square-roots, 9-9

Stand-alone programs, C-2

Standard user-assigned names, 8-17

Standards for user-identifiers, 10-24

Start-up command tail, 9-28

Start-up routines, 10-9

Starting
program execution–RUN command,

2-31
programs, 1-6

Starting value in new variables, 3-8

Startup configuration, C-6

Startup initialization, 10-23

STAT command, 2-40

State of program execution, 10-22

Statement
assignment, 5-10
channel I/O, 7-3
commenting, 5-7
control, 6-1

data definition, 5-2
device I/O, 7-3
direct execution, 2-30
documentation, 5-7
error control, 6-20
form, 1-10 , 2-4 , 2-5
overlay, 10-3
program, 7-1
replacement, 5-10
segmentation, 10-3
separators, 1-8
subroutine, 8-3
system interface, 7-43
transformation, 5-9

Statements for vectors, 3-30

Statements, package execution, 10-11

Statements, program filenames in, 2-9

Static
definition initialization, 10-12
format, 7-7
formatting, D-16
local variables, 8-22

Statistics on OPEN files/devices, 2-42

Statistics on variable sizes, 2-42

Status of
files and I/O devices, 9-25
variable sizes, 2-42

Status of OPEN files and devices, 2-42

STEP increment specifier in loops, 6-13

Stepping through
directory names, 9-31
each workspace, 2-43

Stepping through the file directory, 9-31

Stochastic processes, 9-7

STOP statement, 6-4

Stopping program execution, 2-32 , 6-3 ,
6-4

Storage requirements of arrays, 3-11 , 4-8

Storing
data to files, 7-33
data to memory, 7-44
integers, 5-16
numbers, 3-8
numbers within strings, 5-18
programs, 2-11
strings, 4-4
strings into indexed variables, 4-20

STR$ function, 9-14

Index

Index-32 GFK-0256

String
access to memory, 7-44
arguments in commands–Search

strings, 2-7
array elements, 4-7
array initialization, 4-7
array subscripts, 4-7
arrays, 4-7
assignments, 4-4 , 4-20
assingments, 5-13
centering, 7-14
comparison, 4-11 , 4-16
comunication between programs, 10-6
concatenation, 4-10–4-11
concepts, 4-2
constants, 4-2 , 5-16
data to ports, 7-44
data type, 4-1
element capacity, 4-7
equality masks, 4-12
expressions, 4-10
expressions as formats, 7-14
expressions input prompts, 7-16
factors, 4-12
fields, 7-14
file access, 7-29
format modes, 7-14
formatting, 7-14
function summary, 4-24
functions, 4-23–4-24 , 8-13 , 9-12
indexing, 4-19
indexing modes, 4-19
initialization control, 9-39
input, 7-15
input from text files, 7-18
justifying, 7-14
length, 9-13
manipulation, 4-1
mapping, 9-21
MATCH operator, 4-12
MAX operator, 4-13
memory addresses, 9-38
memory storage, 7-44
MIN operator, 4-13
multiplication, 4-11 , 4-12
operations, 4-10
operator precedence, 4-10 , 4-11
output, 7-14
processing, 4-1
quantities, 4-2
reference map, 2-43
relational operators, 4-11
repetition, 4-10 , 4-12
reversal, 9-13

rotation, 9-22
searching, 9-16
size statistics, 2-42
string assignments to structured vbls,

5-23
sub-expressions, 4-10
substitution, 5-14
subtraction, 4-11–4-12
SWAP statement, 5-15
symbols in expressions, 4-10
to number conversion, 9-14
transpose, 9-22
variable assignments, 5-15
variable communication, 8-21
variable initial contents, 4-4
variable names, 4-4

STRUCT declarations, 5-18

STRUCT USE statement, 5-25

Structured field variables, 5-18

Structured programming, 6-5 , 6-6 , 6-8 ,
6-13 , 6-20 , 6-23 , 8-1 , 8-3 , 8-10 , 8-17 ,
8-21 , 8-27 , 10-1 , 10-5 , 10-18 , 10-24

Sub-environments, 2-45

Sub-expressions, 4-16

Sub-vectors, 3-27 , 3-28

SUBDIR$ function, 9-31

Subdirectories, 7-25

Subexpressions, 3-14

Subroutine
access from external programs, 10-4
accessibility, 10-5
argument passing modes, 8-19
branching, 8-4
calling path, 2-38
communication, 8-9 , 8-17
components, 8-9
creation, 8-1
debugging, 2-37
definition, 8-1 , 8-9
invocation, 8-9
line ranges, 2-6
merges, 2-27
statements, 8-3
termination, 8-4
types, 8-11
usage, 8-1

Subroutines in assembler, 10-25

Subroutines in machine memory, 7-45 ,
7-46

Subscript base position, 4-7

Index

Index-33GFK-0256

Subscripted
assignments, 5-10
numeric variables, 3-10
string variables, 4-7

Subset manipulation, 4-13

Subset membership, 4-17

Substituting formal arguments, 8-18

Substituting substrings, 5-14

Substring
assignments, 5-13
exchanges, 5-15
replacement statement, 5-14

Subtracting strings, 4-11

Subtraction, 3-16

SUM function, 9-7

Summary
of editing keys, 1-18
of program development, 1-8

Summary of
argument passing modes, 8-19
arithmetic functions, 9-4
commands, 2-2 , 2-11 , 2-18 , 2-30
File and I/O functions, 9-25
functions, 3-24 , 4-24
mathematical functions, 9-9
procedure definition, 8-12
string functions, 9-12
the numeric format modes, 7-8
utility and system functions, 9-33

Summation of array values, 3-29

Superfluous space removal, 9-13

Supplemental
material to this manual, 1-5
MegaBasic products, C-17
programs, C-1 , C-16

Supplying numbers during input, 3-7

Support for Xenix, B-2

Supported operating systems, 1-4

Suppressing
INPUT prompts, 7-16
trailing-zeros, 7-9

SWAP statement, 5-15

Swapping vectors, 3-32

Switching workspaces, 10-22

Symbolic line ranges, 2-6

Symbols reserved, D-6

Syntactic notation, 2-4

Syntax
checking, 2-38
error message, 4-7
errors, 2-30
for naming program entities, 1-12
summary of commands, 2-2

Syntax analysis, C-18

System
commands from MegaBasic, 7-46
dependencies, B-1
environment information, 9-38
error codes and messages, A-1
functions, 9-33
interface statements, 7-43
parameter access, 9-39
requirements of MegaBasic, 1-4

T
TAB print control, 7-15

Table of format modes, 7-8

Table of logical combinations, 3-20

Tail of startup command, 9-28

TAN function, 9-10

Temporary
numeric arrays, 3-10
program status, 10-5
variables, 8-5 , 8-19
workspaces, 10-21 , 10-23

Terminating
CASE blocks, 6-11
loops, 6-13 , 6-15 , 6-17
packages, 10-5
procedure definition, 8-8
program execution, 6-3–6-4
subroutines, 8-4 , 8-9 , 8-27
the TRACE mode, 2-38

Terminating multi-line function defin-
tions, 8-7

Testing
command summary, 2-30
for file existence, 9-30
I/O channel status, 9-28
I/O device status, 9-28
numeric sign, 9-6
programs, 2-30 , 2-34

Text
insertion, 1-14

Index

Index-34 GFK-0256

rearrangement, 1-16

Text file
access, 7-26
buffers, 7-26
character input, 9-27
input, 7-18
positioning, 7-29
processing, 4-1 , 7-3 , 9-12
programs on, 2-16

THEN clause restrictions, 6-16

THEN clauses, 6-5

Time
of last file alteration, 9-30
period measurement, 9-34
slicing, 7-56

TIME$ function, 9-33

Timed delays, 6-26

Timer management, C-13

Tips on package development, 10-24

TO range delimiter, 6-13

Tokens, D-6

Too many ELSE clauses, 6-7

TRACE command, 2-34

Trace controls, 2-34

TRACE END command, 2-38

TRACE IF command, 2-37

TRACE mode, 2-34

TRACE RET command, 2-37

TRACE: command, 2-37

Tracing statement execution, 2-34

Trailing
decimals, 7-7
sign format, 7-9
space removal, 9-13
zero suppression, 7-9

TRAN$ function, 9-21

TRAN$() function, 4-17

Transcendental functions, 9-9

Transfer of control, 6-1

Transfer of sign, 9-6

Transferring, strings between variables,
5-13

Transferring data
between variables, 5-9
from files, 7-29
to files, 7-33
to/from subroutines, 8-17

Transforming
numerical vector, 3-26
random numbers, 9-7
vector results, 3-29

Translating characters, 9-21

Translating to MegaBasic, 2-16

Translation from prior versions, D-16

Transpose on strings, 9-22

Trappable errors, A-1

Trapping errors, 6-20

Trigonometric functions, 9-10

TRIM$ function, 9-13

TRUNC function, 9-5

TRUNC operators, 3-18

Truncating numbers, 9-5

Truncating strings, 4-20 , 5-13

Truth-table logic, 3-19

TurboDos-86, B-7

TurboDOS-86 retriable errors, 6-24

Turnkey systems, 1-6 , C-7

Twos-complement 32-bit integers, 3-4

TYP function, 9-32

Type
codes for trappable errors, A-1
conversion, 3-25 , 9-14
name configuration, C-10

Type checking, C-17

Types of arguments, 8-17

Types of subroutines, 8-11

Typing
error correction, 1-14
file names, 7-23
non-decimal constants, 3-7
search strings, 2-7

Typing numeric constants in programs,
3-7

U
Unary string operators, 4-10 , 4-13

Index

Index-35GFK-0256

Unbuffered file operations, 7-33

Unconditional branches, 6-2

Undefined functions, 3-23 , 4-23 , 4-24

Underflow in real numbers, 3-2

Undimensioned
array creation, 3-11
array size, 9-39 , C-8
string length, C-9
string size, 9-39

Unedited input, 7-18

Unexpected direct statement errors, 2-30

Uniform random numbers, 9-7

Union of sets, 4-13

Unique
array names, D-16
string array names, 4-7
variable names, 3-10

Unit specifier in file names, 2-9

Unix MegaBasic support, B-2

Unneeded packages, 10-13

Unordered string searching, 9-16

Unpacking integers, 5-16

Unpacking strings into numbers, 9-21

Unsatisfied line references, 2-24

Updating file buffers, 6-3–6-4 , 7-33

Updating open files, 7-28

Upgrading from North Star BASIC, D-17

Upper case conversion, 9-21

Upper to lower case conversion, 4-13

Upward compatible features, D-2

USE command, 10-22

Useful subroutines, C-16

User
assigned identifiers, 1-12
assigned names, 2-23
confirmation–SA VE and CHANGE

commands, 2-14 , 2-21
defined functions, 8-6 , 8-13
defined procedures, 8-7
installed modifications, C-6
intervention, 2-32
numbers, 7-25
trap error, 6-23

User-DEFined functions, 8-13

User-defined subroutines, 8-1

Using
B-formats, 7-8
CRUNCH, C-4
E-formats, 7-8
F-formats, 7-8
files as devices, 7-3 , 7-15
functions, 3-23 , 4-23–4-24 , 8-15
H-formats, 7-8
I-formats, 7-8
logical interrupts, 7-50 , C-13
O-formats, 7-8
packages, 10-11
single-line functions, 8-14
subroutines, 8-1 , 8-9 , 8-11
systems of packages, 10-1
this manual, 1-5
variables to store numbers, 3-8
workspaces, 10-22

Utility
commands, 2-40
functions, 9-33
programs, C-1

Utilization of memory, 10-6

V
VAL example, 8-15

VAL function, 9-14

Value
arguments, 8-19
input from text files, 7-18
list loops, 6-13

Variable
accessibility, 10-5
communication, 8-21
communication between programs,

10-6
format specifications, 7-13
identifiers, 1-12
memory addresses, 9-37
names, 3-8 , 4-4
ownership, 10-8
path names, 5-23
pointers, 5-28
pseudo, 5-30
reference map, 2-43
size statistics, 2-42
to variable transfers, 5-13

Index

Index-36 GFK-0256

Variables
as communication vehicles, 8-17
editing contents of, 7-17
externally accessible, 10-8
lifetime of, 10-13
ownership of, 10-23
structured, 5-18
vector, 3-26

Variations between versions, B-1

Varieties of subroutines, 8-11

Vector
arithmetic operators, 3-29
assignment statement, 3-30
expressions, 3-28
file transfer, 3-33
format specifications, 7-13
functions, 3-29
indexing, 3-27
length of, 3-28 , 3-29
output, 3-33
printing, 3-33
processing, 3-26
statements, 3-30
summation, 3-30 , 9-7
variable swapping, 3-32
variables, 3-26

Verfying parenthesis nesting, 1-15

Verifying program syntax, 2-38

Version differences, D-2

Version number, 9-39

Very large or small numbers, 3-6

Video configuration, C-7

W
WAIT statement, 6-26

Walking through directory names, 9-31

Walking through file directory, 9-30

Warning beep, 2-34

WHILE loop exiting, 6-17

WHILE statement, 6-15

Whole number representation, 3-4

Wild-card characters, 2-13 , 2-19

Windowing in text-mode, C-20

Word
access to memory, 7-44
data file access, 7-33
file access, 7-29

Workspace
commands, 2-40
control, 2-16
deletion, 2-44
display, 2-41
listing, 2-41
merges, 2-27
names, 10-12
selection, 10-22
statistics, 2-40

Workspaces, 1-8 , 2-3 , 2-31 , 2-42 , 2-44 ,
10-5 , 10-21 , 10-24

WRITE LOCK statement, 7-38

WRITE# statement, 7-33

WRITE# statement side effects, 8-16

Writing data to files, 7-33

Writing vectors to files, 3-33

X
X-Y device positioning, 9-26

Xenix MegaBasic support, B-2

XOR numeric operator, 3-19

XOR string operator, 4-11

XREF command, 2-43

Z
ZBA files, D-16

Zero
iteration loops, 6-13 , 6-15
length strings, 4-2
parameter functions, 8-13
suppression, 7-9

	gfk0256d.pdf
	Chapter 1 Introduction to MegaBasic
	Section 1: MegaBasic Components and Installation
	Section 2: Running Programs from the Operating System
	The MegaBasic Development Version
	The Runtime Version of MegaBasic
	The MegaBasic Compiler

	Section 3: Program Development Overview
	Section 4: Lines, Statements and Program Form
	Program Line Continuation
	Program Line Numbers

	Section 5: Names and Identifiers
	Section 6: The MegaBasic Line Editor
	Inserting Text
	Cursor Positioning
	Deleting Text
	Text Recovery and Rearrangement
	Accessing The Previous Input Line
	Accessing Any Prior Input Line
	Editing Control Characters

	Chapter 2 MegaBasic Commands
	Section 1: Introduction To MegaBasic Commands
	The Workspace Environment
	Syntactic Notation Used in This Manual
	Command and Statement Form
	Specifying I/0 Devices
	Referring to Program Lines
	Specifying Program Line Ranges
	Specifying Search Strings
	Search String Option Switches
	Specifying Program File Names
	Controlling Command Output

	Section 2: Program Entry, Storage and Retrieval
	ENTER
	LIST
	Carriage Return
	SAVE
	LOAD list
	Loading Programs Stored in Text Format
	Program Version Control

	Section 3: Editing and Alteration Commands
	EDIT [<line range>][,<search string>][,<options>]
	MOVE
	COPY
	DUPL
	MERGE
	Automatic Target Placement

	Section 4: Execution Control and Debugging Commands
	Executing Direct Statements
	RUN
	CONT
	TRACE:
	TRACE RET
	TRACE END
	CHECK [#<output device>]
	CHECK [#<output
	CHECK [#<output EDIT

	Section 5: Information and Control Commands
	BYE
	STAT
	SHOW
	SHOW ACCESS [*]
	SHOW OPEN
	SHOW [#<device>,] SIZE [<selector list>]
	USE
	XREF
	CLEAR
	CLEAR DATA
	CLEAR FREE
	BASIC

	Chapter 3 Representing and Manipulating Numbers
	Section 1: Representing Numbers
	Floating Point Representation
	Integer Representation
	Numeric Type Declarations
	Data Type Rules for Variables & Functions

	Section 2: Numeric Constants
	Numeric Notation
	Exponential Notation
	Binary, Octal and Hexadecimal Constants
	Program Constants
	Input Constants

	Section 3: Numeric Variables
	Integer vs. Real Variables

	Section 4: Numeric Arrays
	Dimensioning Numeric Arrays
	Default Arrays
	Maximum Array Size
	Integer vs. Real Arrays

	Section 5: Operators and Expressions
	Operation Precedence
	Arithmetic Operators
	Bit-Wise Integer Operators
	Special Arithmetic Operators
	Logical Operators
	Ordering Terms For Faster Evaluation
	Logical Expressions In Arithmetic Calculations
	Comparison Operators

	Section 6: Numeric Functions
	Integer vs. Real Functions
	Integer and Real Conversions

	Section 7: Vector Processing
	Vector Variables
	Specifying Array Slices
	Concatenated Vectors
	Vector Variable Indexing
	Vector Expressions
	Vector Operators
	Vector Functions
	Scalar Functions on Vectors
	Vector Statements
	Vector Assignments
	Swapping Vectors
	Printing Vectors
	Writing Vectors to Files
	Reading Vectors from Files

	Section 8: IEEE Floating Point and 80x87 Math Support
	BCD vs. IEEE Representation
	IEEE/BCD Compatibility
	Floating Point Values on Files
	Software/Hardware Performance

	Chapter 4 Representing and Manipulating Strings
	Section 1: Characters and String Constants
	Section 2: String Variables
	Rules For Declaring String Names

	Section 3: String Arrays
	DIMensioning String Arrays
	Maximum String Array Size

	Section 4: String Operators and Expressions
	String Concatenation
	String Subtraction
	String Repetition
	String MATCH Operator
	String MIN/MAX Operators
	Logical Operators in String Expressions
	String Comparison Operators
	Changing the Collating Sequence
	Bit-String Comparisons

	Section 5: String Indexing and Substrings
	Indexing String Arrays
	Assigning Strings to Indexed String Variables
	Extended String Indexing

	Section 6: String Functions

	Chapter 5 Data Definition and Assignment Statements
	Section 1: Data Definition Statements
	DEF Statement Ordering
	DIM
	RESTORE
	LEN(<string
	DATA
	DATA END
	READ
	RESTORE
	ON RESTORE
	REM

	Section 2: Data Transformation and Assignment Statements
	[LET]
	VEC
	Extended Assignment Statements
	Assignments within Expressions
	[LET]
	[LET]
	[LET]
	[LET]
	SWAP
	BIT (<string vbl> [<bit range>]) = <expression>

	Section 3: Structured Variable Fields
	STRUCT
	(2) <type> <name> (<item>, <item>, <item>,...)
	(3) @<position>
	(4) USE <host string variable>
	Multi-Line STRUCT Statements
	Redefining Structured Variables
	STRUCT() Function
	DEF [SHARED] STRUCT
	Accessing Structure Field Variables
	Structured String Assignments
	Passing Fields between Subroutines and Packages
	Examples of Structured Variables
	Default Referencing
	STRUCT CHANGE TO <new

	Section 4: Pointer Variables
	Accessing Objects Through Pointers
	Array Pointer Arithmetic
	Pointer Arguments in Subroutines
	Pseudo Variables
	Pointer Statements

	Chapter 6 Program Control Statements
	Section 1: GOTOs and Program Termination
	GOTO <label>
	ON GOTO
	END
	STOP
	DOS

	Section 2: Condition Execution
	Compound Statements
	Null ELSE-clauses in IF Statements
	Multi-line Statements
	BEGIN ...
	CASE Block Definition
	CASE Selection Criterion
	CASE Branches and Nested CASEs
	CASE Test Statements
	Logical Test Statements
	Exiting a CASE Block
	Performance Hints

	Section 3: Program Loops and Iteration Control
	WHILE
	REPEAT... NEXT IF
	NEXT
	EXIT

	Section 4: Error Trapping and Control
	Error Trapping and Program Structure
	ERRSET
	ERRSET
	RETRY name>
	Caution Using RETRY
	WAIT<number of seconds>

	Chapter 7 I/O and System Interaction
	Caution using RETRY
	WAIT
	Section 1: Input and Output Statements
	,NOMARK
	Format Specifications
	Formatting Numbers
	<width>
	<mode>
	<decimals>
	<places>
	Numeric Format Modes
	Format Modifiers
	Altering Format Attributes
	Automatic Numeric Scaling
	Multiple Formats and Format Rescan
	Format Repetition
	Dynamic Formatting
	Formatting Strings
	String Format Modes
	Control Specifications
	Printing to Files
	INPUT
	Input Prompts
	Building Input from Prior Input
	Editing Variables with Default Values
	Suppressing Input Echo
	Input from Files
	ENTER <
	EDIT$ =
	Command-Level Arguments
	IOCTL

	Section 2: File Processing Statements
	What is a File?
	Accessing Files
	Sequential and Random File Access
	Text File Processing
	Record-Oriented Files
	Specifying File Names
	File Functions
	CREATE
	DESTROY
	RENAME <old
	DIR$ =
	DIR =
	DIR
	OPEN
	OPENC
	CLOSE
	FILEPOS (<channel>) = <new file position>
	FILESIZE (<channel number>) = <new file size>
	READ
	File Position ()
	Variable-length String Variable
	Real Variable
	Integer Variable
	-bit Values into Numeric Variables (@)
	-bit Values into Numeric Variables (&)
	Fixed-length String Variable (&)
	Forming a READ Statement
	Reading Numbers
	Reading Strings
	Random-Access READs
	Numeric Representation Control
	WRITE
	File Position (%)
	Variable-length Strings
	Real Values
	Integer Values
	-bit Word Values (@)
	-bit Byte Values (&)
	Fixed-length Strings (&)
	Forming WRITE Statements
	Writing Numbers
	Writing Strings
	End-of-File Marks
	NOMARK
	WRITE
	READ
	Shared OPEN Files
	Explicit File Locking
	Automatic Locking Under MegaBasic
	Shared Read Sequence
	Shared Write Sequence
	Multiple File Locks
	Retry Control for Blocked Resources

	Section 3: System Interface Statements
	SEG [<variable name>]
	FILL
	EXAM
	OUT
	CALL
	CALL
	DOS
	SERVICE
	SERVICE
	PARAM (<exprn>) = <exprn>

	Section 4: Logical Interrupts
	INTERRUPT
	Interrupt Service Procedures
	Buffering Logical Interrupts
	Interrupt Control
	Interrupt Control Information
	Assigning the 80x86 Software Interrupt
	Posting Interrupts
	Background Processing under MS-DOS
	Automatic Background Processing
	Background Process Termination
	Background Time-Slice Control

	Chapter 8 User-Defined Subroutines
	Section 1: Subroutine Statements
	GOSUB
	ON GOSUB
	RETURN
	LOCAL
	DEF FUNC
	FUNC END
	DEF [SHARED] PROC
	PROC END
	ARGUMENT

	Section 2: Elements of Subroutines
	Invocation by Name
	A Single Entry Point
	One or More Exit Points
	Communication of Input Data
	Communication of Output Results
	Independence, Isolation and Information Hiding

	Section 3: Types of Subroutines
	GOSUB Subroutines
	Procedure Subroutines
	Defining Procedure Subroutines
	Function Subroutines
	Defining Single-Line Function Subroutines
	Defining Multiple-Line Function Subroutines
	Side-Effects Produced by Subroutines

	Section 4: Communicating with Subroutines
	Global Variables
	Argument Lists
	Argument Passing Modes
	Value Arguments
	Variable Arguments (@)
	Copied Arguments (%)
	Pointer Arguments (*)
	Optional Parameters and Default Values
	Open-ended Argument Lists

	Section 5: Recursive Programming

	Chapter 9 MegaBasic Built-in Function Library
	Section 1: Arithmetic Functions
	INT <)
	CEIL <
	TRUNC
	ROUND
	ROUND(
	MOD numeric exprn>,<modulus exprn
	FRAC
	ABS()
	SGN)
	SGN
	MlN
	MAX(
	SUM()
	RND()

	Section 2: Mathematical Functions
	SQRT)
	LOG()
	LN
	EXP)
	PI
	SlN
	ASlN)
	COS
	ACOS
	TAN
	ATN
	POLY

	Section 3: Character and Bit String Functions
	LEN)
	REV$
	TRlM$)
	MlN$
	MAX$
	CHR$
	CHRSEQ$
	STR$
	VAL
	ASC
	COLLA T$
	MATCH
	<mode>
	<vbl$>
	<relation>
	<string exprn>
	<step>
	<count>
	Results Returned by FIND
	Using FIND() in the Default Mode
	Using FIND() in MIN or MAX Mode
	Using FIND() in ORDered Mode
	TRAN$
	RESEQ$
	ROTAT$
	BlT
	CARD
	ORD

	Section 4: File and Device I/O Functions
	POS
	LlNE)
	INCHR$
	EDIT$
	INPUT
	OUTPUT
	FlLEPOS
	FlLESlZE
	FlLEDATE$)
	FlLETlME$
	FlLECTRL(<open
	FlLE
	SPACE
	DIR$
	DlR$
	SUBDlR$(
	OPEN$)
	IOCTL
	IOCTL$
	TYP

	Section 5: Utility and System Interface Functions
	TIME$
	DATE$
	ELAPSE
	ARGUMENT
	INTERRUPT
	STRUCT
	REAL
	INTEGER
	DIM
	ERRTYP
	ERRMSG$
	ERRPKG$
	ERRLINE
	ERRDEV
	INDEX
	INP
	FREE
	EXAM)
	SEG
	[l
	ENVlR$
	PARAM

	Chapter 10 Multiple Module Programs
	File Lookup Order
	Section 1: Overlay and Package Statements
	DEF SHARED
	DEF SHARED
	INCLUDE
	ACCESS
	DISMISS
	LINK

	Section 2: Package Definition
	SHARED Objects
	Prologue and Epilogue Routines
	Package Programming Details

	Section 3: Using Packages
	Accessing Packages
	Including Packages
	Dismissing Unneeded Packages
	Orphaned Packages
	ACCESS and DISMISS Functions
	A Model of a Multi-Package System
	Multiple Package System Example
	Menu Driver
	Transaction Processing
	Report Generator
	Data Base Manager
	File Handler
	Video and Plotter Graphics
	Global Data and Utility
	Additional Comments on this Example
	Converting LlNKed Systems into Package Systems

	Section 4: The Multi-Package Development Environment
	Global Facilities and Attributes
	Local Facilities and Attributes
	Switching from Workspace to Workspace
	Workspace Implications to Direct Statements
	Source Modification Effect on Accessibility
	Executing a Multi-Package Program
	Unfinished Epilogues
	Loading Programs into Multiple Workspaces
	Saving Programs and Eliminating WorkSpaces
	Tips on Package Development

	Section 5: Assembler Packages
	Defining Assembler Packages
	Defining and Accessing Arguments
	Integer Values
	Integer Variables by Address
	Real Values
	Real Variables by Address
	String Values
	String Variables by Address
	Arrays by Address
	Values of Any Type
	Scalar Variables of Any Type by Address
	Array Variables of Any Type by Address
	Subroutine Code
	Returning From A Subroutine
	Assembling a Package

	Appendix A Error Messages
	Argument List Error (10)
	Array Subscript Error (1)
	Attempt to Read Endmark Error (21)
	Buffer Update Error (255)
	Command Argument Error (255)
	Continue Error (255)
	Ctrl-C Stop (15)
	Data Type Error (4)
	Denied Access Error (36)
	Device l/O Error (35)
	Directory Not Found Error (34)
	Disk Full Error (8)
	Disk Unavailable Error(33*)
	Divide by Zero Error (9)
	Double Definition Error (255)
	Exit Error (10)
	Expression-Depth Error (10)
	File Already Exists Error (6)
	File Busy Error (26*)
	File Creation Error (18)
	File Not Found Error (7)
	File Not Open Error (20)
	File Number In Use Error (19)
	File System Error (30)
	Floating Point Operand Error (37)
	Format Specification Error (5)
	Illegal Operation Error (38)
	Illegal Package Operation Error (24)
	Improper Filename Error (17)
	Improper Vector Error (39)
	Incomplete Definition Error (255)
	Insufficient Memory Error (255)
	Internal Stack Error (255)
	Internal System Error (255)
	Interrupt Service Error (255)
	Length Error (16)
	Line Number Error (10)
	Local Declaration Error (10)
	Loop Index Error (10)
	Loop/Case Overlap Error (10)
	Missing Argument Error (10)
	Missing Bracket Error (10)
	Missing CASE END Error (10)
	Missing DATA Statement Error (11)
	Missing NEXT Error (10)
	Missing Parenthesis Error (10)
	Missing Return Error (10)
	No Program Error (255)
	Non-recoverable Disk Error (27*)
	Not Ready Error (25*)
	Numeric Overflow Error (14)
	Operating System Error (29*)
	Out of Bounds Error (3)
	Out of Context Error (10)
	Out of Memory Segments Error (255)
	Pointer Variable Error (41)
	Program Compaction Error (255)
	Program Too Big Error (255)
	Re-Dimension Error (2)
	Read Past End of File Error (22)
	Read-Only Violation Error (28*)
	ScratchPad Full Error (13)
	Shared Name Conflict Error (23)
	Structured Variable Error (40)
	Suspended File Access Error (32*)
	Syntax Error (10)
	Too Many File Locks Error (31)
	Too Many Symbols Error (255)
	Undefined Name or Procedure Error (10)
	Unexpected Argument Error (10)
	Undeclared Array or String Error (42)
	Unexpected Bracket Error (10)
	Unexpected CASE Error (10)
	Unexpected NEXT Error (10)
	Unexpected Parentheses Error (10)
	Unexpected Return Error (10)
	Unexpected THEN/ELSE Clause (10)
	Unintelligible Program Error (255)
	Unknown Command Error (255)
	Unsupported Feature Error (10)
	User Trap Error (255)
	Value Conversion Error (12)
	Write-Only Volition Error (28)

	Appendix B Other Operating Systems
	Section 1: Xenix 386 System V
	Features That Differ from MS-DOS
	Features Unique to Xenix MegaBasic
	Features not Supported

	Section 2: CP/M-86 On 8086/88 Machines
	DOS Statements
	DIR
	FILEDATE$() and FILETIME$() functions
	SPACE() and FILESIZE() Functions
	DOS Exit Codes

	Section 3: Concurrent DOS and MP/M-86
	System Printer (device # 1)
	File and Record Locking Facilities

	Section 4: TurboDos-86
	DIR
	RETRY Procedures

	Appendix C Utilities and Other Software
	Section 1: Stand-Alone Programs with PGMLINK
	Section 2: Program Compaction with CRUNCH
	How to Use CRUNCH
	Code Security by Scrambling

	Section 3: MegaBasic Configuration with CONFIG
	Allow Ctrl-C Abort
	Use Ctrl-Break for Abort
	Console Mode Byte
	Maximum Number of OPEN Files
	Number of File Buffers
	File Locking Support
	End-of-File Mark Code
	Floating Point File Format
	Undimensioned Array Size
	Undimensioned String Length
	Lower-Case Symbols
	Maximum Low-Memory KiloBytes
	Minimum High-Memory KiloBytes
	Maximum High-Memory KiloBytes
	Default Program File Extension Name
	Automatic Package Access

	Section 4: Screen Flipping for Debugging
	Interrupt Trapping
	Exiting Crashed Applications

	Section 5: Real-Time Event Processing Utilities
	Installing EVENTS.COM
	The Task Manager
	Timer Facilities
	Keyboard Shift and Hot Key Events
	Mouse Events

	Section 6: Other Supplemental Packages
	LlBRARY.pgm
	PCBASLlB.pgm

	Section 7: MegaBasic Products
	Development vs. Run-time Versions
	MegaBasic Development Versions
	MegaBasic Run-time Systems
	MegaBasic Compiler System
	Extended MegaBasic
	Extended vs. Standard MegaBasic
	System Requirements
	VSCREEN Window Manager
	VTRIEVE Record Manager
	Contents and Requirements
	MegaCOMM Serial Device Driver
	AnsiPLUS Enhanced Console Device Driver
	Extended EGA and VGA Features
	Replacements for Common TSRs
	OtherAnsiPLUS Extensions
	MegaBasic Support Features in AnsiPLUS

	Appendix D Miscellaneous Information
	Section 1: Recent MegaBasic Enhancements
	Changes Since Revision E (November 1991)
	Changes Since Revision D (March 1991)
	Changes Since Revision C (April 1989)

	Section 2: MegaBasic Reserved Words and Characters
	Special Characters

	Section 3: ASCII Character Codes and Special Keys
	Section 4: Converting Floating Point Programs to Integer
	Section 5: Loading Programs from Earlier Z80 Versions
	Running North Star BASIC Programs

	Index

